
Geom Dedicata (2017) 189:59–78
DOI 10.1007/s10711-017-0217-1

ORIGINAL PAPER

On rigidity of generalized conformal structures

Samir Bekkara1 · Abdelghani Zeghib2

Received: 30 October 2014 / Accepted: 3 January 2017 / Published online: 11 January 2017
© Springer Science+Business Media Dordrecht 2017

Abstract The classical Liouville Theorem on conformal transformations determines local
conformal transformations on the Euclidean space of dimension ≥3 . Its natural adaptation
to the general framework of Riemannian structures is the 2-rigidity of conformal transfor-
mations, that is such a transformation is fully determined by its 2-jet at any point. We prove
here a similar rigidity for generalized conformal structures defined by giving a one parameter
family of metrics (instead of scalar multiples of a given one) on each tangent space.
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1 Introduction

Rough notion For a vector space E , let Sym(E) be the space of symmetric bilinear forms on
E , Sym+(E) those which are positive definite, and Sym∗(E) the non-degenerate ones.

For a manifold M , one defines similarly fiber bundles Sym(T M), Sym+(T M) and
Sym∗(T M) associated to its tangent bundle T M .

A Riemannian metric is nothing but a section of Sym+(T M). Recall on the other hand
that a (Riemannian) conformal structure consists in giving a class [g] of Riemannian metrics,
for the conformal equivalence relation ∼ between metrics: g1 ∼ g2 if there exists a function
σ on M such that g1 = eσ g2. Thus, a conformal structure consists in giving a section of the
projectivized of Sym+(T M).

Equivalently, a conformal structure consists in giving for each point x ∈ M , a half line in
Sym+(TxM).

We are now going to introduce a first rough definition of generalized conformal structures
(GCS for short) by associating to each x ∈ M a (non-parameterized) curve in Sym+(TxM).
Say, this consists in giving a subset C ⊂ Sym+(T M) such that the fibers of the projection
C → M have dimension ≤1 and are non-empty. One naturally defines the image of such
a structure C by a diffeomorphism, and an automorphism group Aut (C). In the sequel,
automorphisms will be alternatively called isometries.

Our goal is to study such objects from the point of view of being “rigid geometric struc-
tures”. Roughly speaking, d-rigidity means that an automorphism is fully determined by its
jet up to order d at any point.We have here two “limit” cases, that where the C-fibers are points
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(a Riemannianmetric), and the other where the C-fibers are half-lines (a conformal structure).
It is known that Riemannian metrics are 1-rigid, whereas conformal structures are 2-rigid in
dimension ≥3; this is the essence of classical Liouville Theorem. Our generalized case here
when the C-fibers are general curvesmay be expected to be as rigid as the conformal case, that
is one has 2-rigidity. In some sense, one naturally expects that when going from straight lines
to general curves, one can not lose of rigidity because one getsmore constraints on isometries.

1.1 A first example

Let us start by this general example which will give evidence that some topological tameness
hypotheses on C are in order. Let φt be a flow on M and g0 any initial metric on M . For
any x , give Cx as the (parameterized) curve t → (φt∗g0)x ∈ Sym+(TxM), here φt∗g0 is the
image of g0 by φt .

Observe that φt ∈ Aut (C). Thus, any flow gives rise to a rough GCS with a non-trivial
automorphism group, which may have a strong dynamics. One can not expect for such a
structure to behave as a nice geometric structure!

1.2 (Regular) Definition

We are now going to propose a definition of GCS which will be proved to be adapted to our
rigidity hope, just by assuming that the corresponding subset C is a manifold.

More precisely, let us say C is a regular GCS if C is a submanifold of dimension dim M+1
in Sym+(T M), which is transverse to the fibers (of Sym+(T M) → M). Equivalently, the
projection C → M is a submersion and dim C = dim M + 1.

Each fiber Cx is thus a (non-necessarily connected) embedded 1-dimensional submanifold.
In the case of a classical conformal structure, C is in fact a closed submanifold and it fibers
over M .

Let us say that C is generic if the tangent direction of Cx at any of its points belongs to
Sym∗(TxM). In other words, if Cx is parameterized as a curve t ∈ R → cx (t) ∈ Sym(TxM),
then c′

x (t) is assumed to be non-degenerate. For example, classical conformal structures are
generic.

1.3 A second example, infinitesimally homogeneous case (see 3.1)

Let us consider the situation where there is a 1-dimensional submanifold C0 ⊂ Sym+(Rn)

such that for any x , Cx = A∗
x (C0) where Ax : R

n → TxM is a linear isomorphism and A∗
x

is the associated map Sym+(Rn) → Sym+(TxM). If the dependence x → Ax is smooth,
then C is a GCS, which as in the standard conformal case, gives rise to a fibration C → M .

Let us here mention one useful and beautiful property of this moduli spaceSym+(Rn), or
more generally any Sym+(E), for E a linear space; this is the space of “linear” Riemannian
metrics on E , and it admits itself a canonical Riemannianmetric, whichmakes it as a universal
symmetric space under the natural action of GL(E) (see Sect. 3.2.1).

Let H be the stabilizer subgroup in GL(n, R) of C0. For any x ∈ M , consider Ix the set
of isomorphisms TxM → R

n sending Cx to C0. This is clearly an H -orbit in the GL(n, R)-
space Isom(TxM, R

n), that is the fiber over x of the frame bundle PM → M . When x runs
over M , we therefore get a section of PM/H → M , that is an H -structure on M .

Conversely, an H -structure gives naturally a GCS of type C0. Indeed, by definition of an
H -structure, it consists in giving for any x , an H -orbit Ix as above. The pull back Cx of the
curve C0 by any element of Ix does not depend on the choice of such element.

123



62 Geom Dedicata (2017) 189:59–78

1.4 Rigidity

Let φ be a diffeomorphism of M and φ∗ its induced action on Sym(T M). Then φ is an
automorphism of C (a GCS on M) if φ∗(C) = C.

The following discussion applies to diffeomorphisms sending a point p ∈ M to another
q ∈ M , but we will be specially interested in the case p = q . Then, define φ to be isometric
up to order 1 at p, if φ(p) = p and (φ∗(C))p = Cp , i.e. φ∗(C) and C meet along Cp . We
say that φ is isometric up to order d ≥ 1 at p or simply a d-isometry if φ∗(C) and C have
contact of order (d − 1) along Cp . In order to be complete, let us precise that the local model
of two k-submanifolds V and W of R

N having a contact at order s along a curve C0, is that
where V = R

k , C0 = R ⊂ R
k , and W is the graph of a function f : R

k → R
N−k having a

vanishing Taylor expansion up to order s at all points of C0. Let us also indicate that we will
say that φ has a trivial d-jet at p if it has the same d-jet as the identity at p.

Rigidity at order 2 of classical conformal structures in dimension≥3, is essentially equiv-
alent to the classical Liouville Theorem stating that any local conformal transformation of
a Euclidean space of dimension ≥3, is a composition of a translation, a similarity and an
inversion (see for instance [6,9,15]). There are many approaches to this rigidity, including
that by the theory of H -structures of finite type, via computation of the prolongation spaces
for the conformal group H = R.O(n), see [1,12,14,16]. Here we generalize to generic GCS:

Theorem 1.1 (Generalized Liouville Theorem) Let C be a generic generalized conformal
structure on a manifold of dimension ≥3. Then C is d-rigid, for any d ≥ 2, that is a (d + 1)-
isometry at a given point with a trivial d-jet, has a trivial (d + 1)-jet.

An alternative formulationwould be that if a (d+1)-isometry at some point p, with d ≥ 2,
has a trivial 2-jet then it has a trivial (d + 1)-jet. In particular, if a smooth local isometry has
a trivial 2-jet at p, then it has trivial infinite jet, i.e. it is infinitely tangent to the identity at p.

In a first version of the present article we just proved 2-rigidity, we then investigate the
general case after request of the referee. In fact, in the case of geometric structures in the
Gromov sense, it is a general fact that k-rigidity implies d-rigidity for any d ≥ k, and
that a local isometry with a trivial k-jet at some point is the identity in a neighbourhood of
it. These implications are somehow “tautological” but follow from a highly sophisticated
machinery. Adaptation of this formalism to our situation seems possible but needs a specific
and independent investigation, see Sects. 2.2.3 and 2.2.4 for a preliminary discussion on
these aspects. Actually, our proof of d-rigidity of GCS for d > 2 is done by rather adapting
computations of the case d = 2.

One essential motivation behind the Gromov notion of k-rigidity for a geometric structure
is that it gives a way to prove that its isometry group is of Lie type. We will give details about
this question of Lie group structure of isometry groups of GCS (as well as lightlike metrics)
in a forthcoming article [4].

Example 1.2 (A non rigid example) Consider canonical coordinates (x1, . . . , xn) on R
n .

Endow it with C the “constant” GCS given by the curve of Euclidean metrics t (dx1)2 +
(dx2)2 + . . .+ (dxn)2, t > 0. This C is in fact an H -structure. Any diffeomorphism φ of the
form φ(x1, . . . , xn) = ( f (x1), x2, . . . , xn) is isometric. This structure is not rigid, indeed C
is not generic.

Note however that it may happen for a GCS to be rigid, even if it is not generic (such a
situation is thus not covered by our result). For instance, for an H -structure with H a one
parameter subgroup ofGL(n, R), one can prove it has finite type iff the Lie subalgebra of H
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contains no matrices of rank 1, in which case the structure has finite type 1, i.e. it is 1-rigid
like a Riemannian metric (see for instance ([14], p. 4) for one implication).

Remark 1.3 More generalizations of conformal structures can be obtained by relaxing the
dimension condition on C, say by assuming dim C = dim M + l, where l may be bigger than
1. The rigidity discussion will then depend on l and dim M?

2 Further investigations

2.1 Interplay with lightlike metrics

Our motivation behind the study of GC structures was in fact their relation with the lightlike
ones that we considered in [3]. Recall that a lightlike metric g on a manifold V is a tensor
which is a positive non-definite quadratic form of 1-dimensional kernel in each tangent space
of V [2]. The kernel of g is a direction field N , tangent to a 1-dimensional foliationN called
null or characteristic.

This null foliation is not necessarily oriented by a (global) non-singular vector field X
tangent to it, but we can assume it is the case by passing to a double cover, or arguing locally.
Then, the lightlike structure is said to be transversally Riemannian if the Lie derivative
LXg = 0. Let us say g is nowhere transversally Riemannian, if LXg(x) 
= 0, for any x . In
the stronger situation where LX g is non-degenerate on TV/N , g is said to be generic. Both
this genericity condition or being transversally Riemannian are independent of the choice of
a particular X orienting N .

2.1.1 From GCS to lightlike structures

Let C ⊂ Sym+(T M) be a GCS on M and π : C → M the projection. Let x ∈ M ,
q ∈ Cx = π−1(x), and consider the projection dqπ : TqC → TxM . Now, let q play the role
of a (definite) scalar product on TxM , its pull back by dqπ is a lightlike scalar product on
TqC . We get in this way a tautological lightlike metric on C.

Observe that this lightlike metric on C is nowhere transversally Riemannian, and also
that C is generic as a GCS iff its lightlike metric is generic (as defined previously). To
see all this, one writes all things in a local chart. If x = (x1, . . . , xn) are local coor-
dinates on M , then C admits a parameterization (t, x) → c(t, x) ∈ Sym+(TR

n) (one
can take c of the form c(t, x) = (d(t, x), x) ∈ Sym+(Rn) × R

n). The lightlike metric
is defined by g( ∂c

∂xi
, ∂c

∂x j ) = c(t, x)( ∂
∂xi

, ∂
∂x j ) (this last expression just means applica-

tion of the scalar product d(t, x) to ( ∂
∂xi

, ∂
∂x j )). If one takes X = ∂

∂t as a vector field

tangent to the null direction, then LX g(
∂c
∂xi

, ∂c
∂x j ) = ∂c

∂t (
∂

∂xi
, ∂

∂x j ). Now, for a given x ,
t → c(t, x) is a parameterization of Cx which is by our definition of a regular GCS,
an embedded 1-dimensional manifold. Hence ∂c

∂t (seen as element of Sym(Rn)) does not
vanish which shows that the associated lightlike structure is always nowhere transver-
sally Riemannian. The lightlike metric g is generic iff LXg is non-degenerate on the
space generated by the ∂c

∂xi
’s. This is equivalent to that ∂c

∂t is non-degenerate, that is C is
generic.

2.1.2 From lightlike to GCS structures

We will introduce a notion of simple lightlike manifold ensuring that it comes from a GCS.
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Definition 1 A lightlike manifold (V, g) is said to be simple if

(a) There is a Hausdorff manifold M and a submersion π : V → M , such that the connected
components of its levels are the leaves of the null foliation N .

(b) C is a regular GCS on M , where for x ∈ M , Cx is the set of all scalar products obtained
from the projections TyV → TxM , where y ∈ V is such that x = π(y).

It is not so easy to formulate directly condition (b) by means of (V, g) only (without
refereeing to M), but the condition implies in particular that (V, g) is nowhere transversally
Riemannian. Conversely, and this is the point, a nowhere transversally Riemannian lightlike
manifold is locally simple: any point admits a simple neighborhood.

Summarizing: there is a one to one correspondence between GCS structures and simple
lightlike ones, the generic in one hand correspond to the generic in the other, and locally any
nowhere transversally Riemannian lightlike metric gives rise to a GCS.

Example 2.1 For the classical conformal sphere S
n , the associated lightlike manifold V is

the Minkowski lightcone

Con+1 = {
x = (

x1, . . . , xn+2) ∈ R
n+2/q(x) = 0, xn+2 > 0

}

seen as a lightlike submanifold in the Minkowski space (Rn+2, q), where q(x) = (x1)2 +
. . . + (xn+1)2 − (xn+2)2.

2.1.3 Sub-rigidity

A lightlike structure is an H -structure for H the orthogonal group of the standard lightlike
scalar product (x1)2 + . . . + (xn−1)2 on R

n . This structure has infinite type in Cartan’s
terminology, equivalently it is not rigid in Gromov sense. We discussed in [3] subrigidity, a
weaker property, that may be satisfied by lightlike metrics. For i < d , a geometric structure
is (d, i) subrigid, if any d-isometry which has a trivial i-jet at some point has in fact a trivial
(i + 1)-jet at that point. In particular, (d + 1, d) subrigidity coincides with usual d-rigidity.

2.1.4 Isometry groups

Let us call a transvection of (V, g) any map V → V sending each leaf of N to itself. A
transvection is not necessarily isometric. In fact, any point admits in its neighborhood a non-
singular vector field generating (local) transvections, iff (V, g) is transversally Riemannian.

If (V, g) is simple, then we have a group morphism Iso(V, g) → Iso(M, C). Its kernel is
IsoTr (V, g), the group of isometric transvections. In the simple case, IsoTr (V, g) does not
contain one parameter groups, but we can not conclude it is discrete, for instance because
one does not know if Iso(V, g) is a Lie group.

Now, comparison between infinitesimal isometry groups of (V, g) and (M, C) is evenmore
complicated. We can however, as stated in [3], relate subrigidity of (V, g) to the rigidity of
(M, C). Our second main result in the present article will be to provide a proof of (d + 2, d)

subrigidity of lightlike metrics based on Liouville Theorem for GCS:

Theorem 2.2 In dimension ≥4, a generic lightlike metric is (d + 2, d) subrigid for d ≥ 1,
that is a (d+2)-isometry at a given point with a trivial d-jet has a trivial (d + 1)-jet. In
particular, an isometry with a trivial 1-jet at some point has a trivial infinite jet.

The proof will be given in Sect.6. The general case is no more difficult than that of d = 1,
that is (3, 1)-subrigidity. We will start giving a detailed proof in this last case and show
afterwards adaptations to the higher order case d > 1.
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2.2 Remarks on other aspects

Many other natural questions can be asked about both local and global properties of GCS.
For instance, one may try to weaken the genericity condition in Theorems 1.1 and 2.2, and
also study global properties of isometric actions preserving GCS from the point of view of
a global rigidity, say by asking a conjecture of Lichnerowicz type (see [8,10,12]). We will
here briefly discuss the following other aspects:

2.2.1 Pseudo-Riemannian case

If one replaces Sym+ by Sym∗, that is the space of non-degenerate quadratic forms (i.e.
scalar pseudo-products) then one gets pseudo-Riemannian GCS that are defined similarly
by giving a curve in each Sym∗(TxM), for x ∈ M . Theorem 1.1 seems to extend to this
wider framework. Indeed, all algebraic and local computations in Sects. 4 and 5 apply in
this situation, since they do not assume positiveness but rather non-degeneracy of metrics.
However, for the proof of Theorem 1.1, positiveness is required in particular to treat the
periodic case 3.2.

2.2.2 Anosov flows

Let us give hints that Anosov flows always preserve GCS (of Riemannian type), although
they never preserve classical Riemannian conformal structures (see for instance [13] for basic
notions). Indeed, this will be a particular case of the general construction of 1.1. The point is
that, one can choose the initial Riemannian metric g0 so that the corresponding family φt∗g0
defines a regular GCS. Essentially, for any x , t → (φt∗g0)(x) ∈ Sym+(TxM) is a properly
embedded curve Cx , and thus C = ∪xCx is a submanifold in Sym+(T M). To ensure this, one
has to start with an adapted g0, that is, it is contracted on the stable bundle, and expanded on
the unstable one.

Regarding genericity, let us make the following technical assumption (which it seems that
one can overcome). Denote by X the generating vector field of φt . Then assume that φt

preserves a smooth supplementary sub-bundle E ⊂ T M , i.e. T M = RX ⊕ E (such an E
must be the sum of the stable and unstable bundles). Say E is defined by a 1 differential form
η. Assume g0(X, X) = 1, and consider now the GCS defined by φt∗g0 + f (t)η ⊗ η, with
f (t) and ∂ f

∂t positive for any t . This GCS is generic.

2.2.3 A geometric structure?

In general, GCS are neither H -structures in Cartan sense nor geometric structures in the
Gromov sense (see [1,7,8,12])! We already saw that a GCS C is an H -structure iff it is
infinitesimally homogeneous: all the curves Cx ⊂ Sym+(TxM) are linearly equivalent to a
same curve C0 ⊂ Sym+(Rn), when x ∈ M (Sect. 1.3).

Now, more generally, one may ask in which situations C can be naturally seen as a geo-
metric structure in the Gromov sense? We will not investigate this question in the present
article since it hides many technical difficulties. Let us just say that roughly speaking, and at
a formal level, one considers X , the space of non-parameterized curves R → Sym+(Rn) of
a given regularity Ck , that is the quotient space of Ck(R,Sym+(Rn) by the Diffk(R) -right
composition action. Let X ∗ be the subspace of those curves whose image is an embedded
1-submanifold in Sym+(Rn). The group GL(n, R) acts on both X and X ∗. Let us restrict

123



66 Geom Dedicata (2017) 189:59–78

ourselves to the case of structures C → M that are trivial topological fibrations with fiber R

and where M is an open subset of R
n . Such a C is equivalent to giving a map σ : M → X ∗.

Roughly, one may think of C as a geometric structure in the Gromov sense, if the image of σ

is contained in aGL(n, R)-invariant subset � ⊂ X ∗, which is a finite dimensional manifold.
It is not clear how to formulate a general statement about a situation where such a � exists.
Let us however notice the following simple example. Consider d an integer, and let �′ be
the set of elements of X given by polynomial maps R → Sym(Rn) of degree ≤ d , and take
� = �′ ∩ X ∗.

2.2.4 A-type?

Observe now that in order to get a geometric structure of algebraic type (A-type), as defined
in [12] (see also [1,8]), one needs � to be an algebraic manifold and theGL(n, R)-action on
it algebraic (see [1]).

But, rigid geometric structures of algebraic type satisfy the Gromov’s open dense orbit
Theorem, that is if the isometry pseudo-group of the structure has a dense orbit, then this
one is open! In other words an open dense subset is locally homogeneous (see [5,8,12,17]).
However, one can see in the previous Anosov case that there are examples where such a local
homogeneous subset can not exist. We then conclude that there is no way to see such a GCS
as a geometric structure of algebraic type!

3 Some preliminaries

3.1 Case of H-structures

Let H ⊂ GL(n, R) be a closed subgroup and h ⊂ End(Rn) its Lie algebra. Recall that the
space hd of d-prolongations is that of symmetric (d + 1)-multi-linear maps A : R

n × . . . ×
R
n → R

n , such that for any given (u1, . . . , ud), the endomorphism u → A(u, u1, . . . , ud)
belongs to h. If for some d ≥ 1, hd = 0, one says that H has finite type, with order the
smallest such d .

3.1.1 Algebraic structure

Lemma 3.1 Let C0 be a connected curve in Sym+(Rn) and H the connected component of
its stabilizer in GL(n, R). Then H is semi-direct product P � K, where K is compact and
acts trivially on C0, and P is either trivial or a one parameter group acting transitively on
C0.

Proof C0 inherits from Sym+(Rn) a Riemannian metric (see Sect. 3.2.1), and so by taking
its parametrization by arc length, it becomes isometric to an open interval of R. In the case
where C0 is a proper interval, its length is finite and hence it has limit endpoints, which are
fixed by H , and thus H is compact in this case. Let us now consider the case where C0 is
isometric to R.

We have a representation ρ : H → Iso(R). The kernel K of ρ is compact since it is a
closed subgroup in the orthogonal group O(b), for any b ∈ C0.

Since H is connected, ρ(H) is either trivial or coincides with the translation group of
R. It then follows that if H is not compact, then H/K ∼ R. In this case, let P be any one
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parameter group that projects onto R (to see it exists take the one parameter group generated
by any vector not in the Lie subalgebra of K ). Thus H is a semi-direct product P � K . ��

3.1.2 Finiteness of type

Write P = exp t R, and let 〈, 〉 be a scalar product preserved by K (as in the lemma above).
An element of the Lie algebra h of H has the form C + αR, where C is antisymmetric
(C = −C∗). A 2-prolongation A : R

n × R
n × R

n → R
n of h is symmetric and satisfies that

W → A(U, V,W ) belongs to h for any U, V . Therefore A satisfies a relation

〈A(U, V,W ),W ′〉 + 〈A(U, V,W ′),W 〉 = K (U, V )〈(R + R∗)W,W ′〉
for some K . As it will be seen later on, this is exactly the equation (1) in the generalized
Braid Lemma 4.2 with J = 〈, 〉 and J ′(., .) = 〈(R + R∗)., .〉. By this lemma, it follows that
h has type ≤ 2 if the form J ′ is non-degenerate.

3.2 Case of periodic curves

3.2.1 Metric on Sym+

Let E be a vector space of dimension n. Its space of Euclidean Riemannian metrics (i.e.
scalar products) Sym+(E) admits itself a canonical Riemannian (but no longer Euclidean)
metric. To see it, observe first thatSym+(E) is an open set inSym(E), and hence the tangent
space Tb(Sym+(E)) at any point b can be identified with Sym(E). But a scalar product b
defines a scalar product b̄ on Sym(E): if (ei ) is a b-orthonormal basis, then e∗

i ⊗ e∗
j is a

b̄-orthonormal basis, where (e∗
i ) is the dual basis (one has to check this does not depend on

the basis). Now, endow TbSym+(E) with b̄. Clearly, if F is another vector space, then any
isomorphism E → F induces an isometry Sym+(E) → Sym+(F). In fact, Sym+(E) is a
symmetric space GL(E)/O(b), where O(b) is the orthogonal group of any b ∈ Sym+(E).

As an example for E = R, one gets the metric dx2

x2
on R

∗, and for E = R
2, one gets the

direct product H
2 × R (where H

2 is the hyperbolic plane).

3.2.2 Topology

Lemma 3.2 Let C be a GCS on M and assume that for some x0 ∈ M, Cx0 is a circle, i.e.
a connected compact 1-manifold. Then, the same is true for nearby points. More precisely,
there is a neighborhood V of Cx0 in C and U a neighborhood of x0 such that π : V → U is
a Seifert fibration.

Proof Let I be a small arc in M containing x0, then S = π−1(I ) is a surface containing
Cx0 . Let S0 be the connected component of Cx0 in S. For I small enough, S0 is a tubular
neighborhood of Cx0 in S, and it is thus an annulus or a Moebius strip around Cx0 .

Let us start considering the annulus case. When x runs over I , the connected components
of the Cx in S0 determine a 1-dimensional foliation F of S0. But, each Cx is closed in C and
hence eachF-leaf is closed. But such a foliation on the annulus is trivial, i.e. a trivial fibration
on the interval.

Now, consider the same foliation F , but on a neighborhood V = π−1(U ) in C, where U
is a small neighborhood of x0 in M . Since U can be generated by arcs, leaves of F are all
closed. But the holonomy of Cx0 in U is trivial, since it is so above any interval. Hence the
foliation is a fibration.
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Consider now the case where for some arcs I , π−1(I ) is a Moebius strip. Then, on such
a surface, the foliation F is a Seifert fibration with monodromy Z/2Z. As above, generate
a neighborhood U by arcs such that the holonomy on each of them is either trivial or has
order 2. It follows that the (global) holonomy has order 2, and hence F is given by a Seifert
fibration. ��

3.2.3 Geometry

Proposition 3.3 If C has a circle fiber Cx0 , then it is 1-rigid at x0. In fact, C determines
naturally a Riemannian metric near x0.

Proof For all x , Cx is a circle in Sym+(TxM). Consider an arc length parameterization
t ∈ [0, l] → f (t) ∈ Cx , where l is the length of Cx ( f is defined up to a choice of an origin).
The mean

∫
f (t)dt is a canonically defined element of Sym+(TxM), call it gx . Since π is a

smooth fibration, gx depends smoothly on x , that is g is a smooth Riemannian metric defined
on a neighborhood of x0.

One then verifies that a d-isometry of C is a d-isometry for g. In order to check it, one
considers the mapping which associates g to C, say F : G → M, defined on the space of
GCS with circle fibers, and having as a target the space of Riemannian metrics M. Locally,
an element of G is amappingM → L, whereL is the space of arc-length parameterized circle
maps S

1 → Sym(Rn). The mapping F : G → M is just a mean, and therefore smooth.
From all these constructions follows that if C and C′ have contact up to order d at p, then
the same is true for g = F(C) and g′ = F(C′). Applying this to C′ = φ∗(C) yields that a d
-isometry for C (at p) is a d-isometry for g.

Finally, by 1-rigidity of Riemannian metrics (that is a 2-isometry with trivial 1-jet has a
trivial 2-jet) we deduce that C is 1-rigid. ��

4 A generalized Braid Lemma

The classical well known Braid Lemma (see for instance [6]) states:

Lemma 4.1 (Braid Lemma) If L is a trilinear map E × E × E → E on a vector space E,
such that L is symmetric on the two first variables and skew-symmetric on the two last ones,
then L = 0. In particular, if A is a bilinear map E × E → E such that

〈A(U, V ),W 〉 + 〈A(U,W ), V 〉 = 0 for allU, V andW in E,

where 〈, 〉 is a Euclidean scalar product, then A = 0.
If fact this is also true for pseudo-scalar products, that is for 〈, 〉 replaced by any non-

degenerate symmetric bilinear form.

This statement is equivalent to the vanishing of 1-prolongations of the orthogonal group
O(E, 〈, 〉), and thus to the 1-rigidity of a Riemannian structures.

We are going here to give a generalized Braid Lemma adapted to GC structures, which
is in fact a slight generalization of the classical result on vanishing of second prolongations
of co(n), see for instance [1] and [16, p. 335]. Now, A will be a trilinear symmetric map
E×E×E → E , where E is a vector space which will be always assumed to have dimension
≥3.
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Proposition 4.2 (Generalized Braid Lemma) Let A be a symmetric 3-linear vectorial form
E × E × E → E satisfying:

J (A(U, V,W ),W ′) + J (A(U, V,W ′),W ) = K (U, V )J ′(W,W ′) (1)

where J, J ′ and K : E × E → R are some symmetric bilinear forms.
If J and J ′ are non-degenerate, then A = 0.

Proof A direct computation gives us:

K (U, V )J ′(W,W ′) + K (W,W ′)J ′(U, V )

= K (U,W )J ′(V,W ′) + K (V,W ′)J ′(U,W ) (2)

(One just replaces each term as K (U, V )J ′(W,W ′) by its equivalent in the right hand of (1),
and uses the fact that A is symmetric).

Now let W1 and W2 be two J ′-orthogonal vectors: J ′(W1,W2) = 0. Let W3 be a third
vector J ′-orthogonal toRW1+RW2 and J ′(W3,W3) 
= 0. SuchW3 exists because dim E ≥ 3
and J ′ is non-degenerate. We have:

K (W1,W2)J
′(W3,W3) + K (W3,W3)J

′(W1,W2)

= K (W1,W3)J
′(W2,W3) + K (W2,W3)J

′(W1,W3)

which implies K (W1,W2) = 0.
Write K (U, V ) = J ′(U, P(V )), where P is a J ′-symmetric endomorphism of E .
LetW1 with J ′(W1,W1) 
= 0, and denote byW⊥

1 its J ′-orthogonal. It follows that P(W1)

is orthogonal to W⊥
1 , and hence P(W1) ∈ RW1, that is W1 is an eigenvector of P .

Thus P has all vectorsW1 with non-vanishing J ′(W1,W1) as eigenvectors. It follows that
P is a homothety, that is K = α J ′ for some α ∈ R.

Now, using (2) for V = U , W ′ = W and J ′(U,W ) = 0, we get:

α J ′(U,U )J ′(W,W ) = 0

which implies α = 0 (since we can easily choose U and W with non-vanishing (square)
J ′-norm). Therefore, (1) becomes

J (A(U, V,W ),W ′) + J (A(U, V,W ′),W ) = 0

which implies by the classical Braid Lemma that A = 0. ��

5 Proof of the generalized Liouville Theorem

5.1 Set-up of the problem

Let (M, C) be a GC manifold. The investigations in the present section are local in nature,
so the manifold M can be identified with an open set in R

n with coordinates (x1, . . . , xn).
In fact, we will work on a small neighborhood of a fixed point p.

So far, we have studied the situation where a component of Cp is a circle, and proved
1-rigidity in this case.

So we will now consider the opposite situation where all components of Cp are injective
images of R. We choose one component and analyze C around it. The projection π is not
necessarily a locally trivial fibration, but restricting to a small neighborhood of p (that we
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will still denote M), any neighbourhood of a bounded arc of Cp can be parameterized by a
map

J : M × I → J (x, r) ∈ Sym+(TxM)

where I is a bounded interval of R. We can also assume that r → J (x, r) is an arc length
parameterization, for any x , although we do not need it. So locally,

J (x, r) =
∑

i, j

ai j (x, r)dx
i dx j

We will always assume that the associated lightlike structure is nowhere transversally Rie-
mannian, that ∂r J 
= 0.

5.1.1 Isometries

For φ a diffeomorphism of M , φ′
x denotes its derivative at x .

A diffeomorphism φ is isometric if its natural action on Sym+(T M) preserves C, that is
φ′
x (Cx ) = Cφ(x). If the parameterization J were global, then the isometric property implies

the existence of a re-parameterization (x, r) → k(x, r) ∈ R, such that:

J (φ(x), k(x, r))((φ′
x )(U ), (φ′

x )(V )) − J (x, r)(U, V ) = 0, ∀ U, V vector fields. (3)

Remark that, although we will not use it, if the C-curves are parameterized by arc length,
then k has the form k(x, r) = δ(x) + r .

Now, if the parameterization is not global, one just has to take care of the domains of
definition; the same equation remains true. Actually, one has a map (x, r) ∈ M1 × I →
(φ(x), k(x, r)) ∈ M2 × K , where K is another interval, M1 and M2 are open subsets of M .
However, for the sake of simplicity of notation, we will argue as if the parameterization is
global, say I = K , and also M1 = M2 = M .

5.2 Notation

The notation φ′
x designs the total derivative of the diffeomorphism φ. Second and third total

derivatives are denoted φ′′
x and φ′′′

x respectively, the higher ones of order m,m ∈ N
∗, are

denoted φ
(m)
x . For a function a on (x, r) we denote the derivative with respect to x at a point

(p, r) by D(p,r)a (i.e. the differential of x → a(x, r) where r is fixed). We similarly denote
the same derivative of orderm byD(m)

(p,r)
a. Regarding the derivative with respect to r at a point

(p, r), we just denote it ∂(p,r)a.

5.2.1 Infinitesimal isometries

Assume now that φ(p) = p. By definition, φ is a d-isometry at p if C and its image φ∗(C)

have a contact at order d along Cp (1.4). As in the classical case, one shows this is equivalent
to the usual vanishing condition up to order d , at p, of the equality (3). More precisely, for a
given function k, and U, V vector fields, let

�k(U, V )(x, r) = J (φ(x), k(x, r))((φ′
x )(U ), (φ′

x )(V )) − J (x, r)(U, V )

Then, φ is a d-isometry at p, if there exists a function k such that the derivatives with respect
to x up to order (d − 1) of �k(U, V ) vanish at (p, r), for any vector fieldsU and V and any
r . Actually, it suffices to check this forU and V elements of a frame field on M , for example
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the natural vector fields ∂
∂xi

. In the sequel, we will take U and V to be combination with

constant coefficients of the ∂
∂xi

.

5.3 (d + 1)-Isometries for d ≥ 2

If φ is an isometry of order d + 1 at p, then for all r

J (p, r)(U, V ) = J (φ (p) , k (p, r))(φ′
p(U ), φ′

p(V )), ∀ U, V ∈ TpM (4)

Taking derivative (with respect to x) at p gives,

D(p,r) J (W1)(U, V ) = D(φ(p),k(p,r)) J (φ′
p(W1))(φ

′
p(U ), φ′

p(V ))

+D(p,r)k(W1)∂(φ(p),k(p,r)) J (φ′
p(U ), φ′

p(V ))

+ J (φ (p) , k (p, r))(φ′′
p(U,W1), φ

′
p(V ))

+ J (φ (p) , k (p, r))(φ′
p(U ), φ′′

p(V,W1) (5)

for all U, V,W1 ∈ TpM.

Lemma 5.1 Let φ be an isometry of order (d + 1) at p with a d-trivial jet ( jetdp (φ) = 1)
then, for all r

k (p, r) = r and D(m)
(p,r)k = 0 for 1 ≤ m ≤ d − 1

Proof Thiswill follow from taking derivatives of (4) up to orderd−1.But, since jetdp(φ) = 1,
one can argue as if φ was the identity, that is (4) becomes

J (p, r)(U, V ) = J (p, k (p, r))(U, V ), ∀U, V ∈ TpM (6)

This formula involves k only.
This equality itself implies that k(p, r) = r . Indeed, by our hypotheses (in the beginning

of the present section), Cp is a 1-dimensional submanifold without compact components, in
particular, r → J (p, r) is injective, and hence k(p, r) = r .

To prove vanishing of D(p,r)k (the differential of k with respect to x), just differentiate
the formula (6) (for instance by replacing in (5)) and get

D(p,r) J (W1)(U, V ) = D(p,r) J (W1)(U, V ) + D(p,r)k(W1)∂(p,r) J (U, V )

which means
D(p,r)k(W1)∂(p,r) J (U, V ) = 0

(Remember the notation ∂(p,r) introduced in Sect. 5.2). But, by definition of GCS, the curve
r → J (p, r) ∈ Sym+(TpM) is non-singular, and hence (U, V ) → ∂(p,r) J (U, V ) is a
non-vanishing bilinear form, and so D(p,r)k = 0.

Finally, vanishing of higher order derivatives is done by induction. Assume D(m)
(p,r)k = 0

for m ≤ l (with 1 ≤ l ≤ d − 2), and take the derivative of order l + 1 of the equality (6) at
p. All terms containing D(m)

(p,r)k for 1 ≤ m ≤ l disappear and remains the equality

D(l+1)
(p,r) J (W1, . . . ,Wl+1)(U, V ) = D(l+1)

(p,r) J (W1, . . . ,Wl+1)(U, V )

+D(l+1)
(p,r) k(W1, . . . ,Wl+1)∂(p,r) J (U, V )

for all W1, . . . ,Wl+1 in TpM , which implies (as in the case of D(p,r)k)
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D(l+1)
(p,r) k = 0

��

Lemma 5.2 Let φ be an isometry of order (d + 1) at p such that jetdp (φ) = 1. Then, φ(d+1)
p

satisfies

J (p, r)(φ(d+1)
p (U,W1, . . . ,Wd), V ) + J (p, r)(U, φ(d+1)

p (V,W1, . . . ,Wd))

= −D(d)
(p,r)k(W1, . . . ,Wd)∂(p,r) J (U, V ) (7)

for any r and all W1, . . . ,Wd ,U, V in TpM.

Proof Computation of the derivative at order (d−1) of (5) at p, will be drastically simplified
by the fact that φ′

p = I d, φ
(m)
p = 0 for 2 ≤ m ≤ d , k(p, r) = r and D(m)

(p,r)k = 0 for
1 ≤ m ≤ d − 1 (by the previous lemma), and reduces exactly to

D(d)
(p,r) J (W1, . . . ,Wd)(U, V ) = D(d)

(p,r) J (W1, . . . ,Wd)(U, V )

+D(d)
(p,r)k(W1, . . . ,Wd)∂(p,r) J (U, V ) + J (p, r)(φ(d+1)

p (U,W1, . . . ,Wd), V )

+ J (p, r)(U, φ(d+1)
p (V,W1, . . . ,Wd))

for all W1, . . . ,Wd ,U, V in TpM , witch is exactly (7). ��
5.4 End of the proof of Theorem 1.1

With notations of the previous lemma, we have to prove that φ
(d+1)
p = 0. This will indeed

follow form a straightforward application of the Generalized Braid Lemma 4.2 to (7).
For the sake of clarity, let us first start with the case d = 2. So φ is a 3-isometry at p with

a trivial 2-jet, thus by (7)

J (p, r)(φ′′′
p (U,W1,W2), V ) + J (p, r)(U, φ′′′

p (V,W1,W2)

= −D(2)
(p,r)k(W1,W2)∂(p,r) J (U, V )

Apply the Generalized Braid Lemma with A = φ′′′
p , J = J (p, r), K = D2

(p,r)k and J ′ =
−∂(p,r) J , which is actually non-degenerate by the genericity hypothesis on C. Then conclude
that A = φ′′′

p = 0.
In the general case, d > 2, apply the Generalized Braid Lemma with J = J (p, r),

J ′ = −∂(p,r) J and K = D(d)
(p,r)k(., .,W3, . . . ,Wd), where W3, . . . ,Wd are fixed vectors in

TpM . One gets that A = φ
(d+1)
p (., ., .,W3, . . . ,Wd) = 0. But sinceW3, . . .Wd are arbitrary,

φ
(d+1)
p = 0.

6 Sub-rigidity of lightlike metrics, Proof of Theorem 2.2

6.1 Setting of the problem

Let (V, g) be a lightlike n-dimensional manifold. Since we are dealing with questions local
in nature, so we can assume V is a small chart domain, say V = M × I where I is an interval.
The factor I corresponds to the characteristic foliation tangent to the kernel of g. In an adapted
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coordinate system (x, t) = (x1, x2, . . . , xn−1, t) (t corresponds to I ), the lightlike metric
takes the form

g(x,t) =
∑

i, j

ai j (x, t)dx
i dx j

This gives for any fixed r , a Riemannian metric on M × {r}. By endowing TxM with the
scalar products g(x,r), r ∈ I , we get a GCS on M , once we assume g nowhere transversally
Riemannian, that is ∂

∂t g(x,t) 
= 0 (see Sect. 2.1). Recall that g is said to be generic if ∂
∂t g(x,t) =

∑
i, j

∂ai j
∂t (x, t)dxi dx j is non-degenerate.

A diffeomorphism � of M has the form � = (φ, δ) where φ : M × I → M and
δ : M × I → I .

If � is isometric, then it preserves the I foliation, and hence φ does not depend of t .
Furthermore, for any U and V in T(x,t)V

g(x,t)(U, V ) = g�(x,t)(�
′
(x,t)(U ),� ′

(x,t)(V )) (8)

A tangent vector U ∈ T(x,t)V will be denoted (UM ,UI ) ∈ TxM × Tt I .
As said after the statement of the Theorem, we will start giving the proof in the case d = 1

which consists in three steps. The higher order case will be treated at Sect. 6.5.

6.2 Step 1: a partial 1-rigidity

If � is isometric up to order 2, with a trivial 1-jet at a point (p, r) ∈ V then φ′′
(p,r) = 0.

Proof If� = (φ, δ) is isometric up to order 2 then the equality of (8) holds for the derivatives
at (x, t) = (p, r). We have

(g(x,t)(U, V ))′(p,r)(W ) =
∑

i, j

(ai j )
′
(p,r)(W )(U )i (V ) j (9)

In the other hand, if we denote a generic point (x, t) by v

g�(v)(�
′
v(U ),� ′

v(V )) =
∑

i, j

ai j (�(v))(� ′
v(U ))i (�

′
v(V )) j

a derivation gives
∑

i, j

(ai j )
′
�(v)(�

′
v(W ))(� ′

v(U ))i (�
′
v(V )) j +

∑

i, j

ai j (�(v))(� ′′
v (U,W ))i (�

′
v(V )) j

+
∑

i, j

ai j (�(v))(� ′
v(U ))i (�

′′
v (V,W )) j (10)

We have
(� ′

v(U ))i = (φ′
v(U ))i and (� ′′

v (U ))i = (φ′′
v (U ))i

using the triviality of the 1-jet of � we get

�(p, r) = (p, r),� ′
(p,r) = I d

then (10) becomes
∑

i, j

(ai j )
′
(p,r)(W )(U )i (V ) j +

∑

i, j

ai j (p, r)(φ
′′
(p,r)(U,W ))i (V ) j

+
∑

i, j

ai j (p, r)(U )i (φ
′′
(p,r)(V )) j
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Therefore, the equality with (9) gives
∑

i, j

ai j (p, r)
(
φ′′

(p,r)(U,W )
)

i
(V ) j +

∑

i, j

ai j (p, r)(U )i

(
φ′′

(p,r)(V,W )
)

j
= 0

that is
g(p,r)(φ

′′
(p,r)(U,W ), V ) + g(p,r)(U, φ′′

(p,r)(V,W )) = 0

By the Braid Lemma 4.1 we conclude that φ′′
(p,r) = 0. ��

6.3 Step 2: the φ-part

Assume the lightlike structure generic. If � = (φ, δ) is a 3-isometry at (p, r) with a trivial
1-jet, then φ′′′

(p,r) = 0.

Proof If � was a true isometry, then it acts, via φ, on M seen as the quotient space of the
characteristic foliation (in particular it does not depend on r ), and it preserves the GCS on
it. The genericity hypothesis allows one to apply Theorem 1.1 to conclude that φ′′′

(p,r) = 0.
Now, we want to apply the same argument when � is merely isometric up to order 3 at

(p, r) (and has a trivial 1-jet). The idea then is to show that the diffeomorphism x → ϕ(x) =
φ(x, r) is a 3-isometry of the GCS of M . The expected k-shift of ϕ (see Sect. 5.1.1) will be
nothing but δ. In other words, we want ϕ to satisfy the following equation up to order 3 at p:

g(x,r)(U, V ) = g(ϕ(x),δ(x,r))(ϕ
′
x (U ), ϕ′

x (V )) (11)

This property of ϕ, follows from the similar one of �, that is, it satisfies (8) up to order
3, and remembering that φ′′

(p,r) = 0 by the previous step. Indeed, let us derive twice the
equation satisfied by � at ν = (p, r):

g(x,t)(U, V ) = g�(x,t)(�
′
(x,t)(U ),� ′

(x,t)(V ))

we get, for all W1,W2 ∈ T(x,tV ,

gW1,W2
ν (U, V ) = g

� ′′
ν (W1,W2)

�(ν)

(
� ′

ν(U ),� ′
ν(V )

) + g
� ′

ν (W1),�
′
ν (W2)

�(ν) (� ′
ν(U ),� ′

ν(V ))

+ g
� ′

ν (W1)

�(ν) (� ′′
ν (U,W2),�

′
ν(V )) + g

� ′
ν (W1)

�(ν) (� ′
ν(U ),� ′′

ν (V,W2))

+ g
� ′

ν (W2)

�(ν) (� ′′
ν (U,W1),�

′
ν(V )) + g

� ′
ν (W2)

�(ν)

(
� ′

ν(U ),� ′′
ν (V,W1)

)

+ g�(ν)(�
′′
ν (U,W1),�

′′
ν (V,W2)) + g�(ν)(�

′′
ν (U,W2),�

′′
ν (V,W1))

+ g�(ν)(�
′′′
ν (U,W1,W2),�

′
ν(V )) + g�(ν)(�

′
ν(U ),� ′′′

ν (V,W1,W2))

(12)

where
gWv =

∑

i, j

(ai j )
′
v(W )dxi dx j

and
gW1,W2
v =

∑

i, j

(ai j )
′′
v(W1,W2)dx

i dx j

But
gv(U, V ) = gv(U, VM ) = gv(UM , V ) = gv(UM , VM ),
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and the same thing for gWv and gW1,W2
v , then (12) becomes

gW1,W2
ν (U, V ) = g

� ′′
ν (W1,W2)

�(ν)

(
� ′

ν(U ),� ′
ν(V )

) + g
� ′

ν (W1),�
′
ν (W2)

�(ν) (� ′
ν(U ),� ′

ν(V ))

+ g
� ′

ν (W1)

�(ν) (φ′′
ν (U,W2),�

′
ν(V )) + g

� ′
ν (W1)

�(ν)

(
� ′

ν(U ), φ′′
ν (V,W2)

)

+ g
� ′

ν (W2)

�(ν) (φ′′
ν (U,W1),�

′
ν(V )) + g

� ′
ν (W2)

�(ν)

(
� ′

ν(U ), φ′′
ν (V,W1)

)

+ g�(ν)(φ
′′
ν (U,W1), φ

′′
ν (V,W2)) + g�(ν)(φ

′′
ν (U,W2), φ

′′
ν (V,W1))

+ g�(ν)(φ
′′′
ν (U,W1,W2),�

′
ν(V )) + g�(ν)(�

′
ν(U ), φ′′′

ν (V,W1,W2))

(13)

Since � has a trivial 1-jet at ν, �(ν) = (p, r), � ′
ν = I d and φ′′

ν = 0 (Step 1), and so

g(p,r)(φ
′′′
(p,r)(U,W1,W2), V ) + g(p,r)(U, φ′′′

(p,r)(V,W1,W2))

= −g
� ′′

(p,r)(W1,W2)

(p,r) (U, V ) (14)

But

g
� ′′

(p,r)(W1,W2)

(p,r) (U, V ) =
∑

i, j

(ai j )
′
(p,r)(�

′′
(p,r)(W1,W2))(U )i (V ) j

=
∑

i, j

((Dai j )(p,r)(φ′′
(p,r)(W1,W2))

+ δ′′
(p,r)(W1,W2)∂(p,r)ai j )(U )i (V ) j

=
∑

i, j

δ′′
(p,r)(W1,W2)∂(p,r)ai j (U )i (V ) j

= δ′′
(p,r)(W1,W2)∂(p,r)g(U, V )

where
∂(p,r)g(U, V ) =

∑

i, j

∂(p,r)ai j (U )i (V ) j

Thus (14) gives

g(p,r)(φ
′′′
(p,r)(U,W1,W2), V ) + g(p,r)(U, φ′′′

(p,r)(V,W1,W2))

= −δ′′
(p,r)(W1,W2)∂(p,r)g(U, V ) (15)

Finally, apply the Generalized Braid Lemma to J = g(p,r), K = δ′′
(p,r), J

′ = −∂(p,r)g and
A = φ′′′

(p,r) to get φ′′′
(p,r) = 0. ��

6.4 Step 3: the δ-part, end of proof of Theorem 2.2

Let V be a generic lightlike manifold. If � = (φ, δ) is a 3-isometry at (p, r) with a trivial
1-jet at (p, r) then � has a trivial 2-jet at (p, r).

Proof By step 2 we have φ′′′
(p,r) = 0, so (19) gives

δ′′
(p,r)(W1,W2)

∑

i, j

∂(p,r)ai j (U )i (V ) j = 0
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Remember that g is nowhere transversally Riemannian, thus δ′′
(p,r) = 0, and hence � has a

trivial 2-jet.
Thus, Theorem 2.2 in the case d = 1, that is (3,1)-subrigidity of generic lightlike metrics,

is fully proved. ��
6.5 Proof in the case d > 1

If � = (φ, δ) is isometric up to order d + 2 at a point (p, r) ∈ V , then the equality of (8)
holds for the derivatives of order d + 1 at (x, t) = (p, r). A derivation of order d of the left
side gives

(g(x,t)(U, V ))
(d)
(p,r)(W1,W2, . . . ,Wd) =

∑

i, j

(ai j )
(d)
(p,r)(W1,W2, . . . ,Wd)(U )i (V ) j (16)

for all (W1,W2, . . . ,Wd) ∈ T(p,r)V . On the other hand, taking derivation of the right side of
(8) at (p, r), and using the fact that � has a trivial d-jet at (p, r), it remains

∑

i, j

(ai j )
(d)
(p,r)(W1,W2, . . . ,Wd)(U )i (V ) j

+
∑

i, j

ai j (p, r)(φ
(d+1)
(p,r) (U,W1,W2, . . . ,Wd))i (V ) j

+
∑

i, j

ai j (p, r)(U )i

(
φ

(d+1)
(p,r) (V,W1,W2, . . . ,Wd)

)

j

Comparing with (16), we get,
∑

i, j

ai j (p, r)
(
φ

(d+1)
(p,r) (U,W1,W2, . . . ,Wd)

)

i
(V ) j

+
∑

i, j

ai j (p, r)(U )i

(
φ

(d+1)
(p,r) (V,W1,W2, . . . ,Wd)

)

j
= 0

that is,

g(p,r)(φ
(d+1)
(p,r) (U,W1,W2, . . . ,Wd), V ) + g(p,r)(U, φ

(d+1)
(p,r) (V,W1,W2, . . . ,Wd)) = 0

By the Braid Lemma 4.1 we conclude that φ(d+1)
(p,r) = 0.

Now, if we derive (8) (d + 1)-times at (p, r), we get for the left side
∑

i, j

(ai j )
(d+1)
(p,r) (W1,W2, . . . ,Wd+1) (U )i (V ) j (17)

and for the right one
∑

i, j

(ai j )
(d+1)
(p,r) (W1,W2, . . . ,Wd+1) (U )i (V ) j

+
∑

i, j

(ai j )
′
(p,r)

(
�

(d+1)
(p,r) (W1,W2, . . . ,Wd+1)

)
(U )i (V ) j

+
∑

i, j

ai j (p, r)
(
�

(d+2)
(p,r) (U,W1, . . . ,Wd+1)

)

i
(V ) j

+
∑

i, j

ai j (p, r)(U )i

(
�

(d+2)
(p,r) (V,W1, . . . ,Wd+1)

)

j
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for any W1,W2, . . . ,Wd+1 ∈ T(p,r)V , since � has a trivial d-jet at (p, r) and φ
(d+1)
(p,r) = 0.

Writing equality between the two sides gives,
∑

i, j

ai j (p, r)(φ
(d+2)
(p,r) (U,W1, . . . ,Wd+1))i (V ) j

+
∑

i, j

ai j (p, r)(U )i (φ
(d+2)
(p,r) (V,W1, . . . ,Wd+1)) j

= −
∑

i, j

(ai j )
′
(p,r)(�

(d+1)
(p,r) (W1,W2, . . . ,Wd+1)) (U )i (V ) j

that is

g(p,r)

(
φ

(d+2)
(p,r) (U,W1, . . . ,Wd+1), V

)
+ g(p,r)

(
U, φ

(d+2)
(p,r) (V,W1, . . . ,Wd+1)

)

= −g
�

(d+1)
(p,r) (W1,...,Wd+1)

(p,r) (U, V ) (18)

But

g
�

(d+1)
(p,r) (W1,...,Wd+1)

(p,r) (U, V ) =
∑

i, j

(ai j )
′
(p,r)(�

(d+1)
(p,r) (W1, . . . ,Wd+1))(U )i (V ) j

=
∑

i, j

(Dai j )(p,r)(φ
(d+1)
(p,r) (W1, . . . ,Wd+1))(U )i (V ) j

+
∑

i, j

δ
(d+1)
(p,r) (W1, . . . ,Wd+1)∂(p,r)ai j (U )i (V ) j

=
∑

i, j

δ
(d+1)
(p,r) (W1, . . . ,Wd+1)∂(p,r)ai j (U )i (V ) j

= δ
(d+1)
(p,r) (W1, . . . ,Wd+1)∂(p,r)g(U, V )

Thus (18) becomes

g(p,r)(φ
(d+2)
(p,r) (U,W1, . . . ,Wd+1), V ) + g(p,r)(U, φ

(d+2)
(p,r) (V,W1, . . . ,Wd+1))

= −δ
(d+1)
(p,r) (W1, . . . ,Wd+1)∂(p,r)g(U, V ) (19)

Applying the Generalized Braid Lemma 4.2 to J = g(p,r), K = δ
(d+1)
(p,r) (., .,W3, . . . ,Wd+1),

J ′ = −∂(p,r)g and A = φ
(d+2)
(p,r) (., ., .,W3, . . . ,Wd+1), we get φ

(d+2)
(p,r) = 0 and

−δ
(d+1)
(p,r) (W1, . . . ,Wd+1)∂(p,r)g(U, V ) = 0

which means that δ(d+1)
(p,r) = 0 since g is nowhere transversally Riemannian. Therefore � has

a trivial (d + 1)-jet. This completes the proof of Theorem 2.2. ��
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