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SUBSYSTEMS OF ANOSOV SYSTEMS

By A. ZEGHIB

1. Introduction. Let (M, ¢) be an Anosov system (flow or diffeomorphism).
Thus the tangent bundle TM splits into E* @ E* @ E°, where E® (resp. E*) is the
contracting (resp. expanding) subbundle and E? is trivial in the case of diffeo-
morphisms and is the one-dimensional tangent bundle in the case of flows.

Consider a Cl-invariant compact submanifold N. We may hope, because of
hyperbolicity, that the splitting passes on to a splitting for 7N, that is, TN =
EENTN®E‘NTN@E’ NTN. It is easy to see that this is equivalent to the
subsystem (N, ¢) itself being of Anosov type. So our question can be formulated
as follows: Does a subsystem of an Anosov system have to be Anosov? From the
infinitesimal point of view, we could generalize the question by assuming that the
splitting of TM is defined only over N, i.e. N is a hyperbolic set of (M, ¢). Then
the question (asked by Hirsch in [Hir]) becomes: Is the restriction of a dynamical
system to a hyperbolic set which is a C! submanifold an Anosov system?

Mafié [Mafil] characterized such systems and called them quasi-Anosov. The
last question becomes then: Does quasi-Anosov imply Anosov? The answer given
by Franks and Robinson [FR] was negative. But the question remains open for
subsystems of Anosov systems (not just hyperbolic sets). By the example of [FR],
we know that this question is global in nature and not just infinitesimal or local.
The aim of this paper is to provide a positive answer to this problem in the case
of classical Anosov systems. For this we recall that an Anosov system is said to
be splitting [Fral] if its local product structure is in fact global in the universal
cover (see §4). For example, this is the case for Anosov diffeomorphisms on
tori. Indeed, by a well-known theorem of Manning, they are all topologically
conjugate to linear diffeomorphisms, for which the splitting property is obvious.
As usual, we say that two dynamical systems are topologically equivalent if there
is a homeomorphism sending the orbits of one to that of the other. The torus case
in the following result was proved by Maiié [Mafi2].

THEOREM A. Let (M, ¢) be an Anosov system which is splitting or topologi-
cally equivalent to the geodesic flow of a compact negatively curved manifold. Let
N be a closed invariant C'-submanifold (of nontrivial dimension, that is, O for
diffeomorphisms and 1 for flows). Then (N, ¢) is a transitive Anosov system.
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1432 A. ZEGHIB

Remarks.

1. Note that all known Anosov diffeomorphisms are splitting (more precisely,
topologically conjugate to infra-nil-automorphisms).

2. Although the question is not topological (invariant C!-submanifolds are not
mapped by a topological equivalence to invariant C!-submanifolds), the answer
given here is! We mean by this that the above result covers a category of Anosov
systems, closed by topological equivalence.

Geodesic flows. Let V be a compact Riemannian manifold of negative
curvature and V its universal cover. Denote by (T'V, ¢) and (T''V, $) the geodesic
flows on the unitary tangent bundle of V and V respectively. Let S be the sphere
at infinity of V. For a closed subset A C S°°, we denote by [A] the subset of TV
of all vectors for which (both) endpoints at infinity are in A (the projection of
[A] in V is the union of all geodesics joining points of A). We say that a closed
invariant subset N of (T'V, ¢) is of quasi-Fuchsian type if it is the projection in
T'V of a subset of 7'V of the form [L]. Here Lr- is the limit set of a subgroup I"
of (V). If we assumed that I" is exactly the stabilizer in 7;(V) of Ly, N would
be homeomorphic to [Lr]/T. Thus I" would be a special case of quasi convex
cocompact groups, i.e. those for which the last quotient is compact (see §5).
Note that in this definition we do not assume as in the classical case that Lr is
a topological sphere. This last situation happens exactly when N is a topological
manifold.

THEOREM B. A closed invariant C' submanifold of the geodesic flow of a Rie-
mannian compact manifold of negative curvature is of quasi-Fuchsian type.

Geometric rigidity. The last theorem characterizes neither invariant topo-
logical submanifolds (as it is false in this case, see for instance [Zeg2]) nor
invariant C! submanifolds (since there are examples where N is just a topolog-
ical submanifold of quasi-Fuchsian type but not C'). In the classical case (i.e.
3-hyperbolic space), obviously N = [Lr] is C' if and only if Ly is. In gen-
eral the sphere at infinity has no natural differentiable structure, and we can not
distinguish the topological and C! cases by looking only at infinity. But in the
classical case we know that, when it is C!, the limit set L is in fact a round
circle. That is, I" is Fuchsian. The analogous geometric rigidity question which
would characterize the C! case could be: Is a closed invariant C'-submanifold N
(which is of quasi-Fuchsian type by the previous result) of the form T'S, where
S is a totally geodesic submanifold of V? An affirmative answer to this question
was given in [Zegl] (see also [Zeg4]) when V is locally symmetric. Although
we have no counter-example, we believe this is wrong for general negatively
curved manifolds. Such geometric rigidity would be much stronger (at least in
some interesting cases) than other types of rigidities, like geodesic flow rigidity
and boundary rigidity for Riemannian metrics. For example, take (Vp, go) to be a
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compact hyperbolic manifold (i.e. of constant curvature —1). In the Grassmann
bundle Gry(Vp), of 2-tangent planes to Vj, there is a tautological geodesic foli-
ation. The leaf of a tangent plane P C T,Vy, is the set of tangent planes of the
immersed geodesic surface S = exp, P (exp, denote the exponential map at x).
Suppose that the set of compact leaves of this foliation is dense in Gry(Vp). Such
Vo exists (in all dimensions) by arithmetic constructions (thanks to the Harish-
Chandra-Borel Theorem [Bor]). Let now (V1, g1) be another Riemannian manifold
with geodesic flow C!-equivalent to that of (Vo, go). Suppose that the geometric
rigidity holds for the C! invariant submanifolds of the geodesic flow of (V1, g1).
From the above density, we get by elementary arguments that for each x € V and
P C T,Vy, S =exp, P is a totally geodesic (not just geodesic at x) surface. This
implies (by standard Riemannian geometry) that (V, g1) is of constant curvature.
A dynamical argument shows that (Vy, g;) is hyperbolic, and then isometric to
(Vo,80) (by the Mostow rigidity, for example). The boundary rigidity problem
can be treated by the same method. Let (B, g) be a Riemannian metric in a ball
B of a hyperbolic space, which induces the same boundary distance function on
OB x OB. Consider a hyperbolic manifold like Vj above, which contains an em-
bedded ball isometric to B. Assume the ball B is convex with respect to g. By
[Mic] we can glue (B, g) to (Vo — B, go) and obtain a C? Riemannian manifold
(V1, 81). Moreover, there is a canonical C! isomorphism between geodesic flows
of (Vo, g0) and (Vy, g1). As above, the hypothesis of geometric rigidity for (Vy, g1)
implies that (B, g) is a hyperbolic ball. This would answer the boundary rigidity
conjecture in this case.

Remark. There is a natural analogous geometric rigidity property for subsys-
tems of infra-nil Anosov systems. In the case of linear Anosov diffeomorphisms
on a tori, C! invariant submanifolds are geometric tori [Fra2] [Mafi2]. In the gen-
eral infra-nil case, C! invariant submanifolds are determined by Lie subgroups
[Zeg3].

Topological rigidity. Weaker than the geometric rigidity is the requirement
for the subsystem (N, ¢) (N is a C' submanifold or a topological manifold of
quasi-Fuchsian type) to be topologically equivalent to the geodesic flow of some
negatively curved manifold. This would not be so far from geometric rigidity, if
furthermore the manifold were isometrically immersed in V. The following result
deals with the case when the dimension of N is 3. Unfortunately, we were not able
to get an immersed submanifold (a surface in this case), but only a branched im-
mersed one (see for instance [GOR] for notions on branched immersed surfaces,
and §5 for the definition of their geodesic flows).

THEOREM C. Let V be a compact manifold of negative curvature, and N an
invariant topological 3-manifold in the geodesic flow of V. Then (N, ¢) is of quasi-
Fuchsian type if and only if it is topologically equivalent to the geodesic flow of
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a branched immersed negatively curved surface S in V. Moreover, the topological
entropy of the geodesic flow of any such S of negative curvature is less than that of
(N, ¢), with equality if and only if S is geodesic. In general, if V is locally CAT(—a?),
i.e. its curvature is bounded by —a?, then we can find S with the same property.

We believe that the following strong statement holds. There is a nonnegative
€ = e(N, ¢) such that the topological entropy of the geodesic flow of any such S
(which has negative curvature) is less than Ent;,,(N, ¢) +¢, and € = 0, if and only
if we can find an S being geodesic. This e may have some geometrical meaning
(related to the width of the convex hull) for classical-quasi-Fuchsian groups. We
also believe that the appearance of branched immersed surfaces in the statement
above is just because of technical difficulties. One may expect and imagine that
everything is regular!

We deduce from the entropy statement a new proof of a special case of the
geometric rigidity of invariant C! submanifolds of the geodesic flow of hyperbolic
manifolds (see [Zegl] or [Zeg4]).

COROLLARY. A C! closed invariant 3-submanifold in the geodesic flow of a
hyperbolic compact manifold (i.e. curvature = —1), is the unitary tangent bundle
of a geodesic surface in this manifold.

Proof. By the theorem, we get a branched surface S which is CAT(—1). The
topological entropy of its geodesic flow is then at least 1 (this works in the
CAT(—1) case exactly as for Riemannian manifolds of curvature less than —1
[Bou]). On the other hand, the only (exact) positive Lyapunov exponent (for any
measure) of the geodesic flow of a hyperbolic manifold is +1. It then follows,
by the Ruelle formula [Rue], that the topological entropy of (N, ¢) is at most 1.
Hence we have equality and § is geodesic. O

Invariant subsets of quasi-Fuchsian type. Now we give a dynamical char-
acterization of invariant subsets of quasi-Fuchsian type, with locally connected
limit sets. That is, the limit set L in the above definition of quasi-Fuchsian type
is locally connected (the result can perhaps be extended when Lr is only assumed
to be connected). It is formulated with the notion of local product structure (see
§2), which plays a crucial role in the proofs of Theorems A and B.

THEOREM D. A locally connected closed invariant subset of the geodesic flow
of a negatively curved compact manifold with a local product structure is of quasi-
Fuchsian type.

This is a consequence of the following result. In order to formulate it we
shall use the word “manifold” for all kinds of stable and unstable sets (although
they are not topological manifolds).
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THEOREM E. Let N be an invariant subset of the geodesic flow of a negatively
curved compact manifold with a local product structure. Suppose that stable or
unstable manifolds of N are locally connected. Then (N, ¢) is of quasi-Fuchsian

type.

Applications to geodesic and Riemannian foliations. A tangent plane
field P in a Riemannian manifold V is said to be geodesic if any geodesic
7 tangent at some point to P is everywhere tangent to it (if 7/(zp) € Py(t)s
then /() € P for any ¢). When P is integrable this means that its leaves are
(totally) geodesic. A tangent plane field is said to be Riemannian if its orthogonal
is geodesic.

THEOREM F. A compact negatively curved manifold has no C' geodesic or
Riemannian plane field (of nontrivial dimension).

Proof (from Theorem B). It is sufficient to consider the geodesic case. Sup-
pose that P is a C! geodesic plane field. Let N = T'P be the set of all unit
vectors tangent to P. By definition, this is a C' invariant submanifold of the
geodesic flow of V. Let N be the inverse image of N in T!V. This is nothing but
T'P, the set of unit vectors tangent to the associated plane field . In particular
N is connected and 7;(V)-invariant. By Theorem B, N must be of the form [Lr]
for some subgroup I' C (V). The m(V)-invariance of N implies that Lr is
m1(V) invariant. By minimality of the (V) action we have : Lr = §*°. Hence
N =[S°°]. That is, P is the trivial tangent space of V (i.e. codim P = 0). O

Results similar to Theorem F (for geodesic foliations and some cases of
Riemannian foliations) were announced by P. Walczac in [Wall] and [Wal2]. But
as it was indicated in [Wal3], the proofs were not correct. Our proof above applies
even for the so-called (C!-) quasi geodesic and quasi Riemannian foliations, in
the references given above. For example, a C! quasi geodesic foliation P is one
for which the second fundamental tensor is small in the C' norm. The geodesic
flow of the foliation, defined in the set N = T!P C T'V, can then be extended to
a flow in T'V which is C! near the geodesic flow of V. It is then topologically
equivalent to it. We may then apply the same argument as above.

More recently G. Walschap [Wal] announced a nonexistence result for Rie-
mannian foliations in the particular case of locally symmetric manifolds (compaét
and with negative curvature). Of course this immediately follows from the geo-
metric rigidity in this case, or just from the analogous of Theorem B in the locally
symmetric case, which was already proved in [Zeg1]. The proof of Walschap con-
sists of proving that the orthogonal of a Riemannian foliation (in this case) is
integrable and thus gives rise to a geodesic foliation. Next, to conclude, he uses
the result of [Wall] (that we know now is incomplete) about nonexistence of
geodesic foliations. He also proposes an alternative “elementary” proof of this
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last result for locally symmetric spaces, when furthermore the orthogonal of the
geodesic foliation is integrable (that is, when it is derived from a Riemannian
foliation). Unfortunately, this proof, also, was not correct (or at least incomplete).
All of these facts let us believe that a (semi-) local or (semi-) infinitesimal proof
of Theorem F is perhaps not available.

Remark. The theorems A, B, D, E and F extend to the case when V is not
necessarily of negative curvature but only has its geodesic flow of Anosov type
(observe that in particular the universal cover of such a manifold is hyperbolic in
the sense of [Gro] and has a sphere as ideal boundary, which allows us to speak
about subsets of quasi-Fuchsian type).

Acknowledgments. 1 would like to thank F. Paulin, H. H. Rugh and the
referee for their valuable suggestions and remarks.

2. Quasi Anosov systems. To simplify notations we shall restrict ourself
everywhere to flows. This does not imply any loss of generality, as we can
associate to a diffeomorphism its suspension flow and, in view of Theorem A,
splitting diffeomorphisms correspond to splitting flows (see the definition below).
The discussion in this section is classical. One possible definition of quasi Anosov
systems is as follows: (N, ¢) is quasi Anosov if it can be embedded in a system
(M, ), for which N is an hyperbolic set. Here the most important property is the
following.

ProposiTiON 2.1. ([HP], [Maiil], [Sell) A quasi Anosov system is Axiom A
(that is, the no wandering set Q(N, ¢) is hyperbolic and periodic orbits are dense
in it).

From hyperbolicity we get strong stable, stable, local strong stable and local
stable manifolds at points of Q: W*(x) = {y € N/d(¢'x,¢'y) — 0 when t —
+oo} ; Wi (x) = U{W*(¢'x)/t € R}; W) = {y € W¥x)/d(¢'x, ¢'y) < n for
t > 0} and Wix) = {y € W'(x)/d(¢'x,¢'y) < n for t > 0} (here d is some
Riemannian distance in N). They are injectively immersed C' submanifolds.
Reversing time, one defines the unstable analogues. We shall fix 7, being the
half of an expansivity constant for (M, ¢). That is, two distinct orbits cannot stay
(even after reparametrization) at a distance less than 27.

Local product structure. For any x € N, ¢'x — Q, when t — oo, i.e. all
limits of ¢'x are in Q. Axiom A implies a more precise convergence: There are
elements y and z of Q (not unique) such that x € W¥(y) and x € W“(z). In other
words, W¥(x) = W*(y) and W*(x) = W¥(z) (in particular W*(x) and W*(x) are C!
immersed submanifolds of N for any x). This follows from the shadowing property
of Q, which again follows from the local product structure of Q. That is: There
exist € and 7 positive such that if y,z € Q, and d(y,z) < e, then Wh(») N Wi(z)
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contains exactly one point [y, z] which belongs to Q (the uniqueness follows
from the choice of 7 as an expansivity constant). More precisely the bracket map
determines a homeomorphism:

(W) N Q) x (W) N Q) — Uy

(3,2 = [y,2] = W) N W),

where Uy is a neighborhood of x in Q, containing the ball B(x, €) N Q.
This looks like a topological Anosov picture: Instead of the stable and unsta-
ble supplementary foliations we have the two laminations of Q: W*(x) N Q and

W (x) N Q. Any such ¢ will be called a local product or an Anosov constant
of Q.

Attractors. In general, Q is thought of (if it is not all N) as a “fractal” set.
But some parts of € are less fractal than others. To justify this, recall that Q has
a spectral decomposition, Q = AgU. .. A,, into closed disjoint invariant sets such
that each has a dense orbit. Denote W*(A;) = {x € N/¢'x — A; when t — +o0}.
Then N is a disjoint union of the W*(A;). As above (in the case of Q), because
each A; has a local product structure, we have: W*(A;) = U{W*(x)/x € A;}.
We define similarly W;(A;) = U{W}(x)/x € A;}. Continuity properties of stable
laminations and the Baire Theorem imply that there is some Ag such that W*(Ag)
has nonempty interior. Such a Ag is called an artractor. We can prove that it
verifies the two stronger equivalent characteristic properties:

@) W;,(Ao) is an open neighborhood of Ay.

(i) Ao is W*-invariant: If x € Ag, W™(x) C Ay. This also holds for W¥(x)
as Ag is ¢-invariant (justifying why we can say that Ag is less fractal, at least in
a topological sense, than general hyperbolic sets).

CLamM 2.2. (N, @) is a transitive (i.e. with a dense orbit) Anosov system, if and
only if for some A;, we have W*(A;) = N.

Proof. The condition means that the spectral decomposition reduces to a single
element A; = Q. By definition of the spectral decomposition, this is obviously the
case when (N, ¢) is transitive. Conversely, if the spectral decomposition reduces
to a single element, then A; is at the same time an attractor and a repeller (defined
analogously by reversing time). Thus A; is W* and W* invariant. By hyperbolicity,
A; is open in N. It is closed by definition; hence A; = N, because N = W(A;)
is connected (recall that we consider only flows and that (A;, ¢) is transitive and
hence A; is connected). Hence (N, ¢) is a transitive Anosov system. O
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3. Invariant submanifolds of Anosov systems. Now let (M,¢) be an
Anosov flow, (M, ¢3) its universal cover and 7 : M — M the natural projec-
tion. Let Q° = M/W* be the space of stable leaves of (47, $), that we assume to
be Hausdorff, and 7° : M — Q° the projection. For any x, the restriction of 7° to
W(x) is a local homeomorphism onto an open subset of Q°.

We denote for a subset X C M and x € X, W5(x,X) = W*(x) N X (with W*(x)
is the stable leaf of x with respect to the flow (M, #)). Similar notations hold for
other stable and unstable manifolds.

e-components. Let N be a Cl-invariant submanifold in M and N be a con-
nected component of 7~ !(N). Let A be an attractor of (V, ¢) and A=7"1A)NN.
It is not (a priori) locally connected. In order to choose components in A, we intro-
duce the following notion. For a metric space (X, d) and a positive real ¢, we say
that a subset Y is e-open if Y contains its e-neighborhood: d(y,Y) < e =y € Y.
In this case the complement of Y is also e-open. We say that Y is e-connected if
it does not contain a proper e-open subset. This is equivalent to saying that Y is
connected by e-chains: If x,y € Y, then there are points of Y, xg = x, x1,,X, =y,
with d(x;,x41) < €, for 0 < i < n. Any X is decomposed into e-connected com-
ponents which are in e-open. Take now Ag to be an e-connected component of
A. It is invariant by ¢ and W** because their leaves are connected and contained
in A and is an attractor of (IV, ¢3). Here, the interesting € is an Anosov constant
of A. Thus A and even Ag have local product structures of size (at least) e.

PROPOSITION 3.1. Suppose that for every x in M the projection *: W¥(x) — Q°
is injective. Then m°(Ag) is a connected injectively immersed topological subman-
ifold in Q°.

Proof. For x € Ag, choose as in §2, a neighborhood U, of size € with a product
structure. By the product structure property, we have: 75(Uy) = ws(Wf,“(x) N Ag).
Thus 7°(Uy) = 75(Ws"(x,N)) because Ao is an attractor in N. The injectivity
condition in the proposition implies that Vy = w*(W)*(x, N)) is homeomorphic to
W:*(x, N) which is homeomorphic to an open set of R?, for d = dim W*(x, N).
Choose a covering of A by the open sets U, for x running through a countable
subset S. Consider P’, the disjoint union of the Uy, x € S, and P its quotient by
«*. This P is the same as the quotient of the disjoint union of the Uy, by the
relation y ~ ziff 7°(y) = 7°(z). It is also the same as the space obtained by gluing
the V,, (x € S) over their intersections.

In order to prove that P is a topological manifold we have to show that there
is no “branching”: for any x and x’ in S, V, N V,s is open in both V, and V. (this
guarantees that the V, are open in P). This follows from the next lemma:

LEMMA 3.2. Assume that there are y € Uy and Yy € Uy with ©5(y) = ©5(y").
Then there are neighborhoods A, C Uy and Ay C Uy of y and y' in Ay such that
T (Ay) = T(Ay).
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Proof. The points y and y’ are in the same W*-manifold. Thus there are ¢
and 7 such that ¢'(y) and ¢ (/) are in the same U,~ for some x” € Ao. Hence
' (Ux)NUyr and ¢'(Uy)NUyn are open in Uy . Because of the product structure of
U, , the projections of the latter open subsets are open in V,~. Their intersection,
which is nonempty since 7°(y) = 7*(y’), is then open in V,~. Its inverse image
Uyy is~ then open in Uy~. For the lemma, we take A, = &"(Uyyr N U,) and
Ay = ¢~ (Uyy N Uy). m

Now for P a topological manifold, to see that it is connected, we observe
that if d(x, x') < ¢, then V, N V. is not empty. Hence 7°(x) and 75(x’) are in the
same connected component of P. We conclude by the e-connectedness of Ag.

It is clear that 7* induces a topological immersion (because this is the case
in each V,) of P into Q°, which is injective (because we have quotiented by 7°).
Thus 7°(Ao) is, as claimed in the proposition, a topological injectively immersed
submanifold. O

Remark. In the lemma, the uniformity of the local product structure was
crucial. Indeed, the example in [Zeg2] of an invariant topological manifold of
the geodesic flow of a hyperbolic 3-manifold (not of quasi-Fuchsian type) was
“pseudo-Anosov.” The local product structure is defined in the open subset, being
the complement of the finite set of singular periodic orbits. The quotient space
(like P above) is a tree rather than a 1-manifold.

4. Proofs of Theorems A and B. For dynamical systems as in Theorem
A the last proposition applies, as, for any x, the projection 7°: W (x) — Q°
is injective (and hence a homeomorphism onto its image). Moreover, for x
in Ag, T(W*(x,N)) is a closed topological submanifold of 7*(W*(x)). Indeed,
W(x, N) = W*(x) N N is a closed C' submanifold of W**(x).

4.1. Splitting systems. We recall that (M, ¢) is splitting if the local product
in M is in fact global. This is equivalent to stating that for any x the projection
w5 W(x) — Q° and the analogous projection in the space of unstable leaves
is bijective. Let x € Ao, then Q° = m(W**(x)). By Proposition 3.1, m(Ag) is a
connected submanifold of 7°(W**(x)) containing 75 (W**(x, N)). As w5 (W**(x, N)).
is closed in (W4 (x)), we get: T(Ag) = w (W (x, N)) (m*(W**(x, N)) is a closed
submanifold of the same dimension in 7(Ag)). Hence 7*(Ag) is closed in Q°. In
particular, W3(Ao, N) = (%)~ !(m5(Ag)) N N is closed in N. But this is open in
N, because Ay was an attractor. Since N is connected, we get: W*(Ag,N) = N.
Hence, in N: W¥(A) = N. Thus, by 2.2, (N, ¢) is a transitive Anosov system. This
completes the proof for this case.

4.2. Geodesic flows. Now (M, ¢) is topologically equivalent to the geodesic
flow of a negatively curved manifold V. Here Q° is identified with the sphere at
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infinity S°°. The unstable quotient Q% is also identified with the same S°°. We
denote by 7° and 7%: M — S the corresponding projections. In the case of the
geodesic flow itself, 7° and 7% associate to a geodesic its positive and negative
ends at infinity.

The proof of the theorem will be achieved as above by proving that 75(A)
is closed in Q. There are two cases: d = dim 75(W**(x, N)) = dim W**(x, N) = 0,
or d > 0. We claim that if d = 0, A is reduced to a single orbit of ¢ which
projects to a periodic orbit of A. Indeed, if not, we could find two points x and
y in Ao with different ¢§~orbits such that d(x,y) < € (because A is e-connected).
The bracket [x, y] belongs to Ag. But d = 0 means that strong unstable manifolds
are singletons, thus [x,y] = y. That is, x and y are in the same stable manifold.
As periodic points are dense (Axiom A), we can choose x and y corresponding
to periodic orbits. But two distinct periodic orbits cannot lie in the same stable
manifold. Hence Ay is a single orbit and m°(Ao) is a point and in particular closed.
We consider now the case d > 0. For any x in M, we have 7 (W*(x)) = §° —
{m*@)}. Thus, if x € Ag, m(W**(x, N)) is a closed submanifold of S* — {7*(x)},
homeomorphic to an Euclidean space of dimension d. Thus (because d > 0), 7%(x)
is an accumulation point of 75(W**(x, N)). Hence, for the injectively immersed
submanifold 75(Ag) containing 7*(W**(x, N)) and with the same dimension, we
have two possibilities:

(i) m(Ao) = T (W(x, N)), or
(i) 7 (Ao) = (W™ (x, N)) U {m"(x)}

In the last case 7°(Ag) will be a topological sphere (it is precisely the Alexan-
droff compactification of a Euclidian space of dimension d) and in particular
closed in §°°. To finish the proof of the theorem, we have to show that case (i)
cannot occur. Assume that we have case (i) for some point x; then the same is true
for any other point y in Ag. In fact, the two cases are distinguished by whether
or not 75(Ag) (which does not depend on x) is a topological sphere. But 7%(x) is
the unique accumulation point of 7°(Ag). Hence for any point y of Ao, we have
7#(y) = m*(x). That is, all points of Ag are in the same unstable manifold. As for
the case d = 0, we have proved that Ay is a single orbit which contradicts: d > 0.
Hence we are in case (ii) and 7°(Ag) is a topological sphere. This completes the
proof of Theorem A. O

4.3. Proof of Theorem B. Denote L = 7°(Ag) = 7°(N) (the last equality
follows from Ag = N). From the last part of the above proof we have, for any
x € N : L=n(W%xN))U {r*x)}. In particular 7%(x) € L. Hence m“(N) C
L = 7(N). We have the inverse inclusion for the same reasons. Thus 75(N) =
7*(N) = L. That is, any geodesic in N has both endpoints in L, i.e. N C [L] (with
the notation of §1). To prove the inverse inclusion we use again the last equality
for L. It implies that for any a € L, there is x € N such that a = 7%(x). But
from the last proof L — {a} = m*(W*“(x, N)). Thus, for b € L — {a}, there is y
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in W*(x, N). with b = 7(y). This gives by definition of [L],[L] C N and then
[L] = N. Let now T be the group of elements of 7;(V) that respect N. It respects
N, and thus also L. Since it is closed, L contains the limit set Lr.

It is clear that if a geodesic in N projects to a dense orbit in (N, ¢), then the
I"-orbit of this geodesic is dense in N and consequently its 7° or 7* projections
in L have dense I'-orbits. This implies L C Lr. Hence N = [Lr], and we have
Theorem B. O

S. Proof of Theorem C. Let N be a closed invariant subset of the geodesic
flow of a negatively curved manifold V. By the topological invariance of stable
and unstable manifolds, if (N, ¢) is topologically equivalent to an Anosov flow,
then it has a local product structure. This is in particular the case when it is
topologicaliy equivalent to the geodesic flow of a negatively curved surface.
We can then apply Theorem D (§6) and deduce that (N, ¢) is of quasi-Fuchsian
type. To prove the converse, assume that (N, ¢) is of quasi-Fuchsian type: N is
homeomorphic to some quotient [Lr]/T for some subgroup I' C 7y (V). If, in
addition, N is a topological 3-manifold, [Lr] must be a compact 1-manifold and
hence a topological circle. Indeed, in general [Lr] is canonically a fibration over
Lr x Ly — {diagonal} with fiber R. Thus [Lr] is a topological manifold if and
only if Lr is, and dim[Lr] =2dim L — 1.

5.1. Generalities on quasi convex cocompact groups. Let V be the uni-
versal cover of V and T a discrete group of isometries of V. We say that it
is quasi convex cocompact if Q(Lr)/I" is compact where Q(Lr) is the union of
geodesics with endpoints in the limit set L. This is equivalent to the compactness
of [Lr]/T C T'V/T because Q(Lr) is nothing but the projection in V of [Lr].

ProposITION 5.1. ([Bou], [Coo]) T is quasi convex cocompact if and only if
any orbit of T is quasi convex. That is, if X is a such orbit, there is a constant C
such that for any points x and y in X, the segment [x, y] joining them is at a distance
less than C from X. A quasi convex cocompact group T is hyperbolic. The induced
metric (from V) to any orbit of T is equivalent to a word metric on T. The limit set
Ly is canonically identified with the hyperbolic boundary OT.

The proof of this proposition uses essentially the notion of quasi-convexity.
The following proposition deals with the case where Lr- is a topological circle.

PROPOSITION 5.2. Let V be the universal covering of a compact manifold V
of negative curvature, and T a discrete torsion-free subgroup of isometries of V.
Suppose that [Lr]/T is compact and that [Lr] is a topological circle. Then T is
the fundamental group of a compact surface W of genus greater than 2. Suppose
that T is a subgroup of m|(V). Let f : W — V be a C' generic map realizing the
injection between fundamental groups. Let S = f(W) and S a lifting of S in V. Then
the intrinsic and extrinsic distances on § are (globally) equivalent.
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Proof. We first prove that I is the fundamental group of a closed surface W.
This is a general property for hyperbolic torsion-free groups whose boundary is a
topological circle [GM]. Its proof uses weak versions of the celebrated Theorem
“convergence groups are Fuchsian groups” of Gabai and Casson-Jungreis. But in
our case of torsion-free discrete isometry group of the universal cover of a com-
pact negatively curved manifold (which implies that all elements are hyperbolic),
the proof reduces to some elementary cases of this Theorem (see for instance
[Tuk]). ,

Now let f : W — V be a C! map realizing the injection between fundamental
groups. If f has isolated singularities (i.e. where f is pot an immersion), then, by
considering paths on § = f(W), we get an induced length structure. For generic
f, i.e. with isolated Morse singularities (here we assume dimV > 2, for if not
all things are trivial), the resulting distance is locally equivalent to the extrinsic
distance induced from V. The same is true for the lifting S. Hence, by cocom-
pactness (of I" on §), to prove the (global) equivalence of intrinsic and extrinsic
distances on S, it is sufficient to prove that they induce equivalent distances on
the I-orbit of some point in S. But in general, by co-compactness, the intrinsic
distance induces a distance equivalent to any word metric on I'. The same is true
for the extrinsic distance by Proposition 5.1. O

5.2. Canonical semi equivalence. Suppose now that f is a C> immersion.
It then defines a C? pulled back metric. Denote by ¢s and ¢s the geodesic flows
on T'S and T'S3, respectively. Let M be the set of unit vectors tangent to S,
which determine lines (globally minimizing geodesics) in 8. By the equivalence
of intrinsic and extrinsic distances on S, these lines are K-quasi geodesics of
V, for some K. They are then shadowed by (i.e. at bounded distance from)
true geodesics in V. We easily see that these geodesics have endpoints in L. By
considering orthogonal projection from the lines to their asymptotic geodesics, we
get a semi-equivalence between the geodesic flow on (M, ¢s), and (N, ). By 5.1,
the semi-equivalence is surjective. After diffusion [Gro], this semi-equivalence
becomes injective along orbits. If S has no distinct asymptotic geodesics, the
semi-equivalence is injective. If, moreover, S has negative curvature, then all
geodesics are lines, and we get an equivalence between (TS, ¢s) and (N, ¢). By
naturality, this gives an equivalence between (TS, ¢5) and (N, ¢).

5.3. Minimal surfaces. We may now apply the result of [SY] or [SU]
on existence of incompressible minimal surfaces. It asserts, since by definition
I' = 7 (W) is injected in 7 (W), that we can choose f to be harmonic (for some
hyperbolic structure on W), minimizing area among all maps with the same action
on 7{(W). This map is C*° (we assume that all data are C°°) and it is moreover
a branched minimal immersion [GOR]. For x regular (i.e. an immersion point),
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the Gauss equation states:
Ks(x) = Ky(TxS) + det (II),

where Ks(x) is the sectional curvature of S at x, Ky (T,S) is the sectional curvature
of the 2-plane TS in V, and II, is the second fundamental tensor of S at x. This
is a vector valued symmetric tensor. The minimality condition: ¢r(Il,) = O implies
det () < 0. It follows that, if V is locally CAT( — a?), then § itself is locally
CAT( — d?) at its regular points. On the other hand, branch points are isolated
conical singularities. Furthermore, their angles are integer multiples of 27 [GOR].
and hence S verifies locally CAT( — a?) (see for instance [Gro] or [Boul)).

5.4. The geodesic flow of a branched immersed surface. In order to
apply the semi-equivalence above, we have to make precise the meaning of the
geodesic flow of a branched immersed surface. In fact, this notion may be defined
in a quite general context as in [Gro], but the CAT( — a?) case is simpler and
presents no pathology. Indeed, by the CAT(— a?) property, § is (globally) convex
in the sense that two points are joined by a unique geodesic (in the sense of the
induced length structure). The phase space of the geodesic flow of § is the space
Isom(R, §) of (geodesic) isometric immersion of R into S. The geodesic flow ¢~s
is just the tautological action of R : qzzg(c)(s) =c(s+1), for c : R — S, an element
of Isom(R, §). The same construction yields the geodesic flow of S. This enjoys
all the classical geometric and dynamical properties, except the differentiable
structure.

Remark. If dimV = 3, f is actually an immersion [GOR]. If dimV > 4, a
generic map g : W — V is an immersion (because dim W = 2). We believe that
a suitable perturbation of f gives an immersion whose image is at least locally
CAT(— a® + €), where € is arbitrary small.

5.5. Entropy estimates. To simplify notations, we shall write the proof
for § immersed. The branched case only needs some additional notations. Let
7 : T'V — V be the projection, and p : T'S — N the map which, restricted
to a geodesic of §, is the orthogonal projection on its asymptotic geodesic (that
is, the map which may be diffused to give the previous equivalence between
geodesic flows). Let f : T'S§ — R be the derivative of j along the geodesic flow
$s. For v in TS, we denote by d(v) the distance from 7(v) to the geodesic of V
determined by p(v). All these maps are I'-invariant, and define analogous maps:
p.f,d on T!S. It is known that the orthogonal projection on a geodesic in V
has a contracting coefficient decreasing exponentially with the distance from this
geodesic. More precisely, there is ¢ > 0 (depending on the curvature of V) such
that: f(v) < exp —cd(v), for any v in T'S. For a closed geodesic g of S, denote
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by g* its corresponding geodesic of V, i.e. its image by p. We then have:

length(g*) < / exp —cd < length(g)(*).
g

Let: Gr = {g/length(g) < T} and G} = {g*/length(g*) < T}. The previous
inequality implies: card(Gr) < card(G}). In particular, we get for the topological
entropies:

hiop(N, ¢) = Tll)n;o log (card(G}))/T < Tli)rglo log (card(Gr))/T = hmp(TlS, Ps).

(see for instance [Bou] for the last equality for the topological entropy in the
CAT( — a?) case). Suppose now that equality holds and denote by 4 the common
entropy. Consider: X = {g/ [, exp —cd < (1 — €)length(g)} and denote by X, its
complementary subset in the set of closed geodesics. By (%), if g € X.NGr,g* €
G(i_¢r. In particular

card(X. N Gr) < Ca”d(Gfl—e)T)‘

Hence:
Tlim log card(X. N Gr)/T < (1 — e)h( * *).
—00

Denote by 6, the Dirac measure determined by the closed geodesic g. Then the
Margulis probability measure y, which maximizes the entropy, is the weak limit
of the probability measures ur defined by: ur = 3 68,/ > length(g), where the
sum is taken over Gr.

In fact, the Margulis measure also equals the limit of the measures 7, defined
as T, with restriction to elements in X, NGr. Indeed, by (**), the contribution in
pr =3 bg/ 3 length(g), from the elements of X, N Gr is bounded by a quantity
equivalent to: T(exp ((1 — €)hT))/ > length(g) ~ T(exp (1 — e)hT))/ exp (hT),
which tends to 0 when T goes to oo.

Now by definition, if g € X/, then: fg exp( — cd) > (1 — e)length(g). Thus
Jexp(—cd)dur > (1 — €), and consequently: [exp( — cd)du > (1 — ¢). It
follows, since e is arbitrary, that: [ (exp—cd)du > 1. Since c¢d > 0 and p is
a probability, we get [ (exp —cd)dyu = 1. That is, u-almost everywhere, d = 0.
This is in fact true everywhere in T'S because d is continuous and w has full
support. Hence any v € T'S is at distance 0 from its asymptotic geodesic in V.
This means that this last geodesic of V is in S. Thus, S is geodesic in V. This
completes the proof of the theorem. O

6. Proof of Theorem E. We first make the following remarks:

(1) Subsets with local product structures are invariant by topological equiv-
alence. The last results could then be reformulated in the context of systems
topologically equivalent to geodesic flows.
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(i) We have an analogous result for splitting systems; i.e. with the same
hypotheses, we can choose components in the universal cover (in fact any con-
nected component if our set is locally connected as in Theorem F) with global
product structure.

Sketch of the proof. The proof here is less synthetic than that of §3, where not
only unstable manifolds were locally connected but also topological manifolds.
We denote (as in §3 for the attractor A) by Ny some e component of N, where ¢
is an Anosov constant. To determine 7°(Ny), we consider for two points x and y
in Ny the subset:

Ex(No) = {z € W*(x, No)/ W*(z, No) N W (y, No) # ¢}.

As Ny is closed in M, £,,(Np). is closed in the analogue set &, (i7). The cru-
cial point, equivalent to Lemma 3.2, which follows from the uniformity of
the product structure, is that &,,(No) is open in W(x, Np). It is then open in
8yx(M) N W*(x, Ny). We observe that local connectedness of unstable manifolds
in N implies local connectedness and connectedness of unstable manifolds in V.

For splitting systems we have &,,(M) = W(x, M). Hence by connectedness
Eyx(No) = W(x, No). This proves the statement of Remark (ii) above. O

Let us now consider in more detail the geodesic flow case. We shall make
use of notations introduced in §4. Observe first that as in the proof of §4,
for x in Ny, 7%(x) is an accumulation point of 75 (W*“(x, Np)). Indeed, if not,
W(x,N) would be a compact subset of W**(x, M), and hence for ¢ big enough,
W*(¢~'x, N), would be so small, which contradicts the local product property
(unless we are in the trivial case of a single closed orbit).

Denote L*(x) = mS(W(x, No)) = m5(W*(x, No)) and L"(x) its closure, which
is just m(W*(x,No)) U {m*(x)} = L*(x) U {n¥“(x)}, since 7*(x) is the unique
accumulation point of L%(x). Observe that L*(x) = L*(y) if and only if x and y
are in the same weak unstable leaf,

Notice that in M, we-have: £,(M) = W(x, M) — {(x*)~'(x*(y))}. This
translates at infinity as:

FACT 6.1. For x and y in No, L*(x) N L*(y) is an open-closed subset of L*(x) —
{m“(y)} and L*(y) — {7“(x)}. It then follows (from the connectedness and local
connectedness of L*(x) and L*(y)) that if L“(x) # L*(y) (that is x and y are not
in the same weak unstable leaf), then we have exactly one of the following three
possibilities:

(1) L*x) N L*(y) is empty.

(i) 7*“(y) € L*(x), and m(x) € L*(y), and thus both 7"(x) and *(y) are
accumulation points of L*(x) N L*(y).

(i) 7(y) ¢ L*(x), 7(x) € L*(y) and L"(x) C L*(y). 0
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Definition. We say that x is maximal if L"(x) is maximal, that is, not strictly
contained in another set L"(y). We say that x is almost-maximal if w(y) € L*(x),
whenever L*(x) N L*(y) is not empty and y # x.

One can show in a standard way (for instance, by contradiction) that the
mapping x — L"(x), is continuous in the sense of Hausdorff topology on the
space of closed subsets of the sphere at inﬁnity S§°,

It then follows that any compact set K C Ny has a maximal point x, that is,
L"(x) is not strictly contained in another L“(y), for y € K. In fact, we have:

FACT 6.2. For any xo, there is yo maximal, such that L*(xo) C L*(yo).

Proof. We shall in fact show that there is a compact K, such that for any y with
LY ¥) strictly containing L"(xo), there is x € K, such that L*(x) = L*(y). Indeed,
the hypothesis implies that the geodesics ]7“(y), m(xo)[ and 17*(y), 75(x)[ are
contained in W*(y, No). Thus the hyperbolicity (of V or equivalently 7! V) applied
to the ideal triangle joining 7“(y), m™(xp) and 7°(xp) implies that some point
of 1m*(y), m™*(x0)[Ulr*(y), m5(xp)[ is at a distance less than §, the constant of
hyperbolicity (of T'V) from xo (see [Grol). That is W*(y, Ny) passes trough a
compact neighborhood of xg. o

Let AM be the set of almost-maximal points, AM™ its complementary in N,
and AM,AM* their respective projections in N.

FACT 6.3. AM" is open. If AM™ is not empty then it contains periodic orbits.

Proof. Let x € AM", then there is some y, with L“(x) N LYy) # ¢ and
T™(y) ¢ L“(x) By continuity of L*, 7*(y) ¢ L*(x), for x' near x. Thus, to show
that AM™ is open it suffices to observe that the set {x'/L“(x’) N L*(y) # ¢} 1s
open: If S ) € L*(y), then 7°(U) C L*(y), for some neighborhood U of %
The fact that AM* contains periodic orbits (if it is not empty) is true for any
open subset of N saturated by W*. Let O be such a subset, then it contains an
open subset of the nonwandering set Q(N). Indeed, since N has a local product
structure, any unstable leaf W*(x, N) coincides with an unstable leaf W*(x’, N) of
some x’ € Q(N). Hence O intersects Q(N) in a nontrivial open subset since it
is open and W*-invariant. Therefore O contains a periodic orbit since the set of
such orbits is dense in Q(N). O

FACT 6.4. AM* is empty, that is, all points of Ny are almost-maximal. In par-
ticular for any x and y with L*(x) N L*(y) # ¢ and 7 (x) # 7"(y), the two opposite
geodesics 1m*(y), 7™ (x)[ and 17%(x), 7 (y)[ are contained in Nj.

Proof. Let xo € AM” be a point projecting to a periodic orbit, and y as above,
thatis, L"(xo) C L*(y9), and yo maximal, in particular yo € AM. Thus the geodesic
Im*(y0), T (x0)[ is contained in W*(yo, Np) since 75(xg) € L*(xp) C L*(yp). This
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geodesic is positively asymptotic to that determined by xo. Let p : No — N be
the projection and ¢' be the geodesic flow. Then, there are ¢ (big enough) such
that ¢'(p(yo)) belongs to any fixed neighborhood of p(xp), and in particular to
AM*. Contradiction, since p(yo) and so also ¢'(p(yo)) belong to AM. O

End of the proof. We similarly define L(x) = m*(W*(x, Ny)). We always have
L’ (x) = L*(x) U {7*(x)}, but we do not know further about L*, because we assume
no connectedness conditions on stable leaves. So we start by showing that N is in
fact invariant by the flip o : T'V — TV, that associates to a vector its opposite.
Indeed, let x € Ny and y € W¥(x, Np) such that 7%(y) is near 7°(x). From Fact 6.4,
the geodesic ]7*(y), m(x)[ is contained in Ny, since m5(x) € L*(x) N L*(y) # Q.
This converges to ]m°(x), 7(x)[, i.e. the opposite to the geodesic determined by
x, when 7%(y) tends to 7°(x).

We now show that L’(x) = L"(x). It suffices for this to prove that L’(x) C
L*(x), and thus to apply o to get the inverse inclusion. Let y € W*(x, Np), then
L*(x)NL"(y) # ¢ since it contains 7°(x). It then follows since x is almost-maximal
that 7%(y) € L*(x). Hence L’(x) = m*((W*(x, Ny)) is contained in L"(x).

From the equality L“ = L' it follows that the mapping x — L"(x) (or L’(x) is
constant along both stable and unstable leaves. Therefore it equals a constant L,
that is, for any x € Np : L“(x) = L’ (x) = L. It is now straightforward to prove that
Ny is quasi-Fuchsian, with L as limit set. O

Examples. It is not obvious in general how to construct closed locally
connected invariant subsets with local product structures. But without the local
connectedness condition, invariant subsets which are not of quasi-Fuchsian type
can be constructed as follows. Let V be a compact negatively curved Riemannian
manifold. Let a and b be two elements of m1(V) with different axis (i.e. a and
b have no equal nontrivial powers). Then, one can prove that for m and n big
enough, the group I generated by a’ = ™ an b’ = b" is a Schottky group [Thu]. It
is in particular free, quasi cenvex cocompact, and Lr is a cantor set. Thus [Lr] /T
is an invariant subset of quasi-Fuchsian type in (T'V, ¢). Any element of T is
a word in @’ and b'. Denote by I'* those words with all exponents of ¢’ and b’
positive. We view the axis of an element v in I, as a geodesic A, C TN. Let Ny
be the Closure of U{A,,y € I""}. We can prove that the projection N of Np in
[Lr]/T C TV is a closed and connected invariant subset. Moreover, (N, ¢) has
a local product structure, but is not of quasi-Fuchsian type. But N is not locally
connected since [Lr]/T itself is not locally connected (it is locally modelled on
a product of a Cantor set by an interval). Thus Theorem D is not valid without
the local connectedness assumption.
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