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Isometry Lie algebras of indefinite homogeneous spaces
of finite volume

Oliver Baues, Wolfgang Globke and Abdelghani Zeghib

Abstract

Let g be a real finite-dimensional Lie algebra equipped with a symmetric bilinear form 〈·, ·〉.
We assume that 〈·, ·〉 is nil-invariant. This means that every nilpotent operator in the smallest
algebraic Lie subalgebra of endomorphisms containing the adjoint representation of g is an
infinitesimal isometry for 〈·, ·〉. Among these Lie algebras are the isometry Lie algebras of pseudo-
Riemannian manifolds of finite volume. We prove a strong invariance property for nil-invariant
symmetric bilinear forms, which states that the adjoint representations of the solvable radical and
all simple subalgebras of non-compact type of g act by infinitesimal isometries for 〈·, ·〉. Moreover,
we study properties of the kernel of 〈·, ·〉 and the totally isotropic ideals in g in relation to the
index of 〈·, ·〉. Based on this, we derive a structure theorem and a classification for the isometry
algebras of indefinite homogeneous spaces of finite volume with metric index at most 2. Examples
show that the theory becomes significantly more complicated for index greater than 2. We apply
our results to study simply connected pseudo-Riemannian homogeneous spaces of finite volume.
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1. Introduction and main results

Let g be a finite-dimensional Lie algebra equipped with a symmetric bilinear form 〈·, ·〉. The
pair is called a metric Lie algebra. Traditionally, the bilinear form 〈·, ·〉 is called invariant if the
adjoint representation of g acts by skew linear maps. We will call 〈·, ·〉 nil-invariant, if every
nilpotent operator in the smallest algebraic Lie subalgebra of endomorphisms containing the
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adjoint representation of g is a skew linear map. This nil-invariance condition appears to be
significantly weaker than the requirement that 〈·, ·〉 is invariant.

Recall that the dimension of a maximal totally isotropic subspace is called the index of
a symmetric bilinear form, and that the form is called definite if its index is zero. Since
definite bilinear forms do not admit nilpotent skew maps, the condition of nil-invariance is
less restrictive and therefore more interesting for metric Lie algebras with bilinear forms of
higher index.

In this paper, we mainly study finite-dimensional real Lie algebras g with a nil-invariant
symmetric bilinear form. We will discuss the general properties of these metric Lie algebras,
compare them with Lie algebras with invariant symmetric bilinear form and derive elements
of a classification theory, which give a complete description for low index, in particular, in the
situation of index less than 3.

Nil-invariant bilinear forms and isometry Lie algebras

The motivation for this article mainly stems from the theory of geometric transformation
groups and automorphism groups of geometric structures.

Namely, consider a Lie group G acting by isometries on a pseudo-Riemannian manifold
(M, g) of finite volume. Then at each point p ∈ M , the scalar product gp naturally induces a
symmetric bilinear form 〈·, ·〉p on the Lie algebra g of G. As we show in Section 2 of this paper,
the bilinear form 〈·, ·〉p is nil-invariant on g. Note that, in general, 〈·, ·〉p will be degenerate,
since the subalgebra h of g tangent to the stabilizer Gp of p is contained in its kernel.

Isometry groups of Lorentzian metrics (where the scalar products gp are of index one) have
been studied intensely. Results obtained by Adams and Stuck [1] in the compact situation and
by Zeghib [15] amount to a classification of the isometry Lie algebras of Lorentzian manifolds
of finite volume.

In these works, it is used prominently that, for Lorentzian finite volume manifolds, the scalar
products 〈·, ·〉p are invariant by the elements of the nilpotent radical of g, cf. [1, § 4]. The latter
condition is closely related to nil-invariance, but it is also significantly less restrictive. The role
played by the stronger nil-invariance condition seems to have gone unnoticed so far.

Aside from Lorentzian manifolds, the classification problem for isometry Lie algebras of finite
volume geometric manifolds with metric g of arbitrary index appears to be much more difficult.

Some more specific results have been obtained in the context of homogeneous pseudo-
Riemannian manifolds. Here, M can be described as a coset space G/H, and any associated
metric Lie algebra (g, 〈·, ·〉p) locally determines G and H, as well as the geometry of M . These
pseudo-Riemannian manifolds are model spaces of particular interest.

Based on [15], a structure theory for Lorentzian homogeneous spaces of finite volume is given
by Zeghib [16].

Pseudo-Riemannian homogeneous spaces of arbitrary index were studied by Baues and
Globke [2] for solvable Lie groups G. They found that, for solvable G, the finite volume
condition implies that the stabilizer H is a lattice in G and that the metric on M is induced
by a bi-invariant metric on G. Also, it was observed in [2] that the nil-invariance condition
holds for the isometry Lie algebras of finite volume homogeneous spaces, where it appears as
a direct consequence of the Borel density theorem. The main result in [2] amounts to showing
the surprising fact that any nil-invariant symmetric bilinear form on a solvable Lie algebra g
is, in fact, an invariant form (a concise proof is also provided in Appendix B).

By studying metric Lie algebras with nil-invariant symmetric bilinear form, the present
work aims to further understand the isometry Lie algebras of pseudo-Riemannian manifolds
of finite volume. We will derive a structure theory which allows to completely describe such
algebras in index less than 3. In particular, this classification contains all local models for
pseudo-Riemannian homogeneous spaces of finite volume of index less than 3.
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1.1. Main results and structure of the paper

In Section 2, we prove that the orbit maps of isometric actions of Lie groups on pseudo-
Riemannian manifolds of finite volume give rise to nil-invariant scalar products on their tangent
Lie algebras.

Some basic definitions and properties of metric Lie algebras are reviewed in Section 3.
In favorable cases, nil-invariance of 〈·, ·〉 already implies invariance. For solvable Lie algebras

g, this is always the case, as was first shown in [2]. These results are briefly summarized in
Section 4. In this section, we will also review the classification of solvable Lie algebras with
invariant scalar products of indices 1 and 2. Their properties will be needed further on.

Strong invariance properties

In Section 5, we begin our investigation of nil-invariant symmetric bilinear forms 〈·, ·〉 on
arbitrary Lie algebras. For any Lie algebra g, we let

g = (k× s) � r

denote a Levi decomposition of g, where k is semisimple of compact type, s is semisimple of
non-compact type and r is the solvable radical of g. For this, recall that k is called of compact
type if the Killing form of k is definite and that s is of non-compact type if it has no ideal of
compact type. We also write

gs = s � r.

Our first main result is a strong invariance property for nil-invariant symmetric bilinear
forms:

Theorem A. Let g be a real finite-dimensional Lie algebra, let 〈·, ·〉 be a nil-invariant
symmetric bilinear form on g and 〈·, ·〉gs the restriction of 〈·, ·〉 to gs. Then:

(1) 〈·, ·〉gs is invariant by the adjoint action of g on gs.
(2) 〈·, ·〉 is invariant by gs.

Note that any scalar product on a semisimple Lie algebra k of compact type is already nil-
invariant, without any further invariance property required. Therefore, Theorem A is as strong
as one can hope for.

Remark. We would like to point out that the proof of Theorem A works for Lie algebras
over any field of characteristic zero if the notion of subalgebra of compact type k is replaced by
the appropriate notion of maximal anisotropic semisimple subalgebra of g. The latter condition
is equivalent to the requirement that the Cartan subalgebras of k do not contain any elements
split over the ground field.

We obtain the following striking corollary to Theorem A, or rather to its proof:

Corollary B. Let g be a finite-dimensional Lie algebra over the field of complex numbers
and 〈·, ·〉 a nil-invariant symmetric bilinear form on g. Then 〈·, ·〉 is invariant.

For any nil-invariant symmetric bilinear form 〈·, ·〉, it is important to consider its kernel

g⊥ = {X ∈ g | X ⊥ g},
also called the metric radical of g. If 〈·, ·〉 is invariant, then g⊥ is an ideal of g. If 〈·, ·〉 is
nil-invariant, then, in general, g⊥ is not even a subalgebra of g. Nevertheless, a considerable
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simplification of the exposition may be obtained by restricting results to metric Lie algebras
whose radical g⊥ does not contain any non-trivial ideals of g. Such metric Lie algebras will be
called effective. This condition is, of course, natural from the geometric motivation. Moreover,
it is not a genuine restriction, since by dividing out the maximal ideal of g contained in g⊥,
one may pass from any metric Lie algebra to a quotient metric Lie algebra that is effective.

Theorem A determines the properties of g⊥ significantly as is shown in the following:

Corollary C. Let g be a finite-dimensional real Lie algebra with a nil-invariant symmetric
bilinear form 〈·, ·〉. Assume that the metric radical g⊥ does not contain any non-trivial ideal of
g. Let z(gs) denote the center of gs. Then

g⊥ ⊆ k � z(gs) and [g⊥, gs] ⊆ z(gs) ∩ g⊥.

The proof of Corollary C can be found in Section 6, which is at the technical heart of
our paper. In Subsection 6.1, we start out by studying the totally isotropic ideals in g, and
in particular properties of the metric radical g⊥. The main part of the proof of Corollary C
is given in Subsection 6.2. We then also prove that if in addition 〈·, ·〉 is g⊥-invariant, then
[g⊥, gs] = 0.

As the form 〈·, ·〉 may be degenerate, it is useful to introduce its relative index. By definition,
this is the index of the induced scalar product on the vector space g/g⊥. The relative index
mostly determines the geometric and algebraic type of the bilinear form 〈·, ·〉.

For effective metric Lie algebras with relative index � � 2, we further strengthen Corollary C
by showing that, with this additional requirement, g⊥ does not intersect gs. This is formulated
in Corollary 6.21.

Classifications for small index

Section 6 culminates in Subsection 6.5, where we give an analysis of the action of semisimple
subalgebras on the solvable radical of g. This imposes strong restrictions on the structure of g
for small relative index.

The combined results are summarized in Section 7, leading to the following general structure
theorem for the case � � 2:

Theorem D. Let g be a real finite-dimensional Lie algebra with nil-invariant symmetric
bilinear form 〈·, ·〉 of relative index � � 2, and assume that g⊥ does not contain a non-trivial
ideal of g. Then:

(1) The Levi decomposition (5.1) of g is a direct sum of ideals: g = k× s× r.
(2) g⊥ is contained in k× z(r) and g⊥ ∩ r = 0.
(3) s ⊥ (k× r) and k ⊥ [r, r].

Examples in Section 8 illustrate that the statements in Theorem D may fail for relative index
� � 3.

We specialize Theorem D to obtain classifications of the Lie algebras g in the cases � = 1
and � = 2. As follows from the discussion at the beginning, these theorems also describe the
structure of isometry Lie algebras of pseudo-Riemannian homogeneous spaces of finite volume
with index 1 or 2 (real signatures of type (n− 1, 1) or (n− 2, 2), respectively).

Our first result concerns the Lorentzian case:

Theorem E. Let g be a Lie algebra with nil-invariant symmetric bilinear form 〈·, ·〉 of
relative index � = 1, and assume that g⊥ does not contain a non-trivial ideal of g. Then one of
the following cases occurs:
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(I) g = a× k, where a is abelian and either semidefinite or Lorentzian.
(II) g = r× k, where r is Lorentzian of oscillator type.

(III) g = a× k× sl2(R), where a is abelian and definite, and sl2(R) is Lorentzian.

This classification of isometry Lie algebras for finite volume homogeneous Lorentzian
manifolds is contained in Zeghib’s [16, Théorème algébrique 1.11], which uses a somewhat
different approach in its proof. Moreover, the list in [16] contains two additional cases of
metric Lie algebras (Heisenberg algebra and tangent algebra of the affine group, compare
Example 3.3 of the present paper) that cannot appear as Lie algebras of transitive Lorentzian
isometry groups, since they do not satisfy the effectivity condition. According to [16], models
of all three types (I)–(III) actually occur as isometry Lie algebras of homogeneous spaces G/H,
in which case h = g⊥ is a subalgebra tangent to a closed subgroup H of G.

The algebraic methods developed here also lead to a complete understanding in the case of
signature (n− 2, 2):

Theorem F. Let g be a Lie algebra with nil-invariant symmetric bilinear form 〈·, ·〉 of
relative index � = 2, and assume that g⊥ does not contain a non-trivial ideal of g. Then one of
the following cases occurs:

(I) g = r× k, where r is one of the following:
(a) r is abelian.
(b) r is Lorentzian of oscillator type.
(c) r is solvable but non-abelian with invariant scalar product of index 2.

(II) g = a× k× s. Here, a is abelian, s = sl2(R) × sl2(R) with a non-degenerate invariant
scalar product of index 2. Moreover, a is definite.

(III) g = r× k× sl2(R), where sl2(R) is Lorentzian, and r is one of the following:
(a) r is abelian and either semidefinite or Lorentzian.
(b) r is Lorentzian of oscillator type.

For the definition of an oscillator algebra, see Example 3.7. The possibilities for r in case (I-c)
of Theorem F above are discussed in Section 4.1. Note further that the orthogonality relations
of Theorem D part (3) are always satisfied.

Remark. Theorem F contains no information which of the possible algebraic models
actually do occur as isometry Lie algebras of homogeneous spaces of index 2. This question
needs to be considered on another occasion.

We apply our results to study the isometry groups of simply connected homogeneous pseudo-
Riemannian manifolds of finite volume. D’Ambra [5, Theorem 1.1] showed that a simply
connected compact analytic Lorentzian manifold (not necessarily homogeneous) has compact
isometry group, and she also gave an example of a simply connected compact analytic manifold
of metric signature (7,2) that has a non-compact isometry group.

Here, we study homogeneous spaces for arbitrary metric signature. The main result is the
following theorem:

Theorem G. Let M be a connected and simply connected pseudo-Riemannian homoge-
neous space of finite volume, G = Iso(M)◦, and let H be the stabilizer subgroup in G of a point
in M . Let G = KR be a Levi decomposition, where R is the solvable radical of G. Then:

(1) M is compact.
(2) K is compact and acts transitively on M .
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(3) R is abelian. Let A be the maximal compact subgroup of R. Then A = Z(G)◦. More
explicitly, R = A× V where V ∼= R

n and V K = 0.
(4) H is connected. If dimR > 0, then H = (H ∩K)E, where E and H ∩K are normal

subgroups in H, (H ∩K) ∩ E is finite and E is the graph of a non-trivial homomorphism
ϕ : R → K, where the restriction ϕ|A is injective.

In Section 10, we give examples of isometry groups of compact simply connected homoge-
neous M with non-compact radical. However, for metric index 1 or 2, the isometry group of a
simply connected M is always compact:

Theorem H. The isometry group of any simply connected pseudo-Riemannian homoge-
neous manifold of finite volume with metric index � � 2 is compact.

As follows from Theorem G, the isometry Lie algebra of a simply connected pseudo-
Riemannian homogeneous space of finite volume has abelian radical. This motivates a closer
investigation of Lie algebras with abelian radical that admit nil-invariant symmetric bilinear
forms in Section 9. In this direction, we prove:

Theorem I. Let g be a Lie algebra whose solvable radical r is abelian. Suppose that g is
equipped with a nil-invariant symmetric bilinear form 〈·, ·〉 such that the metric radical g⊥ of
〈·, ·〉 does not contain a non-trivial ideal of g. Let k× s be a Levi subalgebra of g, where k is
of compact type and s has no simple factors of compact type. Then g is an orthogonal direct
product of ideals

g = g1 × g2 × g3,

with

g1 = k � a, g2 = s0, g3 = s1 � s∗1,

where r = a× s∗1 and s = s0 × s1 are orthogonal direct products, and g3 is a metric cotangent
algebra. The restrictions of 〈·, ·〉 to g2 and g3 are invariant and non-degenerate. In particular,
g⊥ ⊆ g1.

For the definition of metric cotangent algebra, see Example 8.1. We call an algebra
g1 = k � a with k semisimple of compact type and a abelian a Lie algebra of Euclidean
type. By Theorem G, isometry Lie algebras of compact simply connected pseudo-Riemannian
homogeneous spaces are of Euclidean type. However, not every Lie algebra of Euclidean type
appears as the isometry Lie algebra of a compact pseudo-Riemannian homogeneous space. In
fact, this is the case for the Euclidean Lie algebras en = son � R

n with n 
= 3.

Theorem J. The Euclidean group En = On � R
n, n 
= 1, 3, does not have compact quo-

tients with a pseudo-Riemannian metric such that En acts isometrically and almost effectively.

Note that En acts transitively and effectively on compact manifolds with finite fundamental
group, as we remark at the end of Section 9.

Notations and conventions

The identity element of a group G is denoted by e. We let G◦ denote the connected component
of the identity of G.

Let H be a subgroup of a Lie group G. We write Adg(H) for the adjoint representation of
H on the Lie algebra g of G, to distinguish it from the adjoint representation Ad(H) on its
own Lie algebra h.
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If V is a G-module, then we write V G = {v ∈ V | gv = v for all g ∈ G} for the module of
G-invariants. Similarly, V g = {v ∈ V | Xv = 0 for all X ∈ g} for a g-module.

The centralizer and the normalizer of h in g are denoted by zg(h) and ng(h), respectively.
The center of g is denoted by z(g). We use similar notation for Lie groups.

If g1 and g2 are two Lie algebras, the notation g1 × g2 denotes the direct product of Lie
algebras. The notations g1 + g2 and g1 ⊕ g2 are used to indicate sums and direct sums of
vector spaces.

The solvable radical r of g is the maximal solvable ideal of g. The semisimple Lie algebra
f = g/r is a direct product f = k× s of Lie algebras, where k is a semisimple Lie algebra of
compact type, meaning that the Killing form of k is definite, and s is semisimple without
factors of compact type.

For any linear operator ϕ, ϕ = ϕss + ϕn denotes its Jordan decomposition, where ϕss is
semisimple, and ϕn is nilpotent. Further notation will be introduced in Section 3.

2. Isometry Lie algebras

Let (M, g) be a pseudo-Riemannian manifold of finite volume, and let

G ⊆ Iso(M, g)

be a Lie group of isometries of M . Identify the Lie algebra g of G with a subalgebra of Killing
vector fields on (M, g). Let S2g∗ denote the space of symmetric bilinear forms on g, and let

Φ : M → S2g∗, p �→ Φp

be the Gauß map, where

Φp(X,Y ) = gp(Xp, Yp).

The adjoint representation of G on g induces a representation � : G → GL(S2g∗).

Theorem 2.1. Let A be the real Zariski closure of �(G) in the group GL(S2g∗). Let p ∈ M .
Then the bilinear form Φp is invariant by all unipotent elements in A.

Proof. Note that the above Gauß map Φ is equivariant with respect to �, since G acts by
isometries on M . The pseudo-Riemannian metric on M defines a finite G-invariant measure
on M .

Since the claim clearly holds on totally isotropic G-orbits, we may in the following assume
that all orbits of G are non-isotropic, that is, Φp 
= 0 for all p ∈ M .

Put V = S2g∗. For a subset W ⊆ V \0, let W denote its image in the projective space P(V ).
Similarly, for subsets in GL(V ) and their image in the projective linear group PGL(V ).

The finite G-invariant measure on M induces a finite G-invariant measure ν on the projective
space P(V ) with support supp ν = Φ(M) ⊂ P(V ). Let PGL(V )ν denote the stabilizer of ν in
the projective linear group. This is a real algebraic subgroup of PGL(V ), cf. [17, Theorem
3.2.4]. Also, by construction, �(G) ⊆ PGL(V )ν .

There exist vector subspaces W1, . . . ,Wr of V such that supp ν ⊆ W = W 1 ∪ . . . ∪W r and
the quasi-linear subspace W is minimal with this property. Note that the identity component
of PGL(V )ν preserves all W i, and by Furstenberg’s Lemma [17, Corollary 3.2.2], its restriction
to PGL(Wi) has compact closure.

Since PGL(V )ν is real algebraic, the image of A in PGL(V ) is contained in PGL(V )ν . Choose
Wi such that Φp ∈ Wi. Let u ∈ A be a unipotent element. Since the restriction of u to PGL(Wi)
is unipotent and it is contained in a compact subset of PGL(Wi), it must be the identity of
W i. This implies u · Φp = Φp. �
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In terms of Definition 3.1 below, this implies the following:

Corollary 2.2. For p ∈ M , let 〈·, ·〉p denote the symmetric bilinear form induced on the
Lie algebra g of G by pulling back gp along the orbit map g �→ g · p. Then 〈·, ·〉p is nil-invariant
and its kernel contains the Lie algebra gp of the stabilizer Gp of p in G. If G acts transitively
on M , then the kernel of 〈·, ·〉p equals gp.

3. Metric Lie algebras

Let g be a finite-dimensional real Lie algebra with a symmetric bilinear form 〈·, ·〉. The pair
(g, 〈·, ·〉) is called a metric Lie algebra†.

Let h be a subalgebra of g. The restriction of 〈·, ·〉 to h will be denoted by 〈·, ·〉h. The form
〈·, ·〉 is called h-invariant if

〈ad(X)Y1, Y2〉 = −〈Y1, ad(X)Y2〉 (3.1)

for all X ∈ h and Y1, Y2 ∈ g. We define

inv(g, 〈·, ·〉) = {X ∈ g | 〈ad(X)Y1, Y2〉 = −〈Y1, ad(X)Y2〉 for all Y1, Y2 ∈ g}.
This is the maximal subalgebra of g under which 〈·, ·〉 is invariant. If 〈·, ·〉 is g-invariant, we
simply say 〈·, ·〉 is invariant.

The kernel of 〈·, ·〉 is the subspace

g⊥ = {X ∈ g | 〈X,Y 〉 = 0 for all Y ∈ g}.
It is also called the metric radical for (g, 〈·, ·〉). It is an invariant subspace for the Lie brackets
with elements of inv(g, 〈·, ·〉), and, if 〈·, ·〉 is invariant, then g⊥ is an ideal in g.

3.1. Nil-invariant bilinear forms

Let Inn(g)
z

denote the Zariski closure of the adjoint group Inn(g) in Aut(g).

Definition 3.1. A symmetric bilinear form 〈·, ·〉 on g is called nil-invariant, if for all
X1, X2 ∈ g,

〈ϕX1, X2〉 = −〈X1, ϕX2〉, (3.2)

for all nilpotent elements ϕ of the Lie algebra of Inn(g)
z
.

In particular, (3.2) holds for the nilpotent parts ϕ = ad(Y )n of the Jordan decomposition of
the adjoint representation of any Y ∈ g.

3.2. Index of symmetric bilinear forms

Let 〈·, ·〉 be a symmetric bilinear form on a finite-dimensional vector space V . An element x ∈ V
is called isotropic if 〈x, x〉 = 0. A subspace W ⊆ V is called isotropic, if there exists x ∈ W ,
x 
= 0, with 〈x, x〉 = 0. W is called totally isotropic if W ⊆ W⊥.

The dimension of a maximal totally isotropic subspace of V is called the index μ(V ) of V .
Set

�(V ) = μ(V ) − dimV ⊥,

so that �(V ) is the index of the non-degenerate bilinear form induced by 〈·, ·〉 on V/V ⊥. We
call � the relative index of V (or 〈·, ·〉).

†Some authors (for example, [9]) use this term for Lie algebras with an invariant scalar product.
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When there is no ambiguity about the space V , we simply write μ = μ(V ) and � = �(V ). We
then say that V is of index � type. In particular, for � = 1, we say V is of Lorentzian type. We
call V Lorentzian if μ = � = 1.

If 〈·, ·〉 is non-degenerate, that is, if V ⊥ = 0, then we call 〈·, ·〉 a scalar product on V . We
say that the scalar product 〈·, ·〉 is definite if μ = 0.

Let W ⊆ V be a vector subspace. We say W is definite, Lorentzian, of relative index �(W )
or of index μ(W ), respectively, if the restriction 〈·, ·〉W is. Observe further that μ(W ) � μ(V )
and �(W ) � �(V ).

3.3. Examples of metric Lie algebras

Example 3.2. Consider R
n with a scalar product 〈·, ·〉 represented by the matrix (In−s 0

0 −Is
),

where s � n− s. Then 〈·, ·〉 has index s, and we write R
n
s for (Rn, 〈·, ·〉). If we take R

n to be
an abelian Lie algebra, together with 〈·, ·〉, it becomes a metric Lie algebra denoted by abns .

The Heisenberg algebra occurs naturally in the construction of Lie algebras with invariant
scalar products.

Example 3.3. Let (·, ·) be a Hermitian form on C
n. Define the Heisenberg algebra h2n+1

as the vector space C
n ⊕ z, where z = span{Z}, with Lie brackets defined by

[X,Y ] = Im(X,Y )Z,

for any X,Y ∈ C
n. Thus, h2n+1 is a real 2n + 1-dimensional two-step nilpotent Lie algebra

with one-dimensional center (as such it is unique up to isomorphism of Lie algebras). Equip
C

n with the bilinear product 〈·, ·〉 = Re(·, ·). Declaring z to be perpendicular to h2n+1 turns
h2n+1 into a metric Lie algebra, whose relative index �(h2n+1) is determined by the index of
the Hermitian form.

Example 3.4. Put d = span{J}. Define the 2n + 2-dimensional oscillator algebraosc as the
semidirect product

osc = d � h2n+1,

where J acts by multiplication with the imaginary unit on C
n. Given any metric on h2n+1 as

in Example 3.3, an invariant scalar product 〈·, ·〉 of index �(h2n+1) + 1 on osc is obtained by
requiring 〈J, Z〉 = 1 and C

n ⊥ J .

Example 3.4 is an important special case of the following construction:

Example 3.5. Given ψ ∈ son−s,s define the oscillator algebra

g = osc(ψ)

as follows. On the vector space g = d⊕ abns ⊕ j with d = span{D}, j = span{Z}, define a Lie
product by declaring:

[D,X] = ψ(X), [X,Y ] = 〈[D,X], Y 〉Z ,

where X,Y ∈ abns . Next extend the indefinite scalar product on abns to g by

〈D,D〉 = 〈Z,Z〉 = 0, 〈D,Z〉 = 1, (a⊕ j) ⊥ abns .

Then 〈·, ·〉 is an invariant scalar product of index s + 1 on g. The Lie algebra osc(ψ) is solvable.
It is nilpotent if and only if ψ is nilpotent. If ψ is a k-step nilpotent operator, then g is a k-step
nilpotent algebra. If ψ is not zero, then the ideal h = abns ⊕ j is of Heisenberg type (that is,
nilpotent with one-dimensional commutator [h, h] = j).
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3.3.1. Invariant Lorentzian scalar products. The main building blocks for metric Lie
algebras with invariant Lorentzian scalar products are obtained by:

Example 3.6. The Killing form on sl2(R) is an invariant Lorentzian scalar product. In fact,
all semisimple Lie algebras with an invariant Lorentzian scalar product are products of sl2(R)
by simple factors of compact type.

Example 3.7. For ψ ∈ son, the oscillator algebra osc(ψ) is Lorentzian. We say that such a
metric Lie algebra is Lorentzian of oscillator type.

Remark. Classification of Lie algebras with invariant Lorentzian scalar products was
derived by Medina [10] and by Hilgert and Hofmann [7]. It can be deduced that algebras
of oscillator type are the only non-abelian solvable Lie algebras which admit an invariant
Lorentzian scalar product. This is also a direct consequence of the reduction theory of solvable
metric Lie algebras, see Section 4.

4. Review of the solvable case

The first two authors studied nil-invariant symmetric bilinear forms on solvable Lie algebras
in [2]. The main result [2, Theorem 1.2] is:

Theorem 4.1. Let g be a solvable Lie algebra and 〈·, ·〉 a nil-invariant symmetric bilinear
form on g. Then 〈·, ·〉 is invariant. In particular, g⊥ is an ideal in g.

An important tool in the study of (nil-)invariant products 〈·, ·〉 on solvable g is the reduction
by a totally isotropic ideal j in g. Since 〈·, ·〉 is invariant, j⊥ is a subalgebra. Therefore, we can
consider the quotient Lie algebra

g = j⊥/ j. (4.1)

Since j is totally isotropic, g inherits a non-degenerate symmetric bilinear form from j⊥ that is
(nil-)invariant as well. The metric Lie algebra (g, 〈·, ·〉) is called the reduction of (g, 〈·, ·〉) by j.
Reduction by j decreases the index of 〈·, ·〉.

Let n be the nilradical of g. The ideal

j0 = z(n) ∩ [g, n] (4.2)

is a characteristic totally isotropic ideal in g, whose orthogonal space j⊥0 is also an ideal in g
and contains j0 in its center. Then j0 = 0 if and only if g is abelian. In particular, g is abelian
if 〈·, ·〉 is definite. This implies [2, Proposition 5.4]:

Proposition 4.2. Let (g, 〈·, ·〉) be a solvable metric Lie algebra with nil-invariant symmetric
bilinear form 〈·, ·〉. After a finite sequence of reductions with respect to totally isotropic and
central ideals, (g, 〈·, ·〉) reduces to an abelian metric Lie algebra.

The proposition is useful in particular to derive properties of solvable metric Lie algebras of
low index.

4.1. Invariant scalar products of index 2

Example 4.3. Let ψ ∈ son,1. Then the oscillator algebra osc(ψ) as defined in Example 3.5 is
of index � = 2.
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Let αj = (αj
1, . . . , α

j
n), j = 1, 2, denote tuples of real numbers, and let us put d =

span{D1, D2}, j = span{Z1, Z2}. Let X1, . . . , Xn, Y1, . . . , Yn be an orthonormal basis of
a = ab2n

0 ,

Example 4.4. We define a metric Lie algebra g = osc(α1, α2) as follows. The Lie product
on

g = d⊕ ab2n
0 ⊕ j

is given by the relations

[Xi, Yj ] = δij(α1
iZ1 + α2

iZ2), [Dk, Xj ] = αk
jYj , [Dk, Yj ] = −αk

jXj . (4.3)

Define a scalar product 〈·, ·〉 of index 2 on g by

〈D1, D2〉 = 〈Z1, Z2〉 = 0, 〈Di, Zj〉 = δij , Di, Zi ⊥ a. (4.4)

Then g is a solvable Lie algebra with invariant scalar product 〈·, ·〉. Observe that [g, g] = [g, n] ⊆
a⊕ j, where n is the nilradical of g. Then n is at most two-step nilpotent, since [n, n] ⊆ j.

Example 4.5. We define a metric Lie algebra g = osc1(α1, α2) as follows. Consider a =
ab2n+1

0 = span{W} + ab2n
0 , where W ⊥ ab2n

0 , and 〈W,W 〉 = 1. A Lie product on

g = d⊕ ab2n+1
0 ⊕ j

is given by the relations (4.3) and

[D1, D2] = W, [D1,W ] = −Z2, [D2,W ] = Z1.

Define a scalar product 〈·, ·〉 of index 2 on g using (4.4). Then g is a solvable Lie algebra with
invariant scalar product 〈·, ·〉. Note if n = 0, or α1 = α2 = 0, then g is three-step nilpotent.
Otherwise, [n, n] ⊆ j ⊆ z(g).

The three families of Lie algebras in Examples 4.3, 4.4 and 4.5 were found by Kath and
Olbrich [9] to contain all indecomposable non-simple metric Lie algebras with invariant scalar
product of index 2. Thus, we note:

Proposition 4.6. Any solvable metric Lie algebra with invariant scalar product of index
2 is obtained by taking direct products of metric Lie algebras in Examples 3.7 and 4.3–4.5 or
abelian metric Lie algebras.

We use this to derive the following particular observation, which will play an important role
in Section 6.5. An ideal in a metric Lie algebra (g, 〈·, ·〉) is called characteristic if it is preserved
by every skew derivation of g.

Proposition 4.7. Let g be a solvable Lie algebra with invariant bilinear form 〈·, ·〉 of index
μ � 2. Then (g, 〈·, ·〉) has a characteristic ideal q that satisfies:

(1) dim[q, q] � 2.
(2) codimg q � 2.

Proof. It is easily checked that the characteristic ideal q = [g, g] + z(g) of g satisfies (1) and
(2) for the Examples 3.7 and 4.3–4.5, and for products of oscillators as in Example 3.7. Hence,
the proposition is satisfied for all invariant scalar products of index � = μ � 2.

Suppose now that 〈·, ·〉 is degenerate and � = 0. Then g/g⊥ inherits a definite invariant scalar
product. Hence, g/g⊥ is abelian, and [g, g] ⊆ g⊥. Since dim g⊥ � μ � 2, it follows that q = g
has the required properties.
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Finally, suppose that 〈·, ·〉 is degenerate, � = 1. Then g0 = g/g⊥ is Lorentzian. It follows
that g0 admits a codimension 1 characteristic ideal q0 = [g0, g0] + z(g0), where dim[q0, q0] � 1.
Thus, the preimage q of q0 in g has the required properties. �

In the following, n denotes the nilradical of the Lie algebra g.

Corollary 4.8. Let g be a solvable metric Lie algebra which admits an invariant scalar
product of index � 2. If g is not nilpotent, then

z(g) ∩ [n, n] = z(n) ∩ [n, n] = [n, n].

5. Nil-invariant symmetric bilinear forms

Let g be a finite-dimensional real Lie algebra with solvable radical r. Let

g = (k× s) � r (5.1)

be a Levi decomposition, where k is semisimple of compact type and s is semisimple without
factors of compact type. Furthermore, we put

gs = s � r.

Note that gs is a characteristic ideal of g.
The purpose of this section is to show:

Theorem A. Let 〈·, ·〉 be a nil-invariant symmetric bilinear form on g, and let 〈·, ·〉gs denote
the restriction of 〈·, ·〉 to gs. Then:

(1) 〈·, ·〉gs is invariant by the adjoint action of g on gs.
(2) 〈·, ·〉 is invariant by gs.

The proof of Theorem A begins with a few auxiliary results.

Lemma 5.1. Let s ⊆ g be a semisimple subalgebra of non-compact type. Then the subalgebra
generated by all X ∈ s, such that ad(X) : g → g is nilpotent, is s.

Proof. Call X ∈ s nilpotent if ad(X) : s → s is nilpotent. Since, for every representation of
s, nilpotent elements are mapped to nilpotent operators, it is sufficient to prove the statement
for s = g. So, let s0 be the subalgebra of s generated by all nilpotent elements. Since the set of
all nilpotent elements is preserved by every automorphism of s, it follows that s0 is an ideal.
Therefore, the semisimple Lie algebra s1 = s/s0 does not contain any nilpotent elements. Let a
be a Cartan subalgebra of s1, and as the subspace consisting of elements X ∈ a, where ad(X) is
split semisimple (that is, diagonalizable over R). The weight spaces for the non-trivial roots of
as consist of nilpotent elements of s1. Since, by construction, s1 has no nilpotent elements, this
implies that a has no elements split over R. This, in turn, implies that s1 is of compact type
(cf. Borel [3, § 24.6(c)]). By assumption, s is of non-compact type, so s1 must be trivial. �

Lemma 5.2. Let n be the nilradical of g. Then 〈·, ·〉 is invariant by s � n.

Proof. Since 〈·, ·〉 is nil-invariant, inv(g, 〈·, ·〉) contains all X such that the operator ad(X) :
g → g is nilpotent. In particular, n is contained in inv(g, 〈·, ·〉). Since s is of non-compact type,
the subalgebra generated by all X ∈ s with ad(X) nilpotent is s, see Lemma 5.1. Therefore,
also s ⊆ inv(g, 〈·, ·〉). �
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Recall that any derivation ϕ of the solvable Lie algebra r satisfies ϕ(r) ⊆ n (Jacobson
[8, Theorem III.7]). In particular, if ϕ is semisimple, there exists a decomposition r = a + n
into vector subspaces, where ϕ(a) = 0. Similarly, for any subalgebra h of g acting reductively
on r, we have r = rh + n, where [h, rh] = 0.

Lemma 5.3. Let h be a subalgebra of inv(g, 〈·, ·〉), and let gh be the maximal trivial
submodule for the adjoint action of h on g. Then gh ⊥ [h, g]. Moreover, if h is a semisimple
subalgebra contained in s, then [gh, g] ⊥ h.

Proof. Let V ∈ gh and X ∈ h, Y ∈ g. Then 〈V, [X,Y ]〉 = 〈[V,X], Y 〉 = 0. Hence, gh ⊥ [h, g].
Now assume that h is a semisimple subalgebra of s. We may write Y = Y1 + Y2, where

Y1 ∈ gs and Y2 ∈ s � n. Thus, [V, Y1] ∈ gh. Since h is also semisimple, h = [h, h]. Therefore, the
first part of this lemma shows that [V, Y1] ⊥ h. By Lemma 5.2, Y2 ∈ inv(g, 〈·, ·〉). Therefore,

〈[V, Y2], X〉 = 〈V, [Y2, X]〉 = 〈[X,V ], Y2〉 = 0.

That is, [V, Y2] ⊥ h as well. �

Proof of Theorem A, part (1). Since s acts reductively on g, we have g = gs + gs. Therefore,
by Lemma 5.2, it is enough to prove invariance of 〈·, ·〉gs under gs.

Let X ∈ gs, Y, Z ∈ gs. Decompose Y = Ys + Yr, Z = Zs + Zr, according to the direct sum
gs = s⊕ r. Using Lemma 5.3, we get 〈[X,Y ], Z〉 = 〈[X,Yr], Zr〉. By Theorem 4.1, the restriction
of 〈·, ·〉 to the solvable Lie algebra generated by r and X is invariant on that subalgebra. Hence,
〈[X,Yr], Zr〉 = −〈Yr, [X,Zr]〉 = −〈Y, [X,Z]〉. �

Lemma 5.4. Let f be a subalgebra of g and gf the maximal trivial submodule for the adjoint
action of f on g. Then [gf, gs] ⊥ f. In particular, [gk, g] ⊥ k.

Proof. Let X ∈ gf, Y ∈ gs and K ∈ f. Since gs is an ideal in g, we may write

gs = (gs ∩ ker ad(X)ss) + ad(X)gs.

Suppose first that Y ∈ ker ad(X)ss. Then we get

〈[X,Y ],K〉 = 〈ad(X)nY,K〉 = −〈Y, ad(X)nK〉 = 0.

The latter term vanishes, since K ∈ ker ad(X) ⊆ ker ad(X)n.
Next, suppose Y = ad(X)Y ′, for some Y ′ ∈ gs. Since Y ∈ [g, gs] ⊆ s � n, Lemma 5.2 implies

that Y ∈ inv(g, 〈·, ·〉). Thus,

〈[X,Y ],K〉 = 〈X, [Y,K]〉 = 〈X, [[X,Y ′],K]〉 = −〈X, [[Y ′,K], X]〉 = 0.

The latter term is zero, since [Y ′,K] ∈ [gs, g] ⊆ inv(g, 〈·, ·〉), and therefore ad([Y ′,K]) is a
skew-symmetric linear map. This shows [gf, gs] ⊥ f. Finally, for the last statement, observe
that [gk, g] = [gk, gs]. �

Proof of Theorem A, part (2). By Lemma 5.2, 〈·, ·〉 is invariant by s + n. Since gs = s +
rk + n, to prove that 〈·, ·〉 is gs-invariant, it suffices to show that ad(X) is skew for all X ∈ rk.
By part (1), the restriction of ad(X) to the ideal gs is skew. Hence, it remains to show that
〈[X,Y ], Z〉 = −〈Y, [X,Z]〉, where at least one of Y, Z, say Y , is in k. This is satisfied, since

0 = 〈[X,Y ], Z〉 = −〈Y, [X,Z]〉.
Note that the right term is zero because of Lemma 5.4. �

Lemma 5.3 and Lemma 5.4 also imply:
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Corollary 5.5. Let 〈·, ·〉 be a nil-invariant symmetric bilinear form on g = (k× s) � r.
Then

(1) s ⊥ [k, g] and k ⊥ [s, g].
(2) The simple factors of s are pairwise orthogonal.

Example 5.6 (Nil-invariant products on semisimple Lie algebras). Let

g = k× s

be semisimple, where k is an ideal of compact type and s is of non-compact type. For any
nil-invariant bilinear form 〈·, ·〉,

(g, 〈·, ·〉) = (k, 〈·, ·〉k) × (s, 〈·, ·〉s)
decomposes as a direct product of metric Lie algebras, where 〈·, ·〉s is invariant.

6. Totally isotropic ideals and metric radicals

Let g be a finite-dimensional real Lie algebra with nil-invariant symmetric bilinear form 〈·, ·〉
and subalgebras k, s, r, gs as in Section 5. We let � denote the relative index of 〈·, ·〉 (which is
the index of the non-degenerate bilinear form induced by 〈·, ·〉 on g/g⊥).

6.1. Transporter algebras

For any subspaces U ⊆ V of g and any subalgebra q of g, define

nq(V,U) = {X ∈ q | [X,V ] ⊆ U}.
Clearly, nq(V,U) is a subalgebra of q. Also, [q, V ] ⊆ U if and only if nq(V,U) = q.

Suppose that b ⊆ gs is a totally isotropic ideal of g contained in gs. Then consider

b0 = b ∩ g⊥ ⊆ b.

By Theorem A part (2), 〈·, ·〉 is invariant by gs. Therefore, b0 is an ideal of gs.
For any subalgebra q of g, define the transporter subalgebra for b in q as

nq(b, b0) = {X ∈ q | [X, b] ⊆ b0}. (6.1)

Lemma 6.1 (Transporter lemma). For q, b, b0 as above, we have

nq(b, b0) = q ∩ [g, b]⊥, (6.2)

codimq nq(b, b0) � codimq q ∩ b⊥ � dim b− dim b0 � �. (6.3)

Proof. Let Z ∈ b and X ∈ q and Y ∈ g. Since Z ∈ gs, we have 〈[Y, Z], X〉 = −〈Y, [X,Z]〉.
This shows the equivalence of X ⊥ [g, b] and X ∈ nq(b, b0). Hence, equation (6.2) holds.

As [g, b] ⊆ b and thus [g, b]⊥ ⊇ b⊥, we clearly have codimq q ∩ [g, b]⊥ � codimq q ∩ b⊥. Now
codimg b

⊥ = dim b− dim b ∩ g⊥. Since b is totally isotropic, this means codimg b
⊥ � �. Since

codimq q ∩ b⊥ � codimg b
⊥, the inequalities (6.3) follow. �

Remark. Equality holds in (6.3) if and only if dim q + b⊥ = dim g.

The following relations between transporters are satisfied:
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Lemma 6.2.

(1) [gs, ng(b, b0)] ⊆ b⊥ ∩ gs ⊆ ngs(b, b0)
(2) ngs(b, b0) is an ideal of g.
(3) b⊥ ⊆ ng(b, b0).

Proof. Let Y ∈ gs and X ∈ ng(b, b0), Z ∈ b. Since [X,Z] ∈ b0, we get 〈[Y,X], Z]〉 =
〈X, [Z, Y ]〉 = 〈[X,Z], Y 〉 = 0. This shows [Y,X] ⊥ b. By (6.2), b⊥ ∩ gs ⊆ ngs(b, b0). This shows
(1).

Let Y ∈ g and X ∈ ngs(b, b0), Z ∈ [g, b]. We get 〈[Y,X], Z〉 = 〈Y, [Z,X]〉 = 〈[Y, Z], X〉. Since
[Y, Z] ∈ [g, b], (6.2) shows that 〈[Y,X], Z〉 = 0. Thus, [Y,X] ∈ ngs(b, b0). This shows (2).

Finally, b⊥ ⊆ [g, b]⊥, which, in light of (6.2), shows (3). �

6.1.1. Totally isotropic ideals.

Proposition 6.3. Let i be an ideal of k contained in nk(b, b0). Then i + ngs(b, b0) is an ideal
of g contained in ng(b, b0). In particular, [i + ngs(b, b0), b] is an ideal of g contained in g⊥.

Proof. Clearly, j = i + ngs(b, b0) is contained in ng(b, b0). Recall that g = k + gs. Since i is
an ideal in k, [k, j] ⊆ i + [k, ngs(b, b0)]. Using (2) of Lemma 6.2, we conclude [k, j] ⊆ j. By (1) of
Lemma 6.2, [gs, j] ⊆ ngs(b, b0) ⊆ j. �

Corollary 6.4. Assume that g⊥ does not contain any non-trivial ideal of g. Then every
totally isotropic ideal b of g contained in gs is abelian.

Proof. By (3) of Lemma 6.2, b ⊆ ngs(b, b0). Therefore, [b, b] is an ideal of g and contained
in g⊥. Hence, [b, b] = 0. �

The case of a large transporter in k has particularly strong consequences:

Proposition 6.5. Assume that nk(b, b0) = k. Then:

(1) b ∩ g⊥ is an ideal in g.

If furthermore g⊥ does not contain any non-trivial ideal of g, then:

(2) b ∩ g⊥ = 0, dim b � �, [k, b] = 0.

Proof. Since, by Theorem A, 〈·, ·〉 is invariant by gs, [gs, g
⊥] ⊆ g⊥. Hence, [gs, b ∩ g⊥] ⊆

b ∩ g⊥. Since nk(b, b0) = k, this implies that b0 = b ∩ g⊥ is an ideal in g. �

6.1.2. Metric radical of gs. In the following, consider the special case:

b = g⊥s ∩ gs.

Thus, b is totally isotropic and it is the metric radical of gs (with respect to the induced metric
〈·, ·〉gs). By Theorem A, 〈·, ·〉gs is invariant by g. Therefore, b is an ideal in g. Moreover,

b0 = g⊥ ∩ gs

is an ideal in gs.

Lemma 6.6. [gs, g
⊥
s ] ⊆ b0. In particular, [gs, b] ⊆ b0 ⊆ g⊥.

Proof. Let Y ∈ g, X ∈ gs, B ∈ g⊥s . Since gs is an ideal, [Y,X] ∈ gs. Since 〈·, ·〉 is gs-invariant,
we obtain 〈Y, [X,B]〉 = 〈[Y,X], B〉 = 0. This shows g ⊥ [gs, g

⊥
s ]. �
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Since [gs, b] is an ideal in g, we deduce:

Corollary 6.7. If g⊥ does not contain a non-trivial ideal of g, then

g⊥s ∩ gs ⊆ z(gs). In particular, g⊥ ∩ gs ⊆ z(gs).

The following strengthens Proposition 6.5 for b = g⊥s ∩ gs and b0 = g⊥ ∩ gs:

Proposition 6.8. Assume that nk(b, b0) = k. Then:

(1) [g, g⊥s ∩ gs] ⊆ g⊥ ∩ gs. In particular, g⊥ ∩ gs is an ideal in g. If furthermore g⊥ contains
no non-trivial ideal of g, then:

(2) g⊥ ∩ gs = 0 and [g, g⊥s ∩ gs] = 0.
(3) [g⊥s , gs] = [g⊥, gs] = 0.

Proof. By assumption, [k, b] ⊆ b0. By Lemma 6.6, [gs, b] ⊆ b0 ⊆ g⊥, so that [g, b] ⊆ b0. In
particular, b0 is an ideal in g. Thus, (1) and (2) follow, and also (3), since [g⊥s , gs] ⊆ b0, by
Lemma 6.6. �

Remark. It is not difficult to see (compare Lemma 6.9 below) that the centralizer of gs in
g is zg(gs) = zk(gs) × z(gs).

6.2. Metric radical of g

Lemma 6.9. Let W be a g-module. Suppose that c = {Z ∈ g | Z ·W = 0}, the centralizer of
W , is contained in k + r. Then c = (c ∩ k) + (c ∩ r).

Proof. Let g = f � r (where f ⊇ k is a semisimple subalgebra, and r the maximal solvable
ideal of g) be a Levi decomposition of g. Assume first that W is an irreducible g-module. Then
the action of r on W is reductive and commutes with f. Since the image of f in gl(W ) has
trivial center, the claim of the lemma follows in this case. For the general case, consider a
Hölder sequence of submodules W ⊇ W1 ⊇ . . . ⊇ Wk = 0 such that the g-module Wi/Wi+1 is
irreducible. The above implies that, for any Z = K + X ∈ c, where K ∈ f and X ∈ r, K (and
X) act trivially on Wi/Wi+1. Since K ∈ k is semisimple on W , this implies that K acts trivially
on W . That is, K ∈ c ∩ k and therefore also X ∈ c ∩ r. �

Proposition 6.10. If g⊥ does not contain a non-trivial ideal of g, then

(1) g⊥s ⊆ nk(gs, z(gs) ∩ g⊥s ) + nn(gs, z(gs) ∩ g⊥s ).
(2) g⊥ ⊆ nk(gs, z(gs) ∩ g⊥) + nn(gs, z(gs) ∩ g⊥).

Proof. By Lemma 6.6, [g⊥s , gs] ⊆ b0 = gs ∩ g⊥ ⊆ gs ∩ g⊥s = b. Since b is an ideal of g, W =
gs/b is a g-module. Now g⊥s is contained in c = ng(gs, gs ∩ g⊥s ), which is the centralizer of W .
In view of our assumption on ideals in g⊥, observe that [c, gs] ⊆ b ⊆ z(gs) ⊆ r by Corollary 6.7.
Now [c, gs] ⊆ r implies that c is contained in k + r. Therefore, Lemma 6.9 applies, showing g⊥s ⊆
nk(gs, gs ∩ g⊥s ) + nr(gs, gs ∩ g⊥s ). Since [r, z(gs)] = 0, it follows that nr(gs, z(gs)) ⊆ nn(gs, z(gs)).
Hence, (1) holds.

To prove (2), suppose Z = K + X ∈ n(gs, gs ∩ g⊥), where K ∈ k, X ∈ r. By (1), K ∈ c =
n(gs, gs ∩ g⊥s ). Since K acts as a semisimple derivation on gs, we can decompose gs = W1 +
(gs ∩ g⊥s ), where [K,W1] = 0. Now, for w ∈ gs, write w = w1 + v, where w1 ∈ W1, v ∈ gs ∩ g⊥.
Note that 0 = 〈[Z, v], Y 〉 = 〈[K, v], Y 〉 + 〈[X, v], Y 〉 for all Y ∈ g. By Lemma 6.6, [X, v] ∈ g⊥.
This implies [K,w] = [K, v] ∈ g⊥. It also follows that [X,w] ∈ g⊥. �
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Lemma 6.11. Let j = nn(gs, z(gs) ∩ g⊥). Then j is an ideal in g.

Proof. Let N ∈ j, and K,Y ∈ g, v ∈ gs. Then 〈[[K,N ], v], Y 〉 = 〈[K,N ], [v, Y ]〉 =
〈K, [N, [v, Y ]]〉 = 0, since v′ = [v, Y ] ∈ gs, and therefore, [N, v′] ∈ g⊥. This shows [[K,N ], gs] ⊆
g⊥.

Similarly, [[K,N ], v] = [[K, v], N ] + [[v,N ],K], where v′ = [K, v] ∈ gs and [v′, N ] ∈ z(gs), as
well as [v,N ] ∈ z(gs), and therefore, [[v,N ],K] ∈ z(gs). It follows [[K,N ], gs] ⊆ z(gs). We
conclude that [K,N ] ∈ j. Hence, j is an ideal of g. �

These considerations yield the following important property of g⊥:

Theorem 6.12. Suppose that g⊥ does not contain a non-trivial ideal of g. Then

g⊥ ⊆ nk
(
gs, z(gs) ∩ g⊥

)
+ z(gs).

Proof. Consider the ideal j, as defined in Lemma 6.11. By (2) of Proposition 6.10, we have
g⊥ ⊆ nk(gs, z(gs) ∩ g⊥) + j. Since j is an ideal in g, so is [j, gs]. Since [j, gs] ⊆ g⊥, the assumption
on ideals in g⊥ implies that [j, gs] = 0. It follows that j is contained in z(gs). �

6.2.1. Invariance by g⊥. We shall be interested in nil-invariant bilinear forms 〈·, ·〉 on g
induced by pseudo-Riemannian metrics on homogeneous spaces. In this case, 〈·, ·〉 is invariant
by the stabilizer subalgebra g⊥. We can then further sharpen the statement of Corollary C.

Proposition 6.13. Let g and 〈·, ·〉 be as in Corollary C. If in addition 〈·, ·〉 is g⊥-invariant,
then

[g⊥, gs] = 0.

The proof is based on the following immediate observations:

Lemma 6.14. Suppose that 〈·, ·〉 is g⊥-invariant. Then [[k, g⊥], gs] ⊆ g⊥ ∩ gs.

and

Lemma 6.15. Let h be any Lie algebra and V a module for h. Suppose that the subalgebra
q of h is generated by the subspace m of h. Then q · V = m · V .

Together with

Lemma 6.16. Let k be semisimple of compact type and k0 a subalgebra of k. Then the
subalgebra q generated m = k0 + [k, k0] is an ideal of k.

Proof. Put z = zk(k0). Then [z,m] ⊆ m and [[k, k0],m] ⊆ m + [m,m]. Since k = [k, k0] + z, this
shows [k,m] ⊆ q. Since q is linearly spanned by the iterated commutators of elements of m,
[k, q] ⊆ q. �

Proof of Proposition 6.13. Let k0 be the image of g⊥ under the projection homomorphism
g → k. Note that by Corollary C, [g⊥, gs] = [k0, gs]. Let q ⊆ k be the subalgebra generated by
m = k0 + [k, k0] and consider V = gs as a module for q. Since q is an ideal of k, [q, V ] is a
submodule for k, that is, [k, [q, V ]] ⊆ [q, V ]. By Lemmas 6.14, 6.15 and Corollary C, we have
[q, V ] = [m, V ] ⊆ g⊥ ∩ z(gs). Hence, j = [m, V ] ⊆ g⊥ is an ideal in g, with j ⊇ [g⊥, gs] = [k0, gs].
Since g⊥ contains no non-trivial ideals of g by assumption, we conclude that j = 0. �
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6.3. Transporter in k and low relative index

Lemma 6.17. Let k be a semisimple Lie algebra of compact type and l a subalgebra of k. Then
either l = k or m = codimk l > 1. Assume further that l does not contain any non-trivial ideal
of k. Then, up to conjugation by an automorphism of k:

(1) if m = 2, then k = so3 and l = so2,
(2) if m = 3, one of the following holds:

(a) k = so3 and l = 0,
(b) k = so3 × so3, l is the image of a diagonal embedding so3 → so3 × so3.

Proof. As an adk(l)-module, k = l⊕w for a submodule w. For this, note that any Lie
subalgebra of k acts reductively, since k is of compact type.

Suppose codimk l = 1, that is, w is one-dimensional. Then [w,w] = 0 and it follows that w
is also an ideal of k. A one-dimensional ideal cannot exist, since k is semisimple. It follows that
codimk l > 1.

Since k = l⊕w, the kernel of the adjoint action of l on w is an ideal in k. Assume further
that l contains no non-trivial ideals of k. Then l acts faithfully on w.

For m = 2, this means l = so2 and dim k = m + dim l = 3. Hence, k = so3.
For m = 3, l embeds into so3. If l = 0, we have dim k = 3 and thus k = so3. Otherwise, either

l = so2 or l = so3. In the first case, dim k = 4. Since there is no four-dimensional simple Lie
algebra, this is not possible. In the latter case, dim k = 6. This leaves k = so3 × so3 (being
isomorphic to so4) as the only possibility. Since l is not an ideal of k, l projects injectively onto
both factors of k. It follows that, up to automorphism of k, l is the image of an embedding
so3 → so3 × so3, X �→ (X,X). �

6.3.1. Totally isotropic ideals and low relative index. Let b be any totally isotropic ideal
of g contained in gs and put b0 = b ∩ g⊥.

Proposition 6.18. If � � 2, then nk(b, b0) = k.

Proof. Put l = nk(b, b0) and m = codimk l. By Lemma 6.1, l = k ∩ [g, b]⊥ and m � �.
Assume now that m � 1. According to Lemma 6.17, the case m = 1 never occurs. Hence, in

this case, we have m = 2.
Let i ⊆ l be the maximal ideal of k contained in l. Using Proposition 6.3, we see that there

exists an ideal b1 of g, such that [i, b] ⊆ b1 ⊆ [g, b] ∩ g⊥. Since [g, b] and b1 are ideals, U =
[g, b]/b1 is a module for k. In fact, since [i, b] ⊆ b1, U is a module for k/i. Also, since b1 ⊆ g⊥,
〈·, ·〉 restricted to k× [g, b] induces a skew pairing on k× U , such that U⊥ = l. Since we have
i ⊥ [g, b], this shows that 〈·, ·〉 restricted to k× [g, b] descends to a skew pairing

〈·, ·〉 : (k/i) × U → R , where U⊥ = l/i. (6.4)

If m = 2, then by Lemma 6.17, k/i = so3 and l/i = so2. By Corollary A.6, either the skew pairing
〈·, ·〉 in (6.4) is zero (that is, U⊥ = k/i) or k ∩ [g, b]⊥ = i. In the first case, l = k ∩ [g, b]⊥ = k. In
the second case, l = i, a contradiction to l/i = so2. Therefore, m = 0. �

Combining with Proposition 6.5(1), we arrive at:

Corollary 6.19. If � � 2 then, for any totally isotropic ideal b of g contained in gs, g
⊥ ∩ b

is an ideal in g. In particular, g⊥ ∩ gs is an ideal in g.

The following now summarizes our results on totally isotropic ideals in case � � 2:
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Corollary 6.20. Assume that g⊥ does not contain any non-trivial ideal of g and that
� � 2. Then, for any totally isotropic ideal b of g contained in gs,

(1) b ∩ g⊥ = 0, dim b � �, [k, b] = 0.

Furthermore, the following hold:

(2) g⊥ ∩ gs = 0.
(3) [g⊥s , gs] = 0.
(4) [g, gs ∩ g⊥s ] = 0.

Proof. Since � � 2, according to Proposition 6.18 nk(b, b0) = k. Thus, (1) holds due to part
(2) of Proposition 6.5.

Now (2)–(4) are consequences of Proposition 6.8. �

Combining with Theorem 6.12, we also obtain:

Corollary 6.21. Assume that g⊥ does not contain any non-trivial ideal of g and that
� � 2. Then g⊥ is contained in z(gs) × k and g⊥ ∩ gs = 0.

Remark. As Example 8.2 shows, these conclusions do not necessarily hold if � � 3.

6.4. Metric radicals of the characteristic ideals

This section serves to clarify the relations between the metric radicals of gs, r and n, where n
denotes the nilradical of r.

Lemma 6.22.

(1) [r, [g, r]⊥] ⊥ g.
(2) [r, n⊥] ⊥ g and [g, n⊥ ∩ gs] ⊥ r.
(3) [gs, (s + n)⊥] ⊥ g and [g, (s + n)⊥ ∩ gs] ⊥ gs.
(4) [gs, n

⊥] ⊥ (k + r) and [k + r, n⊥ ∩ gs] ⊥ gs.

The lemma is clearly implied by:

Remark. Let a ⊆ inv(g, 〈·, ·〉), b, c ⊆ g be subspaces such that [a, c] ⊆ b. Then [a, b⊥] ⊥ c.
Furthermore, this implies a ⊥ [b⊥ ∩ inv(g, 〈·, ·〉), c].

Lemma 6.23. Let j ⊆ gs be an ideal in g. Then the following hold:

(1) j⊥ ∩ gs and j⊥ ∩ j are ideals of g.
(2) [j, j⊥] ⊆ g⊥.

Proof. Since 〈·, ·〉 restricted to gs is g-invariant by Theorem A, j⊥ ∩ gs is an ideal in g. It
follows that j⊥ ∩ j is an ideal. Hence, (1) holds. Now (2) follows using the above remark with
a = j, c = g and b = j. �

6.4.1. Radicals in effective metric Lie algebras. For all following results, we shall also
require that the metric Lie algebra (g, 〈·, ·〉) is effective. That is, we assume for now that g⊥

does not contain any non-trivial ideal of g.
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Lemma 6.24. Let i, j ⊆ gs be ideals in g. Then:

(1) [j, j⊥ ∩ gs] = 0 and j⊥ ∩ j = j⊥ ∩ z(j).
(2) If z(i) ⊆ j ⊆ i then i⊥ ∩ i ⊆ j⊥ ∩ j.

Proof. By Lemma 6.23(1), [j, j⊥ ∩ gs] is an ideal of g and contained in g⊥. Since g⊥ does
not contain any non-trivial ideal of g, [j, j⊥ ∩ gs] = 0. Hence, (1) holds. Under the assumption
of (2), this means i⊥ ∩ i ⊆ z(i) ⊆ j. Since also i⊥ ⊆ j⊥, (2) follows. �

The next result somewhat strengthens Corollary 6.7.

Proposition 6.25. The following hold:

(1) [r, [g, r]⊥ ∩ gs] = 0.
(2) [r, n⊥ ∩ gs] = 0. In particular, n⊥ ∩ r ⊆ z(r).
(3) [gs, (s + n)⊥ ∩ gs] = 0. In particular, (s + n)⊥ ∩ gs ⊆ z(gs).

Proof. By Lemma 6.23(1), j⊥ ∩ gs is an ideal of g for any ideal j of g contained in gs.
Then for any ideal i of g, [i, j⊥ ∩ gs] is also an ideal in g. Therefore, if [i, j⊥ ∩ gs] ⊆ g⊥, then
[i, j⊥ ∩ gs] = 0. In the view of Lemma 6.22, (1)–(3) follow. �

We can deduce from (2) of Proposition 6.25 the equalities

n⊥ ∩ r = n⊥ ∩ n = n⊥ ∩ z(n) = n⊥ ∩ z(r), (6.5)

r⊥ ∩ r = r⊥ ∩ n = r⊥ ∩ z(n) = r⊥ ∩ z(r). (6.6)

Also (3) of Proposition 6.25 shows that

g⊥s ∩ gs ⊆ z(gs) ⊆ z(r), (6.7)

Moreover, using nil-invariance of 〈·, ·〉 and Corollary 5.5(1), the above yield

[g, n⊥ ∩ n] ⊆ r⊥ ∩ r, [s, n⊥ ∩ n] ⊆ r⊥ ∩ r ∩ k⊥ and [k + r, n⊥ ∩ n] ⊆ g⊥s ∩ r. (6.8)

Thus there is a tower of totally isotropic ideals of g contained in z(r):

g⊥s ∩ gs ⊆ r⊥ ∩ r ⊆ n⊥ ∩ n. (6.9)

6.5. Actions of semisimple subalgebras on the solvable radical

Let q be a subalgebra of g. We call the subspace W ⊆ g a submodule for q if [q,W ] ⊆ W . In the
following, we let f ⊆ g denote a semisimple subalgebra of g. As usual, we decompose f = k× s,
where k is an ideal of compact type and s has no factor of compact type.

Lemma 6.26. Let W ⊆ g be a submodule for f, with dim[f,W ] � 2. Then:

f ⊥ [f,W ], [k,W ] = 0, s ⊥ W.

Proof. Assume first that W is not a trivial module. Thus, dim[f,W ] = 2 and f = f0 × sl2(R),
where f0 is the kernel of the representation of f on W . As W ⊆ gf0 , Lemma 5.4 states that
[W, gs] ⊥ f0. Clearly,

[W, f] = [W, sl2(R)] ⊆ [W, gs].

Therefore, f0 ⊥ [W, f] and [W, f] ⊆ gs.
Since gs ⊆ inv(g, 〈·, ·〉) (part (2) of Theorem A), 〈·, ·〉 induces a skew pairing sl2(R) × [W, f] →

R for the module [W, f]. Since [W, f] is of dimension 2 and non-trivial, Proposition A.4 shows
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that sl2(R) ⊥ [W, f]. This now implies f ⊥ [f,W ] and [k,W ] = 0, as k ⊆ f0. Since s = [s, s] ⊆
inv(g, 〈·, ·〉), [s,W ] ⊥ s implies that W ⊥ s. �

Lemma 6.27. Let q be a subalgebra of g, and let W ⊆ r be a submodule for q. Then the
following hold for l = q ∩ [W,W ]⊥:

(1) l is a subalgebra, and [l,W ] ⊆ W⊥.

Assume further that q acts reductively on W . Then:

(2) l = q ∩ [W1,W1]⊥, where W1 = [q,W ].
(3) l is an ideal in q.

If q = f is semisimple and dim[W1,W1] � 2, then:

(4) l = f and f ⊥ [W,W ].
(5) [f,W ] is totally isotropic.

Proof. Observe that for any u, v ∈ W , K ∈ g, 〈K, [u, v]〉 = 〈[K,u], v〉. In particular, K ⊥
[W,W ] is equivalent to [K,W ] ⊥ W . To finish the proof of (1), assume that K1,K2 ⊥ [W,W ],
where K1,K2 ∈ q. Then also 〈[[K1,K2], u], v〉 = 〈[[K1, u],K2], v〉 + 〈[[u,K2],K1], v〉 = 0. Hence,
[K1,K2] ⊥ [W,W ]. This shows that l is a subalgebra.

Next we show (2). Since q acts reductively on W , W = W0 ⊕W1, with W1 = [q,W ] and
[q,W0] = 0. For any u, v ∈ W , decompose u = u0 + u1, v = v0 + v1, where ui, vi ∈ Wi. Then
compute 〈K, [u, v]〉 = 〈K, [u1, v1]〉.

Finally, if q acts reductively, there is a decomposition into submodules W = (W ∩W⊥) ⊕W ′.
Correspondingly, K ∈ l if and only if [K,W ′] = 0. This shows that l is an ideal in q. Hence,
(3) holds.

If f is semisimple, then f acts reductively on W . By part (3), l = f ∩ [W,W ]⊥ is an ideal
of f. Since dim[W,W ] � 2, it is an ideal of codimension at most 2. Since f is semisimple, this
implies l = f. Hence, (4) holds. Now (4) together with (1) implies that [f,W ] ⊆ W⊥ is totally
isotropic. �

For any subspace W of g, recall that μ(W ) denotes the index of W .

Lemma 6.28. Let W ⊆ r be a submodule for f, such that dim[W,W ] � 2. Then:

(1) [f,W ] ⊆ W⊥ is totally isotropic.
(2) If μ(gs) � 2, then [f,W ] = 0.

Proof. By part (5) of Lemma 6.27, [f,W ] ⊆ W⊥ is totally isotropic. In particular, assuming
μ(gs) � 2, dim[f,W ] � 2. Then Lemma 6.26 implies [k,W ] = 0, s ⊥ W . Assuming [f,W ] 
= 0,
dim[f,W ] = 2 and s contains sl2(R), so that μ(s) � μ(sl2(R)) � 1. We get 2 = μ([f,W ]) �
μ(gs) − 1 � 1. Thus, (2) follows. �

We are ready to give the main result of this subsection.

Proposition 6.29. If μ(gs) � 2, then [k× s, r] = 0.

Proof. We have μ(r) � μ(gs) � 2. Thus, Proposition 4.7 implies that there exists an ideal q
of g with dim[q, q] � 2, and the codimension of q in r is at most 2. Since μ(gs) � 2, [k× s, r] = 0,
by Lemma 6.28. This also implies s ⊥ r (compare Lemma 6.26). �

As a consequence, we further get:
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Lemma 6.30. Suppose μ(gs) � 2. Then the following hold:

(1) s is non-degenerate.
(2) s ⊥ (k + r) and k ⊥ [r, r].
(3) μ(r) + μ(s) � μ(gs).

Proof. Note that dim s ∩ s⊥ � μ(gs) � 2. Since 〈·, ·〉s is invariant, s ∩ s⊥ is an ideal in s. We
conclude that s ∩ s⊥ = 0. This shows (1).

Since 〈·, ·〉 is invariant by r and s, [k× s, r] = 0 implies k ⊥ [g, gs] = s + [r, r] and s ⊥ r. Hence,
(2) and (3) hold. �

7. Lie algebras with nil-invariant scalar products of small index

Partially summarizing the results from Proposition 6.29 and Corollary 6.21, we obtain a first
structure theorem for metric Lie algebras of relative index � � 2.

Theorem D. Let g be a real finite-dimensional Lie algebra with nil-invariant symmetric
bilinear form 〈·, ·〉 of relative index � � 2, and assume that g⊥ does not contain a non-trivial
ideal of g. Then:

(1) The Levi decomposition (5.1) of g is a direct sum of ideals: g = k× s× r.
(2) g⊥ is contained in k× z(r) and g⊥ ∩ r = 0.
(3) s ⊥ (k× r) and k ⊥ [r, r].

We will now study the cases � = 0, � = 1 and � = 2 individually.

7.1. Semidefinite nil-invariant products

Let 〈·, ·〉 be a nil-invariant symmetric bilinear form on g.

Proposition 7.1. If 〈·, ·〉 is semidefinite (the case � = 0), then

(1) [g, s + r] ⊆ g⊥.

Moreover, if g⊥ does not contain any non-trivial ideal of g, then:

(2) g = k× r and r is abelian.
(3) The ideal r is definite.

Proof. According to Theorem A, nil-invariance implies that gs acts by skew derivations
on g and on g/g⊥. By assumption, 〈·, ·〉 induces a definite scalar product on the vector space
g/g⊥. Recall that a definite scalar product does not allow nilpotent skew maps. Therefore,
[s + n, g] ⊆ g⊥. Similarly, for X ∈ r, ad(X)n(g) ⊆ g⊥ and thus also [r, r] ⊆ [r, n] + g⊥ ⊆ g⊥.
Moreover, [r, k× s] = [n, k× s] ⊆ g⊥. This shows (1), while (2) and (3) follow immediately,
taking into account Theorem D. �

7.2. Classification for relative index � � 2

Now we specialize Theorem D to the two cases � = 1 and � = 2 to obtain classifications of the
Lie algebras with nil-invariant symmetric bilinear forms in each case.

Theorem E. Let g be a Lie algebra with nil-invariant symmetric bilinear form 〈·, ·〉 of
relative index � = 1, and assume that g⊥ does not contain a non-trivial ideal of g. Then one of
the following cases occurs:
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(I) g = k× a, where a is abelian and either semidefinite or Lorentzian.
(II) g = k× r, where r is Lorentzian of oscillator type.

(III) g = k× sl2(R) × a, where a is abelian and definite, sl2(R) is Lorentzian and (a× k) ⊥
sl2(R).

Proof. By Theorem D, g⊥ ∩ r = 0. Hence, r is a subspace of index μ(r) � 1.
If s 
= 0, then by Lemma 6.30, s is non-degenerate, so that �(s) = 1, as s is of non-compact

type. Hence, s = sl2(R). Moreover, �(r) = 0, that is, r is definite and therefore abelian. The
orthogonality is given by Lemma 6.30. This is case (III).

Otherwise, s = 0. If r is semidefinite, then [r, r] ⊆ r⊥ ∩ r by Proposition 7.1. By
Lemma 6.30(2), this implies [r, r] ⊆ g⊥ ∩ r = 0. Hence, r is abelian. This is the first part of
case (I). Assume that r is of Lorentzian type. Then r is non-degenerate since μ(r) � 1. By the
classification of invariant Lorentzian scalar products (see remark following Example 3.7), r is
either abelian or contains a metric oscillator algebra. These are the second part of case (I) or
case (II), respectively. �

Theorem F. Let g be a Lie algebra with nil-invariant symmetric bilinear form 〈·, ·〉 of
relative index � = 2, and assume that g⊥ does not contain a non-trivial ideal of g. Then one of
the following cases occurs:

(a) g = r× k, where r is one of the following:
(a) r is abelian.
(b) r is Lorentzian of oscillator type.
(c) r is solvable but non-abelian with invariant scalar product of index 2.

(b) g = a× k× s. Here, a is abelian, s = sl2(R) × sl2(R) with a non-degenerate invariant
scalar product of index 2. Moreover, a is definite and (a× k) ⊥ s.

(c) g = r× k× sl2(R), where sl2(R) is Lorentzian, (r× k) ⊥ sl2(R), and r is one of the
following:
(a) r is abelian and either semidefinite or Lorentzian.
(b) r is Lorentzian of oscillator type.

Proof. Write s = μ(s) and r = μ(r). By Theorem D, g⊥ ∩ gs = 0. By Lemma 6.30, this
implies s + r � 2. Moreover, s is non-degenerate and thus has index s � � � 2.

First, assume s = 0, and therefore s = 0, and r � 2. For r = 2, the following possibilities
arise: r is non-degenerate with relative index �(r) = 2. This case falls into (I-a) or (I-c). Next,
r can be degenerate with �(r) = 1, in which case it is either abelian or of oscillator type, the
latter yielding part (I-b). In the remaining case �(r) = 0, r is semidefinite. As in the proof of
Theorem E, this implies that r = a is abelian. This completes case (I).

Assume s = 2 and r = 0. Then s = sl2(R) × sl2(R) and r is definite and abelian. The
orthogonality is Lemma 6.30(3). This is case (II)

Now assume s = 1 and s = sl2(R), r � 1. This yields the two possibilities for r in
case (III). �

Note that the possible Lie algebras r for case (I-c) of Theorem F above are discussed in
Section 4.1.

8. Further examples

The examples in this section show that the properties of nil-invariant symmetric bilinear forms
with relative index � � 2 given in Theorem D do not hold for higher relative indices. Let k, s,
r and gs be as in the previous sections.
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The following standard construction for a Lie algebra with an invariant scalar product
(cf. Medina [10]) shows that in general g does not have to be a direct product of Lie algebras
k, s and r, and that s does not have to be orthogonal to r.

Example 8.1 (Metric cotangent algebras). Let g be a Lie algebra of dimension n, and let
ad∗ denote the coadjoint representation of g on its dual vector space g∗, and consider the Lie
algebra ĝ = g �ad∗ g∗. The dual pairing defines an invariant scalar product on ĝ,

〈X1 + ξ1, X2 + ξ2〉 = ξ1(X2) + ξ2(X1),

where Xi ∈ g and ξi ∈ g∗. The index of 〈·, ·〉 is n. We call such a g a metric cotangent algebra.
For example, if we choose g = sl2(R), then the index is 3, and k = 0, s = sl2(R) and ĝ has
abelian radical r = sl2(R)∗ ∼= R

3. In particular, s is not orthogonal to r and [s, r] 
= 0.

The next example shows that for relative index � = 3, the transporter algebra l of b = r⊥ ∩ r
in q = k (see Section 6.3.1) can be trivial, and as a consequence, g⊥ ∩ r is not an ideal in g.
This contrasts the situation for � � 2, compare Corollary 6.19.

Example 8.2. Let k = so3, and let r = so3 ⊕ so3, considered as a vector space. We write
sol3 and sor3 to distinguish the two summands of r, and for an element X ∈ so3, we write
Xl = (X, 0) ∈ sol3 and Xr = (0, X) ∈ sor3. Let so�3 be the diagonal embedding of so3 in r.

Let T ∈ k act on X = Xl

1 + Xr

2 ∈ r by

ad(T )X = [T,X1]l. (∗)
This makes r into a Lie algebra module for k, and we can thus define a Lie algebra g = k � r
for this action, taking r as an abelian subalgebra. Observe also that sor3 is the center of g.

Let κ denote the Killing form on so3. We define a symmetric bilinear form 〈·, ·〉 on g by
requiring

〈T,Xl

1 + Xr

2 〉 = κ(T,X1) − κ(T,X2), k ⊥ k, r ⊥ r

for all T ∈ k, Xl

1 + Xr

2 ∈ so3. The adjoint operators of elements of r are skew-symmetric for
〈·, ·〉. In fact, we have, for all X,Y ∈ r, Z ∈ g,

〈[X,Y ], Z〉 = 0 = −〈Y, [X,Z]〉
and for T, T ′ ∈ k, by (∗),

〈[T,X], T ′〉 = 〈[T,Xl

1 + Xr

2 ], T ′〉 = 〈[T,X1]l, T ′〉
= κ([T,X1], T ′) = −κ(T, [T ′, X1])

= −〈T, [T ′, X1]l〉 = −〈T, [T ′, X]〉.
So 〈·, ·〉 is indeed a nil-invariant form on g, and, since r⊥ = r,

g⊥ = k⊥ ∩ r = so�3 and g⊥s ∩ gs = r⊥ ∩ r = r = sol3 ⊕ sor3.

In particular, the index of 〈·, ·〉 is μ = 6 and the relative index is � = 3. Note that 〈·, ·〉 is not
invariant, as g⊥ is not an ideal in g.

Remark. The construction in Example 8.2 works if we replace so3 by any other semisimple
Lie algebra f = k of compact type. However, if f is not of compact type, then the resulting
bilinear form 〈·, ·〉 will not be nil-invariant. Geometrically, this means that 〈·, ·〉 cannot come
from a pseudo-Riemannian metric on a homogeneous space G/H of finite volume, where G is
a Lie group with Lie algebra g.
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9. Metric Lie algebras with abelian radical

In this section, we study finite-dimensional real Lie algebras g whose solvable radical r is abelian
and which are equipped with a nil-invariant symmetric bilinear form 〈·, ·〉.

9.1. Abelian radical

The Lie algebras with abelian radical and a nil-invariant symmetric bilinear form decompose
into three distinct types of metric Lie algebras.

Theorem I. Let g be a Lie algebra whose solvable radical r is abelian. Suppose that g is
equipped with a nil-invariant symmetric bilinear form 〈·, ·〉 such that the metric radical g⊥ of
〈·, ·〉 does not contain a non-trivial ideal of g. Let k× s be a Levi subalgebra of g, where k is
of compact type and s has no simple factors of compact type. Then g is an orthogonal direct
product of ideals

g = g1 × g2 × g3,

with

g1 = k � a, g2 = s0, g3 = s1 � s∗1,

where r = a× s∗1 and s = s0 × s1 are orthogonal direct products, and g3 is a metric cotangent
algebra. The restrictions of 〈·, ·〉 to g2 and g3 are invariant and non-degenerate. In particular,
g⊥ ⊆ g1.

We split the proof into several lemmas. Consider the submodules of invariants rs, rk ⊆ r.
Since s, k act reductively, we have

[s, r] ⊕ rs = r = [k, r] ⊕ rk.

Then a = rs, b = [s, rk] and c = [s, r] ∩ [k, r] are ideals in g and r = a⊕ b⊕ c. Recall from
Theorem A that 〈·, ·〉 is in particular s- and r-invariant.

Lemma 9.1. c = 0 and r is an orthogonal direct sum of ideals in g

r = a× b,

where [k, r] ⊆ a and [s, r] = b.

Proof. The s-invariance of 〈·, ·〉 immediately implies a ⊥ b. Since r is abelian, r-invariance
implies c ⊥ r. Since c ⊥ (s× k) by Corollary 5.5, this shows that c is an ideal contained in g⊥,
hence c = 0. Now [k, r] ⊆ a and [s, r] = b by definition of a and b. �

Lemma 9.2. g is a direct product of ideals

g = (k � a) × (s � b),

where (k � a) ⊥ (s � b).

Proof. The splitting as a direct product of ideals follows from Lemma 9.1. The orthogonality
follows together with Corollary 5.5 and the fact that the s-invariance of 〈·, ·〉 implies s ⊥ a and
k ⊥ b. �

Lemma 9.3. g⊥ ⊆ k � a and s � b is a non-degenerate ideal of g.
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Proof. z(gs) = a, therefore g⊥ ⊆ k � a by Corollary C. Since also (s � b) ⊥ (k � a), we have
(s � b) ∩ (s � b)⊥ ⊆ g⊥ ⊆ k � a. It follows that (s � b) ∩ (s � b)⊥ = 0. �

To complete the proof of Theorem I, it remains to understand the structure of the ideal
s � b, which by Theorem A and the preceding lemmas is a Lie algebra with an invariant
non-degenerate scalar product given by the restriction of 〈·, ·〉.

Lemma 9.4. b is totally isotropic. Let s0 be the kernel of the s-action on b. Then s0 = b⊥ ∩ s.

Proof. Since 〈·, ·〉 is r-invariant and r is abelian, b is totally isotropic. For the second claim,
use b ∩ s⊥ = 0 and the invariance of 〈·, ·〉. �

Lemma 9.5. s is an orthogonal direct product of ideals s = s0 × s1 with the following
properties:

(1) s1 � b is a metric cotangent algebra.
(2) [s0, b] = 0 and s0 = b⊥ ∩ s.

Proof. The kernel s0 of the s-action on b is an ideal in s, and by Lemma 9.4 orthogonal to
b. Let s1 be the ideal in s such that s = s0 × s1. Then s0 ⊥ s1 by invariance of 〈·, ·〉.

s1 acts faithfully on b and so s1 ∩ b⊥ = 0 by Lemma 9.4. Moreover, s1 � b is non-degenerate
since s � b is. But b is totally isotropic by Lemma 9.4, so non-degeneracy implies dim s1 =
dim b. Therefore, b and s1 are dually paired by 〈·, ·〉.

Now identify b with s∗1 and write ξ(s) = 〈ξ, s〉 for ξ ∈ s∗1, S ∈ s1. Then, once more by
invariance of 〈·, ·〉,

[S, ξ](S′) = 〈[S, ξ], S′〉 = 〈ξ,−[S, S′]〉 = ξ(−ad(S)S′) = (ad∗(S)ξ)(S′)

for all S, S′ ∈ s1. So, the action of s1 on s∗1 is the coadjoint action. This means s � b is a metric
cotangent algebra (cf. Example 8.1). �

Proof of Theorem I. The decomposition into the desired orthogonal ideals follows from
Lemmas 9.2 to 9.5. The structure of the ideals g2 and g3 is Lemma 9.5. �

The algebra g1 in Theorem I is of Euclidean type. Let g = k � V , with V ∼= R
n, be an algebra

of Euclidean type and let k0 be the kernel of the k-action on V . Proposition 6.13 and the fact
that the solvable radical V is abelian immediately given the following:

Proposition 9.6. Let g = k � V be a Lie algebra of Euclidean type, and suppose that g is
equipped with a symmetric bilinear form that is nil-invariant and g⊥-invariant, such that g⊥

does not contain a non-trivial ideal of g. Then

g⊥ ⊆ k0 × V. (9.1)

The following Examples 9.7 and 9.8 show that, in general, a metric Lie algebra of Euclidean
type cannot be further decomposed into orthogonal direct sums of metric Lie algebras. Both
examples will play a role in Section 10.

Example 9.7. Let k1 = so3, V1 = R
3, V0 = R

3 and g = (so3 � V1) × V0 with the natural
action of so3 on V1. Let ϕ : V1 → V0 be an isomorphism and put

h = {(0, v, ϕ(v)) | v ∈ V0} ⊂ (k0 � V1) × V0.
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We can define a nil-invariant symmetric bilinear form on g by identifying V1
∼= so∗3 and requiring

for K ∈ k1, v0 ∈ V0, v1 ∈ V1,

〈K, v0 + v1〉 = v1(K) − ϕ−1(v0)(K),

and further k1 ⊥ k1, (V0 ⊕ V1) ⊥ (V0 ⊕ V1). Then 〈·, ·〉 has signature (3,3,3) and metric radical
h = g⊥, which is not an ideal in g. Note that 〈·, ·〉 is not invariant. Moreover, k1 � V1 is not
orthogonal to V0. A direct factor k0 can be added to this example at liberty.

Example 9.8. We can modify the Lie algebra g from Example 9.7 by embedding the direct
summand V0

∼= R
3 in a torus subalgebra in a semisimple Lie algebra k0 of compact type,

say k0 = so6, to obtain a Lie algebra f = (k1 � V1) × k0. We obtain a nil-invariant symmetric
bilinear form of signature (15,3,3) on f by extending 〈·, ·〉 by a definite form on a vector space
complement of V0 in k0. The metric radical of the new form is still g⊥ = h.

9.2. Nil-invariant bilinear forms on Euclidean algebras

A Euclidean algebra is a Lie algebra en = son � R
n, where son acts on R

n by the natural
action.

Example 9.9. Consider g = so3 � R
n with a nil-invariant symmetric bilinear form 〈·, ·〉,

and assume that the action of so3 is irreducible. By Proposition A.5, either so3 ⊥ R
n,

or n = 3 and so3 acts by its coadjoint representation on R
3 ∼= so∗3, and 〈·, ·〉 is the dual

pairing. In the first case, R
n is an ideal in g⊥, and in the second case, 〈·, ·〉 is invariant and

non-degenerate.

Example 9.10. Let g be the Euclidean Lie algebra so4 � R
4 with a nil-invariant symmetric

bilinear form 〈·, ·〉. Since so4
∼= so3 × so3, and here both factors so3 act irreducibly on R

4, it
follows from Example 9.9 that in g, R

4 is orthogonal to both factors so3, hence to all of so4.
In particular, R

4 is an ideal contained in g⊥.

Theorem 9.11. Let 〈·, ·〉 be a nil-invariant symmetric bilinear form on the Euclidean Lie
algebra son � R

n for n � 4. Then the ideal R
n is contained in g⊥.

Proof. For n = 4, this is Example 9.10. So, assume n > 4. Consider an embedding of so4

in son such that R
n = R

4 ⊕ R
n−4, where so4 acts on R

4 in the standard way and trivially on
R

n−4. By Example 9.10, so4 ⊥ R
4. Since R

n−4 ⊆ [son,Rn], the nil-invariance of 〈·, ·〉 implies
so4 ⊥ R

n−4. Hence, R
n ⊥ so4.

The same reasoning shows that Ad(g)so4 ⊥ R
n, where g ∈ SOn. Then b =

∑
g∈SOn

Ad(g)so4

is orthogonal to R
n. But b is clearly an ideal in son, so b = son by simplicity of son for n > 4. �

Theorem J. The Euclidean group En = On � R
n, n 
= 1, 3, does not have compact quo-

tients with a pseudo-Riemannian metric such that En acts isometrically and almost effectively.

Proof. For n > 3, such an action of En would induce a nil-invariant symmetric bilinear
form on the Lie algebra son � R

n without non-trivial ideals in its metric radical, contradicting
Theorem 9.11.

For n = 2, the Lie algebra e2 is solvable, and hence by Baues and Globke [2], any nil-invariant
symmetric bilinear form must be invariant. For such a form, the ideal R

2 of e2 must be contained
in e⊥2 , and therefore, the action cannot be effective.

Note that e3 is an exception, as it is the metric cotangent algebra of so3. �
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Remark. Clearly, the Lie group En admits compact quotient manifolds on which En acts
almost effectively. For example, take the quotient by a subgroup F � Z

n, where F ⊂ On is a
finite subgroup preserving Z

n. Compact quotients with finite fundamental group also exist.
For example, for any non-trivial homomorphism ϕ : R

n → On, the graph H of ϕ is a closed
subgroup of En isomorphic to R

n, and the quotient M = En/H is compact (and diffeomorphic
to On). Since H contains no non-trivial normal subgroup of En, the En-action on M is effective.
Theorem J tells us that none of these quotients admit En-invariant pseudo-Riemannian metrics.

10. Simply connected compact homogeneous spaces with indefinite metric

Let M be a connected and simply connected pseudo-Riemannian homogeneous space of finite
volume. Then we can write

M = G/H (10.1)

for a connected Lie group G acting almost effectively and by isometries on M , and H is
a closed subgroup of G that contains no non-trivial connected normal subgroup of G (for
example, G = Iso(M)◦). Note that H is connected since M is simply connected.

We decompose G = KSR, where K is a compact semisimple subgroup, S is a semisimple
subgroup without compact factors and R is the solvable radical of G.

Proposition 10.1. The subgroup S is trivial and M is compact.

Proof. As M is simply connected, H = H◦. Now H ⊆ KR by Corollary C. On the other
hand, since M has finite invariant volume, the Zariski closure of Adg(H) contains Adg(S),
see Mostow [13, Lemma 3.1]. Therefore, S must be trivial. It follows from Mostow’s result
[12, Theorem 6.2] on quotients of solvable Lie groups that M = (KR)/H is compact. �

We can therefore restrict ourselves in (10.1) to groups G = KR and connected uniform
subgroups H of G.

The structure of a general compact homogeneous manifold with finite fundamental group is
surveyed in Onishchik and Vinberg [14, II.5.§ 2]. In our context, it follows that

G = L � V, (10.2)

where V is a normal subgroup isomorphic to R
n and L = KA is a maximal compact subgroup

of G. The solvable radical is R = A � V . Moreover, V L = 0. By a theorem of Montgomery [11]
(also [14, p. 137]), K acts transitively on M .

The existence of a G-invariant metric on M further restricts the structure of G.

Proposition 10.2. The solvable radical R of G is abelian. In particular, R = A× V , V K =
0 and A = Z(G)◦.

Proof. Let Z(R) denote the center of R and N its nilradical. Since H is connected,
H ⊆ KZ(R)◦ by Corollary C. Hence, there is a surjection G/H → G/(KZ(R)◦) = R/Z(R)◦.
It follows that Z(R)◦ is a connected uniform subgroup. Therefore, the nilradical N of R is
N = TZ(R)◦ for some compact torus T . But a compact subgroup of N must be central in R,
so T ⊆ Z(R). Hence, N ⊆ Z(R), which means R = N is abelian. �

Combined with (10.2), we obtain

G = KR = (K0A) × (K1 � V ), (10.3)
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with K = K0 ×K1, R = A× V , where K0 is the kernel of the K-action on V .
For any subgroup Q of G, we write HQ = H ∩Q.

Lemma 10.3. [H,H] ⊆ HK . In particular, HK is a normal subgroup of H.

Proof. By Proposition 9.6 and the connectedness of H, we have H ⊆ K0R. Since R is
abelian, [H,H] ⊆ HK0 . �

If G is simply connected, we have K ∩R = {e}. Then let pK , pR denote the projection maps
from G to K, R.

Lemma 10.4. Suppose that G is simply connected. Then pR(H) = R.

Proof. Since K acts transitively on M , we have G = KH. Then R = pR(G) = pR(H). �

Proposition 10.5. Suppose that G is simply connected. Then the stabilizer H is a
semidirect product H = HK × E, where E is the graph of a homomorphism ϕ : R → K that
is non-trivial if dimR > 0. Moreover, ϕ(R ∩H) = {e}.

Proof. The subgroup HK is a maximal compact subgroup of the stabilizer H. By
Lemma 10.3, H = HK × E for some normal subgroup E diffeomorphic to a vector space. By
Lemma 10.4, H projects onto R with kernel HK , so that E ∼= R. Then E is necessarily the
graph of a homomorphism ϕ : R → K. If dimR > 0, then ϕ is non-trivial, for otherwise R ⊆ H,
in contradiction to the almost effectivity of the action. Observe that R ∩H ⊆ E. Therefore,
ϕ(R ∩H) ⊆ HK ∩ E = {e}. �

Now we can state our main result:

Theorem G. Let M be a connected and simply connected pseudo-Riemannian homoge-
neous space of finite volume, G = Iso(M)◦, and let H be the stabilizer subgroup in G of a point
in M . Let G = KR be a Levi decomposition, where R is the solvable radical of G. Then:

(1) M is compact.
(2) K is compact and acts transitively on M .
(3) R is abelian. Let A be the maximal compact subgroup of R. Then A = Z(G)◦. More

explicitly, R = A× V where V ∼= R
n and V K = 0.

(4) H is connected. If dimR > 0, then H = (H ∩K)E, where E and H ∩K are normal
subgroups in H, (H ∩K) ∩ E is finite and E is the graph of a non-trivial homomorphism
ϕ : R → K, where the restriction ϕ|A is injective.

Proof. Claims (1)–(3) follow from Proposition 10.1, Proposition 10.2 and (10.2), applied to
G = Iso(M)◦.

For claim (4), let G̃ be the universal cover of G. Since G acts effectively on M , G̃ acts
almost effectively on M with stabilizer H̃, the preimage of H in G̃. Let ϕ̃ : R̃ → K̃ be
the homomorphism given by Proposition 10.5 for G̃. Then R̃ = Ã⊕ V , with Ã ∼= R

k for
some k, and R = R̃/Z for some central discrete subgroup Z ⊂ Ã ∩ H̃. Since Z ⊂ R̃ ∩ H̃, we
have Z ⊆ ker ϕ̃. Therefore, ϕ̃ descends to a homomorphism R → K̃, and by composing with
the canonical projection K̃ → K, we obtain a homomorphism ϕ : R → K with the desired
properties. Observe that kerϕ|A ⊂ A ∩H is a normal subgroup in G. Hence, it is trivial, as G
acts effectively. �
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Now assume further that the index of the metric on M is � � 2. Theorem D has strong
consequences in the simply connected case.

Theorem H. The isometry group of any simply connected pseudo-Riemannian homoge-
neous manifold of finite volume and metric index � � 2 is compact.

Proof. We know from Theorem G that M is compact. Let G = Iso(M)◦, with G = KR
as before. By Theorem D, R commutes with K and thus R = A by part 3 of Theorem G. It
follows that G = KA is compact.

Then K is a characteristic subgroup of G which also acts transitively on M . Therefore, we
may identify TxM at x ∈ M with k/(h ∩ k), where k is the Lie algebra of K. Hence, the isotropy
representation of the stabilizer Iso(M)x factorizes over a closed subgroup of the automorphism
group of k. As this latter group is compact, the isotropy representation has compact closure in
GL(TxM). If follows that there exists a Riemannian metric on M that is preserved by Iso(M).
Hence, Iso(M) is compact. �

Remark. Note that, in fact, the isometry group of every compact analytic simply connected
pseudo-Riemannian manifold has finitely many connected components (Gromov [6, Theorem
3.5.C]).

For indices higher than 2, the identity component of the isometry group of a simply connected
M can be non-compact. This is demonstrated by the examples below in which we construct
some M on which a non-compact group acts isometrically. The following Lemma 10.6 then
ensures that these groups cannot be contained in any compact Lie group.

Lemma 10.6. Assume that the action of K on V in the semidirect product G = K � V is
non-trivial. Then G cannot be immersed in a compact Lie group.

Proof. Suppose that there is a compact Lie group C that contains G as a subgroup. As the
action of K on V is non-trivial, there exists an element v ∈ V ⊆ C such that Adc(v) has non-
trivial unipotent Jordan part. But by compactness of C, every Adc(g), g ∈ C, is semisimple, a
contradiction. �

Example 10.7. Start with G1 = (S̃O3 � R
3) × T3, where S̃O3 acts on R

3 by the coadjoint
action, and let ϕ : R

3 → T3 be a homomorphism with discrete kernel. Put

H = {(I3, v, ϕ(v)) | v ∈ R
3}.

The Lie algebras g1 of G1 and h of H are the corresponding Lie algebras from Example 9.7.
We can extend the nil-invariant scalar product 〈·, ·〉 on g1 from Example 9.7 to a left-invariant
tensor on G1, and thus obtain a G1-invariant pseudo-Riemannian metric of signature (3,3) on
the quotient M1 = G1/H = S̃O3 × T3. Here, M1 is a non-simply connected manifold with a
non-compact connected stabilizer.

In order to obtain a simply connected space, embed T3 in a simply connected compact
semisimple group K0, for example, K0 = S̃O6, so that G1 is embedded in G = (S̃O3 � R

3) ×K0.
As in Example 9.8, we can extend 〈·, ·〉 from g1 to g, and thus obtain a compact simply connected
pseudo-Riemannian homogeneous manifold M = G/H = S̃O3 ×K0.

Example 10.8. Example 10.7 can be generalized by replacing S̃O3 by any simply connected
compact semisimple group K, acting by the coadjoint representation on R

d, where d = dimK,
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and trivially on Td. Define H similarly as a graph in R
d × Td, and embed Td in a simply

connected compact semisimple Lie group K0.

Appendix A. Modules with skew pairings

Let g be a Lie algebra and let V be a finite-dimensional g-module. Here, we work over a
fixed ground field k of characteristic 0.

Definition A.1. A bilinear map 〈·, ·〉 : g× V → k such that for all X,Y ∈ g, v ∈ V ,

〈X,Y v〉 = −〈Y,Xv〉 (A.1)

is called a skew pairing for V , and V is called a skew module for g.

We make the following elementary observations:

Lemma A.2. Assume that there exists X ∈ g such that the map v �→ Xv, v ∈ V , is an
invertible linear operator of V . Then every skew pairing for V is zero. More generally, let
X,Y ∈ g and W ⊆ V such that YW ⊆ XV . Then Y ⊥ XW .

Proof. Let w ∈ W and v ∈ V with Y w = Xv. Then

〈Y,Xw〉 = −〈X,Y w〉 = −〈X,Xv〉 = 0. �

Lemma A.3. If X ⊥ V then g ⊥ XV .

Proof. Let Y ∈ g and v ∈ V . Then 〈Y,Xv〉 = −〈X,Y v〉 = 0. �

A.1. Skew pairings for sl2(k). The following determines all skew pairings for the Lie
algebra g = sl2(k).

Proposition A.4. Let 〈·, ·〉 : sl2(k) × V → k be a skew pairing for the (non-trivial)
irreducible module V . If the skew pairing is non-zero, then V is isomorphic to the adjoint
representation of sl2(k) and 〈·, ·〉 is proportional to the Killing form.

Proof. We choose a standard basis X,Y,H for sl2(k) such that [X,Y ] = H, [H,X] = 2X,
[H,Y ] = −2Y . Let V = k2 denote the standard representation. Let e1, e2 be a basis such that
Xe1 = 0, Xe2 = e1. Since He1 = e1 and He2 = −e2, the operator defined by H is invertible.
Hence, it follows that every skew pairing for V is zero by Lemma A.2.

The irreducible modules for sl2(k) are precisely the symmetric powers Vk = SkV , k � 1.
Note that, in Vk, imX is spanned by the product vectors e�1e

k−�
2 , k � � � 1. Similarly, imY is

spanned by ek−�
1 e�2, k � � � 1.

Consider W , the subspace of imY spanned by ek−�
1 e�2, � � 2. Now XW ⊆ imY and from

Lemma A.2, we can conclude that X ⊥ YW . Observe that YW is spanned by ek−�−1
1 e�+1

2 ,
� � 2, k � � + 1. In particular, X ⊥ ek2 if k � 3. Since also X ⊥ imX, this shows X ⊥ Vk,
k � 3. By symmetry, we also see that Y ⊥ Vk, k � 3. Since imX, imY together span Vk, we
conclude (using Lemma A.3) that sl2(k) ⊥ Vk, k � 3.

Finally, the module V2 is isomorphic to the adjoint representation. Consider the Killing
form κ : sl2(k) × sl2(k) → k. Recall that κ is symmetric and skew with respect to the adjoint
representation of sl2(k) on itself. Therefore, it also defines a skew pairing for V2. An evident
computation using the skew condition on commutators in sl2(k) shows that every skew form
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〈·, ·〉 for the adjoint representation is determined by its value 〈H,H〉. Hence, it must be
proportional to the Killing form. �

A.2. Application to so3 over the reals. Here, we consider the simple Lie algebra so3 over
the real numbers. Since so3 has complexification sl2(C), we can apply Proposition A.4 to show:

Proposition A.5. Let 〈·, ·〉 : so3 × V → R be a skew pairing for the (non-trivial) irreducible
module V . If the skew pairing is non-zero, then V is isomorphic to the adjoint representation
of so3 and 〈·, ·〉 is proportional to the Killing form.

Proof. Using the isomorphism of so3 with the Lie algebra su2, we view so3 as a subalgebra
of sl2(C). We thus see that the irreducible complex representations of so3 are precisely the
su2-modules Sk

C
2.

Now let V be a real module for so3, which is irreducible and non-trivial, and assume that
〈·, ·〉 is a non-trivial skew pairing for V . We may extend V to a complex linear skew pairing
〈·, ·〉C : sl2(C) × VC → C, where VC denotes complexification of the su2-module V .

In case VC is an irreducible module for sl2(C), Proposition A.4 shows that VC = V2 is the
adjoint representation of sl2(C). Hence, V must have been the adjoint representation of so3.

Otherwise, if VC is reducible, V is one of the modules Vk = S2�−1
C

2 with scalars restricted to
the reals (cf. Bröcker and tom Dieck [4, Proposition 6.6]). It also follows that VC is isomorphic
to a direct sum of S2�−1

C
2 with itself. Since we assume that the skew pairing 〈·, ·〉C for VC is

non-trivial, Proposition A.4 implies that one of the irreducible summands of VC is isomorphic
to S2

C
2. This is impossible, since k = 2�− 1 is odd. �

The Killing form is always a non-degenerate pairing. In the light of the previous two
propositions, this give us:

Corollary A.6. Let 〈·, ·〉 : g× V → k be a skew pairing, where either g = sl2(k) or g = so3

and k = R. Assume further that V g = {v ∈ V | gv = 0} = 0. Define

V ⊥ = {X ∈ g | 〈X,V 〉 = 0}.

Then either V ⊥ = 0 or V ⊥ = g.

Proof. The first case occurs precisely if there exists an irreducible summand W of V on
which the restricted skew pairing g×W → k induces the Killing form. �

Appendix B. Nil-invariant scalar products on solvable Lie algebras

We present a new proof for a key result of Baues and Globke [2, Theorem 1.2]. The
importance of this result lies in it being the crucial ingredient in the proof of our Theorem A,
which supersedes it and is itself the fundamental tool in the study of Lie algebras with
nil-invariant bilinear forms.

Theorem B.1 (Baues & Globke). Let g be a finite-dimensional solvable real Lie algebra,
and 〈·, ·〉 a nil-invariant symmetric bilinear form on g. Then 〈·, ·〉 is invariant.

We recall some well-known facts (see Jacobson [8, Chapter III]). Let g be an arbitrary finite-
dimensional real Lie algebra. For X ∈ g, let g(X, 0) denote the maximal subspace of g on which
ad(X) is nilpotent. Let H0 be a regular element of g, that is, dim g(H0, 0) = min{dim g(X, 0) |
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X ∈ g}. We write g0 = g(H0, 0) for short. Then, by [8, Chapter III, Theorem A, Proposition
1.1], g0 is a Cartan subalgebra of g, and there is a Fitting decomposition

g = g0 ⊕ g1

into g0-submodules. In particular, as a Cartan subalgebra, g0 is nilpotent, and the restriction
of ad(H0) to g1 is an isomorphism.

Lemma B.2. Any X ∈ g0 sufficiently close to H0 in g0 is also regular, and then

g(X, 0) = g(H0, 0) = g0.

Proof. The set of regular elements in g is Zariski-open, and thus intersects g0 in a non-
empty Zariski-open set (it contains H0). So, any X ∈ g0 sufficiently close to H0 is also a
regular element. Two Cartan subalgebras with a common regular element coincide [8, p. 60],
so that g0 = g(X, 0). �

Lemma B.3. Let h be any nilpotent subalgebra of g. Then the restriction of 〈·, ·〉 to h is an
invariant bilinear form on h.

Proof. Let H ∈ h. By nil-invariance of 〈·, ·〉, the nilpotent part adg(H)n of the Jordan
decomposition of adg(H) is skew-symmetric with respect to 〈·, ·〉. Since h is a nilpotent
subalgebra, adh(H) is a nilpotent operator, and hence adg(H)n|h = adh(H). This means the
restriction of 〈·, ·〉 to h is an invariant bilinear form. �

Proof of Theorem B.1. Suppose that g is solvable. Let H0 be a regular element in g. Then
g1 is contained in the nilradical n of g. Indeed, n ⊇ [g, g] and g1 = ad(H0)g1 ⊆ [g, g].

Suppose now that g has a nil-invariant symmetric bilinear form 〈·, ·〉. In particular, ad(N) is
skew-symmetric for all N ∈ n and the restriction of 〈·, ·〉 to any nilpotent subalgebra is invariant
by Lemma B.3. In particular, the restriction of 〈·, ·〉 to the Cartan subalgebra g0 is invariant.

Now let X ∈ g. Then, for any N,N ′ ∈ n,

〈ad(X)X,N〉 = 0, 〈X, ad(N)X〉 = −〈X, ad(N)X〉 = 0,

and also

〈ad(X)N,N ′〉 = −〈ad(N)X,N ′〉 = 〈X, ad(N)N ′〉
= −〈X, ad(N ′)N〉 = 〈ad(N ′)X,N〉
= −〈N, ad(X)N ′〉.

Thus, ad(X) is skew-symmetric for the restriction of 〈·, ·〉 to RX + n, and moreover X ⊥ [X, n].
Observe that g1 ⊆ [H0, g1] ⊆ [H0, n], and hence H0 ⊥ g1. The same holds for all elements X

in a non-empty open subset of g0 (compare Lemma B.2), and hence

g0 ⊥ g1.

Altogether, any X ∈ g0 preserves 〈·, ·〉 on g1, and, as stated before, preserves 〈·, ·〉 on g0, since
g0 is nilpotent. Hence, ad(X) is skew-symmetric on g. Since g = g0 + n, this means 〈·, ·〉 is an
invariant bilinear form on g. �
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