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How this talk is different (most of the others)?

1. We deal with automorphisms of a complex structure,

There is no “locally rigid” geometric structure involved

Rather, global considerations

2. Elie Cartan is not involved

Rather, Henri Cartan could be concerned!
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About the relation “Local vs Global” (Elie - Henri)

It would not be a historical mistake to say that Elie Cartan has

proved everything in differential geometry,

but locally!

Maybe, He didn’t know the definition of a manifold by atlases...!?

From a letter of A. Weil to Henri Cartan:

... il me dit de son ton tranquille: “J’apprends l’analysis situs, je

crois que je pourrai en tirer quelque chose”

He (E. Cartan) told me with his quiet tone: “ I am currently

learning the analysis situs (which means Topology), with hope to

take benifit of it”

(published in an Astérisque volume dedicated to Cartan, 1985)
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The Theorem

Warning: almost all statements are, up to a finite cover for spaces,

and finite index for groups!



Theorem
Let M be a compact Kaehler manifold of dimension n.

Let Γ be a lattice in a simple Lie group G of real rank n − 1.

Let Γ acts on M holomorphically. Then, either

1) The action extends to an action of the full Lie group G.

2) or M is birational to a complex torus.

More precisely, M is a Kummer variety: it is obtained form an

abelian orbifold A/F by blow ups and resolution of singularities.
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Introduction: Meeting of
two worlds



Introduction 1:
Automorphism groups of

Kähler manifolds



The discrete factor of the automorphism group

Let M be a complex manifold.

Aut(M) the group of holomorphic diffeomorphisms of M

– If M is compact, then Aut(M) is a complex Lie group (of finite

dimension).

– The Lie algebra of the identity component Aut0(M) is the space

of holomorphic fields on M.

(Bochner-Montgomery...?)



A complex structure is not a rigid geometric structure!

The Lie group property (for compact spaces) follows from

“ellipticity”

(Ref: Kobayashi’s book, transformation groups)

the space of holomorphic sections of a holomorphic bundle over a

compact complex manifold, has finite dimension (Cauchy formula):

L∞ boundeness =⇒ C 1 boundeness





Automorphism groups in the Kähler case

If M is Kaehler, the dynamics of Aut0(M) (the connected

component of 1) is poor (in particular non-chaotic)

Explanations:

- Elements of Aut0(M) have vanishing topological entropy.

– In the projective case, i.e. M ⊂ CPN ,

Aut0(M) = {g ∈ PGLN+1(C), gM = M},
i.e. automorphisms of M are restrictions of global linear

automorphisms of CPN

(actually we need to consider a bigger N)

→ it is more important to consider the discrete factor

ΓM = Aut#(M) = Aut(M)/Aut0(M).
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• Which discrete groups are equal to ΓM = Aut#(M) for some M?

• For fixed dimension n, find M for which Aut#(M) is as big as

possible?



What is and Why Kähler?

Definition: (M, J) is Kähler, if there exists a Hermitian metric g ,

such that ω(u, v) = g(u, Jv) is a closed 2-form.

• Kähler: compatibility of complex geometry and Riemannian

geometry:

– “holomorphic ∼ harmonic”

– Any complex submanifold is minimal (in the sense of Riemannian

geometry)

• Kähler: it gives a natural, almost optimal condition for

holomorphic embedding in CPn



Non-Kähler examples

M = G/Γ, homogeneous with Γ discrete, G complex

M admits a Kähler metric ⇐⇒ G is abelian!
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Kähler dynamics

Two facts:

• The action of Aut0(M) looks like an algebraic action of an

algebraic group on an algebraic manifold

• The action of ΓM on the cohomology is (virtually) faithful.



Γ acts on H∗(M,C),

W = H1,1(M,R) ⊂ H2(M,R)

ρ : Γ→ GL (W )

– Aut(M), in fact Aut#(M) = Aut(M)/Aut0(M), acts on W .

Fundamental Kaehler Fact: The action of Aut#(M) is virtually

faithful: its kernel is finite ⇐⇒ if an automorphism acts trivially

on W , then a power of it belongs a flow.

(authors: Liebermann, Fujiki...)



Lieberman-Fujiki

(M, ω)

Aut[ω](M) = {f ∈ Aut(M) such that f ∗ω is cohomologeous to ω }

ω Kaehler form

Fact: Aut[ω](M) has a finite number of connected components

Idea of proof:

– Graph(f n) ⊂ M ×M have a bounded volume:

Graph(f ) = {(x , f (x)) x ∈ M}
ωn = ω ∧ . . . ∧ ω (n-times)



∫
Graph(f )

ωn =

∫
Graph(Identity)

ωn

Kähler character: The Riemannian volume of any complex

submanifold Y of dimension d equals
∫
Y ω

d

In particular, complex submanifolds are minimal submanifolds in the

sense of Riemannian geometry

Chow or Hilbert scheme: Cv the space of complex analytic sets of a

bounded volume v = it is a (singular) complex space:

Example: for CPn: bounded volume ⇐⇒ bounded degree

Cv has a finite number of connected components. (one basic

property of algebraic sets)





Comparison with the affine torus

M = Tn = Rn/Zn

Aff (M) = SL n(Z) o Tn

Aff 0(M) = Tn acts with Zen dynamics

Elements of Aff #(M) = SL n(Z) act with a violent (generally

chaotic) dynamics,

• Affine transformations minimize topological entropy in their

homotopy classes and are optimal mechanical model in this class

• all this thoughts extend to Kähler structures, without being a

rigid geometric structure!!!





Introduction 2: Actions
of arithmetic groups,

Zimmer program



Margulis super-rigidity

G a semi-simple (real) group (e.g. G = SL n(R)...)

Γ ⊂ G a lattice: G/Γ has finite volume, e.g. co-compact.

Example SL n(Z) is non co-compact lattice of SL n(R).

The world of (simple Lie) groups:

F = {O(n, 1); SU(n, 1); }
R = {the others, e.g., Sp(n, 1), SLn(R), SO(p, q), p, q > 1...}
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A Γ a lattice of G , and G ∈ R, is super-rigid: any

h : Γ→ GL N(R) extends to a homomorphism G → GL N(R),

unless it is bounded...

The authors: Margulis if rkRG ≥ 2 (e.g. SL n(R), n ≥ 3...)

Gromov-Shoen: for the rk-one: Sp(n, 1) and the isometry group of

the hyperbolic Cayley plane.



Zimmer program

– Super-rigidity solves linear representation theory of Γ

– Zimmer program, a tentative to understand “non-linear

representations”, i.e. Γ→ Diff(M), where M is compact, i.e.

differentiable actions of Γ.

Question

Let Γ be a lattice in a simple Lie group G of real rank ≥ 2.

– Find the minimal dimension dΓ of compact manifolds on which Γ

acts, but not via a finite group.

- Describe all actions at this dimension.



Remark
Zimmer proves a “ super-rigidity of cocycles”.

– In general, one deals (in the question above) with volume

preserving actions.

Example: Γ = SL n(Z) (and congruence groups)

– The minimal linear representation is the standard one in SL n(R),

or its dual.

– Γ acts on the (real) torus M = Rn/Zn.

Rigidity question (variant): prove that all smooth actions of Γ on

the torus are smoothly conjugate to the standard one. (Authors:

Zimmer, Margulis, Katok, Spatzier, Hurder, Lewis, Kanai...)



Strategy

Fix a kind of geometric structure, and restrict himself to actions

preserving such a structure.

Our theorem: solves the question in the holomorphic Kaehler case.

Conjecture

(???) If Γ a lattice in a higher semi-simple Lie group acts on a

compact Kaehler manifold, and a Zariski generic point has a Zariski

dense orbit, then M is birationnal to a torus?
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Remark: another connection (Kähler and arithmetics):
mapping class group

Teic(M) space of complex structures up to (smooth) isotopy

Mod(M) = Diff(M)/Diff 0(M) acts on Teic(M)

Sullivan: Mod(M) is an arithmetic group...

Aut#(M, c) ∼= stabilzer of c ∈ Teic(M) in Mod(M).

Special points: those with a big stabilizer.





More details about the
statement



Complex tori: some
arithmetics



Space of tori

Torus X = XΛ = Cn/Λ

Λ a lattice in Cn ∼= R2n (there is no way to define Λ a complex

lattice)

Space of Lattices: L = SL 2n(R)/SL 2n(Z)

G = SL n(C) acts on L.
(SL 2n(R) acts transitively on L but not SL n(C))

Aut#(XΛ) = stabilizer of Λ in G = SL n(C) =

ΓΛ = Aut(XΛ)/Aut0(XΛ) = {g ∈ SL n(C), gΛ = Λ}



Remark (dual point of view): the Teichmuller space is

SL 2n(R)/SL n(C), endowed with the action of the modular group

SL 2n(Z).

Generically: ΓΛ = {1}



Our case: classify Λ such that: ΓΛ is isomorphic to a lattice in a

semi-simple Lie group of rang n − 1

⇐⇒ its Zariski closure G ⊂ SL n(C) has real rank = n − 1

⇐⇒ G = SL n(C), or G conjugate to the standard copy

SLn(R) ⊂ SL n(C).



Proposition

Let G be the Zariski closure of ΓΛ

1) If G = SL n(C), then Λ = Rn, R = Z +
√
−dZ, and

Γ = SL n(Z +
√
−dZ).

2) If G = SL n(R), then, either

2.1) Λ = Zn + δZn = (Z + δZ)n, and Γ ∼= SL n(Z), or

2.2) n = 2d, Λ = Rn, where R is lattice in R4 = C2, R = Ha,b(Z)

the ring of integer points of a quaternion algebra over Q.

Γ = SL n(Ha,b(Z)) ⊂ SL n(Ha,b(R)) = SL n(Mat2(R)) = SL 2n(R).



In the first two case: X = Y n, Y an an elliptic curve,

In the last case: X = Zn, Z = C2/Ha,b(Z)

Z is an abelian surface.



More details

Ha,b(Q)) quaternion algebra over Q defined by its basis (1, i, j, k),

with

i2 = a, j2 = b, ij = k = −ji, (a, b > 0)

It embeds into Mat2(Q(
√
a)) by mapping i and j to the matrices( √

a 0
0 −

√
a

)
,

(
0 1
b 0

)
.

Ha,b(R) = Ha,b ⊗Q R
The matrix associated to q = x + y i + z j + tk has determinent

Nrd(q) = x2 − ay2 − bz2 + abt2.



Ha,b(Z) is the set of norm 1 and points of integer coordinates

Case a = b = −1, we get SL 2(Z) a lattice (in the n on-linear

sense) of SL 2(R)

General case, Ha,b(Z) is big in SL 2(R), it is a lattice, usually

co-compact

(first cases of Harish-Chandra-Borel Theorem)t



Complex multiplication



Quoting Hilbert:

Complex multiplication is not only the most beautiful theory in

mathematics, but in all sciences!

Google search: complex multiplication?

Surprise: not our human multiplication,

Book by Serge Lang: complex multiplication,...
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X = Cn/Λ

End(X ) complex endomorphsim ring of X

End(X ) ⊃ Z
- If dimX = 1, then

End(X ) = Z, or
Z +
√
−dZ, in which case: Λ is a sub-ring of C

In the last case: X is of CM type,

Higher dimension ...



Abelian orbifolds with a Lattice action

Y = X/F

F abelian finite generated by a rotation −→z → η−→z
η a root of unity,

ηk = 1,

k = 1, 2, 3, 4, 6

This is Calabi-Yau if dimY = k (in particular M is simply

connected)



Actions of Lie groups



Actions of Lie groups

Let M be a connected compact complex manifold of

dimension n ≥ 3. Let H be an almost simple complex Lie group

with rkC(H) = n − 1.

If there exists an injective morphism H → Aut(M)0, then M is one

of the following:



(1) a projective bundle P(E ) for some rank 2 vector bundle E over

Pn−1(C), and then H is isogenous to PGL n(C);

(2) a principal torus bundle over Pn−1(C), and H is isogenous to

PGL n(C);

(3) a product of Pn−1(C) with a curve B of genus g(B) ≥ 2, and

then H is isogenous to PGL n(C);

(4) the projective space Pn(C), and H is isogenous to PGL n(C) or

to PSO5(C) when n = 3;

(5) a smooth quadric of dimension 3 or 4 and H is isogenous to

SO 5(C) or to SO 6(C) respectively.





Cohomological Actions:
a major ingredient



The cohomological automorphism group

A diffeomorphism f of M acts on its cohomology

H∗(M,R) = ΣH i (M,R)

f∗ preserves the cup products H i × H j → H i+j

and PoincarŐ duality: H i ∼= (Hn−i )∗

if M Kähler, Hp,q Hodge decomposition

CoAut(M) = the Linear subgroup of GL (H(M,R) preserving

Hodge decomposition, the cup product and Poincaré duality,

This is an algebraic group,

Why it is non-trivial?

For instance, W = H1,1(M,R) 6= 0

General question: understand CoAut(M)?



Using Super-rigidity

Aut(M)→ CoAut(M)

If Γ ⊂ Aut(M), then

ρ : Γ→ CoAut(M)

If G ⊂ Γ is a lattice in G , e.g. G ∼= SL n(R), n ≥ 3,

then ρ extends to G

Example SL n(Z) acts on Tn, and SL n(R) acts on H∗(Tn,R),

This appears as a Zariski closure!



Question: How CoAut(M), where dimM = n contains SLm(R),

m ≥ n?

Is this impossible for m > n



Surface case,

In dim = 2, the cup product is a quadratic form: b : W ×W → R.

Hodge index theorem (Noether theorem): b has (anti-) Lorentz

signature +− . . .− (or +).



Fact If M is a surface (Kähler or not)

A semi-simple Lie group (with no compact factor) can be embedded

in O(1,N) iff it is (locally) isomorphic to some SO(1,m), m ≤ N

In particular,

CoAut(M) is either ∼= SO(1,m),

or contained in a parabolic group P of O(1,N),

P = SO (n − 1) n Rn



If Γ a lattice in G of higher rank, acts,

then G embeds in O(1,N),

impossible!



Higher dimension

c : W × . . .W →W → R
- Is there a kind of Nother theorem for c?

– Can the “signature” be bounded by means of the dimension?

Case: dimension = 3,

– “Trilinear forms are a challenge for mathematics” !!!

(The quotient space under the GL 3(R)-action is infinite...)



Hodge index theorem, Hodge-Riemann bilinear relations

qω : α ∈ H1,1 →
∫
α ∧ α ∧ ωn−1

If ω is a Kähler, then qω is negative definite on the primitive space

[ω]⊥ = {α ∈W , α ∧ ω ∧ ω = 0}



Dimension 3

Fact
(Lorentz-like property)

b : W ×W →W ∗ satisfies, if E ⊂W is isotropic for c, then

dimE ≤ 1.

This allows one to classify ρ assuming rkR(G ) ≥ 2.

(for instance, G can not contain SL 2(R)× SL 2(R)...)

– Proof of the Fact: If dimE 6= 0, then, E ∩ [ω]⊥ 6= 0, and

q(a, b) = ω ∧ a ∧ b negative definite.



Question: classify the orthogonal group of a vectorial bilinear (or

equivalently a trilinear form) satisfying the Lorentz-like property?



Representation of SL2(R)

Let H = S n R be the orthogonal group of a Lorentz-like trilinear

form,

S semi-simple, thus contains locally SL 2(R)

Bounds of the SL 2(R) in S



Rk representation in

Pk= Polynômes homogènes de degré k = {p = Σx iyk−i}
A diagonal matrix (λ, λ−1)

A =

(
λ 0
0 λ−1

)
Ak action on Pk

Weights (eigenvalues) λk , λk−2, λ2−k , λk ,

Eigen-vectors: ek , . . . e−k



• The wedges er ∧ es are eigenvalues (or 0)

Ak(er ∧ es) = λr+s(er ∧ es) = A∗k(er ∧ es) = λl (er ∧ es)

So:

– either er ∧ es = 0

– or r + s is a weight of the dual R∗k ∼= Rk and thus −k ≤ r + s ≤ k



• Necessarily ek ∧ ek = 0 (since 2k > k)

By the Lorentz-like property, we can not have

ek ∧ ek−2 = 0, and ek−2 ∧ ek−2 = 0

Hence 2(k − 2) ≤ k , i.e. k ≤ 4.



Conclusion

– In dimension 3, by representation theory, we get information on

the cohomology

– Essentially, H1,1(M,R) = H1,1(T3,R)⊕ T ,

where the representation on T is trivial,

– Other structures on the cohomology are needed, e.g. The Kähler

cone....

– All this is a crucial step in the proof...

In dimension > 3, other approach...





Non-algebraic structures on the cohomology: The Kaehler
cone

W is a ordered linear space:

K ⊂W the space of α ∈W having a reprensentative ω ∈ [α],

which is Kaehler, i.e. g(u, v) = ω(u, Jv) is positive definite. (so

h = g + ω is a hermitian metric)

K is a convex non-degenerate cone with a non-empty interior.

The nef cone is the closure K



Preserved sub-cones

Proposition

Let Γ be a lattice in a semi-simple group G, and ρ : G → GL (W ).

Assume ρ(Γ) preserves a non-degenerate cone K. Then ρ(G )

preserves a non-degenerate cone K′.

Remarks:

1) The cone is unique if ρ is irreducible.

2) This is not true if Γ is merely a Zariski dense subgroup.





Algebraic geometry



What is the torus

M a Kähler manifold,

M is covered by a torus ⇐⇒
c1(M) = c2(M) = 0



c1(M) ∈W = H1,1,

c2(M) ∈ H2,2 = W ∗

c1, c2 are invariant by Aut(M)

c1 ∈ T

How to kill the fixed space T of the cohomological representation

Γ→ GL (W )?



This is possible if c1 corresponds to:

1) an effective (i.e positive) divisor,

2) this divisor is rigid CP2...
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