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Abstract

We generalize to the Finsler case, the Lelong-Ferrand-Obatta The-
orem about the compactness of conformal groups of compact Rieman-
nian manifolds, except, the standard sphere.

1 Introduction

The goal of this note is to present a proof of the following:

Theorem 1.1 If the conformal group of a compact smooth Finsler manifold
is not compact, then it is the canonical Riemannian sphere.

To begin with let us recall that, roughly speaking, a smooth Finsler
metric on a manifold M is a smooth field x → fx, where for each x ∈ M , fx

is a norm on the tangent space TxM .
We shall discuss smoothness and variants in §3.
Our result says that, even in the wide world of compact Finsler manifolds,

only the canonical Riemannian spheres are conformally “remarkable”!.
The analogous fact is no longer true in the non-compact case. A normed

vector space E (of finite dimension) seen as a Finsler manifold is called a
Minkowskian space (a generalization of Euclidean spaces). Homotheties
act conformally on any Minkowskian space, which thus has an essential
conformal group, that is, this group can not be reduced to an isometry
group (for some other structure).

1.1 History, Ferrand’s oeuvre

The Riemannian case is known in the literature as Lelong-Ferrand-Obatta
Theorem answering a Lichnerowicz conjecture. We refer to [7] for a report
on the history of the proof of this result, which is considered nowadays as
a paradigmatic example of geometrico-dynamical rigidity. To up-date this
reference, let us quote [11] where a purely dynamical proof is given. Actually,
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the former full proof was established by J. Ferrand. In fact, she also proved
a non-compact version, claiming that a non-compact Riemannian manifold
with a conformal group acting non-properly, is the Euclidean space [8].

1.2 Dynamics

Many previous partial cases of our result were proved by many authors
(see for instance [1]). One of them is the topological rigidity of spheres
among Finsler manifolds with non-precompact conformal group proved by
J. Ferrand [9]. Recall that precompacteness means that the closure of the
group is compact in the group of all homeomorphismes (endowed with the
compact-open topology). We agree with Ferrand’s opinion on the subtlety
of this closeness question! For this, we find it interesting to split the result
into two natural parts. The first one is:

Lemma 1.2 If the conformal group of a compact smooth Finsler manifold
is not precompact, then it is the canonical Riemannian sphere.

1.3 Our regularity

The last part which allows us to complete the proof of Theorem 1.1 is:

Lemma 1.3 A C0 limit of C∞ conformal transformations of a compact
Finsler manifold, is a C∞ conformal transformation.

In particular if the conformal group is precompact (as a subgroup of the
homeomorphisms), then it is compact.

Let us emphasize on the fact that everything here is C∞. The Finsler
metrics are smooth (as it will be precised in §3). Also, by the conformal
group, we mean those conformal transformations which are C∞.

1.4 General framework. Conformal Lichnérowicz problem
on metric spaces

In reality, one can speak about C1 conformal transformations on Finsler
manifolds. Our result is true with a C3 finite regularity. We assumed here
all things C∞, for the sake of simplicity, and also, because, anyway, this
does not help to attack the true question, the topological one. In fact,
more generaly, it is possible to define conformal homeomorphisms for metric
spaces!

• In order to get a coherent theory, one naturally asks the following
regularity question:

Is: topologically conformal = smoothly conformal ?
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(of course when the last notion is meaningful, that is, for metric spaces
generated by C0 Finsler metrics on smooth manifolds).

From the fact that the notion is topological, closeness of the topological
conformal group with respect to the compact-open topology, becomes trivial.
In particular, a positive answer to the regularity question in the Finsler case,
would trivially imply Lemma 1.3.

The positive answer to the regularity question in the case of Euclidean
spaces, and then the general case of smooth Riemannian manifolds, was a
very deep result of geometric analysis (see for instance [13, 14]).

• The conformal group of a metric space (or the space itself) will be
called essential if it can not be reduced to the isometry group (say, for
an auxiliary metric). Equivalently, when the space is locally compact, the
conformal group is essential if it is not equicontinuous.

A natural exciting question is:

Classify conformally essential metric spaces.

Some particular cases are:
– A compact conformally essential C0 Riemannian (or Finsler) space is

the usual sphere?
– A non-compact conformally essential C0 Riemannian (resp. Finsler)

space is the Euclidean (resp. a Minkowskian) space?
As was said in §1.1, J. Ferrand proved that the Euclidean space is the

only smooth conformally essential non-compact Riemannian manifold.
The analogous Finslerian fact would be that, a conformally essential

non-compact smooth Finsler space is Minkowskian?

1.5 Further developments. The “linear” group of a Finsler
structure.

Let (M,f) and (M,f ′) be two Finsler structures on M . Say they are (point-
wise) linearly equivalent, if for any x ∈ M , the norms fx and f ′x are linearly
equivalent on TxM , i.e. f ′x = fx ◦ lx, for some linear isomorphism lx. For
instance, two conformally related metrics are linearly equivalent.

Let Lin(M,f) be the subgroup of diffeomorphisms of M preserving the
equivalence class of (M,f). For instance, in the case of a Riemannian or
more generally Berwald metric (see §2). Lin(M,f) is the group of all dif-
feomorphisms. On the other hand, if Lin(M,f) acts transitively, then the
metric is necessarily Berwald. We think it is worthwhile to investigate this
group. For example, can it be a non-trivial Lie group (of finite dimension)?
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1.6 Content

As for Lemma 1.2, the given proof will be complete. In particular, no knowl-
edge of Finsler geometry is supposed since we recall here rudimentary and
major facts on it, especially in comparison with Riemannian geometry. The
proof of Lemma 1.3 relies on “rigidity of conformal structures as geometric
structures”. The precise meaning of this (say, in the Riemannian case, to fix
ideas) is that a conformal transformation is fully determined by its 2-jet at
some point. “Everybody” knows this, or the essentially equivalent Liouville
Theorem: a conformal transformation of an Euclidean space of dimension
≥ 3 is a composition of similarities and inversions (see for instance [17]). Our
proof of Lemma 1.3 is complete up to details on this rigidity, for which we
outline a synthetic approach. Anyway, we consider that Lemma 1.2 should
be considered as the principal result of the article.

2 Dynamics: Proof of Lemma 1.2

2.1 Quasi-conformal dynamics

It is straightforward to define conformality, and more generally to measure
conformality defect (or distortion) for C1 diffeomorphisms on Finsler man-
ifolds. A differentiable group action is called quasi-conformal, if all its ele-
ments have a (uniformly) bounded conformality distortion. In the compact
case this notion does not depend on the Finsler metric.

J. Ferrand studied quasi-conformal actions and proved that they behave
dynamically as Möbius transformations.

Lemma 2.1 [10] (North-South dynamics for non-equicontinuous quasi-conformal
mappings). Let (φn) be a quasi-conformal sequence of diffeomorphisms of
a compact manifold M , which is not equicontinuous. Then, a subsequence
of it, say (φn) itself (for the sake of notation simplicity) has a north-south
dynamics, that is, there exist a, b, a′, b′ ∈ M , such that, on M − {a}, φn

converges uniformly on compact sets to (the singleton) b′, and similarly φ−1
n

converges uniformly on compact sets of M − {b} to a′.

Remarks 2.2
• The Lemma indicates a rough Möbius behaviour of quasi-conformal

groups. In dimension 2, thanks to the measurable Riemann mapping the-
orem, we have more: a quasi-conformal group is conjugate to a conformal
group (see for instance [18]). Our result here can be interpreted as a conju-
gacy with conformal action, of quasi-conformal groups, with the supplemen-
tary hypothesis that they are (exactly) conformal for some smooth Finsler
metrics.
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• This “abstract” lemma which implies (in a slightly stronger formula-
tion) the conformal rigidity of spheres (among compact Riemannian mani-
folds) was actually brought out after the proof of this rigidity. Let us also
point out here that many authors investigated degeneracy, uniform modulus
of continuity, regularity, dynamics... of quasi-conformal maps, in both the
classical case of the Riemann sphere (dimension = 2), the general case of
Euclidean spaces, or more generally on Riemannian spaces (as references,
one can may quote [14, 13, 15, 18]). A historical point is worthwhile on this
subject!

2.2 Berwald spaces

A Finsler space (M,f) is called Berwald, if all the norms (TxM,fx), x ∈ M ,
are linearly equivalent. That is, there exists x0 ∈ M such that for any x ∈
M , there is a linear isomorphism Lx : TxM → Tx0M , such that fx0 = fx◦Lx

(see [3] for a nice modern account on Finsler geometry).

Lemma 2.3 If a Finsler metric on a compact manifold has a non-precompact
conformal group, then it is Berwald.

Proof. Consider the notations of Lemma 2.1. Let x 6= a, and denote xn =
φn(x). Since xn is near b′, there is Kn : TxnM → Tb′M , an almost isometry
between fxn and fb′ . By conformality, we can write Dxφn = λnRn : TxM →
TxnM , where Rn is an isometry. Consider Ln = KnRn : TxM → Tb′M .
Obviously any limit of Ln gives rise to a linear isometry between fx and fb′ .
♦

2.3 Riemann versus Finsler

A “folkloric” fact of “synthetic geometry of normed spaces” states that any
normed space hides a Euclidean one! Unfortunately, this beautifull fact
seems to not be taken over by modern differential geometry. To state this
fact, consider Conv(E), the space of all compact convex and with nonempty
interior subsets of a finite dimensional normed space E. Let Ell(E) ⊂
Conv(E) be the subspace of (closed) ellipsoids (i.e. linear images of a Eu-
clidean closed ball).

Fact 2.4 There is a mapping: Euc : Conv(E) → Ell(E) (where, Euc stands
for Euclid), defined by the condition that Euc(C) is the ellipsoid with min-
imal volume containing C. This mapping is equivariant under the action
of the affine group Aff(E). It is also continuous in a natural way, say with
respect to a Hausdorff metric.
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Proof. For C ∈ Conv(E), the subset of ellipsoids containing C and con-
tained in some closed ball in E is compact. The existence of a volume
minimizing ellipsoid follows then from the continuity of the volume func-
tion: Conv(E) → R, (see for instance [4].) The point is then uniqueness of a
volume minimizing ellipsoid. Observe also that this does not depend on the
chosen volume form on E. For the sake of completeness, we present here a
complete proof for uniqueness. We argue by contradiction. Assume that C
is contained in two minimizing volume ellipsoids C1 and C2. Observe that
C is then contained in the convex combination tC1 + (1− t)C2 (that is the
unit ball of the convex combination of the associated Euclidean metrics).
Let f(t) = vol(tC1 + (1− t)C2). To get a contradiction, one just shows that
f is a convex function, and for this goal, we just compute it. Up to a linear
transformation, one can assume that C1 is the canonical unit ball Σx2

i ≤ 1.
After diagonalizing the symmetric matrix representing C2, one can write it
in the form Σc2

1x
2
i in some orthogonal coordinate system.

In general, denote by V (a1, . . . , an) the volume of the ellipsoid Σa2
i x

2
i ≤

1. Any diagonal linear mapping (x1, . . . , xn) → (b1x1, . . . , bnxn) preserves
these equations of ellipsoids, and multiplies volume by

∏
bi. It then follows

that, up to a positive constant, V (a1, . . . , an) =
∏

i
1
ai

, and then f(t) has
the form (

∏
i(c

2
i + t(1− c2

i ))
−1. The convexity of f follows then easily. ♦ ♦

A minor remark is in order: the so obtained ellipsoid is not necessarily
symmetric, since the initial convex is not supposed to be. However, when
dealing with conformal transformations, one can, without worrying, sym-
metrize everything.

From this, one gets a functor from Finsler spaces to C0 Riemannian
spaces.

Lemma 2.5 In the case of a smooth Berwald metric, its associated Riem-
manian metric is smooth.

Proof. For the sake of simplicity, let us restrict ourselves to convex sets
containing (a neighbourhood of) 0 and to the GL(E)-action. For such a
convex C, consider its GL(E)-orbit,

O(C) = {A(C), A ∈ GL(E)}

In an open set U of M where the tangent bundle is trivial, a smooth
Berwald metric is given by a smooth mapping s : U → O(C), for some
convex C (the unit ball at some tangent space).

The associated Riemannian metric is just given by Euc◦s : U → Ell(E).
The question reduces to see that the restriction of Euc to an orbit O(C)

is smooth. Such an orbit is a homogeneous space GL(E)/K, where K is
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the stabilizer of C, that is, the group of linear transformations preserving
C. In the case of the unit ball of the Euclidean space of dimension n, the
stabilizer is O(n). The orbit is thus identified to “the universal” symmetric
space GL(n)/O(n).

In general, being compact, K can be seen after conjugacy inside O(n).
After this, the mappping Euc, becomes just the canonical projection

GL(n)/K → GL(n)/O(n),

which is analytic. Therefore, the Riemannian metric is as regular as the
Berwald one. ♦

2.4 End of the proof of Lemma 1.2

Recall the notation (M,f) for the Finsler (Berwald) metric under considera-
tion, and let us denote by (M,Euc(f)) its associated Riemannian structure.
Note that if F ∈ Conf(M,f) then Euc(F ∗f) = F ∗(Euc(f)), this implies
that Conf(M,f) ⊂ Conf(M,Euc(f)). Therefore, by Ferrand’s Theorem for
Riemannian manifolds, M is a usual sphere Sn, and G = Conf(M,f) is a
subgroup of O(1, n).

It is known that any precompact subgroup of O(1, n) is conjugate to a
subgroup of O(n).

On the other hand a non-precompact subgroup contains an element B
which is parabolic or hyperbolic (see for instance [19]). A quick definition of
these notions goes as follows. In both cases the conformal transformation has
(at least) a fixed point. It can thus be seen as a similarity of the Euclidean
space Rn. It has the form x → λR(x) + a, where R ∈ O(n). The hyperbolic
case corresponds to |λ| 6= 1, in particular there is another fixed point in Rn.
The parabolic case corresponds to the situation where there exists no fixed
point in Rn (essentially a translation).

Now, we argue by a simple calculation to show that the Finsler metric
must be Riemannian.

The proof for the parabolic and hyperbolic cases are similar. Therefore,
we restrict ourselves to the case B hyperbolic.

We have a Berwald metric f on Rn, invariant under a non-trivial linear
similarity with a non-trivial distortion, λ < 1, say. It has therefore (a finite)
fixed point, and is up to conjugacy conjugate to x → λR(x), with R ∈ O(n),
a rotation.

The conformal invariance translates to the fact that the Finsler metric
f at λmRm(x) is proportional to fx ◦ (R−1)m, for any integer m.

Since, R is a rotation, one can choose a subsequence mi such that
(R−1)mi → 1, and thus concludes (by continuity), that all norms fx are
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proportional to f0 (since λmRm(x) → 0). In other words, (Rn, f) is confor-
mal to the Minkowskian space (Rn, f0).

Now, the point is to see that a non-Euclidean norm on Rn, say f0, cannot
extend conformally and continuously to ∞ in order to give a conformal
Finsler structure on Sn, invariant under the hyperbolic transformation.

A chart around ∞ is given by the inversion x → x
||x||2 , where ||x|| =

√
< x, x > denotes the Euclidean norm.

The derivative of this inversion at x, is given by:

u → 1
||x||2

(u− 2〈u,
x

||x||
〉 x

||x||
) =

1
||x||2

Sx(u),

where Sx is the orthogonal symmetry around the line Rx.
Therefore, the Minkowskian norm f0 tranforms to a Finsler metric

Fx(u) = f0(
1

||x||2
Sx(u))

However, our hyperbolic transformation has a similar linear form at ∞ (with
a distorsion λ−1). Therefore, the same conclusion holds as above, that is, all
the family of norms Fx are proportional to a same one, f1, say. A standard
argument allows one to see that f1 must equal f0, and its unit ball is invariant
under all axial symmetries, and hence it is Euclidean. ♦

Remark 2.6 (Ferrand’s Theorem for C0 Riemannian metrics?) Observe
that all developments about Berwald metrics could be avoided if Ferrand’s
Theorem was true for C0 Riemannian metrics.

3 Regularity, Proof of Lemma 1.3

The essential idea behind the concept of a smooth Finsler metric on a man-
ifold M , is that it is an assignment x → fx, a norm on TxM , which varies
in a smooth way with respect to x.

3.1 Usual (strong) definition

The standard definition is more precise, and different in a non-trivial meaner.
For instance, from [3], a (smooth) Finsler metric on M is a mapping f :
TM → [0,∞[ which is:

- smooth outside the null section,
- positively homogeneous f(λux) = λf(ux), for λ ∈ [0,∞[, x ∈ M ,

ux ∈ TxM ,
- The fiberwise Hessian of f is positive definite.
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• Some weakness. Because of the absence of the symmetry condition
f(ux) = f(−ux) i.e. the fiberwise levels are not symmetric, f does not
determine true norms on fibers, let us call them non-symmetric norms
(they satisfy positive homogeneity and triangle inequality). As an example,
Randers metrics are not symmetric. They are functions on TM of the
form g + ω, where g is a Riemannian metric on M and ω is a differential
form of degree 1 on M (they are sometimes interpreted as Hamiltonians of
electromagnetic fields).

• Strength. The definition means, in other words, that the unit ball of
the non-symmetric norm is smooth and strongly convex. For instance, this
(unfortunately) excludes beautiful norms like ‖ . ‖1 and ‖ . ‖∞!

3.1.1 Differential calculus, geodesic flow...

We refer the interested reader to [3] to see which Riemannian notions extend
or not to the Finsler case. For instance, it seems that Weyl tensors (the
conformal and the projective ones) are difficult to imitate in the Finsler
case. In contrast, new invariants appear in Finsler geometry, e.g. a tensor
to measure if the structure is Berwald...

The condition of strong convexity is the right one to get a good Legendre
transformation, and then a Hamiltonian formulation for the geodesic flow.
Therefore, thanks to this precise definition, geodesics for Finsler metrics
behave exactly as in the Riemannian case.

Example 3.1 (Smoothness of isometries) A C0 isometry is a homeomor-
phism preserving the distance (generated from the Finsler metric). It is
Lipschitz, and hence almost everywhere differentiable. Because of tameness
of geodesics, one can define an exponential map as in the Riemannian case.
At any point where an isometry is differentiable, it becomes conjugate to its
linear part, via the exponential map. A standard argument allows one to
deduce that the isometry is then (everywhere) smooth.

Remark 3.2 (C0 metrics) The definition of C0 Finsler metrics can not give
rise to controversy: just a continuous f : TM → [0,∞[ whose restrictions
to fibers are non-symmetric norms.

3.2 Weaker smoothness

We discuss now a weaker notion of smoothness of Finsler metrics, from which
we would essentially like to allow norms on individual tangent spaces to be
non-differentiable. Furthermore Lemma 1.2, and very presumably the full
Theorem 1.1, apply with this weaker smoothness.
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Let E be a vector space, and consider H(E) the vector space of positively
homogeneous functions h : E → R of degree 1, h(λx) = |λ|h(x). It can be
endowed with a family of equivalent Banach structures: any bounded open
subset B of E containing 0, determines a norm supB |h|.

The space of non-symmetric norms N (E) (i.e. those positive h satisfying
the triangle inequality) is a closed cone in H(E).

One can proceed by generalizing this construction to vector bundles, e.g.
the tangent bundle of a manifold M , and defines smooth Finsler metrics
in this way. Concretely, over an open set U , where TM is trivial, say
tangent spaces are identified with E, a Ck Finsler metric is a Ck mapping
s : U → H(E), with values in N (E). In order to avoid confusion with
the previous smoothness notion, let us call a Finsler metric functionally
smooth if it is C∞ as we have just defined it.

A naive example: visual metrics. Let Ω be an open convex set of
Rn. A “visual” metric on Ω can be defined by the rule: the unit ball in
TxΩ = Ω − x (= {u − x, u ∈ Ω}). The Finsler metric as a mapping with
target the space of convex sets is x → Ω − x. It is therefore functionally
smooth.

Now, observe that in our proof of Lemma 1.2, we used smoothness just
in order to get a smooth Berwald metric and thus a smooth Riemannian one
(and then apply the known result in this case). However, it is obvious that
functional smoothness suffices with respect to this goal:

Theorem 3.3 If the conformal group of a compact functionally smooth
Finsler manifold is not precompact, then it is the canonical Riemannian
sphere.

3.3 Geometric structures

The notion of geometric structures seems to grow with time. A remark-
able evolution was made by giving up “infinitesimal homogeneity” (as in
G-structures) when M. Gromov introduced and successfully applied, a more
general concept, just called “geometric structure” (see [6, 12, 5]. Unfortu-
nately, this does not seem to include the case of Finsler metrics!!!

Nevertheless, a Finsler structure generate many geometric structures, in
both classical and Gromov senses. Definition and study of them, is the true
theme of Finsler differential geometry. Let us consider here two of such
structures, which are defined on TM − 0. At any u ∈ TxM , the Hessian of
f at u determines a scalar product gu on Vu where V is the vertical of the
fibration TM → M .
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A partial Riemannian metric: The (gu) determine a Riemannian metric
along fibers. In other words, we get a Riemannian metric on the vector
bundle V over TM − 0.

A degenerate Riemannian metric: One uses the identification Vu ≈ TxM
to get a metric on TxM (depending of u). By means of the projection
π : TM → M , one gets a semi-definite scalar product on Tu(TM): 〈., .〉u =
gu(duπ(.), duπ(.)). This gives rise to a degenerate Riemannian metric on
TM , whose Kernel is exactly V.

A nice fact in Gromov’s theory of geometric structures is that the “union”
of two geometric structures is a geometric structure... Therefore, these par-
tial and degenerate Riemannian metrics can be seen together as a geometric
structure on TM . Let us call it the Riemannian-like structure on TM
associated to the Finsler metric f .

A remarkable fact is that the conformal group of (M,f) acts conformally
with respect to this structure. This is the major advantage of this structure
in comparison with the similar suggestive construction of a plain Riemannian
metric on TM , by endowing the “horizontal” bundle with the degenerate
metric. Indeed, it is possible to construct a horizontal bundle, as in the
Riemannian case. However, the so obtained (full) metric is never conformally
invariant.

Finally, from geometric structures point of view, our Riemannian-like
structure enjoys all nice properties of Riemannian metrics. For instance, it
is a rigid structure of algebraic type.

Remark 3.4 Being or not geometric structures, there is an obvious natural
“superiority” of Finsler metrics relative to the Riemannian ones, see for
instance [2] for their applications. This lack of structure is in fact a source of
richness, involving all convex sets (instead of ellipsoids as in the Riemannian
case).

3.4 Rigidity. Proof of Lemma 1.3

There are many approaches to Lemma 1.3 in the conformal Riemannian
case. We now outline a proof which can be straightforwardly adapted to
the general case of rigid geometric structures. Let (fn) be smooth confor-
mal transformation of a Riemannian manifold (M, g). The significance of
rigidity (of conformal Riemannian structures) is the existence of a natu-
ral associated bundle, on which conformal transformations, become isome-
tries (for some naturally associated Riemannian metric). The geodesics of
this metric projects onto (parameterized) curves of M , called conformal
geodesics (see for instance [16]). As an example, conformal geodesics of the
Euclidean space are circles (and lines) parameterized homogarphically (that
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is, all parameterizations are obtained from a constant speed one, by means
of projective changes). Now, if (fn) converges in the C0 topology to a home-
omorphism f , then f also preserves these conformal geodesics. This allows
one to check directional smoothness of f , and finally that it is fully smooth
and conformal.

In the case of conformal Finsler structures, one considers conformal
geodesics of their associated Riemannian-like metrics. ♦ ♦ ♦
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