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1. Introduction

The purpose of this paper is to prove the following result, which was announced
in [6]:

THEOREM 1.1. Let (M,g) be a three-dimensional maximal globally hyperbolic
spacetime, locally modelled on the anti-de Sitter space AdS3, with closed orientable
Cauchy surfaces. Then, M admits a CMC time function τ . Moreover, the function
τ is unique and real-analytic, and every CMC spacelike compact surface in M is a
fibre of τ .

Theorem 1.1 deals with three-dimensional spacetimes whose sectional curvature
is constant and negative. We used the equivalent formulation “locally modelled on
the anti-de Sitter space AdS3” to emphasize the fact that the geometry of AdS3

and the (O(2,2), AdS3)-structure of the spacetime will play a crucial role in our
proof of the Theorem 1.1 (see Section 3).

We recall that a spacetime (M,g) is said to be globally hyperbolic if there exists
a spacelike hypersurface � in M such that every inextendable non-spacelike curve
intersects � at one and only one point. Such an hypersurface � is called a Cauchy
surface. A globally hyperbolic spacetime (M,g) locally modelled on AdS3 is said
to be maximal if any embedding of M in a globally hyperbolic spacetime N locally
modelled on AdS3, for which the Cauchy surfaces in M are still Cauchy surfaces
in N , is surjective. Notice that, if a spacetime (M,g) admits a closed Cauchy
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hypersurface, then every Cauchy surface in M is closed, and every closed space-
like hypersurface in M is a Cauchy hypersurface. Moreover, it follows from Mess’
work ([18]) that a spacetime locally modelled on AdS3 is maximal globally hyper-
bolic with compact Cauchy surfaces if and only if it is maximal with respect to the
property that there is a closed spacelike surface through every point.

A time function on a spacetime (M,g) is a submersion τ : M→R such that τ is
strictly increasing along every future-directed timelike curve. Every globally hyper-
bolic spacetime admits (many) time functions. Conversely, a spacetime admitting a
time function which is surjective when restricted to any inextendable causal curve
is globally hyperbolic; in this case, the level sets of τ are Cauchy hypersurfaces.

A CMC time function on a spacetime (M,g) is a time function τ : M→R such
that, for every θ ∈R, the set τ−1(θ) is a spacelike hypersurface with constant mean
curvature θ . In particular, a spacetime which admits CMC time function is foliated
by spacelike hypersurfaces with constant mean curvature. The foliation defined by
a CMC time function is sometimes called a York slicing.

Before discussing the implications of Theorem 1.1, let us say that there exist
analogs of this theorem for spacetimes with constant non-negative curvature (see
[1, 5] for the flat case in any dimension, and [7] for the positive curvature case
in dimension 3). In fact, three-dimensional maximal globally hyperbolic spacetimes
with constant curvature and compact Cauchy surfaces always admits a CMC time
function, except for three special types of spacetimes: up to finite coverings, these
exceptional spacetimes are quotients of the Minkowski space Min3 by a group of
spacelike translations, quotients of certain domains of the de Sitter space dS3 by
rank 2 Abelian groups of parabolic isometries, and the de Sitter space dS3 itself.
Even in these special cases, there is a foliation by compact closed CMC surfaces,
which is unique except in the case of the de Sitter space itself.

The major motivation for proving Theorem 1.1 comes from the links of this the-
orem with the (vacuum) Einstein equation.

First of all, let us recall that, in dimension 3, the vacuum Einstein equation
(with cosmological constant) reduces to the requirement that the curvature of the
spacetime is constant. In particular, the solutions of the three-dimensional vacuum
Einstein with negative cosmological constant are exactly the spacetimes with neg-
ative constant curvature.

The notion of global hyperbolicity is linked with the most usual way to
find solutions of the Einstein equation: to solve the associated Cauchy problem.
This approach, in dimension 2 + 1, consists in considering a surface � with a
Riemannian metric ḡ and a symmetric 2-tensor II, and trying to find a Lorentzian
metric g on M=�×]−1,+1[, such that g satisfies the Einstein equation, such that
ḡ is the restriction of g on �=�×{0} and such that II represents the second fun-
damental form of �=�× {0} in M =�×] − 1,+1[. For the problem to admit a
solution, the initial data (�, ḡ, I I ) must satisfy the constraint equations (for geom-
eters, the Gauss–Codazzi equations). Conversely, Choquet-Bruhat theorem ([12])
states that every initial data satisfying the constraint equation leads to a solution,
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which, by the nature of the process, is globally hyperbolic. Moreover, according to
Choquet-Bruhat and Geroch ([11]), there is a unique maximal globally hyperbolic
solution (up to isometry).

The main difficulty when dealing with the Cauchy problem is the invariance
of Einstein equation under the action of diffeomorphisms, leading to an infinite
dimensional space of local solutions. To byepass this difficulty, one has to choose
a gauge, i.e. to reduce the dimension of the space of solution by imposing addi-
tional constraints. The method used by Choquet-Bruhat consists in considering
local coordinates (x1, x2, x3), such that the surface � corresponds to x3 = 0, and
to demand (with no loss of generality) the harmonicity of these coordinates with
respect to the (unknown) Lorentzian metric g. In such coordinates, the Einstein
equation becomes a quasi-linear hyperbolic equation for which classical techniques
apply.

Another similar method is to restrict to the case where each spacelike surface
� × {∗} is a CMC surface. Then the equation simplifies dramatically. The main
drawback of this approach is that one has to assume the existence of a CMC
surface. Our theorem shows that this assumption, which is a priori very restric-
tive, is automatically fulfilled for the three-dimensional vacuum Einstein equation
with negative cosmological constant. Hence, the remarkable simplification of the
Einstein equation described above, that one could call “CMC reduction”, applies
in full generality.

The CMC reduction is the essential tool of the reduction described by V. Moncrief
of Einstein equation to a non-autonomous Hamiltonian flow (that we call Moncrief
flow) on the cotangent bundle of the Teichmüller space of � ([19]). Moncrief flow
can be described as follows: for every trajectory γ : R → T ∗Teich(�), there exists
a maximal globally hyperbolic space M with CMC time function τ such that the
projection of γ (t) on Teich(�) is the conformal class [ḡt ] of the Riemannian metric
of the surface �t =τ−1(t), and the cotangent vector γ (t) is a holomorphic quadratic
form extracted from the divergenceless and traceless part of the second fundamental
form of �t . Our theorem shows that conversely every maximal globally hyperbolic
spacetimes corresponds to a trajectory of the Moncrief flow. Therefore, maximal
globally hyperbolic spacetimes with constant negative curvature and Cauchy surface
homeomorphic to � are in bijective correspondance with the orbits of the Moncrief
flow on T ∗Teich(�).

Another important interest of Theorem 1.1 is the uniqueness of the CMC time-
function τ . In other words, Theorem 1.1 provides a canonical time-function on
every maximal globally hyperbolic spacetime with constant negative curvature and
compact Cauchy surfaces.

Note that, we already know another canonical time-function on every maximal
globally hyperbolic spacetimes with constant negative curvature and compact Cau-
chy surfaces: the so called cosmological time function. This time function is regular,
and thus, shares nice properties (it is Lipschitz, admits first and second derivatives
almost everywhere, etc., see [2]). Nevertheless, except in very special cases (namely,
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static spacetimes), the cosmological time function is not differentiable everywhere,
whereas the CMC time function provided by Theorem 1.1 is realanalytic.

Benedetti and Bonsante have recently defined a Wick rotation using cosmological
time functions as a key ingredient ([8]). In this context, a Wick rotation is a proce-
dure canonically associating to every spacetime locally modelled on AdS3 a space-
time locally modelled on Minkowski space Min3, or a spacetime locally modelled
de Sitter space dS3, or a hyperbolic manifold. One may hope that another Wick
rotation (the same ?) could be defined using CMC time functions.

A by-product of the present article is to give new insights into the colossal
unpublished work of G. Mess. Indeed, a full proof of the classification of globally
hyperbolic locally AdS3 spacetimes, with a new approach and tools, is a important
step in the proof of our principal result. It was practically impossible to refer to
Mess results without reproducing “everything”. Furthermore, we estimated worth-
while and interesting for the community to make available the details of the proofs
of some of Mess’ results.

1.1. sketch of the proof of theorem 1.1

Consider a maximal globally hyperbolic (M,g), locally modelled on AdS3, with
compact Cauchy surfaces. The proof of Theorem 1.1 essentially reduces to the exis-
tence of a CMC time function τ on M: the uniqueness of this function follows
easily from a well-known “maximum principle”, and the analyticity of τ follows
automatically from the Gauss-Codazzi equation and from the uniqueness of the
maximal solution to the Cauchy problem for Einstein equation (see Section 2).

In order to prove the existence of τ , we will distinguish two quite different cases
according to whether Cauchy surfaces of M have genus 1 (i.e. are two-tori), or
higher genus (we will see that a Cauchy surface in a locally AdS3 spacetime cannot
be a two-sphere).

In the case where M admits a Cauchy surface of genus 1, we will prove that M
is isometric to one of the model spacetimes known has torus universes (see [10]).
Since such spacetimes are spatially homogeneous, it is quite easy to exhibit ex-
plicitely a CMC time function (the level sets of the CMC times function are the
orbits of the isometry group of the spacetime). Note that in this case, the CMC
time function coincides with the cosmological time-function. This case is treated in
Section 7.

The case of spacetimes with higher genus Cauchy surface is more delicate. We
first observe that, in this case, the proof of Theorem 1.1 reduces to the existence
of a CMC compact spacelike surface in M. Indeed, using Moncrief’s flow, and a
majoration of the Dirichlet energy of CMC Cauchy surfaces, Andersson, Moncrief
and Tromba have proved that the existence of a CMC time function on M follows
from the existence of a single CMC Cauchy surface in M (see [4]).

Now, a very classical and general method to prove the existence of CMC sur-
faces consists in exhibiting a pair of surfaces called “barriers”. In our setting, these



CONSTANT MEAN CURVATURE FOLIATIONS 75

barriers will be C2 Cauchy surfaces �−,�+ in M, such that the mean curvature of
�+ is everywhere negative, the mean curvature of �− is everywhere positive, and
�+ is in the future of �−. It follows e.g. from a result of Gerhardt ([13]) that the
existence of such barriers implies the existence of a Cauchy surface with constant
mean curvature (actually a Cauchy surface with zero mean curvature).

So, we are left to find a pair of barriers in M. The way we construct such bar-
riers is purely geometrical. One of the key ingredients of our proof is the locally
projective structure on the anti de Sitter space AdS3, which provides a notion of
convexity. More precisely, using the time orientation and the locally projective struc-
ture of AdS3, we will define some notions of convexity and concavity for spacelike
surfaces in M. The key point is that convex (resp. concave) C2 spacelike surfaces
have negative (resp. positive) mean curvature.

Mess’ work implies that the spacetime M can be seen as the quotient of a
domain U of AdS3 by a subgroup � of O(2,2). We give a very precise description
of the domain U . In this description appears naturally a convex set C0 (roughly
speaking, C0 is the convex hull of the limit set of the group �). The boundary of
this convex set C0 is the union of two disjoint �-invariant spacelike surfaces which
are respectively convex and concave; the projection �−

0 and �+
0 of these surfaces

in M are natural candidates to be the barriers.
Unfortunately, the surfaces �−

0 ,�
+
0 are not smooth (only Lipschitz). Smoothness

of barriers is an essential requirement in the proof of existence of CMC surfaces. So,
the remainder of our proof is devoted to the approximation of the surfaces �−

0 ,�
+
0 ,

by smooth convex and concave spacelike surfaces. Notice that this is not a so easy
task as it could appear at first glance: standard convolution methods can not be
adapted to our setting (see Remark 6.42).

Remark 1.2. The notion of convex hypersurfaces can be defined in any locally
projective space. Hence, the problem raised by the non-smoothness of the surfaces
�−

0 ,�
+
0 can be seen as a particular case of a more general question (which, we

think, is quite interesting): Can every (strictly) convex hypersurface in a locally
projective space be approximated by a smooth one?

2. Uniqueness and Analyticity of CMC Time Functions

The purpose of this section is to prove that, under the hypothesis of Theorem 1.1,
the CMC time function τ , if it exists, is unique and real-analytic. First of all, in
order to avoid any ambiguity on signs convention, we want to recall the definition
of the mean curvature of a spacelike hypersurface in a Lorentzian manifold.

2.1. mean curvature of a spacelike hypersurface

Let � be a smooth spacelike hypersurface in a time-oriented Lorentzian manifold
M, and p be a point of �. Let n be the future pointing unit normal vector field
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of S. We recall that the second fundamental form of the surface S is the quadratic
form IIp on Tp� defined by IIp(X,Y )= −g(∇Xn,Y ), where g is the Lorentzian
metric and ∇ is the covariant derivative. The mean curvature of S at p is the trace
of this quadratic form.

Remark 2.1. Let us identify the tangent space of M at p with R
n, in such a way

that the tangent space of � at p is identified with R
n−1 ×{0}, and the vector n is

identified with (0, . . . ,0,1). Let U be a neighbourhood of p in M. If U is small
enough, the image of the surface �∩U under the inverse of the exponential map
expp is the graph of a function f : R

n−1 →R such that, f (0)= 0 and Df (0)= 0.
The second fundamental form of � at p is the opposite of the Hessian of f at the
origin. In particular, the mean curvature of � at p is the opposite of the trace of
the hessian of f at the origin.

2.2. uniqueness of the cmc time function τ

The uniqueness of the time function τ in Theorem 1.1 is a particular case of the
following result:

PROPOSITION 2.2. Let M be a globally hyperbolic spacetime with compact Cauchy
surfaces. Assume that M admits a CMC time function τ . Then, every compact CMC
spacelike surface in M is a fibre of τ .

LEMMA 2.3. Let � and �′ be smooth spacelike hypersurfaces in a time-oriented
Lorentzian manifold M. Assume that � and �′ are tangent at some point p, and
assume that �′ is contained in the future of �. Then, the mean curvature of �′ at
p is smaller or equal than those of �. Moreover, the mean curvatures of � and �′

at p are equal only if � and �′ have the same 2-jet at p.
Proof. As in Remark 2.1, we identify TpM with R

n in such a way that Tp�=
Tp�

′ is identified with R
n−1 ×{0}, and the future-pointing unit normal vector of �

and �′ at p is identified with (0, . . . ,0,1). Let U be a neighbourhood of p in M.
If U is small enough, the image of � ∩U (resp. �′ ∩U ) under the inverse of the
exponential map at p is the graph of a function f : R

n−1 →R (resp. of a function
f ′: R

n−1 →R), such that f (0)=0 and Df (0)=0 (resp. f ′(0)=0 and Df ′(0)=0).
Since �′ is contained in the future of �, we have f ′ � f . This implies that, for
every v ∈ R

n−1, we have D2f ′(0).(v, v)�D2f (0)(v, v). According to Remark 2.1,
this implies that the mean curvature of �′ at p is smaller or equal than those of
�′.

The case of equality is a consequence of the following observation: given two
functions f,f ′: R

n−1 →R such that f (0)=f ′(0)=0 and Df (0)=Df ′(0)=0, and
such that f ′ �f , then the Hessians of f and f ′ at p are equal if and only if they
have the same trace.
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Proof of the Proposition 2.2. For every s ∈ τ(R), denote by �s the Cauchy
surface τ−1(s). Recall that, for every s,�s is a compact Cauchy surface with con-
stant mean curvature equal to s. Now, let s1 := inf{s ∈ R|� ∩�s �= ∅} and s2 :=
inf{s∈R|�∩�s �=∅}. The compactness of � implies that s1 and s2 do exist (i.e. are
in τ(R)), and that � does intersect the surfaces �s1 and �s2 . Moreover, by defi-
nition of s1 and s2, the surface � is contained in the future the surface �s1 and
in the past of the surface �s2 . Let p1 be a point in � ∩�s1 , and p2 be a point
in �∩�s2 . By Lemma 2.3, the mean curvature of � at p1 is at most s1, and the
mean curvature of � at p2 is at least s2. Since � is a CMC surface, and since
s1 � s2, this implies s1 = s2. Moreover, since � is in the future of �s1 and in the
past of �s2 , this implies �=�s1 =�s2 .

Remark 2.4. The uniqueness of CMC time function, when it exists, implies that
it is preserved by isometries; in particular, by covering automorphisms of isometric
coverings. Hence, if a given spacetime admits a CMC time function, the same is true
for all its finite quotients. This remark enables us, for the proof of Theorem 1.1, to
replace at every moment the spacetime under consideration by any finite covering.

2.3. analyticity of the cmc time function τ

At first glance, uniqueness of CMC foliations suggests an extra regularity of them.
However, uniqueness seems to come from global reasons, and so only an auto-
matic continuity (i.e. C0 regularity) is guaranteed by general principles. One knows,
for instance, many situations in mathematics (e.g. dynamical systems theory) where
canonical objects are defined by an infinite limit process, and are therefore never
smooth. The situation is better here! The point is that, due to the formalism of
the Cauchy problem for Einstein equations, one can have a double vision. The first
one is a spacetime endowed with a (local) CMC foliation. The second one is a
CMC data, that is, a Riemannian manifold satisfying a “CMC constraint equa-
tion”, which generates a spacetime having this manifold as a leaf of a CMC folia-
tion. The regularity of the foliation derives thus from that of the associated PDE
system. More formally:

PROPOSITION 2.5. Let (M, g) be an analytic Lorentz manifold satisfying vac-
uum Einstein equation with negative cosmological constant, that is Riccig=�g with
�<0. Let N ⊂M be a compact (spacelike) CMC hypersurface. Then, there is a
unique CMC foliation extending N , defined on a neighbourhood of it. This foliation
is furthermore analytic.

In particular, any (locally defined) CMC foliation with compact leaves is analytic.
Proof. Firstly, a folkloric fact on Riemannian geometry says that CMC

hypersurfaces in analytic manifolds are analytic. The reason is that they solve a
quasi-linear elliptic PDE of degree 2. This extends to the Lorentz case.
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Now, consider N , a CMC hypersurface in M, and let h and k be its restricted
(Riemannian) metric and second fundamental form respectively. Then, (N,h, k) is
a CMC vacuum data. See, for instance [3] for a modern exposition on Einstein
equations in CMC gauges. The authors write Einstein equations in a gauge which
is harmonic on space, and CMC on time. They show that the obtained hyperbolic–
elliptic PDE system is well-posed. In particular, solutions are analytic provided
that initial data are.

3. A Short Presentation of (G,X)-Structures

Let X be a manifold and G be a group acting on X with the following property:
if an element g of G acts trivially on an open subset of X, then g is the identity
element of G. A (G,X)- structure on a manifold M is an atlas (Ui, ϕi)i∈I , where

– (Ui)i∈I is a covering of M by open subsets,

– for every i, the map ϕi is a homeomorphism from Ui to an open subset of X,

– for every i, j, the transition map ϕi ◦ϕ−1
j : ϕj (Ui ∩Uj)→ϕi(Ui ∩Uj) is the restric-

tion of an element of G.

To every manifold M equipped with a (G,X)-structure are associated two natu-
ral objects: the developing map d: ˜M→X, which is a local homeomorphism from
the universal covering ˜M of M to some open subset of X, and the holonomy rep-
resentation ρ: π1(M)→G. These natural objects satisfy the following equivariance
property: for every x ∈ ˜M and every γ ∈π1(M), one has d(γ ·x)=ρ(γ ) ·d(x).
A good reference for all these notions is [16].

In this article, we are interested in spacetimes that are locally modelled on the
anti-de Sitter space AdS3, that is, manifolds equipped with a (G,X)-structure with
X=AdS3 and G= Isom0(AdS3)=O0(2,2).

4. The Three Dimensional Anti-de Sitter Space

In this section, we recall the construction of the different models of the three-dimen-
sional anti-de Sitter space, and we study the geometrical properties of this space.

4.1. the linear model of the anti-de sitter space

We denote by (x1, x2, x3, x4) the standard coordinates on R
4. We will also use

the coordinates (a, b, c, d)= (x1 − x3,−x2 + x4, x2 + x4, x1 + x3). We consider the
quadratic form Q=−x2

1 − x2
2 + x2

3 + x2
4 =−ad+ bc and denote by BQ the bilinear

form associated to Q.
Let p be a point on the quadric of equation (Q=−1) in R

4. When we identify
the tangent space of R

4 at p with R
4, the tangent space of the quadric (Q=−1) at

p is identified with the Q-orthogonal of p. Since Q is a non-degenerate quadratic
form of signature (−,−,+,+), and since Q(p)= −1, the restriction of Q to the
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Q-orthogonal of p is a non-degenerate quadratic form of signature (−,+,+). This
proves that the quadratic form Q induces a Lorentzian metric of signature (−,+,+)
on the quadric (Q=−1). In other words, the restriction of the pseudo-Riemannian
metric −dx2

1 − dx2
2 + dx2

3 + dx2
4 to the quadric (Q= −1) is a Lorentzian metric of

signature (−,+,+).

DEFINITION 4.1. The (linear model of the) three-dimensional anti-de Sitter
space, denoted by AdS3, is the quadric (Q = −1) in R

4 endowed with the
Lorentzian metric induced by Q.

One can easily verify that the anti-de Sitter space AdS3 is diffeomorphic to S
1 ×

R
2. More precisely, one can find a diffeomorphism h: S

1 × R
2 →AdS3 such that

the surface h({θ}×R
2) is spacelike for every θ , and such that the circle h(S1 ×{x})

is timelike for every x. In particular, the anti-de Sitter space AdS3 is time-orient-
able; from now on, we will assume that a time-orientation has been chosen.

The isometry group of the anti-de Sitter space AdS3 is the group O(2, 2) of the lin-
ear transformations of R

4 which preserve the quadratic form Q. The group O(2, 2)
acts transitively on AdS3 and the stabilizer of any point is isomorphic to O(2, 1);
hence, the anti-de Sitter space AdS3 can be seen as the homogenous space
O(2, 2)/O(2, 1). We shall denote by O0(2, 2) the connected component of the iden-
tity of O(2, 2); the elements of O0(2, 2) preserve the three-dimensional orientation
and the time-orientation of AdS3.

PROPOSITION 4.2. The geodesics of AdS3 are the connected components of the
intersections of AdS3 with the two-dimensional vector subspaces of R

4.
Proof. Let P be a two-dimensional vector subspace of R

4. The geometry of P ∩
AdS3 depends on the signature of the restriction of Q to the plane P:

– If the restriction of Q to the plane P is a quadratic form f signature (−,−), then
there exists an element σ of O(2,2) which maps P to the plane (x3 = 0, x4 = 0).
The intersection of AdS3 with the plane (x3 =0, x4 =0) is a closed timelike curve.
This curve has to be a geodesic of AdS3, since it is the fixed point set of the
symmetry with respect to the plane (x3 = 0, x4 = 0), which is an isometry of
AdS3. Hence, the intersection of AdS3 with the plane P is also a closed time-
like geodesic of AdS3.

– If the restriction of Q to the plane P is a quadratic form of signature (−,+),
then there exists an element of O(2, 2) which maps P to the plane (x1 =0, x3 =0).
The same arguments as above imply that P ∩AdS3 is the union of two disjoint
non-closed spacelike geodesics of AdS3.

– If the restriction of Q to the plane P is a degenerate quadratic form of signa-
ture (0,−), then there exists an element of O(2, 2) which maps P to the plane
(x1 =x3, x4 =0). The same arguments as in the first case imply that P ∩AdS3 is
a non-closed lightlike geodesic of AdS3.
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– Finally, if the restriction of Q to the plane P is a quadratic form of signature
(+,+), (0,−) or (0, 0), then one can easily verify that the intersection P ∩AdS3

is empty.

The discussion above implies that each connected component of the intersection
of AdS3 with a two-dimensional vector subspace of R

4 is a geodesic of AdS3. The
converse follows from the fact that a geodesic is uniquely determined by its tan-
gent vector at some point.

Remark 4.3. Let γ be a geodesic of AdS3. According to Proposition 4.2, there
exists a two-dimensional vector subspace Pγ of R4 such that γ is a connected com-
ponent of Pγ ∩ AdS3. Moreover, reading again th proof of Proposition 4.2, we
notice that:

– if γ is timelike, then the intersection of Pγ with the quadric (Q=0) is reduced
to (0, 0, 0, 0);

– if γ is lightlike, then Pγ is tangent to the quadric (Q=0) along a line;

– if γ is spacelike, then Pγ intersects transversally the quadric (Q= 0) along two
lines.

Remark 4.4. The proof of Proposition 4.2 shows that all the timelike geodesics
of AdS3 are closed, so that a single point is not an “achronal” set in AdS3. More-
over, one can prove that he past and the future in AdS3 of any point p ∈AdS3

are both equal to the whole of AdS3. So, the causal structure of AdS3 is not very
interesting. This is the reason why, instead of working in AdS3 itself, we shall work
in some “large” subsets of AdS3 which do not contain any closed geodesics (see
Section 4.3).

Using the same kind of arguments as in the proof of Proposition 4.2, one can
prove the following:

PROPOSITION 4.5. The two-dimensional totally geodesic subspaces of AdS3 are
the connected components of the intersections of AdS3 with the three-dimensional
vector subspaces of R

4.

Remark 4.6. In particular, given any point p∈AdS3 and any vector plane P in
TpAdS3, there exists a totally geodesic subspace of AdS3 whose tangent space at
p is the plane P.

Let p be a point in AdS3. We call dual surface of the point p the intersection p∗

of the hyperplane p⊥ ={q ∈R
4 BQ(p, q)=0} with AdS3; hence, by Proposition 4.5,

each connected component of p∗ is a two-dimensional totally geodesic subspace of
AdS3. One can easily verify that p∗ is made of two connected components, and
that the restriction of Q to p∗ is a quadratic form of signature (+,+) (it is enough
to consider the case where p is the point (1, 0, 0, 0) since Oo(2, 2) acts transitively
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on AdS3). Hence, the surface p∗ is the union of two disjoint spacelike totally geo-
desic subspaces of AdS3.

Remark 4.7. Every point of the surface p∗ can be joined from P by a timelike
geodesic segment.

Proof. Let q be a point in p∗. We denote by P the two-dimensional vector sub-
space spanned by p and q in R

4. We have Q(p)=Q(q)= −1 and BQ(p, q)= 0;
this implies that the restriction of the quadratic form Q to the plane P is a qua-
dratic from of signature (−,−). Hence, according to the proof of Proposition 4.2,
the intersection of the plane P with AdS3 is a timelike geodesic. This proves in
particular that the points p and q are joined by a timelike geodesic segment.

4.2. the klein model of the anti-de sitter space

We shall now define the “Klein model of the anti-de Sitter space”. An interesting
feature of this model is that it allows us to attach a boundary to the anti-de Sitter
space. This boundary will play a fundamental role in the proof of Theorem 1.1.

We see the sphere S
3 as the quotient of R

4\{0} by positive homotheties. We
denote by π the natural projection of R

4\{0} on S
3. We denote by [x1, x2, x3, x4]

the “positively homogenous” coordinates on S
3 induced by the coordinates

(x1, x2, x3, x4) on R
4: one has [x1, x2, x3, x4] = [y1 : y2 : y3 : y4] if and only if there

exists λ > 0 such that (x1, x2, x3, x4) = λ(y1, y2, y3, y4). Similarly, we denote by
[a:b:c:d] the positively homogenous coordinates on S

3 induced by the coordinates
(a, b, c, d) on R

4. We endow S
3 with its canonical Riemannian metric.

Remark 4.8. Given a point p∈S
3, the quantity Q(p) is defined up to multipli-

cation by a positive number, this means that the sign of Q(p) is well defined. Sim-
ilarly, given two points p,q ∈S

3, the sign of BQ(p, q) is well defined.

DEFINITION 4.9. The projection π maps diffeomorphically AdS3 on its image
π(AdS3) ⊂ S

3. The Klein model of the anti-de Sitter space, that we denote by
AdS3, is the image of AdS3 under π , equipped with the image of the Lorentzian
of metric of AdS3. We denote by ∂AdS3 the boundary of AdS3 in S3.

Observe that AdS3 is made of the points of S
3 which satisfy the inequality (Q<

0). Hence, ∂AdS3 is the quadric of equation (Q=0) in S
3. This quadric admits two

transversal rulings by families of great circles of S
3. The first ruling, that we call

left ruling, is the family of great circles {L(λ:μ)}(λ:μ)∈RP1 where L(λ:μ)={[a :b :c :d]∈
∂AdS3 (a : c)= (b :d)= (λ :μ) in RP

1}. The second ruling, that we call right ruling,
is the family of great circles {R(λ:μ)}(λ:μ)∈RP1 where R(λ:μ)={[a :b :c :d]∈∂AdS3 (a :
b)= (c : d)= (λ :μ) in RP

1}. Through each point of ∂AdS3 passes one leaf of the
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left ruling and one leaf of the right ruling. Any leaf of the left ruling intersects any
leaf of the right ruling at two antipodal points.

The elements of O0(2,2) preserve the left and the right ruling of ∂AdS3. Hence,
for each element σ of O0(2,2), we can consider the action of σ on the left and the
right rulings. This defines a morphism from O0(2, 2) to PSL(2,R)× PSL(2,R).
It is easy to see that this morphism is onto, and that the kernel of this mor-
phism is a subgroup of order 2 of O0(2, 2). As a consequence, we obtain an iso-
morphism from O0(2, 2) to SL(2R)× SL(2R)/(−Id,−Id) such that the elements
of SL(2R)×{±Id}/(−Id,−Id) preserve individually each circle of the right ruling,
and the elements of {±Id}×SL(2,R)/(−Id,−Id) preserve individually each leaf of
the left ruling.

PROPOSITION 4.10. The geodesics of AdS3 are the connected components of the
intersections of AdS3 with the great circles of S3.

Proof. By construction of AdS3, the geodesics of AdS3 are the images under π
of the geodesics of AdS3. By Proposition 4.2, the geodesics of AdS3 are the con-
nected components of the intersections of AdS3 with the two-dimensional vector
subspaces of R

4. The image under π of a two-dimensional vector subspace of R
4

is a great circle of S
3. Putting everything together, we get Proposition 4.10.

Remark 4.11. Let γ be a geodesic of AdS3. By Proposition 4.10, γ is a con-
nected component of AdS3 ∩ γ̂ , where γ̂ is a geodesic of S

3. Moreover, Remark
4.3 and the proof of Proposition 4.10 imply that:

– if γ is a timelike geodesic, then the great circle γ̂ is contained in AdS3 and γ =
γ̂ ,

– if γ is lightlike, then the great circle γ̂ is tangent to ∂AdS3 at two antipodal
points p,−p, and γ is one of the two connected components of γ̂ \{p,−p},

– if γ is spacelike, then the great circle γ̂ intersects ∂AdS3 transversal1y at four
points {p1,−p1, p2,−p3}, and γ is one of the four connected components of
γ̂ \{p1,−p1, p2,−p2}

Remark 4.12. Let q be a point ∂AdS3, and p be a point in AdS3. The great
2-sphere Sq Of S

3 which is tangent to the quadric ∂AdS3 at q is Sq = {r ∈
S

3 BQ(q, r)= 0}. Consequently, Remark 4.11 implies that there exists a lightlike
geodesic γ passing through p and such that the ends of γ in ∂AdS3 are the points
q and −q if and only if BQ(q,p)=0.

Using Proposition 4.5 and the same arguments as in the proof of Proposition
4.10, we obtain:
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PROPOSITION 4.13. The two-dimensional totally geodesic subspaces of AdS3 are
the connected components of the intersections of AdS3 with the great 2-spheres of
the sphere S

3.

Given a point p in AdS3, we define the dual surface p� of p just as we did in
the linear model: p�={q∈AdS3 BQ(p, q)=0}. Note that the definitions in the lin-
ear model and in the Klein model are coherent: if p̂ is a point in AdS3 such that
π(p̂)=p, then the dual surface of p is the image under π of the dual surface of p̂.
We denote by p∗ = {q ∈ AdS3 ∪ ∂AdS3 BQ(p, q)= 0} the closure on p∗ in AdS3 ∪
∂AdS3.

Remark 4.14. In the sequel, we will indifferently denote the anti-de Sitter space
by AdS3 or AdS3. Mainly, we will have a preference to the first notation when
concerned with metric properties, and to the second one while discussing convexity
(see Section 4.4) or properties of the boundary at infinity ∂AdS3.

4.3. affine domains in the anti-de sitter space

By an open hemisphere of S
3, we mean a connected component of S

3 minus a great
2-sphere. Given an open hemisphere U , we say that a diffeomorphism ϕ: U→R

3

is a projective chart if ϕ maps the great circles of S
3 (intersected with U ) to the

affine lines of R
3. It is well-known that, for every open hemisphere U of S

3, there
exists an projective chart ϕ : U→R

3. This defines a locally projective structure on
S

3, which induces a locally projective structure on AdS3. The purpose of this sub-
section is to define some particular projective charts of AdS3.

For every p∈AdS3, we consider the open hemisphere Up :={q∈S
3|BQ(p, q)<0},

and the sets

Ap := {q ∈AdS3 | BQ(p, q)<0} = AdS3 ∩Up,
∂Ap := {q ∈ ∂AdS3 | BQ(p, q)<0} = ∂AdS3 ∩Up.

Note that ∂Ap is not the boundary of Ap in S
3: it is the boundary of Ap in Up.

Also note that Ap is the connected component of AdS3\p∗ containing p, and that
Ap ∪ ∂Ap is the connected component of (AdS3 ∪ ∂AdS3)\p∗ containing p.
Let p0 be the point of coordinates [1:0:0:0] in S

3. We observe that

Up0 ={[x1 :x2 :x3 :x4]∈S
3|x1>0}

and we consider the diffeomorphism

�p0 :Up0 −→R
3

[x1 :x2 :x3 :x4] �−→ (x, y, z)=
(

x3

x1
,
x4

x1
,
x2

x1

)

.
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Now, given any point p∈AdS3, we can find an element σp of O0(2,2), such that
σp(p)=p0. Then, we consider the diffeomorphism �p :Up →R

3 defined by �p =
�p0 ◦σp.

For every p∈AdS3, the diffeomorphism �p maps the domain Ap on the region
of R

3 defined by the inequality (x2 + y2 − z2 < 1), and maps ∂Ap on the one-
sheeted hyperboloid of equation (x2 +y2 − z2 =−1). Moreover, �p0 is a projective
chart (as the usual stereographic projection), i.e. it maps the great circles of S

3 to
the affine lines of R

3. Combining this with Proposition 4.10, we obtain that, for
every p∈AdS3, the diffeomorphism �p maps the geodesics of AdS3 to the inter-
sections of the affine lines of R

3 with the set (x2 +y2 −z2<1). Similarly, �p maps
the totally geodesic subspaces of AdS3 to the intersections of the affine planes of
R

3 with the set (x2 +y2 − z2<1).

Remark 4.15. Let γ be a geodesic of AdS3. Let γp be the image under �p of
γ ∩Ap. According to the above remark, γp is contained in an affine line γ̂p of R

3.
Moreover, using Remark 4.11, we see that:

– if γ is timelike, then the line γ̂p does not intersect the hyperboloid (−x2 +y2 +
z2 =1) and γp= γ̂p,

– if γ is lightlike, then the affine line γ̂p is tangent to the hyperboloid (−x2 +y2 +
z2 =1) at one point q and γp is one of the two connected components of γ̂p\q,

– if γ is spacelike, then the γ̂p intersects transversally the hyperboloid (−x2 +
y2 + z2 =1) at two points q1, q2 and γ is the bounded connected component of
γ̂ \{q1, q2}.

The image under �p of any geodesic of AdS3 is contained in an affine line of
R

3. This implies in particular that there is no closed geodesic of AdS3 contained
in Ap. Moreover, one can prove that there is no closed timelike curve in Ap, so
that the causal structure of Ap is more interesting than that of AdS3 (see Remark
4.4).

4.4. convex subsets of AdS3

Using the local projective structure of AdS3, we will define a notion of convex sub-
sets of AdS3.

First, we define a convex subset of S
3 to be a set C ⊂ S

3 such that: C is
contained in some open hemisphere U of S

3, and there exists some projective chart
ϕ :U→R

3 such that the set ϕ(C) is a convex subset of R
3.

Note that, if C is a convex subset of S
3, then, for every open hemisphere V of

S
3 containing C, and every projective chart ψ :V → R

3, the set ϕ(C) is a convex
subset of R

3. Moreover, a set C contained in some open hemisphere of S
3 is a

convex subset of S
3 if and only if the positive cone π−1(C) is a convex subset of

R
4 (recall that π is the natural projection of R

4\{0} on S
3).
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Now, given a subset E of S
3 such that, C is contained in some open hemisphere

of S
3, we define the convex hull Conv(C) of the set C to be the intersection of

all the convex subsets of S
3 containing C. Note that, if U is an open hemisphere

containing C and � :U → R
3 is a projective chart, the set Conv(C) is the image

under �−1 of the convex hull in R
3 of the set �(C). Moreover, Conv(C) is also

the image under π of the convex hull in R
4 of the positive cone π−1(C).

Now, recall that AdS3 is contained in the sphere S
3, and let C be a subset of

AdS3. We say that C is a convex subset of AdS3 if it is convex as a subset of S
3.

We say that C is a relatively convex subset C of AdS3 if C is the intersection of
AdS3 with a convex subset of S

3. Equivalently, C is a convex subset of AdS3 if
C=Conv(C), and C is a relatively convex subset of AdS3 if C=Conv(C)∩AdS3.

4.5. the sl (2, R)-model of the anti-de sitter space

The linear model of the three-dimensional anti-de Sitter space is the quadric
{(a, b, c, d)∈ R

4| − ad + bc= −1} endowed with the Lorentzian metric induced by
the quadratic form Q(a, b, c, d)=−ad+bc. Therefore, the anti-de Sitter space can
be identified with the group of matrices SL(2,R)= {(

a b
c d

)∈M(2,R) |ad−bc=1
}

endowed with the Lorentzian metric induced by the quadratic form – det defined
on M(2,R) by – det

(

a b
c d

)=ad−bc.
The quadratic form – det on M(2,R) is invariant under left and right multipli-

cation by elements of SL(2,R) (actually, the Lorentzian metric induced by – det
is a multiple of the Killing form of the Lie group SL(2,R)). This implies that the
isometry group of (SL(2,R),−det) is SL(2,R)× SL(2,R) acting on SL(2,R) by
left and right multiplication, i.e. acting by (g1, g2) ·g=g1gg

−1
2 .

4.6. causal structure of the anti-de sitter space

Denote dt2 the standard Riemannian metric on the circle S
1, by ds2 the standard

Riemannian metric on the two-dimensional sphere S
2, by D

2 the open upper-hemi-
sphere of S

2, and by D2 the closure of D
2. We will prove that AdS3 has the same

causal structure as (S1 ×D
2,−dt2 +ds2). More precisely:

PROPOSITION 4.16. There exists a diffeomorphism �: AdS3 →S
1 ×D

2 such that
the pull back by � of the Lorentzian metric −dt2 + ds2 defines the same causal
structure as the original metric of AdS3, that is, the two metrics are in the same con-
formal class. Moreover, the diffeomorphism � can be extended to a diffeomorphism
�: AdS3 ∪ ∂AdS3 →S

1 ×D2.

To prove this, we will embed AdS3 in the so-called three-dimensional Einstein
universe. Denote by (x1, x2, x3, x4, x5) the standard coordinates on R

5, consider the
quadratic form ˜Q on R

5 defined by ˜Q(x1, x2, x3, x4, x5)=−x2
1 − x2

2 + x2
3 + x2

4 + x2
5 ,

denote by S
4 the quotient of R

5\{0} by positive homotheties, and by π̃ the natural



86 THIERRY BARBOT ET AL.

projection of R
5\{0} on S

4. Then, the three-dimensional Einstein space, denoted by
Ein3, is the image under π̃ of the quadric (˜Q= 0). There is a natural conformal
class of Lorentzian metrics on Ein3, defined as follows:

– Given an open subset U of Ein3, and a local section σ : U→R
5\{0} of the pro-

jection π̃ , we define a Lorentzian metric gσ on U as follows. For every point
p ∈U and every vector v ∈ TpEin3, we choose a vector v̂ ∈ Tσ(p)R5 such that
dπ̃(σ (p)) · v̂=v. The quantity ˜Q(̂v) does not depend on the choice of the vector
v̂: indeed, the vector v̂ is tangent to the quadric (˜Q=0), the vector v̂ is defined
up to the addition of an element of π̃−1(p), and the half-line π̃−1(p) is con-
tained in the ˜Q-orthogonal of the tangent space of the quadric (˜Q= 0) at σp.
We set gσ (v) := ˜Q(̂v).

– The conformal class of the metric gσ does not depend on the section σ . Indeed,
if σ and σ ′ are two sections of the projection π̃ defined on U , then we have
gσ ′ =λ2 ·gσ , where λ: U→R is the function such that σ ′ =λ ·σ .

Proof of Proposition 4.16. Let A={[x1 : x2 : x3 : x4 : x5] ∈ Ein3|x5> 0}, and let ∂A
be the boundary of A. We will consider two particular sections of the projection
π̃ . First, we consider the section σ , defined on A, whose image is contained in the
affine hyperplane x5 = 1. The anti-de Sitter space AdS3 is isometric to the set A
equipped with the Lorentzian metric gσ : the most natural isometry is the diffeo-
morphism � defined by �([x1 :x2 :x3 :x4])= [x1 :x2 :x3 :x4 : 1]. Now, we consider the
section σ ′, defined on the whole of Ein3 whose image is contained in the Euclid-
ean sphere x2

1 + x2
2 + x2

3 + x2
4 + x2

5 = 2. The set A equipped with the Lorentzian
metric gσ ′ is isometric to the set {(x1, x2, x3, x4, x5)∈R

5|x2
1 +x2

2 = 1, x2
3 +x2

4 +x2
5 =

1, x5 > 0} � S
1 × D

2 equipped with the Lorentzian metric −(dx2
1 + dx2

2 )+ (dx2
3 +

dx2
4 +dx2

5 )�−dt2 +ds2: the most natural isometry is the diffeomorphism �′ =σ ′
|A.

We consider the diffeomorphism � :=�′ ◦� : AdS3 →S
1 ×D

2. Since the metric gσ
and gσ ′ are conformally equivalent, the pull back by � of the metric −dt2 + ds2

is conformally equivalent to the original metric of AdS3.
The diffeomorphism � can be extended to a diffeomorphism � : AdS3 ∪

∂AdS3 →A∪ ∂A: for every [x1 : x2 : x3 : x4] in ∂AdS3, we have �([x1 : x2 : x3 : x4])=
[x1 : x2 : x3 : x4 : 0]. The diffeomorphism �′ can be extended to a diffeomorphism
�′ :A∪ ∂A→ S

1 × D2: we have �′ = σ ′
A∪∂A. Hence, the diffeomorphism � can be

extended to a diffeomorphism �=�◦�′ : AdS3 ∪ ∂AdS3 →S
1 ×D2.

Causal structure on AdS3 ∪ ∂AdS3. Let g be the Lorentzian metric on AdS3 ∪
∂AdS3, obtained by pulling back the Lorentzian metric −dt2 + ds2 defined on
S

1 ×D2 by the diffeomorphism �. The Lorentzian metric g defines the same causal
structure on AdS3 as the original metric of AdS3. From now on, we endow AdS3 ∪
∂AdS3 with the causal structure defined by the metric g. This causal structure
allows us to speak of timelike, lightlike and spacelike objects in AdS3 ∪ ∂AdS3.
In particular, we can consider the causal structure induced on the quadric ∂AdS3.
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Given a point q ∈ ∂AdS3, it is easy to verify that the lightcone of q for this con-
formally Lorentzian structure is the union of the leaf of the left ruling and of the
circle of the right ruling passing through q.

Remark 4.17. Let p0 be the point of coordinates [1:0:0:0] in S
3. Recall that

Ap0 ∪∂Ap0 is the subset of AdS3 ∪∂AdS3 defined by the inequality (x1>0). Hence,
the diffeomorphism � defined above maps Ap0 ∪ ∂Ap0 on {(x1, x2, x3, x4, x5)|x2

1 +
x2

2 =1, x1>0, x2
3 +x2

4 +x2
5 =1, x5 ≥0}� (−π/2, π/2)×D2.

COROLLARY 4.18. For every p∈AdS3, the domain Ap∪∂Ap has the same causal
structure as the Lorentzian space ((−π/2, π/2)×D2,−dt2 +ds2).

Proof. Since O(2,2) acts transitively on AdS3, it is enough to consider the case
where p is the (point of coordinates [1:0:0:0]. This case follows from Proposition
4.16 and Remark 4.17.

The two following propositions will play some fundamental roles in the proof of
Theorem 1.1:

PROPOSITION 4.19. Let P be a point in AdS3, and q be a point in ∂Ap. A point
r ∈Ap ∪ ∂Ap can be joined from q by a timelike (resp. causal) curve if and only if
BQ(q, r) is positive (resp. non-negative).

Proof. Since O(2,2) acts transitively on AdS3, we can assume that p= [1 : 0 : 0 : 0].
There exists a timelike curve joining q to r in Ap ∪ ∂Ap if and only if there exists
a timelike curve joining �p(q) to �p(r) in ((−π/2, π/2)×D2,−dt2 + ds2). We see
((−π/2, π/2)×D2,−dt2 + ds2) as the set {(x1, x2, x3, x4, x5)∈R

5 | x2
1 + x2

2 = 1, x1>

0, x2
3 + x2

4 + x2
5 = 1, x5 > 0} equipped with the metric −(dx2

1 + dx2
2 )+ (dx2

3 + dx2
4 +

dx2
5 ). Coming back to the definition of the diffeomorphism �p (see the proof of

Proposition 4.16), we observe that BQ(q, r) and B
˜Q(�p(q),�p(r)) have the same

sign. Moreover, it is clear that the points �p(q) and �p(r) can be joined by a time-
like (resp. causal) curve in ((−π/2, π/2)×D2,−dt2 +ds2) if and only if ˜Q(�p(q)−
�p(r)) is negative (resp. non-positive). Finally, notice that the quantity ˜Q(�p(q)−
�p(r)) and B

˜Q(�p(q),�p(r)) have opposite signs (since ˜Q(�p(q))= ˜Q(�p(r))=0).
Putting everything together, we obtain the proposition.

Remark 4.20. Let p be a point in AdS3. Let P be a totally geodesic spacelike
subspace of Ap (by such we mean the intersection of Ap with a totally geodesic
spacelike subspace of AdS3). Then, P divides Ap into two closed regions: the past
of P in Ap and the future of P in Ap.

Proof. We identify Ap and P with their images under the embedding �p. Then,
P is the intersection of Ap (i.e., of the set (−x2 +y2 +z2<1)) with an affine plane
̂P of R

3. We consider the two regions of Ap defined as the intersections of Ap

with the closures two connected components of R
3 \ ̂P . Since P is spacelike and
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connected, the past (resp. the future) of P in Ap is necessarily contained in one of
these two regions. Finally, Remark 4.15 implies that, for every point q ∈Ap, there
exists a timelike geodesic joining q to a point of P . Hence, the union of the past
and the future of P must be equal to Ap. The proposition follows.

5. Globally Hyperbolic Spacetimes

All along this section, we consider a maximal globally hyperbolic spacetime M,
locally modelled on AdS3, with closed orientable Cauchy surfaces. All the Cauchy
surfaces have the same genus, that we denote by g.

Remark 5.1. We will not discuss here in detail the question if existence of such
spacetimes, let’s just mention here that Theorem 7.11 provides the complete classi-
fication of maximal globally hyperbolic AdS3-spacetimes with Cauchy surfaces of
genus 1. For higher genus, see Remark 6.22.

We denote by ˜M the universal covering of M. We choose a Cauchy surface �0

in M, and the lift ˜�0 of �0 in ˜M. Since M is locally modelled on AdS3, we can
consider the developing map d : ˜M→AdS3 and the holonomy representation ρ :
π1(M)=π1(�0)→O0(2,2) (see Section 3).

Let S0 = d(˜�0), and � = ρ(π1(M)). Identifying O0(2,2) with SL(2,R) ×
SL(2,R)/(−Id,−Id) (see Section 4.2), we can see ρ as a representation of π1(M)

in SL(2,R)× SL(2,R). Then, we will denote by ρL and ρR the representations of
π1(M) in SL(2,R) such that ρ=ρL+ρR.

In Section 5.1, we will study the surface S0 and its boundary ∂S0 in AdS3 ∪
∂AdS3. In particular, we will show that S cannot be a sphere, i.e., its genus g is
positive. The results of this subsection are not original: most of them are contained
in Mess preprint ([18]). Yet, we will provide a proof of each result to keep our
paper as self-contained as possible (by the way, using the conformal equivalence
of AdS3 ∪ ∂AdS3 with (D2 ×S

1,−dt2 +ds2), we were able to simplify some of the
proofs of Mess).

In Section 5.2, we study the Cauchy development D(S0) of the surface S0. In
particular, we prove that M is isometric to the quotient � \D(S0).

5.1. the spacelike surface s0

The purpose of this subsection is to collect as many information as possible on the
surface S0. In particular, we will prove that S0 is an open disc properly embedded
in AdS3, that the closure S0 of S0 in AdS3 ∪ ∂AdS3 is a closed topological disc,
and that S0 is an achronal set.

The Lorentzian metric of M induces a Riemannian metric on the Cauchy sur-
face �0, which can be lifted to get a Riemannian metric on ˜�0. Since �0 is com-
pact, the Riemannian metrics on �0 and ˜�0 are complete. The developing map d
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induces a locally isometric immersion of the surface ˜�0 in AdS3. It turns out that
this immersion is automatically a proper embedding:

PROPOSITION 5.2. The surface S0 is an open disc properly embedded in AdS3.
Moreover, every timelike geodesic of AdS3 intersects the surface S0 at exactly one
point.

Proof. We consider the projection ζ : AdS3→R
2, defined by ζ(x1, x2, x3, x4) =

(x3, x4). Observe that the fibres of the projection ζ are the orbits of a timelike kill-
ing vector field of AdS3. We endow R

2 with the Riemannian metric gζ defined as
follows. Given a point q ∈R

2 and a vector v∈TqR2, we choose a point q̂ ∈ζ−1(q),
and we consider the unique vector v̂∈Tq̂AdS3 such that dζq̂ · v̂=v and such that v̂
is orthogonal to the fibres ζ−1(q). We define gζ (v) to be to the norm of the vec-
tor v̂ for the Lorentzian metric of AdS3. This definition does not depend on the
choice of the point q̂, since the fibres of ζ are the orbits of a killing vector field. It
is easy to verify that R

2 endowed with the metric gζ is isometric to the hyperbolic
plane.

Claim 1. Given any point q ∈AdS3 and any spacelike vector v in TqAdS3, the
norm of the vector dζq(v) for the metric gζ is bigger than the norm of v in AdS3.

Indeed, write v= u+w where u is tangent to the fibre of the projection ζ (in
particular, u is timelike) and w is orthogonal to this fibre. On the one hand, by
definition of gζ , the norm of the vector dζq(v) for the metric gζ is equal to the
norm of w in AdS3. On the other hand, the norm of v in AdS3 is less than the
norm of w, since u is timelike. This completes the proof of claim 1.

Claim 2. For every locally isometric immersion f : ˜�0→AdS3, the map
ζ ◦f : ˜�0→R

2 is an homeomorphism. In particular, the surface f (˜�0) intersects each
fibre of ζ at exactly one point.

By the first claim, the map ζ ◦f is locally distance increasing (when the surface
˜�0 is endowed with its Reimannian metric, and R

2 is endowed with the metric gζ ).
Since the Reimannian metric of �0 is complete, this implies that ζ ◦f : ˜�0→R

2 has
the path lifting property, and thus is a covering map. Since H is simply connected,
this implies that ζ ◦f : ˜�0→R

2 is an homeomorphism. This completes the proof of
claim 2.

Applying claim 2 with f being the developing map d, we obtain that d :
˜�0→AdS3 is a proper embedding, and that ˜�0 is homeomorphic to R

2 (and thus
homeomorphic to an open disc). Hence, the surface S0 := d(˜�0) is an open disc
properly embedded in AdS3. Now, let γ be a timelike geodesic of AdS3. Observe
that the circle ζ−1(0,0) is a timelike geodesic AdS3. Since O(2, 2) acts transitively
on the set of timelike geodesic of AdS3, there exists σ ∈O(2,2) such that σ(γ )=
ζ−1(0,0); in particular, σ(γ ) is a fibre of the projection ζ . Applying claim 2 with
f =σ−1 ◦d, we obtain that the surface σ−1(S0)=σ−1 ◦d(˜�0) intersects each fibre
of ζ at exactly one point. Hence, the surface S0 intersects the geodesic γ at exactly
point.
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Remark 5.3. Proposition 5.2 is still valid if �0 is replaced by another Cauchy
surface of M.

Remark 5.4. The proof of Proposition 5.2 shows that ˜�0 is homeomorphic to a
disc. Hence, there does not exist any globally hyperbolic spacetime, locally mod-
elled on AdS3, with closed orientable Cauchy surfaces of genus 0.

Now, we will use the conformal equivalence between AdS3 ∪ ∂AdS3, and (S1 ×
D2,−dt2 +ds2). Let us start by some remarks:

Remark 5.5. (i) Let S be a spacelike (resp. non-timelike) surface in (S1 ×
D2,−dt2 + ds2). Then every point of S has a neighbourhood in S which is
the graph of a contracting� (resp. 1-Lipschitz) mapping f : (U,ds2)→(S1,dt2),
where U is an open subset of D

2.

(ii) Every properly embedded spacelike (resp. non-timelike) surface in (S1 ×
D2,−dt2 + ds2) is the graph of a contracting (resp. 1-Lipschitz) mapping f :
(D2,ds2)→(S1,dt2).

(iii) Of course, (i) and (ii) remain true if we replace S
1 by (−π/2, π/2).

Proof. Item (i) is an immediate consequence of the product structure of (S1 ×
D2,−dt2 + ds2). To prove (ii), we consider a properly embedded spacelike (resp.
non-timelike) surface S in (S1 ×D

2,−dt2 + ds2). Let p2 be the projection of S
1 ×

D
2 on D

2. Using item (i) and the fact that S is properly embedded, it is easy to
show that p2 : S→D

2 is a covering map. Hence, p2: S→D
2 is a homeomorphism,

and the surface S is the graph of a mapping f :D2 →S
1. By item (i), the mapping

f is contracting (resp. 1-Lipschitz).

Remark 5.6. In the same vein, we observe that timelike (resp. causal) curves are
represented in (S1 × D2,−dt2 + ds2) by graphs of contracting (resp. 1-Lipschitz)
mappings g :(J,dt2)→(D2,ds2), where J is a subinterval of S

1.

Putting Proposition 5.2 and Remark 5.5 together, we obtain the following:

PROPOSITION 5.7. Any conformal equivalence between AdS3 and (S1 ×D
2,−dt2 +

ds2) maps the surface S0 to the graph of a contracting mapping f : D
2→S

1.

Now, let us denote by S0 the closure of the surface S0 in AdS3 ∪ ∂AdS3.

COROLLARY 5.8. Any conformal equivalence between AdS3 ∪ ∂AdS3 and (S1 ×
D2,−dt2 +ds2) maps the closure S0 of the surface S0 to the graph of a 1-Lipschitz

�We call that, given two metric spaces (E,d) and (E′, d ′), a mapping f : (E, d)→ (E′, d ′) is said to
be contracting if d ′(f (x), f (y))<d(x, y) for every x �=y.



CONSTANT MEAN CURVATURE FOLIATIONS 91

mapping f : (D2, ds2)→(S1, dt2), which is contracting in restriction to the open disc
D

2. In particular, S0 is a closed topological disc.
Proof. The result follows from Proposition 5.7 and from the fact that any con-

tracting mapping from (D2,ds2) to (S1,dt2) can be extended as a 1-Lipschtiz map-
ping from (D2,ds2) to (S1,dt2).

Proposition 5.2 and Corollary 5.8 imply that the boundary ∂S0 of the surface
S0 in AdS3 ∪ ∂AdS3 is a topological simple closed curve contained in ∂AdS3. Of
course, the curve ∂S0 must be invariant by the holonomy group �=ρ(π1(M)).

Remark 5.9. According to the proof of Proposition 5.2, the surface S0 intersects
each fibre of the projection ζ : AdS3→R

2 defined by ζ((x1, x2, x3, x4))= (x3, x4).
This implies that the curve ∂S0 intersects each fibre of the projection ζ :∂AdS3→S

1

defined by ζ([x1 :x2 :x3 :x4])= [x3 :x4].
Furthermore, if we identify AdS3 ∪ ∂AdS3 with (S1 × D2,−dt2 + ds2), then the

curve ∂S0 is identified with the graph of a mapping from ∂D2 to S
1. This implies,

in particular, that the curve ∂S0 is not null-homotopic in ∂AdS3.

Thanks to Remark 5.5, we can define a notion of spacelike topological surface
in AdS3 ∪ ∂AdS3:

DEFINITION 5.10. Let S be topological surface (with or without boundary) in
AdS3 ∪∂AdS3. Using the conformal equivalence between AdS3 ∪∂AdS3 and (S1 ×
D2,−dt2 + ds2), we can see S as a surface in S

1 ×D2. We will say that the topo-
logical surface S is spacelike (resp. non-timelike) if every point of S has a neigh-
bourhood in S which is the graph of a contracting (resp. 1-Lipschitz) mapping f :
(U,ds2)→(S1,dt2), where U is an open subset of D2.

With this definition, S̄0 is a non-timelike topological surface in AdS3 ∪ ∂AdS3.

PROPOSITION 5.11. Every lightlike geodesic intersects the surface S0 at most
once. Moreover, if a lightlike geodesic has one of its endpoints on the curve ∂S0, then
this geodesic does not intersect S0.

Proof. Let p be a point on the surface S0, and γ a lightlike geodesic containing
p. Denote by d the distance function on the hemisphere D2, and let p0 be the cen-
ter of the hemisphere, i.e. the unique point for which d(p0, q)=π/2 for any point
q in ∂D2. Select a conformal equivalence AdS3 ∪∂AdS3 ≈ (S1 ×D2,−dt2 +ds2) for
which p is identified with (0, p0) and Apwith] −π/2, π/2[×D

2. Then, S0 is repre-
sented as the graph of a 1-Lipschitz mapping f for which f (p0)=0. On the other
hand, like every lightlike geodesic containing p,γ is contained in Ap and is repre-
sented by a curve (d(p0, r), r), where r describes a geodesic in D

2 containing p0.
Since the restriction of f to D

2 is contracting, it follows immediatly that γ does
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not contain another point of S0 than p. The first statement in the proposition fol-
lows.

Assume now that one of the two end points of γ is (f (q), q) ∈ ∂S0. Then,
d(q,p0)=π/2 =f (q), and since f is 1-Lipschitz, for any point r on the geodesic
of D

2 under consideration, we must have d(p0, r)=f (r). This is impossible, since
the restriction of f to D

2 is contracting.

PROPOSITION 5.12. For every p ∈ S0, the surface S0 is contained in the affine
domain Ap ∪ ∂Ap.

Proof. We keep the notation used in the proof of the previous lemma. It fol-
lows immediatly that the maximum value of f is at most π/2, and its minimum
value is at least −π/2. In other words, S0 is contained in the closure of Ap. More-
over, in the proof above we have actually shown that f does not attain the values
π/2,−π/2. The proposition follows.

PROPOSITION 5.13. For every p∈AdS3 such that S0 ⊂Ap ∪ ∂Ap, the surface S0

is an achronal subset of Ap ∪∂Ap (i.e. a timelike curve contained in Ap ∪∂Ap can-
not intersect S0 at two distinct points). Moreover, if two points in S0 are causally
related, then they belong to a lightlike geodesic of ∂AdS3 contained in ∂S0.

Proof. We keep the notations used in the proof of Proposition 5.11 (except that
(0, p0) is not assumed now to belong to S0, i.e., the mapping f admitting S0 as
graph does not necessarily vanish at p0). A future oriented causal curve in Ap

is represented by a curve (g(t), r(t)) where g satisfies: g(t)− g(s)� d(r(t), r(s)).
Assume the existence of t < t ′ such that g(t) = f (r(t)) and g(t ′) = f (r(t ′)).
Then:

|f (r(t ′))−f (r(t))|�d(r(t), r(t ′))�g(t ′)−g(t)=f (r(t ′))−f (r(t)).

Therefore, all these inequalities are equalities. According to Proposition 5.11, it fol-
lows that (g(t), r(t)) and (g(t ′), r(t ′)) belong both to Ap. Moreover, it follows that
for every s in [t, t ′], f (r(s))= g(r(s))=f (r(t))+ d(r(s), r(t)). The proposition fol-
lows.

Remark 5.14. Let p be a point such that the surface S0 is contained in Ap.
Proposition 5.2 implies that every point of Ap is either in the past� or in the future
of the surface S0. Moreover, it should be clear to the reader that, according to
Corollary 5.8 and Proposition 5.13, a point of Ap cannot be simultaneously in the
past and in the future of the surface, except if it is on the surface S0.

�Here, by “past”, we mean the “past in Ap”: a point q is in the past of the surface S0 if there
exists a future-directed causal curve contained in Ap going from S0 to q. Similarly for the future.



CONSTANT MEAN CURVATURE FOLIATIONS 93

5.2. cauchy development of the surface S0

In this subsection, we study the Cauchy development D(S0) of the surface S0 in
AdS3. The main goal of the subsection is to prove that M is isometric to a quo-
tient �\D(S0).

Let us first recall the definition of the Cauchy development of a spacelike surface.
Given a spacelike surface S in AdS3, the past Cauchy development D−(S) of S is the
set of all points p∈AdS3 such that every future-inextendable causal curve through
p intersects S. The future Cauchy development D+(S) of S is defined similarly. The
Cauchy development of S is the set D(S) :=D−(S)∪D+(S). It is well-known and
not difficult to prove that D(S) is a connected open domain. The following lemma
provides a more tractable definition of D(S):

LEMMA 5.15. Let S⊂AdS3 be a spacelike surface. The past Cauchy development
of S is the set of all points p such that every inextendable future-directed lightlike
geodesic ray through p intersects S.

Proof. Let p∈AdS3 be a point such that every past-directed lightlike geodesic
ray through p intersects the surface S. Then, every past-directed lightlike geode-
sic ray through p intersects (transversally) the surface S at exactly one point (see
Proposition 5.11). Hence, the set C of all the points of S that can be joined from p

by a past-directed lightlike geodesic ray is homeomorphic to a circle. Therefore, C
is the boundary of a closed disk D⊂S (recall that S is a properly embedded disc,
see Proposition 5.2). Let L be the union of all the segments of lightlike geodesics
joining p to a point of C. The union of D and L is a non-pathological sphere. By
Jordan–Schoenflies theorem, this topological sphere is the boundary of a ball B⊂
AdS3. A non-spacelike curve cannot escape B through L; as a consequence, every
past-inextendable non-spacelike curve through p must escape from B through D;
in particular, every past-inextendable non-spacelike curve through p must intersect
S. Hence, the point p is in D+(S).

Remark 5.16. Since the surface �0 is a Cauchy surface in M, the range d(˜M) of
the developing map d must be contained in the Cauchy development of the surface
S0 =d(˜�0).

We now define another domain, the black domain E(∂S0), which, as we will
prove later, coincides with the Cauchy development D(S).

Definition of the set E(∂S0). The set

E(∂S0)={r ∈S
3|BQ(r, q)< 0 for every q ∈ ∂S0}

is called the black domain of the curve ∂S0 (explanations on this terminology are
provided below).
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Remark 5.17. Here are a few observations about the definition of the set
E(∂S0) :

(i) We will prove below (Proposition 6.12) that the black domain E(∂S0) (which
is defined above as a subset of the sphere S

3) is actually contained in the anti-
de Sitter space AdS3. Moreover, we will prove that, for a suitable choice of the
point p0, the set E(∂S0) is contained in the affine domain Ap0 (Proposition
6.15).

(ii) Consider a point p0 ∈AdS3 such that E(∂S0) is contained in Ap0 . According
to Proposition 4.19, the set E(∂S0) is made of the points r ∈ Ap0 such that
there does not exist any causal curve joining r to the curve ∂S0 within Ap0 .
In other words, E(∂S0) is the set of “all the points of Ap0 that cannot be seen
from any point of the curve ∂S0”. This is the reason why we call E(∂S0) the
black domain of the curve ∂S0.

(iii) The black domain E(∂S0) is clearly a convex subset of S
3 (by construction, it

is an intersection of convex subsets of S
3). In particular, E(∂S0) is connected.

(iv) Here is a nice way to visualize E(∂S0). Consider a point p0 ∈AdS3 such that
E(∂S0) is contained in the affine domain Ap0 (see Proposition 6.15). Using the
diffeomorphism �p0 , we can identify Ap0 , ∂Ap0 , ∂S0,E(∂S0) with some sub-
sets of R

3 (in particular, ∂Ap0 is identified with the hyperboloid of equation
(x2 +y2 −z2 =1)). Given q∈∂S0, the set Tq={r ∈Ap |BQ(q, r)=0} is the affine
plane of R

3 which is tangent to the hyperboloid ∂Ap0 at q. If we define the
set Eq ={r ∈Ap|BQ(q, r)<0} as the connected component of R

3\Tq contain-
ing at least one point of ∂S0, ∂S0 is contained in the closure of Eq , and the
set E(∂S0) is the intersection over all q ∈ ∂S0, of the Eq ’s.

(v) Let r be a point on the boundary (in AdS3) of E(∂S0). The definition of
the set E(∂S0) and the compactness of the curve ∂S0 imply that we have
BQ(r, q)=0 for some point q on the curve ∂S0. Hence, by Remark 4.12, there
exists a lightlike geodesic γ passing through r, such that one of the two ends
of γ is a point of the curve ∂S0.

PROPOSITION 5.18. The surface S0 is contained in E(∂S0).
Proof. Let p be a point in S0. By Proposition 5.12, the surface S0 is contained

in the affine domain Ap ∪∂Ap. By Proposition 4.19, if for some q in ∂S0 we have
BQ(p, q)�0, there is a causal curve in Ap joining p to q. But such a curve cannot
exist according to Proposition 5.13. The proposition follows.

PROPOSITION 5.19. The black domain E(∂S0) contains the Cauchy development
D(S0).

Proof. Assume the contrary. Since D(S0) and E(∂S0) have a non-empty inter-
section (the surface S0 is contained in both D(S0) and E(∂S0)), and since D(S0) is
connected, D(S0) must contain some point r of the boundary of E(∂S0). By item
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(v) of Remark 5.17, there exists a lightlike geodesic γ passing through r, such that
one of the ends of γ is a point q on the curve ∂S0. Since r is in D(S0), the light-
like geodesic γ must intersect the surface S0. But, this is impossible according to
Proposition 5.11.

COROLLARY 5.20. The black domain E(∂S0) and the Cauchy development D(S0)

do not contain any timelike geodesic.
Proof. Let γ be a timelike geodesic. Recall that γ is a closed geodesic. Consider

all future oriented lightlike geodesic rays starting from a point of γ : the union of
their future extremities covers the whole ∂AdS3, in particular, it contains ∂S0. It
follows that γ cannot be contained in the black domain E(∂S0). Therefore, the
corollary follows from Proposition 5.19.

PROPOSITION 5.21. The developing map d: ˜M→AdS3 is one-to-one.
Proof. Consider the lifting τ : ˜M → R of any time function on M. Select any

timelike geodesic �0 of AdS3. According to the Corollary 5.20, the intersection
between �0 and E(∂S0) is a subarc I ≈R (it is connected since E(∂S0) is convex).
Every level set of τ is the lift of a Cauchy surface of M. So, by Proposition 5.2 and
Remark 5.3, for every t in R, the image of τ−1(t) under d is a spacelike surface
that intersects �0 at one and only one point d(t). Clearly, d is a strictly increas-
ing function, hence, it is injective. Therefore, for any p and q in ˜M, if d(p)=d(q),
then τ(p)= τ(q):p and q belongs to the same spacelike level set of τ . According
to (the proof of) Proposition 5.2, the restriction of d to every level of τ is injective.
Hence, p=q.

PROPOSITION 5.22. The holonomy group �=ρ(π1(M)) acts freely, and properly
discontinuously on the Cauchy development D(S0) of the surface S0.

Proof. First note that the group � acts freely and properly discontinuously on
the surface S0 =d(˜�0) (since d: ˜�0 →AdS3 is a proper embedding).

Suppose that the group � does not act freely on the future Cauchy development
D+(S0). Then, there exists an element γ of � which fixes a point p of D+(S0).
Then, as in the proof of Lemma 5.15, we consider the set C of all the points of
S0 that can be joined from p by a past-directed lightlike geodesic ray. The set C is
homeomorphic to a circle, and thus, it is the boundary of a closed disc D⊂S0. The
disc D must be invariant under γ (since the surface S0 is �-invariant, and since
γ fixes the point p). Hence, by Brouwer’s theorem, γ fixes a point in D. In par-
ticular, γ fixes a point in S0. This contradicts the fact that � acts freely on S0.
Hence, � must act freely on D+(S0). The same arguments show that � acts freely
on D−(S0).

Now, let K be a compact subset contained in D+(S0). All the points of inter-
section of the past-directed lightlike geodesic rays emanating from the points of K
with the surface S0 belong to some compact subset K ′ of the surface S0. Since �
maps lightlike geodesic rays to lightlike geodesic rays, the set {γ ∈� | γK ∩K �=∅}
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is contained in the set {γ ∈� |γK ′ ∩K ′ �=∅}. Hence, the proper discontinuity of the
action of � on D+(S0) follows from the proper discontinuity of the action on S0.
The same arguments show that � acts properly discontinuously on D−(S0).

PROPOSITION 5.23. The spacetime M is isometric to the quotient �\D(S0) (the
isometry being induced by the developing map d).

Proof. By Proposition 5.22, the quotient �\D(S0) is a manifold (which is auto-
matically a globally hyperbolic, since it is the quotient of the Cauchy development
D(S0)). By Remark 5.16 and Proposition 5.21, the developing map d induces an
isometric embedding of M in �\D(S0). Since M is assumed to be maximal as a
globally hyperbolic manifold, this embedding must be onto.

According to Proposition 5.23, constructing a surface in M with some specified
geometrical properties amounts to constructing a �-invariant surface in D(S0). In
particular, we will use the following remark several times:

Remark 5.24. If S is a �-invariant spacelike surface contained in the Cauchy
development D(S0), then �\S is a Cauchy surface in M =�\D(S0). Indeed, �\S
is a spacelike compact surface in M=�\D(S0), and every compact spacelike sur-
face in M is a Cauchy surface.

6. Proof of Theorem 1.1 in the Case g �2

We have to prove that M admits a CMC time function. In this section, we give
the proof in the case g� 2; the proof in the other case g= 1 (see Remark 5.4) is
completely different and will be achieved in Section 7.

In Section 6.1, we will explain why in the case g�2, this problem reduces to the
proof of the existence of a pair of barriers in M.

In Section 6.2, we prove that when � has higher genus, then the compactified
surface S0 is strictly achronal. In Section 6.3, we study the intersection C0 of AdS3

with the convex hull of the curve ∂S0. In particular, we prove that C0 is contained
in the Cauchy development D(S0), so that we may consider the projection �\C0

of C0 in �\D(S0)�M. We also complete the study in the previous section above
by proving, for example, that the Cauchy development and the black domain coin-
cide.�

In Section 6.4, we define the notion of convexity and concavity for space-
like surfaces in AdS3, and we prove that the boundary of C(S0) in AdS3 is the
union of two disjoint spacelike topological surfaces S−

0 and S+
0 , respectively con-

vex and concave. The projections �−
0 =�\S−

0 and �+
0 =�\S+

0 of these surfaces in
�\D(S0)�M is “almost a pair of barriers”. There are still two small problems:

�This last statement remains true in the case g= 1, but the proof is quite different than those of
the case g�2.
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in general, the surfaces �−
0 and �+

0 have totally geodesic regions (whereas, for
barriers, we need surfaces with positive and negative mean curvature), and in gen-
eral, these are only topological surfaces (whereas, for barriers, we need surfaces of
class C2). The purpose of Sections 6.5 and 6.6 is to approximate the surfaces �−

0
and �+

0 by a true pair of barriers.

6.1. reduction of theorem 1.1 to the existence of a pair of barriers

V. Moncrief has proved that the solutions of the vacuum Einstein equation in
dimension 2 + 1 with a compact Cauchy surface can be described as the orbits
of a non-autonomous hamiltonian flow on a finite-dimensional space (namely the
cotangent bundle of the Teichmüller space of the Cauchy surface). Using this
hamiltonian flow, L. Andersson, Moncrief and A. Tromba have obtained the fol-
lowing theorem ([4, Corollary 7]):

THEOREM 6.1 (Andersson, Moncrief, Tromba). Let N be a three-dimensional
maximal globally hyperbolic spacetime, with constant curvature, and with closed
Cauchy surfaces of genus g�2. If N admits a CMC Cauchy surface, then it admits
a CMC time function.

Thanks to Theorem 6.1, the proof of Theorem 1.1 is reduced to the proof of the
existence of a CMC Cauchy surface. The existence of CMC surfaces, in particular
the existence of surfaces with zero mean curvature, has been studied in many con-
texts. The problem usually splits into two disjoint steps: a geometrical step which
consists in constructing some surfaces with (non-constant) negative and positive
mean curvature, called barriers, and an analytical step which consists in solving
the appropriate PDE to prove the existence of a surface with zero mean curva-
ture assuming the existence of barriers. In our context, the needed statement for
the second step is due to Gerhardt (see [13, Theorem 6.1]�):

DEFINITION 6.2 A pair of barriers in a three-dimensional globally hyperbolic
Lorentzian manifold N is a pair or disjoint Cauchy surfaces �− and �+ in N ,
such that �+ is in the future of �−, the supremum of the mean curvature of �−

is negative, and the infimum of the mean curvature of �+ is positive.

THEOREM 6.3 (Gerhardt). Let N be a three-dimensional globally hyperbolic Lo-
rentzian manifold, with compact Cauchy surfaces. Assume that there exists a pair of
barriers in N . Then, N admits a Cauchy surface with zero mean curvature in N (i.e.,
a maximal Cauchy surface).

�The result proved by Gerhardt is actually more general than the statement that we give below.
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Using the results of Andersson–Moncrief–Tromba and Gerhardt stated above,
the proof of our main theorem reduces to the proof of the existance of a pair of
barriers in M.

6.2. strict achronality

PROPOSITION 6.4. The topological surface S0 is spacelike.

Remark 6.5. This Proposition is false without the assumption that the Cauchy
surface �0 has genus g�2, see Remark 7.7.

Proof. We already know that S0 is non-timelike, and that S0 is spacelike. Hence,
S0 is spacelike if and only if the curve ∂S0 does not contain any non-trivial light-
like arc. Therefore, S0 is spacelike if and only if ∂S0 does not contain any non-triv-
ial arc of some leaf of the left or the right ruling of ∂AdS3.

Let us denote by RP
1
L (resp. RP

1
R) the space of the leaves of the left (resp. right)

ruling of ∂AdS3. We recall that the action of the holonomy ρ on RP
1
L reduces

to the action of ρR (since, ρL preserves individually each circle of the left ruling).
Similarly, the action of ρ on RP

1
R reduces to the action of ρL.

LEMMA 6.6. The actions of the representations ρL and ρR respectively on RP
1
R and

RP
1
L are minimal.

Proof. Let p be a point of the surface S0, and n the future-pointing unitary
normal vector of S0 at p. If v is a unitary vector tangent to S0 at p, then n+v is
a future pointing lightlike vector. The lightlike geodesic directed by n+v is tangent
to ∂AdS3 at two antipodal points (Remark 4.11). These two antipodal points lie on
the same leaf of the right ruling; denote by R[λ:μ] this leaf (with [λ:μ]∈RP

1
L). The

map (p, v)→ (p,R[λ:μ]) identifies the unitary tangent bundle of the surface �0 with
the flat RP

1 bundle over �0 given by π1(�0)\(S0 ×RP
1) where γ ∈π1(M)=π1(�0)

acts by γ · (p, [λ:μ])= (ρ(γ )(p), ρL(γ )([λ:μ])). Hence, the Euler class of the repre-
sentation ρL is the Euler class of the unitary tangent bundle of �0. By a theorem
of Goldman (see [15]),� this implies ρL(π1(M)) is a cocompact Fuchsian subgroup
of SL(2,R)× Id�SL(2,R). In particular, the action of ρL on RP

1
R is minimal.

End of the proof of Proposition 6.4. Denote by U the open subset of ∂S0, defined
as the union of the interiors of all the non-trivial arcs of leaves of left ruling con-
tained in ∂S0. Note that the holonomy ρ preserves the open set U . Now, let UR⊂
RP

1
R be the set of all leaves of the right ruling that intersect U . Then UR is an

open subset of RP
1
R which is preserved by ρL. Hence, UR is either empty or equal

to RP
1
R. But the equality UR=RP

1
R would imply that ∂S0 is a leaf of the left rul-

ing, which is impossible by Proposition 5.12. Hence, UR is empty, i.e. the curve

�Here, we use the fact that the genus of �0 is at least 2.
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∂S0 does not contain any non-trivial arc of leaf of the left ruling. Similarly, for
the right ruling. This completes the proof.

Remark 6.7. On the one hand, Proposition 5.2 implies that the action of � on
the surface S0 is free and properly-discontinuous. On the other hand, Lemma 6.6
implies that the action of � on ∂S0 is minimal. As a consequence, the curve ∂S0

is the limit set of the action of � on the surface S0.

We thus obtain a more powerful version of Proposition 5.13:

COROLLARY 6.8. For every p∈AdS3 such that S0 ⊂Ap∪∂Ap, the surface S0 is a
strictly achronal subset of Ap ∪∂Ap (i.e. a causal curve contained in Ap ∪∂Ap can
not intersect S0 at two distinct points).

Remark 6.9. The involution −id of S
3 induces an involution in AdS3, that we

still denote by −id. Let −∂S0 be the image by this involution of ∂S0. Observe
that any closed ρ(�)-invariant subset must contain ∂S0 or −∂S0. Moreover, these
curves only depend on the holonomy ρ. For any “Fuchsian” representation ρ:�→
SL(2,R)× SL(2,R), i.e., any pair (ρL, ρR) of injective representations of � into
SL(2,R) with discrete and cocompact image, there are quo ρ(�)-invariant curves
�,−�, opposite one to the other, which are contained in any closed ρ(�)-invari-
ant curve in ∂AdS3. The double covering S

3 →RP
3 maps ∂AdS3 on some hyper-

boloid, canonically isomorphic to RP
1 ×RP

1. It maps every curve � and −� into
the graph of a homeomorphism f : RP

1 →RP
1, which is a conjugacy between the

fuchsian representations of � into PSL(2,R) induced by ρL,ρR.
In this formulation, ρ is not yet a priori the holonomy representation of a glob-

ally hyperbolic spacetime, but see Remark 6.22.

6.3. the convex hull of the curve ∂S0

In this Section, we will consider the convex hull Conv(∂S0) of the curve ∂S0.
The main goal is to prove that the set Conv(∂S0)\∂S0 is contained in the Cauchy
development of the surface S0. We will also prove that the black domain and the
Cauchy development coincide.

Definition of the set C0. Denote by Conv(∂S0) the convex hull in S
3 of the curve

∂S0 (see Section 4.4), and consider the set

C0 =Conv(∂S0)∩AdS3

PROPOSITION 6.10. The set Conv(∂S0)\∂S0 is contained in E(∂S0).
Proof. Let q be a point Conv(∂S0)\∂S0, and let q̂ be any point in π−1({q})

(recall that π is the radial projection of R
4\{0} on S

3). Let r be a point in ∂S0,
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and let r̂ be any point in π−1({r}). We have to prove that BQ(q, r) is negative,
i.e that BQ(̂q, r̂) is negative. Since q̂ is in π−1(Conv(∂S0)), one can find points
q̂1, . . . , q̂n∈π−1(∂S0), and positive numbers α1, . . . , αn, such that α1 +· · ·+αn=1,
and such that q̂ = α1q̂1 + · · · + αnq̂n. We denote by q1, . . . , qn the projections of
the points q̂1, . . . , q̂n. For each i ∈ {1, . . . , n}, there are two possibilities: — either
qi=r, and then we have BQ(̂qi, r̂)=BQ(̂r, r̂)=0 (since r̂ is on the quadric (Q=0)),
— or qi �= r, and then Corollary 6.8 and Proposition 4.19 imply that BQ(̂qi, r̂)
is negative. Moreover, at least one qi ’s is different from r (otherwise, we would
have q1 =· · ·=qn=q, which is absurd since q is not on ∂S0). Hence, the quantity
BQ(̂q, r̂)=α1BQ(̂q1, r̂)+· · ·+αnBQ(̂qn, r̂) is negative. The proposition follows.

LEMMA 6.11. For every point q ∈ ∂AdS3, there exists a point r ∈ ∂S0, such that
BQ(q, r) is non-negative. Moreover, if the point q is not on the curve ∂S0, then the
point r can be choosen such that BQ(q, r) is positive.

Proof. Let q be a point in ∂AdS
3. Denote by [x1 :x2 :x3 :x4] the coordinates of

q in S3. Remark 5.9 imply that there exists x′
1, x

′
2 such that the point r of coor-

dinates [x′
1 : x′

2, x3, x4] is on the curve ∂S0. The sign of BQ(q, r) is the sign of the
expression −x1x

′
1 −x2x

′
2 +x2

3 +x2
4 (we recall that only the sign of BQ(q, r) is well-

defined, see Remark 4.8). Since the points q and r are both on ∂AdS3 we have
Q([x1 :x2 :x3 :x4])=Q([x′

1 :x′
2 :x3 :x4])=0. Hence, we have −x1x

′
1 −x2x

′
2 +x2

3 +x2
4 =

1
2 ((x1 − x′

1)
2 + (x2 − x′

2)
2). As a consequence, BQ(q, r) is non-negative. Moreover,

if q is not on the curve ∂S0 , then (x1, x2) is different from (x′
1, x

′
2), and thus,

BQ(q, r) is positive.

COROLLARY 6.12. The black domain E(∂S0) is contained in AdS3.
Proof. Lemma 6.11 says that the intersection of ∂AdS3 with E(∂S0) is empty.

Since E(∂S0) is connected, this implies that E(∂S0) is either contained in AdS3, or
disjoint from AdS3. But, the intersection of E(∂S0) with AdS3 is non-empty (by
Proposition 6.10, for example). Hence, E(∂S0) is contained in AdS3.

COROLLARY 6.13. The set Conv(∂S0) \ ∂S0 is contained in AdS3, i.e., C0 =
Conv(∂S0)\ ∂S0.

Proof. The corollary follows immediately from Proposition 6.10 and Corollary
6.12.

We will denote by E(∂S0) the closure if the black domain E(∂S0) in AdS3 ∪
∂AdS3.

COROLLARY 6.14. The intersection of E(∂S0) with ∂AdS3 is the curve ∂S0.
Proof. Proposition 6.10 implies that every point of the curve ∂S0 is in E(∂S0).

Conversely, let q be a point in ∂AdS3 \∂S0. According to Lemma 6.11, there exists
a point r ∈∂S0 such that BQ(q, r)>0. By continuity of the bilinear form BQ, there
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exists a neighbourhood U of q in S3, such that BQ(q ′, r) > 0 for every q ′ ∈ U .
In particular, there exists a neighbourhood U of q which is disjoint from E(∂S0).
Hence, q is not in E(∂S0).

PROPOSITION 6.15. There exists a point p0 ∈AdS3 such that E(∂S0) is contained
in the affine domain Ap0 .

We say that the curve r ∈ ∂S0 is flat if it is the boundary of a totally geodesic
subspace of AdS3, or equivalently, if it is contained in a great 2-sphere in S

3.

ADDENDUM 6.16. If the curve ∂S0 is not flat, then one can choose the point p0

such that E(∂S0) is contained in Ap0 ∪ ∂Ap0 .

LEMMA 6.17. For every point p ∈ C(∂S0) = Conv(∂S0) \ ∂S0, the black domain
E(∂S0) is disjoint from the totally geodesic surface p∗ (and thus, is disjoint from the
closed surface p∗).

Proof. Let p be a point in C(∂S0), and p̂ be a point in R
4 \{0} such that

π(p̂)=p. Since p is in Conv(∂S0), one can find some points p̂1, . . . , p̂n∈π−1(∂S0)

and some positive numbers α1, . . . , αn such that p̂= α1p̂1 + · · · + αnp̂n. Let q be
a point in E(∂S0) and q̂ be a point in R

4 \{0} such that π(̂q)= q. Since q is
in E(∂S0), the quantity BQ(p̂i, q̂) is negative for every i. Hence, the quantity
BQ(p̂, q̂)= α1BQ(p̂1, q̂)+ · · · + αnBQ(p̂n, q̂) is negative. In particular, the point q
is not on the surface p∗ = {r ∈AdS3|BQ(p̂, r̂)= 0}. This proves that set E(∂S0) is
disjoint from the totally geodesic surface p∗. Since E(∂S0) is contained in AdS3,
it is also disjoint from the closed surface p∗.

Proof of Proposition 6.15. Let p0 be a point in C0. By Lemma 6.17, E(∂S0) is
disjoint from the totally geodesic surface p∗

0. Since E(∂S0) is connected, this implies
that E(∂S0) is contained in one of the two connected components of AdS3 \p∗

0.
By Proposition 6.10, the point p0 is in E(∂S0). Hence, E(∂S0) is contained in the
connected component of AdS3 \p∗

0 containing p0, that is, in Ap0 .

Proof of addendum 6.16. If ∂S0 is not flat, then the set C0 has non-empty inte-
rior. Let p0 be a point in the interior of C(∂S0). On the one hand, the set E(∂S0)

is disjoint from the closed surface p∗ for every p ∈C0. On the other hand, the
union of all the surfaces p∗ when p ranges over C0 is a neighbourhood (in AdS3 ∪
∂AdS3) of the surface p∗

0. Hence, E(∂S0) is disjoint from a neighbourhood of the
surface p∗

0. Hence, E(∂S0) is disjoint from the surface p∗
0. Moreover, by Prop-

osition 6.10, the point p0 is in E(∂S0). Therefore, E(∂S0) is contained in the
connected component of (AdS3 ∪ ∂AdS3) \ p∗

0 containing p0, i.e. is contained in
Ap0 ∪ ∂Ap0 .

From now on, we fix a point p0 ∈AdS3, such that E(∂S0) is contained in Ap0 ∪
∂Ap0 .
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PROPOSITION 6.18. The black domain E(∂S0) coincides with the Cauchy develop-
ment D(S0).

Proof. Proposition 5.19 provides an inclusion. To prove the other inclusion, we
work in the affine domain Ap0 . Let p be a point in E(∂S0). By Remark 5.14, every
point of Ap0 is either in the past, or in the future of the surface S0. We assume,
for example, that p is in the future of S0. We will prove that p is in D+(S0). For
that purpose, we consider a past-directed lightlike geodesic ray γ emanating from
p, and we denote by q the past end of γ .

Claim. The geodesic ray γ intersects the boundary of E(∂S0) at some point r in
the past of S0.

To prove this claim, we argue by contradiction. First, we suppose that the geo-
desic ray γ is contained in E(∂S0). Then, by Proposition 6.12 and Corollary
6.14, the past end of γ must be a point q of the curve ∂S0. But then, we have
BQ(p, q)= 0, and this contradicts the fact that p is in E(∂S0). Now, we suppose
that the geodesic ray γ intersects the boundary E(∂S0) at some point r in the
future of the surface S0. By item (v) of Remark 5.17, there exists a lightlike geode-
sic ray γ ′ emanating from γ , such that the end of γ ′ is a point q of the curve ∂S0.
The geodesic ray γ ′ must be past-directed from r to q, since r is in the future of
the surface S0. So, we have a past-directed lightlike geodesic segment going from
p to r, and a past-directed geodesic ray going from r to q; concatenating these
two curves, we obtain a piecewise C1 causal curve going from p to q ∈ ∂S0. This
contradicts the fact that p is in E(∂S0) (see item (ii) of Remark 5.17) and com-
pletes the proof of the claim.

Since the point p is in the future of the surface S0, and since the point r given
by the claim is in the past of the surface S0, the geodesic ray γ must intersect
the surface S0. So, we have proved that every past-directed geodesic ray emanating
from p intersects the surface S0. Hence, the point p is in D+(S0) (Lemma 5.15).
This proves that E(∂S0) is contained in D(S0).

Remark 6.19. Proposition 6.18 implies particular that the Cauchy development
D(S0) depends only on the curve ∂S0, i.e. if S is another complete spacelike sur-
face AdS3 such that ∂S= ∂S0, then D(S)=D(S0).

Remark 6.20. Let � be any Cauchy surface in M, and let S :=d(˜�). On the one
hand, we have D(S)=D(S0)= d(˜M). On the other hand, Propositions 6.14 and
6.18 imply that the curve ∂S0 is the intersection of the closure in AdS3 ∪ ∂AdS3

of D(S0) with ∂AdS3. Similarly, the curve ∂S is the intersection of the closure in
AdS3 ∪ ∂AdS3 of D(S) with ∂AdS3. As a consequence, we have ∂S= ∂S0.

Remark 6.21. For every point p∈D(S0)=d(˜M), one can find a Cauchy surface
� in M such that p ∈ d(˜�). By Remarks 6.7 and 6.20, the limit set of the action
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of � on the surface S is the curve ∂S=∂S0. As a consequence, the limit set of the
action of � on D(S0) is also the curve ∂S0 (Figure 1).

Remark 6.22. Let ρ :�→SL(2,R)×SL(2,R) be any fuchsian representation. We
have seen in Remark 6.9 that ρ(�) preserves two closed curves �,−�. We can per-
form to each of them the constructions associated above to ∂S0. In particular, we
can define the black domain E(�). It can be easily proved that the action of ρ(�)
on E(�) is free and properly discontinuous. We claim moreover that the quotient
space is a maximal globally hyperbolic spacetime. A complete proof of this state-
ment wou1d require some technical developments: indeed, we need to establish the
exitence of a smooth spacelike surface in this quotient space. This can be done for
example using Geroch’s Theorem (see [9, 14]); this also follows from the smoothing
process described in Section 6.6.

Anyway, we do not want to pursue further a discussion which is irrelevant for
the proof of the Main Theorem 1.1. We just claim that we have sketched above
the construction of every maximal globally hyperbolic AdS3-spacetime with com-
pact Cauchy surfaces. This gives a flavour of the way to prove the one-to-one cor-
respondance between this class of spacetimes (up to isometry) and the set of all
pairs of points in the Teichmüller space.

Interlude: Proof of Theorem 1.1 in the case where ∂S0 is flat

Our strategy for proving the existence of a pair of barriers in M does not work in
the particular case where ∂S0 is flat, mostly because the addendum of Proposition
6.15 is false when ∂S0 is flat. This is not a big problem, since there is a direct and
very short proof of Theorem 1.1 in this particular case:

Figure 1. The affine domain Ap0 , the curve ∂S0 and the Cauchy development D(S0).
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Proof of Theorem 1.1 in the case where ∂S0 is flat. Assume that ∂S0 is flat. Then
it is the boundary of a totally geodesic subspace P0 of AdS3. This totally geodesic
subspace is necessarily spacelike, since the curve ∂S0 is spacelike. By construction, P0

is contained in C0; hence, it is contained in the Cauchy development D(S0) (Prop-
ositions 6.18 and 6.10). Moreover, the holonomy group �=ρ(π1(M)) preserves P0

(since it preserves the curve ∂S0). As a consequence, � \P0 is a totally geodesic com-
pact spacelike surface in � \D(S0)�M. In particular, � \P0 is a Cauchy surface with
zero mean curvature in M. Applying Theorem 6.1, we obtain Theorem 1.1.

ASSUMPTION. From now on, we assume that the curve ∂S0 is not flat.

6.4. a pair of convex/concave topological cauchy surfaces

In this subsection, we will first define some notions of convexity and concavity for
spacelike surfaces in M. The main interesting feature of this notion for our pur-
pose is the fact that the mean curvature of a smooth convex (resp. concave) space-
like surface is always non-positive (resp. non-negative). Then, we will exhibit a pair
of disjoint topological Cauchy surfaces (�−

0 ,�
+
0 ) in M, such that �−

0 is convex,
�+

0 is concave, and �+
0 is in the future of �−

0 .

6.4.1. Convex and Concave Surfaces in AdS3

Let S be a topological surface in Ap0 , and q be a point of S. A support plane of
S at q is a (two-dimensional) totally geodesic subspace� P of Ap0 , such that q ∈P ,
and such that S is contained in the closure of one of the connected components
of Ap0\P .

Remark 6.23. Let S be a topological surface in Ap0 . If S is spacelike (in the
sense of Definition 5.10), then every support plane of S is spacelike. Conversely,
if S admits a spacelike support plane at every point, then S is spacelike.

Remark 6.24. Let S be a topological surface in Ap0 and P be a spacelike sup-
port plane of S. Then, S is contained in the causal past�� of P , or S is contained
in the future of P (see Remark 4.20)

Let S be a topological spacelike surface in Ap0 . We say that S is convex, if it
admits a support plane at each of its points, and if it is contained in the future
of all its support planes. We say that S is concave, if it admits a support plane a
each of its points, and if it is contained in the past of all its support planes.

�By a totally geodesic subspace of Ap0 , we mean the intersection of a totally geodesic subspace of
AdS3 with Ap0 . Note that, with this definition, the degenerated totally geodesic subspaces of Ap0 are
not connected (although their closure in Ap0 ∪ ∂Ap0 is connected), but this does not play any role in
the subsequent.

��By causal past, we mean causal past in Ap0 .
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Now, let � be a topological spacelike surface in M,˜� be a lift of � in ˜M, and
S= d(˜�). Note that S is a topological spacelike surface contained in d(˜M)⊂Ap0

(see Section 5.2). We say that � is convex (resp. concave) if S is convex (resp. con-
cave).

PROPOSITION 6.25. Let � be a C2 spacelike surface in M. If � is convex, then
� has non-positive mean curvature. If � is concave, then � has non-negative mean
curvature.

Proof. Let ˜� be a lift of � in ˜M, and let S=d(˜M). Assume that � is convex.
Then S is convex. Hence, for every q ∈S, the surface S admits a spacelike support
plane Pq at q, and is contained in the future of Pq . By Lemma 2.3, the mean cur-
vature of the surface S at q is smaller or equal than the mean curvature of the
support plane Pq . But, since Pq is totally geodesic, it has zero mean curvature.
Hence, the surface S has non-positive mean curvature. Hence, the surface � also
has non-positive mean curvature (since the developing map d is locally isometric).

The notions of convexity and concavity defined above can only help us in
finding spacelike surfaces with non-positive (resp. non-positive) mean curvature.
Yet, to apply Gerhardt’s Theorem 6.3, we need to find spacelike surfaces with pos-
itive (resp. negative) mean curvature. This is the reason why we will define below
a notion of uniformly curved surface in M.

Let S be a topological surface in R
3, and q be a point on S. We fix a Euclei-

dean metric on R
3. We say that the surface S is more curved than a sphere of radius

R at q, if there exists a closed Euclidean ball B of radius R, such that q is on the
boundary of B, and such that B contains a neighbourhood of q in S.

Remark 6.26. Assume that the surface S is C2. Then, S is more curved than a
sphere of radius R at q if and only if the osculating quadric of S at q is an ellip-
soid of diameter smaller than 2R.

Consider a topological surface � in M, and a lift ˜� of �. Let S = d(˜�). We
see � as a surface in R

3. Let �⊂ ˜� be a fundamental domain of the covering
˜�→�, and let D= d(�). We say that the surface � is uniformly curved, if there
exists R∈ (0,+∞) such that the surface S is more curved than a sphere of radius
R at each point of D. It is easy to verify that this definition depends neither on the
choice of the fundamental domain �, nor on the choice of the Euclidean metric
on R

3 (although one has to change the constant R, when changing the fundamen-
tal domain � or the Euclidean metric on R

3).

PROPOSITION 6.27. Let � be a C2 spacelike surface in M. If � is convex and
uniformly curved, then � has negative mean curvature. If � is concave and uniformly
curved, then � has positive mean curvature.
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Proof. Let ˜� be a lift of � in ˜M, and let S :=d(˜M). Assume that � is convex
and uniformly curved. Then, S is convex. So, for every q ∈S, the surface S admits
a support plane Pq at q, and is contained in the future of Pq . Moreover, since � is
uniformly curved, the surface S and the plane Pq do not have the same osculating
quadric (see Remark 6.26). By Lemma 2.3, this implies that the mean curvature
of S at q is strictly smaller than the mean curvature of the plane Pq . Since Pq is
totally geodesic, Pq has zero mean curvature. Hence, S has negative mean curva-
ture. Therefore, � also has negative mean curvature.

6.4.2. Boundary of �-invariant Convex Sets Contained in D(S0)

PROPOSITION 6.28. Let S be a topological surface in Ap0 . Assume that S is con-
tained in D(S0), and that the boundary of S in Ap0 ∪∂Ap0 is equal to the curve ∂S0.
Then every support plane of S is spacelike.�

Proof. Using the diffeomorphism �p0 , we identify Ap0 with the region of R
3

defined by the inequality (x2 +y2 − z2<1), and ∂Ap0 with the one-sheeted hyper-
boloid (x2 + y2 − z2 = 1). Let q be a point on the surface S and P be a support
plane of S at q. The totally geodesic subspace P is the intersection of Ap0 with
an affine plane ̂P of R

3.
On the one hand, since P is a support plane of S, the closure of S must be con-

tained in the closure of one of the two connected components of R
3\̂P . In partic-

ular, the curve ∂S0 must be contained in the closure of one of the two connected
components of R

3\̂P . On the other hand, ∂S0 is a simple closed curve on the
hyperboloid ∂Ap0 , which is not null-homotopic in ∂Ap0 (see Remark 5.9). Con-
sequently:

Fact 1. The support plane P = ̂P ∩ Ap0 does not contain any affine line of R
3.

Indeed, if ̂P ∩Ap0 contains an affine line of R
3, then it is easy to see ̂P ∩∂Ap0 is a

hyperbola, and that the two connected components of ∂Ap0\̂P are contractible in
∂Ap0 (we recall that Ap0 is the region (x2 +y2 − z2<1) in R

3). Hence, every curve
contained in the closure of a connected component of ∂Ap0\̂P is null-homotopic
in ∂Ap0 .

Fact 2. If the plane ̂P is tangent to the hyperboloid ∂Ap at some point r, then r
belongs to the curve ∂S0. Indeed, if ̂P is tangent to the hyperboloid ∂Ap0 at some
point r, then every curve contained in the closure of one of the two connected
components of ∂Ap0\̂P which is not null-homotopic in ∂Ap0 contains r.

Now, we argue by contradiction: we assume that the totally geodesic plane P is
not spacelike. Then, P is either timelike (the Lorentzian metric restricted to P has
signature (+,−)), or degenerated (the Lorentzian metric restricted to P is degen-
erated). We will show that the two possibilities lead to a contradiction.

�Note that, in general, the surface S does not admit any support plane.
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– If P is timelike, then P contains timelike geodesics. By Remark 4.15, a time-
like geodesic of Ap0 is an affine line of R

3 which is contained in Ap0 . Hence,
P = ̂P ∩Ap0 contains an affine line of R

3. This is absurd according to Fact 1
above.

– If P is degenerated then P contains lightlike and spacelike geodesic, but does
not contain any timelike geodesic. By Remark 4.15, this implies that ̂P is tan-
gent to the hyperboloid ∂Ap0 at some point r. According to Fact 2, the point
r must belong to the curve ∂S0. But then, Remark 5.17 item (iv) implies that
P is disjoint from E(∂S0). In particular, the point q is not in E(∂S0). This is
absurd since, by hypothesis, the surface S is contained in E(∂S0)=D(S0).

PROPOSITION 6.29. Let C be a non-empty �-invariant closed � convex subset of
AdS3, contained in D(S0). Then:

(i) The boundary of C in AdS3 is made of two disjoint �-invariant topological sur-
faces S− and S+, such that S− is convex, S+ is concave, C is in the future of S−

and in the past of S+.

(ii) �− :=�\S− and �+ :=�\S+ are two disjoint Cauchy surfaces in �\D(S0)�M.
Moreover, �− is convex, �+ is concave, and �+ is in the future of �−. Of course,
the boundary of the set �\C in M is the union of the surfaces �− and �+.

Proof. Since C is contained in D(S0), it is also contained in the affine domain
Ap0 . We denote by ∂C the boundary of C in Ap0 , by C the closure of C in Ap0 ∪
∂Ap0 , and by ∂C the boundary of C in Ap0 ∪∂Ap0 . Of course, we have ∂C=∂C∩
Ap0 = ∂C\∂Ap0 .

The set C is a compact convex subset of Ap0 ∪ ∂Ap0 . So, the diffeomorphism
�p0 maps C to a compact convex subset of R

3. Hence, ∂C is a �-invariant topo-
logical sphere. We have to understand the intersection of ∂C with ∂Ap0 . On the
one hand, by hypothesis, C is contained in D(S0); hence, C is contained in D(S0).
The intersection of D(S0) with ∂Ap0 is equal to the curve ∂S0 (see Propositions
6.14 and 6.18). Hence, the intersection of ∂C with ∂Ap0 is contained in the curve
∂S0. On the other hand, C is a non-empty �-invariant subset of D(S0). Hence, the
closure of C must contain the curve ∂S0 (since this curve is the limit set of the
action of � on D(S0)). As a consequence, we have ∂C∩ ∂AdS3 = ∂S0.

We have proved that ∂C = ∂C\∂Ap0 is a �-invariant topological sphere minus
the �-invariant Jordan curve ∂S0. Hence, ∂C is the union of two disjoint �-invari-
ant topological discs S− and S+, such that ∂S− = ∂S+ = ∂S0. Since the surfaces
S− and S+ are contained in the boundary of a convex set, they admit a support
plane at each of their points. Hence, by Proposition 6.28 and Remark 6.23, the
surfaces S− and S+ are spacelike. Since S− is a spacelike disc with ∂S− = ∂S0, it
separates Ap0 into two connected components: the past and the future of S−. The

�By such, we mean that C is closed in AdS3, but not necessarily in AdS3 ∪∂AdS3. Actually, a non-
empty �-invariant subset of AdS3 cannot be closed in AdS3 ∪ ∂AdS3.
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set C must be contained in one of these two connected components, so C is con-
tained either in the past or in the future of S−. Similarly, for S+. Moreover, C can
not be in the future (resp. the past) of both S− and S+. So, up to exchanging S−

and S+, the set C is in the future of S− and in the past of S+. In particular, S+

is in the future of S−. Since C is in the future of S−, the surface S− must be in
the future of each of its support planes. Hence, the surface S− is convex. Similar
arguments show that S+ is concave. This completes the proof of (i).

Now, since S− and S+ are �-invariant spacelike surfaces in D(S0), their projections
�− :=�\S− and �+ :=�\S+ are Cauchy surfaces in �\D(S0)�M (recall that every
compact spacelike surface in M is a Cauchy surface). Of course, �+ is in the future
of �−, since S+ is in the future of S−. Finally, the convexity of �− and the concavity
of �+ follow, by definition, from the convexity of S− and the concavity of S+.

6.4.3. Definition of the Topological Cauchy Surfaces �−
0 and �+

0

The set C(∂S0) = Conv(∂S0)\∂S0 satisfies the hypothesis of Proposition 6.29.
Hence, the boundary in AdS3 of C(∂S0) is made of two disjoint �-invariant space-
like topological surfaces S−

0 and S+
0 , such that S−

0 is convex, S+
0 is concave, and S+

0
is in the future of S−

0 . Moreover, the surfaces �−
0 :=�\S−

0 and �+
0 :=�\S+

0 are two
disjoint topological Cauchy surfaces in �\D(S0)�M, such that �−

0 is convex, �+
0

is concave, and �+
0 is in the future of �−

0 .

DEFINITION 6.30. A pair (S−, S+) of disjoint �-invariant spacelike topological
surfaces in AdS3 such that S−

0 is convex, S+ is concave, and S+ is in the future of
S− is called a convex trap.

Similarly, a pair (�−,�+) of disjoint spacelike topological surfaces in M such
that �− is convex, �+ is concave, and �+ is in the future of �− is called a con-
vex trap.

In both circumstances, a convex trap is uniformly curved if the boundary sur-
faces S−, S+ (or �−,�+) are uniformly curved. The convex trap is smooth if the
boundary surfaces are smooth.

6.5. a pair of uniformly curved convex/concave topological cauchy
surfaces

Our goal is to find a pair of barriers in M. By Proposition 6.27, this goal will be
achieved if we find a smooth uniformly curved convex trap. For the moment, the
convex trap (�−

0 ,�
+
0 ) is not smooth, and not uniformly curved. The purpose of

this subsection is to prove the following proposition:

PROPOSITION 6.31. Arbitrarily close to �−
0 (resp. �+

0 ), there exists a topologi-
cal Cauchy surfaces �−

1 (resp. �+
1 ), which is convex (resp. concave) and uniformly

curved.
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The idea of the proof of Proposition 6.31 is to replace the convex set C0 =
C(∂S0) by its “Lorentzian ε-neighbourhood”. This idea comes from Riemannian
geometry. Indeed, it is well-known that the ε-neighbourhood of a convex subset
of the hyperbolic space H

n is uniformly convex. We will prove that a similar phe-
nomenon occurs in AdS3 (although technical problems appear).

The length of a C1 causal curve γ : [0,1]→AdS3 is l(γ )=∫ 1
0 (−g(γ̇ (t), γ̇ (t)))1/2dt,

where g is the Lorentzian metric of AdS3. Given an achronal subset E of Ap0 and
a point p in Ap0 , the distance from p to E is the supremum of the lengths of all
the C1 causal curves joining p to E in Ap0 (if there is no such curve, then the
distance from p to E is not defined).� The distance from p to E, when finite, is
lower semi-continuous in p. Moreover, the distance from p to E is continuous in
p, when p is in the Cauchy development of E (see, for instance, [17, p. 215]).

Given an achronal subset E of Ap0 and ε>0, the ε-future of E is the set made
of the points p∈Ap0 , such that p is in the future of E and such that the distance
from p to E is at most ε. We define similarly the ε-past of E. We denote by I−

ε (E)

and I+
ε (E) the ε-past and the ε-future of the set E.

LEMMA 6.32. There exists ε > 0 such that the ε-past and the ε-future of the sur-
face S+

0 are contained in D(S0).
Proof. Since the set D(S0) is a neighbourhood of the surface S+

0 , and since the
surface �+

0 =�\S+
0 is compact, one can find a �-invariant neighbourhood U−

0 of
the surface S+

0 , such that U+
0 is contained in D(S0), and such that �\U+

0 is com-
pact.

Claim. There exists ε>0 such that the distance from any point p /∈U+
0 to the sur-

face S+
0 is bigger than ε.

By contradiction, suppose that, for every n∈N, there exists a point xn∈Ap0\U+
0

such that the distance from xn to the surface S+
0 is less than 1/n. Then, for each

n, we consider a causal curve γn joining the point xn to the surface S+
0 . This curve

γn must intersect the boundary of U+
0 ; let zn be a point in γn ∩ ∂U+

0 . Since zn is
on a causal curve joining xn to the surface S+

0 , the distance from zn to S+
0 must be

smaller than 1/n. Now, recall that �\U+
0 is compact. Hence, up to replacing each

zn by its image under some element of �, we may assume that all the zn’s are in a
compact subset of the boundary of U+

0 . Then, we consider a limit point z of the
sequence (zn)n∈N. By lower semi-continuity of the distance, the distance from z to
the surface S+

0 is equal to zero (note that the distance from z to the surface S+
0

is well-defined, since every point of Ap0 can be joined from the surface S+
0 by a

timelike curve, see Remark 5.14). Hence, the point z is on the surface S+
0 . This is

absurd, since z must be on the boundary of U+
0 , and since U+

0 is a neighbourhood
of S+

0 . This completes the proof of the claim. The lemma follows immediately.

�The same definition work in the case where the set E is not achronal. But then, the distance from
p to E might be positive even if p∈E!
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Definition of the set C1. From now on, we fix a number ε > 0 such that the ε-
pasts and ε-futures of the surfaces S−

0 and S+
0 are contained in D(S0). We consider

the set

C1 :=C0 ∪ I−
ε (S

−
0 )∪ I+

ε (S
+
0 ).

Obviously, C1 is a �-neighbourhood of C0 contained in D(S0). Actually, C1

should be thought as a “Lorentzian ε-neighbourhood” of C0.
Our aim is to prove that the boundary of the set �\C1 is made of two topological

Cauchy surfaces which are convex/concave and uniformly curved. For that purpose,
we first need to prove that C1 is a convex set. Let us introduce some notations. We
denote by P(S−

0 ) (resp. by P(S+
0 )) the set of the support planes of the surface S−

0
(resp. the surface S+

0 ).

LEMMA 6.33. The set C1 is made of the points p∈Ap0 such that:

– for every plane P in P(S+
0 ), the point p is in the past or in the ε-future of P ,

– for every plane P in P(S−
0 ), the point p is in the future or in the ε-past of P .

In other words:

C1 =

⎛

⎜

⎝

⋂

P∈P(S−
0 )

I−
ε (P )∪ I+(P )

⎞

⎟

⎠
∩

⎛

⎜

⎝

⋂

P∈P(S+
0 )

I−(P )∪ I+
ε (P )

⎞

⎟

⎠
. (1)

Proof. We denote by C′
1 the right-hand term of equality (1). Let p be a point

of Ap0 which is not in C′
1. Assume for instance that there exists a plane P ∈P(S+

0 ),
such that p is in the future of P , and the distance from p to P is bigger than ε.
Since the surface S+

0 is in the past of P , this implies that p is in the future of S+
0

and that the distance from p to �+
0 is bigger than ε. Hence, p is not in C1.

Conversely, let p be a point of Ap0 which is not in C1. Assume for instance that
p is in the future of the surface S+

0 and the distance from p to S+
0 is bigger than

ε. Then there exists a timelike curve γ joining p to a point q ∈�+
0 , such that the

length of γ is bigger than ε. Let P be a support plane of C0 such that q ∈P ∩C0.
By definition, P is an element of P(S+

0 ), the point p is in the future of P , and the
distance from p to P is bigger than the length of γ . Hence, p is not in C′

1.

Using the diffeomorphism �p0 (see Section 4.3), we identify the domain Ap0

with the region of R
3 where x2 + y2 − z2< 1. Let P0 be the totally geodesic sub-

space of Ap0 defined as the intersection of Ap0 with the affine plane (z=0) in R
3.

Obviously, P0 is spacelike.

LEMMA 6.34. The set I−(P0)∪I+
ε (P0) is the region of Ap0 defined by the inequal-

ity

z� tan ε ·
√

1−x2 −y2.
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Proof. All the calculations have to be made in the linear model of the
anti-de Sitter space, using the coordinates x1, x2, x3, x4 (because in this model
the Lorentzian metric is simply the restriction of a global quadratic form). The
equation of P0 in this system of coordinates is (x1 = 0). The equation (z= tan ε ·
√

1−x2 −y2 corresponds to the equation (x1 = sin ε). On the one hand, since P0

is a smooth spacelike surface, the distance from a point q ∈D(P0) to the plane P0

is realized as the length of a geodesic segment joining q to P0 and orthogonal to
P0 (see, for instance, [17]). On the other hand, Proposition 4.2 implies every point
q on the surface (x1 = sin ε) belongs to a unique geodesic which is orthogonal to
P0. So, we are left to prove that, for every point p on P0, the length of the unique
segment of geodesic orthogonal to P0 and joining p to the surface (x1 = sin ε) is
equal to ε. This follows from Proposition 4.2 and from an elementary calculation.

Remark 6.35. Lemma 6.34 shows that I−(P0) ∪ I+
ε (P0) is a relatively convex

subset of AdS3 (that is, the intersection of a convex subset of S
3 with AdS3).

Moreover, it shows that there exists R such that the boundary of the set I−(P0)∪
I+
ε (P0) is more curved than a sphere of radius R at every point: if we consider

the Euclidean metric on R
3 for which (x, y, z) is an orthonormal system of coor-

dinates, then we can take R= (tan ε)−1. Although this does not clearly appear in
the proof of Lemma 6.34, this phenomenon is related with the negativity of the
curvature of AdS3.

COROLLARY 6.36. The set C1 is convex.
Proof. Consider a totally geodesic subspace P ∈ P+(S+

0 ). There exists σP ∈
O0(2,2), such that γP (P0)= P . Then, σP maps the set I−(P0) ∪ I+

ε (P0) to the
set I−(P )∪ I+

ε (P ). By Remark 6.35, the set I−(P0)∪ I+
ε (P0) is relatively convex.

Hence, the set I−(P )∪ I+
ε (P ) is also relatively convex. The same arguments show

that, for every P ∈ P−(C0), the set I−
ε (P )∪ I+(P ) is relatively convex. Together

with Lemma 6.33, this shows that the set C1 is a relatively convex subset of AdS3.
Moreover, C1 is contained in D(S0), which is a convex subset of AdS3 (see item
(iii) of Remark 5.17 and Proposition 6.18). Therefore, C1 is a convex subset of
AdS3.

Definition of the surfaces S−
1 ,S+

1 ,�−
1 and �+

1 . The set C1 is a �-invariant closed
convex subset of AdS3, containing C0, and contained in D(S0). By Proposition
6.29, the boundary of C1 in AdS3 is the union of two �-invariant spacelike topo-
logical surfaces S−

1 and S+
1 , such that (S−

1 , S
+
1 ) is a convex trap. Also by Proposi-

tion 6.29, (�−
1 :=�\S−

1 ,�
+
1 :=�\S+

1 ) is a convex trap.

Remark 6.37. The surface S−
1 (resp. S+

1 ) is the set made of all the points of Ap0

which are in the past of the surface S−
0 (resp. S+

0 ), at distance exactly ε of S−
0 (resp.

S+
0 ): this follows from the definition of the set C1, and from the continuity of the
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distance from a point p to the surface S−
0 (resp. S+

0 ) when p ranges in D(S0)=
D(S−

0 )=D(S+
0 ). Thus, the surface �−

1 (resp. �+
1 ) is the set made of all the points

of M which are in the past of the surface �−
0 (resp. �+

0 ), at distance exactly ε of
�−

0 (resp. �+
0 ).

PROPOSITION 6.38. The surfaces �−
1 and �+

1 are uniformly curved.
Proof. Fix a Euclidean metric on R

3, and let �+
1 ⊂S+

1 be a compact fundamen-
tal domain of the action of � on S+

1 . Let �+
0 be the intersection of the past of �+

1
with the surface S+

0 . Note that �+
0 is compact (since �+

1 is compact, and since �+
1

and S+
0 are contained in a globally hyperbolic subset of AdS3). Let P(�+

0 ) be the
set of all the support planes of S+

0 that meet S+
0 at some point of �+

0 .
Claim 1. There exists R such that, for every P ∈P(�+

0 ), the boundary of the set
I−(P )∪ I+

ε (P ) is more curved than a sphere of radius R.
On the one hand, P(�+

0 ) is a compact subset of the set of all spacelike totally
geodesic subspaces of AdS3. As a consequence, there exists a compact subset K of
O0(2,2) such that P(�+

0 )⊂K.P0. On the other hand, there exists R0 such that the
boundary of the set I−(P0)∪ I+

ε (P0) is more curved than a sphere of radius R0

(see Remark 6.35). The claim follows.
Claim 2. Every q ∈�+

1 is on the boundary of the set I−(P )∪ I+
ε (P ) for some P

in P(�+
0 ).

Let q ∈�+
1 ⊂S+

1 . By definition of S+
1 , the point q is in the future of the surface

S+
0 and the distance from q to S+

0 is ε. Moreover, since q and S+
0 are contained in

a globally hyperbolic region of AdS3, the distance between q and S+
0 is realized:

there exists a causal curve γ of length ε joining q to a point p∈S+
0 . By construc-

tion, the point p is in �+
0 . Let P be any support plane of S+

0 at p. Of course, P
is in P(�+

0 ). On the one hand, since γ is a causal arc of length ε joining q to a
point of P , the distance from p to P is at least ε. On the other hand, Lemma 6.33
implies that the distance from p to P must be at most ε. The claim follows.

Let q be a point of �+
1 . By claim 2, there exists P ∈P(�+

0 ) such that q is on
the boundary of the set I−(P )∪ I+

ε (P ). By Lemma 6.33, the surface S+
1 is con-

tained in I−(P )∪ I+
ε (P ). Putting these together with claim 1, we obtain that the

surface S+
1 is more curved than a sphere of radius R at q. Hence, the surface �+

1
is uniformly curved.

This completes the proof of Proposition 6.31.

Remark 6.39. All the results of this subsection are still valid if one replaces
(�−

0 ,�
+
0 ) by any other convex trap.
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Remark 6.40. It is well-known that the boundary of the ε-neighbourhood of any
geodesically convex subset of R

n or H
n is a C1 hypersurface. Unfortunately, this

phenomenon does not generalize to Lorentzian setting: In particular, the surfaces
S−

1 , S
+
1 ,�

−
1 and �+

1 are not C1 in general.

6.6. smoothing the cauchy surfaces �−
1 and �+

1

In order to apply Gerhard’s theorem, we need a smooth uniformly curved convex
trap. The purpose of this subsection is to prove the following proposition:

PROPOSITION 6.41. Arbitrarily close to �−
1 and �+

1 , there exist some C∞ Cau-
chy surfaces �− and �+, such that �− is convex and uniformly curved and �+ is
concave and uniformly curved.

Unfortunately, we could not find any simple proof of Proposition 6.41 (see
Remark 6.42). Our proof is divided in three steps. In 6.6.1, we approximate the
surfaces �−

1 and �+
1 by some polyhedral Cauchy surfaces �−

2 and �+
2 (respectively

convex and concave). Then, in 6.6.2, we describe a method for smoothing convex
and concave polyhedral Cauchy surfaces. Using this method, we obtain two dis-
joint C∞ Cauchy surfaces �−

3 and �+
3 , respectively convex and concave. Finally,

in 6.6.3, using the same trick as in Section 6.5, we get a smooth uniformly convex
trap.

Remark 6.42. The first idea which comes to in mind for smoothing a convex
surface is to use some convolution process. Unfortunately, to make this kind of
idea work, one needs a locally Euclidean structure.� This is the reason why this
kind of idea does not fit our situation (there is no locally Euclidean structure on
the manifold M)

6.6.1. Polyhedral Convex and Concave Cauchy Surfaces

In this Section, we will define a notion of polyhedral surface in M. Then, we will
construct two polyhedral Cauchy surfaces �−

2 and �+
2 in M, such that �−

2 is con-
vex, �+

2 is concave, and �+
2 is in the future of �−

2 .
A subset � of M is a 2-simplex, if there exists a projective chart �:U⊂M→R

3,
such that �⊂U and such that �(�) is a 2-simplex in R

3. A compact surface �
in M is called polyhedral if it can be decomposed as a finite union of 2-simplices.

�For example, any convex function f : Rn→R can be approximated by a smooth convex function
̂f , obtained as the convolution of f with an approximation of the unity, but the proof of the convexity
of ̂f uses the Euclidean structure of R

n+1.
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Remark 6.43. Let � be a compact spacelike surface in M, let ˜� be a lift of �
in ˜M, and let S :=d(˜�). Using the embedding �p0 : Ap0 →R

3, we can see S as a
surface in R

3. Then, � is a polyhedral surface if and only if S can be decomposed
as a finite union of orbits (for �) of 2-simplices of R

3.

Remark 6.44. Let � be a compact convex spacelike polyhedral surface in M.
Then, � can be decomposed as a finite union of subsets � :=�1 ∪ · · · ∪�n, where
each �i is the intersection of � with one of its support planes, and each �i has non-
empty interior (as a subset of �). The decomposition is unique (provided that the
�i ’s are pairwise distinct). The �i ’s are called the sides of �. Each side of � is a
finite union of 2-simplices, but is not necessarily a topological disc (e.g. in the case
where � is totally geodesic).

Definition of the set C2, of the surfaces S−
2 ,S+

2 ,�−
2 and �+

2 . We consider a �-
invariant set E of points of ∂C1 =S−

1 ∪S+
1 , such that �\E is finite (in particular,

E is discrete). We denote by C2 the convex hull of E. By construction, C2 is a �-
invariant convex subset of C1. In particular, C2 is a �-invariant convex subset of
D(S0). So, by Proposition 6.29, the pair of boundary components of C2 in AdS3,
and their projections in M, are convex traps.

Given δ>0, we say that the set E is δ-dense in the surfaces S−
1 and S+

1 , if every
Euclidean ball of radius δ centered at some point of S−

1 (resp. S+
1 ) contains some

points of E. The remainder of the subsection is devoted to the proof of the fol-
lowing proposition:

PROPOSITION 6.45. There exists δ>0 such that, if the set E is δ-dense in the sur-
faces S−

1 and S+
1 , then the surfaces �−

2 and �+
2 are polyhedral.

Remark 6.46. The proof of Proposition 6.45 is quite technical. The reader who
is not interested in technical details can skip the proof. Nevertheless, it should be
noticed that the boundary of the convex hull of a discrete set of points is not a
polyhedral surface in general. In particular, Proposition 6.45 would be false if the
surfaces �−

1 and �+
1 were not uniformly curved.

Given a set F ⊂ R
3, we say that an affine plane P of R

3 splits the set F , if F
intersects the two connected components of R

3\P . The starting point of the proof
of Proposition 6.45 is the following well-known fact (which follows from very basic
arguments of affine geometry):

Fact 6.47. For every finite set of points F ⊂ R
3, the boundary of Conv(F) is a

compact polyhedral surface; more precisely, the boundary of Conv(F) is the union
of all the 2-simplices Conv(p,q,r), such that the points p,q,r are in F, and such that
the plane (p,q,r) does not split F.
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Let γ be a continuous curve in a Euclidean plane, and p be a point on γ . We
say that the curve γ is more curved than a circle of radius R at p if there exists
a Euclidean disc � of radius R, such that p is on the boundary of �, and such
that � contains a neighbourhood of p in γ . The proof of the following lemma of
elementary planar geometry is left to the reader:

LEMMA 6.48. Given two positive numbers ρ and R, there exists a positive number
δ= δ(ρ,R) such that: for every convex set D in an Euclidean plane, if there exists a
subarc α of the boundary of D, such that the boundary of D is more curved than a
circle of radius R at each point of α, and such that the diameter of α is bigger than
ρ, then D contains a Euclidean ball of radius δ.

Proof of Proposition 6.45. Consider a compact fundamental domain U for the
action of � on C1. Then, consider a compact neighbourhood V of U in C1, and
a compact neighbourhood W of V in C1. One can find a positive number ρ such
every Euclidean ball of radius ρ centered in U (resp. V ) is contained in V (resp.
W ). Moreover, since V is compact, one can find a positive number R, such that
the surface S−

1 (resp. S+
1 ) is more curved than a sphere of radius R at every point

of S−
1 ∩V (resp. S+

1 ∩V ).
From now on, we assume that the set E is δ-dense in the surfaces S−

1 and S+
1 ,

where δ= δ(ρ,R) is the positive number given by Lemma 6.48. Up to replacing δ
by min(δ, ρ), we can assume that δ is smaller than ρ. Under these assumptions,
we shall prove that the surfaces S−

2 and S+
2 are polyhedral.

Claim 1. If p,q, r are three points of E, such that the 2-simplex Conv(p,q,r) inter-
sects U , and such that the affine plane P := (p, q, r) does not split the set E, then
the three points p,q, r are in W .

To prove this claim, we argue by contradiction: we suppose that there exist three
points p,q, r in E, such that the 2-simplex Conv(p, q, r) intersects U , such that
the affine plane P := (p, q, r) does not split the set E, and such that one of the
three points p,q, r is not in W . We shall show that these assumptions contradict
the δ-density of the set E.

Since P does not split the set E, one of the two connected components of Ap0\P
is disjoint from E. We denote by HP this connected component. First of all, we
observe that HP does not intersect the curve ∂S0, since HP does not contain any
point of E, since E is a non-empty �-invariant subset of D(S0), and since the curve
∂S0 is the limit set of the action of � on D(S0). Therefore, the intersection of HP with
the boundary of C1 is contained in one of the two connected components S−

1 and
S+

1 of ∂C1\∂S0. Without loss of generality, we assume that HP ∩∂C1 is contained in
S+

1 , and we consider the set D+ :=HP ∩S+
1 (see Figure 2).

We shall prove that there exists an Euclidean ball B of radius δ centered at some
point of D+, such that B ∩S+

1 ⊂D+. Since D+ must be disjoint from E (because
D+ ⊂HP ), this will contradict the fact that E is δ-dense in S+

1 . For that purpose,
we consider the curve γ :=P ∩ S+

1 . Observe that this curve γ is the boundary of



116 THIERRY BARBOT ET AL.

Figure 2. The situation in the set proof of proposition 6.45

the topological disc D+. Moreover, the curve γ is also the boundary of the con-
vex subset D :=P ∩C1 of the plane P . The curve γ passes through the points p,q
and r, and the 2-simplex Conv(p, q, r) is contained in the convex set D. We shall
distinguish two cases (and get a contradiction in each case):

First case: the curve γ does not intersect the neighbourhood V. We consider
a point m in D ∩ U (such a point does exist since Conv(p, q, r) ∩ U �= ∅ and
Conv(p, q, r)⊂D), and we denote by m′ the unique point of intersection of D+

with the line passing through m and orthogonal to the plane P . The point m is in
U , and the curve γ does not intersect V ; so, by definition of ρ, the Euclidean dis-
tance between m and γ must be bigger than ρ, and thus, bigger than δ. Moreover,
the Euclidean distance between the point m′ and the curve γ is bigger than the
distance between m and γ . So, we have proved that the Euclidean ball B of radius
δ centered at m′ does not intersect the curve γ . Hence, the connected component
of B ∩S+

1 containing the point m′ is contained in D+. Since D+ is disjoint from
E, this contradicts the δ-density of E in S+

1 .
Second case: the curve γ does intersect the neighbourhood V. Then, by definition

of ρ, we can find a subarc α of the curve γ , such that the diameter of α is bigger
than ρ, and such that α is contained in W . Since S+

1 is more curved than a sphere
of radius R at every point of V , the curve γ is more curved than a circle of radius
R at each point of α. Thus, by Lemma 6.48, there exists a point m∈D such that the
Euclidean distance between the point m and the curve γ is bigger than δ. The same
argument as above shows that this contradicts the δ-density of E in the surface S+

1 .
In both case, we have obtained a contradiction. This completes the proof of Claim 1.
Claim 2. If W ′ is a compact subset of Ap0 such that W ⊂W ′, then the sets

Conv(E∩W ′)∩U and Conv(E∩W)∩U coincide.
This claim is a consequence of Claim 1 and fact 6.47. Since W ′ is a compact sub-

set of AdS3, the set E∩W ′ is finite. Hence, the boundary of the set Conv(E∩W ′) is
the union of the 2-simplices [p,q, r], such that the three points p,q, r are in E∩W ′,
and such that the affine plane (p, q, r) does not split E ∩W ′. By claim 1, such a
2-simplex can intersect U only if the three points p,q and r are in W . Using once
again fact 6.47, this implies that the intersection of boundary of Conv(E∩W ′) with
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U is contained in the intersection of the boundary of Conv(E∩W ) with U . But, if
the boundary of a convex set is contained in the boundary of another convex set,
then these two convex sets must coincide. The claim follows.

End of the proof. Let us consider an increasing sequence (Wn)n∈N of compact
subsets of AdS3, such that

⋃

n∈N
Wn = AdS3. On the one hand, we clearly have

Conv(E)= Closure(
⋃

n∈N
Conv(E ∩Wn)). On the other hand, according to Claim

2, there exists an integer n0 such that Conv(E ∩Wn)∩U = Conv(E ∩W)∩U for
every n� n0. As a consequence, we have Conv(E)∩U = Conv(E ∩W)∩U . Now,
since E∩W is a finite set, the boundary of Conv(E∩W) is a compact polyhedral
surface. Thus, we have proved that the boundary of the set C2 = Conv(E) coin-
cides, in U , with a polyhedral surface. Since U contains a fundamental domain for
the action of � on C2, this implies each of the surfaces S−

2 and S+
2 can be decom-

posed as a finite union of orbits of 2-simplices. Hence, the surfaces �−
2 and �+

2
are polyhedral (see Remark 6.43).

ADDENDUM 6.49. There exists δ>0 such that, if the set E is δ-dense in the sur-
faces S+

1 , S
−
1 , then each side of the polyhedral surfaces �−

2 ,�
+
2 is contained in the

domain of an projective chart of M.
Proof. From the proof of Proposition 6.45, one can extract the following

statement: for every ρ > 0, there exists δ > 0 such that, if the set E is δ-dense in
the surface S−

1 , then, for every support plane P of the surface S−
2 , the diameter

of the set P ∩S−
2 is less than ρ. Of course, there is a similar statement for the sur-

face S+
2 . The addendum follows immediately.

6.6.2. Smooth Convex and Concave Cauchy Surfaces

In this Section, we describe a process for smoothing the polyhedral Cauchy sur-
faces �−

2 and �+
2 . More precisely, we prove the following:

PROPOSITION 6.50. Let � be a convex polyhedral Cauchy surface in M. Assume
that each side of � is contained in an affine domain of M. Then, arbitrarily close to
�, there exists a C∞ convex Cauchy surface.

Of course, the analogous statement dealing with concave Cauchy surfaces is also
true. The proof of Proposition 6.50 relies on the following technical lemma.

LEMMA 6.51. Let U be some subset of R
2 and f :U→R be a continuous convex

function. Then, for every η>0, there exists a continuous convex function ̂f :U→R

satisfying the following properties:

• ̂f � f , the distance between f and ̂f is less than 2η, and ̂f coincides with f
on the set f−([2η,+∞[);
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• ̂f is constant on the set f−1([0, η]); in particular, ̂f is C∞ on the set
f−1([0, η[);

• If f is C∞ on some subset U of Dom(f), then ̂f is also C∞ on U .

Proof. We consider a C∞ function ϕ : [0,+∞[→ [0,+∞[ such that: ϕ is non-
decreasing and convex, ϕ(t)= 3

2η for every t ∈ [0, η], and ϕ(t)= t for every t ∈
[2η,+∞[. Then, consider ̂f :U→ [0,+∞[ defined by ̂f :=ϕ ◦f . This function sat-
isfies all the required properties.

We endow M with a Riemannian metric; this allows us to speak of the
(Riemannian) ε-neighbourhood of any subset of M for any ε > 0. We say that
a surface �1 is ε-close to another surface �2 if there exists a homeomorphism
� :�1 →�2 which is ε-close to the identity. The following Remark will allow us
to see a polyhedral surface as a collection of graphs of functions:

Remark 6.52. Let � be a convex compact surface in M, Let � be a support
plane of � and let � :=�∩�. We assume that � is contained in an affine domain
of M. Then, we can find a neighbourhood V of F in M, and some local affine
coordinates (x, y, z) on V , such that:

– �∩V is the plane of equation (z= 0), and � ∩V is the graph (z=f (x, y)) of
a non-negative convex function f :U→ [0,+∞[ (where U is some convex subset
of R

2).

– if �′ is a convex Cauchy surface close enough to �, then �′ ∩V is the graph
z=f ′(x, y) of a convex function f ′ :U →R. The function f ′ depends continu-
ously of the surface �′. Moreover, if �′ is in the future of �, then f ′ �f (and
thus, f ′ �0).

We denote by �1, . . . ,�n the sides of the polyhedral surface �. To prove Prop-
osition 6.50, we will construct a sequence of convex Cauchy surfaces �0, . . . ,�n,
where �0 =�, and where �k+1 is obtained by smoothing �k in the neighbourhood
of �k+1. More precisely, we will prove the following:

PROPOSITION 6.53. For every k ∈ {0, . . . , n} and every ε > 0 small enough, there
exists a convex Cauchy surface �k,ε in M such that:

– the surface �k,ε is in the future of the surface �.

– the surface �k,ε is ε-close to the surface �,

– the surface �k,ε is smooth outside the ε-neighbourhoods of the sides �k+1, . . . ,�n.

Notice that Proposition 6.53 implies Proposition 6.50 (for k=n, the surface �k,ε is
a smooth convex Cauchy surface, ε-close to the initial surface �). So, we are left
to prove Proposition 6.53.
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Proof of Proposition 6.53. First of all, we set �0,ε :=� for every ε>0. Now, let
k ∈ {0, . . . , n− 1}, and let us suppose that we have constructed the surface �k+1,ε

for every ε>0 small enough. We will construct the surface �k+1,ε for every ε>0
small enough.

Since �k+1 is a side of �, there exists a support plane �k+1 of � such that
�k+1 ∩� =�k+1. Using Remark 6.52, we find a compact neighbourhood V of
�k+1 in M, and some local affine coordinates (x, y, z) on V , such that in these
coordinates, �k+1 ∩V is the plane of equation (z= 0), and the surface � ∩V is
the graph (z= f (x, y)) of a non-negative convex function f : Dom(f )⊂ R

2 → R.
Moreover, the function f is positive when restricted to ∂Dom(f ), and thus, the
quantity δ := inf{f (x, y)|(x, y)∈ ∂Dom(f )} is positive (∂Dom(f ) is compact).

Now, we fix some ε>0 such that ε/3<δ/2. By the second item of Remark 6.52,
we can find ε′> 0, such that ε′<ε/3, and such that the surface �k,ε′ ∩V is the
graph of a convex function g : Dom(g)=Dom(f )→R. Moreover, since �k,ε′ is in
the future of �, the function g is bigger than f ; in particular, g is non-negative,
and we have g(x, y)>δ for every (x, y)∈ ∂Dom(g).

Applying Lemma 6.51 to the function g with η :=ε/3, we obtain a convex func-
tion ĝ : Dom(g)→ [0,+∞[ satisfying the following properties:

(a) ĝ�g and the distance between g and ĝ is less than 2ε/3,

(b) ĝ is C∞ on g−1([0, ε/3]),

(c) if g is smooth on some open subset of Dom(g) = Dom(ĝ), then ĝ is also
smooth on U ,

(d) ĝ coincides with g on g−1([2ε/3,+∞[); in particular, ĝ coincide with g on
∂Dom(ĝ)= ∂Dom(g).

We construct the surface �k+1,ε as follows: starting from the surface �k,ε′ , we
cut off �k,ε ∩ V (i.e. we cut off the graph of g), and we paste the graph of ĝ.
This is possible since the graphs of the functions g and ĝ coincide near the bound-
ary of V (property (d)). There is a natural diffeomorphism � between the sur-
faces �k,ε′ and �k+1,ε, defined as follows: � coincides with the identity outside
V , and maps the point of coordinates (x, y, g(x, y)) to the point of coordinates
(x, y, ĝ(x, y)). By property (a), � is (2ε/3)-close to the identity; hence, the surface
�k+1,ε, is (2ε/3)-close to the surface �k,ε′ . Since �k,ε′ is ε′-close to �, and since
ε′<ε/3, we get that �k+1,ε, is ε-close to �.

The inequality ĝ�g implies that �k+1,ε is in the future of �k,ε′ , and a fortiori
in the future of �. The convexity of the function ĝ implies that �k+1,ε admits
a support plane at each of its points. By Proposition 6.28 and Remark 6.23, this
implies that �k+1,ε is a spacelike surface. Hence, �k+1,ε is a Cauchy surface (every
compact spacelike surface embedded in M is a Cauchy surface). Now, since �k+1,ε

is a spacelike surface admitting a support plane at each point, it is either convex
or concave; and since it coincides with �k,ε outside V , it cannot be concave. So,
�k+1,ε is a convex Cauchy surface.
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It remains to study the smoothness of �k+1,ε. Let q be a point on the sur-
face �k+1,ε which is not in the union of the ε-neighbourhoods of the sides
�k+2, . . . ,�n, and let p :=�−1(q) ∈�k,ε′ . Since the distance between the points
p and q is less than 2ε/3, the point p cannot be in the union of the ε/3-neigh-
bourhoods of the sides �k+2, . . . ,�n. There are two cases:

– if the point p is in the ε/3-neighbourhood of the side �k+1, then the distance
between p and the plane �k+1 is less than ε/3, and thus, property (b) implies
that the surface �k+1,ε is smooth in the neighbourhood of �(p)=q;

– if the point p is not in the ε/3-neighbourhood of the side �k+1, then the surface
�k,ε′ is smooth in the neighbourhood of p (here, we use the inequality ε′<ε/3);
hence, property (c) implies that the surface ̂�k,ε is smooth in the neighbourhood
of �(p)=q.

As a consequence, the surface �k+1,ε is smooth outside the union of the ε-neigh-
bourhoods of the sides �k+2, . . . ,�n. Therefore, the surface �k+1,ε satisfies all the
required properties.

Applying Proposition 6.50 to the polyhedral Cauchy surfaces �−
2 and �+

2 , we
get two disjoint C∞ Cauchy surfaces �−

3 and �+
3 , respectively convex and concave,

such that �+
3 is in the future of �−

3 .

6.6.3. Smooth Uniformly Curved Convex and Concave Cauchy Surfaces

The Cauchy surfaces �−
3 and �+

3 are smooth, respectively convex and concave, but
not uniformly curved. Using the same trick as Section 6.5, we will aproximate �−

3
and �+

3 by some smooth uniformly curved Cauchy surfaces �−
4 and �+

4 .

Definition of the Cauchy surfaces �−
4 and �+

4 . Let ε be a positive number. Let �+
4

be the set made of the points p ∈M, such that p is in the past of the surface
�+

3 and such that the distance from p to �+
3 is exactly ε. If ε is small enough,

then �+
4 is a topological Cauchy surface which is convex and uniformly curved

(see Remarks 6.39 and 6.37). We construct similarly a topological Cauchy surface
�−

4 which is concave, uniformly curved, and contained in the past of �−
3 . By con-

struction, �+
4 is in the future of �−

4 .

PROPOSITION 6.54. If ε is small enough, the Cauchy surfaces �−
4 and �+

4 are
smooth (of class C∞).

Proof. We denote by TM the tangent bundle of M, by π the canonical pro-
jection of TM on M, and by (ϕt )t∈R the geodesic flow on TM. We consider the
subset TN�

+
3 of TM made of the pairs (p, ν) such that p is a point of the surface

�+
3 and ν is the future-pointing unit normal vector of �+

3 at p.
Let p be a point on the surface �+

4 . By construction of �+
4 , the distance

from p to �+
3 is exactly ε. Since M is globally hyperbolic, and since �+

3 is a
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smooth spacelike surface, this implies that there exists a timelike geodesic segment
of length exactly ε, orthogonal to �+

3 , joining �+
3 to p (see, for example, [17, p.

217]). As a consequence, the surface �+
4 is contained in the set π(ϕε(TN�

+
3 )).

We are left to prove that the set π(ϕε(TN�
+
3 )) is a smooth surface. Since �+

3
is a smooth compact spacelike surface in M,TN�

+
3 is a smooth compact surface

in TM, nowhere tangent to the fibres of the projection π , and hence, for ε small
enough, ϕε(TN�

+
3 ) is a smooth compact in TM, nowhere tangent to the fibres of

π . Therefore, π(ϕε(TN�
+
3 )) is a smooth surface in M.

6.7. end of the proof of theorem 1.1 in the case g�2

In the previous paragraph, we have constructed a smooth uniformly curved convex
trap (�−

4 ,�
+
4 ). By Proposition 6.27, the surface �−

4 have negative curvature and
the surface �+

4 have positive curvature. Thus, (�−
4 ,�

+
4 ) is a pair of barriers in M.

By Theorems 6.1 and 6.3, the existence of a pair of barriers implies the existence
of a CMC time function. This completes the proof of Theorem 1.1 in the case
where the genus of the Cauchy surfaces is at least 2.

7. Proof of Theorem 1.1 in the Case g =1

The purpose of this section is to prove Theorem 1.1 in the case where the genus
of the Cauchy surfaces of the spacetime under consideration is 1. According to
Remark 2.4, after performing some finite covering if necessary, we can reduce this
case to the case where the Cauchy surface is a 2-torus.

In Section 7.1, we define a class of spacetimes, called Torus Universes,� and we
will prove that Torus Universes admit CMC time functions (actually, we construct
explicitly a CMC time function on any such spacetime). Then, in Section 7.2, we
prove that every maximal globally hyperbolic spacetime, locally modelled on AdS3,
whose Cauchy surfaces are 2-tori, is isometric to a Torus Universe.

7.1. torus universes

Consider the 1-parameter subgroup of SL(2,R) of diagonal matrices (gt )t∈R,
where

gt =
(

et 0
0 e−t

)

= et�, where �=
(

1 0
0 −1

)

.

We denote by A the set of elements of SL(2,R)×SL(2,R) for which both left and
right components belong to the one-parameter subgroup (gt )t∈R. Obviously, A is
a free Abelian Lie subgroup of rank 2 of SL(2,R)×SL(2,R). This group acts iso-
metrically on AdS3 (recall that the isometry group of AdS3 can be identified with

�These spacetimes were already considered by several authors, see Remark 7.8.
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SL(2,R)× SL(2,R), see Section 4.2). We denote by � the union of spacelike A-
orbits in AdS3.

We will see below that � has four connected components which are open con-
vex domains of AdS3. For any lattice �⊂A, the action of � on � is obviously free
and properly discontinuous, and preserves each of the four connected components
of �.

DEFINITION 7.1. A Torus Universe is the quotient �\U of a connected compo-
nent U of � by a lattice � of A.

THEOREM 7.2. Every Torus Universe is a globally hyperbolic spacetime, which
admits a CMC time function.

Remark 7.3. Observe that Theorem 7.2 contradicts the claim by Mess ([18,
Proof of proposition 21]) stating that the torus cannot be a Cauchy surface for a
spacetime locally modelled on AdS3.

To prove Theorem 7.2, we will use the SL(2,R)-model of AdS3 (see Section 4.5).
We recall that SL(2,R)×SL(2,R) acts on SL(2,R) by (gL, gR) ·g=gLgg−1

R .

LEMMA 7.4. For every element g∈�, the A-orbit contains a unique element of the
form

Rθ =
(

cos θ sin θ
− sin θ cos θ

)

with θ ∈ [0,2π [.

When g ranges over �, the angle θ varies continously with g, and ranges over
]0, π/2[∪]π/2, π [∪]π,3π/2[∪]3π/2,2π [.

Proof. Consider an element g in AdS3 �SL(2,R) and write

g=
(

a b

c d

)

with ad−bc=1.

Then, the elements of the A-orbit of g are the matrices

gtgg−s =
(

aet−s bet+s

ce−(t+s) des−t

)

,

where s and t range over R. Thus, the A-orbit of g is spacelike if and only if, for
every p,q ∈R, the determinant of

(

(p−q)a (p+q)b
−(p+q)c (q−p)d

)

is negative, i.e. if and only if the quadratic form (p−q)2ad− (p+q)2bc is positive
definite. Since ad−bc=1, it follows that the A-orbit of g is spacelike if and only if
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0 < ad <1,
−1 < bc <0.

In particular, if the A-orbit of g is spacelike, then abcd �=0. It follows that, if the
A-orbit of g is spacelike, then it contains an element of the form

Rθ =
(

cos θ sin θ
− sin θ cos θ

)

(take s, t such that e2(t−s)=d/a and e2(s+t)=c/b). The angle θ is obviously unique,
it is not a multiple of π

2 (since d �=0 and c �=0), it varies continuously with g, and
it takes any value in [0,2π [ that is not a multiple of π

2 when g ranges over �.

Remark 7.5. if g= (

a b
c d

) ∈�, then the unique number θ ∈ [0,2π [ such that the
rotation Rθ is in the A-orbit of g is characterized by the equalities cos2 θ=ad and
− sin2 θ =bc (see the proof of Lemma 7.4).

Lemma 7.4 implies that � has four connected components (corresponding to θ ∈
]0, π2 [, θ ∈]π2 , π [, θ ∈]π, 3π

2 [, and θ ∈] 3π
2 ,2π [).

Remark 7.6. The four connected components of � are all isometric one to the
other by isometries centralizing the group A. Hence, with no loss of generality,
we may restrict ourselves to Torus Universes that are obtained as quotients of the
connected component corresponding to 0<θ <π/2.

Proof of Theorem 7.2. Denote by U the connected component of � correspond-
ing to 0<θ < π

2 . Consider a lattice � in A, and consider the associated Torus Uni-
verse M=� \U . Lemma 7.4 provides us with a continuous function θ :U �→]0, π2 [.
By construction, this function is increasing with time and �-invariant: it follows
that the quotient manifold M=� \U is equipped with a time function θ̄ .

The equalities cos2 θ=ad and − sin2 θ=bc (see Lemma 7.4) imply that the con-
nected component U is exactly

{

g=
(

a b

c d

)

∈SL(2,R) such that 0<a,0<b,0>c and 0<d
}

Thus, in the Klein model of AdS3, the connected component U is the interior
of a simplex which is the convex hull of four points in ∂AdS3 (these points
are nothing but the fixed points of A) (see Figure 3). The main information we
extract from this observation is that U is a convex domain in AdS3, in particular,
its intersection with any geodesic – in particular, non-spacelike geodesics – is
connected. Moreover, geodesics joining two points of ∂U satisfying both bc= 0
(respectively ad=0) are spacelike. Hence, non-spacelike segments in U admits two
extremities in ∂U , one satisfying bc=0, and the other ad=0. The equalities ad=
cos2 θ , bc=− sin2 θ imply that θ restricted to such a non-spacelike segment takes
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all values between 0, and π
2 . In other words, every non-spacelike geodesic in U

intersects every fibre of θ . Hence, every non-spacelike geodesic in M intersects
every fibre of θ̄ : these fibres are thus Cauchy surfaces, and M is globally hyper-
bolic.

Since every fibre of θ̄ is a A-orbit, it obviously admits constant mean curvature
κ(θ̄). Let us calculate this mean curvature at Rθ . We will need to take covariant
derivatives, and here, the situation is similar to the familiar situation concerning
Riemannian embeddings: if X, Y are vector fields in M(2,R) both tangent to G,
then the covariant derivative ∇XY in G is the orthogonal projection on the tangent
space to G of the natural affine covariant derivative ∇XY for the affine connection
on the ambient linear space.

A straightforward calculation shows that the curve θ �→Rθ is orthogonal to the
A-orbits, hence, the unit normal vector to ARθ at Rθ is:

n(θ)=
( − sin θ cos θ

− cos θ − sin θ

)

.

Moreover, this unit normal vector is future oriented if we consider the orientation
of U for which θ increases with time. Now, for any p, q, consider the curve t �→
c(t)=gptn(θ)g−qt . Its tangent vector at t=0 is:

Xp,q =
(

(p−q) cos θ (q+P) sin θ
(q+p) sin θ (q−p) cos θ

)

.

The unit normal vector n(t) to the A-orbit at c(t)=gptRθg−qt is

gptn(θ)g−qt =
(−et (p−q) sin θ et (q+p) cos θ

−e−t (q+p) cos θ −et (q−p) sin θ

)

.

Figure 3. The domain U represented in the projective model of AdS3 (more precisely, here we
use a projective chart mapping some domain of AdS3 in R

3).
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Hence, the derivative at t=0 is:
(

(q−p) sin θ (q+p) cos θ
(q+p) cos θ (p−q) sin θ

)

.

The orthogonal projection of this tangent vector to ARθ at Rθ is the covariant
derivative of the unit normal vector along the curve t �→ c(t). It follows that the
second fundamental form is

II (Xp,q,Xp,q)=−〈Xp,q | ∇Xp,q n(t)〉= ((p−q)2 − (p+q)2) sin(2θ).

Whereas the first fundamental form, i.e., the metric itself, is

〈Xp,q |Xp,q〉= (p−q)2 cos2 θ + (p+q)2 sin2 θ.

Therefore, the principal eigenvalues are −2cotanθ and 2 tan θ . It follows that the
mean curvature value is κ(θ)=−4cotan(2θ). The function κ ◦ θ̄ is then increasing
with time: this is the required CMC time function.

Remark 7.7. The closure of the domain U meets the conformal boundary at
infinity ∂AdS3 on a topological non-timelike circle, but it is not a spacelike curve.
Actually, the intersection of the closure of U with ∂AdS3 is the union of four light-
like geodesic segments (see Figure 3).

Remark 7.8. The Torus Universes as defined above are the same as those
described in [10] in the case of negative cosmological constant (this follows imme-
diately from the results of Section 7.2 below). Observe that the expression of the
metric on the A-orbit enables to recover easily the features discussed in [10]: the
volume of the slices θ̄ =Cte are proportionnal to sin 2θ , and the conformal clas-
ses of these toroidal metrics describe geodesics in the modular space Mod(T ) of
the torus. More precisely: on the slice θ̄ =Cte, the conformal class and the sec-
ond differential form define naturally a point in the cotangent bundle of Mod(T ),
and when the Cte is evolving, these data describe an orbit of the geodesic flow
on T ∗Mod(T ). Conversely, every orbit of the geodesic flow on T ∗Mod(T ) corre-
sponds to a Torus Universe.

7.2. every maximal globally hyberbolic spacetime, locally modeled
on AdS3, with closed cauchy surfaces of genus 1 is a torus
universe

In this section, we consider a maximal globally hyberbolic Lorentizan manifold M,
locally modelled on AdS3, whose Cauchy surfaces are 2-tori. We will prove that
such a spacetime M is isometric to a Torus Universe (as defined in Section 7.1).
Together with Theorem 7.2, this will imply that M admits a CMC time function.
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As in Section 6, we consider a Cauchy surface �0 in M, and the lift ˜�0 of �0

in the universal covering ˜M of M. We have a locally isometric developing map d :
˜M→ −AdS3, and a holonomy representation ρ of π1(M)=π1(�0) in the isome-
try group of AdS3. We denote �=ρ(π1(M))⊂SL(2,R×SL(2,R) (here, we prefer
to see the isometry group of AdS3 as SL(2,R×SL(2,R) rather than O(2,2)), and
we denote S0 = d(˜�0). According to Proposition 5.2, S0 is properly embedded in
AdS3.

The surface σ0 is a two-torus: hence, the fundamental group of �0 is isomor-
phic to Z

2. Moreover, according to Proposition 5.2, � = ρ(π1(M)) is a discrete
subgroup of SL(2,R) × SL(2,R). Hence, � is a lattice in some Abelian group
A=HL×HR, where HL={ethL}t∈R (resp. HR ={eshR }s∈R is a one parameter sub-
group of SL(2,R)×{id} (resp. {id}×SL(2,R)). Since A is isomorphic to R

2, these
one-parameter groups are either parabolic or hyperbolic. In other words, up to
factor switching and conjugacy, there are only three cases to consider:

– Hyperbolic – hyperbolic:

hL=hR =
(

1 0
0 −1

)

.

– Parabolic – parabolic:

hL=hR =
(

0 1
0 0

)

.

– Hyperbolic – parabolic:

hL=
(

1 0
0 −1

)

and hR =
(

0 1
0 0

)

Let us consider an orbit O of A. The restriction to O of the ambient Lorentzian
metric defines a field of quadratic forms on O. Since A is a group of isometries,
the quadratic forms appearing in this field have a well-defined type: each of them
is either positive definite, negative definite, Lorentzian, or degenerate. We call such
a field of quadratic forms a generalized metric. The following lemma describes all
the “isometry” type of generalized metrics which can arise by this construction:

LEMMA 7.9. Every orbit O of A has dimension 1 or 2. Moreover:

– If O has dimension 1, then it is isometric to a line, or to an isotropic line (i.e.
equipped with the trivial null generalized metric).

– If O has dimension 2, then it is isometric to the Euclidean plane, the Minkow-
ski plane, or the degenerate plane, i.e. the plane with coordinates (x, y) equipped
with the quadratic form dx2.

Proof. If an element (ethL, e−shR ) fixes a point g in SL(2,R), then ethL =
geshRg−1. Observe that in the hyperbolic-parabolic case, this implies s = t = 0: in
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this case, every orbit of A is a two-dimensional plane. In the hyperbolic-hyperbolic
case or the parabolic-parabolic case, this implies s= t and g= ethL : hence, there is
no zero-dimensional orbit, one-dimensional orbits are lines, and two-dimensional
orbits are planes.

We parametrize the A-orbit O of an element g0 of AdS3 ≈SL(2,R) by (s, t) �→
ethLg0e−shR . The differential of this parametrization is

(hLethLg0e−shR )ds− (ethLg0e−shRhR)dt.

Since hR and hL commute respectively with their exponential, and since these
exponentials have determinant 1, the determinant of this expression reduces to the
determinant of

(hLg0)ds− (g0hR)dt.

The quadratic form induced on the tangent space of O at (s, t) is – det of this
expression.

If O has dimension 1, then g0hRg
−1
0 = hL = hR, thus this determinant is equal

to the determinant of hLds − hLdt . In the parabolic – parabolic case, we obtain
identically 0: O is an isotropic line. In the hyperbolic–hyperbolic case, we obtain
(d(s− t))2 :O is a Euclidean line.

When O has dimension 2, it is diffeomorphic to the plane. Observe that in the
expression above, s and t appear only by their differentials: this means that the
generalized metric is actually a parallel field of quadratic forms. In other words, it
is given by the quadratic form -det(hLg0ds−g0hRdt) on the 2-plane O with linear
coordinates (s, t). The lemma follows from the classification of quadratic forms on
the plane (the negative definite case and the case – (dx)2 are excluded since the
quadratic form is obtained by the restriction of a Lorentzian quadratic form).

LEMMA 7.10. The surface S0 intersects only two-dimensional spacelike orbits of A.
Proof. Let O be the A-orbit of an element x0 of S0. Assume first that O has

dimension 1: according to Lemma 7.9, O is a line. Observe that O is preserved by
the action of �. Since � acts freely on S0, x0 is not fixed by any element of �.
Hence, every �-orbit in O is dense. It follows that there are �-iterates of x0 ar-
bitrarly close to x0. This is impossible, since � acts properly in a neighbourhood
of S0.

Therefore, O has dimension 2. Assume that O is not spacelike. According to
Lemma 7.9, it is isometric to the Minkowski plane or the degenerate plane. Since
S0 is spacelike, S0 and O are transverse. Their intersection is a closed 1-manifold
L. Moreover, the ambient Lorentzian metric restricts as a metric on L which is
complete. The argument used in Proposition 5.2 can then be applied once more:
if O is a Minkowski plane, L intersects every timelike line in O in one and only
one point, and if O is degenerate, the same argument proves that L must inter-
sect every degenerate line y=Cte in one and only one point (in this situation, the
projection of L on the coordinate x is an isometry!).
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It follows that in both cases, L is connected. Therefore, it is isometric to R. But
since O and S0 are both preserved by �, the same is true for L: we obtain that
L≈R admits a free and properly discontinuous isometric action by �≈Z

2. Con-
tradiction.

According to the lemma, some orbits of A are spacelike, and this excludes all
the cases except the hyperbolic – hyperbolic case. Hence, A is precisely the abe-
lian group of isometries studied in Section 7.1 for the definition of the Torus Uni-
verses. Moreover, Lemma 7.10 states precisely that S0 is contained in a connected
component U of the domain �. Since this is true for any Cauchy surface �, and
since M is globally hyperbolic, the image of the developing map is contained in U .
Hence, M embeds isometrically in the Torus Universe � \U . Since M is maximal
as a globally hyperbolic spacetime, M is actually isometric to this quotient.

Thus, we have proved:

THEOREM 7.11. Every maximal globally hyperbolic Lorentzian manifold, locally
modelled on AdS3, with closed oriented Cauchy surfaces of genus 1 is isometric to
a Torus Universe.

COROLLARY 7.12. Torus Universes are maximal as globally hyperbolic spacetimes.
Proof of Theorem 1.1 in the case of g= 1. The result follows from Theorems

7.11 and 7.2.
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géométriques et trous noirs”.

References

1. Andersson, L.: Constant mean curvature foliations in flat spacetimes, Comm. Anal.
Geom. 10(5) (2002), 1125–1150.

2. Andersson, L., Galloway G. and Howard, R.: The cosmological time function, Classi-
cal Quantum Gravity 15(2) (1998), 309–322.

3. Andersson, L. and Moncrief, V.: Elliptic-hyperbolic systems and the Einstein equation,
Ann. Henri Poincaré 4(1) (2003), 1–34.
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