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UMPA, ENS Lyon, 46, alĺee d’Italie, F-69364 Lyon cedex 7, France
(e-mail: Zeghib@umpa.ens-lyon.fr)

Received 2 August 1995; in final form 2 December 1996

Smooth actions of certain Lie groups are (vaguely) conjectured to be “rigid”.
In considering such conjectures it is natural to start by studying actions that are
already rigid. Indeed from these conjectures themselves one might see that this is
not so restrictive, and, on the other hand, this may help to understand the general
case.

Among existing work in this field, the articles of Zimmer ([Zim1], [Zim2]...)
and Gromov ([Gro], [D-G]) are fundamental. Their approaches are respectively
ergodic theoretical and “analytical”. In this paper, we obtain, by elementary
geometrical and “algebraic” methods some new results and new proofs of existing
results and (partial) answers to some (partial) questions.

Rigidity questions concern in some sense the transverse structure of the un-
derlying “foliation”, but here we deal with questions about the geometry and
topology of leaves. In fact, a fundamental question is, do we actually have a
foliation ? Equivalently: what conditions ensure that the action is everywhere
locally free ?

Our results concern essentially actions of semi-simple Lie groups preserving
a pseudo-riemannian or an unimodular affine structure on a compact manifold.
The principal ones are Theorems 3.1, 3.2, 4.7, 4.8, 4.9, 5.2, 7.5, 8.5 and 8.9.

We will always assume the actions locally faithful. All semi-simple groups
that we consider here are linear, without compact factor.

Let us begin by recalling examples (from [D-G]) of actions of semi-simple
Lie groups.

1 Examples

1.1 Linear actions

Let ρ : G → GL(n,R) be a representation of a Lie groupG. Given a realλ > 0,
let Hn be the Hopf manifold, quotient ofRn−{0} by x → λx. It is diffeomorphic
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to S1×Sn−1 equipped with an affine flat connection. The groupG acts onHn by
affine transformations (in the case ofG = SL(n,R) the action is in fact transitive).
However this action has no invariant measures (notice nevertheless that there is
a kind of invariant conformal measure...).

To get examples with more trivial topology one may letρ(G) act projectively
on the sphereSn−1. Such an action preserves neither a measure nor a connection.

1.2 Homogeneous actions

Let I be a Lie group,G a (closed) Lie subgroup ofI , Γ a discrete subgroup of
I and letM be the quotientI /Γ , that we suppose to be compact. ThenG acts
by multiplication on the left onM .

1.2.1 Canonical and warped connections

The Lie groupI has a canonical (torsion free) bi-invariant connection that is
given, for right invariant vector fieldsX and Y by: ∇XY = (1/2)[Y ,X]. It
passes to anI -invariant connection on the quotientM = I /Γ (It is here that we
requireΓ to be discrete).

Any I -right invariant connection onI (that is a connection with constant
Christoffel symbols in a right invariant frame field) descends to a connection on
M . Such a (warped) connection∇W is given by:∇W

X Y = (1/2)[Y ,X]+ W(X,Y),
whereW : I ×I → I is a symmetric bilinear form, whereI is the Lie algebra
of I .

Moreover if G is a subgroup ofI , then∇W is invariant under the left action
of G if and only if W is Ad(G) equivariant. In this case∇W gives a connection
on I /Γ which is invariant under the left action ofG.

One needs unimodularity conditions to get actions which are in addition
volume preserving.

1.2.2 Pseudo-riemannian metrics

Some Lie groups admit bi-invariant pseudo-riemannian metrics. This is indeed
the case of semi-simple Lie groups, for which the Killing form provides such a
structure, and also some solvable groups [M-R]. In general metrics that pass to
the quotientsI /Γ are given by (scalar) bilinear forms:b : I × I → R. As
above they areG-invariant, if and only if,b is Ad(G)-invariant.

SuchG-actions are in particular connection and volume preserving.

1.2.3 Locally homogeneous case

Now let J be a connected closed Lie subgroup ofI . Instead of taking quotients
of I as above, one may consider the homogeneous spaceJ \ I , and its quotients
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M = J \ I /Γ (if they exist as a compact Hausdorff manifold). The Normalizer
NorI (J ) acts by the left onM . Similar conditions as above, for structures onJ \I ,
ensure that they pass toG-invariant structures onM , whereG is a subgroup of
NorI (J ).

For example if bothI andJ are semi-simple, the Killing form allows one to
construct pseudo-riemannian metrics satisfying all the invariance conditions.

1.3 Suspensions

Let Γ be a co-compact lattice ofG acting on a manifoldF . Consider the sus-
pension manifoldM = G × F/(g,f )∼(gγ,hγ (f )), where forγ ∈ Γ , hγ denotes the
associated homeomorphism ofF . The groupG acts on the left onM . All the
orbits are covering ofG/Γ and so in particular the action is everywhere locally
free. It is volume preserving (resp. connection preserving) if the action ofΓ is.

1.4 Foliated actions

We first give a special case of the construction. LetL be a 2-dimensional
lamination. Assume it hyperbolic, that is there is a leafwise riemannian metric
such that the curvature of the leaves is identically−1. Then each leafL is a
quotientH2/Γ of the 2 hyperbolic disc, and henceG = PSL(2,R) acts (by the
left) on the unitary tangent bundleT1L = T1H2/Γ = PSL(2,R)/Γ . This also
extends in a canonical way to an action ofPSL(2,R) on the unit tangent bundle
of the laminationT1L . One way to see that this is canonical, is to recall the
following geometric interpretation of thePSL(2,R) action onH2: the orbits of a
one parameter group are exactly curves with fixed geodesic curvature.

The general construction is the following. LetL be a lamination of any di-
mension with leaves endowed with a (G,X) geometric structure. So in particular,
G acts transitively on the model spaceX, with isotropy groupK , say. We assume
X simply connected and that the geometric structure is complete on each leaf,
that is each leafL is covered byX. Consider the space M of (global) isometric
leafwise immersions ofX into the leaves ofL . It fibers over the support of
L with fiber typeK , and it is endowed with an action, by composition at the
source, ofG.

2 Geometry of Killing fields of pseudo-riemannian metrics

2.1 Killing fields

Let (M , <,>) be a pseudo-riemannian manifold, and∇ its associated Levi-Civita
connection. Recall the following [K-N]:

Fact 2.1 A vector field X in M is a Killing field (that is, its flow preserves<,>)
if and only if for any x∈ M , the linear map DxX : u → ∇uX is antisymmetric
with respect to<,>, i.e.< ∇uX, v > + < u,∇vX >= 0.
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Proposition 2.2 Consider an isometric action of the affine group of the line AG,
on a finite volume pseudo-riemannian manifold M , that is given by two Killing
fields X and Y satisfying[X,Y ] = −Y . Then, Y is isotropic and its orbits are
(affinely parameterized) geodesics.

Proof. Let φt be the flow ofX. Thenφt Y = exp(−t)Y . Therefore
< φt Y(x), φt Y(x) >= exp(−2t) < Y(φt x),Y(φt x) >. In particular the function
x →< Y(x),Y(x) > is decreasing along theφ-orbits. Hence it is identically
0, becauseφt preserves the finite pseudo-riemannian volume. ThereforeY is
isotropic. To prove that it has geodesic orbits, we apply:

Lemma 2.3 A Killing field Y on a pseudo-riemannian manifold with constant
norm< Y ,Y >, has geodesic orbits:∇Y Y = 0. More generally, if f=< Y ,Y >,
then gradf = −(1/2)∇Y Y . Thus Y has geodesic orbits, if and only if it has a
constant length.

Proof. From the fact above:< ∇Y Y ,u > + < ∇uY ,Y >= 0. Thus
< ∇Y Y ,u >= −(1/2)u. < Y ,Y >. ut
Remark 2.4When we merely have an invariant affine connection instead of a
pseudo-riemannian metric, the proposition (that is, the orbits ofY are geodesic)
above is false. Examples may be constructed from 1.2.1 (see also 7.4).

2.2 Killing Lie algebra

Here we generalize the lemma above to actions of Lie groups. Everywhere in
this article, the Lie algebra of a Lie groupG is denoted byG .

Theorem 2.5 Let G be a Lie group acting isometrically on a pseudo-riemannian
manifold(M , <,>). Suppose that for any X∈ G , the length< X(x),X(x) > is
constant in x. (This is for example the case if all the orbits of G are isotropic).
Then (all) the orbits of G are geodesic. Moreover, the induced connection on the
orbits comes from the canonical one on G. That is, for any x∈ M , X,Y ∈ G ,
we have:∇XY(x) = (1/2)[X,Y ](x).

Proof. Let x ∈ M . Any tangent vectoru to Gx at x coincides with the evaluation
at x of some Killing field X ∈ G . From the lemma above the orbits ofX are
geodesic. Hence the geodesic determined byu is contained inGx. Therefore,
sinceu is arbitrary,Gx is geodesic.

For the formula, letX and Y be elements ofG and U any vector field on
M . SinceDY andDX are antisymmetric:

< ∇XY ,U > + < X,∇U Y >= 0,

< ∇Y X,U > + < Y ,∇U X >= 0 .

Remember that< X,Y > is constant (since< X,X >, < Y ,Y > and
< X + Y ,X + Y > are so) and hence< X,∇U Y >= − < Y ,∇U X >. Thus
< ∇XY + ∇Y X,U >= 0. Since this is true for anyU , we get:∇XY + ∇Y X = 0.
Adding this to∇XY − ∇Y X = [X,Y ], we obtain the desired formula. ut
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Corollary 2.6 If a Lie group acts isometrically on(M , <,>), with isotropic or-
bits, then the stabilizer algebra of a point of M is an ideal ofG .

3 Actions of semi-simple Lie groups

From the last corollary we deduce the following result which allows us to “com-
pletely understand” the isotropic case, whenG is semi-simple.

Theorem 3.1 Let G be a semi-simple Lie group acting isometrically on a pseudo-
riemannian manifold(M , <,>), with all of its orbits isotropic. Then G acts every-
where locally freely, with geodesic orbits. The induced connection on the orbits
is the projection of the canonical one on the group G.

Proof. We can assume thatG is simply connected and so splits into simple
factors. From the Corollary, if the action ofG is not locally free, then the same
is true for some factor. Therefore we may supposeG to be simple. The Corollary
says in this case that the stabilizer algebra of any point is either{0} or G . The
last case corresponds toG-fixed points. Supposex is such a point. Then we
have a derivative representationρ : G → GL(TxM ) (in fact ρ takes values in
the orthogonal group of (TxM , <,>)). Now, sinceG preserves a connection, its
action is linearized nearx, via the exponential map expx . Thus the Corollary
statement translates to: the stabilizer inρ(G) of a vectoru ∈ TxM is either
trivial or ρ(G) itself. By basic facts from the theory of representation of simple
Lie groups, this impliesρ is trivial. The connection preserving property implies
thus thatG acts trivially onM , but we have assumed it acting faithfully!ut

Another situation that we understand well is described in the following:

Theorem 3.2 Let G be a semi-simple Lie group with no compact factor act-
ing isometrically on a finite volume pseudo-riemannian manifold(M , <,>). Sup-
pose that the action of G is ergodic. Then G acts everywhere locally freely, with
geodesic orbits. The induced metric (resp. the connection) on the orbits is the
projection of a bi-invariant metric (resp. the canonical connection) on the group
G.

Proof. If a semi-simple Lie groupG acts ergodically, then most (a non empty
open set) of its one parameter groups act so. Indeed the real content of Moore’s
ergodic Theorem is that, ifG acts ergodically then all non compact one parameter
groups ofG act ergodically (they are in fact mixing). Such a one parameter group
leaves invariant the length function< X,X > of its infinitesimal generatorX,
and hence this function is constant.

Therefore, in an open subset, the length function is constant. This extends by
bilinearity, to all the elements ofG . Then we apply 2.3.

To see that the metrics along the orbits come from a bi-invariant metric on
the group, observe that their pull backs toG areG-left invariant metrics onG.
The Killing fields on the orbits, corresponds to right invariant vector fields (that
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act by the left) onG. The constancy of their lengths means exactly that the metric
is G-right invariant. ut

4 Actions of simple split Lie groups

In the case where we do not have dynamical information, such as ergodicity, or
a geometrical one, such as isotropy, we have the following general fact:

Corollary 4.1 (of 2.2 ) Let G be a semi-simple Lie group acting isometrically
on a finite volume pseudo-riemannian manifold M . Let Y be a nilpotent element
of the Lie algebraG (that is adY is a nilpotent endomorphism ofG ). Then its
orbits are (affinely parameterized) geodesics.

Proof. This follows from the fact that in a semi-simple Lie algebraG , an element
Y is nilpotent exactly if it is normalized as above by some elementX, that is
[X,Y ] = −Y . Indeed it is known that ifY is nilpotent, then it belongs to some
subalgebra isomorphic tosl(2,R). ut

4.1 First and second fundamental forms for Killing algebras

Let G be a Lie group acting isometrically on (M , <,>), and letG be its Lie
algebra. The previous situation suggests that one can define some symmetric
bilinear forms that describe the geometry of orbits. They will in fact be defined
on G instead of the standard ones, which are defined on the orbits.

Definition 4.2 For x ∈ M , we call the following symmetric forms onG , re-
spectively first and second fundamental form:

Ix : G × G → R, Ix(X,Y) =< X(x),Y(x) >

II x : G × G → TxM , II x(X,Y) = −(1/2)[X,Y ](x) + ∇XY(x)

Remark 4.3Of course, the second fundamental form may be defined for affine
actions. However, there is no means to generalize the first fundamental form.

With the help of these notions one may express previous results in terms of
the vanishing of the second fundamental formII . Observe that this is stronger
than the fact that the orbits are geodesic:II is a kind of parametrized second
fundamental. Its vanishing implies that the induced connection comes from the
canonical one on the group. As an example, we can consider the (transitive)
action ofSL(2,R) on a Hopf torusR2−{0}/x → λx. It has non vanishing second
fundamental form. However we shall later (§9) see that there is an equivalence
between being geodesic and the factII = 0, for actions of semi-simple groups
preserving a connection and a volume.
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4.2 Split Lie groups

Corollary 4.4 (of 4.1) Let G be a semi-simple Lie group acting isometrically
on a compact pseudo-riemannian manifold(M , <,>). Then the first and second
fundamental forms vanish on the nilpotent cone ofG (that is the set of nilpotent
elements ofG )

So, we are going to ask what are the (scalar or vectorial) forms on a semi-
simple Lie algebra which vanish on its nilpotent cone. One can easily see that
bi-invariant forms (e.g. the Killing form) satisfy this property. More precisely:

Question 4.5 For what semi-simple Lie algebras, is the “quadratic envelope” of
the nilpotent cone exactly the (Killing) light cone? (That is when is a quadratic
form vanishing on the nilpotent cone a multiple of the Killing form?).

It is rather surprising that this question seems to have no classical known
answer. Here we are not interested in a characterization of such algebras, but
only in finding a substantial class of them.

Split semi-simple Lie algebras are those (real) Lie algebras having the same
structure as the complex Lie algebras, that is they have systems of roots satis-
fying the same list of properties as for complex semi-simple Lie algebras. By
definition a split Lie algebra has a (real) split rank, equal to the (usual) rank of
its complexified algebra [Bou]. This implies many nice properties:

Proposition 4.6 Let G be a split simple Lie algebra (e.g.G = sl(n,R),n ≥ 2).
Let E be a vector space and q: G × G → E a vector symmetric bilinear form,
which vanishes on the nilpotent cone ofG . Then there is a unique N∈ E such
that q = κN , whereκ is the Killing form ofG .

Proof. We firstly observe that the vectorial case follows from the scalar one.
Indeed writeq = Σqi ei for some basis{ei } of E. Then eachqi satisfies the
hypothesis, that isqi = 0 on the nilpotent cone, and henceqi = aiκ for someai .
Thusq = κ(Σai ei ).

To prove the scalar case we argue by contradiction. Assume there is a space
E0 of dimension> 1 of such forms. ThusG acts onE0, with exactly the line
Rκ determined by the Killing formκ, as a set of fixed elements. LetE be
an invariant supplementary ofRκ. Let B be a Borel subalgebra ofG , i.e. a
maximal solvable Lie subalgebra, andA the Cartan subalgebra ofG contained
in B .

Then there is an order> on R suchB = A
⊕

N + andG = A
⊕

N +⊕
N −, where:N + =

∑
α>0 G α and N − =

⊕ ∑
α>0 G −α. HereG α is

the eigenspace associated to the rootα. (It is the split property ofG that allows
us to not add in the last sum, aG 0 factor, which may be non trivial in the
general case).

Standard facts from representation theory of semi-simple Lie groups imply
that there is a non trivial elementq ∈ E , such thatRq is left invariant underB.
More precisely:Xαq = 0 for α > 0, Xα ∈ G α, and there is a homomorphism
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ρ : A → R, such thatHq = ρ(H )q for H ∈ A. This implies: (α(H ) +
β(H ))q(Xα,Xβ) = ρ(H )q(Xα,Xβ), for any H ∈ A, Xα ∈ G α and Xβ ∈ G β .
In particular if there isXα and Xβ such thatq(Xα,Xβ) /= 0, thenα + β = ρ (in
particularρ belongs toR).

Now, we apply our hypothesis, that isq vanishes on the nilpotent cone.
Observe that eachG α consists of nilpotent elements. In fact, also the sum
G α

⊕
G β , for α /= −β, consists of nilpotent elements. Indeed, in that case

there isH ∈ A, such thatα(H ) = β(H ) /= 0 and hencead(H )(Xα + Xβ) =
α(H )(Xα + Xβ), for Xα ∈ G α and Xβ ∈ G β . The last property thatXα + Xβ

satisfies, is known to characterize nilpotent elements.
Thereforeq(Xα,Xβ) = 0 unlessα = −β. However, from above, in order that

q(Xα,X−α) /= 0, we must have:ρ = 0. However, this means thatB fixes q.
But this implies thatG itself fixes q. (This is a standard fact of representation
theory, that it suffices to verify forsl(2,R)). Henceq is a multiple of the Killing
form, which contradicts our choice.

Thus for anyα andβ, G α is orthogonal toG β .
By the same argument we prove thatA is orthogonal to itself and to all

the G α, except, probably,G ρ. For this last space, we apply toq(X−α,Xρ),
the fact thatq is ad(Xα) antisymmetric whenα > 0. Thus:q([Xα,X−α],Xρ) =
−q(X−α, [Xα,Xρ]). The elementHα = [Xα,X−α] belongs toA and [Xα,Xρ] is
nilpotent forα /= −ρ. Hence the previous orthogonalities yield:q(Hα,Xρ) = 0 if
α /= −ρ. Finally, the orthogonalityq(Hρ,Xρ) = 0, may be obtained by directly
proving the vanishing of the restriction ofq to the subalgbra, isomorphic to
sl(2,R), sρ = RHρ

⊕
G ρ

⊕
G −ρ. Thus we have proved thatq = 0, which

contradicts our hypotheses.ut
I would like to thank Y. Benoist who clarified me on some points concerning

these notions.

4.3 Geometrical implications

Theorem 4.7 Let G be a simple split Lie group acting isometrically on a finite
volume pseudo-riemannian manifold M . Then the first and second fundamental
forms are bi-invariant. That is for any x∈ M , there isα(x) ∈ R and N(x) ∈ TxM
such that Ix = α(x)κ and IIx = κN (x), whereκ is the Killing form ofG .

Theorem 4.8 (Umbilical equation) Let G be a simple split Lie group acting iso-
metrically on a finite volume pseudo-riemannian manifold(M , <,>). Letκ be the
Killing form on the Lie algebraG . Then there is a vector field (the principal nor-
mal field) N on M as regular as the data such that, for all Killing fields X an Y
of G , and all x in M , we have:

∇XY(x) = (1/2)[X,Y ](x) + κ(X,Y)N (x)

(that is II = κN ).
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Proof. From 4.6, forx ∈ M , there is uniqueN (x) ∈ TxM such thatII x = κN (x).
If X ∈ G satisfiesκ(X,X) = 1, thenN (x) = II x(X(x),X(x)). This proves the
regularity ofN . ut

The next result relates the first and second fundamental forms. It follows
from the previous theorem and 2.3

Theorem 4.9 (Unified equation) Let G be a simple split Lie group acting iso-
metrically on a finite volume pseudo-riemannian manifold(M , <,>). Letκ be the
Killing form on the Lie algebraG . Then there is a functionα on M as regular
as the data, determining the first and second fundamental forms by: Ix = α(x)κ
and IIx = κgradxα. That is, for all Killing fields X and Y ofG , and all x in M ,
we have:

∇XY(x) = (1/2)[X,Y ](x) + κ(X,Y)gradxα

Example 4.10Let G/Γ be a compact quotient ofG (Γ is discrete) and let (V , gV )
be compact riemannian manifold. Consider on the productG/Γ × V the warped
metric g(x,v) = α(v)κ

⊕
gv, whereα is a function onV . The unified equation

above is obvious, where in factgradα stands for the usual riemannian gradient.

5 Local freedom of isometric pseudo-riemannian actions

Here we deal with the question by [D-G]

Question 5.1 Is a faithful smooth volume preserving action of a semi-simple Lie
group G with non compact factor, on a compact manifold M , everywhere locally
free?

A motivation of the question is a classical measure theoretic result of Zimmer
stating that this is true almost everywhere, in fact without any smoothness or
compactness condition.

One may expect in the presence of these conditions uniform local freedom
since this is the case for all known (those given earlier) examples.

We have already proved (everywhere) local freedom of pseudo-riemannian
actions of semi-simple Lie groups, in the ergodic (3.2) and isotropic (3.1) cases.
This was also proved by [Gro], in the case of actions of semi-simple Lie
groups acting isometrically on compact pseudo-riemannian manifolds, of sig-
nature (p,q), such thatdim(G) > min(p,q). Other cases are treated in [A-S] and
[Zeg] (see also [S-Z] for related results).

We present in what follows our third, and perhaps the most important, local
freedom result. Later another one will be discussed concerning affine actions
(§8).

Theorem 5.2 Let G be a simple split Lie group acting isometrically on a finite
volume pseudo-riemannian manifold M . Suppose that G is not locally isomorphic
to SL(2,R). Then the action of G is everywhere locally free.
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(The exception ofSL(2,R) is due to the method of proof, and has no profound
significance).

Proof. The proof is algebraic using algebraic information on the stabilizer al-
gebra, derived from the umbilical equation 4.8. We argue by contradiction, so
consider forx ∈ M , the stabilizer algebraH = {X ∈ G /X(x) = 0}, and
suppose this is non trivial.

Let us first show that:H /= G , that is x is not a fixed point ofG. From
4.3, everyκ-lightlike elementX of G , has (lightlike) geodesic orbits. Therefore,
if X is singular atx, from 8.2, (DxX)2 = 0. Thus in particular, the infinitesimal
representation ofG on TxM , maps lightlike elements to nilpotent elements of
End(TxM ), and hence these lightlike elements are themselves nilpotent. But this
occurs only ifG = sl(2,R).

For X ∈ H andY ∈ G , ∇XY(x) = 0. Therefore, the umbilical equation 4.8
implies: [X,Y ](x) + κ(X,Y)N (x) = 0, for anyY ∈ G . Since there isY , such
that κ(X,Y) /= 0, N (x) is tangent to the orbitGx, at x. Let Ñ be an element of
G projecting ontoN (x) (Ñ is defined moduloH ).

Fact 5.3 H satisfies the “ almost ideal property”: X∈ H ,Y ∈ G =⇒
[X,Y ] ∈ H

⊕
RÑ . MoreoverH is κ isotropic

To see thatH is isotropic, suppose the contrary: for someX ∈ H , κ(X,X) /= 0.
This impliesN (x) = 0, that isÑ ∈ H , i.e. H is an ideal. ut

From the fact we deduce thatH is solvable. Indeed ifH contains a semi-
simple subalgebra, this then contains non trivial elements which are diagonaliz-
able overR. By definition ofκ such elements are not isotropic.�

ThereforeH is contained in a Borel subalgebraB of G , i.e. a maximal
solvable Lie subalgebra. LetA be the Cartan subalgebra ofB andR be the as-
sociated root system. ThenG = A

⊕ ∑
α∈R G α, whereG α is the eigenspace

associated to the rootα. Let S be a simple system of roots, inducing an order> on
R. Then: B = A

⊕ ∑
α>0 G α and: G = A

⊕ ∑
α>0 G α

⊕ ∑
α>0 G −α.

Since it isκ isotropic, H must be contained inN =
∑

α>0 G α. This last
nilpotent algebra lies in the kernel of the restriction ofκ to B . But from the
umbilical equation,X ∈ H ,Y ∈ G , κ(X,Y) = 0 =⇒ [X,Y ] ∈ H . This im-
plies in particular thatH is an ideal ofB . Therefore we have a splitting:
B =

∑
α>0 B ∩ G α. Since dim(G α) = 1 (becauseG is split), H must

contain someG α. But [G α,G −α] = Aα is a 1-dimensional vector subspace
of A. Thus, from the Fact above, one may chooseÑ to be a generator ofAα.

Suppose thatH contains anotherG β (of courseβ > 0). Then applying the
same argument yields: [G β ,G −β ] = [G α,G −α]. However, it is known that in
general, for a rootγ, some generator of [G γ ,G −γ ] is the dual of the rootγ.
Hence, the last equality impliesα andβ are proportional. This is impossible.

Now the above fact translates to: [G ,G −α] ⊂ G −α
⊕

Aα. But for β /=
−α, if [ G −α,G β ] /= 0, thenα+β is a root and [G −α,G β ] = G α+β . Obviously,
this last eigenspace does not intersectG α

⊕
Aα. Therefore, we must have:

[G −α,G β ] = 0, for any β /= α. In the same way, [G α,G β ] = 0, since the
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structure is invariant under the canonical involution sending anyG γ to G −γ .
Therefore the subalgebraS α = G α

⊕
G −α

⊕
Aα (isomorphic tosl(2,R) is

an ideal ofG . This contradicts the hypotheses of the Theorem, which is thus
completely proved. ut

Remark 5.4(A project of proof using the gradient ofα). From the unified equa-
tion 4.9, one sees that a singular orbit of a pointx is isotropic (α(x) = 0) and
geodesic (gradxα is tangent to the orbit), butgradxα /= 0, unlessx is a fixed point
of G (one may analyse the case of fixed point separately). Therefore nearx, the
levelα−1(0) is regular (i.e. is a hypersurface) andgradα leaves it invariant. This
situation does not happen for gradients taken in the sense of a riemannian metric,
but always occurs in symplectic geometry. In our hypothetic present situation, we
see how pseudo-riemannian geometry mixes riemannian and symplectic aspects.

6 On an embedding theorem of Zimmer

If a finite volume manifoldM = G/Γ admits aG -invariant pseudo riemannian
metric then the quadratic formb on G that it represents isAd(Γ ) invariant. If G
is semi-simple with no compact factor, then by the Borel density theorem,b will
be in factAd(G) invariant. Thus in particularAd(G) embeds in the orthogonal
group ofb.

R. Zimmer [Zim1] generalizes this fact to not necessarily transitive actions but
which just preserve measure and someH -structure [Zim]. His proof was ergodic
theoretic. M. Gromov then proposes a geometric proof by makingAd(G) act
locally isometrically.

Here we propose an elementary proof (of course without using previous
results but rather similar simpler ideas) in the case (in fact the most useful) of
pseudo-riemannian structures and actions of split Lie groups. So we assumeG
acts isometrically on a manifoldM endowed with a pseudo-riemannian metric
of type (p,q). We then prove thatG embeds ino(p,q), the Lie algebra of the
orthogonal group of a standard form of signature (p,q) on Rp+q.

6.1 The non isotropic case

Fix a pointx in M and identifyTxM with Rp+q. Suppose that the orbitGx is not
isotropic:Ix is not identically 0. IfG is a semi-simple split Lie group, then from
4.7, Ix = ακ for someα /= 0. It follows in particular thatG acts locally freely
on Gx (we assume thatG is simple). We may then identifyTx(Gx) with G .
ThereforeG endowed with its Killing form is isometrically embedded as a non
degenerate subspace inRp+q. ThusAd(G) embeds ino(p,q), acting as usual on
G , and trivially on its orthogonal.�
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6.2 The totally isotropic case

Now we suppose thatG is Lie group (not necessarily semi-simple and split)
acting isometrically on a pseudo-riemannian manifoldM p,q of finite volume,
with all the orbits ofG isotropic.

We fix x and identifyTxM with Rp,q. We denote as previouslyDxX : TxM →
TxM the covariant derivative ofX at x. By 2.1,X is a Killing field exactly when
DxX is antisymmetric, that isDxX belongs to the orthogonal Lie algebrao(p,q).
However, when an algebraG of Killing fields acts, the collection ofDxX for
X ∈ G is by no means a subalgebra ofo(p,q), isomorphic toG (see for
example [K-N] for the homomorphic defect of the correspondenceX ∈ G →
DxX ∈ o(p,q)).

The proof of the next proposition which implies the embedding theorem under
the isotropic hypothesis, follows immediately from 3.1.

Proposition 6.1 Let G be a Lie group acting isometrically on a pseudo-riemannian
manifold M with isotropic orbits. Let x be a point of M and identify as above
TxM with Rp+q and the restriction DxX/Tx(Gx) with (1/2)adX (acting onG ).
Let A be the subalgebra of o(p,q) generated (as a subalgebra) by the vec-
tor subspace{DxX,X ∈ G } of o(p,q). Then the restriction map DxX ∈ A →
2DxX/Tx(Gx) = adX ∈ ad(G ) extends to an onto homomorphismA → ad(G ).
In particular, if G is simple, it embeds inA ⊂ o(p,q).

Example 6.2The maximal dimension of an isotropic space of a pseudo-rieman-
nian metric of type (p,q) is min(p,q). Therefore ifdim(G) > min(p,q) (andG
is simple to ensure local freedom from 3.1), thenG can not act (even locally)
with isotropic orbits. This is sharp. Let us give a homogeneous example of an
isometric action ofSL(2,R) with isotropic orbits where the metric is of type
(3,3). Take I to be SL(2,C) and M = SL(2,C)/Γ whereΓ is a co-compact
lattice. We endow the Lie algebrasl(2,C) with a bi-invariant form (different
from the Killing form) b for which sl(2,R) is isotropic. We just takeb to be the
imaginary part of theC-Killing form on sl(2,C). (The Lie algebra ofsl(2,C)
is identified with the space of complex 2× 2 matricesA, with tr (A) = 0. Then
b(A,B) = tr (

√−1AB)).

7 Affine actions. The associated affine envelope

(One may consult [Fer] and [Goe] for recent works on affine actions). Let (M ,∇)
be an affine manifold (this means that∇ is a torsion free connection onM , not
necessarily flat). Letχ(M ) be the space of smooth vector fields onM . So ∇
is a bilinear mapχ(M ) × χ(M ) → χ(M ). For L a subspace ofχ(M ) let
∇(L ) be the subspace ofχ(M ) generated by∇(L × L ). That is∇(L ) is the
vector space generated by the vector fields∇XY for X,Y ∈ χ(M ). We define
∇k(L ) = ∇k−1(∇(L )) inductively.

Observe that, due to the torsion free property: [X,Y ] = ∇XY − ∇Y X, we
have [L ,L ] ⊂ ∇(L ).
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Definition 7.1 We call L ∇ =
∑

k∈N ∇k(L ) the affine envelope ofL . It is
a Lie subalgebra ofχ(M ) (generally of infinite dimension), invariant under the
operation∇. Its orbits are (totally) geodesic submanifolds ofM .

Let G be a Lie group acting isometrically on (M ,∇). ThenG may be seen
as a subspace ofχ(M ). Since the action ofG is connection preserving,G acts
naturally on the (finite dimensional) spaces∇k(G ), and acts on the algebra
G ∇, respecting the operation∇. Observe that (for example), ifG is perfect
([G ,G ] = G ), thenG ⊂ ∇(G ), and in particular,G ∇ is an extension ofG .

Example 7.2ConsiderM = Rn endowed with the linear action ofG = SL(n,R).
Then the affine envelope extension is justGL(n,R). The operation∇ on the Lie
algebragl (n,R) is the usual multiplication of matrices.

Let nowG be reduced to a linear vector fieldA ∈ Mn×n. ThenG ∇ is the vec-
tor subspace ofMn×n generated by the (integer) powers ofA: {A,A2, . . . ,Ak , . . .}.

In generalG ∇ is the associative subalgebra ofMn×n generated byG .

Example 7.3In the example 4.10,G ∇ is the direct sum ofG with (Rgradα)∇

(the last∇ is the Levi-Civita connection of the riemannian manifold (V , gV )).
In particularG may have infinite dimension.

Example 7.4As in the situation of 2.2, letX,Y be two vector fields on an
affine manifold (M ,∇) such that [X,Y ] = −Y . Suppose thatX is Killing field,
preserving a finite smooth measure. ConsiderN = (RY)∇, the affine envelope
of RY . Then N is a nilpotent finite dimensional Lie algebra, having a one
parameter group of homotheties induced by the action ofX. All of these facts
are straightforward (for example, to prove thatN has finite dimension, observe
that, if it is not trivial,∇Y Y belongs to the−2 stable Liapunov space ofX, and
so on...).

Theorem 7.5 Let G be a semi-simple Lie group without compact factor acting
isometrically on an affine unimodular (smooth) manifold(M ,∇, ω), of finite vol-
ume. Suppose the action is ergodic. Then the affine envelope extension G∇ pre-
serves the volume form and is a finite dimensional Lie algebra.

Proof. We first show thatG∇ is volume preserving. Consider∇k(G ), and let
E be the finite dimensional space of functions onM , of the formf = divωX for
X ∈ ∇k(G ) (recall that the divergencedivX is defined byLXω = divXω, where
LX is the Lie derivative). ThenG acts onE, respecting theL2 hilbertian scalar
product< f , g >=

∫
M f gω. SinceG is semi-simple with no compact factor,G

acts trivially onE sinceE is finite dimensional. That is the elements ofE, areG-
invariant functions onM , and hence are constant by ergodicity. But a divergence
function divX, has vanishing mean:

∫
M divX = 0. Therefore the vector fields of

∇k(G ) are volume preserving.
DenoteG k = ∇k(G ) and for x ∈ M , let G k(x) be the evaluation ofG k

at x: G k(x) = {X(x) ∈ TxM /X ∈ G k}. Let k be the smallest integer such that∑
i ≤k G i (x) = G ∇(x), for x in a subset ofM of positive measure (and hence
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full measure by ergodicity). We show that
∑

i ≤k G i = G ∇. Let L (x) ∈ G k+1

be the kernel of the evaluation ofG k+1 at x: L (x) = {X ∈ G k+1/X(x) =
0}. By ergodicity, the dimension ofL (x) is almost everywhere a constantd.
So we have a Gauss map:x ∈ M → Lx ∈ Grd(G k+1). It is an equivariant
map whereG acts naturally onGrd(G k+1). A standard argument (using the
Furstenberg lemma [Zim2]), because of the ergodicity, shows that the Gauss
map is constant. That is there is subspaceL ⊂ G k+1, such that for almost allx,
L (x) = L . By definition ofk, for anyX ∈ G k+1, there isY ∈ ∑

i ≤k G i , such
that X(x) − Y(x) = 0, that isX − Y ∈ L (x). By constancy ofL , X − Y = 0
almost everywhere. ThusX ∈ ∑

i ≤k G i . ut

7.1 Affine structure of the orbits of G∇

An orbit G∇x is identified with the quotientG∇/Hx . As a geodesic submanifold
of M , it possesses a connection. By definition ofG ∇, the covariant derivation
determined by this connection preservesG ∇. This means that∇ lifts to a right
invariant connection onG. As in 1.2.1, this is a warped connection onG ∇ given
by a symmetric tensorW : G ∇ × G ∇ → G ∇. The fact that the left action of
G preserves the connection means that:W is Ad(G)-invariant.

Fact 7.6 Let dπx : G ∇ → Tx(G∇x) ⊂ TxM be the derivative at the neutral
element of G∇ of the projection G∇ → G∇x. Then the second fundamental form
of G is given by IIx(X,Y) = dπxW(X,Y). In particular it is equivariant with
respect to some representation of G in TxM .

Remark 7.7It is very restrictive for a right invariant connection on a groupG∇,
to be projectable as a connection on a quotientG∇/H , for H non discrete. This
gives further evidences for the local freedom question, perhaps, even forG∇.

8 Toward local freedom

8.1 Singularities of vector fields

Let (M ,∇) be a affine manifold. Letx be a fixed point ofM . A vector fieldX
(not necessarily Killing) singular atx, i.e.X(x) = 0, has a well defined derivative,
defined in charts, which is an endomorphism ofTxM . In fact it just equals the
covariant derivativeDxX (at x). This does not depend upon the connection∇.
Indeed it may be defined canonically using the flow generated byX, or just by
DxX(Z) = −[X,Z ] for Z a vector field.

Lemma 8.1 Let X and Y be two vector fields singular at x . Then Dx(∇XY) =
DxYDxX .

Proof. Let R be the curvature tensor atx, then R(X,Z)Y = 0 for any vector
field Z . Thus 0 =R(X,Z)Y = ∇X∇Z Y − ∇Z∇XY − ∇[X,Z ]Y . Then we apply
the various previous equivalent definitions ofDxX andDxY . ut
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Corollary 8.2 Let X be a vector field vanishing at x. Suppose that X has (affinely
parameterized) geodesic orbits. Then(DxX)2 = 0.

Proof. We apply the previous lemma since our condition means:∇XX = 0. ut
Corollary 8.3 ([A-S]) A Killing vector field of a Lorentzian metric with geodesic
orbits, has no singularities.

Proof. Let A be an element of an orthogonal algebrao(p,q) then for anyu ∈
Rp,q, Au is orthogonal tou. If furthermore A2 = 0, then the imageIm(A) is
isotropic. Therefore,Im(A) can not have dimension 1, since otherwise it would
be orthogonal to the whole spaceRp,q. Thus in the lorentzian case,A = 0. ut
Remark 8.4(Heuristic approach) The previous facts are trivial in the flat case
(i.e. onRn), where furthermore the vector fields are linear. The general case may
be roughly treated using infinitesimal flatness of connections. More precisely ,
let x ∈ M and expx : U ⊂ TxM → M be the exponential map defined in a
neighborhoodU of 0 in TxM . On U , let ∇λ be the connection pull back of∇
via the mapf λ : u ∈ U → expx(λu) ∈ M . Then∇λ converges (in the smooth
topology) to the flat connection onTxM , whenλ → 0.

8.2 The stabilizer subalgebras ofG ∇

The following fact appears very interesting (for applications):

Theorem 8.5 Let G be as in 7.5, that is G is a semi-simple Lie group without
compact factor, that acts isometrically and ergodically on an affine unimodular
manifold M of finite volume. Then for x∈ M , the infinitesimal representation of
its stabilizer subalgebraG ∇(x) in TxM is nilpotent. In particularG (x) = G ∩
G ∇(x) is (as an abstract group) nilpotent (since this last algebra is represented
faithfully in TxM , because it preserves a connection).

Proof. Let ρ : G ∇(x) → End(TxM ), be the infinitesimal representation,ρ(X) =
DxX. But G ∇(x) is ∇-invariant. This implies, from 8.1 that the imageρ(G ∇(x))
is (an associative) subalgebra ofEnd(TxM ). So, if A belongs toρ(G ∇(x)), then
this is also the case of each powerA2, . . . ,Ak , . . .. Now the volume conservation
property of elements ofG∇, yields that for such an elementA, trace(Ak) = 0,
for any integerk. This implies thatA is nilpotent. ut
Example 8.6Let G = Sl(2,R) acting (transitively) affinely on a Hopf torus. Then
G∇ = GL(2,R). The infinitesimal representation of the stabilizer of any point, is
equivalent to the standard representation of the affine group, but its restriction to
Sl(2,R) is nilpotent.

8.3 Reduction to the SL(2,R) case

From a result of [Stu], one may deduce:
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Fact 8.7 If a semi-simple Lie group with no compact factor G acts, but not locally
freely on a compact manifold, then some nilpotent one parameter group does not
act locally freely. It then follows that some subgroup G′ locally isomorphic to
SL(2,R) does not act locally freely (in fact for such a subgroup , all nilpotent one
parameter groups are somewhere singular) .

Let us assume, to simplify, thatG′ is indeed (globally) isomorphic toSL(2,R).
So questions on local freedom may be reduced to that of actions ofSL(2,R),
which is therefore, the most difficult case. Let us study in more details this case.

We use the classical (dynamical) generatorsX,Y and Z for the Lie algebra

sl(2,R): X =

( −1/2 0
0 1/2

)
is hyperbolic,Y =

(
0 1
0 0

)
and Z =

(
0 0
1 0

)

are nilpotent. We have the relations: [X,Y ] = −Y , [X,Z ] = Z and [Y ,Z ] − 2X.

8.3.1 Stabilizer subalgebras

Fact 8.8 Let SL(2,R) ⊂ G, and G acts ergodically on an affine unimodular
manifold M of finite volume (as in 7.5). Then:

(i) Sl(2,R) has neither fixed points nor one dimensional orbits.
(ii) The isotropy algebra of a singular orbit is a nilpotent one dimensional

algebra, i.e. conjugate toRY (or equivalently toRZ ).

Proof. (i) In this case, the isotropy algebra will be a nilpotent subalgbra (8.5) of
dimension 2 or 3 insl(2,R). This is impossible.

(ii) From 8.5, if A belongs to an isotropy algebra, thenadA is always a
nilpotent endomorphism ofsl(2,R)/RA. This implies thatA is nilpotent. ut

8.3.2 A proof of local freedom, modulo a technical condition

From above, a singular orbit is identified as a homogeneous space toR2−{0} or
to a Hopf torusR2 − {0}/{x → λx}, endowed with theSL(2,R) linear action.
So, the idea is to consider the induced geometric structure on such an orbit, and
if all things work naturally, then use the (8.6), that is, the restricted stabilizer
subalgebra is not nilpotent. Unfortunately, this presupposes, that there is a way
to induce the connection on the orbits. This is of course the case if they are
geodesic, but we were not able to prove that, although we are convinced that it
is the case. So we have a weaker result:

Theorem 8.9 Let G be a semi-simple Lie group with no compact factor acting
isometrically and ergodically on an affine unimodular manifold(M ,∇, ω) of fi-
nite volume. Then(SL(2,R),R2 − {0}) can not be immersed equivariantly and
geodesically in M , with image contained in an orbit of G.

Proof. We argue by contradiction: suppose that for somex, Y(x) = 0 (Y ∈
sl(2,R) is as above). ThenT = ∇Y Z is also singular atx. So, by 8.5,DXT
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is nilpotent. However, our geodesibility hypothesis implies thatT preserves the
SL(2,R) orbit of x, and that the calculus of the restriction ofDxT to the tangent
space of that orbit, is the same as in the modelR2−{0}. But there, a computation

gives, for anyx, DxT = Dx(∇Y Z) = ZY =

(
0 0
0 1

)
. This is not nilpotent. ut

9 Further remarks

9.1 Ergodic theory for the second fundamental form

Our philosophy here was to use direct concrete (and sometimes constructive)
methods. These methods are not always sufficiently powerful to obtain the most
general statements. They provide however a guide to the formulation of a more
general theorems. For example, using the Zimmer’s machinery, we can prove
(without giving details here) the following generalization of facts that we have
already proved, for some of them only for split semi-simple groups, and for
others only in the pseudo-riemannian case, or for ergodic actions.

Theorem 9.1 Let G be a semi-simple Lie group with no compact factor acting
isometrically on an affine unimodular manifold(M ,∇, ω) of finite volume. Then:

(i) For any x ∈ M , the second fundamental form IIx : G × G → TxM is
equivariant with respect to some representation ofG in TxM .

(ii) II x = 0 everywhere, if and only if the orbits are geodesic. In that case, the
action is everywhere locally free.

(iii) In the pseudo-riemannian case the first fundamental form is bi-invariant.

9.2 Structure of the singular set of an SL(2,R) action

Singular sets of group actions come with nice and rich structures that sometimes
give evidence to their non existence. Let for example,G = SL(2,R) act on a
compact manifoldM . Suppose thatG has no 0 or 1-dimensional orbits, that is,
every orbitGx has dimension 2 or 3.

The subsetF of pointsx with orbit Gx of dimension 2, and having as isotropy
algebraG (x) a one dimensional nilpotent subalgebra ofsl(2,R), is a closed
non emptyG-invariant subset. This subset has the structure of a 2-dimensional
lamination, sayL , parameterized by theG action.

It also has a tangential vector fieldD , commuting with the action (this is
equivalent to say that theSL(2,R) action extends to aGL(2,R) action). Indeed a
leaf is covered byR2 − {0}, and the flow ofD induces multiplicationx → et x.

One way to see this is coherently defined inF , is the following. We use
the notationsX,Y ,Z ... in the previous section. Letx ∈ F and consider the
projectionπx : G → Gx and d1πx : G → Tx(Gx). If the neutral component of
the stabilizerG (x) is Ad(g)(RY), then take:D(x) = d1πx(Ad(g)X). One then
cheeks that this does not depend upon the choice ofg.
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Observe the following amusing fact about the the flowφt determined by
X. A compact leaf ofL , is a Hopf torusR2 − {0}/{x → λx}. The foliation
determined byX on such a torus is a Reeb foliation. It has no remarkable dynamic
property, other than what one may callC0 ergodicity. That is a continuous
invariant function by a Reeb foliation, must be constant. This fact generalizes to
(F , φt ) (without assuming existence of compact leaves).

Fact 9.2 (Mautner property) A continuous function on F that is invariant by
φt , is in fact G-invariant (i.e. constant on the leaves ofL ).

Proof. Let f be such a function. It is enough to prove thatf is invariant by the
flows of Y and Z . The argument is the same for both of these flows. Let us
show it for the flowψs generated byY . The identity [X,Y ] = −Y translates to
the normalization relation:φtψs = ψs exp−t . Fix s, and considerf (ψsx) − f (x).
By φt invariance off , this equalsf (φtψsx) − f (φt x), for any t . This equals
f (ψs exp−tφt x)− f (φt x) = f (ψs exp−t y)− f (y), wherey = φt x. The last oscillation
tends uniformly to 0 whent → ∞, sinceψs exp−t → Identity. ut
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