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Préambule: La quatrieme géométrie

“— Parmi ces axiomes implicites, il en est un qui semble mériter
quelque attention, parce qu'en |'abandonnant, on peut construire
une quatriéme géométrie aussi cohérente que celle d'Euclide, de

Lobatchevsky et de Riemann. [...]
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Object and Subject

E a vector space,
b a light(-like) scalar product,
b: E x E — R positive, and ker b has dimension = 1

Example, on R™1, the quadratic form: x? + .. .x,%
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Object and Subject

E a vector space,
b a light(-like) scalar product,
b: E x E — R positive, and ker b has dimension = 1

Example, on R™1, the quadratic form: x? + .. .x,%

M a manifold
Definition: a lightlike metric is a tensor g such that g, is lightlike
scalar on T, M, Vx € M.
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f:(M,g)— (N,h) isometry, if f*h = g:
8x(Ux, vx) = hf(x)(Dxf(UX): Dyf(vx))
Goal: describe Iso(M, g), the isometry group of (M, g).
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f:(M,g)— (N,h) isometry, if f*h = g:
8x(Ux, vx) = hf(x)(Dxf(UX): Dyf(vx))
Goal: describe Iso(M, g), the isometry group of (M, g).
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Is Iso(M, g) a Lie group (why, why-not, and how)?
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f:(M,g)— (N,h) isometry, if f*h = g:
8x(Ux, vx) = hf(x)(Dxf(UX): Dyf(vx))
Goal: describe Iso(M, g), the isometry group of (M, g).

Questions:
Is Iso(M, g) a Lie group (why, why-not, and how)?

Essentially,
— Is there a kind of connection associated naturally to (M, g)?
— Is there of family of curves (like geodesics) naturally associated to

(M,g)?
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More useful definitions

Definition of local isometry: f a local isometry of (M, g): means
f:U— V, U, V open subsets of M,
f:(U,gu) — (V,gv) isometry,

e The collection of local isometries is a pseudo-group (= a

groupoid...)
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(M, g) a lightlike manifold,

N = kerg C TN a line fiber bundle

N its tangent foliation,

Terminology: characteristic (or normal, null, radical...) foliation,
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Local expression

dmM=n+1

Local coordinate system — the characteristic foliation corresponds
o)

to ar

(Xla 7Xn7r):(X7r)

g= > gj(x,r)dddx

ij<n

A one parameter family of Riemannian metric of the local quotient
space M/N, but not privileged parameter!
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Similar structures, Lightlike vs sub-Riemannian

E — M a vector bundle,

e A sub-Riemannian metric on E consists in giving a Riemannian

metric on a codimension 1 sub-bundle D C E

e A lightlike metric on E consists in giving N C E a sub-bundle of

rank (i.e. dimension) 1, together with a Riemannian metric on
E/N.

A lightlike metric on E is equivalent to a sub-Riemannian metric on
E*. In particular:

lightlike metric on M (i.e. on TM) <= sub-Riemannian metric
on T*M.

subriemannian metric on M (i.e. on TM) <= lightlike metric on
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Proof:

o if h: E — R lightlike, N C E its characteristic line sub-bundle,
let Dy = {ax € E*, ax(nx) = 0}

D C E* has codimension 1,

ay is a form on Ey/N,,

h* : D — R defined by: h*(ax) = square norm of ay (as an

element of the euclidean space (Ex/Ny)*)
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e If h: D C E — R is a sub-Riemannian metric, h* : E* — R, the
hamiltonian (in the case E = TM)

h*(ax) = the square of the norm of ayp,.

This is lightlike with Kernel D*
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Some motivations




Motivations

Induced pseudo-Riemannian metrics

Start with the linear situation and then generalize
straightforwardly to the manifold situation

Pseudo-euclidean scalar products: RP'9 = RPT9 endowed with

Q=-x— ... -+ +...+y2

Essential Difficulty: £ C RP*9, subspace,

Q| is not necessarily a pseudo-euclidean product!
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Motivations

The induced Lorentz case

Lorentz: p=1: RV : Qo= —t2 +xZ + ... + x>

o) :xoxl—l—(x12+...x,2,)
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Motivations

The induced Lorentz case

Lorentz: p=1: RV : Qo= —t2 +xZ + ... + x>

o) :xoxl—l—(x12+...x,2,)

If Qe is degenerate, then it is lightlike, i.e. positive, with ker of
dimension 1.
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Motivations

The induced Lorentz case

Lorentz: p=1: RV : Qo= —t2 +xZ + ... + x>

o) :xoxl—l—(x12+...x,2,)

If Qe is degenerate, then it is lightlike, i.e. positive, with ker of
dimension 1.

Recall causal characters:

- Spacelike Qg positive definite
- timelike Qg of Lorentz type

- Lightlike Q¢ degenerate
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Motivations

Figures

degenerate metrics



Motivations

Figures

/_\o=-1 (hyperboloide

a deux nappes)

Q=0 (cone)

N\

Q=1 (hyperboloide

a une nappe)
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Motivations

Figures

Q=0
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Q

Q=0

Q<0
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Motivations

More terminology, sub-Lorentz metrics

A tensor g on M is “sub-Lorentz” metric, if at each x, gy is a
Riemannian, Lorentzian or a lightlike scalar product.

Fact If (N, h) is a lorentz manifold, and f : M — N is a
differentiable immersion, then, g = f*h is sub-Lorentz.

Example: the Euclidean sphere in the Minkowski space.
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Motivations

Philosophy

— Sub-Lorentz metrics are the abstraction of metrics induced form
immersions in Lorentz manifolds,

— Study them intrinsically (and maybe, then, ask an isometric
immersion problem?)

Lightlike metrics appear as regular sub-Lorentzian metrics (they
have a constant type)!

In the sequel: natural situations of lightlike manifolds (usually
immersed)
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Motivations

Black holes

(L, h) Lorentz (chronologically-oriented)

A (spacelike) hypersurface S has:
D(S) its domain of dependence

H(S) = 0D(S) its horizon of S:
The horizon is lightlike (by maximality)

Black hole: the horizon of infinity!

Difficulty: horizons are generally non-regular (non-smooth
submanifolds)
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Motivations

Characteristic surfaces of wave equation

92 92 02 02
o2~ (52t 52 T o)

Point of view: This is the Laplacian for R'3, the Minkowski space
R* endowed with —t2 4+ x? 4 y? + 22

general situation:

Algebra: Q(x) = Xgjx'x/ (symbol)
Geometry: g = gjdx’dx/ (metric )
Analysis: P, = Zg,-j%(ng (opertor)
Pgu = div grad(u)....

Q and g classical data — Pz (quantum )
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Motivations

Characteristic surfaces of wave equation

(L, h) a Lorentz space,
Opu = div grad(u), D'Alembertian (Wave operator)

Example, for R13, the Minkowski space R* endowed with
— 24 %2 + 2 2%

2 H? H? 2
a2 (gataztaz)

(up to a sign)
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Def: M" C N Characteristic hypersurface for O,
<= hj is degenerate <= M lightlike

Significance from the point of view of P,: the Cauchy problem can
not be solved for data given on M.
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Def: M" C N Characteristic hypersurface for O,
<= hj is degenerate <= M lightlike

Significance from the point of view of P,: the Cauchy problem can
not be solved for data given on M.

See however, Hormander (Nicolas...): M is (locally) a limit of
Cauchy surfaces, and somehow stronger problem can be solved ...
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Motivations

Orbits of pseudo-Riemannian actions

(N, h) a pseudo-Riemannian manifold,
G x N — N acts isometrically on N
Any orbit G.p is a homogeneous space, but not necessarily a

pseudo-Riemannian homogeneous space.

Definition: a homogeneous space G/H is a pseudo-Riemannian
homogeneous space of type (p, q) if the left G action preserves
some pseudo-Riemannian metric of type (p, q).
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Similar definition of lightlike homogeneous spaces (and also other
structures like sub-Riemannian ...)

Problem: Classify homogeneous spaces of a given type (under
aditionnal natural hypotheses)?
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Motivations

Related questions

M a lighlike submanifold in the Lorentz space (N, h).

There is no well submanifold theory for M, no “unit " normal”, no

second fundamental form, no curvature...

The “rigidity " suggests to associate higher order differential objects

as substitution!
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The two paradigmatic
examples




Examples Transversally Riemannian case
Lightcone

Riemannian flows

I has dimension 1 (an interval or S) a lightlike metric is (/,0)
e (M, g) is said transversally Riemannian, if it is locally isometric to
(N, h) x (1,0), where (N, g) is Riemannian.

degenerate metrics



Examples Transversally Riemannian case
Lightcone

Riemannian flows

I has dimension 1 (an interval or S) a lightlike metric is (/,0)

e (M, g) is said transversally Riemannian, if it is locally isometric to
(N, h) x (1,0), where (N, g) is Riemannian.

e Classical approach, transversally Riemannian flow (Molino,
Carriére, Hector, Ghys, ...): a 1-dimensional foliation N of M
endowed with a holonomy invariant (bundle-like) Riemannian
metric,

<

(M, g) lightlike, such that any flow X parametrizing A/ has flow ¢*
which preserves g
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Examples Transversally Riemannian case

Lightcone

A transvection f : M — M <=, Vx, f(Ny) = Nx
(M, g) transversally Riemannian <= any transvection is an
isometry

In particular, in this case, dimlso(M, g) = co

example (M, g) = (N, h) x (§%,0), f(x,y) = (x, t(x,y)) is
isometric
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Examples Transversally Riemannian case
Lightcone

The light Minkowski cone

R Q(x) = —x@ +x2 + ...+ x2
Co" = @ 1(0) — 0 endowed with the induced metric,
- The characteristic foliation: radial lines,

Co" = (R" — {0}, dQ?)
(the Euclidean metric is r? + dQ?)

O*(1, n) acts on RY" preserving Co”,
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Examples Transversally Riemannian case

Lightcone

/—\Q=-1 (hyperboloide

a deux nappes)

Q=0 (cone)

Q=1 (hyperboloide
a une nappe)
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Examples Transversally Riemannian case
Lightcone

The surprise!

For n > 4, any local isometry of Co" is the restriction of an
element of O" (1, n). In particular Iso(Co") = O*(1,n) is a Lie
group (of finite dimension).
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Examples Transversally Riemannian case

Lightcone

Similar to classical statements:

Is0'°(IR") are composition of translations and rotation,

s0'°¢(SM)...

Conf(S") (Liouville) composition of similarities and inversions...
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Examples Transversally Riemannian case

Lightcone

Co" =R x S"!

Metric 0 @ e?thgn—1

Let f be an isometry,

S 1 is the space null leaves and so f acts on it

f has the form: (t,x) — (A(t, x), ¢(x)).
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Examples Transversally Riemannian case

Lightcone

Isometry =
¢*gsn71 _ eZ(t—A(f,x))gs"i1
Thus,
fo(t,x)— (t— u(x),d(x)),
¢ a conformal transformation of the sphere, ¢*ggn—1 = €?*ggn_1.
— Apply Liouville Theorem for Conf(S")
(in particular no freedom for p)
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Examples Transversally Riemannian case
Lightcone

Lighlike geometry contains conformal Riemannian geometry

(N, h), h = hjj(x)dx'dx’ Riemannian,
M=N xR

(x.7)

8x,r) = c(r)hx,

Assume: Oc/0r # 0, then

local isometry for M <= local conformal transformation for N
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Global rigidity

Global rigidity




Global rigidity

Homogeneous lightlike manifolds?

The problem: classify lightlike homogeneous spaces
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Global rigidity

Homogeneous lightlike manifolds?

The problem: classify lightlike homogeneous spaces

Remarks:

1) This looks like a linear algebra problem, but turns out to be a
quadratic onel!

2) A natural general problem about geometric structures:
homogeneous spaces are like polynomials among general functions!
(or exact solutions...)
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Global rigidity

Hierarchy

Dynamical condition: G/H such that H non-compact,

Otherwise, G preserves a Riemannian metric on G/H, a simpler
structure,

In the case of non-transitive actions, the hypothesis is the action is

non-proper
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Global rigidity

Let M = G/H be a homogeneous lightlike manifold, such that,

— H non-compact
— G is semi-simple with no factor locally isomorphic to SLy(R)

Then, up to a cyclic cover, M = Co"
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Global rigidity

Case of non-transitive actions

Assuming the action non-proper, there are orbits = Co” (up to a
cover).

M itself is a kind of amalgamed product of cones by a Riemannian
manifold.

degenerate metrics



Global rigidity

What is a semi-simple Lie group?

G has no abelian normal subgroup,
Practical definition:

SLn(R)

O(p, q)

Sp(n, R)
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Global rigidity

What is a semi-simple Lie group?

G has no abelian normal subgroup,

Practical definition:

SLn(R)

O(p, q)

Sp(n, R)

Remark: their structure is encoded in combinatorial data: a root
system...(important tool in many areas of mathematics and physics

with no apparent connection)!
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Global rigidity

Isometry groups of left invariant lightlike metrics on Lie
groups

An example: G = SO(3)

A left invariant lightlike metric g on SO(3) <= a lightlike scalar
product g on so(3)

The null direction is a left-invariant direction field.... Hopf fibration

S(q) = stabilizer of g in the adjoint action
S(g) = SO(2) or=1

Theorem (Bekkara-Oussalah)

If S(q) = 1, then full isometry group coincides with SO(3) (no
extra isometry).

(In the other case, the lightlike metric is transversally Riemannian,
and has infinitely dimensional isometry group)
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The local rigidity

Local Rigidity (as a
geometric structure)




Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

The concept

Rigidity vs flexibility of geometric structures?
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

The concept

Rigidity vs flexibility of geometric structures?
Examples:

Rigid (Solid): Riemannian metric — Pseudo-Riemannian metric
— Connection — Conformal structure on dimension > 2....
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

The concept

Rigidity vs flexibility of geometric structures?
Examples:

Rigid (Solid): Riemannian metric — Pseudo-Riemannian metric

— Connection — Conformal structure on dimension > 2....

Non-rigid (Fluid): Symplectic structure — Complex structure —
Contact structure — ...
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

The concept

Rigidity vs flexibility of geometric structures?
Examples:

Rigid (Solid): Riemannian metric — Pseudo-Riemannian metric
— Connection — Conformal structure on dimension > 2....

Non-rigid (Fluid): Symplectic structure — Complex structure —
Contact structure — ...

e Rigid = the pseudo-group of local isometries is a LIE GROUP (of
finite dimension).
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Generalized geodesics

Rigid:

— there is a kind of naturally associated connection,

— there is a naturally associated family of curve, generalized like
geodesics,

Rigid at order k — a differential equation of order k + 1
Example: a connection (order 1)
xi = erk(x)xka

(x = (x,...,x™) a coordinate system)

degenerate metrics



Cartan’s approach
Gromov's Approach
Conflict

The local rigidity

Remark, case of homogeneous spaces (at least if M = G/H,
H =1): T}, do not depend on x,

Yet, these equations are very complicated (they can generate

chaos...)

Another example, structure of order 2 (equations of order 3)

conformal structure (in dim > 3) — circles
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Cartan’s approach
Gromov's Approach
Conflict

The local rigidity
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Classic: H-structures

H C GL,(R) a subgroup (this is not an abstract group)
dmM=n

The frame bundle P(M) — M, with structural group GL,(R)
An H-structure on M: reduction of the structural group to H.
<= a section of the bundle P(M)/H — H

degenerate metrics



Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Explanation

E=TM

Transitions between trivialisation charts U x R" — U x R"
(x, u) = (x, A(x)u)

x € U— A(x) € GLy(R)

Reduction to H C GL,(R)
<= an atlas with all the A's valued in H.
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Examples

e H = {1}: Parallelism (Framing)
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Cartan’s approach
Gromov's Approach
Conflict

The local rigidity

e H = O(n) a Riemannian metric

e The groups O(n_, ng, ny), the orthogonal group of a quadratic
form of type (n_, ng, ny)

e Case ng = 0: pseudo-Riemannian metric

e Case of O(0,1, n): lightlike metric
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Cartan’s approach
Gromov's Approach
Conflict

The local rigidity

e The groups D(k, n) (the stabilizer of R in GL,(R) ): a field of
k- planes

e OD(k, n) subgroup elements of D(k, n) preserving the Euclidean
product on RX.
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Cartan’s approach
Gromov's Approach
Conflict

The local rigidity

0(0,1,n)

A€ O(n), \,a; eR
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

OD(n—1,n) :
AT
0 b
The automorphic mapping B — B~ sends OD(n — 1, n)

bijectively on O(1,0, n).

(Duality between lightlike and sub-Riemannian)
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Cartan’s approach
Gromov's Approach
Conflict

The local rigidity
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Finite type, Elie Cartan

H C Mat,(R) the Lie algebra of H

Hy = Prox(H), the space of k-prolongations of H
A € 'Hy means:

A:R" x ...R" = (R")k1 - R",

e A is symmetric multilinear

o Vu=(v1,...v) € (R")¥ fixed, the map

Ayiv—A(v,vi,. oo, v)

belongs to H.
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Explanation

R", P(R") = R” x GLn(R)
H C GLy(R)

The (globally) flat H-structure on R": defined by any translation
invariant framing of R”".

f :R" — R" preserves the H-structure ( isometry of the structure)
—

Vx, Dyf € H,
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Cartan’s approach
Gromov's Approach
Conflict

The local rigidity

An H-Killing field X = its flow preserves the H-structure <=
Vx € R": x — DyX € H (the Lie algebra of H)

(example: H = O(n), an Euclidean vector field, infinitesimal
isometry <= D, X skew-symmetric)

A = DEFLX (the higher derivative of order (k + 1) at xo)
A€ Hy
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Examples

e Finite type
H = O(n): H1 = 0: the second derivative of an infinitesimal
Euclidean isometry is 0...

H =R x O(n) (conformal structure) Hyo = 0 (if n > 2)

e Infinite type
H = sp(n,R) (symplectic) (e.g. SL2(R)): H; # 0, Vi

H = 0(0,1, n): (e.g. consider transvections on R™*! endowed with
X2+ ..+ x3)
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Synthesis

— The word “rigidity” doesn't exist in Cartan appraoch...
— Finite type = The isometry group is a Lie group

This uses “Cartan connections”

— Finite type <= there is an associate parallelism of some frame
bundle

— Central Fact (remark): by definition, being of finite order depends
only on H (e.g. all Riemannian metrics have order 2, not only the
flat one)
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Associated higher order parrallelism

Example 1: case of a connection (this is not a usual H-structure
but rather an H-structure of order 2)
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Cartan’s approach
Gromov's Approach
Conflict

The local rigidity

Conformal case:

M, [go] a conformal class

Xo — M: the (trivial) line bundle whose (local) sections are
Riemmaian metric in this conformal class: g = €% g

X1 — M: bundle of 1-jets of sections of Xo: = T*M ( dyo)

Fact

Given x; € X1, i.e. a section g1 = €’ gy up to order 1, equivalently,
they are given: m € M, o(m), dmo

(x0 = e”(Mgp(m), and x; = dpo).

Then,

— There exists g = €7 gy such that Ricp,(g) =0

— The 2-jet of g is unique (well determined) at m

Thus, the derivative of g : M — Xy is well defined
Its image is a horizontal space H,,

degenerate metrics




Cartan’s approach
Gromov's Approach
Conflict

The local rigidity

Equip Hx, with the metric xg = e?(m)go(m)

Anything on the vertical space...
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Gromov's approach

What is a geometric structure?
A chart c = (U,x), c: U—R"
Germs of charts

C(M) ={(U,x)}
D = DiftF(R",0) acts by composition on the target

A geometric structure is a map: ¢ : C(M) — Z obeying to some

law: it is equivariant with respect to an action of D on Z
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Cartan’s approach
Gromov's Approach
Conflict

The local rigidity

Example: Riemannian metric: to ¢ = (U, x) associate its local
expression gjj(x)dx’ dx/
¢ c=(U,x) = (g;(x)) € Symn(R)

Action of D:
f € D = Diff(R",0) — Dof € GL,(R)
D acts on Sym,(R) via GL,(R)

A connection: ¢ = (U, x) — (Ffj(x)) Christofel symbols

degenerate metrics



Cartan’s approach
Gromov's Approach
Conflict

The local rigidity

Structure of Order k : equivalence relation: ¢ ~ ¢’ if they have the
same k-jet at x

C*(M) the quotient space
D — Dk

Z a manifold with a D*-action
¢ : CK(M) — Z equivariant,

degenerate metrics



Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Rigidity

L

Iso,°¢ = {f local isometry defined around x such that f(x) = x}

®k : f € 150L°¢ — jetX(f) € ... (some complicated algebraic space)

“Local rigidity at order k": ®X is injective

Example: A Riemannian isometry f: f(x) = x, and Dyf =1, then
f=id.
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Infinitesimal rigidity

True definition, stronger than the local rigidity:
Wk - Isoktl — Iso is injective.

e Definition: f is an isometry up to order j, if f*g — g vanishes up
to order j at x (The Taylor development vanishes up to order j, in

some, and hence any, chart)
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Examples

— Riemannian metrics, Iso? — Iso® is injective
(A step in the proof of the existence of the Levi-Civita connection)

— Conformal case: Iso® — Iso? is injective

Liouville Theorem — the explicit form of local conformal
transformations on R", n > 3
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Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

System of equations in the Riemannian and conformal cases

degenerate metrics



Cartan’s approach
Gromov's Approach

The local rigidity (CiomittE:

Rigidity vs finiteness of type for H-structures

For H-structures:
Rigidity (in Gromov sense)= finite type (in the Cartan sense)

this depends only on H (as a subgroup of GL,(R)): if there is one
example of a rigid H-structure, then, any H-structure is rigid!

In particular:

— lightlike and sub-Riemannian metrics are never rigid (since there
are examples with infinite dimensional groups)
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tradiction!?
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The sub-Riemannian case, rigidity flavor

(M?7*1 h) a contact sub-Riemannian structure:

[w] a contact structure, h a metric on D = ker[w]

The geodesic flow = the flow associated to the hamiltonian
h*: T*"M — R...

Hence, geodesics...
e (h,[w]) — g = Rie(h,[w]) = Rie(h) a true Riemannian metric

Indeed, h — wp € [w] a contact form
Then, define g, by decreeing the Reeb flow of wy is unitary and
orthogonal to D
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e Construction of wg, by the condition
dwo(p, = volume form of h (on D).

If w1 = cwy, dwi = dc A wg + cdwg
e.g.n=1, dc Awp vanisheson D = ¢ = 1.
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Contradiction with the fact that sub-Riemannian metrics are not of
finite type!

Or, finiteness of type is not the exact counterpart of the rigidity

concept...!1?
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A Rigidity aspect in the lightlike case

Remember the transversally conformal case (e.g. the lightcone
case):

8(x,r) = c(r)h: local conformal diffeomorphisms for h <= local
isometries for h,

with the genericty hypothesis (reminiscent to the contact
condition): Lxg # 0, where X is (any) null vector field.

Contradiction with the fact that the type is infinite, equivalently no

rigidity in the Gromov sense!
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Lightlike case, infinitesimal fact

Theorem (“Sub-rigidity")

(M", g) a generic lightlike structure: Lyg has maximal rank
= n— 1, where N is tangent to the characteristic foliation.

Iff €503, Jet'f =1 (= Jet'(Id)), then Jet?f = 1.

Similar statement for sub-Riemannian contact structures.

See “Singular Riemannian metrics, sub-rigidity vs rigidity” in

http://www.umpa.ens-1lyon.fr/~zeghib/pubs.html

degenerate metrics


http://www.umpa.ens-lyon.fr/~zeghib/pubs.html

Cartan’s approach
Gromov's Approach
Conflict

The local rigidity

Definition

There are natural maps Iso'™ — Iso’

Definition

The geometric structure is sub-rigid of order (k,d) if

k+1

Image(ls**°) c Isk+1 — IsoX

Is injective

f isometric up to order k + ¢
f trivial up to order k
Then f is trivial up to order k + 1

degenerate metrics



Cartan’s approach
Gromov's Approach

The local rigidity Cafilisi

Explanation

The definition is du to D. Fisher, J. Bennvensite (under the name
“quasi-rigid")

Their Prototype: singular metrics:
g = fh, h a Riemannian metric, f a non-negative function,
f(x0) = 0, xo isolated zero...

Or: a (singular) framing which vanish up to order § at an isolated
point
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Their motivation: a “geometrization conjecture” du to
Gromov-Zimmer: whenever a lattice " in a higher rank semisimple
Lie group (e.g. SL,(Z)) acts smoothly on a compact manifold,
there is a partition into pieces on which I' preserves a rigid
geometric structure.

The test:

The blow up of R" (at 0) — X

p: X — R, bijective above R” — 0, but p~1(0) = RP"!
X ={(x,d) € R" x RP"~! such that x € d}

The “inverse image” of the flat connection is defined on X
It is sub-rigid...
GL,(R) preserves everything
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Their Natural questions:

— Is “sub-rigid" essentially similar to “rigid™:

— Do sub-rigid structures give rise to singular framing...
Here: generic lightlike and contact -Riemannian metrics are
“conter-examples”: they can be homogeneous:

— there is no localization of their singularity

— they are everywhere sub-rigid non-rigid,
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One default of sub-rigidity

Let M be simply connected and endowed with an analytic rigid
geometric structure. Let V' be a Killing field of the structure (its
local flow preserves the structure) defined on an open subset
Uucm.

Then, V extends to M.

This is not true in the sub-rigid case
Aff(R") = GL,(R) x R™ acts R”, but not on its blow up...
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Generic lightlike and contact sub-Riemannian metrics are less than
rigid, but better than sub-rigid?!
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