Around Zimmer program: rigidity of actions of higher rank lattices

Ghani Zeghib

UMPA, ENS-Lyon http://www.umpa.ens-lyon.fr/~zeghib/ Rigidity Scool, Nara, 2010/2011 5 - 8 March, 2011

◆□ > ◆□ > ◆三 > ◆三 > ○ = ○ ○ ○ ○

- Margulis
- Zimmer program
- Questions ?
- Strategies and approaches
- Goal : torus case
- 2 Examples
- 3 Known results
 - Local rigidity, unimodular case
 - Local rigidity on boundaries
 - With a rigid geometric structure
 - Holomorphic case
 - On the torus

Warning : almost all statements are, up to a finite cover for spaces, and finite index for groups !

イロト イポト イヨト イヨト

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

From representations to actions

(see two survey articles by D. Fisher :

- Local rigidity of group actions : past, present, futur
- Groups acting on Manifolds : around the Zimmer program)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Margulis super-rigidity

G a semi-simple (real) group (e.g. $G = SL_n(\mathbb{R})...$) $\Gamma \subset G$ a lattice : G/Γ has finite volume, e.g. co-compact. Example $SL_n(\mathbb{Z})$ is non co-compact lattice of $SL_n(\mathbb{R})$.

Congruence groups : a subgroup of $SL_n(\mathbb{Z})$ that contains the kernel of the projection : $SL_n(\mathbb{Z}) \to SL_n(\mathbb{Z}/p\mathbb{Z}) \to 1$

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

Margulis super-rigidity

G a semi-simple (real) group (e.g. $G = SL_n(\mathbb{R})...$) $\Gamma \subset G$ a lattice : G/Γ has finite volume, e.g. co-compact. Example $SL_n(\mathbb{Z})$ is non co-compact lattice of $SL_n(\mathbb{R})$.

Congruence groups : a subgroup of $SL_n(\mathbb{Z})$ that contains the kernel of the projection : $SL_n(\mathbb{Z}) \to SL_n(\mathbb{Z}/p\mathbb{Z}) \to 1$

The world of (simple Lie) groups :

$$\mathcal{F} = \{O(n, 1); SU(n, 1); \}$$

 $\mathcal{R} = \{\text{the others, e.g., } Sp(n, 1), SL_n(\mathbb{R}), SO(p, q), p, q > 1...\}$

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

A a lattice Γ of G, and $G \in \mathcal{R}$, is **super-rigid** : any $h : \Gamma \to \operatorname{GL}_N(\mathbb{R})$ extends to a homomorphism $G \to \operatorname{GL}_N(\mathbb{R})$, unless it is bounded...

The authors : Margulis if $\operatorname{rk}_{\mathbb{R}}G \ge 2$ (e.g. $\operatorname{SL}_{n}(\mathbb{R})$, $n \ge 3...$) Gromov-Shoen : for the rk-one : Sp(n, 1) and the isometry group of the hyperbolic Cayley plane.

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

Remarks : other partitions

 $\mathcal{H} =$ hyperbolic groups = rank 1 \mathcal{H}^* non-hyperbolic ...

 ${\cal H}$ is partioned into non-Khazdan NTH and Khazdan groups TH

NTH = Non-Kaehler groups NKNTH and Kaehler KNTH

 $NKNTH = \{SO(1, n), n > 2\}$

 $KNTH = \{SL_2(\mathbb{R}), \text{ the others }\}, \text{ i.e. } SU(1, n), n > 1$ Remark : Similar statements in the semi-simple case... Introduction

Examples Known results $SL_n(\mathbb{Z})$

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 の�?

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

Zimmer program

- Super-rigidity solves linear representation theory of $\boldsymbol{\Gamma}$
- Zimmer program, a tentative to understand "non-linear representations", i.e. $\Gamma \rightarrow \text{Diff}(M)$, where M is compact, i.e. differentiable actions of Γ .

Non-linear superrigidity : Diff(M) is a non-linear group, i.e. not a subgoup of GL $_{N}(\mathbb{R})$, yet it is simple...

(It does not mean extension of actions to the ambient Lie group)

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

A typical question

Question (Minimal dimension)

Let Γ be a lattice in a simple Lie group G of real rank ≥ 2 . – Find the minimal dimension d_{Γ} of compact manifolds on which Γ acts, but not via a finite group.

- Same question assuming the action measure preserving?
- Describe all actions at this dimension.

Example : $\Gamma = SL_n(\mathbb{Z})$

The minimal dimension of representations in that of minimal dimension of $SL_n(\mathbb{R})$ and equals n.

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Basic examples

1. Affine (automorphic) action on the torus $\Gamma = \operatorname{SL}_n(\mathbb{Z})$ acts on the torus $\mathbb{R}^n/\mathbb{Z}^n$ If $A \in \operatorname{GL}_n(\mathbb{Z})$, then it acts as an automorphism of \mathbb{R}^n preserving \mathbb{Z}^n , hence acts as automorphism of \mathbb{T}^n

2. Projective action on the sphere : SL $_{n+1}(\mathbb{R})$ linearily acts on $\mathbb{R}^{n+1} - 0$, and hence on $\mathbb{R}P^n = (\mathbb{R}^{n+1} - 0)/\mathbb{R}^*$, as well as on the sphere $\mathbb{R}^{n+1} - 0/\mathbb{R}^+$, If $A \in SL_{n+1}$, it acts on the sphere by $A.x = \frac{A_x}{\|A(x)\|}$

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

3. Affine actions on a homogeneous space : $M = H/\Lambda$, Λ a co-compact lattice,

H acts by left translation of $M : h.x\Lambda = (hx)\Lambda$

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

3. Affine actions on a homogeneous space : $M = H/\Lambda$, Λ a co-compact lattice,

H acts by left translation of $M : h.x\Lambda = (hx)\Lambda$

If A is an automorphism of H preserving Λ , then it acts on M

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

3. Affine actions on a homogeneous space : $M = H/\Lambda$, Λ a co-compact lattice,

H acts by left translation of $M : h.x\Lambda = (hx)\Lambda$ If *A* is an automorphism of *H* preserving Λ , then it acts on *M* The so generated group is $Aff(H/\Lambda)$. It contains *H*

If fact, this is the symmetry group of the canonical connection on H/Λ , which goes down from H since Λ is discrete.

• Affine action of $\Gamma \iff$ a homomorphism $\Gamma \rightarrow Aff(H/\Lambda)$

e.g. a homomorphism defined on G in $H \subset Aff(H/\Lambda)$

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

4. Isometric actions : $\rho : \Gamma \in K$ a compact Lie group actions on M. Example : K a finite group, they exist since Γ is residually finite e.g. $SL_n(\mathbb{Z}) \to SL_n(\mathbb{Z}/p\mathbb{Z}) \to 1$

5. Quasi-affine actions : the isometric actions are dynamically trivial, but can be combined with affine actions \rightarrow **quasi affine**...

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Unimodular vs non-unimodular

• As usual, there are differences between measure preserving and non-preserving cases,

In many rigidity contexts, one works with a volume preserving hypothesis

• Example : $SL_n(\mathbb{R})$ acts on \mathbb{R}^n , and so on $M = \mathbb{R}^n/(x \to \alpha x)$ $\alpha > 1$ (e.g. $\alpha = 2$), $M \cong S^1 \times S^{n-1}$, It preserves no-measure e.g. n = 2, M a torus,

One-parameter groups generate Reeb flows, with poor dynamics,

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

If a subgroup of G acts, then G itself acts!

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

Suspension

If a subgroup of G acts, then G itself acts ! $L \subset G$ acts on N $M = G \times N/L$, where L acts by I(g, x) = (gI, I.x)The action of L is proper...

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

• □ ▶ • • □ ▶ • • □ ▶

Suspension

- If a subgroup of G acts, then G itself acts!
- $L \subset G$ acts on N

$$M = G \times N/L$$
, where L acts by $I(g, x) = (gI, I.x)$

The action of L is proper...

G acts on
$$M : g.(g', x) = (gg', x)$$

 $M \rightarrow G/L$ is a bundle with fiber N

If N compact, and G/L compact, then M is compact,

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

• □ ▶ • • □ ▶ • • □ ▶

A non-unimodular example

Take *L* parabolic,

- let it acts on N via a homomorphism $L \to \mathbb{R}$,
- $\mathbb R$ acts as a one parameter group of diffeomorphisms ϕ^t
- The dynamics of G is equivalent to that of ϕ^t

Introduction

Examples Known results $SL_n(\mathbb{Z})$

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Zimmer dream !

- Actions of Γ (a lattice in a higher rank simple group) are classifiable...

- They are all of algebraic nature
- They are all quasi-affine : up to a compact noise, they are affine !

— In particular, the unique volume preserving action of a lattice Γ in SL $_n(\mathbb{R})$ on a compact manifold of dimension n, is that of finite index subgroups on the *n*-torus ?

——– In particular the unique volume preserving action of a lattice in SL $_n(\mathbb{R})$ on \mathbb{T}^n is the usual one.

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

イロト イポト イヨト イヨト

Gromov-Zimmer vague conjecture

It seems that Gromov invented his theory because he meet difficulties in undestanding Zimmer !

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Conjecture (Old conjecture)

Whenever a lattice Γ acts on a compact smooth manifolds, it preserves some rigid geometric structure !

Conjecture (Gromov Vague conjecture)

Compact manifolds having a rigid geometric structure with a **non-compact** symmetry group, are special, and classifiable !

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Rigid geometric structures

(rigid geometric structures ≠ (global) rigidity of actions !)
Rigidity vs flexibility of geometric structures ?
Rigid (Solid) : Riemannian metric — Pseudo-Riemannian metric
— Connection — Conformal structure on dimension > 2....

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

Rigid geometric structures

(rigid geometric structures ≠ (global) rigidity of actions !)
Rigidity vs flexibility of geometric structures ?
Rigid (Solid) : Riemannian metric — Pseudo-Riemannian metric
— Connection — Conformal structure on dimension > 2....

Non-rigid (Fluid) : Symplectic structure — Complex structure — Contact structure — ...

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

Rigid geometric structures

(rigid geometric structures ≠ (global) rigidity of actions !)
Rigidity vs flexibility of geometric structures ?
Rigid (Solid) : Riemannian metric — Pseudo-Riemannian metric
— Connection — Conformal structure on dimension > 2....

Non-rigid (Fluid) : Symplectic structure — Complex structure — Contact structure — ...

• Rigid \cong the pseudo-group of local isometries is a LIE GROUP (of finite dimension).

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

More explanations on rigid geometric structures

Rigid : \cong give rise naturally to Generalized geodesics

- there is a kind of naturally associated connection,
- there is a naturally associated family of curve, generalized like geodesics,

Rigid at order $k \rightarrow$ a differential equation of order k + 1Example : a connection (order 1) $\ddot{x^i} = \Sigma \Gamma^i_{jk}(x) \dot{x^j} \dot{x^k}$ $(x = (x^1, \dots, x^n)$ a coordinate system)

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

More formally : P(M) the GL $_n(\mathbb{R})$ -principal bundle of frames of M $P^k(M) = P(P^{k-1}(M)$

Parallelism (or framing) on a manifold $N : x \rightarrow r(x)$ a base of $T_x N$

Rigidity at order $k \cong$ there is a naturally associated parallelism of $P^k(M)$

Example : a connection on $M \rightarrow$ tautological parallelism of P(M)

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

・ロト ・聞ト ・ヨト ・ヨト

Rigidity

$$\begin{split} &\text{lso}_x^{\text{Loc}} = \{ \text{f local isometry defined around } x \text{ such that } f(x) = x \} \\ &\Phi_x^k : f \in \text{lso}_x^{\text{Loc}} \to \text{jet}_x^k(\text{f}) \in \dots \text{ (some complicated algebraic space)} \\ &\text{``Local rigidity at order } k'' : \Phi_x^k \text{ is injective} \end{split}$$

Example : A Riemannian isometry f : f(x) = x, and $D_x f = 1$, then f = id.

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Infinitesimal rigidity

True definition, stronger than the local rigidity : Ψ_x^k : $lso_x^{k+1} \rightarrow lso_x^k$ is injective.

• Definition : f is an isometry up to order j, if $f^*g - g$ vanishes up to order j at x (The Taylor development vanishes up to order j, in some, and hence any, chart)

Introduction

Examples Known results $SL_n(\mathbb{Z})$

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Supperrigidity of cocycles

What Zimmer did proved?

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Supperrigidity of cocycles

What Zimmer did proved?

Super-rigidity of cocycles

This implies the "conjecture" but at a measurable level !

Zimmer's hope : "measurable \implies smooth"

Remark

Margulis super-rigidity theorem for Γ a lattice in G is equivalent to the regularity fact : any measurable Γ -equivariant map between boundaries $G/P \rightarrow H/L$ is smooth !

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

Cocycles

The derivative cocycle

 Γ acts on M.

Choose a frame field on M (this exists in the measurable category) $x \to F(x) = (e_1(x), \dots, e_n(x))$ \iff parallelism \iff trivialization $TM = M \times \mathbb{R}^n$ $c(\gamma, x) =$ the matrix of $D_x\gamma : T_x \to T_{\gamma(x)}M$ with respect to the bases F(x) and $F(\gamma(x))$,

Chain rule $c(\gamma\gamma', x) = c(\gamma, \gamma'(x))c(\gamma', x)$

This is the definition of a cocycle : over the Γ -action with value in $\operatorname{GL}_n(\mathbb{R})$.

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

イロト イポト イヨト イヨト

Constant cocycle : $c(\gamma, x) = c(\gamma)$, thus $c : \Gamma \to \operatorname{GL}_n(\mathbb{R})$

homomorphism

Theorem (Zimmer's cocycle superrigidity)

There is a choice of frame field such that the cocycle becomes a product of two commuting cocycles : one constant and the other has values in a compact group.

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

A measurable connection

If the frame field is smooth, and the compact noise is trivial, then define a connection ∇ by decreeing that : the e_i are parallel

 $\gamma^*(e_i)$ is a constant combination of the $e_j \Longrightarrow$

 $\boldsymbol{\Gamma}$ preserves the connection

The connection is flat, but may have torsion...

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

RDS

Let $c : \Gamma \times M \to L$ a cocycle and L acts on X. **Skew-product** : (= RDS= Random dynamical system) Γ acts on $M \times X$: by $(\gamma(x, u) = (\gamma x, c(\gamma, x)u)$ The formula gives rise to an action $\iff c$ is a cocycle,

The action on $\mathcal{M} \times X$ covers the action on M

- Example $\Gamma = \mathbb{Z}$, $L = X = S^1$ acting by rotation on itself $(x, u) \rightarrow (f(x), u + \theta(x))$

Terminology : Random rotation on the circle

• Definition of **Quasi-affine** : skew product over an affine action, with *L* compact.

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

▲ □ ► ▲ □ ► ▲

Low regularity (is not enough)!

- Furstenberg example : a random rotation that is measurably constant but not continuously constant !
- Another situation : geodesic flows of compact negatively curved Riemmannian manifolds preserve C^{0} pseudo-Riemannian metrics (even $C^{1+Zygmud}$?) :

This is Kanai's construction :

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

Somme precise questions and conjectures

Conjecture (Minimal dimension?)

If Γ acts on M, then dim $M \ge \operatorname{rk} G$. In the equality case, the action extends to G

The conjecture is true for actions of G at least in the transitive case ?

Conjecture (Minmal dimension in the measure preserving case)

If Γ acts by preserving a measure (say if necessary it charges open sets), then $\dim M \geq {\rm rk}\, G+1$

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Conjecture (Geometrization?)

If Γ acts topologically transitively, then it preserves somme rigid geometric structure defined on an open invariant set.

Conjecture (Paradigm)

A smooth Γ -action on the torus of dimension n (where $n-1 = \operatorname{rk} G$) is smoothly conjugate to the usual action of finite index subgroups of SL $_n(\mathbb{Z})$.

・ロット 4回ット 4回ット 4回ット 4日 >

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Reminiscence : Thurston geometrization conjecture

A smooth volume preserving action of Γ on M can be geometrized : There is a closed invariant set F and $M - F = U_1 \cup \ldots U_k$ Any U_i possess a Γ -invariant geometry...

Secondary task : find the possible geometries?

Introduction

Examples Known results $SL_n(\mathbb{Z})$

Margulis Zimmer program Questions? Strategies and approaches Goal : torus case

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

イロト イポト イヨト イヨト

臣

•• Local rigidity

exactly as in the theory of representation, one starts with local questions ?

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

•• Local rigidity

exactly as in the theory of representation, one starts with local questions?

•• Strong rigidity assuming existence of an extra structure,

e.g.

- The action is Anosov
- The action already preserves a rigid geometric structure (e.g. an affine connection, a pseudo-Riemannian metric)
- The action is holomorphic

Introduction

Examples Known results $SL_n(\mathbb{Z})$

Margulis Zimmer program Questions ? **Strategies and approaches** Goal : torus case

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

• □ ▶ • • □ ▶ • • □ ▶ •

- E - N

Contents

Objective : Γ finite index subgroup of SL $_n(\mathbb{Z})$

- understand its actions on \mathbb{T}^n ?
- its actions of the sphere S^{n-1}
- Answer the geometric structure conjecture in the following case :

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

Proposition

Let Γ be a lattice in SL $_n(\mathbb{R})$, $n \geq 3$ acting on M^n .

Assume :

- The action is analytic

- The action fixes some point x_0

Then, there is an open Γ -invariant set containing x_0 on which Γ preserves a flat connection,

Further details later on...

Apply this to prove homotopic rigidity.

Introduction

Examples Known results $SL_n(\mathbb{Z})$

Margulis Zimmer program Questions ? Strategies and approaches Goal : torus case

More on Examples

・ロト ・四ト ・ヨト ・ヨト

3

Blow-up

$$\begin{split} \hat{\mathbb{R}^{n}}_{0} &\subset \mathbb{R}^{n} \times \mathbb{R}P^{n-1} \\ &= \{(x,d)/| x \in d\} \\ \pi : \hat{\mathbb{R}^{n}}_{0} \to \mathbb{R}^{n} \\ \pi \text{ is a a diffeomorphism over } \mathbb{R}^{n} - 0 \\ \pi^{-1}(0) &= \mathbb{R}P^{n-1} \text{ : the singular divisor} \end{split}$$

 \mathbb{R}^{n_0} is the total space of the tautological line bundle over $\mathbb{R}P^{n-1}$ (the unique non-trivial \mathbb{R} -line bundle)

イロト イポト イヨト イヨト

n = 2, this is a Moebuis strip

The construction can be localised $(M, x_0) \rightarrow \hat{M}_{x_0}$

n = 2, topologically : remove a ball around x_0 and glue a Moebuis band with boundary (its boundary is one circle)

The diffeomorphism group of (M, x_0) acts on \hat{M}_{x_0} Its action on the exceptional divisor is the projectivization of the derivative action

$$f\in \mathsf{Diff}(M,x_0) o D_{x_0}f$$
 acting on $\mathbb{R}P^{n-1}=T_{x_0}M-0/\mathbb{R}^*$

Similar blow up construction for a finite set F of M

 Γ finite index subgroup of SL $_n(\mathbb{Z})$ Apply this to get a Γ action on the blow-up of any periodic orbit.

Periodic orbits of SL $_n(\mathbb{Z})$ are exactly rational points of $\mathbb{R}^n/\mathbb{Z}^n$.

Local coordinates

Affine coordinates for
$$\mathbb{R}P^{n-1}$$

 $d = [y_1 : \ldots : y_n]$
 $U_1 = \{d, y_1 \neq 0\}$, neighborhood of $d_1 = [1 : 0, \ldots, 0]$
 $c_1 : d \in U_1 \rightarrow (\frac{y_2}{y_1}, \ldots, \frac{y_n}{y_1}) \in \mathbb{R}^n$

Chart arount $(x, d_1) \in \mathbb{R}^n_0$ $(x, y) = (x_1, \dots, x_n; y_1, \dots, y_n) : x \in [y] \iff x_i y_j = x_j y_i$

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ の Q @ ♪

Chart
$$C_1: (x, [y]) \rightarrow (x_1, \frac{y_2}{y_1}, \dots, \frac{y_n}{y_1}) = (z_1, z_2, \dots, z_n)$$

Thus $: x_i = x_1 z_i$, for $i \ge 2$
 $dx_i = x_1 dz_i + z_i dx_1$
 $\omega = dx_1 \wedge \dots \wedge dx_n = z_1^{n-1} dz_1 \wedge dz_2 \wedge \dots \wedge dz_n$

 $\pi^*(dx_1 \wedge \ldots \wedge dx_n)$ is an *n*-form vanishing exactly along the exceptional divisor,

It defines the Lebesgue measure

Desingularize it by changing the differentiable structure

Similar situation : on \mathbb{R} , $\omega = x^p dx$, consider $f : \mathbb{R} \to \mathbb{R}$ a smooth homeomorphism but not a diffeomorphism, such that

 $\mathit{df} = \omega$

New coordinates $x \to f(x) = y$

 ω becomes dy

Example :
$$\omega = x^2 dx$$
, $f : x \to (1/3)x^3$

This is possible in the orientable case, i.e. *n* odd.

The construction in this framework it due to Katok-Lewis But well know in the complex case...

Filling in the torus

If instead of $\mathbb{R}P^{n-1}$, one considers S^{n-1} , one gets a manifold with boundary S^{n-1} The action of Γ on the boundary S^{n-1} is the projective one.

Glue an closed *n*-ball *B* with a SL_n(\mathbb{R}) action : $(A, x) \in SL_n(\mathbb{R}) \times B \to (||x|| \frac{A(x)}{||A(x)||})$ (this is the projective action on any sphere $\{||x||=r\}$)

The so obtained action is a C^0 on the torus (no change of the space !)

Question : is it possible to construct a smooth action like this?

Holomorphic situation : Kummer varieties

Orbifolds : consider $\overline{\mathbb{T}^n} = \mathbb{T}^n/(x \to -x)$ Γ acts on $\overline{\mathbb{T}^n}$

n = 2, $\overline{\mathbb{T}^2}$ is a (regular) topological surface, It has an affine Euclidean structure with 4 conical singularities

Holomorphic situation : Kummer varieties

Orbifolds : consider $\overline{\mathbb{T}^n} = \mathbb{T}^n/(x \to -x)$ Γ acts on $\overline{\mathbb{T}^n}$

n = 2, $\overline{\mathbb{T}^2}$ is a (regular) topological surface, It has an affine Euclidean structure with 4 conical singularities Topologically : $\overline{\mathbb{T}^2} = S^2$

Desingularize $\overline{\mathbb{T}^2}$

Holomorphic situation : Kummer varieties

Orbifolds : consider $\overline{\mathbb{T}^n} = \mathbb{T}^n/(x \to -x)$ Γ acts on $\overline{\mathbb{T}^n}$

n = 2, $\overline{\mathbb{T}^2}$ is a (regular) topological surface, It has an affine Euclidean structure with 4 conical singularities Topologically : $\overline{\mathbb{T}^2} = S^2$

Desingularize \mathbb{T}^2 One comes back to \mathbb{T}^2 !


```
If M is a complex torus
The desingularization of \overline{M} is a Kummer surface :
```

- It has an action of SL $_2(\mathbb{Z})$
- It is simply connected

It has a holomorphic volume form : a holomorphic non-singular 2-form,

It is a K3 (complex) surface

Calabi-Yau examples

Generalize the construction by performing a quotient $x \rightarrow \eta x$ η a root of unity To keep an action of a lattice, the order of η must be : 1, 2, 3, 4 or 6.

In dimension 2, 3, 4, 6, there exists η giving rise to a Calabi-Yau example :

i.e. it has a holomorphic volume form and is simply connected !

Non-existence of rigid geometric structures

Beneveniste-Fisher :

FRom Gromov's Theory of rigid transformation group : the symmetry group of a rigid geometric structure on **simply connected compact analytic** has finite number of connected components...

The action of Γ extends to G...

This is easily seen to be impossible since one knows that Γ acts non-trivially on the cohomology (H^2)

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

A (biased) quick survey on results

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Local rigidity in the volume preserving case : Names and synthesis

Hurder, Katok, Lewis, Spatzier, Fisher, Margulis, Quian, Zimmer....

Last result :

Theorem (Fisher-Margulis)

Quasi-affine actions of higher rank lattices are smoothly locally-rigid.

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

・ロト ・日下 ・ ヨト

Tools

In general, before the last theorem, working in a (weakly) hyperbolic framework, e.g. ρ_0 the standard linear action of SL $_n(\mathbb{Z})$ on \mathbb{T}^n $\rho \ C^1$ -near ρ_0 ,

Two major steps :

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

- •• structural stability : i.e. C^0 conjugacy (between the original and perturbed actions)
- There are many γ for which $\rho(\gamma)$ is Anosov
- By structural stability : $\Phi_\gamma \circ
 ho(\gamma) =
 ho_0(\gamma) \circ \Phi_\gamma$

How to get from individual conjugacy to a collective one : use higher rank

 $\bullet\bullet$ Regularity : smoothness of the conjugacy Φ

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Recalls from hyperbolicity, Anosov...

Let $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ a diffeomorphism fixing 0, Def : f hyperbolic \iff if $D_0 f$ has no eigenvalue of modulus 1.

In this case f is topologically conjugate to $D_0 f$

More generally, f is structurally stable : any $g C^1$ near f is topologically conjugate to f,

Same theory for vector fields

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Now, $f: M \rightarrow M$ a diffeomorphism, with no fixed point,

A linearization (and quantification of f: $f_*: \xi(M) \rightarrow \xi(M)$, the associated action of f on the space of vector fields

Consider here bounded vector fields with the sup-norm Similarly f_* hyperbolic if $Spectre(f_*) \cap S^1 = \emptyset$

• By definition f is Anosov in this case

• It turns out that Anosov is essentially equivalent to being structurally stable...

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

•• Idea to that Φ is smooth :

A similar situation :

Fact

Let $C = \{f, g\}$ be a commutative subgroup of two (non-linear) contractions, topologically conjugate via topologically conjugate by Φ ; independent to a subgroup $B = \{H_a, H_b\}$. Assume B is dense in \mathbb{R}^+ the group of (all) homotheties, i.e. ln a and ln b are rationally independent. Then Φ is smooth.

Let $H_a: x \to ax$ a contracting homothety

Observations :

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

- Any two homotheties are topologically conjugate, but smoothly conjugate only if they are equal !
- H_a has a big centralizer in $Homeo(\mathbb{R})$, but a small one in $Diff(\mathbb{R})$:

g(ax) = ag(x), g smooth at $0 \Longrightarrow g$ is a homothety

By Sternberg, we assume f smoothly conjugate to ${\cal H}_c,$ and thus $g={\cal H}_d$

The problem becomes : a conjugacy between $\{H_a, H_b\}$ and $\{H_d, H_c\}$ is a homothety ?

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Remarks

- Exotic actions can be made non locally rigid

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Boundaries

Boundary of $G \rightarrow$ a compact homogeneous space G/P, where P is parabolic, i.e. it contains a Borel subgroup...

Example : S^{n-1} is a boundary for SO(1, n),

This is the Gromov boundary of any co-compact lattice in SO(1, n)

Also the projectivied frame bundles over S^{n-1}

 $\mathbb{R}P^n$ and S^n are boundary of SL $_{n+1}(\mathbb{R})$

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Local-rigidity action : Let Γ be a lattice in G acting smoothly by ρ on G/P, and ρ is near the left-translation action ρ_0 . Is ρ smoothly conjugate to ρ ?

A weaker version taking into account the SL $_2(\mathbb{R})$ -case : does ρ extends to an action of G ?

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Results

- Γ co-compact lattice in G
- higher rank case :
- Kanai : a new non-hyperbolic technique for the projective action

+ conditions

- Katok-Spatzier : structural stability + regularity (all boundaries)
- Rank 1 case :

Early : Ghys, $G = SL_2(\mathbb{R})$ Kanai : SO(n, 1)-case (Yue)

— Γ non co-compact : we shall consider the case SL $_n(\mathbb{Z})$

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

・ロト ・ 同ト ・ ヨト ・ ヨト

Structural stability

- In the rank one case : structural stability :

$$\rho: \Gamma \to \mathsf{Diff}(S^{n-1}), \ \rho_0: \Gamma \to SO(n, 1)$$

Consider the suspension $M_{
ho} = H^n \times S^{n-1}/(x,u) \tilde{(\gamma x, \rho(\gamma)(u))}$

- \mathcal{F}_{ρ} the horizontal foliation,
- $-M_{
 ho_0} = T^1(H^n/
 ho_0(\Gamma))$, the phase space of the geodesic flow, $-M_
 ho \cong M_{
 ho_0}$

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

– The intersection of \mathcal{F}_{ρ} with the unstable foliation of the geodesic flow \rightarrow a direction field \rightarrow Anosov flow, near the geodesic flow, The topological conjugacy between ρ and ρ_0 follows from structural stability.

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Homotopic rigidity

The smooth conjugacy is more delicate in the rank 1 case...

• Ghys : in dimension 2,

 ρ is not assumed near ρ but just in its homotopy component : it has maximal Euler number

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

- There are local rigidity results of actions of abelian groups,
- Gloabl rigidity results of Anosov actions of higher rank lattices and abelian groups,
- Matsumoto : global rigidity of (split) Anosov actions of \mathbb{Z}^{n-1} on *n*-manifolds,
- Anosov actions of Γ a lattice in SL $_n(\mathbb{R})$ on *n*-manifolds?
- (Feres-Labourie, Katok-Rodriguez-Hertz, Damjanovic-Katok,)

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Gromov's approach

- Pseudo-Riemannian metric
- Affine connections
- A sample result

Theorem (Zimmer-Feres-Goetze-Zeghib)

If Γ a finite index sub-group acts on a compact n-manifold preserving an unimodular affine connection, then it is the usual torus.

One proves *M* is flat, but how to get a standard torus $(=\mathbb{R}^n/\Lambda)$?

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Affine group of affine flat manifolds?

M affine unimodular : it has a $(\mathbb{R}^n, SAff(\mathbb{R}^n)$ -structure \iff torsion free flat connection with unimodular parallel transport, Aff(M) transformation preserving the connection,

Question

When does Aff (M) contain a higher rank lattice?
When does Aff (M) contain an Anosov element?
(Benoist-Labourie work treated the case where an additive symplectic structure is preserved)...

Example : surfaces with a finite set removed may have an affine group with is a lattice in SL₂(\mathbb{R}) (exactly as \mathbb{T}^2),

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

The Zimmer dimension conjecture in the Kähler case

Theorem (Cantat-Zeghib)

Let Γ be a lattice in a simple Lie group G of real rank n - 1 (e.g. $\Gamma \subset SL_n(\mathbb{R})$ or $SL_n(\mathbb{C})$). Let M be a compact Kaehler manifold of dimension $\leq n$, and Γ acts on it holomorphically, but not via a finite group.

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

The Zimmer dimension conjecture in the Kähler case

Theorem (Cantat-Zeghib)

Let Γ be a lattice in a simple Lie group G of real rank n-1 (e.g. $\Gamma \subset SL_n(\mathbb{R})$ or $SL_n(\mathbb{C})$). Let M be a compact Kaehler manifold of dimension $\leq n$, and Γ acts on it holomorphically, but not via a finite group.

Then, necessarily, dim $M \ge \operatorname{rk} G = n - 1$, i.e. dim M = n - 1 or n.

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

The Zimmer dimension conjecture in the Kähler case

Theorem (Cantat-Zeghib)

Let Γ be a lattice in a simple Lie group G of real rank n - 1 (e.g. $\Gamma \subset SL_n(\mathbb{R})$ or $SL_n(\mathbb{C})$). Let M be a compact Kaehler manifold of dimension $\leq n$, and Γ acts on it holomorphically, but not via a finite group.

Then, necessarily, dim $M \ge rkG = n - 1$, i.e. dim M = n - 1 or n.

• If dim M = n - 1, then, the action extends to the usual action of $SL_n(\mathbb{C})$ on $\mathbb{C}P^n$.

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

The Zimmer dimension conjecture in the Kähler case

Theorem (Cantat-Zeghib)

Let Γ be a lattice in a simple Lie group G of real rank n-1 (e.g. $\Gamma \subset SL_n(\mathbb{R})$ or $SL_n(\mathbb{C})$). Let M be a compact Kaehler manifold of dimension $\leq n$, and Γ acts on it holomorphically, but not via a finite group.

Then, necessarily, dim $M \ge \operatorname{rk} G = n - 1$, i.e. dim M = n - 1 or n.

- If dim M = n 1, then, the action extends to the usual action of $SL_n(\mathbb{C})$ on $\mathbb{C}P^n$.
- If dim M = n, then either

1) The action extends to an action of the full Lie group G (and we have a complete clasification)

**2) or M is birational to a complex torus.

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

The Zimmer dimension conjecture in the Kähler case

Theorem (Cantat-Zeghib)

Let Γ be a lattice in a simple Lie group G of real rank n-1 (e.g. $\Gamma \subset SL_n(\mathbb{R})$ or $SL_n(\mathbb{C})$). Let M be a compact Kaehler manifold of dimension $\leq n$, and Γ acts on it holomorphically, but not via a finite group.

Then, necessarily, dim $M \ge \operatorname{rk} G = n - 1$, i.e. dim M = n - 1 or n.

- If dim M = n 1, then, the action extends to the usual action of $SL_n(\mathbb{C})$ on $\mathbb{C}P^n$.
- If dim M = n, then either

1) The action extends to an action of the full Lie group G (and we have a complete clasification)

**2) or M is birational to a complex torus.

More precisely, M is a Kummer variety : it is obtained form an abelian orbifold A/F by blow ups and resolution of singularities.

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

The discrete factor of the automorphism group of a complex manifold

Let M be a complex manifold.

Aut(M) the group of holomorphic diffeomorphism

- If M is compact, then Aut(M) is a complex Lie group (of finite dimension).
- The Lie algebra of $Aut^0(M)$ is the space of holomorphic fields on M.

A complex structure is not a rigid geometric structure ! The Lie group property (for compact spaces) follows from "ellipticity" : the space of holomorphic sections of a holomorphic bundle over a compact complex manifold, has finite dimension (Cauchy formula) : ∞ boundeness $\implies C^1$ boundeness

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- If M is Kaehler, the dynamics of $Aut^0(M)$ is poor Explanations :
- Elements of $Aut^0(M)$ have vanishing topological entropy.
- In the projective case, $M \subset \mathbb{C}P^N$,

 $Aut^0(M) = \{g \in PGL_{N+1}(\mathbb{C}), gM = M\}$

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

- If M is Kaehler, the dynamics of $Aut^0(M)$ is poor Explanations :
- Elements of $Aut^0(M)$ have vanishing topological entropy.
- In the projective case, $M \subset \mathbb{C}P^N$,

 $Aut^0(M) = \{g \in PGL_{N+1}(\mathbb{C}), gM = M\}$

 \rightarrow it is more important to consider the discrete factor $Aut^{\#}(M) = Aut(M)/Aut^{0}(M).$

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

(D) (A) (A) (A)

- Which discrete groups are equal to Aut[#](M) for some M?
 When is this SL n(Z)....?
- For fixed dimension *n*, find *M* for which $Aut^{\#}(M)$ is as big as possible?

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

イロト イポト イヨト イヨト

Remark : following Sullivan : The mapping class group of a Kähler manifold of dimension with nilpotent homotopy (e.g. simply connected of with an abelian π_1) is a arithmetic group...

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

A Comparison with affine-Riemannian structures

Let (M, g) be a compact Riemannian manifold Yano Theorem $Affin^0(M) = Isom^0(M)$: a flow preserving the Levi-Civita connection preserves the metric!

The dynamics is encoded in $Aff^{\#}(M) = Affin(M)/Affin^{0}(M)$, e.g. $Aff^{\#}(\mathbb{T}^{n}) = SL_{n}(\mathbb{Z})$

Affine transformations minimize topological entropy in their homotopy classes and are optimal mechanical model in this class
all this thoughts extend to Kähler structures, without being a rigid geometric structure!!!

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

What is and Why Kähler?

- Kähler : compatibility of complex geometry and Riemannian geometry :
- "holomorphic \sim harmonic"
- Any complex submanifold is minimal (in the sense of Riemannian geometry)
- Kähler : it gives a natural, almost optimal condition for holomorphic embedding in $\mathbb{C}P^n$

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Some tools

 Γ acts on $H^*(M,\mathbb{C})$, by preserving the cup product $H^* \times H^* \to H^*$ $W = H^{1,1}(M,\mathbb{R}) \subset H^2(M,\mathbb{R})$ $\rho: \Gamma \to GL(W)$ -Aut(M), in fact $Aut^{\#}(M) = Aut(M)/Aut^{0}(M)$, acts on W. Fundamental Kaehler Fact : The action of $Aut^{\#}(M)$ is virtually faithful : its kernel is finite \iff if an automorphism acts trivially on W, then a power of it belongs a flow. (authors : Liebermann, Fujiki...)

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

イロト イポト イヨト イヨト

Lieberman-Fujiki

 (M,ω)

 $\operatorname{Aut}_{[\omega]}(M) = \{ f \in \operatorname{Aut}(M) \text{ such that } f^*\omega \text{ is cohomologeous to } \omega \}$

 ω Kaehler form

Fact : $Aut_{[\omega]}(M)$ has a finite number of connected components

Idea of proof :

- Graph $(f^n) \subset M \times M$ have a bounded volume : $Graph(f) = \{(x, f(x)) | x \in M\}$ $\omega^n = \omega \land \ldots \land \omega \text{ (n-times)}$

$$\int_{Graph(f)} \omega^n = \int_{Graph(Identity)} \omega^n$$

Kähler character : The Riemannian volume of any complex submanifold Y of dimension d equals $\int_{Y} \omega^{d}$

In particular, complex submanifolds are minimal submanifolds in the sense of Riemannian geometry

Chow or Hilbert scheme : C_v the space of complex analytic sets of a bounded volume v = it is a (singular) complex space :

Example : for $\mathbb{C}P^n$: bounded volume \iff bounded degree \mathcal{C}_v has a finite number of connected components. (one basic property of algebraic sets)

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Cohomological actions

 Γ acts on M and hence $H^2(M,\mathbb{R})$

The action is non-finite, otherwise, up to a finite index,

 $\rho(\Gamma) \subset Aut^0(M) = \text{identity component}$

Apply super-rigidity to get an action of the Lie group G.

Henceforth, we assume the action on the cohomology infinite

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

• □ ▶ • • □ ▶ • • □ ▶

By Margulis super-rigidity, the ambient Lie group G acts on $H^*(M, \mathbb{R})$ preserving all algebraic structures :

- The Hodge decomposition,
- The cup product
- The Poincaré duality

In particluar,

 $\rho: G \to \mathsf{GL}(W)$

 ρ preserves a *n*-linear form $W \times \ldots W \to \mathbb{R}$

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

イロト イポト イヨト イヨト

Surface case,

In dim = 2, the cup product is a quadratic form : $b : W \times W \to \mathbb{R}$. Hodge index theorem (Noether theorem) : b has (anti-) Lorentz signature $+ - \ldots -$ (or +). Thus : $\rho : G \to O(1, N)$.

Fact A semi-simple Lie group (with no compact factor) can be embedded in O(1, N) iff it has the form O(1, m).

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

《曰》 《圖》 《臣》 《臣》

Higher dimension

- $c: W imes \ldots W o W o \mathbb{R}$
- Is there a kind of Nother theorem for c?
- Can the "signature" be bounded by means of the dimension?
- Case : dimension = 3,
- "Trilinear forms are a challenge for mathematics" !!!
- (The quotient space under the GL $_3(\mathbb{R})$ -action is infinite...)

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

イロト イポト イヨト イヨト

æ

Hodge index theorem, Hodge-Riemann bilinear relations

$$\begin{split} q_{\omega} &: \alpha \in \mathcal{H}^{1,1} \to \int \alpha \wedge \alpha \wedge \omega^{n-1} \\ \text{If } \omega \text{ is a K\"ahler, then } q_{\omega} \text{ is negative definite on the primitive space} \\ [\omega]^{\perp} &= \{ \alpha \in \mathcal{W}, \alpha \wedge \omega \wedge \omega = 0 \} \end{split}$$

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Dimension 3

Fact

(Lorentz-like property) $b: W \times W \rightarrow W^*$ satisfies, if $E \subset W$ is isotropic for c, then dim $E \leq 1$.

This allows one to classify ρ assuming $\mathsf{rk}_{\mathbb{R}}(G) \ge 2$. (for instance, G can not contain $\mathsf{SL}_2(\mathbb{R}) \times \mathsf{SL}_2(\mathbb{R})$...)

- Proof of the Fact : If dim $E \neq 0$, then, $E \cap [\omega]^{\perp} \neq 0$, and $q(a, b) = \omega \wedge a \wedge b$ negative definite.

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

・ロト ・ 同ト ・ ヨト ・ ヨト

Question : classify the orthogonal group of a vectorial bilinear (or equivalently a trilinear form) satisfying the Lorentz-like property ?

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

イロト イポト イヨト イヨト

Representation of $SL_2(\mathbb{R})$

 $\begin{array}{l} R_k \text{ representation in} \\ P_k = \text{Polynômes homogènes de degré } k = \{p = \Sigma x^i y^{k-i}\} \\ A \text{ diagonal matrix } (\lambda, \lambda^{-1}) \\ A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \\ A_k \text{ action on } P_k \\ \text{Weights (eigenvalues) } \lambda^k, \lambda^{k-2}, \lambda^{2-k}, \lambda^k, \\ \text{Eigen-vectors : } e_k, \ldots e_{-k} \end{array}$

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

• The wedges
$$e_r \wedge e_s$$
 are eigenvalues (or 0)
 $A_k(e_r \wedge e_s) = \lambda^{r+s}(e_r \wedge e_s) = A_k^*(e_r \wedge e_s) = \lambda^l(e_r \wedge e_s)$
So :

- either
$$e_r \wedge e_s = 0$$

- or r+s is a weight of the dual $R_k^*\cong R_k$ and thus $-k\leq r+s\leq k$

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

(中) (종) (종) (종) (종)

• Necessarily
$$e_k \wedge e_k = 0$$
 (since $2k > k$)
By the Lorentz-like property, we can not have
 $e_k \wedge e_{k-2} = 0$, and $e_{k-2} \wedge e_{k-2} = 0$
Hence $2(k-2) \le k$, i.e. $k \le 4$.

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Conclusion

- In dimension 3, by representation theory, we get information on the cohomology
- Other structures on the cohomology are needed, e.g. The Kähler cone....
- All this is a crucial step in the proof...

In dimension > 3, other approach...

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure **Holomorphic case** On the torus

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The torus

 Γ a finite index subgroup of SL $_n(\mathbb{Z})$ Affine action on \mathbb{T}^n : $Aff^+(\mathbb{T}^n) = \operatorname{SL}_n(\mathbb{Z}) \ltimes \mathbb{T}^n$ Remarks : 1) In $\rho : \Gamma \to Aff(\mathbb{T}^n)$, there is always a periodic point : up to a finite index, the image is in SL $_n(\mathbb{Z})$ 2) There is an exterior automorphism $\sigma : A \to (A^t)^{-1} \to \text{the dual}$

representation,

we consider ρ and $\rho \circ \sigma$ as conjugate !

– Hence : up to this, Γ has a unique affine action ho_0

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

イロト イポト イヨト イヨト

Conjecture

Any infinite action : $\rho : \Gamma \to \text{Diff}^{\infty}(\mathbb{T}^n)$ is conjugate to its affine action ρ_0

Action on the cohomology, Γ acts on $H^1(\mathbb{T}^n, \mathbb{R}) = \mathbb{R}^n$ by preserving $H^1(\mathbb{T}^n, \mathbb{Z}) = \mathbb{Z}^n$. $h: \Gamma \to SL_n(\mathbb{Z})$

• The delicate case : h has a finite image, say trivial In this case, Γ acts on the universal cover \mathbb{R}^n commuting with the translation \mathbb{Z}^n -action !

Question : Prove this can not hold

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Assuming homotopic standard data

If *h* is infinite, by superrigidity, it equals the usual embedding in $SL_n(\mathbb{Z})$: say it induces standard homotopy data

Conjecture

Any analytic action Γ on the torus inducing the standard homotopy data is analytically conjugate to the standard one.

Weaker

Conjecture

Any analytic action Γ on the torus inducing the standard homotopy data and preserving some measure is analytically conjugate to the standard one.

Results

(1). Zeghib (1999) : Yes if the action has a (global) fixed point

(2). Katok – Rodriguez-Hertz (2009) : Assume existence of a large invariant measure μ (say μ charges open sets) They prove existence of a continuous semi-conjugacy, bijective and analytic on an open invariant set

(3). Applying (1) \rightarrow the semi-conjugacy is an analytic conjugacy

Summarising : the answer to the last conjecture is yes if the measure is large

Local rigidity, unimodular case Local rigidity on boundaries With a rigid geometric structure Holomorphic case On the torus

Introduction Examples Known results SL n(Z)

To get some familiarity with $SL_n(\mathbb{Z})$ and its family

$${f A}=\left(egin{array}{ccc} 0 & 0 & -c_0 \ 1 & 0 & -c_1 \ 0 & 1 & -c_2 \end{array}
ight)$$

The characteristic polynomial of A is $p(X) = c_0 + c_1 X + c_2 X^2$.

• Similar construction in any dimension :

Corollary :

- Any integer polynomial corresponds to a matrix of Mat $_n(\mathbb{Z})$
- Any algebraic integer of degree n-1 is the eigenvalue of some element of SL $_n(\mathbb{Z})$.

Heisenberg discrete group

In dimension 3, the (integer) discrete Heisenberg $\mathsf{Heis}_{\mathbb{Z}}$ consists of :

$$A = \left(\begin{array}{rrr} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array}\right)$$

 $a,b,c\in\mathbb{Z}$

• In any dimension $SL_n(\mathbb{Z})$ contains $U^+(\mathbb{Z})$ the group of integer triangular unipotent matrices.

Introduction Examples Known results SL _n(Z)

Semi-direct products

$$SL_3(\mathbb{Z})$$
 conatins $SL_2 \ltimes \mathbb{Z}^2$:

$$A = \left(\begin{array}{rrrr} 1 & x & y \\ 0 & a & b \\ 0 & c & d \end{array}\right)$$

< D > < B > < E >

 $a, b, c, d, x, y \in \mathbb{Z}$

• In any dimension SL $_n(\mathbb{Z})$ contains SL $_{n-1}(\mathbb{Z}) \ltimes \mathbb{Z}^{n-1}$.