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COSMOLOGICAL TIME VERSUS CMC TIME I: FLATSPACETIMESLARS ANDERSSON?, THIERRY BARBOTy, FRANC�OIS B�EGUINz,AND ABDELGHANI ZEGHIBxAbstra
t. This paper gives a new proof that maximal, globally hy-perboli
, 
at spa
etimes of dimension n � 3 with 
ompa
t Cau
hy hy-persurfa
es are globally foliated by Cau
hy hypersurfa
es of 
onstantmean 
urvature, and that su
h spa
etimes admit a globally de�ned 
on-stant mean 
urvature time fun
tion pre
isely when they are 
ausallyin
omplete. The proof, whi
h is based on using the level sets of the
osmologi
al time fun
tion as barriers, is 
on
eptually simple and willprovide the basis for future work on 
onstant mean 
urvature time fun
-tions in general 
onstant 
urvature spa
etimes, as well for an analysis ofthe asymptoti
s of 
onstant mean foliations.1. Introdu
tionThe study of the global properties of spa
etimes solving the Einsteinequations plays a 
entral role in di�erential geometry and general relativity.However, with the ex
eption of results whi
h rely on small data assumptions(nonlinear stability results) or the assumption of symmetries, many funda-mental questions about the global stru
ture of Einstein spa
etimes remainopen, in
luding 
osmi
 
ensorship, stru
ture of singularities, and existen
eof global foliations by Cau
hy hypersurfa
es with 
ontrolled geometry. TheEinstein equation is hyperboli
 only in a weak sense, and therefore in orderto approa
h its Cau
hy problem from a PDE point of view, it is ne

es-sary either to impose gauge 
onditions, or extra
t a hyperboli
 system bymodifying the equation. The 
onstant mean 
urvature (CMC) 
ondition isan important gauge 
ondition in the study of the Cau
hy problem of theEinstein equation, and hen
e in general relativity. The CMC time gauge isknown to lead to a well-posed Cau
hy problem in 
onjun
tion with the zeroshift 
ondition [22℄ as well as with the spatial harmoni
 gauge 
ondition [9℄.In the Hamiltonian formulation of the Einstein equation, the volume of aCMC hypersurfa
e 
an be viewed as the 
anoni
al dual to the CMC time,see [25℄. In the 
ase of 2+1 dimensional spa
etimes, this point of view leadsDate: April 28, 2006.? Supported in part by the NSF, under 
ontra
t no. DMS 0104402 with the Universityof Miami.y z x Supported in part by ACI \Stru
tures g�eom�etriques et Trous Noirs".1



2 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIBto a formulation of the Einstein equation in CMC gauge as a time-dependentHamiltonian system on the 
otangent bundle of Tei
hmuller spa
e [32℄.There are numerous results 
on
erning the existen
e of global CMC fo-liations and CMC time fun
tions under various symmetry 
onditions, forspa
etimes with and without matter. See [2, 33℄ for re
ent surveys. Itshould be noted that examples of Ri

i 
at spa
etimes whi
h do not 
ontainany CMC Cau
hy hypersurfa
e were re
ently 
onstru
ted [23℄. However, itis not yet known if these examples are stable.Spa
etimes with 
onstant se
tional 
urvature 
onstitute an importantsub
lass of spa
etimes, where one may expe
t to understand the fundamen-tal questions, in
luding the 
osmi
 
ensorship problem 
ompletely. How-ever, even within this sub
lass, there are still open questions relating tothe existen
e and properties of 
onstant mean 
urvature foliations, and theasymptoti
 stru
ture at 
osmologi
al singularities is not fully understood.The systemati
 study of spa
etimes of 
onstant se
tional 
urvature wasinitiated by Mess [31℄, following work by among others Margulis [30℄ andFried [26℄. The 
lassi�
ation of maximal globally hyperboli
 
at spa
etimeswith 
omplete Cau
hy hypersurfa
es has re
ently been 
ompleted by Barbot[11℄, following work of Bonsante [18, 19℄ and others.The purpose of this paper is to give a proof that maximal, globally hy-perboli
, 
at spa
etimes of dimension n � 3 with 
ompa
t Cau
hy hy-persurfa
es are globally foliated by CMC Cau
hy hypersurfa
es, and thatsu
h spa
etimes admit a global CMC time fun
tion pre
isely when they are
ausally in
omplete, see Theorem 1.2 below. The proof is based on usingthe level sets of the 
osmologi
al time fun
tion as barriers. This result isnot new, see remark 1.3, but the method of proof presented here is 
on
ep-tually simple and will provide the basis for an analysis CMC time fun
tionsin general 
onstant 
urvature spa
etimes, as well as of the asymptoti
s ofCMC foliations in future work.Re
all that a Lorentz manifold, or spa
etime, (M; g) is globally hyperboli
if it 
ontains a Cau
hy hypersurfa
e S, i.e. a weakly spa
elike hypersurfa
esu
h that ea
h inextendible Causal 
urve in M interse
ts S. The hypersur-fa
e S may without loss of generality be assumed to be smooth and stri
tlyspa
elike [16, 17℄. A globally hyperboli
 spa
etime is maximal if it 
annotbe extended in the 
lass of globally hyperboli
 spa
etimes. For brevity weuse the a
ronym MGHF for maximal, globally hyperboli
, 
at spa
etimes.Let S � M be a spa
elike hypersurfa
e in a spa
etime of dimension n andlet � be its future dire
ted unitary normal. Then for X;Y tangent to S,the se
ond fundamental form is given by II(X;Y ) = h�;rXY i. The mean
urvature of S is de�ned by H = trII=(n� 1). The hypersurfa
e S is said tohave 
onstant mean 
urvature (CMC) if H��S is 
onstant. If M satis�es thetimelike 
onvergen
e 
ondition (i.e. if Ri
(V; V ) � 0 for timelike ve
tors V )and has 
ompa
t Cau
hy hypersurfa
es, then for ea
h p 2 M and for ea
h� 6= 0, there is at most one CMC surfa
e 
ontaining x with mean 
urvature� . A 
ompa
t spa
elike hypersurfa
e in a globally hyperboli
 spa
etime is



COSMOLOGICAL VERSUS CMC TIME I: FLAT SPACETIMES 3a Cau
hy hypersurfa
e [20℄, so the leaves of a CMC foliation are alwaysCau
hy hypersurfa
es if they are 
ompa
t. A time fun
tion t : M ! I is aCMC time fun
tion if the level sets of t are CMC Cau
hy hypersurfa
es withH(t�1(�)) = � for all � 2 I. In 
ontrast to the situation for CMC hyper-surfa
es and foliations, a globally de�ned CMC time fun
tion with 
ompa
tlevel sets is unique, even if the timelike 
onvergen
e 
ondition fails to hold.The proof is a straightforward appli
ation of the maximum prin
iple, see[13, x2℄ for details.It is a basi
 fa
t that if an MGHF spa
etime (M; g) with 
ompa
t Cau
hyhypersurfa
es is 
ausally 
omplete, then it is a quotient of the Minkowskispa
e R1;n�1 . In this 
ase M is foliated by 
at, totally geodesi
 Cau
hyhypersurfa
es. Therefore we may fo
us on the 
ase when M is 
ausallyin
omplete. Without loss of generality, assume that M is past 
ausallyin
omplete. Then M is future 
omplete, and is the quotient of a 
onvexstri
t subset of R1;n�1 by a group of isometries a
ting freely and properlydis
ontinuously. This subset is in fa
t a future regular domain E+(�), 
f.de�nition 2.2. The past boundary, or Cau
hy horizon, of E+(�) representsin some sense the universal 
over of the past 
osmologi
al singularity of M .The 
osmologi
al time fun
tion �(p) is de�ned as the maximal Lorentzianlength of past dire
ted 
ausal 
urves starting at p. The 
osmologi
al timefun
tion is a C1;1Lo
 fun
tion, but not C2 in general, and therefore the mean
urvature of its level sets must be interpreted in the weak sense, in termsof supporting hypersurfa
es. An analysis of the the weak mean 
urvatureof the level sets of the 
osmologi
al time fun
tion of 
at spa
etimes, andan appli
ation of the strong maximum prin
iple of [7℄, enables us to showthat the level sets of � 
an be used as barriers for CMC hypersurfa
es. Animportant role in this analysis is played by the notion of regular domain inR1;n�1 , introdu
ed by Bonsante [19℄.A future regular domain E+(�) is the interse
tion of the future of afamily � of lightlike hyperplanes. It 
an be shown that the universal 
overof a past 
ausally in
omplete MGHF spa
etime is isometri
 to a futureregular domain. If � has at least two elements, then E+(�) has regular
osmologi
al time fun
tion, in the sense that � is bounded from below andthe limit of � along past inextendible 
ausal geodesi
s is zero. In parti
ularthis is true for the universal 
over of an in
omplete MGHF spa
etime M , aswell as for M itself. See x2 for details. The level sets of � have interestinggeometri
 properties. Benedetti and Guadagnini [14℄ showed that in a 2+1dimensional MGHF spa
etime with 
ompa
t Cau
hy hypersurfa
e of genus> 1, the geometry indu
ed on the level sets of � pre
isely 
orresponds to aThurston earthquake deformation de�ned in terms of the holonomy data ofM .1.1. Statement of results. We now state the main results in this paper.The �rst result 
hara
terizes the generalized mean 
urvature of the level setsof the 
osmologi
al time fun
tion in a regular domain.



4 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIBTheorem 1.1. Consider a (future 
omplete 
at) regular domain E+(�) inR1;n�1 , and the asso
iated 
osmologi
al time � : E+(�) ! (0;+1). Then,for every a 2 (0;+1), the level hypersurfa
e Sa = ��1(a) has generalizedmean 
urvature bounded from below by � 1a , and from above by � 1(n�1)a .Our 
onvention for se
ond fundamental form and mean 
urvature are su
hthat the future hyperboloids in Minkowski spa
e have negative mean 
ur-vature with respe
t to the future dire
ted normal, see se
tion 4. Clearly,Theorem 1.1 holds for quotients of regular domains, and su
h spa
es there-fore have 
rushing singularity, sin
e the level sets of the 
osmologi
al timefun
tion provide a sequen
e of Cau
hy hypersurfa
es with uniformly diverg-ing mean 
urvature.For the 
ase of spa
etimes with 
ompa
t Cau
hy hypersurfa
e, a standardbarrier argument yields existen
e of a CMC foliation.Theorem 1.2. Let (M; g) be a MGHF spa
etime with 
ompa
t Cau
hy hy-persurfa
es.(1) If (M; g) is both past and future geodesi
ally 
omplete then it doesnot admit any globally de�ned CMC time fun
tion, but it admits aunique CMC foliation.(2) If (M; g) is future geodesi
ally 
omplete, then it admits a globallyde�ned CMC time fun
tion �
m
 : M ! I where I = (�1; 0). Fur-thermore, the CMC and 
osmologi
al times are 
omparable:� � � 1�
m
 � (n� 1)�:(3) A similar statement, but with a time range I = (0;+1), is true inthe past geodesi
ally 
omplete 
ase.In all 
ases, these foliations are analyti
.Remark 1.3. This result is not new. It was proved in [10℄ in the 2+1dimensionsal 
ase, assuming the existen
e of one CMC Cau
hy hypersur-fa
e. In [1℄, a proof was given for the 
ase of spa
etimes with hyperboli
spatial topology. Finally, it has been observed in [11℄, that the general 
asefollows from the 
lassi�
ation of MGHF spa
etimes with 
ompa
t Cau
hyhypersurfa
es.The proof provided here is 
on
eptually mu
h simpler that the argumentsgiven in the above mentioned papers. More importantly, this proof 
an beadapted to the general 
onstant 
urvature 
ase. The proof of the main partof Theorem 1.2, the 
ase when M is 
ausally in
omplete, makes use of thelevel sets of the 
osmologi
al time fun
tion of the universal 
over ofM , whi
his a regular domain, as barriers in the 
onstru
tion of CMC hypersurfa
es. Inprin
iple, this idea generalizes immediately also to the 
ase of 
onstant non-zero 
urvature. However, the geometry and global 
ausality in the non-
at
ase are suÆ
iently 
ompli
ated that the te
hni
al details require a separatepaper [4℄. There, we will in parti
ular investigate the stru
ture of non-
atregular domains.



COSMOLOGICAL VERSUS CMC TIME I: FLAT SPACETIMES 5Further, the level sets of the 
osmologi
al asymptoti
 behavior of the levelsets of the 
osmologi
al time fun
tion is intimately related to the geometryof the singularity itself, i.e. the boundary of the universal 
over of the spa
e-time. This will enable us in a forth
oming paper to analyze the asymptoti
behavor of the CMC foliation at the 
osmologi
al singularity of 
onstant
urvature spa
etimes, see [5℄. In parti
ular, in the 
ase of 
at spa
etimes,we are able to prove in [5℄ the 
onje
ture of Benedetti and Guadagnini [14℄that the limit of the geometry of the level sets of the CMC time fun
tionin the Gromov sense is the same as the limit of the geometry of the levelsets of the 
osmologi
al time fun
tion. In the 2+1 dimensional 
ase, thislimit 
an be identi�ed as a point on the Thurston boundary of Tei
hmullerspa
e. While one expe
ts the limiting geometry of the 
osmi
 time levelsto be the same as the CMC time levels in general, there is not yet a 
learidenti�
ation of the limiting geometry ex
ept in the 2+1 dimensional 
at
ase.Remark 1.4. There is no 
ompa
tness 
ondition on Cau
hy hypersurfa
esin Theorem 1.1. However, a dire
t proof of existen
e of CMC hypersurfa
esgiven barriers requires 
ompa
tness. In a non
ompa
t situation, it is ne
es-sary to 
onsider a sequen
e of Plateau problems, following ideas developedin [34℄. It is natural to ask whether any 
at regular domain has a CMCfoliation. In parti
ular, given two level hypersurfa
es of the 
osmologi
altime fun
tion with mean 
urvatures bounded above and below by 
, is therea CMC hypersurfa
e with mean 
urvature 
 between them? Similarly, givenan isometry group of a regular domain, does there exist CMC hypersurfa
es,or CMC foliations, invariant under the isometry group a
tion?Overview of the paper. The proof of Theorem 1.1 is given in se
tion4, whi
h is the 
entral part of this arti
le. In the pre
eding se
tions, wereview introdu
e some notions and preliminary results whi
h will be neededthere. In se
tion 2, some basi
 fa
ts about regular domains are re
alled.The results here are mainly due to Bonsante [19℄. The de�nition and prop-erties of the 
osmologi
al time are given in se
tion 2.1. The 
lassi�
ationof MGHF spa
etimes with 
ompa
t Cau
hy hypersurfa
e is given in se
tion2.2. Se
tion 3 dis
usses the past horizon, and the retra
tion to the singu-larity of a future 
omplete regular domain. In x5, we will explain how toget from hypersurfa
es with pres
ribed mean 
urvature to a CMC foliation.This te
hnique is well known to experts in the �eld, but sin
e the details aresomewhat s
attered in the literature, we in
lude them for the 
onvenien
eof the reader. Along the way, we also 
he
k that this works with our notionof generalized mean 
urvature. In parti
ular, in the literature the strongenergy 
ondition is often assumed, but we 
onsider also the 
ase of positive
urvature (
orresponding to spa
etimes of deSitter type), for future use in[4℄. Finally, in se
tion 6 we give the proof of Theorem 1.2.



6 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIB2. Flat regular domainsRegular domains in Minkowski spa
etime R1;n�1 were �rst de�ned by F.Bonsante in [18, 19℄ (generalizing a 
onstru
tion of G. Mess in the 2+1-dimensional 
ase, see [31℄). Here we will use an equivalent de�nition intro-du
ed in [11℄, sin
e it appears to be slightly more adapted to our purpose.For more details, we refer to se
tion 4:1 of [11℄.The importan
e of 
at regular domains for our purpose 
omes from thefa
t that they have regular 
osmologi
al time fun
tion, see Proposition 2.8,and that ea
h MGHF spa
etime with 
ompa
t, or more generally 
omplete,Cau
hy hypersurfa
e is a quotient of a 
at regular domain, see Theorem2.10. Thus, the analysis of the singularity of MGHF spa
etimes 
an be
arried out by studying the past boundary of 
at regular domains. This willbe 
arried out in se
tion 3.De�nition 2.1. The Penrose boundary Jn�1 of the Minkowski spa
etimeR1;n�1 is the spa
e of null aÆne hyperplanes of R1;n�1Let N be an auxiliary eu
lidean metri
 on R1;n�1 . Let Sn�2 be the set offuture oriented null elements of R1;n�1 with N -norm 1. Then the map whi
hasso
iates to a pair (u; a) the null hyperplane H(u; a) = fxjhx; ui = ag isa bije
tion between Sn�2 � R and Jn�1. It de�nes a topology on Jn�1,whi
h 
oin
ides with the topology of Jn�1 as a homogeneous spa
e underthe a
tion of the Poin
ar�e group; Jn�1 is then homeomorphi
 to Sn�2� R.For every element p of Jn�1, we denote by E+(p) the future of p inR1;n�1 , and by E�(p) the past of of p. If p is the null hyperplane H(u; a),then E+(p) = fxjhx; ui < ag and E�(p) = fxjhx; ui > ag. They are half-spa
es, respe
tively future-
omplete and past-
omplete. For every 
losedsubset � of Jn�1, we de�neE�(�) = \p2�E�(p):De�nition 2.2. A 
losed subset � of Jn�1 is said to be future regular (resp.past regular) if it 
ontains at least two elements and if E+(�) (resp. E�(�))is non-empty.A future 
omplete 
at regular domain is a domain of the form E+(�)were � is a future regular 
losed subset of Jn�1. Similarly, a past 
omplete
at regular domain is a domain of the form E�(�) were � is a past regular
losed subset of Jn�1. A 
at regular domain is a future 
omplete regulardomain or a past 
omplete regular domain.See x4:2 of [11℄ where it is proved in parti
ular that this de�nition of 
atregular domains 
oin
ides with Bonsante's de�nition.Remark 2.3. A past regular 
losed set � is not ne
essarily future regular.A
tually, a 
losed subset of Jn�1 is past regular and future regular if andonly if it is 
ompa
t (and 
ontains at least two points). See Corollary 4:11in [11℄.



COSMOLOGICAL VERSUS CMC TIME I: FLAT SPACETIMES 7Remark 2.4. In the rest of the paper, we will mainly be dealing with apast in
omplete, future 
omplete spa
etimes, and many statements have anobvious time reversed analog. In the following we will not make any expli
itstatements 
on
erning the time reversed situation, and leave it to the readerto rephrase the relevant de�nitions and results.2.1. Cosmologi
al time. In any spa
etime (M; g), we 
an de�ne the 
os-mologi
al time (see [6℄):De�nition 2.5. The 
osmologi
al time of a spa
etime (M; g) is the fun
tion� :M ! [0;+1℄ de�ned by�(x) = SupfL(
) j 
 2 R�(x)g;where R�(x) is the set of all past-oriented 
ausal 
urves starting at x, andL(
) the lorentzian length of the 
ausal 
urve 
.In general, this fun
tion has a very bad behavior: for example, if (M; g)is Minkowski spa
etime, then �(x) = +1 for every x.De�nition 2.6. A spa
etime (M; g) is said to have regular 
osmologi
altime if(1) M has �nite existen
e time, i.e. �(x) < +1 for every x in M ,(2) for every past-oriented inextendible 
ausal 
urve 
 : [0;+1) ! M ,limt!1 �(
(t)) = 0.The following result gives a 
haraterization of spa
etimes with regular
osmologi
al time.Theorem 2.7 ([6, Theorem 1.2℄). If (M; g) has regular 
osmologi
al time,then:(1) M is globally hyperboli
,(2) The 
osmologi
al time � is a time fun
tion, i.e. � is 
ontinuous andis stri
tly in
reasing along future-oriented 
ausal 
urves,(3) for ea
h x in M there is a future-oriented timelike ray 
 : [0; �(x)℄!M realizing the distan
e from the "initial singularity", that is, 
 is aunit speed geodesi
 whi
h is maximal on ea
h segment and satis�es:
(�(x))) = x �(
(t)) = t(4) � is lo
ally Lips
hitz, and admits �rst and se
ond derivative almosteverywhere.One of the 
ornerstones of Bonsante's work on 
at regular domains is thefollowing proposition:Proposition 2.8. Future 
omplete 
at regular domains have regular 
os-mologi
al time.Proof. See [19, Proposition 4.3 and Corollary 4.4℄. �



8 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIB2.2. Maximal globally hyperboli
 
at spa
etimes with 
ompa
tCau
hy hypersurfa
es.Proposition 2.9. Let E+(�) � R1;n�1 be a future 
omplete 
at regulardomain. Let � be a dis
rete torsion free group of isometries of Minkoswkispa
etime R1;n�1 preserving E+(�). Then, the a
tion of � on E+(�) is freeand properly dis
ontinuous, and the quotient spa
e M+� (�) = �nE+(�) is aglobally hyperboli
 spa
etime with regular 
osmologi
al time.Sket
h of proof. The proof that the a
tion is free and properly dis
ontinuous
an be found in [11, Proposition 4.16℄. The 
osmologi
al time � is obviously�-invariant. Hen
e, it indu
es a map �̂ on the quotient M+� (�). Sin
e inex-tendible 
ausal 
urves in M+� (�) are proje
tions of 
ausal 
urves in E+(�),the 
osmologi
al time on the quotient M+� (�) is the map �̂ . It follows easilythat M+� (�) has regular 
osmologi
al time. �Conversely:Theorem 2.10. Every MGHF with 
ompa
t Cau
hy hypersurfa
es is thequotient of a 
at regular domain or of the entire Minkowski spa
e by atorsion-free dis
rete subgroup of isometries. More pre
isely, let (M; g) be an-dimensional MGHF spa
etime with 
ompa
t Cau
hy hypersurfa
es.(1) If (M; g) is not past (resp. future) geodesi
ally 
omplete, then (M; g)is the quotient of a future (resp. past) 
omplete regular domain inR1;n�1 by a torsion-free dis
rete subgroup of Isom(R1;n�1).(2) If (M; g) is geodesi
ally 
omplete then it is the quotient of Rn�1;1by a subgroup of Isom(R1;n�1) 
ontaining a �nite index free abeliansubgroup generated by n� 1 spa
elike translations.Proof. It follows from the 
lassi�
ation of MGHF spa
etimes with 
ompa
tCau
hy hypersurfa
es given in [11℄. The result in [11℄ is more pre
ise: it
hara
terizes up to �nite index the possible torsion-free dis
rete subgroups.�Remark 2.11. The natural setting for a result like Theorem 2.10 is notreally spa
etimes with 
ompa
t Cau
hy hypersurfa
es, but rather MGHFspa
etimes with 
omplete Cau
hy hypersurfa
es. Indeed, every 
at regulardomain admits a 
omplete Cau
hy hypersurfa
e ( see [11, Proposition 4.14℄).Conversely, a

ording to [11, Theorem 1.1℄, every MGHF spa
etime with
omplete Cau
hy hypersurfa
e 
an be tamely embedded in the quotient ofa 
at regular domain by a dis
rete group of isometries of Minkowski ex
eptif it is geodesi
ally 
omplete or if it is an unipotent spa
etime. Geodesi-
ally 
omplete MGHF spa
etimes with 
omplete Cau
hy hypersurfa
es arequotients of the entire Minkoswki spa
e R1;n�1 by a 
ommutative dis
retegroup of spa
elike translations. Flat unipotent spa
etimes are de�ned anddes
ribed in x3:3 of [11℄ (see also [26℄); every 
at unipotent spa
etime isthe quotient of a domain 
 � R1;n�1 by a unipotent dis
rete subgroup ofIsom(R1;n�1), where 
 is of one of the three following forms: 
 = E+(p),
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 = E�(p) or 
 = E+(p) \ E�(p0) where p and p0 are two parallel nullhyperplanes.3. Past horizon and initial singularity of a future 
ompleteflat regular domainIn this se
tion, we 
onsider a future 
omplete 
at regular domain E+(�).We will des
ribe the past horizon, the initial singularity, and the so-
alled"retra
tion to the initial singularity" of E+(�).3.1. Horizons. A

ording to Proposition 2.8 and Theorem 2.7, E+(�) isglobally hyperboli
. Sin
e E+(�) is a future 
omplete 
onvex open domainin Minkowski spa
e, its boundary H�(�) is a past horizon (and thus enjoysall the known properties of horizons).Sin
e H�(�) is the boundary of a 
onvex domain, it admits support hy-perplanes at ea
h of its points. And sin
e E+(�) is future 
omplete, thefuture in R1;n�1 of any point p in H�(�) is 
ontained in E+(�). But, time-like hyperplanes 
ontaining p all interse
t the future of p, it then followsthat support hyperplanes to H�(�) are non-timelike.Lemma 3.1. Let p a point of the past horizon H�(�) of a future 
omplete
at regular domain E+(�). Let C(p) � TpX be the set of future orientedtangent ve
tors orthogonal to support hyperplanes to H�(�) at p. Then C(p)is the 
onvex hull of its null elements. Moreover, the null elements of C(p)are pre
isely the normals to elements of � tangent to H�(�) at p.Proof. See [19, 
orollary 4.12℄ (see also [31, Proposition 11℄). �3.2. Retra
tion to the initial singularity. A

ording to point (3) inTheorem 2.7, for every point x in a 
at regular domain there is a uniquemaximal timelike geodesi
 ray with future endpoint x realizing the "distan
eto the initial singularity": we 
all su
h a geodesi
 ray a realizing geodesi
for x.Proposition 3.2. Let x be an element of a future 
omplete 
at regulardomain E+(�). Then, there is an unique realizing geodesi
 for x.Proof. See [19, Proposition 4.3℄. �De�nition 3.3. A unit speed future oriented timelike geodesi
 
 : [0; T ℄!E+(�) is tight if for every t in [0; T ℄ the restri
tion 
 : [0; t℄ ! E+(�) is arealizing geodesi
 for 
(t).Proposition 3.4. Let 
 : [0; T ℄ ! E+(�) be an unit speed future orientedtimelike geodesi
 with initial point in the past horizon. Then the followingassertions are equivalent:(1) 
 is tight,(2) the derivative of 
 at 0 is orthogonal to a support hyperplane at 
(0).Proof. See [19, Proposition 4.3℄. �



10 L. ANDERSSON, T. BARBOT, F. B�EGUIN, AND A. ZEGHIBDe�nition 3.5. The initial singularity of a future 
omplete 
at regulardomain E+(�) is the set of points in the past horizon admitting at least twosupport hyperplanes; it will be denoted by ��(�).Proposition 3.6. The map whi
h asso
iates to any point x of a regulardomain E+(�), the initial singularity of the unique realizing geodesi
 for xis a 
ontinuous map taking value in ��(�). This map is denoted r, and
alled \retra
tion to the initial singularity".Proof. See [19, Proposition 4.3 and 4.12℄. �3.3. Des
ription of the retra
tion map.Proposition 3.7. For every p in the past singularity ��, the preimager�1(p) in E+(�) is the union of 
omplete timelike geodesi
 rays with initialpoint at p.Proof. The Proposition is an immediate 
orollary of Proposition 3.2 and3.4. �Corollary 3.8. Let p be an element of the past horizon of E+(�) su
h thatthe 
onvex hull C(p) of the null generators has non-empty interior in thespa
e of timelike tangent ve
tors at p. Then, r�1(p) is open in E+(�). �4. Cosmologi
al levels as barriers, Proof of Theorem 1.1If S is a spa
elike hypersurfa
e in a spa
etime (M; g), then the se
ondfundamental form (also known as the extrinsi
 
urvature) of S at a pointx is de�ned as II(X;Y ) = h�;rXY i = �hrX�; Y i where X, Y are tan-gent ve
tors to S at x and � is the future oriented timelike normal of S(with lorentzian norm �1). The mean 
urvature is de�ned in terms of thetra
e of II with respe
t to the indu
ed metri
 as HS = trII=(n � 1). Thisde�nition requires S to be at least C2. Nevertheless, in 
ertain 
ases, one
an give a meaning to the assertion \a topologi
al hypersurfa
e has mean
urvature bounded from below (or above) by some 
onstant 
". A de�nitionof this notion for rough spa
elike hypersurfa
es was given in [7, De�nition3.3℄, making use of the notion of supporting hypersurfa
es with one-sidedHessian bound. The following de�nition, whi
h does not in
lude the one-sided Hessian bound, is suÆ
ient for our purposes in this paper. We willsay that S is a C0-spa
elike hypersurfa
e in M if for ea
h x 2 S, there isa neighborhood U of x so that S \ U is edgeless and a
ausal in U , see [7,De�nition 3.1℄.De�nition 4.1. Let S be a C0-spa
elike hypersurfa
e in a spa
etime (M; g).Given a real number 
, we will say that S has generalized mean 
urvaturebounded from above by 
 at x, denoted HS(x) � 
, if there is a geodesi
ally
onvex open neighborhood V of x inM and a smooth spa
elike hypersurfa
eS�x in V su
h that :{ x 2 S�x and S�x is 
ontained in the past of S \ V (in V ),
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urvature of S�x at x is bounded from above by 
.Similarly, we will say that S has generalized mean 
urvature is boundedfrom below by 
 at x, denoted HS(x) � 
, if, there is a geodesi
ally 
onvexopen neighborhood V of x in M and a smooth spa
elike hypersurfa
e S+x inV su
h that :{ x 2 S+x and S+x is 
ontained in the past of S\V (with respe
t to V ),{ the mean 
urvature of S+x at x is bounded from below by 
.We will write HS � 
 and HS � 
 to denote that S has generalized mean
urvature bounded from below respe
tively above by 
 for all x 2 S.Remark 4.2. Let S be a smooth spa
elike hypersurfa
e in a spa
etime(M; g), and 
 be a real number. If HS � 
 or HS � 
 in the sense of thede�nition above, then the maximum prin
iple, see Proposition 5.4 below,implies that the same bounds hold in terms of the usual sense.Remark 4.3. Let S be a C0-spa
elike hypersurfa
e, and let x be a point ofS. Assume that there exists two numbers 
�; 
+ su
h that S has generalizedmean 
urvature bounded from below by 
� and from above by 
+ at x.Then S has a tangent plane at x. Indeed, the point x belong to two smoothhypersurfa
es S�x and S+x whi
h are (lo
ally) respe
tively in the past and inthe future S. In parti
ular, S�x is lo
ally in the past of S+x . This implies thatthe tangent hyperplane of S�x at x 
oin
ides with the tangent hyperplane ofS+x . And sin
e S is between S�x and S+x , this hyperplane is also tangent toS. Let us re
all the statement of Theorem 1.1:Theorem 4.4. Consider a future 
omplete 
at regular domain E+(�) andthe asso
iated 
osmologi
al time � : E+(�) ! (0;+1). Then, for everya 2 (0;+1), the hypersurfa
e Sa = ��1(a) has generalized mean 
urvaturesatisfying � 1a � HSa � � 1(n�1)a .Remark 4.5. What is important in the proof of Theorem 1.2 is just the fa
tthat the hypersurfa
e Sa has generalized mean 
urvature satisfying �(a) �HSa � �(a), where �(a); �(a) ! �1 when a! 0, and �(a); �(a) ! 0 whena! +1.Proof. Let x be a point on the level set Sa. We denote by 
 : [0; a℄! E+(�)the unique realizing geodesi
 for x, with initial point p = r(x). Let v be thefuture oriented unit speed tangent ve
tor of 
 at p. We denote as beforeby C(p) the set of ve
tors in TpX orthogonal to support hyperplanes of thepast horizon at p.Constru
tion of S+x . De�ne S+x as the hyperboloid fzjd(p; z) = ag. Sin
eE+(�) is geodesi
ally 
onvex, for any z in S+x the timelike geodesi
 (p; z)is 
ontained in E+(�). Hen
e, its length a is less than �(z). The uniquerealizing geodesi
 for z must therefore interse
t Sa. Hen
e, S+x is 
ontainedin the future of Sa. The tangent hyperplane to S+x at x is the hyperplane
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 at x. Hen
e, S+x is tangent to Sa at x. Finally, the mean
urvature of S+x is obviously � 1a everywhere. As a 
onsequen
e, Sa hasgeneralized mean 
urvature satisfying HSa � � 1a .Constru
tion of S�x . A

ording to Lemma 3.1, the tangent ve
tor v of therealizing geodesi
 
 introdu
ed above, belongs to the 
onvex hull C(p). LetB be a �nite subset of the null elements of C(p) su
h that v lies in the 
onvexhull of B. We 
hoose moreover B minimal, i.e. su
h that for any propersubset B0 � B, v does not belong to the 
onvex hull of B0. An equivalentstatement is that v belongs to the relative interior Conv(B).The null hyperplanes p + w? for w in B form a �nite subset �B of �.Observe that sin
e the 
onvex hull of B 
ontains the timelike ve
tor v, B
ontains at least two elements. Hen
e, E+(�B) is a future 
omplete 
atregular domain.Obviously, E+(�B) 
ontains E+(�). Hen
e H�(�B) is 
ontained in the
ausal past of E+(�). Moreover, E+(�B) 
ontains the timelike geodesi

, and also x, and its past horizon H�(�B) 
ontains p. A

ording toLemma 3.1, support hyperplanes toH�(�B) at p are hyperplanes orthogonalto ve
tors in the 
onvex hull of B. In parti
ular, the hyperplane orthogonalto the timelike ve
tor v is a spa
elike support hyperplane. It follows that 
is a realizing geodesi
 for x in E+(�B). Hen
e, �B(x) = a, where �B is the
osmologi
al time for E+(�B).Let S0B be the level set f�B = ag in E+(�B), and de�ne S�x as a smallopen neighborhood of x in S0B \ E+(�). Let V be a geodesi
ally 
onvexneighborhood of x 
ontaining S�x (for example, the Cau
hy development ofS�x in E+(�)). For any z in S0B let 
 be the unique realizing geodesi
 forz in E+(�). Sin
e H�(�B) is in the 
ausal past of H�(�) there is a pastextension of 
 with past endpoint in H�(�B). Hen
e, �(z) � a. It followsthat S�x lies in the 
ausal past of Sa in V .To 
omplete the proof, we must prove that S�x near x is smooth, admitsat x the same tangent hyperplane (x � p) + v?, and that it has 
onstantmean 
urvature � d(n�1)a for some integer 1 � d � n� 1.Consider R1;n�1 as a ve
tor spa
e, with origin p = 0. Let F be the ve
torspa
e spanned by Conv(B). Then F is a timelike subspa
e, with dimension2 � k � n, and we have a splitting R1;n�1 = F � F?. The subspa
e F? isspa
elike. Every element of �B is a null hyperplane 
ontaining F?. It followseasily that E+(�B) is the sum E0(�B)�F?, where E0(�B) = F \E+(�B).For every element H of �B, H \ F is a null hyperplane in F � R1;k�1 .Let �0B = fH \ F j H 2 �Bg. Then �0B is a �nite subset of the Penroseboundary of F . Clearly E0(�B) is pre
isely the 
at regular domain E(�0B) �F . Now we observe that restri
ting to F , v is in the interior of Conv(�0B).Hen
e, for some small neighborhood V 0 of x in E(�0B), whi
h 
an be sele
tedgeodesi
ally 
onvex, the image by the retra
tion r of ea
h point y in V 0 isp. Shrinking V if ne
essary, we 
an assume that V is 
ontained in V 0 �F?. A

ording to Corollary 3.8, S�x has the form H � F?, where H is the



COSMOLOGICAL VERSUS CMC TIME I: FLAT SPACETIMES 13hyperboloid 
onsisting of points in F in the future of p and at lorentziandistan
e a from p. Hen
e, S�x is smooth and admits at x the same tangenthyperplane than Sa (the orthogonal x + v?). Moreover, sin
e x + F? istotally geodesi
, and sin
e the prin
ipal dire
tions of H are all equal to � 1a ,the mean 
urvature of S�x is equal to � 1a : dn�1 where d = k � 1. This showsthat Sa has generalized mean 
urvature satisfying HSa � � 1(n�1)a . �Remark 4.6. The proof of theorem 4.4 shows that the se
ond fundamentalforms of S�x ;S+x have eigenvalues �1=a; 0 (in the 
ase of S�x ) and �1=a (inthe 
ase of S+x . Therefore the level sets of � have mean 
urvature satisfy-ing �1=a � HSa � �1=((n � 1)a) with one-sided Hessian bound as in [7,De�nition 3.3℄, and hen
e the strong maximum prin
iple for spa
elike hy-persurfa
es given in [7, Theorem 3.6℄ applies in our situation. However, weshall not need the full strength of this result here. See proposition 5.4 belowfor the version of the maximum prin
iple whi
h we shall make use of.The eigenvalue bounds stated in remark 4.6 allow us to give a more pre-
ise 
hara
terization of the regularity of the 
osmologi
al time fun
tion. TheHessian bounds for the height fun
tion implied by the bounds on the se
-ond fundamental form of the supporting hypersurfa
es, together with anappli
ation of the 
ase p =1 of [21, Proposition 1.1℄ provesCorollary 4.7. � 2 C1;1Lo
We leave it to the reader to formulate the obvious analogs of theorem 4.4and 
orollary 4.7 for past 
omplete 
at regular domains E�(�) whi
h holdin terms of the reverse 
osmologi
al time b� : E�(�)! (0;+1).5. From barriers to CMC time fun
tionsIn this se
tion, we 
onsider a n-dimensional, n � 3, maximal globally hy-perboli
 spa
etime (M; g) with 
ompa
t Cau
hy hypersurfa
es and 
onstant
urvature equal to k. We emphasize that many of the proofs that we giveare not valid without the assumption that M has 
ompa
t Cau
hy surfa
es.Re
all that (M; g) has 
urvature k if the Riemann tensor satis�eshRiem(X;Y )Y;Xi = k(hX;XihY; Y i � hX;Y i2)for any ve
tor �elds X;Y . Then the Ri

i tensor satis�es Ri
 = (n � 1)kg.We will de�ne a notion of sequen
e of asymptoti
 barriers, and prove (usingquite 
lassi
al arguments) that (M; g) admits a CMC time fun
tion providedthat it admits a sequen
e of asymptoti
 barriers.De�nition 5.1. Let 
 be a real number. A pair of 
-barriers is a pair ofC0-spa
elike Cau
hy hypersurfa
es (��;�+) in M su
h that{ �+ is in the future of ��,{ H�� � 
 � H�+ in the sense of de�nition 4.1.
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e of asymptoti
 past�-barriers is a sequen
e of C0-spa
elike Cau
hy hypersurfa
es (��m)m2N inM su
h that{ ��m tends to the past end of M when m ! +1 (i.e. given any
ompa
t subset K of M , there exists m0 su
h that K is in the futureof ��m for every m � m0),{ a�m � H��m � a+m, where a�m and a+m are real numbers su
h that� < a�m � a+m, and su
h that a+m ! � when m! +1.Similarly, a sequen
e of asymptoti
 future �-barriers is a sequen
e of C0-spa
elike Cau
hy hypersurfa
es (�+m)m2N in M su
h that{ �+m tends to the future end of M when m! +1,{ b�m � H�+m � b+m, where b�m and b+m are real numbers su
h thatb�m � b+m < b, and su
h that b�m ! � when m! +1.Theorem 5.3. Let (M; g) be an n-dimensional, n � 3, maximal globally hy-perboli
 spa
etime, with 
ompa
t Cau
hy hypersurfa
es and 
onstant 
urva-ture k, and su
h that (M; g) admits a sequen
e of asymptoti
 past �-barriersand a sequen
e of asymptoti
 future �-barriers. If k � 0, assume moreoverthat (�; �) \ [�pk;pk℄ = ;. Then, (M; g) admits a CMC time fun
tion�
m
 : M ! (�; �).Theorem 5.3 follows easily from known fa
ts in 
ase the barriers aresmooth, and introdu
ing C0 barriers is not diÆ
ult given the results above.Nevertheless, sin
e we are not aware of a referen
e for this pre
ise statment,we in
lude a proof below. The following are the two main te
hni
al stepsin the proof. In the 
ase of smooth barriers and hypersurfa
es, they wereproved in this formulation by Gerhardt [28℄.{ a proposition whi
h states that any CMC hypersurfa
e of mean 
ur-vature 
0 lies in the future of any CMC hypersurfa
e of mean 
urva-ture 
 whenever 
0 > 
 (Proposition 5.6);{ a theorem whi
h ensures the existen
e of a Cau
hy hypersurfa
e of
onstant mean 
urvature 
, assuming the existen
e of a pair of 
-barriers (Theorem 5.9).Let us start with a slight generalization of the 
lassi
al maximum prin
iple.Proposition 5.4. Let � and �0 be two C0-spa
elike hypersurfa
es. Assumethat these hypersurfa
e have one point x in 
ommon, and assume that � isin the past of �0. Assume that � has generalized mean 
urvature boundedfrom above by 
 at x, and �0 has generalized mean 
urvature bounded frombelow by 
0 at x. Then 
 � 
0.Remark 5.5. Proposition 5.4, whi
h may be viewed as a 
omparison prin-
iple, follows from the strong maximum prin
iple for C0 hypersurfa
es satis-fying a one-sided Hessian bound, see [7, Theorem 3.6℄. The notion of gener-alized mean 
urvature we are using here does not in
luded this requirementand we therefore in
lude the simple proof of the proposition.
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e � has generalized mean 
urvature bounded from above by 
 atx, there exists a smooth spa
elike hypersurfa
e Sx su
h that x 2 Sx, Sx isin the past of � and the mean 
urvature of Sx at x is at most 
. Similarly,there exists a smooth spa
elike hypersurfa
e S0x su
h that x 2 S0x, S0x is inthe future of �0 and the mean 
urvature of S0x at x is at least 
0. Sin
e �is in the past of �0, this implies that Sx is in the past of S0x. And sin
e thepoint x belongs to both Sx and S0x, we dedu
e that Sx and S0x share thesame tangent hyperplane at x. Now the 
lassi
al maximum prin
iple 
an beapplied to show that 
 � 
0. �The following result was proved by Gerhardt for the 
ase of spa
etimeswith a lower bound on the Ri

i 
urvature on timelike ve
tors, see [28,Lemma 2.1℄.Proposition 5.6. Let (M; g) be an n-dimensional, n � 3, maximal glob-ally hyperboli
 spa
etime, with 
ompa
t Cau
hy hypersurfa
es and 
onstant
urvature k. Let � and �0 be two smooth Cau
hy hypersurfa
es in M . As-sume that H� � 
 and H�0 � 
0, with 
 � 
0. If k is non-negative, assumemoreover that 
 < �pk or that 
0 > pk. Then �0 is in the future of �.We will give a proof of Proposition 5.6 below, as we shall make use ofsome of the details in the proof of theorem 5.3.Let �0 be a smooth Cau
hy hypersurfa
e with future unit normal �0.Re
all that the orbit of the Gauss 
ow of smooth Cau
hy hypersurfa
e �0in the dire
tion �0 
onsists of the Cau
hy hypersurfa
es �t = Ft(�0) whereF : I � �0 ! M is de�ned as Ft(x) = expx(t�0) for x 2 �0, for t 2 I.Here I is the maximal time interval where Ft is regular. The 
ore of theproof of Proposition 5.6 is the following standard 
omparison lemma, see forexample [8, 
orollary 2.4℄.Lemma 5.7. We 
onsider the orbit (�t)t2I of a smooth Cau
hy hypersurfa
e�0 under the Gauss 
ow. We 
onsider a geodesi
 
 whi
h is orthogonal tothe �t's, and we denote by p(t) the point of interse
tion of the geodesi
 
with the hypersurfa
e �t. The mean 
urvature H(t) of �t at p(t) satis�esthe di�erential inequalitydH(t)dt � (n� 1)(H(t)2 � k):Proof of Proposition 5.6. Assume that �0 is not in the future of �. Then,we 
an 
onsider a future-dire
ted timelike geodesi
 segment 
 going from apoint of �0 to a point of � having maximal length among all su
h geodesi
segments. It is well-known that 
 is orthogonal to both �0 and �, and thatthere is no fo
al point to �0 or � along 
 (see e.g. [29, Proposition 4.5.9℄).We will denote by p0 2 �0 and p 2 � the ends of 
, and by Æ be the lengthof 
.If k is non-negative, we have to distinguish two di�erents 
ases, a

ordingto whether 
0 > pk or 
 < �pk. Let us 
onsider the �rst 
ase. Sin
e there
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al point to �0 along 
, the image �0t of �0 by the time t of the Gauss
ow is well-de�ned for t 2 [0; Æ℄ in a neighbourhood of 
. Denote by p0(t)the point of interse
tion of the hypersurfa
e �0t with the geodesi
 segment 
,and by H 0(t) the mean 
urvature of �0t at p0(t). By Lemma 5.7, t 7! H 0(t)satis�es the di�erential inequality dH0dt � (n� 1)(H 02� k): This implies thatH 0 in
reases along 
 (note that H 0(t)2 is stri
tly greater than k for everyt, sin
e H 0(0) = 
0 > pk by assumption and sin
e H 0(t) in
reases). Inparti
ular, we have H 0(Æ) > H 0(0) = 
0. But now, re
all that, by de�nitionof �0Æ, every point of �0Æ in a neighbourhood of 
(Æ) = p is at distan
e exa
tlyÆ of �0. Also re
all that 
 is the longest geodesi
 segment joining a pointof �0 to a point of �. This implies that � is in the past of �0Æ. Hen
e,by Proposition 5.4, the mean 
urvature of � at p is bounded from belowby the mean 
urvature of �0Æ, whi
h itself is stri
tly greater than the mean
urvature of �0. This 
ontradi
ts the assumption 
 � 
0.The proof is the same in the 
ase where 
 < �pk (ex
ept that one
onsiders the ba
kward orbit of � for the Gauss 
ow, instead of the forwardorbit of �0). �Remark 5.8. Proposition 5.6 implies that, for every 
 2 R n [�pk;pk℄,there exists at most one Cau
hy hypersurfa
e in M with 
onstant mean
urvature equal to 
. In parti
ular, for any open interval (�; �), whi
hif k � 0 satis�es the 
ondition (�; �) \ [�pk;pk℄ = ;, there exists atmost one fun
tion t
m
 : M ! (�; �) su
h that t�1
m
(
) is a smooth Cau
hyhypersurfa
e with 
onstant mean 
urvature equal to 
 for every 
 2 (�; �).Note that we are not assuming here that t
m
 is a time fun
tion (re
allthat, if t
m
 is a time fun
tion, then it is automati
ally unique, without anyassumption on (�; �)).Further, it is easy to see using a maximum prin
iple argument, that inthe standard deSitter spa
e with topology Sn�1 � R and 
urvature k > 0,there is no Cau
hy hypersurfa
e with mean 
urvature 
 2 R n [�pk;pk℄.Therefore Proposition 5.6 is va
uous in this 
ase.Theorem 5.9. Let (M; g) be an n-dimensional, n � 3, maximal globallyhyperboli
 spa
etime, with 
ompa
t Cau
hy hypersurfa
es. Let 
 be any realnumber, and assume that there exists a pair of 
-barriers (��;�+) in M .Then, there exists a smooth Cau
hy hypersurfa
e � with 
onstant mean 
ur-vature equal to 
. Moreover, � is in the future of �� and in the past of�+.Proof. The result is proved e.g. in [27℄ in the 
ase where the barriers ��and �+ are smooth. The only way the barriers �� and �+ are used inGerhardt's proof is via the maximum prin
iple (to show that a family ofCau
hy hypersurfa
es whose mean 
urvature approa
hes 
 
annot \es
apeto in�nity"). Sin
e the maximum prin
iple is still valid for C0 hypersurfa
es(Proposition 5.4), Gerhardt's proof also applies in the 
ase where the barriersare not smooth. �
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onsider a sequen
e (��m)m2N of asymptoti
 past�-barriers, and a sequen
e (�+m)m2N of asymptoti
 future �-barriers.Constru
tion of the fun
tion �
m
. Fix 
 2 (�; �). For m large enough,the pair of Cau
hy hypersurfa
es (��m;�+m) is a pair of 
-barriers. Thus, byTheorem 5.9, for any 
 2 (�; �), there exists a Cau
hy hypersurfa
e S
 with
onstant mean 
urvature equal to 
. Proposition 5.6 implies that the S
'sare pairwise disjoint, and that S
 is in the past of S
0 if 
 < 
0 (let us 
allthis \property (?)").Now, let us prove that the set S
2(�;�) S
 is 
onne
ted. Assume the
ontrary. Be
ause of property (?), there are only two possible 
ases :(i) there exists 
0 2 (�; �) su
h that S
>
0 I+(S
) ( I+(S
0);(ii) or there exists 
0 2 (�; �) su
h that S
<
0 I�(S
) ( I�(S
0):Let us 
onsider, for example, 
ase (i). Using the Gauss 
ow, we 
an pushthe hypersurfa
e S
0 towards the future, in order to obtain a Cau
hy hyper-surfa
e S0
0 whi
h is in the future of �
0 , but as 
lose to S
0 as we want. Inparti
ular, we 
an assume that S0
0 is not in the future of S
 for any 
 > 
0.Moreover, a

ording to Lemma 5.7, the mean 
urvature of S0
0 is boundedfrom below by some number 
00 > 
0. But this 
ontradi
ts Proposition 5.6.Case (ii) 
an be treated similarly. As a 
onsequen
e, the set S
2(�;�) S
 is
onne
ted. Note that this implies that the hypersurfa
e S
 depends 
ontin-uously on 
Now, let us prove that the union S
2(�;�) S
 is equal to the whole M .Assume that there exists a point x 2M nS
2(�;�) S
. Sin
e the hypersurfa
eS
 depends 
ontinuously on 
, there are only two possible 
ases :(i) either x is in the future of S
 for every 
 2 (�; �),(ii) or x is in the past of S
 for every 
 2 (�; �).Now, re
all that we have a sequen
e (S+m)m2N of asymptoti
 future �-barriers. By de�nition, this means that S+m has generalized mean 
urva-ture bounded from below by some b�m and smaller than some b+m whereb�m � b+m < � and b�m !m!1 �. Fix some integer p. One 
an �nd q > psu
h that b�q > b+p . Then (S+p ; S�q ) is a pair of b+p -barriers. By Theorem 5.9,one 
an �nd a Cau
hy hypersurfa
e with 
onstant mean 
urvature equal tob+p between S+p and S�q , and by uniqueness (see remark 5.8), this hyper-surfa
e is the hypersurfa
e S
 for 
 = b+p . In parti
ular, for 
 � b+p , thehypersurfa
e S
 is in the future of the barrier S+p . Now, re
all that, by def-inition of a sequen
e of asymptoti
 future barriers, S+p tends to the futureend of M when p!1. This shows that 
ase (i) 
annot happen. Of 
ourse,one 
an ex
lude 
ase (ii) using similar arguments. Therefore we have provedthat S
2(�;�) S
 =M:Now, we 
an de�ne de�ne the fun
tion �
m
 : m! (�; �) as follows : forevery x 2 M , we set �
m
(x) = 
 where 
 is the unique number su
h thatx 2 S
.
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tion �
m
. The fa
t the hypersurfa
e S
 depends
ontinuously on 
 implies that the fun
tion �
m
 is 
ontinuous. The fa
tthat the hypersurfa
e S
0 is in the stri
t future of the hypersurfa
e S
 when
0 > 
 implies that the fun
tion �
m
 is stri
tly in
reasing along any futuredire
ted timelike 
urve. Hen
e, �
m
 is a time fun
tion. �Remark 5.10. The fun
tion �
m
 is also a time fun
tion in the followingstronger sense : for every future dire
ted timelike 
urve 
 : I ! R, one hasddt�
m
(
(t)) > 0:Indeed, �x su
h a 
urve 
 and some t0 2 I, let x0 = 
(t0) and 
0 = �
m
(x0).For t small enough, denote by St
0 the image of the hypersurfa
e S
0 by thetime t of the Gauss 
ow. Sin
e the derivative 
 is future-oriented timelikeve
tor, there exists a 
onstant �1 > 0 su
h that, for h > 0 small enough, thepoint 
(t0 + h) is in the future of the image of the hypersurfa
e S�1:h
0 . NowLemma 5.7 implies that there exists a 
onstant �2 > 0 su
h that the mean
urvature of the hypersurfa
e S�1:h
0 is bounded from below by 
0 + �1:�2:h(for h small enough). Then Proposition 5.6 implies that S
0+�1:�2:h is in thepast of S�1:h
0 . In parti
ular, for h small enough, the point 
(t0 + h) is thefuture of the hypersurfa
e S
0+�1:�2:h. In other words, we have �
m
(t0+h) >
0 + �1:�2:h. This implies ddt�
m
(
(t)) > �1:�2 > 0.Remark 5.11. Using the same arguments as above, one 
an prove thefollowing result:Let (M; g) be an n-dimensional, n � 3, maximal globally hyperboli
 spa
e-time, with 
ompa
t Cau
hy hypersurfa
es and 
onstant 
urvature k. Assumethat (M; g) admits a sequen
e of asymptoti
 past �-barriers. If k � 0, as-sume moreover that � =2 [�pk;pk℄. Then, (M; g) admits a partially de�nedCMC time fun
tion �
m
 : U ! (�; �) where U is a neighbourhood of thepast end of M (i.e. the past of a Cau
hy hypersurfa
e in M) and � is a realnumber greater than �.Proposition 5.12. Let (M; g) be an n-dimensional, n � 3, maximal glob-ally hyperboli
 spa
etime, with 
ompa
t Cau
hy hypersurfa
es and 
onstant
urvature k. Suppose that there exists a fun
tion t
m
 : M ! (�; �) su
hthat t�1
m
(
) is a Cau
hy hypersurfa
e with 
onstant mean 
urvature equal to
 for every 
 2 (�; �). Assume moreover that one of the following hypothesesis satis�ed:� t
m
 is a time fun
tion,� the 
urvature k is negative,� the 
urvature k is non-negative and (�; �) \ [�pk;pk℄ = ;.Then t
m
 is real analyti
.Sket
h of proof. Under the stated 
onditions, there is exa
tly one CMCCau
hy hypersurfa
e for ea
h 
 2 (�; �). CMC hypersurfa
es in a real an-alyti
 spa
etime are real analyti
, sin
e they are solutions of a quasi-linear
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 PDE. Given a CMC Cau
hy hypersurfa
e S0 with mean 
urvature
0 2 (�; �), let u be the Lorentz distan
e to S0. For 
 
lose to 
0, a Cau
hyhypersurfa
e S
 with mean 
urvature 
 is a graph over S0, de�ned by thelevel fun
tion w = u��S
 . The fun
tion w solves the mean 
urvature equationH[w℄ = 
, whi
h is a quasilinear ellipti
 system with real analyti
 depen-den
e on the 
oeÆ
ients. It follows that S
 depends in a real-analyti
 manneron 
, and that the fun
tion t
m
 is a real analyti
 fun
tion on M . �6. Proof of Theorem 1.2Let (M; g) be a n-dimensional MGHF spa
etime with 
ompa
t Cau
hyhypersurfa
e. We �rst 
onsider the 
ase where (M; g) is not past geodesi
ally
omplete. Then Theorem 2.10 states that (M; g) is the quotient of a future
omplete regular domainE+(�) � R1;n�1 by a torsion-free dis
rete subgroup� of Isom(R1;n�1). Let � : E+(�) ! (0;+1) be the 
osmologi
al time ofE+(�). It follows from Theorem 2.7 and its proof, see [6, Proposition 2.2℄,that for every a 2 (0;+1), the level set Sa = ��1(a) is a 
losed stri
tlya
hronal edgeless hypersurfa
e in E+(�). Moreover, � is obviously invariantunder every element of Isom(R1;n�1) preserving E+(�). Hen
e, for everya 2 (0;+1), the proje
tion �a of Sa in M � � n E+(�) is a 
losed stri
tlya
hronal edgeless hypersurfa
e in M . Sin
e M is globally hyperboli
 with
ompa
t Cau
hy hypersurfa
es, this implies that �a is a 
ompa
t stri
tlya
hronal hypersurfa
e in M , and thus is a topologi
al Cau
hy hypersurfa
ein M . Theorem 4.4 implies that, for every a 2 (0;+1), �a has generalizedmean 
urvature bounded from below by �1=a, and bounded from aboveby �1=((n � 1)a). Let (am)m2N be a de
reasing sequen
e of positive realnumbers su
h that am ! 0 when m ! +1, and (bm)m2N be a in
reasingsequen
e of positive real numbers su
h that bm ! +1 when m ! +1.Observe that (�am)m2N is a sequen
e of past asymptoti
 �-barrier in M for� = �1 (indeed �1 < �1=am < �1=((n � 1)am) for every m, and sin
e�1=((n�1)am)! �1 whenm!1), and (�bm)m2N is a sequen
e of futureasymptoti
 �-barrier in M for � = 0 (indeed �1=bm < �1=((n� 1)bm) < 0)for every m, and sin
e �1=bm ! 0 when m ! 1). Hen
e Theorem 5.3implies that M admits a globally de�ned CMC time fun
tion �
m
 : M !(�1; 0).Next, we prove that � and �
m
 are 
omparable. It follows from theorem4.4 that for every a > 0, the pair of hypersurfa
es ��a=(n�1);�a� is a pairof �1=a-barriers. Hen
e, theorem 5.9 and remark 5.8 imply that the hyper-surfa
e ��1
m
(�1=a) is in the future of �a=(n�1) = ��1(a=(n� 1)) and in thepast of �a = ��1(a). Equivalently, one has� � � 1�
m
 � (n� 1)�:The 
ase where (M; g) is future geodesi
ally in
omplete is similar (ex
eptthat (M; g) is the quotient of a past 
omplete 
at regular domain E�(�),and that one has to 
onsider the reverse 
osmologi
al time of E�(�)).
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onsider the 
ase where (M; g) is geodesi
ally 
omplete.Then Theorem 2.10 states that up to a �nite 
overing (M; g) is a quotientof R1;n�1 by a 
ommutative subgroup � of Isom(R1;n�1) generated by n� 1spa
elike linearly independant translations t�!u1 ; : : : ; t�!un . Let �!v be any (sayfuture-dire
ted) timelike ve
tor. Then, for every t 2 R, the aÆne planePt := t:�!v + R:�!u1 + � � � + R:�!un is �-invariant. Hen
e it indu
es a totallygeodesi
 spa
elike hypersurfa
e �t := �nPt inM ' �nR1;n�1 . The family ofhypersurfa
es (�t)t2R is a foliation ofM whose leaves are by totally geodesi
(in parti
ular, CMC) spa
elike hypersurfa
es.In order to 
omplete the proof of Theorem 1.2, we only need to provethat in the 
ase where (M; g) is geodesi
ally 
omplete, every CMC Cau
hyhypersurfa
e � in M is a leaf of the totally geodesi
 foliation (�t)t2R 
on-stru
ted above. Indeed, let t� = infft su
h that � \ �t 6= ;g and t+ =supft su
h that � \ �t 6= ;g. Then, � is tangent to �t� at some point andis in the future of �t� . Hen
e, the maximum prin
iple (Proposition 5.4)implies that the mean 
urvature of � is smaller or equal than those of �t� ,i.e. is non-positive. Similarly, � is tangent to �t+ at some point and is inthe past of �t+ , so by the maximum prin
iple, the mean 
urvature of � isnon-negative. So, we know that the mean 
urvature of � is equal to 0. Andnow, we use the equality 
ase of the maximum prin
iple (see, e.g., [7, The-orem 3.6℄): if S and S0 are two CMC Cau
hy hypersurfa
es with the samemean 
urvature, whi
h are tangent at some point, and su
h that S0 is in thefuture of S, then S = S0. This shows that � = �t� = �t+ ; in parti
ular, �is a leaf of the totally geodesi
 foliation (�t)t2R.A
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