
Ergodic Theory and Dynamical Systems
http://journals.cambridge.org/ETS

Additional services for Ergodic Theory and Dynamical 
Systems:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Actions of discrete groups on stationary 
Lorentz manifolds

PAOLO PICCIONE and ABDELGHANI ZEGHIB

Ergodic Theory and Dynamical Systems / FirstView Article / June 2013, pp 1  34
DOI: 10.1017/etds.2013.17, Published online: 05 June 2013

Link to this article: http://journals.cambridge.org/abstract_S0143385713000175

How to cite this article:
PAOLO PICCIONE and ABDELGHANI ZEGHIB Actions of discrete groups on stationary 
Lorentz manifolds. Ergodic Theory and Dynamical Systems, Available on CJO 2013 doi:10.1017/
etds.2013.17

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/ETS, IP address: 62.28.190.6 on 06 Jun 2013



http://journals.cambridge.org Downloaded: 06 Jun 2013 IP address: 62.28.190.6

Ergod. Th. & Dynam. Sys. (First published online 2013), page 1 of 34∗

doi:10.1017/etds.2013.17 c© Cambridge University Press, 2013
∗Provisional—final page numbers to be inserted when paper edition is published

Actions of discrete groups on stationary
Lorentz manifolds

PAOLO PICCIONE† and ABDELGHANI ZEGHIB‡

† Departamento de Matemática, Universidade de São Paulo, Rua do Matão 1010,
05508-900, São Paulo, SP, Brazil
(e-mail: piccione@ime.usp.br)

‡ Unité de Mathématiques Pures et Appliquées, École Normale Supérieure de Lyon,
46, Allée d’Italie, 69364 Lyon Cedex 07, France

(e-mail: abdelghani.zeghib@ens-lyon.fr)

(Received 29 November 2012 and accepted in revised form 28 February 2013)

Abstract. We study the geometry of compact Lorentzian manifolds that admit a somewhere
timelike Killing vector field, and whose isometry group has infinitely many connected
components. Up to a finite cover, such manifolds are products (or amalgamated products)
of a flat Lorentzian torus and a compact Riemannian (respectively, lightlike) manifold.
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1. Introduction
1.1. Paradigmatic example. We will deal with dynamics and geometry of the following
flavor. Let q be a Lorentz form on Rk ; this induces a (flat) Lorentz metric on the torus
Tk
= Rk/Zk . The linear isometry group of Tk is O(q, Z)= GL(k, Z) ∩ O(q), and its full

isometry group is the semi-direct product O(q, Z)n Tk .
The global and individual structure of O(q, Z) involves interesting geometric,

arithmetic and dynamical interactions. For generic q, O(q, Z) is trivial. Nonetheless,
if q is rational, i.e. if q(x)=

∑
ai j xi x j , where ai j are rational numbers, then O(q, Z) is

big in O(q); more precisely, by the Harish-Chandra–Borel theorem, it is a lattice in O(q).
When q is not rational, many intermediate situations are possible. It is a finite volume
non-co-compact lattice in the case of the standard form q0 =−x2

1 + x2
2 + · · · + x2

k , but
can be co-compact for other forms. On the other hand, a given element A ∈ O(q0, Z) could
have complicated dynamics. For instance, if A is hyperbolic, then it has a leading simple
eigenvalue. If furthermore A is irreducible, that is, it preserves no non-trivial sub-torus,
then this eigenvalue is a Salem number. Conversely, any Salem number is the eigenvalue
of such a hyperbolic A ∈ O(q, Z), for some rational Lorentz form q , see more details
in Appendix A (in fact, essentially, one can increase the dimension and get an integer
orthogonal matrix A for the standard Lorentz form, i.e. A ∈ O(1, n)(Z)= O(q0, Z), where
q0 is the standard Lorentz form in dimension 1+ n).

1.2. Lorentz geometry and dynamics. The global geometry of compact manifolds
endowed with a non-positive definite metric (pseudo-Riemannian manifolds) can be quite
different from the geometry of Riemannian manifolds. For instance, compact pseudo-
Riemannian manifolds may fail to be geodesically complete or geodesically connected;
moreover, the isometry group of a compact pseudo-Riemannian manifold fails to be
compact in general. The main goal of this paper is to investigate the geometric structure
of Lorentz manifolds essentially non-Riemannian, i.e. with non-compact isometry
group.

Lorentzian manifolds, i.e. manifolds endowed with metric tensors of index 1, play a
special role in pseudo-Riemannian geometry, due to their relations with general relativity.
The lack of compactness of the isometry group is due to the fact that, unlike the
Riemannian case, Lorentzian isometries need not be equicontinuous, and may generate
chaotic dynamics on the manifold. For instance, the dynamics of Lorentz isometries
can be of Anosov type, evocative of the fact that in general relativity one can have
contractions of time and expansion in space. A celebrated result of D’Ambra (see [7])
states that the isometry group of a real analytic simply-connected compact Lorentzian
manifold is compact. It is not known whether this results holds in the C∞ case. In the
last decade several authors have studied isometric group actions on Lorentz manifolds.
Most notably, a complete classification of (connected) Lie groups that act locally faithfully
and isometrically on compact Lorentzian manifolds has been obtained independently by
Adams and Stuck (see [1, 2]) and the second author (see [16]). Roughly speaking, the
identity component G0 of the isometry group of a compact Lorentz manifold is the direct
product of an abelian group, a compact semi-simple group, and, possibly, a third factor
which is locally isomorphic to either SL(2, R) or to an oscillator group, or else to a
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Heisenberg group. The geometric structure of a compact Lorentz manifold that admits
a faithful isometric action of a group G isomorphic to SL(2, R) or to an oscillator group
is well understood; such manifolds can be described using right quotients G/0, where
0 is a co-compact lattice of G, and warped products, see §4 for more details. Observe
that such constructions produce Lorentz manifolds on which the G0-action has some
timelike orbit. Recall that a Lorentz manifold is said to be stationary if it admits an
everywhere timelike Killing vector field. Our first result (Theorem 4.1) is that when the
identity component of the isometry group is non-compact and it has some timelike orbit,
then it must contain a non-trivial factor locally isomorphic to SL(2, R) or to an oscillator
group.

Thus, the next natural question is to study the geometry of manifolds whose isometry
group is non-compact for having an infinite number of connected components.

1.3. Results. We will show in this paper that compact Lorentz manifolds with a large
isometry group are essentially constructed from flat tori. In order to define the appropriate
notion of the lack of compactness of the isometry group of a Lorentzian manifold, let us
give the following definition.

Definition. Let ρ : 0→ GL(E) be a representation of the group 0 on the vector space E .
Then, ρ is said to be of Riemannian type if it preserves some positive definite inner product
on E . We say that ρ is of post-Riemannian type if it preserves a positive semi-definite inner
product on E having kernel of dimension equal to 1.

Observe that ρ is of Riemannian type if and only if it is precompact, i.e. ρ(0) is
precompact in GL(E).

Given a Lorentzian manifold (M, g), we will denote by Iso(M, g) its isometry group,
and by Iso0(M, g) the identity connected component of Iso(M, g). The Lie algebra of
Iso(M, g) will be denoted by Iso(M, g). By a large isometry group we mean in particular
that Iso(M, g) is non-compact. The lack of compactness may occur in one of the following
situations:
(1) the strongest situation where the identity connected component Iso0(M, g) is

non-compact; this case was studied and essentially understood in [1, 2, 16];
(2) the weakest case where Iso0(M, g) is trivial, and the discrete factor 0 =

Iso(M, g)/Iso0(M, g) is infinite;
(3) an intermediate situation, where both Iso0(M, g) and 0 are non-trivial, that is,

Iso0(M, g) is compact and the action of Iso(M, g) on the Lie algebra Iso(M, g)
is not post-Riemannian (in particular, Iso0(M, g) is non-trivial).

We are dealing here with such an intermediate case. The main result of the paper is that
compact Lorentz manifolds that belong to this intermediate category are essentially built
up by tori. More precisely, we prove the following structure theorem.

THEOREM 1. Let (M, g) be a compact Lorentz manifold, and assume that the action
of Iso(M, g) on the Lie algebra of Iso0(M, g) is not post-Riemannian, and that 0 =
Iso(M, g)/Iso0(M, g) is infinite. Then, Iso0(M, g) contains a torus T= Td , endowed
with a Lorentz form q, such that 0 is a subgroup of O(q, Z).
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Up to a finite cover, there is a new Lorentz metric gnew on M having a larger
isometry group than g, such that the discrete factor is 0new

= O(q, Z), where 0new
=

Iso(M, gnew)/Iso0(M, gnew). Geometrically, M is the metric direct product T× N,
where N is a compact Riemannian manifold, or M is an amalgamated metric product
T×S1 L, where L is a lightlike manifold with an isometric S1-action. The last possibility
holds when 0 is a parabolic subgroup of O(q).

A more precise description of the original metric g is given in §11 for the hyperbolic
case and in §12 for the parabolic case. We will in fact prove Theorem 1 under an
assumption weaker than the non-post-Riemannian hypothesis for the conjugacy action
of 0. The more general statement proved here is the following theorem.

THEOREM 2. Assume that 0 is infinite and that Iso0(M, g) has a somewhere timelike
orbit. Then the conclusion of Theorem 1 holds.

Theorem 1 will follow from Theorem 2 once we show that, under the assumption
that the action of Iso(M, g) on the Lie algebra of Iso0(M, g) is not of post-Riemannian
type, then the connected component of the identity of the isometry group must have some
timelike orbits, see §3.1.

A first consequence of our main result is the following.

COROLLARY 3. Assume that (M, g) is a compact Lorentzian manifold with infinite
discrete factor 0. If (M, g) has a somewhere timelike Killing vector field, then (M, g)
has an everywhere timelike Killing vector field.

We will also prove (Theorem 2.1, part (2)) that, when (M, g) has a Killing vector
field which is timelike somewhere, then the two situations (a) and (b) below are mutually
exclusive:

(a) the connected component of the identity Iso0(M, g) of Iso(M, g) is non-compact;
(b) Iso(M, g) has infinitely many connected components, as in the case of the flat

Lorentzian torus.

The point here is that, in a compact Lorentzian manifold, the flow of a Killing vector field
which is timelike somewhere generates a non-trivial precompact group in the (connected
component of the identity of the) isometry group. Thus, by continuity, the Lie algebra of
the isometry group of such manifolds must contain a non-empty open cone of vectors
generating precompact one-parameter subgroups in the isometry group. The proof of
Theorem 2.1 is obtained by ruling out the existence of a non-compact abelian or nilpotent
factor in the connected component of the isometry group. The argument is based on an
algebraic precompactness criterion for one-parameter subgroups of Lie groups proved in
Proposition 3.2.

Moreover, using Theorem 2 and previous classification results by the second author, we
prove the following partial extension of D’Ambra’s result to the C∞-realm.

THEOREM 4. The isometry group of a simply connected compact Lorentzian manifold that
admits a Killing vector field which is somewhere timelike is compact.
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2. A guide: steps of proofs
Let us discuss the sequence of steps of our proofs.

2.1. Notation. (M, g) will denote a compact Lorentz manifold, Iso(M, g) its isometry
group and Iso0(M, g) its identity component (the connected component of the identity).
Its Lie algebra is denoted Iso(M, g).

For G a subgroup of Iso(M, g), we denote by G0 its identity component and g its Lie
algebra. In fact, G will generally designate the full group Iso(M, g) itself.

Let Aut(G0) be the group of automorphisms of G0, and Inn(G) its subgroup of
inner automorphisms. Since G0 is normal in G, G acts by conjugation on G0, and we
have a homomorphism G→ Aut(G0), and composing with the quotient map Aut(G0)→

Aut(G0)/Inn(G0), we have a homomorphism:

ρ : G −→ Out(G0), (2.1)

where Out(G0)= Aut(G0)/Inn(G0).

2.2. The identity component of weakly stationary manifolds. The following theorem
was the initial motivation of the present work. It completes the previously quoted works
on actions of non-compact connected groups [1, 2, 16], with the hypothesis that the orbits
are somewhere timelike.

THEOREM 2.1. Let (M, g) be a compact Lorentz manifold that admits a Killing vector
field which is timelike at some point. Then:
(1) the identity component of its isometry group is compact, unless it contains a group

locally isomorphic to SL(2, R) or to an oscillator group;
(2) if Iso(M, g) has infinitely many connected components, then Iso0(M, g) is compact;
(3) in this last case, the homomorphism Iso(M, g)→ Out(Iso0(M, g)) is quasi-injective

in the sense that its kernel is compact.

The proof will be given in §§4–6. As for §3, it is to an extent independent and devoted
to the proof of Theorem 1 from Theorem 2.

2.3. A fixed point theorem in linear dynamics. The are many results in dynamical
systems stating that, for some classes of systems, recurrence occurs only in a ‘trivial’
manner. We have for instance Rosenlicht’s theorem about algebraic actions of algebraic
groups, Furstenberg’s lemma on projective dynamics, and also Bendixson–Poincaré’s
theorem on the dynamics of general flows on the 2-sphere [13, 14, 18]. In §7, we will
prove the following variant.

THEOREM 2.2. Let 0 be a group and ρ : 0→ GL(E) a representation in a vector
space E . Let F = Sym(E∗) be the space of quadratic forms of E , and ρF the associated
representation.

Assume that ρ(0) is non-precompact, and furthermore that some Lorentz form (on E )
has a bounded orbit under the ρF -action on F. Then, (some finite index subgroup of) ρ(0)
preserves some Lorentz form on E .

This will be applied essentially as follows. With the notation above, let E = g be the Lie
algebra of G. We have a Gauss map G : M 3 x 7→ qx ∈ Sym(E), where qx is the quadratic

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 06 Jun 2013 IP address: 62.28.190.6

6 P. Piccione and A. Zeghib

form on g defined as the pullback of the induced metric on the orbit Gx by the projection
g→ Tx (Gx) (see §3.1). This map is equivariant with respect to the given action of G on
M and the action associated with the G-adjoint action on g. The theorem applies once
one assumes there exists x0 such that qx0 is of Lorentz type (of course, assuming M to be
compact).

When it applies, the theorem says that G embeds into SO(1, n − 1), n = dim M .
Results of this kind are sometimes called embedding theorems: if G acts on M by
preserving an H -structure, then G has an injective homomorphism in H . However, such
results are generally proved for actions of semi-simple Lie groups; see [4] as a recent
account on the subject.

2.4. A reduction. In §8, under the assumptions of Theorem 2, and applying the previous
steps, we show that we can assume that the identity component Iso0(M, g) is a torus Tk ,
and that ρ is an almost faithful representation 0 = G/G0→ O(k, Z)= GL(k, Z) ∩ O(q),
where q is a rational Lorentz form on Rk .

2.5. Lorentz dynamics: weakly stationary implies stationary. From this last reduction
we see how the algebraic structure of the isometry group G (essentially 0 = G/G0) is now
related to the isometry group of a Lorentz flat torus (Tk, q). In §9, we pursue the analogy
at a dynamical level; we pick f ∈ G, with ρ( f ) ∈ GL(k, Z) of infinite order and compare
the two Lorentz dynamical systems (M, f ) and (Tk, ρ( f )). Our principal ingredient
will be the fact that non-equicontinuous Lorentz isometries possess approximately stable
foliations, see [17]. They are codimension-one lightlike geodesic foliations; for instance,
in the case where ρ( f ) is partially hyperbolic, the approximately stable foliation of
(Tk, ρ( f )) coincides with its weakly stable one (that is, the sum of the stable and the
central ones). Comparison of the dynamics of f and of ρ( f ) allows us to prove the
following theorem.

THEOREM 2.3. Let f ∈ Iso(M, g) be such that ρ( f ) is an element of infinite order (in
Out(Iso0(M, g)). Then, there is a minimal timelike ρ( f )-invariant torus Td

⊂ Iso0(M, g)
of dimension d = 3 or d ≥ 2 according to whether ρ( f ) is parabolic or hyperbolic,
respectively. The action of Td on M is (everywhere) free and timelike.

The proof of Theorem 2.3 is presented in §9.
The other ingredient, besides the theory of approximately stable foliation, is the fact

that non-spacelike Killing fields are singularity free [5]. This will be used in the deduction
of Theorem 1 from Theorem 2 in §3.

2.6. Geometric structure: dynamics forces integrability. The Td -action determines a
regular timelike foliation G. Hence, on one hand we get a quotient space N which is a
Riemannian orbifold together with a pseudo-Riemannian (Seifert) Td -principal fibration
M→ N . On the other hand, we have a spacelike orthogonal bundle N . The obstruction
to its integrability is encoded in a Levi form (X, Y ) 7→ l(X, Y ) ∈N⊥ = G, where X and
Y are vector fields tangent to N , and l(X, Y ) is the orthogonal projection of the bracket
[X, Y ]. All structures are preserved by the isometry f (specified in the previous step).
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One may then expect that the conflict between the Riemannian dynamics of f on N
and its Lorentzian dynamics on G leads to the vanishing of l. This is what really happens,
in fact, when ρ( f ) is hyperbolic. In the same vein, one proves that the leaves of N are
compact. In other words, if N is seen as a connection on the Td bundle M→ N , then this
connection is flat and has a finite holonomy: Theorem 11.4 in §11.

In the case where ρ( f ) is parabolic, it is an augmentation L of N which is integrable,
and enjoys the same properties as N in the previous case: Theorem 12.3 in §12. It is at
this point that amalgamated structures show up.

3. Precompactness. Proof of Theorem 1 from Theorem 2
3.1. A Gauss map. Let (M, g) be a compact Lorentzian manifold, let Iso(M, g) denote
its isometry group, which is a Lie group (see for instance [10]), and denote by Iso0(M, g)
the connected component of the identity of Iso(M, g). The Lie algebra of Iso(M, g) will
be denoted by Iso(M, g); let us recall that there is a Lie algebra anti-isomorphism from
Iso(M, g) to the space of Killing vector fields Kill(M, g) obtained by mapping a vector
v ∈ Iso(M, g) to the Killing field K v which is the infinitesimal generator of the one-
parameter group of isometries R 3 t 7→ exp(tv) ∈ Iso(M, g). If 8 is a diffeomorphism
of M and K is a vector field on M , we will denote by8∗(K ) the push-forward of K by8,
which is the vector field given by 8∗(K )(p)= d8(8−1(p))K (8−1(p)) for all p ∈ M . If
8 is an isometry and K is Killing, then 8∗(K ) is Killing.

If 8 ∈ Iso(M, g), then

8∗(K
v)= K Ad8(v) for all v ∈ Iso(M, g). (3.1)

It will be useful to introduce the following map. Let Sym(g) denote the vector space of
symmetric bilinear forms on g. The Gauss map G : M→ Sym(g) is the map defined by

G p(v,w)= gp(K
v(p), K w(p)), (3.2)

for p ∈ M and v,w ∈ g. The following identity is immediate:

G8(p) = G p(Ad8·, Ad8·), (3.3)

for all 8 ∈ Iso(M, g). In this paper we will be interested in the case where (M, g) admits
a Killing vector field which is timelike somewhere. In this situation, the image of the
Gauss map contains a Lorentzian (non-degenerate) symmetric bilinear form on g (in fact,
a non-empty open subset consisting of Lorentzian forms; this will be used in Lemma 8.8).

We now have the necessary ingredients to show how the proof of Theorem 1 is obtained
from Theorem 2.

Proof of Theorem 1 from Theorem 2. Let us assume that the action of Iso(M, g) on
Iso(M, g) is not of post-Riemannian type; we will show by contradiction that Iso0(M, g)
has a somewhere timelike orbit. Let κ be the quadratic form on Iso(M, g) defined by

κ(v,w)=

∫
M

G p(v,w) dM(p),
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the integral being taken relative to the volume element of the Lorentzian metric g.
By (3.3), κ is invariant by the conjugacy action. If Iso0(M, g) has no timelike orbit,
then κ is positive semi-definite. The proof will be concluded if we show that the kernel
K = Ker(κ) has dimension less than or equal to one. Assume that K is not trivial,
i.e. that κ is positive semi-definite. If v ∈K, then for all w ∈ Iso(M, g) and all p ∈ M ,
gp(K v

p, K w
p )= 0; in particular, gp(K v

p, K v
p)= 0, i.e. K v is an everywhere isotropic†

Killing vector field on M . Non-trivial isotropic Killing vector fields are never vanishing,
see for instance [5, Lemma 3.2]; this implies that the map K 3 v 7→ K v

p ∈ Tp M is an
injective vector space homomorphism for all p ∈ M . On the other hand, its image has
dimension one, because an isotropic subspace of a Lorentz form has dimension at most
one, hence K has dimension one.

3.2. Precompactness of one-parameter subgroups. It will be useful to recall that there is
a natural smooth left action of Iso(M, g) on the principal bundle F(M) of all linear frames
of T M , defined as follows. If b = (v1, . . . , vn) is a linear basis of Tp M , then for 8 ∈
Iso(M, g) set8(b)= (d8p(v1), . . . , d8p(vn)), which is a basis of T8(p)M . The action of
Iso(M, g) on F(M) is defined by Iso(M, g)× F(M) 3 (8, b) 7−→8(b) ∈ F(M). Given
any frame b ∈ F(M), the map Iso(M, g) 38 7→8(b) ∈ F(M) is a proper embedding of
Iso(M, g) onto a closed submanifold of F(M) (see [10, Theorems 1.2, 1.3]), and thus the
topology and the differentiable structure of Iso(M, g) can be studied by looking at one of
its orbits in the frame bundle. In particular, the following will be used at several points.

Precompactness criterion. If H ⊂ Iso(M, g) is a subgroup that has one orbit in F(M)
which is contained in a compact subset of F(M), then H is precompact. For instance, if
H preserves some Riemannian metric on M and it leaves a non-empty compact subset of
M invariant, then H is precompact.

LEMMA 3.1. Let (M, g) be a compact Lorentzian manifold and K be a Killing vector
field on M. If K is timelike at some point, then it generates a precompact one-parameter
subgroup of isometries in Iso0(M, g).

Proof. Let p ∈ M be such that g(K (p), K (p)) < 0. Consider the compact subsets of T M
given by

V = {K (q) : q ∈ M such that g(K (q), K (q))= g(K (p), K (p))},

and

V⊥ = {v ∈ K (q)⊥ : q ∈ M such that g(K (q), K (q))= g(K (p), K (p)), g(v, v)= 1}.

Consider an orthogonal basis b = (v1, . . . , vn) of Tp M with v1 = K (p) and g(vi , v j )=

δi j for i, j ∈ {2, . . . , n}. The one-parameter subgroup generated by K in Iso(M, g) can
be identified with the R-orbit of the basis b by the action of the flow of K on the frame
bundle F(M). Every vector of a basis of the orbit belongs to the compact subset V ∪ V⊥,
and this implies that the orbit of b is precompact in the frame bundle F(M). 2

† Here we use the following terminology: a vector v ∈ T M is isotropic if g(v, v)= 0, and it is lightlike if it is
isotropic and non-zero.
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Lemma 3.1 has been used in [8] to prove the existence of periodic timelike geodesics in
compact weakly stationary Lorentz manifolds.

3.3. An algebraic criterion for precompactness. Now observe that if a compact
manifold (M, g) admits a Killing vector field which is timelike somewhere, then, by
continuity, sufficiently close Killing fields are also timelike somewhere. Thus, if one wants
to study the (connected component of the) isometry group of a Lorentz manifold that has a
Killing vector field which is timelike at some point, it is natural to ask which (connected)
Lie groups have open sets of precompact one-parameter subgroups. The problem is better
cast in terms of the Lie algebra; we will settle this question in our next proposition.

PROPOSITION 3.2. Let G be a connected Lie group, K ⊂ G be a maximal compact
subgroup, and k⊂ g be their Lie algebras. Let m be an AdK -invariant complement of k in g.
Then, g has a non-empty open cone of vectors that generate precompact one-parameter
subgroups of G if and only if there exists v ∈ k such that the restriction adv :m→m is an
isomorphism.

Proof. Let C⊂ g be the cone of vectors that generate precompact one-parameter subgroups
of G; we want to know when C has non-empty interior. Clearly C contains k, and every
element of C is contained in the Lie algebra k′ of some maximal compact subgroup K ′ of G.
Since all maximal compact subgroups of G are conjugate (see, for instance, [9]), it follows
that C= AdG(k), i.e. C is the image of the map F : G × k→ g given by F(g, v)= Adg(v).
We claim that C has non-empty interior if and only if the differential dF has maximal rank
at some point (g, v) ∈ G × k. The condition is clearly sufficient, and by Sard’s theorem is
also necessary; namely, if dF never has maximal rank then all the values of F are critical,
and they must form a set with empty interior. The second claim is that it suffices to look
at the rank of dF at the points (e, v), where e is the identity of G. This follows easily
observing that the function is G-equivariant in the first variable. Now, the differential of F
at (e, v) is easily computed as

dF(e,v)(g, k)= [g, v] + k= [m, v] + k.

Thus, dF(e,v) is surjective if and only if there exists v ∈ k such that [m, v] =m, which
concludes the proof. 2

4. Case when the identity connected component is non-compact. Proof of part (1) of
Theorem 2.1

The geometric structure of compact Lorentz manifolds whose isometry group contains a
group which is locally isomorphic to an oscillator group or to SL(2, R) is well known. Let
us recall (see [16, §1.6]) that a compact Lorentz manifold that admits a faithful isometric
action of a group locally isomorphic to SL(2, R) has universal cover which is given by a
warped product of the universal cover of SL(2, R), endowed with the bi-invariant Lorentz
metric given by its Killing form, and a Riemannian manifold. Every such manifold admits
everywhere a timelike Killing vector field, corresponding to the timelike vectors of the Lie
algebra sl(2, R).
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Oscillator groups are characterized as the only simply-connected solvable and non-
commutative Lie groups that admit a bi-invariant Lorentz metric and possess lattices,
i.e. co-compact discrete subgroups (see [11]). More precisely, an oscillator group G is
(the universal cover of) a semi-direct product S1 n Heis, where Heis is a Heisenberg
group (of some dimension 2d + 1). There are positivity conditions on the eigenvalues
of the automorphic S1 action on the Lie algebra heis (ensuring the existence of a bi-
invariant Lorentz metric), and arithmetic conditions on them (ensuring the existence of a
lattice).

It is interesting and useful to consider oscillator groups as objects completely similar to
SL(2, R), from a Lorentz geometry viewpoint. In particular, regarding our arguments
in the present paper, both cases are perfectly parallel. however, let us notice some
differences (but with no relevance to our investigation here). First, of course, the
bi-invariant Lorentz metrics on an oscillator group do not correspond to its Killing
form, since this latter is degenerate (because the group is solvable). Another fact is the
non-uniqueness of these bi-invariant metrics, but, surprisingly, their uniqueness up to
automorphisms. In the SL(2, R)-case, we have uniqueness up to a multiplicative constant.
Also, we have essential uniqueness of lattices in an oscillator group, versus their abundance
in SL(2, R).

Let us describe briefly the construction of Lorentz manifolds endowed with a faithful
isometric G-action, where G is either SL(2, R) or an oscillator group. The construction
starts by considering right quotients G/0, where 0 is a lattice of G. The G-left action
is isometric exactly because the metric is bi-invariant. A slight generalization is obtained
by considering a Riemannian manifold (Ñ , g̃) and quotients of the direct metric product
X = Ñ × G by a discrete subgroup 0 of Iso(Ñ , g̃)× G. Observe here that since the
isometry group of the Lorentz manifold X is Iso(Ñ , g̃)× (G × G), it is possible to take
a quotient by a subgroup 0 contained in this full group. The point is that we assumed
that G acts (on the left) on the quotient, and hence, G normalizes 0; but since G is
connected, it centralizes 0. Therefore, only the right G factor in the full group remains
(since the centralizer of the left action is exactly the right factor). Observe, however, that
0 does not necessarily split. Indeed, there are examples where 0 is discrete co-compact in
Iso(Ñ , g̃)× G, but its projection on each factor is dense!

Next, warped products yield a more general construction. Rather than a direct product
metric g̃⊕ κ , one endows Ñ × G with a metric of the form g̃⊕ wκ , where w is a positive
function on Ñ , and κ is the bi-invariant Lorentz metric on G. Here, there is one difference
between the case of SL(2, R) and the oscillator case. For SL(2, R) this is the more general
construction, but in the oscillator case, some ‘mixing’ between G and Ñ and a mixing of
their metrics is also possible, see [16, §1.2].

Let us study now the situation when the isometry group does not contain any group
which is locally isomorphic to SL(2, R) or to an oscillatory group.

THEOREM 4.1. Let (M, g) be a compact Lorentz manifold that admits a Killing vector
field which is timelike at some point. Then, the identity component of its isometry group
is compact, unless it contains a group locally isomorphic to SL(2, R) or to an oscillator
group.
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Proof. By the classification result in [1, 2, 16], if Iso0(M, g) does not contain a group
locally isomorphic to SL(2, R) or to an oscillator group, then Iso(M, g) can be written as
a Lie algebra direct sum h+ a+ c, where h is a Heisenberg algebra, a is abelian, and c

is semi-simple and compact. Our aim is to show that the Heisenberg summand h in fact
does not occur in the decomposition, and that the abelian group A corresponding to the
summand a is compact. By the assumption that (M, g) has a Killing vector field which
is timelike at some point, Iso(M, g) must contain a non-empty open cone of vectors
that generate a precompact one-parameter subgroup of Iso0(M, g) (Lemma 3.1). The
first observation is that, since c is compact, if h+ a+ c has an open cone of vectors
that generate precompact one-parameter subgroups, than so does the subalgebra h+ a.
Moreover, by the same compactness argument, we can also assume that the abelian Lie
subgroup A is simply connected. The proof of our result will be concluded once we show
that any Lie group G with Lie algebra g= h+ a, h and a as above, does not have an open
set of precompact one-parameter subgroups. To this aim, write h+ a=m+ k, with k the
Lie algebra of a maximal compact subgroup K of G and m a k-invariant complement of k

in g. If either h or a is not zero, then also m is non-zero. Since h+ a is nilpotent, for no
x ∈ k is the map adx :m→m injective, and by Proposition 3.2, G does not have an open
set of precompact one-parameter subgroups. 2

5. Case when the identity component is compact. Proof of part (3) of Theorem 2.1
Let us start with a general result on group actions having orbits of the same dimension.

LEMMA 5.1. Let G be a Lie group acting on a manifold R, and let G0 be a compact
normal subgroup of G all of whose orbits in R have the same dimension. Then:
(1) the distribution 1 tangent to the G0-orbits is smooth, and it is preserved by G;
(2) there exists a Riemannian metric h0 on 1 which is preserved by G0 and by the

centralizer Centr(G0) of G0 in G.

Proof. Introduce the following notation: for x ∈ R, let βx : G→ R be the map βx (g)=
g · x , and let Lx : g→ Tx M be its differential at the identity. Here g is the Lie algebra of
G. The map M × g 3 (x, v) 7→ Lx (v) ∈ T M is a smooth vector bundle morphism from the
trivial bundle M × g to T M . The distribution 1 is the image of the sub-bundle M × g0,
where g0 ⊂ g is the Lie algebra of G0. Since the orbits of G0 have the same dimension,
then the image of M × g0 is a smooth sub-bundle of T M (recall that the image of a vector
bundle morphism is a smooth sub-bundle if it has constant rank). The action of G preserves
1 because G0 is normal, which concludes the proof of the first assertion.

The construction of h0 goes as follows. Choose a positive definite inner product B on g0

which is AdG0 -invariant; the existence of such B follows from the compactness of G0. For
all x ∈ R, the restriction to g0 of Lx gives a surjection Lx |g0 : g0→1x ; denote by Vx the
B-orthogonal complement of the kernel of this map, given by Ker(Lx |g0)= Ker(Lx ) ∩ g0.
The value of h0 on 1x is defined to be the push-forward via the map Lx of the restriction
of B to Vx . In order to see that such a metric is invariant by the action of G0 and of
its centralizer, for g ∈ G denote by Ig : G0→ G0 the conjugation by g (recall that G0 is
normal) and by γg : M→ M the diffeomorphism x 7→ g · x ; for fixed x ∈ M we have a
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commutative diagram.

G0
Ig //

βx

��

G0

βgx

��
M γg

// M

Differentiating at the identity the diagram above we get the following diagram.

g0
Adg //

Lx

��

g0

Lg·x

��
1x dγg(x)

// 1g·x

Now assume that g is such that Adg preserves B; this holds by assumption when g ∈ G0,
and clearly also for g in the centralizer of G0 (in which case Adg is the identity!). For such
a g, since Adg(Ker(Lx ) ∩ g0)= Ker(Lg·x ∩ g0), then also Adg(Vx )= Vg·x , and thus we
have a commutative diagram

Vx
Adg //

Lx

��

Vg·x

Lg·x

��
1x dγg(x)

// 1g·x

from which it follows that dγg(x) preserves the metric h0, proving the last statement in the
thesis. 2

As an application of Lemma 5.1, we have the following proposition which implies
part (3) of Theorem 2.1.

PROPOSITION 5.2. Let (M, g) be a compact Lorentz manifold that admits a Killing vector
field K which is timelike somewhere, G = Iso(M, g), G0 = Iso0(M, g) and ρ : G→
Out(G0). If G0 is compact, then G1 = Ker(ρ)= G0 · Centr(G0) is also compact.

Proof. Let R be the (non-empty) open subset of M consisting of all points x whose G0-
orbit O(x) has maximal dimension (among all G0-orbits), and such that O(x) is timelike,
i.e. the restriction of g to O(x) is Lorentzian. Recall that the set of points whose G0-
orbit has maximal dimension is open and dense, and R is the intersection of this dense
open subset with the open subset of M where K is timelike. We claim that there exists a
Riemannian metric h on R which is preserved by G1. Such a metric h is constructed as
follows: on the distribution 1 tangent to the G0-orbits it is given by the metric h0 as in
Lemma 5.1, on the g-orthogonal distribution 1′ it is the (positive definite) restriction of g,
furthermore 1 and 1′ are declared to be h-orthogonal. Note that the distributions 1 and
1′ are preserved by G, the metric g on1′ is preserved by all elements of G, and the metric
h0 on 1 is preserved by all elements of G1, which proves our claim.

Observe that G1 is closed in G. In order to conclude the proof, we will use the
precompactness criterion of §3.2, by showing that G1 leaves some compact subset of R
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invariant. More precisely, we will show the existence of a continuous G1-invariant function
v : M→ R, whose set T of maximum points is compact and contained in R. Clearly, such
a set T is compact and G1-invariant. The function v, which is a sort of parametric orbit
volume function, is constructed in Lemma 5.3 below. 2

5.1. A generalized volume function for orbits of isometric actions. The generalized
orbit volume function mentioned in the proof of Proposition 5.2 is based on the notion of
parametric volume for submanifolds of pseudo-Riemannian manifolds, defined as follows.
Let K be a compact Lie group acting by isometries on a pseudo-Riemannian manifold
(P, gP ); for x ∈ P , let K x denote the orbit of x under the action of K , and consider the
submersion px : K → K x given by px (k)= kx . Note that, by compactness, the K -action
on P is proper, hence all the orbits are embedded compact submanifolds of P . Assume
that K x is a non-degenerate submanifold of P , i.e. that the restriction of gP to K x is non-
degenerate somewhere (hence, everywhere). Assume also that K is endowed, say, with a
bi-invariant Riemannian metric gK having unit volume. For k ∈ K , let αk be the volume
form on Ker(dpx (k)) induced by the restriction of gK to p−1

x (x). Moreover, denote by βk

the volume form on the gK -orthogonal complement of Ker(dpx (k)) obtained as pull-back
by dpx (k) of the volume form of K x , induced by the restriction of gP . Then, the wedge
product αk ∧ βk defines a volume form on K . The parametric volume of the orbit K x ,
denoted by volx , is defined to be the integral

∫
K αk ∧ βk . If Kx denotes the stabilizer of x ,

using Fubini’s theorem it is easy to show that volx equals the product vol(K x) · vol(Kx ).
Here, vol(Kx ) is computed relative to the restriction of the bi-invariant metric of K , while
vol(K x) is computed using the (non-degenerate) restriction of gP to the orbit K x .

Let us state and prove the following result, which has some interest in its own right.

LEMMA 5.3. Let K be a compact Lie group acting isometrically on a pseudo-Riemannian
manifold (P, gP ), and let d > 0 be the dimension of the principal orbits of K in P. Define
a function v : M→ R by setting v(x)= volx if dim(K x)= d and K x is non-degenerate,
otherwise set v(x)= 0. Then, v is a continuous function.

Proof. Let us call regular an orbit of dimension d (possibly exceptional, and also possibly
degenerate). The set of points with regular orbit is open and dense. Continuity of v at such
points is obtained from the following argument. The volume form αk ∧ βk is left-invariant
in K , and thus its norm at every point, computed using the (unit volume) bi-invariant metric
on K , is equal to its integral. Thus, the continuity of volx follows from that of Ker(px (k)),
for k ∈ K fixed and x varying in the set of points with regular orbits. For the continuity at a
non-regular orbit, assume that xn is a sequence of regular points tending to a singular point
x∞. Denote by kxn the Lie algebra of Kxn ; then, kxn tends to a strict subspace of kx∞ . Thus,
we can find a sequence un of unit vectors in k⊥xn

that converges to some unit vector in k∞.
Therefore, the image of un by dpxn is small, hence the pull-back of the volume on k⊥xn

is
small. In particular, v(xn) tends to 0, and v is continuous. 2

Lemma 5.3 is applied in Proposition 5.2 to K = G0 and (P, gP )= (M, g). Note that the
corresponding continuous function v : M→ R is actually G-invariant, since G0 is normal
in G.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 06 Jun 2013 IP address: 62.28.190.6

14 P. Piccione and A. Zeghib

6. When the isometry group has infinitely many connected components. Proof of part (2)
of Theorem 2.1

Let us now study the situation when the isometry group of a Lorentzian manifold with a
timelike Killing vector field has infinitely many connected components.

To begin, let us formulate the following generalization of Lemma 5.1 (and
Proposition 5.2), which can proved in the same manner.

LEMMA 6.1. Let G0 be a connected normal subgroup of Iso(M, g) contained in
Iso0(M, g) such that all the G0-orbits are timelike and have the same dimension and let
r : Iso(M, g)→ Aut(g0) be the action by conjugacy on the Lie algebra of G0. Let L be a
subgroup of Iso(M, g) such that r(L) is precompact.

Then, L preserves a Riemannian metric on M. In particular, if L is closed in Iso(M, g),
then L is compact.

Proof. Totally analogous to the proof of Lemma 5.1. One only has to start with an
inner product B which is r(L)-invariant. The precompactness hypothesis ensures its
existence. 2

COROLLARY 6.2. Let G0 be as above, and assume there exists a compact subgroup S of
Aut(g0) such that r(Iso(M, g)) is contained in the subgroup of Aut(g0) generated by S and
Inn(G0) (inner automorphisms). Then, Iso(M, g)/G0 is compact. In particular, Iso(M, g)
has a finite number of connected components (since G0 is connected).

Proof. Let L = ρ−1(S). It is a closed subgroup of G. It projects surjectively on 0 =
Iso(M, g)/G0. Indeed, let f ∈ Iso(M, g), then r( f ) belongs to the group generated by
S and Inn(G0), and hence has the form r( f )= sr( f ′), where s ∈ S and f ′ ∈ G0, and
therefore f f ′−1

∈ L . By Lemma 6.1 above, L is compact, and so is also its factor
Iso(M, g)/G0. 2

Proof of part (2) of Theorem 2.1. Recall that (M, g) is assumed to have a non-compact
isometry group with somewhere timelike orbit. By part (1) of Theorem 2.1, Iso0(M, g)
contains a subgroup G0 which is locally isomorphic to SL(2, R) or to an oscillator group.
In fact G0 is normal in Iso(M, g), see [16] for a proof of this fact†.

Our goal now is to apply Corollary 6.2 by showing that r(Iso(M, g)) is contained in a
compact extension of Inn(g0).

In the case where G0 is locally isomorphic to SL(2, R), up to a finite index, all
automorphisms are inner, and the claim is obvious.

In the other case where G0 is an oscillator group, Aut(g0) is ‘large’ with respect
to Inn(g0). However, the image of r : Iso(M, g)→ Aut(g0) lies in fact inside H =
Aut(g0) ∩ SO(q0), where q0 is some bi-invariant Lorentz form on g0 (so H is the group of
q0-orthogonal automorphisms of g0). Indeed, as we have seen in §3.1, we know that the
action by conjugacy of Iso(M, g) on its Lie algebra preserves some Lorentz form, and by
[16], the induced form q0 on the Lie sub-algebra g0 is also of Lorentz type.

† When Iso0(M, g) contains a subgroup G0 which is locally isomorphic to SL(2, R) or to an oscillator group, the
geometric structure of (M, g) is in fact well understood (see [16, Theorems 1.13 and 1.14]). This could be used
to prove our theorem; we will rather present in what follows an ‘algebraic proof’ based on Corollary 6.2 above.
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The following lemma allows us to apply Corollary 6.2, and hence it completes the proof
of part (2) of Theorem 2.1. 2

LEMMA 6.3. For an oscillator group G0, Inn(G0) is co-compact in the orthogonal
automorphism group H; more precisely, H is a semi-direct product of the form H =
S n N, where N ⊂ Inn(G0) and S is a compact group.

Proof. Any automorphism preserves the center c of the Lie algebra g0 of G0. This center is
lightlike for (any bi-invariant) q0. So Aut(g0) ∩ SO(q0) is contained in the parabolic group
P corresponding to c (i.e. the stablizer of c in the orthogonal group of q0). Such a group P
is amenable, and it has a semi-direct product structure P = (D × O(n − 1))n N , where
D is diagonal and has dimension one, and N is the unipotent radical of P .

On one hand, by an easy look at oscillator groups, one first observes that the action
by conjugacy of its Heisenberg subgroup gives exactly N as a subgroup of Inn(g0). In
particular, N is contained in the orthogonal automorphism group H .

Let us prove that, on the other hand, H is contained in O(n − 1)n N , that is, any
element h ∈ H has a trivial D-part, i.e. h cannot be hyperbolic. Indeed, a generator Z of
the center would be a non-trivial λ-eigenvector for h. There is a unique λ−1-eigenvector
T . The orthogonal Z⊥ is the Heisenberg sub-algebra of g0, and T lies outside of it.
Let X ∈ Z⊥, then the bracket [T, X ] belongs to Z⊥, since Z⊥ is an ideal†. Apply h
to [T, X ]: hn

[T, X ] = [hnT, hn X ] = λ−n
[T, hn X ]. If we see all this mod RZ , that is,

we consider their projections on Z⊥/RZ , then h acts as a Euclidean isometry, i.e. it
is conjugate to an element of O(n − 1). Hence, for some sequence ni →∞, hni → 1,
but hni [T, X ] = λ−ni [T, hni X ] which equals approximately λ−n

[T, X ]. This contradicts
the fact hni → 1, unless [T, X ] = 0 in Z⊥/RZ , that is, [T, X ] ∈ RZ . However, for the
oscillator group, any T outside the Heisenberg ideal is such that adT is skew-symmetric
with no kernel on Z⊥/RZ .

We conclude that H is contained in O(n − 1)n N , and since it contains N , it has the
form S n N , where S is the closed subgroup of O(n − 1) consisting of elements that act
by isomorphisms on the oscillator algebra, i.e. that preserve Lie brackets. 2

7. Linear dynamics. Proof of Theorem 2.2
Gauss maps (and variants) have the advantage to transform the dynamics on M into linear
dynamics, i.e. an action of the group in question on a linear space, or on an associated
projective space, via a linear representation. We will prove in the following a stability
result: if a linear group ‘almost-preserves’ some Lorentz form, then it (fully) preserves
another one. We start with the individual case, i.e. with actions of the infinite cyclic group
Z, and then we will consider general groups.

7.1. Individual dynamics. Let E be a vector space, and A ∈ GL(E). It has a Jordan
decomposition A = E HU , where U is unipotent (i.e. U − 1 is nilpotent), H hyperbolic
(i.e. diagonalizable over R with positive eigenvalues), and E is elliptic (i.e. diagonalizable
over C, and all its eigenvalues have norm equal to 1).

† Z⊥ is the Heisenberg algebra, which is an ideal of the oscillator algebra.
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If F is a space obtained from E by functorial constructions, e.g. F = Sym(E∗) the space
of quadratic forms on E , or F = Grd(E) the Grassmannian of d-dimensional subspaces of
E , the associated A-action on F will be denoted by AF . Naturally, when F is a vector
space, we have AF

= E F H FU F .
A point p ∈ E is A-recurrent if there is ni ∈ N, ni →∞, such that Ani (p)→ p as

i→∞. A point p is A-escaping if for any compact subset K ⊂ E there is N such that
An(p) /∈ K , for n > N . So, p is non-escaping if there is ni →∞, such that Ani p stay in
some compact set K ⊂ E .

Let us prove the following lemma.

LEMMA 7.1. Let p ∈ F be a point recurrent under the AF-action. Then p is fixed by H F

and U F . If F is a vector space, p is AF-non-escaping if and only if p is fixed by H F

and U F .

Proof. Any Grassmannian space is a subspace of a suitable projective space†. For the
first statement of the lemma, we will consider the case where F is the projective space
associated with E . Consider the decomposition E =

⊕
Ei into eigenspaces of H , say

H |Ei = λi IdEi , and choose λ1 > λ2 · · · . This decomposition is invariant under H , U
and E . Since U is unipotent, there is an endomorphism u nilpotent such that U = exp u.
For t integer, and xi ∈ Ei , we have At (xi )= λi

t (E t (xi )+ tu E t (xi )+ (t2/2)u2 E t (xi )+

· · · (tk/k!)uk E t (xi )), where k = dim Ei .
Let x =6xi , with x1 6= 0. Clearly, the direction of At x converges to a direction in E1.

In particular if x is recurrent, then x ∈ E1. The same argument yields, in general, that if the
direction of x is recurrent, then it belongs to some Ei . We can then assume x = x1. Since
E is elliptic, the norms of the u j (E t (x1)) are bounded, and there exists tn→∞, such that
E tn → 1. Assume uk(x1) 6= 0. Then, the direction of Atn x converges to uk(x1). If x1 is
recurrent, then x1 is an eigenvector of uk , and hence uk(x1)= 0, since u is nilpotent. The
same argument yields uk−1(x1)= · · · = u(x1)= 0. In conclusion, we have then proved
that H(x)= λx , and U (x)= x .

Let us now prove the second statement. Consider the case that F is a vector space. If x
is non-escaping, then At (x) is bounded, and so also is At (xi ) for any i , when t→±∞.
For xi 6= 0, this can happen only if λi =±1, and U (xi )= xi . Therefore U (x)= x and
H(x)=±x . Since H has only positive eigenvalues, H(x)= x . 2

7.2. Recalls on the classification of elements of SO(1, n). Let q be a Lorentz form on E .
(For many purposes here, we can assume q is the standard Lorentz form−x2

1 + x2
2 + · · · +

x2
k on Rk .)

A vector u ∈ E is non-spacelike if it is timelike (q(u, u) < 0) or lightlike (q(u, u)= 0
and u 6= 0). The space of non-spacelike vectors consists of two disjoint convex cones. A
time orientation of (E, q) means a choice of one of them, call it C+. For the sake of
simplicity, we will denote by SO(q) (instead of the more accurate but heavy SO+(q)) the
identity connected component of SO(q), which consists of orthogonal transformations that
preserve both space and time orientation.

† The Grassmannian space of d-planes of a vector space V is a subset of the projective space of ∧d V .
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Any element A ∈ SO(q) fixes a direction in C+. If A fixes a timelike direction (and
hence a timelike vector, since A preserves q), it will be called elliptic. In the other
cases, A may fix exactly one lightlike direction and will be called parabolic or exactly
two distinct lightlike directions, in which case A will be called hyperbolic. (The meaning
of this classification is that an element A which preserves three distinct lightlike directions
preserves in fact a timelike one.)

The classification of subgroups of SO(q) is much more complicated. An easy case is
when 0 is an elementary subgroup, which means that 0 preserves a direction in C+.

7.3. Normal forms. One can prove that A is hyperbolic if its spectrum consists of real
simple eigenvalues {λ, λ−1

}, λ > 1, and eigenvalues in S1; A is parabolic if it is not
diagonalizable over C. In other words, A is hyperbolic if it is conjugate in GL(k, R)
to a matrix of the form λ 0

0 λ−1 0

0 R

 , (7.1)

where λ ∈ R, λ > 1, and R ∈ SO(k − 2). Note that this matrix belongs to the orthogonal
group of the quadratic form x1x2 + x2

3 + · · · + x2
k .

Similarly, A is parabolic if it has the normal form
1 t −t2/2
0 1 t
0 0 1

0

0 R

 (7.2)

with t ∈ R and R ∈ SO(k − 3). Note that this matrix belongs to the orthogonal group of
the quadratic form x1x3 + x2

2 + x2
4 + · · · + x2

k .
A unipotent element of SO(q) is parabolic with a trivial rotational part R. Similarly, an

R-diagonal element of SO(q) is hyperbolic with a trivial R-part.

7.4. Intersection of orthogonal groups

LEMMA 7.2. Let A ∈ SO(q0) be non-elliptic (i.e. parabolic or hyperbolic). If A preserves
another Lorentz form q, then it keeps its nature as parabolic or hyperbolic as an element
of SO(q), with the same characteristics: lightlike eigendirections as well as with their
orthogonal hyperplanes. In particular, on these hyperplanes, any q is positive semi-
definite, with kernel the corresponding eigendirection.

Proof. Let us consider the parabolic case since the hyperbolic one is easier. Let A have the
normal form (7.1). For q0, its lightlike eigendirection is Re1, whose q0-orthogonal is the
hyperplane e⊥1 = {x ∈ Rk

: x3 6= 0}. Let us show that e1 can be characterized topologically
(i.e. in a form that does not involve q0). Indeed, the direction of e1 is the unique attractor
for the A-action, i.e. there is an open set of directions converging to Re1 under the A-
action. Indeed, for any x /∈ e⊥1 , the direction of An(x) tends to Re1. Therefore, there is no
other attracting direction since its basin would intersect e⊥1 . As for the hyperplane e⊥1 , it is
the unique attractor for the A-action on the dual space of Rk . 2
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7.5. Parabolic case

COROLLARY 7.3. Let A ∈ SO(q0) be parabolic. Any combination (with positive weights)
of Lorentz forms preserved by A, is a Lorentz form (of course preserved by A). The same
holds, more generally, for any average of such forms by means of any positive measure.

Proof. As previously, let A have the normal form (7.2). Let qi be A-invariant Lorentz
forms and q =6iλi qi with λi > 0. By Lemma 7.2, q is positive semi-definite on e⊥1 =
{x ∈ Rk, x3 6= 0} with kernel Re1. Let us prove that q is non-degenerate. If not, let u be a
null vector for q . If u /∈ e⊥1 , then also e1 is null for q , and hence the kernel of q is a 2-plane
P intersecting e⊥1 along Re1. However, there is no such A-invariant plane. Indeed such a
plane is timelike for q0, and A must be diagonal on it, which is not possible.

Suppose now that the kernel of q is Re1. Then, A preserves a non-degenerate form q ′

on Rk/Re1. On e⊥1 /Re1, q ′ is positive definite, and therefore, q ′ is either positive definite
or of Lorentz type. Now, a quick look at the expression of the reduction of A on Rk/Re1

shows that it can preserve neither a Euclidean nor a Lorentzian form (for instance, in the
latter case, such a reduction must be parabolic, which is far from being the case).

Finally, since q is positive definite on any supplementary space of Re1 in e⊥1 , it has
a signature (++), (+ · · · +) or (−+), (+ · · · +), that is, q is either positive definite or
Lorentzian. But A cannot preserve a positive definite form, and hence q is Lorentzian.

The same proof applies for any average q =
∫

Q dµ(Q), where µ is a positive finite
measure on the set of A-invariant Lorentz forms. 2

7.6. Hyperbolic case

COROLLARY 7.4. Let A ∈ SO(q0) be hyperbolic. Let P be the 2-plane generated by the
two lightlike eigendirections of A, and P⊥ its orthogonal with respect to q0. Then, any
Lorentz A-invariant form has an orthogonal decomposition q = λq P

+ q P⊥ , where q P⊥

is a positive definite form on P⊥ and q P is any Lorentz form on P with isotropic directions
the lightlike eigendirections of A. In particular, all the q P forms are proportional. It
follows, in particular, that if an average q of A-invariant Lorentz forms is not a Lorentz
form, then it is degenerate with kernel P.

Proof. Let A have the hyperbolic form above. Its lightlike eigendirections are Re1 and Re2,
and their q0-orthogonals are e⊥1 = {x2 6= 0} and e⊥2 = {x1 6= 0}. Now, P is Span(e1, e2),
and P⊥ = e⊥1 ∩ e⊥2 .

By Lemma 7.2, these directions and their orthogonal hyperplanes are the same for
any A-preserved Lorentz form q . In particular, q is positive definite on P⊥ and q|P is
proportional to q0|P (two Lorentz forms on a 2-vector space are proportional if and only if
they have the same isotropic directions). 2

Let us here observe that P⊥ has an easy topological interpretation. It is the stable space
for A, that is, the subspace of vectors u ∈ Rk with a bounded A-orbit {Anu : n ∈ Z}.

7.7. Group dynamics. Proof of Theorem 2.2. We consider now a group 0 acting on E
via a representation ρ : 0→ GL(E). We are going to prove the following proposition
which implies Theorem 2.2.
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PROPOSITION 7.5. Let ρ : 0→ GL(E) be such that ρ(0) is non-precompact. Let F =
Sym(E), and assume that some Lorentz form has a bounded orbit under the associated
action ρF . Then, up to a finite index, ρ(0) preserves some Lorentz form.

The proof of Proposition 7.5 will be given in the remainder of this section.

LEMMA 7.6. Let 0 be a subgroup of GL(F), and B ⊂ F the set of points with bounded
0-orbit. Then, B is a linear subspace on which the Zariski closure 0Zar acts via a
homomorphism ρ′ : 0Zar

→ GL(B) having compact image.

Proof. It is easy to see that B is a 0-invariant vector subspace. It is thus also invariant under
0Zar. The action of 0 on B factorizes through a homomorphism α : 0→ K ⊂ GL(B), with
K a compact subgroup. Indeed, in any basis of B, the matrices representing the elements
of 0 (acting on B) have bounded entries. Therefore, they constitute a bounded subset of
GL(B), whose closure is a compact subgroup K of GL(B).

Now, the group G of elements g of GL(F) preserving B and whose restriction g|B ∈ K
belongs to K is an algebraic group (since, as a compact group, K is algebraic in GL(B)).
Therefore, G ⊃ 0Zar. 2

For Proposition 7.5, we take F = Sym(E∗) the space of quadratic forms on E , and 0
acts via the associated representation ρF . The subspace B is that of quadratic forms with
bounded ρF (0)-orbit. By hypothesis, B contains (at least) one form of Lorentz type q1.

Let H be the Zariski closure ρF (0). It acts on B via ρ′ : H → GL(B), with image a
compact group K and a kernel L , say. By definition and since ρ(0) is non-precompact
(and so is ρF (0)), L is a non-compact (algebraic) subgroup of SO(q1). If µ is a Haar
measure on K , then any average q2 =

∫
K k · q1 dµ is a K -invariant element of B, and

hence 0-invariant. Since L is non-compact, then it contains an element A ∈ SO(q0) which
is either parabolic or hyperbolic.

Assume that A is parabolic. By Corollary 7.3, q2 is a Lorentz form.
In the case A is hyperbolic, by Corollary 7.4, then q2 is Lorentzian, unless its kernel is

the 2-plane P generated by the lightlike eigendirections of A. Hence P is H -invariant.
Any other hyperbolic element C of L shares with A the same characteristics P and
P⊥. Indeed, any C ∈ SO(q1) preserving P preserves its two isotropic directions and
its orthogonal P⊥. By uniqueness of lightlike eigendirections, C and A have the same
characteristics. Summarizing, all the hyperbolic elements of L preserve P⊥, P and the
isotropic directions within it. But, these characteristics have a topological characterization,
and hence if C = h Ah−1, then h preserves these characteristics. This applies, in particular,
to any h ∈ H . It follows that H preserves the conformal class of the form q3 which vanishes
on P⊥ and equals q1 on P . Since a co-compact subgroup L of H preserves this form,
H itself preserves it (not only up to a factor). The sum q2 + q3 is an H -invariant (non-
degenerate) Lorentz form.

8. Reduction of G: the toral factor
The content of the present section can be summarized in the following proposition.

PROPOSITION 8.1. Under the hypotheses of Theorem 2, there is a subgroup G of
Iso(M, g) with a compact abelian identity component G0 = Tk , say, having somewhere
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timelike orbits, and such that the discrete factor 0 = G/G0 is infinite. Furthermore:
(1) the Tk-action is locally free on an open dense set;
(2) the ρ-representation G→ Out(G0) becomes a representation ρ : 0→ GL(k, Z);
(3) ρ has a finite kernel;
(4) ρ preserves some flat Lorentz metric on Tk , say given by a Lorentz form q on Rk .

8.1. Reduction of G0. Recall the homomorphism ρ : G→ Out(G0) in (2.1); by
Proposition 5.2, G1 = Ker(ρ) is compact, and, in particular, ρ(G) is non-compact.

If G0 has an almost decomposition Tk
× K , where K is semi-simple, then the image

of ρ is contained in Out(Tk)= GL(k, Z).
Since K is normal, we have a representation r : G→ Aut(K ); let G ′ be its kernel,

which is the centralizer of K in G. One can see that G/G ′ = K/Center(K ). Indeed,
since Aut(K )= Inn(K ), for any f ∈ G, there exists k ∈ K such that r( f )= r(k), that is,
f k−1

∈ G ′. Therefore, G/G ′ is a quotient of K . This quotient is easily identified with
K/Center(K ).

In some sense, going from G to G ′ allows one to kill the semi-simple factor, that is, to
assume that the identity component is a torus, and that the discrete factor has not changed,
i.e. G/G0

= G ′/G ′0. More precisely, let us now describe how to ‘forget’ the semi-simple
factor K keeping the identity component with somewhere timelike orbits. Let X be a
somewhere timelike Killing field. The closure of its flow is a product (possibly trivial) of
two tori, K1 × K2, where K1 (respectively, K2) is a subgroup of Tk (respectively, of K ).
Since G ′ centralizes K2, we have a direct product group G ′ × K2.

Summarizing, we have proven the following lemma.

LEMMA 8.2. There is a subgroup G of Iso(M, g) having an abelian identity component
G0 = Tk which has a timelike orbit, and, moreover, it is such that G/G0 =

Iso(M, g)/Iso0(M, g). In other words, keeping the hypotheses of Theorem 2, we can and
do assume that Iso0(M, g) is a torus Tk .

With such a reduction of the group G, we can now consider the action of G on
G0 ∼= Tk given by the representation ρ : G→ Out(Tk)= GL(k, Z); in order to distinguish
the action of G on M and on Tk , we will call the latter the ρ-action.

COROLLARY 8.3. Up to a finite index reduction, the quotient group 0 = G/G0 is torsion
free, i.e. all its non-trivial elements have infinite order.

Proof. Choose any torsion free finite index subgroup H of GL(k, Z) (it exists by Selberg’s
lemma [3]), and set G ′ = ρ−1(H). Its projection on G/G0 is a finite index torsion-free
subgroup of 0, by part (3) of Theorem 2.1. 2

8.2. Generalities on toral actions. Our aim here is to determine the freeness of
isometric toral actions on manifolds. The key fact is that the set S(Td) of all closed
subgroups of the d-torus Td is countable, and it satisfies a uniform discreteness property.

LEMMA 8.4. Let X be a locally compact metric space, and let φ : X→ S(Td) be a semi-
continuous map, that is, if xn→ x, then any limit of φ(xn) is contained in φ(x). Then,
there exists A ∈ S(Td) such that φ−1(A) has non-empty interior.
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Proof. For A ∈ S(T ), set FA = {x ∈ X : such that A ⊂ φ(x)}. By the semi-continuity, the
closure φ−1(A)⊂ FA for all A ∈ S(Td). Clearly, X =

⋃
A∈S(Td ) φ

−1(A). By Baire’s

theorem, the interior int(φ−1(A)) of some φ−1(A) must be non-empty. Thus, the
intersection int(φ−1(A)) ∩ φ−1(A) is non-empty. Let x be a point of such intersection, so
that A = φ(x), and there is a neighborhood V of x such that φ(y)⊃ φ(x) for all y ∈ V . By
semi-continuity, we must have equality φ(y)= φ(x) for y in some neighborhood V ′ ⊂ V .
This follows from the fact that A is an isolated point of the set

S(Td
; A)= {B ∈ S(Td) : A ⊂ B},

see Lemma 8.5. Hence, φ−1(A) has non-empty interior. 2

LEMMA 8.5. Every A ∈ S(Td) is isolated in S(Td
; A).

Proof. Let us consider the case that A is the trivial subgroup. To prove that A = {1}
is isolated in S(Td) it suffices to observe that there exist two disjoint closed subsets
C1, C2 ⊂ Td such that C1 is a neighborhood of 1, C1 ∩ C2 = ∅, and with the property that
if B ∈ S(Td) is such that B ∩ C1 6= {1}, then B ∩ C2 6= ∅. For instance, one can take C1 to
be the closed ball around one of radius r > 0 small, and C2 = {p ∈ Td

: 2r ≤ dist(p, 1)≤
3r}. Here we are considering the distance on Td

= Rd/Zd induced by the Euclidean metric
of Rd . The number r can be chosen in such a way that C1 ∩ C2 = ∅. Every non-trivial
element in C1 has some power in C2, which proves that C1 and C2 have the required
properties. Thus, if An ∈ S(Td) is any sequence which is not eventually equal to A, then
some limit point of An must be contained in C2, and therefore lim An 6= A.

If one replaces Td by a finite quotient of Td , then one gets to the same conclusion by
essentially the same proof. The case of an arbitrary A ∈ S(Td) is obtained by considering
the quotient Td/A, which is equal to a finite quotient of a torus, and applying the first part
of the proof. 2

COROLLARY 8.6. If X is a locally compact metric space and φ : X→ S(Td) is semi-
continuous, then there is a dense open subset U ⊂ X, where φ is locally constant, i.e. any
x ∈U has a neighborhood V where φ is constant.

Proof. Let U be the open subset of X given by the union of the interiors of the sets
φ−1(A), with A running in S(Td). This is the largest open subset of X where φ is locally
constant. If U were not dense, then there would exist a non-empty open subset V ⊂ X with
V ∩U = ∅. The restriction φ̃ of φ to V is a semi-continuous map, with the property that
φ̃−1(A) has empty interior for all A ∈ S(Td). By Lemma 8.4, this is impossible, hence U is
dense. 2

COROLLARY 8.7. Any faithful isometric action of a torus Td on some pseudo-Riemannian
manifold (M, g) is free on a dense open subset of M.

Proof. Apply Corollary 8.6 to the map φ : M→ S(Td),which associates each p ∈ M with
its stabilizer. Such a map is obviously semi-continuous. Thus, on a dense open subset U
of M , the stabilizer of the isometric action is locally constant. No non-trivial isometry
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of a pseudo-Riemannian manifold fixes all points of a non-empty open subset†, and this
implies that the stabilizer of each point of U is trivial. 2

8.3. Preliminary properties of the Tk-action. From Corollary 8.7, the Tk-action on M
is free on a dense open set.

LEMMA 8.8. After replacing G by a finite index subgroup, the ρ-action on Tk preserves
some Lorentz metric. In particular, one can see ρ(G) as lying in GL(k, Z) ∩ SO(q), where
q is a Lorentz form on Rk . Furthermore, q can be chosen to be rational.

Proof. The ρ-action of G on G0 ∼= Tk by conjugation induces an action of G on the space
Sym(Rk) of symmetric bilinear forms on Rk , the Lie algebra of Tk . By (3.3), the compact
subset given by the image of the Gauss map G is invariant by this action. Such a compact
subset contains a non-empty open subset consisting of Lorentz forms, because G0 has
timelike orbits in M . By Theorem 2.2, the ρ-action preserves some Lorentz form q. It
remains to check that one can choose q rational. For this, let B ⊂ Sym(Rk) be the space
of ρ(G)-invariant forms. This linear space is defined by rational equations A · q = q,
A ∈ ρ(G). Therefore, the rational forms in B are dense. In particular, since it contains a
Lorentz form, it contains a rational Lorentz form as well. 2

9. Actions of almost cyclic groups. Proof of Theorem 2.3
Choose f ∈ G, f 6∈ G0; then, ρ( f ) ∈ GL(k, Z) has infinite order by Corollary 8.3.
Consider the group G = G f generated by f and Tk . Up to a compact normal subgroup,
G f is cyclic, which justifies the name almost cyclic. One can prove the following lemma.

LEMMA 9.1. G = G f is a closed subgroup of Iso(M, g) with compact identity connected
component having a timelike orbit. It is isomorphic to a semi-direct product Z n Tk .

9.1. Normal forms over the rationals

LEMMA 9.2. If A ∈ GL(k, Z) ∩ SO(q) is parabolic, with q a rational Lorentz form, then
some power of A is rationally equivalent‡ to

1 t −t2/2
0 1 t
0 0 1

0

0 Idk−3

 .
In particular, there is an A-invariant rational 3-space on whose orthogonal, which is not
necessarily rational, the A-action is trivial.

Proof. The proof is quite standard. Let A have a normal form as in (7.2) in a basis
{e1, . . . , ek}. Let E be the kernel of (A − 1)3. It is a rational subspace, and it contains
E0 = Span{e1, e2, e3}. On E/E0, A is elliptic and it satisfies (A − 1)3 = 0, and hence it is
trivial.

† Semi-Riemannian isometries are uniquely determined by the value and the derivative at one point, see for
instance [12, Ch. 3, Proposition 62].
‡ This means that the subspaces {e1}, {e1, e2}, {e1, e2, e3} and {e4, . . . , ek } are rational.
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Since E is rational, A determines an integer matrix in GL(Rk/E), which is furthermore
elliptic. So, all its eigenvalues are roots of unity, and therefore, after passing to a power,
we can assume that one is the unique eigenvalue; more precisely, we can assume that some
power of A is trivial.

All this shows that the elliptic part R of some power of A is trivial. It remains to check
the rationality of the involved spaces. Consider A − 1 and (A − 1)2. Their images are,
respectively, Span{e1, e3} and Re1. These two subspaces are thus rational. The space
Span{e1, e4, . . . , ek} is rational since it equals the 1-eigenspace of A. We can modify
the basis in order that e4, . . . , ek become rational. It remains to show that e3 too can be
chosen rational. This can be done by taking any rational vector that does not belong to
Span{e1, e2, e4, . . . , ek}. 2

In the hyperbolic case, we have the following result, the proof of which is standard.

LEMMA 9.3. Let A ∈ GL(k, Z) ∩ SO(q) be hyperbolic, with q a rational Lorentz form.
There exists a unique rational minimal timelike A-invariant subspace E of (Rk, q), which
contains the two lightlike eigendirections of A. We have a rational A-invariant q-
orthogonal splitting Rk

= E ⊕ E⊥. The projection of E in Tk
= Rk/Zk is a closed torus

T, on which A induces a hyperbolic Lorentz transformation. In fact, T is nothing but the
closure of the projection in Tk of the plane P generated by the two lightlike eigendirections
of A. Finally, A|T is irreducible in the sense that it preserves no non-trivial sub-torus.

9.2. Structure theorem

THEOREM 9.4. Let f ∈ Iso(M, g) act non-periodically on Iso0(M, g) (i.e. as an element
of Out(Iso0(M, g)). Then, there is a minimal timelike ρ( f )-invariant torus Td

⊂

Iso0(M, g) of dimension d = 3 or d ≥ 2 according to whether ρ( f ) is parabolic or
hyperbolic, respectively. The action of Td on M is (everywhere) locally free and
timelike.

We will present the proof of the theorem in the parabolic case; the hyperbolic case is
analogous, in fact, easier. So, let f be such that ρ( f ) is parabolic. The 3-torus Td

= T3 in
question is the one corresponding to the rational 3-space associated with A in Lemma 9.2.
The normal form of ρ( f ) on this rational 3-space is

ρ( f )∼=

1 t −t2/2
0 1 t
0 0 1

 , t 6= 0. (9.1)

We need to show that this torus acts freely with timelike orbits on M , and the idea is to
relate the dynamics of f on M and the dynamics of ρ( f ) on the toral factor. Towards
this goal, we will use the approximately stable foliation of a Lorentz isometry, introduced
in [17].

9.3. Recalls on approximate stability. Let φ be a diffeomorphism of a compact
manifold M . A vector v ∈ Tx M is called approximately stable if there is a sequence
vn ∈ Tx M , vn→ v such that the sequence Dxφ

nvn is bounded in T M . The vector v is
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called strongly approximately stable if Dxφ
nvn→ 0. The set of approximately stable

vectors in Tx M is denoted AS(x, φ), or sometimes AS(x, φ, M). Their union over M
is denoted AS(φ), or AS(φ, M). Similarly, SAS(x, φ) will denote the set of strongly
approximately stable vectors in Tx M , and SAS(φ)=

⋃
x∈M SAS(x, φ).

The structure of AS(φ) when φ is a Lorentzian isometry has been studied in [17].

THEOREM 9.5. (Zeghib [17]) Let φ be an isometry of a compact Lorentz manifold (M, g)
such that the powers {φn

}n∈N of φ form an unbounded set (i.e. non-precompact in
Iso(M, g)). Then:

(1) AS(φ) is a Lipschitz codimension-one vector subbundle of T M which is tangent to
a codimension-one foliation of M by geodesic lightlike hypersurfaces;

(2) SAS(φ) is a Lipschitz one-dimensional subbundle of T M contained in AS(φ) and
everywhere lightlike.

9.4. The action on M versus the toral action. Denote by T the Lie algebra of T3, and
by ρ0( f ) the linear representation associated with ρ( f ). More explicitly, ρ0( f ) is the
push-forward by f of Killing vector fields, see (3.1).

LEMMA 9.6. Let X ∈ T be a Killing field which is approximately stable for ρ( f ) at
1 ∈ T3. Then, for all x ∈ M, X (x) ∈ Tx M is approximately stable. In other words, if
X ∈ AS(0, ρ0( f ), T ), then X (x) ∈ AS(x, f, M) for any x ∈ M.

A totally analogous statement holds for the strong approximate stability.

Proof. Let Xn be a sequence of Killing fields in T such that Xn→ X and with Yn =

f n
∗ Xn bounded. Clearly Xn(x)→ X (x) for all x ∈ M ; moreover, by assumption, the

Yn are bounded vector fields, and so Dx f n Xn(x)= Yn( f n x) is bounded, that is, X (x) ∈
AS( f ). 2

LEMMA 9.7. Assume ρ( f ) parabolic. Then, there is a Killing field Z ∈ T such that

(a) Z defines a periodic flow φt ;
(b) f preserves Z, i.e. f commutes with the one-parameter group of isometries φt

generated by Z;
(c) Z generates the strong approximate stable one-dimensional bundle of f ;
(d) Z is everywhere isotropic;
(e) Z is non-singular, hence Z is everywhere lightlike.

Proof. Let Z be a 1-eigenvector of ρ( f ); since ρ0( f )Z = f∗Z = Z , then f preserves Z .
In the normal form (9.1) of ρ( f ), the vector Z corresponds to the first element of the basis.

The Z -direction is rational, since it is the unique 1-eigendirection of ρ0( f ). Thus Z
defines a periodic flow.

One verifies that Z is strongly approximately stable for the ρ0( f )-action at 0 ∈ T .
Therefore, at any x where it does not vanish, Z(x) determines the strongly stable one-
dimensional bundle of f . In particular, Z(x) is isotropic for all x ∈ M . But non-trivial
isotropic Killing fields cannot have singularities. 2
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9.5. Proof of Theorem 9.4 (parabolic case)

LEMMA 9.8. The torus T3 preserves the approximate stable foliation F of f .

Proof. The group G f generated by T3 and f is amenable (it is an extension of the abelian
T3 by the abelian Z). The statement then follows from [17, Theorems 2.4, 2.6]. 2

LEMMA 9.9. The T3-action is locally free.

Proof. Let 6 be the set of points x having a stabilizer Sx of positive dimension. We claim
that if 6 is non-empty, then there must be some point of 6 whose stabilizer contains the
flow φt of the vector field Z given in Lemma 9.7. This is clearly a contradiction, because
such a Z has no singularity.

In order to prove the claim, consider the set 62
= {x ∈ M : dim(Sx )= 2}. This is a

closed subset of M , because two is the highest possible dimension of the stabilizers of
the T3-action. If 62 is non-empty, then there exists an f -invariant measure on 62, and by
Poincaré’s recurrence theorem there is at least one recurrent point x0 ∈6

2. The Lie algebra
sx0 of Sx0 is then ρ( f )-recurrent, and since ρ( f ) is parabolic, by Lemma 7.1 (applied to
the ρ( f )-action on the Grassmannian of 2-planes in T ), then sx0 is fixed by ρ( f ). There is
only one 2-plane fixed by ρ( f ) in T (the one spanned by the first two vectors of the basis
that puts ρ( f ) in normal form), and such a plane contains Z .

Similarly, if 62 is empty, then 61
= {x ∈ M : dim(Sx )= 1} is closed in M . As above,

there must be a recurrent point x0 in 61, and sx0 is fixed by ρ( f ). This implies that sx0

contains Z .

The proof is concluded. 2

LEMMA 9.10. The T3-action is everywhere timelike.

Proof. If not, there exists x ∈ M such that the restriction gx of the metric g to TxT3x ∼= T
is lightlike, i.e. positive semi-definite (note that Z is a lightlike vector of such restriction,
which cannot be positive definite). Consider the f -invariant compact subset M+ =
{x ∈ M : gx is positive semi-definite}; it has an f -invariant measure, and by Poincaré’s
recurrence theorem there is a recurrent point x0 ∈ M+ for f . Also the metric gx0 on T is
ρ( f )-recurrent, and by Lemma 7.1 (applied to the ρ( f )-action on the space of quadratic
forms on T ), gx0 is fixed by ρ( f ). But there exists no non-zero ρ( f )-invariant quadratic
form on T whose kernel is Z . This is proved with an elementary computation using the
normal form (9.1) of ρ( f ). 2

10. A general covering lemma

Let us now go back to the general case where ρ( f ) is either parabolic or hyperbolic, and
proceed with the study of the geometrical structure of M . The product structure of (a finite
covering of) M will be established using a general covering result.

PROPOSITION 10.1. Let M be a compact manifold, and let X be a non-singular vector
field on M generating an equicontinuous flow φt (i.e. φt preserves some Riemannian
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metric). Assume there exists a codimension-one foliation N such that:
(1) N is everywhere transverse to X;
(2) N is preserved by φt .
Then, X and N define a global product structure in the universal cover M̃. More
precisely, let x0 ∈ M and let N0 be its N -leaf. Then, the map p : R× N0→ M defined
by p(t, x)= φt x is a covering.

A generalization is available for some group actions. Namely, consider an action of a
compact Lie group K on a compact manifold M such that:
(1) the action is locally free (in particular, all orbits have the same dimension);
(2) K preserves a foliation N transverse to its orbits (with a complementary dimension).
Then, for all x0 ∈ M, denoting by N0 the leaf of N through x0, the map p : K × N0→ M
defined by p(g, x)= gx is an equivariant† covering.

Proof. In order to prove the first statement, consider the class of Riemannian metrics
for which X and N are orthogonal, and X has norm equal to one. The equicontinuity
assumption implies that the φt generate a precompact subgroup 8 of the diffeomorphisms
group of M . By averaging over the compact group 8, one obtains a metric g∗ on M (in
our specified class of metrics) which is preserved by φt . Now, endow R× N0 with the
product metric, where R is endowed with the Euclidean metric dt2 and N0 has the induced
metric from g∗. Observe that the induced metric on N0 is complete (leaves of foliations in
compact manifolds have bounded geometry, i.e. they are complete, have bounded curvature
and injectivity radius bounded from below). One then observes that p is a local isometry;
namely, R× N0 is complete, and therefore p is a covering.

For the second statement, one can choose a left-invariant Riemannian metric h on K ,
and taking an average on K one obtains a K -invariant Riemannian metric g∗ on M such
that:
(a) the K -orbits and the leaves of N are everywhere orthogonal;
(b) the map K 3 k 7→ kx0 ∈ K x0 is a local isometry when the orbit K x0 is endowed with

the Riemannian metric induced by g∗.
As above, with such a choice the equivariant map p : K × N0→ M defined by p(k, x)=
kx is a local isometry, and since K × N0 is complete, p is a covering map. 2

11. On the product structure: the hyperbolic case
Let us now assume that ρ( f ) is hyperbolic; in this section we will denote by T the torus
Td
⊂ G0 given in Theorem 9.4.

LEMMA 11.1. The orthogonal distribution N to the T-foliation is integrable.

Proof. Let N be the quotient of M by the T-action, and π : M→ N the projection. It is
a compact Riemannian orbifold. The f -action induces an isometry g of N . Consider the
Levi form (i.e. the integrability tensor of the distribution N ) l :N ×N →N⊥. Observe
that N⊥ is the tangent bundle of the T-foliation.

† The action of K on K × N0 is the left multiplication on the first factor.
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Let X and Y be two vector fields on N . Suppose they are g-invariant: g∗X = X and
g∗Y = Y . Let X̄ and Ȳ be their horizontal lifts on M . Then, f∗ X̄ = X̄ and f∗Ȳ = Ȳ .
Hence, l(X̄ , Ȳ ) is an f -invariant vector field tangent to the T-foliation. However, by
definition of the minimal torus T, the ρ( f )-action on it has no invariant vector field. This
means l(X̄ , Ȳ )= 0.

This proof will be finished thanks to the following fact. 2

PROPOSITION 11.2. Let g be an isometry of a Riemannian manifold N. There is an open
dense set U such that for any x ∈U, any vector u ∈ TxU can be extended to a g-invariant
vector field.

Proof. Either the group {gn, n ∈ Z} acts properly on N , or its closure in the isometry group
of N is a compact group with a torus S as identity connected component. The proof in the
proper case is straightforward, so let us consider the case where the closure is compact,
and, to simplify matters, assume it to be connected and thus to coincide with the torus
S. Apply Corollary 8.7 to conclude that, for the associated isometric action on N , the
isotropy group is trivial on an open dense set U . Given x ∈U and u ∈ Tx N , extend first
u to an arbitrary smooth vector field having compact support on the slice through x of the
S-action, then extend to an open neighborhood of x using the S-action, and extend to zero
outside such a neighborhood. 2

We shall now prove the compactness of the leaves of N .

LEMMA 11.3. Let N0 be a leaf of N . Then N0 is compact.

Proof. The distribution N can be seen as a connection on the T-principal bundle M→ N .
We have just proved that this connection is flat, i.e. N is integrable, which is equivalent
to the fact that its holonomy group is discrete. The leaves will be compact if we prove
that the holonomy group is indeed finite; for x ∈ N , we will denote by Tx the fiber at x
of the principal bundle M→ N . Recall that if c is a loop at x ∈ N , then the holonomy
map H(c) : Tx → Tx is obtained by means of horizontal lifts of c. It commutes with the
T-action and therefore it is a translation itself. In fact, H(c) can be seen as an element of
the acting torus T (and so, it is independent of the base point x). We have a holonomy map
H : π1(N , x)→ T. In fact, since T is commutative, we have canonical identification of
holonomy maps defined on different base points. In other words H(c)= H(c′), whence c
and c′ are freely homotopic curves.

Up to replacing f by some power, we can assume that the basic Riemannian isometry
g : N → N is in the identity component of Iso(N ) (since this group is compact). Therefore,
any loop c is freely homotopic to g(c), and hence H(c)= H(g(c)).

Now, f preserves all the structure, and thus if c̃ is a horizontal lift of c, then f ◦ c̃ is a
horizontal lift of g(c). So, f H(c) f −1

= H(g(c)). If g(c) is freely homotopic to c, then
H(c) is a fixed point of ρ( f ). But we know that ρ( f ) has only finitely many fixed points
(by the definition of T). Therefore, the holonomy group is finite. 2

Now apply Proposition 10.1 to deduce that M is covered by a product T× N0→ M .
The covering is finite because N0 is compact.
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Observe that we can assume that the leaf N0 is f -invariant. Indeed, the leaf N0

meets all the fibers Tx , and, say, it contains x̃ ∈ Tx . So after composing with a suitable
translation t ∈ T, i.e. replacing f by t ◦ f , we can assume that f (x̃) ∈ N0. This implies
that f (N0)= N0. Summarizing, all things (the T-action and f ) can be lifted to the finite
cover T × N0.

11.1. The metric. The Lorentz metric g is not necessarily a product of the Riemannian
metric on N0 and that of T. It is true that T and N are g-orthogonal. Also, two leaves
{t} × N and {t ′} × N are isometric, via the T-action. However, the metric induced on
each T× {n} may vary with n. Observe here that one can choose the same metric for
all these toral orbits, and get a new metric gnew on M , of course keeping the same initial
group acting isometrically. Remember, however, that we broke symmetries of this initial
metric in Proposition 8.1, where we reduced to the case that Iso0(M, g) was a torus. In
other words, we eliminated its semi-simple part K (see §8.1). In order to prove that gnew

inherits all the isometries of the initial metric g, we only need to show that K preserves
gnew. This follows from the fact that K commutes with T, and it preserves all the structures
involved in our construction, in particular foliations. In fact K acts on N0, and hence it acts
isometrically for gnew since the metric of N0 has not been changed.

11.2. The non-elementary case. Let 0 be a discrete subgroup of SO(1, k − 1) and L0
be its limit set in the sphere (boundary at infinity of the hyperbolic space Hk−1). The group
0 is elementary parabolic if L0 has cardinality equal to one, and elementary hyperbolic if
L0 has cardinality equal to two. It is known that if 0 is not elementary, then L0 is infinite,
and the action of 0 on L0 is minimal, i.e. every orbit is dense, see [15].

If 0 is elementary hyperbolic, then 0 is virtually a cyclic group, i.e. up to a finite index,
it consists of powers An of the same hyperbolic element A. If 0 is elementary parabolic,
then it is virtually a free abelian group of rank d ≤ k − 2, i.e. it has a finite index subgroup
isomorphic to Zd .

One fact about non-elementary groups is that they contain hyperbolic elements. More
precisely, the set of fixed points of hyperbolic elements in L0 is dense in L0 .

All the previous considerations in the case of a hyperbolic isometry f extend to the case
of a non-elementary group. We get the following theorem.

THEOREM 11.4. Let (M, g) be a compact Lorentz manifold with Iso(M, g) non-compact,
but Iso0(M, g) compact, and let 0 = Iso(M, g)/Iso0(M, g) be the discrete factor. Assume
that Iso0(M, g) has some timelike orbit. Then, there is a torus Tk contained in Iso0(M, g),
invariant under the action by conjugacy of 0, and such that the Tk-action is everywhere
locally free and timelike.

The 0-action on Tk preserves some Lorentz metric on Tk , which allows one to identify
0 with a discrete subgroup of SO(1, k − 1), as well as a subgroup of GL(k, Z).

If 0 is not elementary parabolic, then, up to a finite covering, M splits as a topological
product Tk

× N, where N is a compact Riemannian manifold. One can modify the original
metric g along the Tk orbits, and get a new metric gnew with a larger isometry group,
Iso(M, gnew)⊃ Iso(M, g), such that (M, gnew) is a pseudo-Riemannian direct product
Tk
× N.
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12. On the product structure: the parabolic case
As above, we have a T3-principal fibration M→ N over a Riemannian orbifold N , and N
is seen as a connection. Let Z be the Killing field (as defined in Lemma 9.7), that is, the
unique vector field which commutes with f .

Consider the codimension-two bundle L=N ⊕ RZ .

LEMMA 12.1. L is integrable.

Proof. Let X and Y be two vector fields tangent to N . As in the proof above in the
hyperbolic case, we can choose X and Y to be f -invariant, see Proposition 11.2. Therefore,
l(X, Y ) is also f -invariant, where l is the Levi form of N (not of L!). But Z is the unique
ρ( f )-invariant vector. Thus, l(X, Y ) is tangent to RZ .

Now, consider the Lie bracket [X, Z ]. The T3-action preserves N , and, in particular,
[Z , X ] is tangent to N , for any X tangent to N . Consequently, L is integrable. 2

As in the hyperbolic case, one can prove the following lemma.

LEMMA 12.2. The leaves of L are compact.

One can then apply Proposition 10.1 to L and any two-dimensional torus T2 transverse
to Z (L is invariant by T3 and so also by any such T2). One obtains that M is finitely
covered by T2

× L0.
The essential difference from the hyperbolic case is that, since T2 is not f -invariant,

this product is not compatible with f . Thus, we have to analyze this situation slightly
more deeply in order to carry out an f -invariant ‘decomposition’ of M .

Observe first that, as in the hyperbolic case, we can choose L0 invariant by f . The
metric structure of L0 is that of a lightlike manifold, that is, L0 is endowed with a positive
semi-definite (degenerate) metric with a one-dimensional null space. Here, the null space
corresponds to the foliation defined by the S1-action given by the flow of the vector field
Z . The circle S1 acts isometrically on the lightlike L0, as well as on the Lorentz T3. One
then shows that, up to a finite cover, M is constructed by means of these ingredients, as
an amalgamated product, i.e. M is a ‘metric’ quotient (T3

× L0)/S1, see §12.1 for details.
This structure is compatible with f .

We have proven the following theorem.

THEOREM 12.3. Let f be an isometry of a compact Lorentz manifold (M, g) such that
the action ρ( f ) on the toral component of Iso0(M, g) is parabolic. Then, there is a new
metric on M having a larger isometry group such that M is the amalgamated product of
a Lorentz torus T3, and a lightlike manifold L0. Both have an isometric S1-action. The
isometry f is obtained by means of an isometry h of L0 commuting with the S1-action, and
a linear isometry on the Lorentz T3.

The same statement is valid if, instead of a single parabolic f , we have an elementary
parabolic group 0 of rank d. In this case, the torus has dimension 2+ d.

In this last higher rank case, ρ(0) has a normal form as in Lemma 9.2, with t running
over a lattice (isomorphic to Zd ) in Rd (where now t2 denotes the square of its norm).
Here we get a torus of dimension d + 2 playing the role of our T3 in the case of a single
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parabolic f . All the steps of the proofs are adapted to the higher rank case. One observes,
in particular, that the S1-action is common for all 0.

12.1. Amalgamated products. Given any two manifolds X and Y carrying free (left)
actions of the circle S1, one can consider the diagonal action of S1 on the product X × Y :
g(x, y)= (gx, gy) for all g ∈ S1, x ∈ X and y ∈ Y . Let Z be the quotient (X × Y )/S1

of this diagonal action. Assume that X is Lorentzian, Y is Riemannian, and the action of
S1 in each manifold is isometric; one can define a natural Lorentzian structure on Z as
follows (see below about the case where Y is lightlike). Let A ∈ X(X) and B ∈ X(Y ) be
smooth vector fields tangent to the fibers of the S1-action on X and on Y, respectively;
for (x0, y0) ∈ X × Y , denote by [(x0, y0)] ∈ Z the S1-orbit {(gx0, gy0) : g ∈ S1

}. The
subspace Tx0 X ⊕ B⊥y0

is complementary to the one-dimensional subspace spanned by
(Ax0 , By0) in Tx0 X ⊕ Ty0 Y . If we denote by q : X × Y → Z the projection, then the linear
map dq(x0,y0) : Tx0 X ⊕ Ty0 Y → T[(x0,y0)]Z ∼= (Tx0 X ⊕ Ty0 Y )/R · (Ax0 , By0) restricts to an
isomorphism:

dq(x0,y0) : Tx0 X ⊕ B⊥y0

∼=
−−→ T[(x0,y0)]Z .

A Lorentzian metric can be defined on Z by requiring that such isomorphism be isometric;
in order to see that this is well defined, we need to show that this definition is independent
of the choice of (x0, y0) in the orbit [(x0, y0)]. For g ∈ S1, denote by φg : X→ X and
ψg : Y → Y the isometries given by the action of g on X and on Y, respectively. By
differentiating at (x0, y0) the commutative diagram

X × Y
(φg,ψg) //

q
""FF

FF
FF

FF
F X × Y

q
||xx

xx
xx

xx
x

Z

we get a commutative diagram

Tx0 X ⊕ Ty0 Y
((dφg)x0 ,(dψg)y0 ) //

dq(x0,y0) ))SSSSSSSSSSSSSS
Tgx0 X ⊕ Tgy0 Y

dq(gx0,gy0)uujjjjjjjjjjjjjjj

T[(x0,y0)]Z

As ((dφg)x0 , (dψg)y0) carries Tx0 X ⊕ B⊥y0
onto Tgx0 X ⊕ B⊥gy0

, we get the following
commutative diagram of isomorphisms:

Tx0 X ⊕ B⊥y0 ∼=

((dφg)x0 ,(dψg)y0 ) //

∼=

dq(x0,y0) ))RRRRRRRRRRRRRR
Tgx0 X ⊕ B⊥gy0

∼=

dq(gx0,gy0)uukkkkkkkkkkkkkk

T[(x0,y0)]Z

Since ((dφg)x0 , (dψg)y0) is an isometry, the above diagram shows that the metric induced
by dq(x0,y0) coincides with the metric induced by dq(gx0,gy0). This shows that the
Lorentzian metric tensor on Z is well defined.
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Observe now that an analogous construction can be carried out naturally when, instead
of a Riemannian metric, Y is endowed with a lightlike metric which is invariant under
the S1-action and having its direction as null space. In this case, the quotient (Tx0 X ⊕
Ty0 Y )/R · (Ax0 , By0) is canonically identified with Tx0 X ⊕ (Ty0 Y/RBy0) which has a
natural Lorentz product since by definition Ty0 Y/RBy0 has positive definite inner product.

As to the topology of Z , we have the following lemma.

LEMMA 12.4. If X and Y are simply connected, then Z is simply connected. If the product
of the fundamental groups π1(X)× π1(Y ) is not a cyclic group, then Z is not simply
connected.

Proof. The diagonal S1-action on X × Y is free (and proper), and therefore the quotient
map q : X × Y → Z is a smooth fibration. The thesis follows from an immediate analysis
of the long exact homotopy sequence of the fibration, that reads

Z∼= π1(S1)−→ π1(X)× π1(Y )−→ π1(Z)−→ π0(S1)∼= {1}. 2

13. Proof of Corollary 3 and Theorem 4

Proof of Corollary 3. This is one of the steps of the proof of our structure result, see
Lemma 9.10.

Proof of Theorem 4. By the structure result of [16], compact Lorentzian manifolds
admitting an isometric action of (some covering of) SL(2, R) or of an oscillator group
are not simply connected. Thus, if M is simply connected, by Theorem 4.1 Iso0(M, g)
is compact. Now, if Iso(M, g) has infinitely many connected components, then (a
finite covering of) M is not simply connected. When 0 = Iso(M, g)/Iso0(M, g) is not
elementary parabolic, this follows directly from Theorem 11.4. When 0 is elementary
parabolic, this follows from Theorem 12.3 and the second statement of Lemma 12.4.
Hence, Iso(M, g) is compact.
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A. Appendix. Salem Numbers and leading eigenvalues of Lorentz hyperbolic
transformations

As mentioned in the introduction, our problem on Lorentz isometry groups leads naturally
to hyperbolic arithmetic lattices of type O(q, Z), where q is a rational Lorentz form on Rk .
We give in the present appendix more details on this arithmetic side of our problem since
they seem absent in the literature.

If A ∈ O(q, Z)= GL(k, Z) ∩ O(q), then it preserves the canonical lattice Zk
⊂ Rk . By

definition, A is irreducible (over the rationals) if A preserves no non-trivial subgroup of
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rank ≤ k in Zk , or, equivalently, no non-trivial Q-subspace. In this case, its characteristic
polynomial is Q-irreducible.

Let A be irreducible and k ≥ 4. If an eigenvalue λ of A is greater than 1, then A is
hyperbolic, and λ is a Salem number. Indeed, by definition [6] a real λ > 1 is a Salem
number if it is an algebraic integer (say of degree k) such that all the solutions x of
its minimal polynomial (with integer coefficients) P belong to the unit disk {|x | ≤ 1},
with at least one on the unit circle {|x0| = 1}. Observe that, in dimension two, λ is a
quadratic integer, which is also the case in dimension three (A cannot be irreducible in odd
dimensions).

A.1. The converse. The existence of such a root x0 implies that P is reciprocal:
zk P(1/z̄)= P(z). Indeed, zk P(1/z̄) is another minimal polynomial for x0. We infer from
this that 1/λ is another root of P and all the others are in the unit circle. Hence, any matrix
A having P as a characteristic polynomial is C-diagonalizable with simple real spectrum
{λ, λ−1

}, and a complex spectrum in the unit circle. It then follows that A is conjugate
to the normal form §7.3 of a hyperbolic element in the orthogonal group O(q1) of some
Lorentz form q1.

Observe now that, since P has integer entries, the companion matrix A of P belongs to
GL(k, Z). Recall that if P(z)= c0 + c1z + · · · + cnzn , then its companion matrix is

A =


0 0 . . . 0 −c0

1 0 . . . 0 −c1

0 1 . . . 0 −c2
...

...
...

...
...

0 0 . . . 1 −ck−1

 ,

say in a compact form

A =

(
0

Idk−1
−
−→c

)
,

where

−→c =

 c0
...

ck−1

 .
Summarizing, there exists A ∈ GL(k, Z) ∩ O(q1), with λ as a leading eigenvalue of A.
Let us prove that we can choose q1 to be a rational form, i.e. with rational coefficients

in the canonical basis of Rk . For this, consider F = Sym(Rk) the space of quadratic forms
on Rk . Let E be the space of A-invariant forms. This linear space is defined by a rational
equation A · q = q . Therefore, the rational forms in E are dense, and, in particular, since
q1 ∈ E is Lorentzian, there exists a rational Lorentz form q2 in E .

A.2. Isometric embedding in the standard form. It is now natural to ask if any Salem
number is a leading eigenvalue of some matrix A of O(1, n)(Z)= O(1, n) ∩ GL(n +
1, Z)= O(q0), where q0 is the standard form −x2

0 + x2
1 + · · · + x2

n . One allows here n
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to be larger than k (the degree of transcendency of λ). We will give here a partial answer
to this question.

The first observation towards this is that, for any rational Lorentz form q on Rk (up
to a constant), there is a rational isometric embedding in (Rn+1, q0) for some n. To do
this, recall that any rational form is diagonalizable, that is, up to applying an element of
GL(k,Q), we can assume that q2 has the form q2 = a1x2

1 + · · · + ak x2
k , with ai ∈Q. Up

to multiplication, we can assume ai ∈ Z.
Now, the one-dimensional space (R, ax2), with a a positive integer can be embedded

in (Ra, x2
1 + · · · + x2

a ), by means of the diagonal map x→ (x, . . . , x). In the case
a < 0, write ax2

=−(b)2x2
+ cx2, with b and c non-negative integers. Then x→

(bx, x, . . . , x) yields an isometric embedding in (R,−x2)× (Rc, x2
1 + · · · + x2

c ). From
all this, one deduces the existence of a rational isometric embedding of (Rk, q2) into a
standard Lorentz space.

The image E ⊂ Rn of such an embedding is a rational subspace. An element of O(q0|E )

can be extended trivially on E⊥ to give an element of O(q0). Because of rationality,
this gives an embedding O(q2,Q)= O(q2) ∩ GL(k,Q) into O(q0,Q)= O(q0) ∩ GL(n +
1,Q). This embedding is natural, and it preserves eigenvalues. From all this, one obtains
an embedding of a finite index subgroup 0 of O(q2, Z) in O(q0, Z). Hence, for any Salem
number λ, there is a power λl which is a leading eigenvalue of some A ∈ O(1, n)(Z), for
some n. It is natural to wonder whether, by any means, l may be chosen to be equal
to one.
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