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Smooth actions of certain Lie groups are (vaguely) conjectured to be “rigid”.
In considering such conjectures it is natural to start by studying actions that are
already rigid. Indeed from these conjectures themselves one might see that this is
not so restrictive, and, on the other hand, this may help to understand the general
case.

Among existing work in this field, the articles of Zimmer ([Zim1], [Zim2]...)
and Gromov ([Gro], [D-G]) are fundamental. Their approaches are respectively
ergodic theoretical and “analytical’. In this paper, we obtain, by elementary
geometrical and “algebraic” methods some new results and new proofs of existing
results and (partial) answers to some (partial) questions.

Rigidity questions concern in some sense the transverse structure of the un-
derlying “foliation”, but here we deal with questions about the geometry and
topology of leaves. In fact, a fundamental question is, do we actually have a
foliation ? Equivalently: what conditions ensure that the action is everywhere
locally free ?

Our results concern essentially actions of semi-simple Lie groups preserving
a pseudo-riemannian or an unimodular affine structure on a compact manifold.
The principal ones are Theorems 3.1, 3.2, 4.7, 4.8, 4.9, 5.2, 7.5, 8.5 and 8.9.

We will always assume the actions locally faithful. All semi-simple groups
that we consider here are linear, without compact factor.

Let us begin by recalling examples (from [D-G]) of actions of semi-simple
Lie groups.

1 Examples
1.1 Linear actions

Let p: G — GL(n,R) be a representation of a Lie groG Given a realA > 0,
letH, be the Hopf manifold, quotient &" — {0} by x — Ax. It is diffeomorphic
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to St x S"~* equipped with an affine flat connection. The grdBi@cts onH,, by
affine transformations (in the case®f= SL(n, R) the action is in fact transitive).
However this action has no invariant measures (notice nevertheless that there is
a kind of invariant conformal measure...).

To get examples with more trivial topology one may #6) act projectively
on the spher&"~. Such an action preserves neither a measure nor a connection.

1.2 Homogeneous actions

Let| be a Lie groupG a (closed) Lie subgroup df, I" a discrete subgroup of
| and letM be the quotient /I", that we suppose to be compact. THeracts
by multiplication on the left orM .

1.2.1 Canonical and warped connections

The Lie groupl has a canonical (torsion free) bi-invariant connection that is
given, for right invariant vector fieldX and Y by: VxY = (1/2)[Y,X]. It
passes to ah-invariant connection on the quotieht =1 /I" (It is here that we
require " to be discrete).

Any | -right invariant connection oh (that is a connection with constant
Christoffel symbols in a right invariant frame field) descends to a connection on
M. Such a (warped) connection” is given by: VY'Y = (1/2)[Y, X]+W(X,Y),
whereW :.7 x.7 — .7 is a symmetric bilinear form, wher& is the Lie algebra
of I.

Moreover ifG is a subgroup of , thenV" is invariant under the left action
of G if and only if W is Ad(G) equivariant. In this cas&V gives a connection
on | /I" which is invariant under the left action &.

One needs unimodularity conditions to get actions which are in addition
volume preserving.

1.2.2 Pseudo-riemannian metrics

Some Lie groups admit bi-invariant pseudo-riemannian metrics. This is indeed
the case of semi-simple Lie groups, for which the Killing form provides such a
structure, and also some solvable groups [M-R]. In general metrics that pass to
the quotientd /I" are given by (scalar) bilinear form$: : .7 x .7 — R. As
above they ar&-invariant, if and only if,b is Ad(G)-invariant.

SuchG-actions are in particular connection and volume preserving.

1.2.3 Locally homogeneous case

Now letJ be a connected closed Lie subgroupl olnstead of taking quotients
of | as above, one may consider the homogeneous shateand its quotients
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M =J\ I /I (if they exist as a compact Hausdorff manifold). The Normalizer
Nor; (J) acts by the left oM . Similar conditions as above, for structuresl ,
ensure that they pass @-invariant structures oM, whereG is a subgroup of
Nor, (J).

For example if botH andJ are semi-simple, the Killing form allows one to
construct pseudo-riemannian metrics satisfying all the invariance conditions.

1.3 Suspensions

Let I" be a co-compact lattice & acting on a manifold=. Consider the sus-
pension manifoldV = G x F /(4 f)~(g+.h, (), Where fory € I', h, denotes the
associated homeomorphism Bf The groupG acts on the left orM. All the
orbits are covering o6 /1" and so in particular the action is everywhere locally
free. It is volume preserving (resp. connection preserving) if the actiah isf

1.4 Foliated actions

We first give a special case of the construction. L%t be a 2-dimensional
lamination. Assume it hyperbolic, that is there is a leafwise riemannian metric
such that the curvature of the leaves is identically. Then each leak is a
quotientH?/I" of the 2 hyperbolic disc, and hen& = PSL(2,R) acts (by the
left) on the unitary tangent bund@!L = T'H?/I" = PSL(2,R)/I". This also
extends in a canonical way to an actionRBL2, R) on the unit tangent bundle
of the laminationT1.%. One way to see that this is canonical, is to recall the
following geometric interpretation of theSL(2, R) action onH?: the orbits of a
one parameter group are exactly curves with fixed geodesic curvature.

The general construction is the following. L&f be a lamination of any di-
mension with leaves endowed with@,(X) geometric structure. So in particular,
G acts transitively on the model spa¥ewith isotropy grouK, say. We assume
X simply connected and that the geometric structure is complete on each leaf,
that is each leak is covered byX. Consider the space M of (global) isometric
leafwise immersions oK into the leaves of%. It fibers over the support of
< with fiber typeK, and it is endowed with an action, by composition at the
source, ofG.

2 Geometry of Killing fields of pseudo-riemannian metrics

2.1 Killing fields

Let (M, <, >) be a pseudo-riemannian manifold, avidts associated Levi-Civita
connection. Recall the following [K-NJ:

Fact 2.1 A vector field X in M is a Killing field (that is, its flow preserves>)
if and only if for any xe M, the linear map RX : u — VX is antisymmetric
with respect to<, >, i.e. < VX, v >+ <Uu,V,X >=0.
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Proposition 2.2 Consider an isometric action of the affine group of the line AG,
on a finite volume pseudo-riemannian manifold M, that is given by two Killing
fields X and Y satisfyinfX,Y] = —Y. Then, Y is isotropic and its orbits are
(affinely parameterized) geodesics.

Proof. Let ¢' be the flow ofX. Then¢'Y = exp(-t)Y. Therefore

< Y (X), 'Y (X) >= exp(=2t) < Y(¢'%), Y (¢'x) >. In particular the function
X =< Y(x),Y(x) > is decreasing along the-orbits. Hence it is identically
0, becausep! preserves the finite pseudo-riemannian volume. ThereYolis
isotropic. To prove that it has geodesic orbits, we apply:

Lemma 2.3 A Killing field Y on a pseudo-riemannian manifold with constant
norm< Y,Y >, has geodesic orbitsVyY = 0. More generally, if f=< Y Y >,
thengradf = —(1/2)VyY. Thus Y has geodesic orbits, if and only if it has a
constant length.

Proof. From the fact above< VyY,u > + < V,Y,Y >= 0. Thus
<VyY,u>=—-(1/2u.<Y,Y > O

Remark 2.4When we merely have an invariant affine connection instead of a
pseudo-riemannian metric, the proposition (that is, the orbit¢ afe geodesic)
above is false. Examples may be constructed from 1.2.1 (see also 7.4).

2.2 Killing Lie algebra

Here we generalize the lemma above to actions of Lie groups. Everywhere in
this article, the Lie algebra of a Lie group is denoted by

Theorem 2.5 Let G be a Lie group acting isometrically on a pseudo-riemannian
manifold(M , <, >). Suppose that for any X &, the length< X(x), X(x) > is
constant in x. (This is for example the case if all the orbits of G are isotropic).
Then (all) the orbits of G are geodesic. Moreover, the induced connection on the
orbits comes from the canonical one on G. That is, for any M, X,Y € &,

we have:VxY (X) = (1/2)[X, Y](x).

Proof. Letx € M. Any tangent vectou to Gx atx coincides with the evaluation
at x of some Killing field X € . From the lemma above the orbits Xf are
geodesic. Hence the geodesic determinedukig contained inGx. Therefore,
sinceu is arbitrary,Gx is geodesic.

For the formula, leiX andY be elements of¢” andU any vector field on
M. SinceDY andDX are antisymmetric:

<VxY,U >+ <X, VyY >=0,

<VyX,U>+<VY,VyX >=0.
Remember that< X,Y > is constant (since< X, X >, < Y,Y > and
< X+Y,X+Y > are so) and hence X,VyY >= — < Y,VyX >. Thus
< VxY +VyX,U >=0. Since this is true for any , we get:VxY +VyX =0.
Adding this toVxY — VyX =[X, Y], we obtain the desired formula. O
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Corollary 2.6 If a Lie group acts isometrically ofM , <, >), with isotropic or-
bits, then the stabilizer algebra of a point of M is an ideal%f

3 Actions of semi-simple Lie groups

From the last corollary we deduce the following result which allows us to “com-
pletely understand” the isotropic case, whéris semi-simple.

Theorem 3.1 Let G be a semi-simple Lie group acting isometrically on a pseudo-
riemannian manifoldM , <, >), with all of its orbits isotropic. Then G acts every-
where locally freely, with geodesic orbits. The induced connection on the orbits
is the projection of the canonical one on the group G.

Proof. We can assume thab is simply connected and so splits into simple
factors. From the Corollary, if the action & is not locally free, then the same
is true for some factor. Therefore we may supp@st be simple. The Corollary
says in this case that the stabilizer algebra of any point is e{tbeor &. The
last case corresponds B-fixed points. Suppos& is such a point. Then we
have a derivative representatipn: G — GL(TxM) (in fact p takes values in
the orthogonal group ofTgM , <, >)). Now, sinceG preserves a connection, its
action is linearized neax, via the exponential map expThus the Corollary
statement translates to: the stabilizerg¢G) of a vectoru € T4M is either
trivial or p(G) itself. By basic facts from the theory of representation of simple
Lie groups, this impliew is trivial. The connection preserving property implies
thus thatG acts trivially onM, but we have assumed it acting faithfully! O

Another situation that we understand well is described in the following:

Theorem 3.2 Let G be a semi-simple Lie group with no compact factor act-
ing isometrically on a finite volume pseudo-riemannian manifdMd <, >). Sup-

pose that the action of G is ergodic. Then G acts everywhere locally freely, with
geodesic orbits. The induced metric (resp. the connection) on the orbits is the
projection of a bi-invariant metric (resp. the canonical connection) on the group
G.

Proof. If a semi-simple Lie groufs acts ergodically, then most (a hon empty
open set) of its one parameter groups act so. Indeed the real content of Moore’s
ergodic Theorem is that, & acts ergodically then all non compact one parameter
groups ofG act ergodically (they are in fact mixing). Such a one parameter group
leaves invariant the length function X, X > of its infinitesimal generatoX,
and hence this function is constant.

Therefore, in an open subset, the length function is constant. This extends by
bilinearity, to all the elements o£". Then we apply 2.3.

To see that the metrics along the orbits come from a bi-invariant metric on
the group, observe that their pull backs@oare G-left invariant metrics orG.
The Killing fields on the orbits, corresponds to right invariant vector fields (that
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act by the left) orG. The constancy of their lengths means exactly that the metric
is G-right invariant. O

4 Actions of simple split Lie groups

In the case where we do not have dynamical information, such as ergodicity, or
a geometrical one, such as isotropy, we have the following general fact:

Corollary 4.1 (of 2.2 ) Let G be a semi-simple Lie group acting isometrically
on a finite volume pseudo-riemannian manifold M. Let Y be a nilpotent element
of the Lie algebra¢ (that is ad, is a nilpotent endomorphism of). Then its
orbits are (affinely parameterized) geodesics.

Proof. This follows from the fact that in a semi-simple Lie algel#a an element
Y is nilpotent exactly if it is normalized as above by some eleménthat is
[X,Y] = =Y. Indeed it is known that iY is nilpotent, then it belongs to some
subalgebra isomorphic &l(2,R). O

4.1 First and second fundamental forms for Killing algebras

Let G be a Lie group acting isometrically oM(, <, >), and let< be its Lie
algebra. The previous situation suggests that one can define some symmetric
bilinear forms that describe the geometry of orbits. They will in fact be defined
on & instead of the standard ones, which are defined on the orbits.

Definition 4.2 For x € M, we call the following symmetric forms ofy, re-
spectively first and second fundamental form:

Iyt % x T — R, Ik(X,Y) =< X(x), Y (X) >

lly: & x T — TyML 1L (X, Y) = —(1/2)[X, YI(X) + VxY (x)

Remark 4.30f course, the second fundamental form may be defined for affine
actions. However, there is no means to generalize the first fundamental form.

With the help of these notions one may express previous results in terms of
the vanishing of the second fundamental folm Observe that this is stronger
than the fact that the orbits are geodeslc:is a kind of parametrized second
fundamental. Its vanishing implies that the induced connection comes from the
canonical one on the group. As an example, we can consider the (transitive)
action of SL(2, R) on a Hopf torusR?—{0} /x — Ax. It has non vanishing second
fundamental form. However we shall lat€9] see that there is an equivalence
between being geodesic and the fHct= 0, for actions of semi-simple groups
preserving a connection and a volume.
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4.2 Split Lie groups

Corollary 4.4 (of 4.1) Let G be a semi-simple Lie group acting isometrically
on a compact pseudo-riemannian manif@d, <, >). Then the first and second
fundamental forms vanish on the nilpotent conesofthat is the set of nilpotent
elements of%)

So, we are going to ask what are the (scalar or vectorial) forms on a semi-
simple Lie algebra which vanish on its nilpotent cone. One can easily see that
bi-invariant forms (e.g. the Killing form) satisfy this property. More precisely:

Question 4.5 For what semi-simple Lie algebras, is the “quadratic envelope” of
the nilpotent cone exactly the (Killing) light cone? (That is when is a quadratic
form vanishing on the nilpotent cone a multiple of the Killing form?).

It is rather surprising that this question seems to have no classical known
answer. Here we are not interested in a characterization of such algebras, but
only in finding a substantial class of them.

Split semi-simple Lie algebras are those (real) Lie algebras having the same
structure as the complex Lie algebras, that is they have systems of roots satis-
fying the same list of properties as for complex semi-simple Lie algebras. By
definition a split Lie algebra has a (real) split rank, equal to the (usual) rank of
its complexified algebra [Bou]. This implies many nice properties:

Proposition 4.6 Let i& be a split simple Lie algebra (e.¢¢ = sl(n,R),n > 2).
Let E be a vector space and:¢ x ¢ — E a vector symmetric bilinear form,
which vanishes on the nilpotent cone6f. Then there is a unique N E such
that g = kN, wherex is the Killing form of&".

Proof. We firstly observe that the vectorial case follows from the scalar one.
Indeed writeq = X'q e for some basige } of E. Then eachy satisfies the
hypothesis, that is; = 0 on the nilpotent cone, and henge= g x for someg;.
Thusqg = xk(Xa g).

To prove the scalar case we argue by contradiction. Assume there is a space
#o of dimension> 1 of such forms. Thuss acts onéy, with exactly the line
Rx determined by the Killing formk, as a set of fixed elements. Lét be
an invariant supplementary &«x. Let .%’ be a Borel subalgebra df, i.e. a
maximal solvable Lie subalgebra, and the Cartan subalgebra & contained
in.2.

Then there is an order onR such.Z2 =.2@. /™" and ¥ =. 4P .V~
@V, wheree. ) =3 o and. ST =P 0 > Here s is
the eigenspace associated to the koflt is the split property of¢ that allows
us to not add in the last sum, &° factor, which may be non trivial in the
general case).

Standard facts from representation theory of semi-simple Lie groups imply
that there is a non trivial elemeqte ¢, such thaRq is left invariant undeB.
More precisely:X,q = 0 for a > 0, X, € &<, and there is a homomorphism
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p . .4 — R, such thatHq = p(H)q for H € .. This implies: @(H) +
BHNAKa, X5) = p(H)q(Xa, Xs), for anyH € .4, X, € £~ and Xz € < 7.
In particular if there isX, and X3 such thatg(X,, Xs) # 0, thena + 5 = p (in
particularp belongs toR).

Now, we apply our hypothesis, that & vanishes on the nilpotent cone.
Observe that eacty’™® consists of nilpotent elements. In fact, also the sum
G &P, for a # —f3, consists of nilpotent elements. Indeed, in that case
there isH € .4, such thate(H) = B(H) # 0 and hencead(H )(X, + X3) =
a(H)(Xa + Xp), for X, € £ andXz € 7. The last property thaK, + Xg
satisfies, is known to characterize nilpotent elements.

Thereforeq(X,, X3) = 0 unlessae = — 3. However, from above, in order that
g(Xa; X—a) # 0, we must havep = 0. However, this means tha® fixes g.
But this implies that¢ itself fixesq. (This is a standard fact of representation
theory, that it suffices to verify fosl(2, R)). Henceq is a multiple of the Killing
form, which contradicts our choice.

Thus for anya and 3, & is orthogonal to% °.

By the same argument we prove that is orthogonal to itself and to all
the /&, except, probably,s”. For this last space, we apply m(X_,,X,),
the fact thatg is ad(X,) antisymmetric wherx > 0. Thus:q([X,, X_,], X,) =
—0(X_a, [Xa, X,]). The element,, = [X,, X_,] belongs to. 2 and [X,, X,] is
nilpotent fora: # —p. Hence the previous orthogonalities yietf{H.., X,) = O if
a # —p. Finally, the orthogonalityy(H,, X,) = 0, may be obtained by directly
proving the vanishing of the restriction af to the subalgbra, isomorphic to
sl(2,R), s, = RH, @ ¢*@ & *. Thus we have proved that = 0, which
contradicts our hypotheses.O

I would like to thank Y. Benoist who clarified me on some points concerning
these notions.

4.3 Geometrical implications

Theorem 4.7 Let G be a simple split Lie group acting isometrically on a finite
volume pseudo-riemannian manifold M. Then the first and second fundamental
forms are bi-invariant. That is for any g M, there isa(x) € R and N(x) € TxM

such that § = a(x)x and Illy = kN (x), wherex is the Killing form of <.

Theorem 4.8 (Umbilical equation) Let G be a simple split Lie group acting iso-
metrically on a finite volume pseudo-riemannian manifdid <, >). Letx be the
Killing form on the Lie algebrds . Then there is a vector field (the principal nor-
mal field) N on M as regular as the data such that, for all Killing fields X an Y
of &, and all x in M, we have:

VxY(x) = (1/2)X, Y](x) + (X, Y)N(X)

(that is Il = kN).
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Proof. From 4.6, forx € M, there is uniquéN (x) € TxM such thatly = <N (x).
If X € & satisfiesk(X,X) = 1, thenN(x) = lI,(X(x), X(x)). This proves the
regularity ofN. 0O

The next result relates the first and second fundamental forms. It follows
from the previous theorem and 2.3

Theorem 4.9 (Unified equation)Let G be a simple split Lie group acting iso-
metrically on a finite volume pseudo-riemannian manifdid <, >). Letx be the
Killing form on the Lie algebra%. Then there is a function on M as regular
as the data, determining the first and second fundamental forms, byodx)x
and lly = kgradya. That is, for all Killing fields X and Y of, and all x in M,
we have:

VxY (x) = (1/2)[X, Y](x) + &(X, Y)gradca

Example 4.10Let G/I" be a compact quotient & (I is discrete) and le, gv)

be compact riemannian manifold. Consider on the pro@at’ x V the warped
metric gx.») = a(v)k P g, Wherea is a function onV. The unified equation
above is obvious, where in fagtada stands for the usual riemannian gradient.

5 Local freedom of isometric pseudo-riemannian actions

Here we deal with the question by [D-G]

Question 5.1 Is a faithful smooth volume preserving action of a semi-simple Lie
group G with non compact factor, on a compact manifold M, everywhere locally
free?

A motivation of the question is a classical measure theoretic result of Zimmer
stating that this is true almost everywhere, in fact without any smoothness or
compactness condition.

One may expect in the presence of these conditions uniform local freedom
since this is the case for all known (those given earlier) examples.

We have already proved (everywhere) local freedom of pseudo-riemannian
actions of semi-simple Lie groups, in the ergodic (3.2) and isotropic (3.1) cases.
This was also proved by [Gro], in the case of actions of semi-simple Lie
groups acting isometrically on compact pseudo-riemannian manifolds, of sig-
nature p, q), such thadim(G) > min(p, q). Other cases are treated in [A-S] and
[Zeg] (see also [S-Z] for related results).

We present in what follows our third, and perhaps the most important, local
freedom result. Later another one will be discussed concerning affine actions

(88).

Theorem 5.2 Let G be a simple split Lie group acting isometrically on a finite
volume pseudo-riemannian manifold M. Suppose that G is not locally isomorphic
to SL(2, R). Then the action of G is everywhere locally free.
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(The exception o8L(2, R) is due to the method of proof, and has no profound
significance).

Proof. The proof is algebraic using algebraic information on the stabilizer al-
gebra, derived from the umbilical equation 4.8. We argue by contradiction, so
consider forx € M, the stabilizer algebra?z = {X € % /X(x) = 0}, and
suppose this is non trivial.

Let us first show thatoZ # &, that isx is not a fixed point ofG. From
4.3, everyk-lightlike elementX of &, has (lightlike) geodesic orbits. Therefore,
if X is singular atx, from 8.2, DxX)? = 0. Thus in particular, the infinitesimal
representation o6 on TyM, maps lightlike elements to nilpotent elements of
End(TxM), and hence these lightlike elements are themselves nilpotent. But this
occurs only if ¢ =sl(2, R).

ForX € . andY € &, VxY(x) = 0. Therefore, the umbilical equation 4.8
implies: X, Y](x) + (X, Y)N(x) = 0, for anyY € <. Since there isY, such
that x(X,Y) # 0, N(x) is tangent to the orbiGx, atx. Let N be an element of
% projecting ontoN (x) (N is defined modulo7).

Fact 5.3.77 satisfies the “ almost ideal property”: Xe .7#Z.Y € & =
[X,Y] € .72 @ RN. Moreover.7 is « isotropic

To see that’Z is isotropic, suppose the contrary: for soles .77, £(X, X) #0.
This impliesN(x) = 0, that isN € .77, i.e..7% is an ideal. O

From the fact we deduce tha¥ is solvable. Indeed ifZ contains a semi-
simple subalgebra, this then contains non trivial elements which are diagonaliz-
able overR. By definition of x such elements are not isotropid.

Therefore.7Z is contained in a Borel subalgebr® of &, i.e. a maximal
solvable Lie subalgebra. LetZ be the Cartan subalgebra.of andR be the as-
sociated root system. Theési =. 2P > < *, wheres * is the eigenspace
associated to the roat LetS be a simple system of roots, inducing an ordesn
R. Then:. 2 = . 2> o ¢ and: & =.2D> 0 C P u0d
Since it is« isotropic,.7Z must be contained in/” = 3" . This last
nilpotent algebra lies in the kernel of the restrictionxoto .72. But from the
umbilical equationX € .F#,Y € & k(X,Y) =0 = [X,Y] € .F. This im-
plies in particular that7 is an ideal of.78. Therefore we have a splitting:
A=Y 40 B NG Sincedim(:& ) = 1 (because? is split), 77 must
contain somes “. But [(¢*, & ~] = .4 is a 1-dimensional vector subspace
of . 4. Thus, from the Fact above, one may choblséo be a generator of 2.

Suppose thatZ contains anothefz ? (of course3 > 0). Then applying the
same argument yieldsif?, & 5] = [ &>, & ~°]. However, it is known that in
general, for a rooty, some generator of47, % ~7] is the dual of the rooty.
Hence, the last equality implies and ¢ are proportional. This is impossible.

Now the above fact translates td¢[, ¢ —*] ¢ & ~*&. 4. But for § #
—a, if[& >, ¥B8] #£0, thena+Bis arootand & —«, & 8] = &8, Obviously,
this last eigenspace does not inters&ct . 4. Therefore, we must have:
[& > %P =0, for any 3 # a. In the same way, §*, £ ] = 0, since the
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structure is invariant under the canonical involution sending &y to & 7.
Therefore the subalgebr&’> = ¢« P &~ . 4“ (isomorphic tosl(2,R) is

an ideal of&". This contradicts the hypotheses of the Theorem, which is thus
completely proved. O

Remark 5.4(A project of proof using the gradient af). From the unified equa-

tion 4.9, one sees that a singular orbit of a poinis isotropic @(x) = 0) and
geodesic dradk« is tangent to the orbit), bufrads« # 0, unles is a fixed point

of G (one may analyse the case of fixed point separately). Thereforexntree

level «=1(0) is regular (i.e. is a hypersurface) ap@da leaves it invariant. This
situation does not happen for gradients taken in the sense of a riemannian metric,
but always occurs in symplectic geometry. In our hypothetic present situation, we
see how pseudo-riemannian geometry mixes riemannian and symplectic aspects.

6 On an embedding theorem of Zimmer

If a finite volume manifoldM = G/I" admits aG -invariant pseudo riemannian
metric then the quadratic forimon < that it represents i8d(I") invariant. If G

is semi-simple with no compact factor, then by the Borel density thedvenil)
be in factAd(G) invariant. Thus in particulaAd(G) embeds in the orthogonal
group ofb.

R. Zimmer [Zim1] generalizes this fact to not necessarily transitive actions but
which just preserve measure and safhestructure [Zim]. His proof was ergodic
theoretic. M. Gromov then proposes a geometric proof by makid¢) act
locally isometrically.

Here we propose an elementary proof (of course without using previous
results but rather similar simpler ideas) in the case (in fact the most useful) of
pseudo-riemannian structures and actions of split Lie groups. So we as&sume
acts isometrically on a manifol¥ endowed with a pseudo-riemannian metric
of type (0, q). We then prove thats” embeds ino(p, q), the Lie algebra of the
orthogonal group of a standard form of signatypeq) on RP*9,

6.1 The non isotropic case

Fix a pointx in M and identifyTyM with RP*9. Suppose that the orb@&x is not
isotropic: 1y is not identically 0. IfG is a semi-simple split Lie group, then from
4.7,1x = ax for somea # 0. It follows in particular thatG acts locally freely
on Gx (we assume that is simple). We may then identifff,(Gx) with &,
Therefore” endowed with its Killing form is isometrically embedded as a non
degenerate subspaceRi*™. ThusAd(G) embeds iro(p, q), acting as usual on
&, and trivially on its orthogonald
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6.2 The totally isotropic case

Now we suppose thaB is Lie group (not necessarily semi-simple and split)
acting isometrically on a pseudo-riemannian maniftd®:? of finite volume,
with all the orbits ofG isotropic.

We fix x and identifyTyM with RP-9, We denote as previousBy X : TyM —
TxM the covariant derivative oX atx. By 2.1, X is a Killing field exactly when
Dy X is antisymmetric, that i®4 X belongs to the orthogonal Lie algelwép, q).
However, when an algebr& of Killing fields acts, the collection oDy X for
X € % is by no means a subalgebra ofp, q), isomorphic to¢ (see for
example [K-N] for the homomorphic defect of the correspondeXce & —
DxX € o(p,q))-

The proof of the next proposition which implies the embedding theorem under
the isotropic hypothesis, follows immediately from 3.1.

Proposition 6.1 Let G be a Lie group acting isometrically on a pseudo-riemannian
manifold M with isotropic orbits. Let x be a point of M and identify as above
TxM with RP*@ and the restriction RX/Tx(Gx) with (1/2)adx (acting on%).

Let .Z be the subalgebra of (p,q) generated (as a subalgebra) by the vec-
tor subspacg Dy X, X € &'} of o(p, q). Then the restriction map,IX € .4 —
2D, X /T«(Gx) = adx € ad(:¥) extends to an onto homomorphism — ad(:%).

In particular, if & is simple, it embeds in4 C o(p, q).

Example 6.2The maximal dimension of an isotropic space of a pseudo-rieman-
nian metric of type[§, q) is min(p, q). Therefore ifdim(G) > min(p, q) (andG

is simple to ensure local freedom from 3.1), th@ncan not act (even locally)
with isotropic orbits. This is sharp. Let us give a homogeneous example of an
isometric action ofSL(2, R) with isotropic orbits where the metric is of type
(3,3). Takel to beSL(2,C) andM = SL(2,C)/I" whereI" is a co-compact
lattice. We endow the Lie algebrsl(2, C) with a bi-invariant form (different
from the Killing form) b for which sl(2, R) is isotropic. We just také to be the
imaginary part of theC-Killing form on sl(2,C). (The Lie algebra o&l(2,C)

is identified with the space of complex>22 matricesA, with tr(A) = 0. Then

b(A, B) = tr (v/—1AB)).

7 Affine actions. The associated affine envelope

(One may consult [Fer] and [Goe] for recent works on affine actions).Met|)
be an affine manifold (this means thdtis a torsion free connection avl, not
necessarily flat). Let(M) be the space of smooth vector fields bh So V
is a bilinear mapy(M) x x(M) — x(M). For 4 a subspace of(M) let
V(%) be the subspace of(M) generated bW (£ x %). That isV(%) is the
vector space generated by the vector fisldsY for X,Y € x(M). We define
V(X)) = VK-V (%)) inductively.

Observe that, due to the torsion free proper¥; Y] = VxY — Vv X, we
have [£, £] C V(¥).
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Definition 7.1 We call ZV = >, V(%) the affine envelope of#. It is
a Lie subalgebra of(M) (generally of infinite dimension), invariant under the
operationV. Its orbits are (totally) geodesic submanifoldshét

Let G be a Lie group acting isometrically oM(, V). Then % may be seen
as a subspace of(M). Since the action o6 is connection preserving; acts
naturally on the (finite dimensional) spac&& (%), and acts on the algebra
&'V, respecting the operatioW. Observe that (for example), & is perfect
([%,%]= %), thens Cc V(¥), and in particular,¢’V is an extension of¢ .

Example 7.2ConsiderM = R" endowed with the linear action & = SL(n, R).
Then the affine envelope extension is j@t(n, R). The operatiorV on the Lie
algebragl (n, R) is the usual multiplication of matrices.
Let now < be reduced to a linear vector fiedde M, . Then<'Vis the vec-
tor subspace d¥l, ., generated by the (integer) powersfof{A A2, ... A ...},
In general<V is the associative subalgebraMf ., generated bys .

Example 7.3In the example 4.10¢ "V is the direct sum of¢ with (Rgrada)V
(the lastV is the Levi-Civita connection of the riemannian manifoM, gy )).
In particular & may have infinite dimension.

Example 7.4As in the situation of 2.2, leX,Y be two vector fields on an
affine manifold M, V) such that X, Y] = —Y. Suppose thaX is Killing field,
preserving a finite smooth measure. Consider = (RY)V, the affine envelope
of RY. Then. /" is a nilpotent finite dimensional Lie algebra, having a one
parameter group of homotheties induced by the actioX.oAll of these facts
are straightforward (for example, to prove thdt™ has finite dimension, observe
that, if it is not trivial, VyY belongs to the-2 stable Liapunov space of, and

so on...).

Theorem 7.5 Let G be a semi-simple Lie group without compact factor acting
isometrically on an affine unimodular (smooth) maniftldl, V, w), of finite vol-
ume. Suppose the action is ergodic. Then the affine envelope exten$ipreG
serves the volume form and is a finite dimensional Lie algebra.

Proof. We first show thaiG"V is volume preserving. Considark(%), and let
E be the finite dimensional space of functionsin of the formf = div,X for
X € VX(%) (recall that the divergenagivX is defined byLxw = divXw, where
Ly is the Lie derivative). Thei acts onE, respecting thé 2 hilbertian scalar
product< f,g >= [, fgw. SinceG is semi-simple with no compact facta
acts trivially onE sincekE is finite dimensional. That is the elementsifareG-
invariant functions oM, and hence are constant by ergodicity. But a divergence
functiondivX, has vanishing meary;, divX = 0. Therefore the vector fields of
VX(%) are volume preserving.

Denote & = V¥(%) and forx € M, let <¥(x) be the evaluation of¢ ¥
atx: ZK(x) = {X(x) € TyM /X € <%}, Letk be the smallest integer such that
i<k C1(x) = ¥V(x), for x in a subset oM of positive measure (and hence
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full measure by ergodicity). We show thaf, ., &' = V. Let £ (x) € &k*?

be the kernel of the evaluation ¢&*** at x: £(x) = {X € L*1/X(x) =

0}. By ergodicity, the dimension ofZ'(x) is almost everywhere a constamt

So we have a Gauss map:e M — %, € Gri(<*), It is an equivariant

map whereG acts naturally onGrd(<<¥*1). A standard argument (using the
Furstenberg lemma [Zim2]), because of the ergodicity, shows that the Gauss
map is constant. That is there is subsp&tec < **1, such that for almost ak,

Z(x) = £ . By definition ofk, for anyX € <**1 thereisY € Y, ., <", such

that X(x) — Y(x) = 0, that isX — Y € Z(x). By constancy ofZ, X —Y =0
almost everywhere. Thus € >, ¢'. O

7.1 Affine structure of the orbits of G

An orbit GVx is identified with the quotien&Y /Hy. As a geodesic submanifold
of M, it possesses a connection. By definition®f", the covariant derivation
determined by this connection preservés’. This means tha¥ lifts to a right
invariant connection os. As in 1.2.1, this is a warped connection 81V given
by a symmetric tensow : <V x &V — <V, The fact that the left action of
G preserves the connection means thétis Ad(G)-invariant.

Fact 7.6 Let dmy : &V — T,(GVX) C TxM be the derivative at the neutral
element of @ of the projection @ — GVx. Then the second fundamental form
of G is given by W(X,Y) = dmW(X,Y). In particular it is equivariant with
respect to some representation of G iV

Remark 7.71t is very restrictive for a right invariant connection on a graay,
to be projectable as a connection on a quot@Ht/H, for H non discrete. This
gives further evidences for the local freedom question, perhaps, evéh‘for

8 Toward local freedom
8.1 Singularities of vector fields

Let (M, V) be a affine manifold. Lex be a fixed point oM. A vector field X
(not necessarily Killing) singular at, i.e. X(x) = 0, has a well defined derivative,
defined in charts, which is an endomorphismTgM . In fact it just equals the
covariant derivativeD,X (at x). This does not depend upon the connecfion
Indeed it may be defined canonically using the flow generated bgr just by
DyX(2Z) = —[X, Z] for Z a vector field.

Lemma 8.1 Let X and Y be two vector fields singular at x. Thef((¥@Y) =
Dy YDy X.

Proof. Let R be the curvature tensor at then R(X,Z)Y = 0 for any vector
field Z. Thus 0 =R(X,Z)Y = VxVzY — VzVxY — Vix.z1Y. Then we apply
the various previous equivalent definitions@fX andDyY. O
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Corollary 8.2 Let X be a vector field vanishing at x. Suppose that X has (affinely
parameterized) geodesic orbits. Thg X)? = 0.

Proof. We apply the previous lemma since our condition mednsX =0. O

Corollary 8.3 ([A-S]) A Killing vector field of a Lorentzian metric with geodesic
orbits, has no singularities.

Proof. Let A be an element of an orthogonal algelo@, q) then for anyu €
RP9, Au is orthogonal tou. If furthermore A2 = 0, then the imagém(A) is
isotropic. Thereforelm(A) can not have dimension 1, since otherwise it would
be orthogonal to the whole spaB®-9. Thus in the lorentzian cas@&,=0. O

Remark 8.4(Heuristic approach) The previous facts are trivial in the flat case
(i.e. onR"™), where furthermore the vector fields are linear. The general case may
be roughly treated using infinitesimal flathess of connections. More precisely ,
let x € M andexp : U ¢ TxM — M be the exponential map defined in a
neighborhoodJ of 0 in TyM. On U, let V* be the connection pull back &F

via the mapf* : u € U — exg(A\u) € M. ThenV* converges (in the smooth
topology) to the flat connection oikM, when A — 0.

8.2 The stabilizer subalgebras &V

The following fact appears very interesting (for applications):

Theorem 8.5 Let G be as in 7.5, that is G is a semi-simple Lie group without
compact factor, that acts isometrically and ergodically on an affine unimodular
manifold M of finite volume. Then for& M, the infinitesimal representation of
its stabilizer subalgebrazV (x) in T,M is nilpotent. In particular%' (x) = % N
%V(x) is (as an abstract group) nilpotent (since this last algebra is represented
faithfully in TyM, because it preserves a connection).

Proof. Let p : &V(x) — End(TxM), be the infinitesimal representation(X) =
Dy X. But &V (x) is V-invariant. This implies, from 8.1 that the imag€% v (x))

is (an associative) subalgebraBmd(T,M). So, if A belongs top(¢V (x)), then
this is also the case of each pow& ..., A%, .. .. Now the volume conservation
property of elements o6V, yields that for such an element trace(A¥) = 0,
for any integerk. This implies thatA is nilpotent. O

Example 8.6Let G = SI(2, R) acting (transitively) affinely on a Hopf torus. Then
GV = GL(2,R). The infinitesimal representation of the stabilizer of any point, is
equivalent to the standard representation of the affine group, but its restriction to
SI(2, R) is nilpotent.

8.3 Reduction to the $2, R) case

From a result of [Stu], one may deduce:
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Fact 8.7 If a semi-simple Lie group with no compact factor G acts, but not locally
freely on a compact manifold, then some nilpotent one parameter group does not
act locally freely. It then follows that some subgroup I8cally isomorphic to

SL(2, R) does not act locally freely (in fact for such a subgroup , all nilpotent one
parameter groups are somewhere singular) .

Let us assume, to simplify, th&’ is indeed (globally) isomorphic t6L(2, R).
So questions on local freedom may be reduced to that of actioi®(@f R),
which is therefore, the most difficult case. Let us study in more details this case.
We use the classical (dynamical) generatéry andZ for the Lie algebra

v _(-1/2 0. o, _(0 1 _({0 0
sl(2,R): X = 0 1/2 is hyperbollc,Y—(o 0 andZ—(1 0)

are nilpotent. We have the relation¥,[Y] = —=Y,[X,Z]=Z and [Y, Z] — 2X.

8.3.1 Stabilizer subalgebras

Fact 8.8 Let SI(2,R) ¢ G, and G acts ergodically on an affine unimodular
manifold M of finite volume (as in 7.5). Then:

() SI(2, R) has neither fixed points nor one dimensional orbits.

(i) The isotropy algebra of a singular orbit is a nilpotent one dimensional
algebra, i.e. conjugate t®Y (or equivalently tdRZ).

Proof. (i) In this case, the isotropy algebra will be a nilpotent subalgbra (8.5) of
dimension 2 or 3 irsl(2, R). This is impossible.

(i) From 8.5, if A belongs to an isotropy algebra, theuwl, is always a
nilpotent endomorphism ofl(2, R)/RA. This implies thatA is nilpotent. O

8.3.2 A proof of local freedom, modulo a technical condition

From above, a singular orbit is identified as a homogeneous sp&e-t¢0} or

to a Hopf torusR? — {0}/{x — Ax}, endowed with theSL(2, R) linear action.

So, the idea is to consider the induced geometric structure on such an orbit, and
if all things work naturally, then use the (8.6), that is, the restricted stabilizer
subalgebra is not nilpotent. Unfortunately, this presupposes, that there is a way
to induce the connection on the orbits. This is of course the case if they are
geodesic, but we were not able to prove that, although we are convinced that it
is the case. So we have a weaker result:

Theorem 8.9 Let G be a semi-simple Lie group with no compact factor acting
isometrically and ergodically on an affine unimodular manif@\d, V. w) of fi-
nite volume. TheifSL(2, R), R? — {0}) can not be immersed equivariantly and
geodesically in M, with image contained in an orbit of G.

Proof. We argue by contradiction: suppose that for someY (x) = 0 (Y €
sl(2,R) is as above). ThefM = VyZ is also singular ak. So, by 8.5,DxT
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is nilpotent. However, our geodesibility hypothesis implies thatreserves the
SL(2,R) orbit of x, and that the calculus of the restriction@fT to the tangent
space of that orbit, is the same as in the mdfel- {0}. But there, a computation

gives, for anyx, DxT = Dy(VyZ) = ZY = (8 (1)> This is not nilpotent. O

9 Further remarks
9.1 Ergodic theory for the second fundamental form

Our philosophy here was to use direct concrete (and sometimes constructive)
methods. These methods are not always sufficiently powerful to obtain the most
general statements. They provide however a guide to the formulation of a more
general theorems. For example, using the Zimmer's machinery, we can prove
(without giving details here) the following generalization of facts that we have
already proved, for some of them only for split semi-simple groups, and for
others only in the pseudo-riemannian case, or for ergodic actions.

Theorem 9.1 Let G be a semi-simple Lie group with no compact factor acting
isometrically on an affine unimodular manifolifl , V, w) of finite volume. Then:

(i) For any x € M, the second fundamental form Il & x & — T(M s
equivariant with respect to some representatioriofin TyM .

(i) Il x = 0 everywhere, if and only if the orbits are geodesic. In that case, the
action is everywhere locally free.

(i) In the pseudo-riemannian case the first fundamental form is bi-invariant.

9.2 Structure of the singular set of an(8LR) action

Singular sets of group actions come with nice and rich structures that sometimes
give evidence to their non existence. Let for exam@ez= SL(2,R) act on a
compact manifoldv. Suppose thaG has no 0 or 1-dimensional orbits, that is,
every orbitGx has dimension 2 or 3.

The subseF of pointsx with orbit Gx of dimension 2, and having as isotropy
algebras'(x) a one dimensional nilpotent subalgebrashf2, R), is a closed
non emptyG-invariant subset. This subset has the structure of a 2-dimensional
lamination, say”’, parameterized by th& action.

It also has a tangential vector field, commuting with the action (this is
equivalent to say that th8L(2, R) action extends to &L(2, R) action). Indeed a
leaf is covered byR? — {0}, and the flow ofD induces multiplicatiorx — e'x.

One way to see this is coherently definedFn is the following. We use
the notationsX,Y,Z... in the previous section. Let € F and consider the
projectionmy : G — Gx anddimry : & — Tx(GX). If the neutral component of
the stabilizer¢(x) is Ad(g)(RY), then take:D(x) = d;mx(Ad(g)X). One then
cheeks that this does not depend upon the choigg of
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Observe the following amusing fact about the the flptvdetermined by
X. A compact leaf of#, is a Hopf torusR? — {0}/{x — Ax}. The foliation
determined by on such a torus is a Reeb foliation. It has no remarkable dynamic
property, other than what one may c&l ergodicity. That is a continuous
invariant function by a Reeb foliation, must be constant. This fact generalizes to
(F, ¢") (without assuming existence of compact leaves).

Fact 9.2 (Mautner property) A continuous function on F that is invariant by
¢t, is in fact G-invariant (i.e. constant on the leaves%f).

Proof. Let f be such a function. It is enough to prove tlias invariant by the
flows of Y and Z. The argument is the same for both of these flows. Let us
show it for the flow generated byr. The identity X,Y] = —Y translates to
the normalization relationp!vyS = 5®P~t, Fix s, and considef (°x) — f (x).

By ¢! invariance off, this equalsf (¢'4°x) — f(¢'x), for any t. This equals

f (PSP tetx) —f (¢'x) = f (x5&*P~ty) —f (y), wherey = ¢'x. The last oscillation
tends uniformly to 0 when — oo, sinceyS®P—t — Identity. O
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