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COSMOLOGICAL TIME VERSUS CMC TIME I: FLATSPACETIMESLARS ANDERSSON?, THIERRY BARBOTy, FRANC�OIS B�EGUINz,AND ABDELGHANI ZEGHIBxAbstrat. This paper gives a new proof that maximal, globally hy-perboli, at spaetimes of dimension n � 3 with ompat Cauhy hy-persurfaes are globally foliated by Cauhy hypersurfaes of onstantmean urvature, and that suh spaetimes admit a globally de�ned on-stant mean urvature time funtion preisely when they are ausallyinomplete. The proof, whih is based on using the level sets of theosmologial time funtion as barriers, is oneptually simple and willprovide the basis for future work on onstant mean urvature time fun-tions in general onstant urvature spaetimes, as well for an analysis ofthe asymptotis of onstant mean foliations.1. IntrodutionThe study of the global properties of spaetimes solving the Einsteinequations plays a entral role in di�erential geometry and general relativity.However, with the exeption of results whih rely on small data assumptions(nonlinear stability results) or the assumption of symmetries, many funda-mental questions about the global struture of Einstein spaetimes remainopen, inluding osmi ensorship, struture of singularities, and existeneof global foliations by Cauhy hypersurfaes with ontrolled geometry. TheEinstein equation is hyperboli only in a weak sense, and therefore in orderto approah its Cauhy problem from a PDE point of view, it is nees-sary either to impose gauge onditions, or extrat a hyperboli system bymodifying the equation. The onstant mean urvature (CMC) ondition isan important gauge ondition in the study of the Cauhy problem of theEinstein equation, and hene in general relativity. The CMC time gauge isknown to lead to a well-posed Cauhy problem in onjuntion with the zeroshift ondition [22℄ as well as with the spatial harmoni gauge ondition [9℄.In the Hamiltonian formulation of the Einstein equation, the volume of aCMC hypersurfae an be viewed as the anonial dual to the CMC time,see [25℄. In the ase of 2+1 dimensional spaetimes, this point of view leadsDate: April 28, 2006.? Supported in part by the NSF, under ontrat no. DMS 0104402 with the Universityof Miami.y z x Supported in part by ACI \Strutures g�eom�etriques et Trous Noirs".1



2 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIBto a formulation of the Einstein equation in CMC gauge as a time-dependentHamiltonian system on the otangent bundle of Teihmuller spae [32℄.There are numerous results onerning the existene of global CMC fo-liations and CMC time funtions under various symmetry onditions, forspaetimes with and without matter. See [2, 33℄ for reent surveys. Itshould be noted that examples of Rii at spaetimes whih do not ontainany CMC Cauhy hypersurfae were reently onstruted [23℄. However, itis not yet known if these examples are stable.Spaetimes with onstant setional urvature onstitute an importantsublass of spaetimes, where one may expet to understand the fundamen-tal questions, inluding the osmi ensorship problem ompletely. How-ever, even within this sublass, there are still open questions relating tothe existene and properties of onstant mean urvature foliations, and theasymptoti struture at osmologial singularities is not fully understood.The systemati study of spaetimes of onstant setional urvature wasinitiated by Mess [31℄, following work by among others Margulis [30℄ andFried [26℄. The lassi�ation of maximal globally hyperboli at spaetimeswith omplete Cauhy hypersurfaes has reently been ompleted by Barbot[11℄, following work of Bonsante [18, 19℄ and others.The purpose of this paper is to give a proof that maximal, globally hy-perboli, at spaetimes of dimension n � 3 with ompat Cauhy hy-persurfaes are globally foliated by CMC Cauhy hypersurfaes, and thatsuh spaetimes admit a global CMC time funtion preisely when they areausally inomplete, see Theorem 1.2 below. The proof is based on usingthe level sets of the osmologial time funtion as barriers. This result isnot new, see remark 1.3, but the method of proof presented here is onep-tually simple and will provide the basis for an analysis CMC time funtionsin general onstant urvature spaetimes, as well as of the asymptotis ofCMC foliations in future work.Reall that a Lorentz manifold, or spaetime, (M; g) is globally hyperboliif it ontains a Cauhy hypersurfae S, i.e. a weakly spaelike hypersurfaesuh that eah inextendible Causal urve in M intersets S. The hypersur-fae S may without loss of generality be assumed to be smooth and stritlyspaelike [16, 17℄. A globally hyperboli spaetime is maximal if it annotbe extended in the lass of globally hyperboli spaetimes. For brevity weuse the aronym MGHF for maximal, globally hyperboli, at spaetimes.Let S � M be a spaelike hypersurfae in a spaetime of dimension n andlet � be its future direted unitary normal. Then for X;Y tangent to S,the seond fundamental form is given by II(X;Y ) = h�;rXY i. The meanurvature of S is de�ned by H = trII=(n� 1). The hypersurfae S is said tohave onstant mean urvature (CMC) if H��S is onstant. If M satis�es thetimelike onvergene ondition (i.e. if Ri(V; V ) � 0 for timelike vetors V )and has ompat Cauhy hypersurfaes, then for eah p 2 M and for eah� 6= 0, there is at most one CMC surfae ontaining x with mean urvature� . A ompat spaelike hypersurfae in a globally hyperboli spaetime is



COSMOLOGICAL VERSUS CMC TIME I: FLAT SPACETIMES 3a Cauhy hypersurfae [20℄, so the leaves of a CMC foliation are alwaysCauhy hypersurfaes if they are ompat. A time funtion t : M ! I is aCMC time funtion if the level sets of t are CMC Cauhy hypersurfaes withH(t�1(�)) = � for all � 2 I. In ontrast to the situation for CMC hyper-surfaes and foliations, a globally de�ned CMC time funtion with ompatlevel sets is unique, even if the timelike onvergene ondition fails to hold.The proof is a straightforward appliation of the maximum priniple, see[13, x2℄ for details.It is a basi fat that if an MGHF spaetime (M; g) with ompat Cauhyhypersurfaes is ausally omplete, then it is a quotient of the Minkowskispae R1;n�1 . In this ase M is foliated by at, totally geodesi Cauhyhypersurfaes. Therefore we may fous on the ase when M is ausallyinomplete. Without loss of generality, assume that M is past ausallyinomplete. Then M is future omplete, and is the quotient of a onvexstrit subset of R1;n�1 by a group of isometries ating freely and properlydisontinuously. This subset is in fat a future regular domain E+(�), f.de�nition 2.2. The past boundary, or Cauhy horizon, of E+(�) representsin some sense the universal over of the past osmologial singularity of M .The osmologial time funtion �(p) is de�ned as the maximal Lorentzianlength of past direted ausal urves starting at p. The osmologial timefuntion is a C1;1Lo funtion, but not C2 in general, and therefore the meanurvature of its level sets must be interpreted in the weak sense, in termsof supporting hypersurfaes. An analysis of the the weak mean urvatureof the level sets of the osmologial time funtion of at spaetimes, andan appliation of the strong maximum priniple of [7℄, enables us to showthat the level sets of � an be used as barriers for CMC hypersurfaes. Animportant role in this analysis is played by the notion of regular domain inR1;n�1 , introdued by Bonsante [19℄.A future regular domain E+(�) is the intersetion of the future of afamily � of lightlike hyperplanes. It an be shown that the universal overof a past ausally inomplete MGHF spaetime is isometri to a futureregular domain. If � has at least two elements, then E+(�) has regularosmologial time funtion, in the sense that � is bounded from below andthe limit of � along past inextendible ausal geodesis is zero. In partiularthis is true for the universal over of an inomplete MGHF spaetime M , aswell as for M itself. See x2 for details. The level sets of � have interestinggeometri properties. Benedetti and Guadagnini [14℄ showed that in a 2+1dimensional MGHF spaetime with ompat Cauhy hypersurfae of genus> 1, the geometry indued on the level sets of � preisely orresponds to aThurston earthquake deformation de�ned in terms of the holonomy data ofM .1.1. Statement of results. We now state the main results in this paper.The �rst result haraterizes the generalized mean urvature of the level setsof the osmologial time funtion in a regular domain.



4 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIBTheorem 1.1. Consider a (future omplete at) regular domain E+(�) inR1;n�1 , and the assoiated osmologial time � : E+(�) ! (0;+1). Then,for every a 2 (0;+1), the level hypersurfae Sa = ��1(a) has generalizedmean urvature bounded from below by � 1a , and from above by � 1(n�1)a .Our onvention for seond fundamental form and mean urvature are suhthat the future hyperboloids in Minkowski spae have negative mean ur-vature with respet to the future direted normal, see setion 4. Clearly,Theorem 1.1 holds for quotients of regular domains, and suh spaes there-fore have rushing singularity, sine the level sets of the osmologial timefuntion provide a sequene of Cauhy hypersurfaes with uniformly diverg-ing mean urvature.For the ase of spaetimes with ompat Cauhy hypersurfae, a standardbarrier argument yields existene of a CMC foliation.Theorem 1.2. Let (M; g) be a MGHF spaetime with ompat Cauhy hy-persurfaes.(1) If (M; g) is both past and future geodesially omplete then it doesnot admit any globally de�ned CMC time funtion, but it admits aunique CMC foliation.(2) If (M; g) is future geodesially omplete, then it admits a globallyde�ned CMC time funtion �m : M ! I where I = (�1; 0). Fur-thermore, the CMC and osmologial times are omparable:� � � 1�m � (n� 1)�:(3) A similar statement, but with a time range I = (0;+1), is true inthe past geodesially omplete ase.In all ases, these foliations are analyti.Remark 1.3. This result is not new. It was proved in [10℄ in the 2+1dimensionsal ase, assuming the existene of one CMC Cauhy hypersur-fae. In [1℄, a proof was given for the ase of spaetimes with hyperbolispatial topology. Finally, it has been observed in [11℄, that the general asefollows from the lassi�ation of MGHF spaetimes with ompat Cauhyhypersurfaes.The proof provided here is oneptually muh simpler that the argumentsgiven in the above mentioned papers. More importantly, this proof an beadapted to the general onstant urvature ase. The proof of the main partof Theorem 1.2, the ase when M is ausally inomplete, makes use of thelevel sets of the osmologial time funtion of the universal over ofM , whihis a regular domain, as barriers in the onstrution of CMC hypersurfaes. Inpriniple, this idea generalizes immediately also to the ase of onstant non-zero urvature. However, the geometry and global ausality in the non-atase are suÆiently ompliated that the tehnial details require a separatepaper [4℄. There, we will in partiular investigate the struture of non-atregular domains.



COSMOLOGICAL VERSUS CMC TIME I: FLAT SPACETIMES 5Further, the level sets of the osmologial asymptoti behavior of the levelsets of the osmologial time funtion is intimately related to the geometryof the singularity itself, i.e. the boundary of the universal over of the spae-time. This will enable us in a forthoming paper to analyze the asymptotibehavor of the CMC foliation at the osmologial singularity of onstanturvature spaetimes, see [5℄. In partiular, in the ase of at spaetimes,we are able to prove in [5℄ the onjeture of Benedetti and Guadagnini [14℄that the limit of the geometry of the level sets of the CMC time funtionin the Gromov sense is the same as the limit of the geometry of the levelsets of the osmologial time funtion. In the 2+1 dimensional ase, thislimit an be identi�ed as a point on the Thurston boundary of Teihmullerspae. While one expets the limiting geometry of the osmi time levelsto be the same as the CMC time levels in general, there is not yet a learidenti�ation of the limiting geometry exept in the 2+1 dimensional atase.Remark 1.4. There is no ompatness ondition on Cauhy hypersurfaesin Theorem 1.1. However, a diret proof of existene of CMC hypersurfaesgiven barriers requires ompatness. In a nonompat situation, it is nees-sary to onsider a sequene of Plateau problems, following ideas developedin [34℄. It is natural to ask whether any at regular domain has a CMCfoliation. In partiular, given two level hypersurfaes of the osmologialtime funtion with mean urvatures bounded above and below by , is therea CMC hypersurfae with mean urvature  between them? Similarly, givenan isometry group of a regular domain, does there exist CMC hypersurfaes,or CMC foliations, invariant under the isometry group ation?Overview of the paper. The proof of Theorem 1.1 is given in setion4, whih is the entral part of this artile. In the preeding setions, wereview introdue some notions and preliminary results whih will be neededthere. In setion 2, some basi fats about regular domains are realled.The results here are mainly due to Bonsante [19℄. The de�nition and prop-erties of the osmologial time are given in setion 2.1. The lassi�ationof MGHF spaetimes with ompat Cauhy hypersurfae is given in setion2.2. Setion 3 disusses the past horizon, and the retration to the singu-larity of a future omplete regular domain. In x5, we will explain how toget from hypersurfaes with presribed mean urvature to a CMC foliation.This tehnique is well known to experts in the �eld, but sine the details aresomewhat sattered in the literature, we inlude them for the onvenieneof the reader. Along the way, we also hek that this works with our notionof generalized mean urvature. In partiular, in the literature the strongenergy ondition is often assumed, but we onsider also the ase of positiveurvature (orresponding to spaetimes of deSitter type), for future use in[4℄. Finally, in setion 6 we give the proof of Theorem 1.2.



6 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIB2. Flat regular domainsRegular domains in Minkowski spaetime R1;n�1 were �rst de�ned by F.Bonsante in [18, 19℄ (generalizing a onstrution of G. Mess in the 2+1-dimensional ase, see [31℄). Here we will use an equivalent de�nition intro-dued in [11℄, sine it appears to be slightly more adapted to our purpose.For more details, we refer to setion 4:1 of [11℄.The importane of at regular domains for our purpose omes from thefat that they have regular osmologial time funtion, see Proposition 2.8,and that eah MGHF spaetime with ompat, or more generally omplete,Cauhy hypersurfae is a quotient of a at regular domain, see Theorem2.10. Thus, the analysis of the singularity of MGHF spaetimes an bearried out by studying the past boundary of at regular domains. This willbe arried out in setion 3.De�nition 2.1. The Penrose boundary Jn�1 of the Minkowski spaetimeR1;n�1 is the spae of null aÆne hyperplanes of R1;n�1Let N be an auxiliary eulidean metri on R1;n�1 . Let Sn�2 be the set offuture oriented null elements of R1;n�1 with N -norm 1. Then the map whihassoiates to a pair (u; a) the null hyperplane H(u; a) = fxjhx; ui = ag isa bijetion between Sn�2 � R and Jn�1. It de�nes a topology on Jn�1,whih oinides with the topology of Jn�1 as a homogeneous spae underthe ation of the Poinar�e group; Jn�1 is then homeomorphi to Sn�2� R.For every element p of Jn�1, we denote by E+(p) the future of p inR1;n�1 , and by E�(p) the past of of p. If p is the null hyperplane H(u; a),then E+(p) = fxjhx; ui < ag and E�(p) = fxjhx; ui > ag. They are half-spaes, respetively future-omplete and past-omplete. For every losedsubset � of Jn�1, we de�neE�(�) = \p2�E�(p):De�nition 2.2. A losed subset � of Jn�1 is said to be future regular (resp.past regular) if it ontains at least two elements and if E+(�) (resp. E�(�))is non-empty.A future omplete at regular domain is a domain of the form E+(�)were � is a future regular losed subset of Jn�1. Similarly, a past ompleteat regular domain is a domain of the form E�(�) were � is a past regularlosed subset of Jn�1. A at regular domain is a future omplete regulardomain or a past omplete regular domain.See x4:2 of [11℄ where it is proved in partiular that this de�nition of atregular domains oinides with Bonsante's de�nition.Remark 2.3. A past regular losed set � is not neessarily future regular.Atually, a losed subset of Jn�1 is past regular and future regular if andonly if it is ompat (and ontains at least two points). See Corollary 4:11in [11℄.



COSMOLOGICAL VERSUS CMC TIME I: FLAT SPACETIMES 7Remark 2.4. In the rest of the paper, we will mainly be dealing with apast inomplete, future omplete spaetimes, and many statements have anobvious time reversed analog. In the following we will not make any expliitstatements onerning the time reversed situation, and leave it to the readerto rephrase the relevant de�nitions and results.2.1. Cosmologial time. In any spaetime (M; g), we an de�ne the os-mologial time (see [6℄):De�nition 2.5. The osmologial time of a spaetime (M; g) is the funtion� :M ! [0;+1℄ de�ned by�(x) = SupfL() j  2 R�(x)g;where R�(x) is the set of all past-oriented ausal urves starting at x, andL() the lorentzian length of the ausal urve .In general, this funtion has a very bad behavior: for example, if (M; g)is Minkowski spaetime, then �(x) = +1 for every x.De�nition 2.6. A spaetime (M; g) is said to have regular osmologialtime if(1) M has �nite existene time, i.e. �(x) < +1 for every x in M ,(2) for every past-oriented inextendible ausal urve  : [0;+1) ! M ,limt!1 �((t)) = 0.The following result gives a haraterization of spaetimes with regularosmologial time.Theorem 2.7 ([6, Theorem 1.2℄). If (M; g) has regular osmologial time,then:(1) M is globally hyperboli,(2) The osmologial time � is a time funtion, i.e. � is ontinuous andis stritly inreasing along future-oriented ausal urves,(3) for eah x in M there is a future-oriented timelike ray  : [0; �(x)℄!M realizing the distane from the "initial singularity", that is,  is aunit speed geodesi whih is maximal on eah segment and satis�es:(�(x))) = x �((t)) = t(4) � is loally Lipshitz, and admits �rst and seond derivative almosteverywhere.One of the ornerstones of Bonsante's work on at regular domains is thefollowing proposition:Proposition 2.8. Future omplete at regular domains have regular os-mologial time.Proof. See [19, Proposition 4.3 and Corollary 4.4℄. �



8 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIB2.2. Maximal globally hyperboli at spaetimes with ompatCauhy hypersurfaes.Proposition 2.9. Let E+(�) � R1;n�1 be a future omplete at regulardomain. Let � be a disrete torsion free group of isometries of Minkoswkispaetime R1;n�1 preserving E+(�). Then, the ation of � on E+(�) is freeand properly disontinuous, and the quotient spae M+� (�) = �nE+(�) is aglobally hyperboli spaetime with regular osmologial time.Sketh of proof. The proof that the ation is free and properly disontinuousan be found in [11, Proposition 4.16℄. The osmologial time � is obviously�-invariant. Hene, it indues a map �̂ on the quotient M+� (�). Sine inex-tendible ausal urves in M+� (�) are projetions of ausal urves in E+(�),the osmologial time on the quotient M+� (�) is the map �̂ . It follows easilythat M+� (�) has regular osmologial time. �Conversely:Theorem 2.10. Every MGHF with ompat Cauhy hypersurfaes is thequotient of a at regular domain or of the entire Minkowski spae by atorsion-free disrete subgroup of isometries. More preisely, let (M; g) be an-dimensional MGHF spaetime with ompat Cauhy hypersurfaes.(1) If (M; g) is not past (resp. future) geodesially omplete, then (M; g)is the quotient of a future (resp. past) omplete regular domain inR1;n�1 by a torsion-free disrete subgroup of Isom(R1;n�1).(2) If (M; g) is geodesially omplete then it is the quotient of Rn�1;1by a subgroup of Isom(R1;n�1) ontaining a �nite index free abeliansubgroup generated by n� 1 spaelike translations.Proof. It follows from the lassi�ation of MGHF spaetimes with ompatCauhy hypersurfaes given in [11℄. The result in [11℄ is more preise: itharaterizes up to �nite index the possible torsion-free disrete subgroups.�Remark 2.11. The natural setting for a result like Theorem 2.10 is notreally spaetimes with ompat Cauhy hypersurfaes, but rather MGHFspaetimes with omplete Cauhy hypersurfaes. Indeed, every at regulardomain admits a omplete Cauhy hypersurfae ( see [11, Proposition 4.14℄).Conversely, aording to [11, Theorem 1.1℄, every MGHF spaetime withomplete Cauhy hypersurfae an be tamely embedded in the quotient ofa at regular domain by a disrete group of isometries of Minkowski exeptif it is geodesially omplete or if it is an unipotent spaetime. Geodesi-ally omplete MGHF spaetimes with omplete Cauhy hypersurfaes arequotients of the entire Minkoswki spae R1;n�1 by a ommutative disretegroup of spaelike translations. Flat unipotent spaetimes are de�ned anddesribed in x3:3 of [11℄ (see also [26℄); every at unipotent spaetime isthe quotient of a domain 
 � R1;n�1 by a unipotent disrete subgroup ofIsom(R1;n�1), where 
 is of one of the three following forms: 
 = E+(p),



COSMOLOGICAL VERSUS CMC TIME I: FLAT SPACETIMES 9
 = E�(p) or 
 = E+(p) \ E�(p0) where p and p0 are two parallel nullhyperplanes.3. Past horizon and initial singularity of a future ompleteflat regular domainIn this setion, we onsider a future omplete at regular domain E+(�).We will desribe the past horizon, the initial singularity, and the so-alled"retration to the initial singularity" of E+(�).3.1. Horizons. Aording to Proposition 2.8 and Theorem 2.7, E+(�) isglobally hyperboli. Sine E+(�) is a future omplete onvex open domainin Minkowski spae, its boundary H�(�) is a past horizon (and thus enjoysall the known properties of horizons).Sine H�(�) is the boundary of a onvex domain, it admits support hy-perplanes at eah of its points. And sine E+(�) is future omplete, thefuture in R1;n�1 of any point p in H�(�) is ontained in E+(�). But, time-like hyperplanes ontaining p all interset the future of p, it then followsthat support hyperplanes to H�(�) are non-timelike.Lemma 3.1. Let p a point of the past horizon H�(�) of a future ompleteat regular domain E+(�). Let C(p) � TpX be the set of future orientedtangent vetors orthogonal to support hyperplanes to H�(�) at p. Then C(p)is the onvex hull of its null elements. Moreover, the null elements of C(p)are preisely the normals to elements of � tangent to H�(�) at p.Proof. See [19, orollary 4.12℄ (see also [31, Proposition 11℄). �3.2. Retration to the initial singularity. Aording to point (3) inTheorem 2.7, for every point x in a at regular domain there is a uniquemaximal timelike geodesi ray with future endpoint x realizing the "distaneto the initial singularity": we all suh a geodesi ray a realizing geodesifor x.Proposition 3.2. Let x be an element of a future omplete at regulardomain E+(�). Then, there is an unique realizing geodesi for x.Proof. See [19, Proposition 4.3℄. �De�nition 3.3. A unit speed future oriented timelike geodesi  : [0; T ℄!E+(�) is tight if for every t in [0; T ℄ the restrition  : [0; t℄ ! E+(�) is arealizing geodesi for (t).Proposition 3.4. Let  : [0; T ℄ ! E+(�) be an unit speed future orientedtimelike geodesi with initial point in the past horizon. Then the followingassertions are equivalent:(1)  is tight,(2) the derivative of  at 0 is orthogonal to a support hyperplane at (0).Proof. See [19, Proposition 4.3℄. �



10 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIBDe�nition 3.5. The initial singularity of a future omplete at regulardomain E+(�) is the set of points in the past horizon admitting at least twosupport hyperplanes; it will be denoted by ��(�).Proposition 3.6. The map whih assoiates to any point x of a regulardomain E+(�), the initial singularity of the unique realizing geodesi for xis a ontinuous map taking value in ��(�). This map is denoted r, andalled \retration to the initial singularity".Proof. See [19, Proposition 4.3 and 4.12℄. �3.3. Desription of the retration map.Proposition 3.7. For every p in the past singularity ��, the preimager�1(p) in E+(�) is the union of omplete timelike geodesi rays with initialpoint at p.Proof. The Proposition is an immediate orollary of Proposition 3.2 and3.4. �Corollary 3.8. Let p be an element of the past horizon of E+(�) suh thatthe onvex hull C(p) of the null generators has non-empty interior in thespae of timelike tangent vetors at p. Then, r�1(p) is open in E+(�). �4. Cosmologial levels as barriers, Proof of Theorem 1.1If S is a spaelike hypersurfae in a spaetime (M; g), then the seondfundamental form (also known as the extrinsi urvature) of S at a pointx is de�ned as II(X;Y ) = h�;rXY i = �hrX�; Y i where X, Y are tan-gent vetors to S at x and � is the future oriented timelike normal of S(with lorentzian norm �1). The mean urvature is de�ned in terms of thetrae of II with respet to the indued metri as HS = trII=(n � 1). Thisde�nition requires S to be at least C2. Nevertheless, in ertain ases, onean give a meaning to the assertion \a topologial hypersurfae has meanurvature bounded from below (or above) by some onstant ". A de�nitionof this notion for rough spaelike hypersurfaes was given in [7, De�nition3.3℄, making use of the notion of supporting hypersurfaes with one-sidedHessian bound. The following de�nition, whih does not inlude the one-sided Hessian bound, is suÆient for our purposes in this paper. We willsay that S is a C0-spaelike hypersurfae in M if for eah x 2 S, there isa neighborhood U of x so that S \ U is edgeless and aausal in U , see [7,De�nition 3.1℄.De�nition 4.1. Let S be a C0-spaelike hypersurfae in a spaetime (M; g).Given a real number , we will say that S has generalized mean urvaturebounded from above by  at x, denoted HS(x) � , if there is a geodesiallyonvex open neighborhood V of x inM and a smooth spaelike hypersurfaeS�x in V suh that :{ x 2 S�x and S�x is ontained in the past of S \ V (in V ),



COSMOLOGICAL VERSUS CMC TIME I: FLAT SPACETIMES 11{ the mean urvature of S�x at x is bounded from above by .Similarly, we will say that S has generalized mean urvature is boundedfrom below by  at x, denoted HS(x) � , if, there is a geodesially onvexopen neighborhood V of x in M and a smooth spaelike hypersurfae S+x inV suh that :{ x 2 S+x and S+x is ontained in the past of S\V (with respet to V ),{ the mean urvature of S+x at x is bounded from below by .We will write HS �  and HS �  to denote that S has generalized meanurvature bounded from below respetively above by  for all x 2 S.Remark 4.2. Let S be a smooth spaelike hypersurfae in a spaetime(M; g), and  be a real number. If HS �  or HS �  in the sense of thede�nition above, then the maximum priniple, see Proposition 5.4 below,implies that the same bounds hold in terms of the usual sense.Remark 4.3. Let S be a C0-spaelike hypersurfae, and let x be a point ofS. Assume that there exists two numbers �; + suh that S has generalizedmean urvature bounded from below by � and from above by + at x.Then S has a tangent plane at x. Indeed, the point x belong to two smoothhypersurfaes S�x and S+x whih are (loally) respetively in the past and inthe future S. In partiular, S�x is loally in the past of S+x . This implies thatthe tangent hyperplane of S�x at x oinides with the tangent hyperplane ofS+x . And sine S is between S�x and S+x , this hyperplane is also tangent toS. Let us reall the statement of Theorem 1.1:Theorem 4.4. Consider a future omplete at regular domain E+(�) andthe assoiated osmologial time � : E+(�) ! (0;+1). Then, for everya 2 (0;+1), the hypersurfae Sa = ��1(a) has generalized mean urvaturesatisfying � 1a � HSa � � 1(n�1)a .Remark 4.5. What is important in the proof of Theorem 1.2 is just the fatthat the hypersurfae Sa has generalized mean urvature satisfying �(a) �HSa � �(a), where �(a); �(a) ! �1 when a! 0, and �(a); �(a) ! 0 whena! +1.Proof. Let x be a point on the level set Sa. We denote by  : [0; a℄! E+(�)the unique realizing geodesi for x, with initial point p = r(x). Let v be thefuture oriented unit speed tangent vetor of  at p. We denote as beforeby C(p) the set of vetors in TpX orthogonal to support hyperplanes of thepast horizon at p.Constrution of S+x . De�ne S+x as the hyperboloid fzjd(p; z) = ag. SineE+(�) is geodesially onvex, for any z in S+x the timelike geodesi (p; z)is ontained in E+(�). Hene, its length a is less than �(z). The uniquerealizing geodesi for z must therefore interset Sa. Hene, S+x is ontainedin the future of Sa. The tangent hyperplane to S+x at x is the hyperplane



12 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIBorthogonal to  at x. Hene, S+x is tangent to Sa at x. Finally, the meanurvature of S+x is obviously � 1a everywhere. As a onsequene, Sa hasgeneralized mean urvature satisfying HSa � � 1a .Constrution of S�x . Aording to Lemma 3.1, the tangent vetor v of therealizing geodesi  introdued above, belongs to the onvex hull C(p). LetB be a �nite subset of the null elements of C(p) suh that v lies in the onvexhull of B. We hoose moreover B minimal, i.e. suh that for any propersubset B0 � B, v does not belong to the onvex hull of B0. An equivalentstatement is that v belongs to the relative interior Conv(B).The null hyperplanes p + w? for w in B form a �nite subset �B of �.Observe that sine the onvex hull of B ontains the timelike vetor v, Bontains at least two elements. Hene, E+(�B) is a future omplete atregular domain.Obviously, E+(�B) ontains E+(�). Hene H�(�B) is ontained in theausal past of E+(�). Moreover, E+(�B) ontains the timelike geodesi, and also x, and its past horizon H�(�B) ontains p. Aording toLemma 3.1, support hyperplanes toH�(�B) at p are hyperplanes orthogonalto vetors in the onvex hull of B. In partiular, the hyperplane orthogonalto the timelike vetor v is a spaelike support hyperplane. It follows that is a realizing geodesi for x in E+(�B). Hene, �B(x) = a, where �B is theosmologial time for E+(�B).Let S0B be the level set f�B = ag in E+(�B), and de�ne S�x as a smallopen neighborhood of x in S0B \ E+(�). Let V be a geodesially onvexneighborhood of x ontaining S�x (for example, the Cauhy development ofS�x in E+(�)). For any z in S0B let  be the unique realizing geodesi forz in E+(�). Sine H�(�B) is in the ausal past of H�(�) there is a pastextension of  with past endpoint in H�(�B). Hene, �(z) � a. It followsthat S�x lies in the ausal past of Sa in V .To omplete the proof, we must prove that S�x near x is smooth, admitsat x the same tangent hyperplane (x � p) + v?, and that it has onstantmean urvature � d(n�1)a for some integer 1 � d � n� 1.Consider R1;n�1 as a vetor spae, with origin p = 0. Let F be the vetorspae spanned by Conv(B). Then F is a timelike subspae, with dimension2 � k � n, and we have a splitting R1;n�1 = F � F?. The subspae F? isspaelike. Every element of �B is a null hyperplane ontaining F?. It followseasily that E+(�B) is the sum E0(�B)�F?, where E0(�B) = F \E+(�B).For every element H of �B, H \ F is a null hyperplane in F � R1;k�1 .Let �0B = fH \ F j H 2 �Bg. Then �0B is a �nite subset of the Penroseboundary of F . Clearly E0(�B) is preisely the at regular domain E(�0B) �F . Now we observe that restriting to F , v is in the interior of Conv(�0B).Hene, for some small neighborhood V 0 of x in E(�0B), whih an be seletedgeodesially onvex, the image by the retration r of eah point y in V 0 isp. Shrinking V if neessary, we an assume that V is ontained in V 0 �F?. Aording to Corollary 3.8, S�x has the form H � F?, where H is the



COSMOLOGICAL VERSUS CMC TIME I: FLAT SPACETIMES 13hyperboloid onsisting of points in F in the future of p and at lorentziandistane a from p. Hene, S�x is smooth and admits at x the same tangenthyperplane than Sa (the orthogonal x + v?). Moreover, sine x + F? istotally geodesi, and sine the prinipal diretions of H are all equal to � 1a ,the mean urvature of S�x is equal to � 1a : dn�1 where d = k � 1. This showsthat Sa has generalized mean urvature satisfying HSa � � 1(n�1)a . �Remark 4.6. The proof of theorem 4.4 shows that the seond fundamentalforms of S�x ;S+x have eigenvalues �1=a; 0 (in the ase of S�x ) and �1=a (inthe ase of S+x . Therefore the level sets of � have mean urvature satisfy-ing �1=a � HSa � �1=((n � 1)a) with one-sided Hessian bound as in [7,De�nition 3.3℄, and hene the strong maximum priniple for spaelike hy-persurfaes given in [7, Theorem 3.6℄ applies in our situation. However, weshall not need the full strength of this result here. See proposition 5.4 belowfor the version of the maximum priniple whih we shall make use of.The eigenvalue bounds stated in remark 4.6 allow us to give a more pre-ise haraterization of the regularity of the osmologial time funtion. TheHessian bounds for the height funtion implied by the bounds on the se-ond fundamental form of the supporting hypersurfaes, together with anappliation of the ase p =1 of [21, Proposition 1.1℄ provesCorollary 4.7. � 2 C1;1LoWe leave it to the reader to formulate the obvious analogs of theorem 4.4and orollary 4.7 for past omplete at regular domains E�(�) whih holdin terms of the reverse osmologial time b� : E�(�)! (0;+1).5. From barriers to CMC time funtionsIn this setion, we onsider a n-dimensional, n � 3, maximal globally hy-perboli spaetime (M; g) with ompat Cauhy hypersurfaes and onstanturvature equal to k. We emphasize that many of the proofs that we giveare not valid without the assumption that M has ompat Cauhy surfaes.Reall that (M; g) has urvature k if the Riemann tensor satis�eshRiem(X;Y )Y;Xi = k(hX;XihY; Y i � hX;Y i2)for any vetor �elds X;Y . Then the Rii tensor satis�es Ri = (n � 1)kg.We will de�ne a notion of sequene of asymptoti barriers, and prove (usingquite lassial arguments) that (M; g) admits a CMC time funtion providedthat it admits a sequene of asymptoti barriers.De�nition 5.1. Let  be a real number. A pair of -barriers is a pair ofC0-spaelike Cauhy hypersurfaes (��;�+) in M suh that{ �+ is in the future of ��,{ H�� �  � H�+ in the sense of de�nition 4.1.



14 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIBDe�nition 5.2. Let � be a real number. A sequene of asymptoti past�-barriers is a sequene of C0-spaelike Cauhy hypersurfaes (��m)m2N inM suh that{ ��m tends to the past end of M when m ! +1 (i.e. given anyompat subset K of M , there exists m0 suh that K is in the futureof ��m for every m � m0),{ a�m � H��m � a+m, where a�m and a+m are real numbers suh that� < a�m � a+m, and suh that a+m ! � when m! +1.Similarly, a sequene of asymptoti future �-barriers is a sequene of C0-spaelike Cauhy hypersurfaes (�+m)m2N in M suh that{ �+m tends to the future end of M when m! +1,{ b�m � H�+m � b+m, where b�m and b+m are real numbers suh thatb�m � b+m < b, and suh that b�m ! � when m! +1.Theorem 5.3. Let (M; g) be an n-dimensional, n � 3, maximal globally hy-perboli spaetime, with ompat Cauhy hypersurfaes and onstant urva-ture k, and suh that (M; g) admits a sequene of asymptoti past �-barriersand a sequene of asymptoti future �-barriers. If k � 0, assume moreoverthat (�; �) \ [�pk;pk℄ = ;. Then, (M; g) admits a CMC time funtion�m : M ! (�; �).Theorem 5.3 follows easily from known fats in ase the barriers aresmooth, and introduing C0 barriers is not diÆult given the results above.Nevertheless, sine we are not aware of a referene for this preise statment,we inlude a proof below. The following are the two main tehnial stepsin the proof. In the ase of smooth barriers and hypersurfaes, they wereproved in this formulation by Gerhardt [28℄.{ a proposition whih states that any CMC hypersurfae of mean ur-vature 0 lies in the future of any CMC hypersurfae of mean urva-ture  whenever 0 >  (Proposition 5.6);{ a theorem whih ensures the existene of a Cauhy hypersurfae ofonstant mean urvature , assuming the existene of a pair of -barriers (Theorem 5.9).Let us start with a slight generalization of the lassial maximum priniple.Proposition 5.4. Let � and �0 be two C0-spaelike hypersurfaes. Assumethat these hypersurfae have one point x in ommon, and assume that � isin the past of �0. Assume that � has generalized mean urvature boundedfrom above by  at x, and �0 has generalized mean urvature bounded frombelow by 0 at x. Then  � 0.Remark 5.5. Proposition 5.4, whih may be viewed as a omparison prin-iple, follows from the strong maximum priniple for C0 hypersurfaes satis-fying a one-sided Hessian bound, see [7, Theorem 3.6℄. The notion of gener-alized mean urvature we are using here does not inluded this requirementand we therefore inlude the simple proof of the proposition.



COSMOLOGICAL VERSUS CMC TIME I: FLAT SPACETIMES 15Proof. Sine � has generalized mean urvature bounded from above by  atx, there exists a smooth spaelike hypersurfae Sx suh that x 2 Sx, Sx isin the past of � and the mean urvature of Sx at x is at most . Similarly,there exists a smooth spaelike hypersurfae S0x suh that x 2 S0x, S0x is inthe future of �0 and the mean urvature of S0x at x is at least 0. Sine �is in the past of �0, this implies that Sx is in the past of S0x. And sine thepoint x belongs to both Sx and S0x, we dedue that Sx and S0x share thesame tangent hyperplane at x. Now the lassial maximum priniple an beapplied to show that  � 0. �The following result was proved by Gerhardt for the ase of spaetimeswith a lower bound on the Rii urvature on timelike vetors, see [28,Lemma 2.1℄.Proposition 5.6. Let (M; g) be an n-dimensional, n � 3, maximal glob-ally hyperboli spaetime, with ompat Cauhy hypersurfaes and onstanturvature k. Let � and �0 be two smooth Cauhy hypersurfaes in M . As-sume that H� �  and H�0 � 0, with  � 0. If k is non-negative, assumemoreover that  < �pk or that 0 > pk. Then �0 is in the future of �.We will give a proof of Proposition 5.6 below, as we shall make use ofsome of the details in the proof of theorem 5.3.Let �0 be a smooth Cauhy hypersurfae with future unit normal �0.Reall that the orbit of the Gauss ow of smooth Cauhy hypersurfae �0in the diretion �0 onsists of the Cauhy hypersurfaes �t = Ft(�0) whereF : I � �0 ! M is de�ned as Ft(x) = expx(t�0) for x 2 �0, for t 2 I.Here I is the maximal time interval where Ft is regular. The ore of theproof of Proposition 5.6 is the following standard omparison lemma, see forexample [8, orollary 2.4℄.Lemma 5.7. We onsider the orbit (�t)t2I of a smooth Cauhy hypersurfae�0 under the Gauss ow. We onsider a geodesi  whih is orthogonal tothe �t's, and we denote by p(t) the point of intersetion of the geodesi with the hypersurfae �t. The mean urvature H(t) of �t at p(t) satis�esthe di�erential inequalitydH(t)dt � (n� 1)(H(t)2 � k):Proof of Proposition 5.6. Assume that �0 is not in the future of �. Then,we an onsider a future-direted timelike geodesi segment  going from apoint of �0 to a point of � having maximal length among all suh geodesisegments. It is well-known that  is orthogonal to both �0 and �, and thatthere is no foal point to �0 or � along  (see e.g. [29, Proposition 4.5.9℄).We will denote by p0 2 �0 and p 2 � the ends of , and by Æ be the lengthof .If k is non-negative, we have to distinguish two di�erents ases, aordingto whether 0 > pk or  < �pk. Let us onsider the �rst ase. Sine there



16 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIBis no foal point to �0 along , the image �0t of �0 by the time t of the Gaussow is well-de�ned for t 2 [0; Æ℄ in a neighbourhood of . Denote by p0(t)the point of intersetion of the hypersurfae �0t with the geodesi segment ,and by H 0(t) the mean urvature of �0t at p0(t). By Lemma 5.7, t 7! H 0(t)satis�es the di�erential inequality dH0dt � (n� 1)(H 02� k): This implies thatH 0 inreases along  (note that H 0(t)2 is stritly greater than k for everyt, sine H 0(0) = 0 > pk by assumption and sine H 0(t) inreases). Inpartiular, we have H 0(Æ) > H 0(0) = 0. But now, reall that, by de�nitionof �0Æ, every point of �0Æ in a neighbourhood of (Æ) = p is at distane exatlyÆ of �0. Also reall that  is the longest geodesi segment joining a pointof �0 to a point of �. This implies that � is in the past of �0Æ. Hene,by Proposition 5.4, the mean urvature of � at p is bounded from belowby the mean urvature of �0Æ, whih itself is stritly greater than the meanurvature of �0. This ontradits the assumption  � 0.The proof is the same in the ase where  < �pk (exept that oneonsiders the bakward orbit of � for the Gauss ow, instead of the forwardorbit of �0). �Remark 5.8. Proposition 5.6 implies that, for every  2 R n [�pk;pk℄,there exists at most one Cauhy hypersurfae in M with onstant meanurvature equal to . In partiular, for any open interval (�; �), whihif k � 0 satis�es the ondition (�; �) \ [�pk;pk℄ = ;, there exists atmost one funtion tm : M ! (�; �) suh that t�1m() is a smooth Cauhyhypersurfae with onstant mean urvature equal to  for every  2 (�; �).Note that we are not assuming here that tm is a time funtion (reallthat, if tm is a time funtion, then it is automatially unique, without anyassumption on (�; �)).Further, it is easy to see using a maximum priniple argument, that inthe standard deSitter spae with topology Sn�1 � R and urvature k > 0,there is no Cauhy hypersurfae with mean urvature  2 R n [�pk;pk℄.Therefore Proposition 5.6 is vauous in this ase.Theorem 5.9. Let (M; g) be an n-dimensional, n � 3, maximal globallyhyperboli spaetime, with ompat Cauhy hypersurfaes. Let  be any realnumber, and assume that there exists a pair of -barriers (��;�+) in M .Then, there exists a smooth Cauhy hypersurfae � with onstant mean ur-vature equal to . Moreover, � is in the future of �� and in the past of�+.Proof. The result is proved e.g. in [27℄ in the ase where the barriers ��and �+ are smooth. The only way the barriers �� and �+ are used inGerhardt's proof is via the maximum priniple (to show that a family ofCauhy hypersurfaes whose mean urvature approahes  annot \esapeto in�nity"). Sine the maximum priniple is still valid for C0 hypersurfaes(Proposition 5.4), Gerhardt's proof also applies in the ase where the barriersare not smooth. �



COSMOLOGICAL VERSUS CMC TIME I: FLAT SPACETIMES 17Proof of Theorem 5.3. We onsider a sequene (��m)m2N of asymptoti past�-barriers, and a sequene (�+m)m2N of asymptoti future �-barriers.Constrution of the funtion �m. Fix  2 (�; �). For m large enough,the pair of Cauhy hypersurfaes (��m;�+m) is a pair of -barriers. Thus, byTheorem 5.9, for any  2 (�; �), there exists a Cauhy hypersurfae S withonstant mean urvature equal to . Proposition 5.6 implies that the S'sare pairwise disjoint, and that S is in the past of S0 if  < 0 (let us allthis \property (?)").Now, let us prove that the set S2(�;�) S is onneted. Assume theontrary. Beause of property (?), there are only two possible ases :(i) there exists 0 2 (�; �) suh that S>0 I+(S) ( I+(S0);(ii) or there exists 0 2 (�; �) suh that S<0 I�(S) ( I�(S0):Let us onsider, for example, ase (i). Using the Gauss ow, we an pushthe hypersurfae S0 towards the future, in order to obtain a Cauhy hyper-surfae S00 whih is in the future of �0 , but as lose to S0 as we want. Inpartiular, we an assume that S00 is not in the future of S for any  > 0.Moreover, aording to Lemma 5.7, the mean urvature of S00 is boundedfrom below by some number 00 > 0. But this ontradits Proposition 5.6.Case (ii) an be treated similarly. As a onsequene, the set S2(�;�) S isonneted. Note that this implies that the hypersurfae S depends ontin-uously on Now, let us prove that the union S2(�;�) S is equal to the whole M .Assume that there exists a point x 2M nS2(�;�) S. Sine the hypersurfaeS depends ontinuously on , there are only two possible ases :(i) either x is in the future of S for every  2 (�; �),(ii) or x is in the past of S for every  2 (�; �).Now, reall that we have a sequene (S+m)m2N of asymptoti future �-barriers. By de�nition, this means that S+m has generalized mean urva-ture bounded from below by some b�m and smaller than some b+m whereb�m � b+m < � and b�m !m!1 �. Fix some integer p. One an �nd q > psuh that b�q > b+p . Then (S+p ; S�q ) is a pair of b+p -barriers. By Theorem 5.9,one an �nd a Cauhy hypersurfae with onstant mean urvature equal tob+p between S+p and S�q , and by uniqueness (see remark 5.8), this hyper-surfae is the hypersurfae S for  = b+p . In partiular, for  � b+p , thehypersurfae S is in the future of the barrier S+p . Now, reall that, by def-inition of a sequene of asymptoti future barriers, S+p tends to the futureend of M when p!1. This shows that ase (i) annot happen. Of ourse,one an exlude ase (ii) using similar arguments. Therefore we have provedthat S2(�;�) S =M:Now, we an de�ne de�ne the funtion �m : m! (�; �) as follows : forevery x 2 M , we set �m(x) =  where  is the unique number suh thatx 2 S.



18 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIBProperties of the funtion �m. The fat the hypersurfae S dependsontinuously on  implies that the funtion �m is ontinuous. The fatthat the hypersurfae S0 is in the strit future of the hypersurfae S when0 >  implies that the funtion �m is stritly inreasing along any futuredireted timelike urve. Hene, �m is a time funtion. �Remark 5.10. The funtion �m is also a time funtion in the followingstronger sense : for every future direted timelike urve  : I ! R, one hasddt�m((t)) > 0:Indeed, �x suh a urve  and some t0 2 I, let x0 = (t0) and 0 = �m(x0).For t small enough, denote by St0 the image of the hypersurfae S0 by thetime t of the Gauss ow. Sine the derivative  is future-oriented timelikevetor, there exists a onstant �1 > 0 suh that, for h > 0 small enough, thepoint (t0 + h) is in the future of the image of the hypersurfae S�1:h0 . NowLemma 5.7 implies that there exists a onstant �2 > 0 suh that the meanurvature of the hypersurfae S�1:h0 is bounded from below by 0 + �1:�2:h(for h small enough). Then Proposition 5.6 implies that S0+�1:�2:h is in thepast of S�1:h0 . In partiular, for h small enough, the point (t0 + h) is thefuture of the hypersurfae S0+�1:�2:h. In other words, we have �m(t0+h) >0 + �1:�2:h. This implies ddt�m((t)) > �1:�2 > 0.Remark 5.11. Using the same arguments as above, one an prove thefollowing result:Let (M; g) be an n-dimensional, n � 3, maximal globally hyperboli spae-time, with ompat Cauhy hypersurfaes and onstant urvature k. Assumethat (M; g) admits a sequene of asymptoti past �-barriers. If k � 0, as-sume moreover that � =2 [�pk;pk℄. Then, (M; g) admits a partially de�nedCMC time funtion �m : U ! (�; �) where U is a neighbourhood of thepast end of M (i.e. the past of a Cauhy hypersurfae in M) and � is a realnumber greater than �.Proposition 5.12. Let (M; g) be an n-dimensional, n � 3, maximal glob-ally hyperboli spaetime, with ompat Cauhy hypersurfaes and onstanturvature k. Suppose that there exists a funtion tm : M ! (�; �) suhthat t�1m() is a Cauhy hypersurfae with onstant mean urvature equal to for every  2 (�; �). Assume moreover that one of the following hypothesesis satis�ed:� tm is a time funtion,� the urvature k is negative,� the urvature k is non-negative and (�; �) \ [�pk;pk℄ = ;.Then tm is real analyti.Sketh of proof. Under the stated onditions, there is exatly one CMCCauhy hypersurfae for eah  2 (�; �). CMC hypersurfaes in a real an-alyti spaetime are real analyti, sine they are solutions of a quasi-linear



COSMOLOGICAL VERSUS CMC TIME I: FLAT SPACETIMES 19ellipti PDE. Given a CMC Cauhy hypersurfae S0 with mean urvature0 2 (�; �), let u be the Lorentz distane to S0. For  lose to 0, a Cauhyhypersurfae S with mean urvature  is a graph over S0, de�ned by thelevel funtion w = u��S . The funtion w solves the mean urvature equationH[w℄ = , whih is a quasilinear ellipti system with real analyti depen-dene on the oeÆients. It follows that S depends in a real-analyti manneron , and that the funtion tm is a real analyti funtion on M . �6. Proof of Theorem 1.2Let (M; g) be a n-dimensional MGHF spaetime with ompat Cauhyhypersurfae. We �rst onsider the ase where (M; g) is not past geodesiallyomplete. Then Theorem 2.10 states that (M; g) is the quotient of a futureomplete regular domainE+(�) � R1;n�1 by a torsion-free disrete subgroup� of Isom(R1;n�1). Let � : E+(�) ! (0;+1) be the osmologial time ofE+(�). It follows from Theorem 2.7 and its proof, see [6, Proposition 2.2℄,that for every a 2 (0;+1), the level set Sa = ��1(a) is a losed stritlyahronal edgeless hypersurfae in E+(�). Moreover, � is obviously invariantunder every element of Isom(R1;n�1) preserving E+(�). Hene, for everya 2 (0;+1), the projetion �a of Sa in M � � n E+(�) is a losed stritlyahronal edgeless hypersurfae in M . Sine M is globally hyperboli withompat Cauhy hypersurfaes, this implies that �a is a ompat stritlyahronal hypersurfae in M , and thus is a topologial Cauhy hypersurfaein M . Theorem 4.4 implies that, for every a 2 (0;+1), �a has generalizedmean urvature bounded from below by �1=a, and bounded from aboveby �1=((n � 1)a). Let (am)m2N be a dereasing sequene of positive realnumbers suh that am ! 0 when m ! +1, and (bm)m2N be a inreasingsequene of positive real numbers suh that bm ! +1 when m ! +1.Observe that (�am)m2N is a sequene of past asymptoti �-barrier in M for� = �1 (indeed �1 < �1=am < �1=((n � 1)am) for every m, and sine�1=((n�1)am)! �1 whenm!1), and (�bm)m2N is a sequene of futureasymptoti �-barrier in M for � = 0 (indeed �1=bm < �1=((n� 1)bm) < 0)for every m, and sine �1=bm ! 0 when m ! 1). Hene Theorem 5.3implies that M admits a globally de�ned CMC time funtion �m : M !(�1; 0).Next, we prove that � and �m are omparable. It follows from theorem4.4 that for every a > 0, the pair of hypersurfaes ��a=(n�1);�a� is a pairof �1=a-barriers. Hene, theorem 5.9 and remark 5.8 imply that the hyper-surfae ��1m(�1=a) is in the future of �a=(n�1) = ��1(a=(n� 1)) and in thepast of �a = ��1(a). Equivalently, one has� � � 1�m � (n� 1)�:The ase where (M; g) is future geodesially inomplete is similar (exeptthat (M; g) is the quotient of a past omplete at regular domain E�(�),and that one has to onsider the reverse osmologial time of E�(�)).



20 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIBFinally, let us onsider the ase where (M; g) is geodesially omplete.Then Theorem 2.10 states that up to a �nite overing (M; g) is a quotientof R1;n�1 by a ommutative subgroup � of Isom(R1;n�1) generated by n� 1spaelike linearly independant translations t�!u1 ; : : : ; t�!un . Let �!v be any (sayfuture-direted) timelike vetor. Then, for every t 2 R, the aÆne planePt := t:�!v + R:�!u1 + � � � + R:�!un is �-invariant. Hene it indues a totallygeodesi spaelike hypersurfae �t := �nPt inM ' �nR1;n�1 . The family ofhypersurfaes (�t)t2R is a foliation ofM whose leaves are by totally geodesi(in partiular, CMC) spaelike hypersurfaes.In order to omplete the proof of Theorem 1.2, we only need to provethat in the ase where (M; g) is geodesially omplete, every CMC Cauhyhypersurfae � in M is a leaf of the totally geodesi foliation (�t)t2R on-struted above. Indeed, let t� = infft suh that � \ �t 6= ;g and t+ =supft suh that � \ �t 6= ;g. Then, � is tangent to �t� at some point andis in the future of �t� . Hene, the maximum priniple (Proposition 5.4)implies that the mean urvature of � is smaller or equal than those of �t� ,i.e. is non-positive. Similarly, � is tangent to �t+ at some point and is inthe past of �t+ , so by the maximum priniple, the mean urvature of � isnon-negative. So, we know that the mean urvature of � is equal to 0. Andnow, we use the equality ase of the maximum priniple (see, e.g., [7, The-orem 3.6℄): if S and S0 are two CMC Cauhy hypersurfaes with the samemean urvature, whih are tangent at some point, and suh that S0 is in thefuture of S, then S = S0. This shows that � = �t� = �t+ ; in partiular, �is a leaf of the totally geodesi foliation (�t)t2R.Aknowledgements. The authors are grateful for the hospitality and sup-port of the Isaa Newton Institute in Cambridge, where part of the workon this paper was performed. We thank Ralph Howard for some helpfulremarks, and for pointing out referene [21℄.Referenes[1℄ Lars Andersson, Constant mean urvature foliations of at spae-times, Commun.Anal. Geom., 10 (2002), 1125{1150.[2℄ Lars Andersson, The global existene problem in general relativity, The Einstein equa-tions and the large sale behavior of gravitational �elds, Birkh�auser, Basel, 2004,pp. 71{120.[3℄ , Constant mean urvature foliations of simpliial spaetimes, Comm. Anal.Geom. 13 (2005), 1{17.[4℄ L. Andersson, T. Barbot, F. B�eguin and A. Zeghib, Cosmologial time versus CMCtime II: the deSitter and anti-deSitter ases. In preparation.[5℄ L. Andersson, T. Barbot, F. B�eguin and A. Zeghib, Asymptoti behaviour of CMChypersurfaes in globally hyperboli at spaetimes. In preparation.[6℄ L. Andersson, G.J. Galloway, R. Howard, The Cosmologial Time Funtion, ClassialQuantum Gravity, 15 (1998), 309{322.[7℄ L. Andersson, G.J. Galloway, R. Howard, A strong maximum priniple for weak solu-tions of quasi-linear ellipti equations with appliations to Lorentzian and Riemanniangeometry, Comm. Pure Appl. Math., 51 (1998), no. 6, 581{624.
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