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Abstract We study compact complex 3-manifolds M admitting a (locally homoge-
neous) holomorphic Riemannian metric g. We prove the following: (i) If the Killing
Lie algebra of g has a non trivial semi-simple part, then it preserves some holomor-
phic Riemannian metric on M with constant sectional curvature; (ii) If the Killing Lie
algebra of g is solvable, then, up to a finite unramified cover, M is a quotient �\G,
where � is a lattice in G and G is either the complex Heisenberg group, or the complex
SO L group.

Mathematics Subject Classification (2000) 53B21 · 53C56 · 53A55

1 Introduction

A holomorphic Riemannian metric g on a complex manifold M is a holomorphic field
of non degenerate complex quadratic forms on the holomorphic tangent bundle T M .
Formally, g is a holomorphic section of the bundle S2(T ∗M) such that g(m) is non
degenerate for all m ∈ M . This has nothing to do with the more usual Hermitian met-
rics. It is in fact nothing but the complex version of Riemannian metrics. Observe that
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since complex quadratic forms have no signature, there is here no distinction between
the Riemannian and pseudo-Riemannian cases. This observation was the origin of the
nice use by Gauß of the complexification technic of (analytic) Riemannian metrics on
surfaces, in order to find conformal coordinates for them.

As in the real case, a holomorphic Riemannian metric on M gives rise to a covar-
iant differential calculus, i.e. a Levi-Civita (holomorphic) linear connection, and to
geometric features: curvature tensors, geodesic (complex) curves [25,26].

Locally, a holomorphic Riemannian metric has the form �gi j (z)dzi dz j , where
(gi j (z)) is a complex inversible symmetric matrix depending holomorphically on z.
The standard example is that of the global flat holomorphic Riemannian metric dz2

1 +
dz2

2 + · · · + dz2
n on C

n . This metric is translation-invariant and thus descends to any
quotient of C

n by a lattice. Hence complex tori possess (flat) holomorphic Riemannian
metrics. This is however a very special situation since, contrary to real case, only few
compact complex manifolds admit holomorphic Riemannian metrics. In fact, Yau’s
proof of the Calabi conjecture shows that, up to finite unramified covers, complex
tori are the only compact Kaehler manifolds admitting holomorphic Riemannian met-
rics [18].

However, very interesting examples, constructed by Ghys in [13], do exist on
3-dimensional complex non Kaehler manifolds and deserve classification.

Notice first that parallelisable manifolds, obtained as a (left) quotient of a complex
Lie group G by a co-compact lattice �, bear holomorphic Riemannian metrics coming
from left invariant holomorphic Riemannian metrics on G (which can be constructed
by left translating any complex non-degenerate quadratic form defined on the Lie
algebra G.) Recall that parallelisable manifolds are Kaehler if and only G is abelian.

Ghys’s examples of 3-dimensional compact complex manifolds endowed with ho-
lomorphic Riemannian metrics are obtained by deformation of the complex structure
on parallelisable manifolds �\SL(2, C) [13]. They are non standard, meaning they
do not admit parallelisable manifolds as finite unramified covers. Those non standard
examples will be described in Sect. 2.

Our goal in this paper is to classify (non Kaehler) complex compact 3-manifolds
endowed with holomorphic Riemannian metrics. Since tools coming from complex
algebraic geometry are not available in this context, we essentially work in the (com-
plex) differential geometry background.

The first step toward the classification is the main result of [9]:

Theorem 1.1 [9] Any holomorphic Riemannian metric on a compact connected com-
plex 3-manifold is locally homogeneous. More generally, if a compact connected com-
plex 3-manifold M admits a holomorphic Riemannian metric, then any holomorphic
geometric structure of affine type on M is locally homogeneous.

Thanks to Theorem 1.1, M is locally modelled on a (G, G/I )-geometry in Thur-
ston’s sense [37], where I is a closed subgroup of the Lie group G such that the G-action
on G/I preserves some holomorphic Riemannian metric (see Sect. 2 for more details
and notice that the local Killing Lie algebra of the holomorphic Riemannian metric
is the Lie algebra of G). In this context we get a developing map from the universal
cover M̃ of M into G/I which is a local diffeomorphism and which is equivariant in
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respect to the action of the fundamental group on M̃ by deck transformations and on
G/I via the holonomy morphism ρ : π1(M) → G [37].

Recall that the (G, G/I )-geometry is called complete if the developing map is a
diffeomorphism and, consequently, � = ρ(π1(M)) acts properly on G/I such that
M is a quotient �\G/I .

The main result of this paper gives a completeness result in the case where G is
solvable:

Theorem 1.2 Let M be a compact connected complex 3-manifold which admits a
(locally homogeneous) holomorphic Riemannian metric g. Then:

(i) If the Killing Lie algebra of g has a non trivial semi-simple part, then it preserves
some holomorphic Riemannian metric on M with constant sectional curvature.

(ii) If the Killing Lie algebra of g is solvable, then, up to a finite unramified cover,
M is a quotient either of the complex Heisenberg group, or of the complex SO L
group by a lattice.

Note that the group SO L is the complexification of the affine isometry group of
the Minkowski plane R

1,1 or equivalently the isometry group of C
2 endowed with its

flat holomorphic Riemannian metric (see Sect. 2).

Remark 1.3 If g is flat, its Killing Lie algebra corresponds to O(3, C)�C
3, which has

non trivial semi-simple part. Thus, flat holomorphic Riemannian metrics on complex
tori are part of point (i) in the main theorem.

The point (ii) of the previous theorem is not only about completeness, but also
gives a rigidity result in Bieberbach’s sense [38]: G contains a 3-dimensional closed
subgroup H (either isomorphic to the complex Heisenberg group, or to the complex
SO L group) which acts simply and transitively (and so identifies) with G/I and (up
to a finite index) the image � of the holonomy morphism lies in H . It follows that, up
to a finite cover, M identifies with �\H .

Our present result does not end the story since it remains to classify the compact
complex 3-manifolds endowed with a holomorphic Riemannian metric of constant
sectional curvature.

Flat case. In this case M admits a (O(3, C) � C
3, C

3)-geometry. The challenge
remains:

1) Markus conjecture: Is M complete?
2) Auslander conjecture: Assuming M as above, is � solvable?

Note that these questions are settled in the setting of (real) flat Lorentz manifolds
[5,11], but unsolved for general (real) pseudo-Riemannian metrics. The real part of
the holomorphic Riemannian metric is a (real) pseudo-Riemannian metric of signature
(3, 3) for which both previous conjectures are still open.

Non flat case. In this case G = SL(2, C) × SL(2, C) and I = SL(2, C) is
diagonally embedded in the product. The completeness of this geometry on compact
complex manifolds is still an open problem, despite a local result of Ghys [13]. Recall
that the real analogous of this problem, i.e. the completeness of compact manifolds
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endowed with Lorentz metrics of negative constant sectional curvature, was solved
in [20], but the proof cannot generalize to other signatures. More details about the case
of a non-zero constant sectional curvature are in Sect. 2.

Comparison with [10] The present article is naturally linked to our recent work on
the classification of essential lorentz geometries in dimension 3. There are similarities
in the algebraic classification of all possible local Killing algebras. However, we had
to modify significantly our methods because in [10] we used global results about the
classification of (real) Riemannian Killing fields [4] and about the classification of
non-equicontinuous Lorentz Killing fields [39] which do not exist in the holomorphic
setting.

Related works There are various works dealing with different holomorphic geomet-
ric structures, and sharing the same philosophy as ours here, that is, a “strong global
rigidity” of such objects on compact complex manifolds. As an example, we can quote
[7,17,18,21], and especially [32], about holomorphic conformal structures on projec-
tive 3-manifolds. As an extension of both their results and ours, we believe a global
rigidity result is true for holomorphic conformal metrics in the framework of complex
(not necessarily projective) 3-manifolds.

1.1 Plan of the proof

The first step of the proof consists on finding all 3-dimensional complex homogeneous
spaces G/I such that the G-action on G/I preserves some holomorphic Riemannian
metric (i.e. the adjoint representation of I preserves some non-degenerate complex
quadratic form on the quotient G/I of the corresponding Lie algebras). Despite a
“quick” reduction to the case where G has dimension 4 and is solvable, our solu-
tion needs a geometric tool which is the existence of a codimension one geodesic
foliation F .

The second part is a standard problem: classify compact manifolds locally mod-
elled on a given (G, G/I )-geometry. If G is solvable, we prove that M is complete
and, up to a finite cover, it is a quotient of Heis or SO L by a lattice.

2 Examples

Obstructions. Real Chern classes. A first obstruction to the existence of a holomorphic
Riemannian metric on a compact complex manifold is its first Chern class. Indeed,
a holomorphic Riemannian metric on M provides an isomorphism between T M and
T ∗M . In particular, the canonical bundle K is isomorphic to the anti-canonical bundle
K −1 and K 2 is trivial. This means that the first Chern class of M vanishes and, up to
a double unramified cover, M possesses a holomorphic volume form.

Since M admits a (Levi-Civita) holomorphic linear connection, the Chern-Weil
method implies that the Chern class ci (M) can be represented by a holomorphic
2i-form α. On the other hand, using the curvature of a hermitian metric on M , we can
represent ci (M) by a real (i, i)-form β.

If M is Kaehler, two forms α and β of different type cannot be cohomologous,
unless α = β = 0. It follows that ci (M) = 0.
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Assume now that M is not necessarily Kaehler, of complex dimension n, and 2i = n.
Since β is real and cohomologous to α, it is also cohomologous to ᾱ. Hence, α and
ᾱ are cohomologous and

∫
M α ∧ ᾱ = ∫

M α ∧ α = 0. Thus, we obtain α = 0 and
ci (M) = 0.

Since the curvature of a holomorphic Riemann metric is a two-form taking values
in the skew-symmetric endomorphisms of the holomorphic tangent space, Chern-Weil
theory implies that ci (M) = 0 as soon as i is not a multiple of 4. This is the complex
version of the well known fact that (real) Pontryagin classes pi of a (real) manifold
vanishes as soon as i is not a multiple of 4. For instance if M is 3-dimensional, all
(real) Chern classes vanish.

For an improvement of this method for complex manifolds bearing holomorphic
conformal structures, one could see [21] (Theorem 3.20) and the recent (and more
general) [29].

Surface case The classification of complex compact surfaces admitting holomorphic
Riemannian metrics is an easy consequence of the main result in [21]: up to a finite
cover, the only examples are (flat) translations-invariant holomorphic Riemannian met-
rics on complex tori. In particular, there is no compact surface having a holomorphic
Riemannian metric of non zero constant sectional curvature.

Universal holomorphic Riemannian spaces of constant curvature One can multiply a
holomorphic Riemannian metric by a complex constant λ which induces a multipli-
cation by λ−2 of its sectional curvature. Therefore, only the vanishing or not (but not
the sign) of the curvature is relevant.

The flat case The model (Cn, dz2
1 + dz2

2 + · · · + dz2
n) is (up to isometry) the unique

n-dimensional complex simply-connected manifold endowed with a flat and geodesi-
cally complete holomorphic Riemannian metric. Its isometry group is O(n, C) � C

n .
Any flat holomorphic Riemannian metric on a complex manifold of dimension n
is locally isometric to this model, equivalently, it has a (O(n, C) � C

n, C
n)-struc-

ture [37,38]. This geometry can be seen as a complexification of the Minkowski space
R

n−1,1.

• Dimension 2. For n = 2, the connected component of the identity in the isometry
group is SO L � C � C

2, where the action of C on C
2 is given by the complex

one-parameter group I =
(

et 0
0 e−t

)

.

The non-zero constant curvature case The model of the geometry of constant non-
zero curvature, in dimension n ≥ 2, is the “holomorphic sphere” Sn = O(n +
1, C)/O(n, C). Indeed, up a to multiplicative constant, Sn admits a unique, O(n +
1, C)-invariant, holomorphic Riemannian metric g. It turns out that O(n +1, C) is the
full isometry group of g, that g has a constant sectional curvature and is geodesically
complete. Therefore, any n-manifold endowed with a holomorphic Riemannian met-
ric of non-vanishing constant sectional curvature is locally modelled on the geometry
(O(n + 1, C), Sn) [37].

• Dimension 2. A model of S2 is P1(C) × P1(C)\Diag endowed with the holo-
morphic Riemannian metric dz1dz2

(z1−z2)2 , given in local affine coordinates. Here the
isometry group is SL(2, C) acting diagonally.
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• Dimension 3. The unique case where O(n, C) is not simple is when n = 4 and
then, O(4, C) = SL(2, C) × SL(2, C). The space S3 is identified with the group
SL(2, C) endowed with a left invariant holomorphic Riemannian metric which
equals the Killing form at the identity. But the invariance of the Killing form by the
adjoint representation implies that this holomorphic Riemannian metric is also right
invariant. Therefore, the right and left multiplicative action of SL(2, C)×SL(2, C)

on SL(2, C) is isometric. For more details about this geometry (geodesics...) one
can see [13].

Parallelisable manifolds The following proposition describes holomorphic Riemann-
ian metrics on parallelisable manifolds.

Proposition 2.1 Let M = �\G a compact parallelisable manifold, with G a simply
connected complex Lie group and � a uniform lattice in G. Then, any holomorphic
Riemannian metric g on M comes from a non degenerate complex quadratic form
on the Lie algebra G of G. In particular, the pull-back of g is left invariant on the
universal covering G (and g is locally homogeneous on M).

Moreover, any compact parallelisable 3-manifold admits a holomorphic Riemann-
ian metric of constant sectional curvature. The metric is flat exactly when G is solvable.

Proof Consider X1, X2, . . . , Xn , the fundamental vector fields corresponding to the
simply transitive G-action on M . Let g be a holomorphic Riemannian metric on M
and denote also by g the associated complex symmetric bilinear form. Then g(Xi , X j )

is a holomorphic function on M and thus constant, for all 1 ≤ i, j ≤ n. This implies
that g comes from a left-invariant holomorphic Riemannian metric on G.

Assume now G is a simply connected complex unimodular Lie group of dimen-
sion 3. We have only four such Lie groups: C

3, the complex Heisenberg group, the
complex SOL group and SL(2, C) [19].

It is an easy exercice to exhibit in the isometry group O(3, C) � C
3 of the flat ho-

lomorphic Riemannian space, copies of the Heisenberg group and of the SOL group
which acts simply transitively. Thus the flat holomorphic Riemannian space also admits
models which are given by right-invariant metrics on the Heisenberg group and on the
SOL group. One can get explicit expression of these holomorphic Riemannian metrics
by complexification of flat right-invariant Lorentz metrics on the real Heisenberg and
SOL groups [33,34]. �	

We describe now the isometry group (and hence the Killing Lie algebra) of a left
invariant holomorphic Riemannian metric on a 3-dimensional simply connected uni-
modular complex Lie group G.

• G = C
3. Then any translations-invariant metric on C

3 is flat and the corresponding
isometry group is O(3, C) � C

3.
• G = SL(2, C). We have seen that G admits the left invariant holomorphic Rie-

mannian metric of non zero constant sectional curvature coming from the Killing
form. Proposition 4.1 will show that the isometry group of a left invariant holo-
morphic Riemannian metric on SL(2, C) lies in the isometry group SL(2, C) ×
SL(2, C) of the metric of constant non zero curvature. The isometry group is either
SL(2, C), or C × SL(2, C), or SL(2, C) × SL(2, C).
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• G = Heis. Then, either the metric is flat (and G is a copy of the complex Heisen-
berg group lying in the full isometry group O(3, C) � C

3), or the isometry group
is Heis, or the extension C� Heis of the Heisenberg group described at the point
(2) in Proposition 5.2 (see Proposition 7.1).

• G = SO L . Here, either the metric is flat, or the isometry group is SO L , or a group
of dimension four which is an extension of the Heisenberg group described at the
point (iii) in Proposition 5.7 (see Proposition 6.1 which shows that a copy of the
complex SO L group acts freely and transitively).

Remark 2.2 In particular, the quotients �\Heis and �\SO L possess holomorphic
Riemannian metrics with solvable Killing Lie algebra and, as well, flat holomorphic
Riemannian metrics (for which the Killing Lie algebra admits a non trivial semi-simple
part). Consequently, the two situations in the main Theorem 1.2 are not exclusive.

Ghys non standard examples As above, for any co-compact lattice � in SL(2, C),
the quotient M = �\SL(2, C) admits a holomorphic Riemannian metric of non-
zero constant sectional curvature. It is convenient to consider M as a quotient of S3
by �, seen as a subgroup of O(4, C) by the trivial embedding γ ∈ � 
→ (γ, 1) ∈
SL(2, C) × SL(2, C).

New interesting examples of manifolds admitting holomorphic Riemannian metrics
of non-zero constant sectional curvature have been constructed in [13] by deformation
of this embedding of �.

Those deformations are constructed choosing a morphism u : � → SL(2, C) and
considering the embedding γ 
→ (γ, u(γ )). Algebraically, the action is given by:

(γ, m) ∈ � × SL(2, C) → γ mu(γ −1) ∈ SL(2, C).

It is proved in [13] that, for u close enough to the trivial morphism, � acts properly
(and freely) on S3(∼= SL(2, C)) such that the quotient Mu is a complex compact man-
ifold (covered by SL(2, C)) admitting a holomorphic Riemannian metric of non-zero
constant sectional curvature. In general, these examples do not admit parallelisable
manifolds as finite covers.

Note that left-invariant holomorphic Riemannian metrics on SL(2, C) which are
not right-invariant, in general, will not descend on Mu .

Let us notice that despite this systematic study in [13], there are still many open
questions regarding these examples (including the question of completeness). A real
version of this study is in [15,23,36]. This story is also related to the study of Anosov
flows with smooth distributions [14].

Non-zero constant curvature in higher dimension? One interesting problem in differ-
ential geometry is to decide whether a given homogeneous space G/I possesses or not
a compact quotient. A more general related question is to decide whether there exist
compact manifolds locally modelled on (G, G/I ) (see, for instance [1,2,22,24]).

The case I = 1, or more generally I compact, reduces to the classical question
of existence of co-compact lattices in Lie groups. For homogeneous spaces of non-
Riemannian type (i.e. I non-compact) the problem is much harder.

The case Sn = O(n+1, C)/O(n, C) is a geometric situation where these questions
can be tested. It turns out that compact quotients of Sn are known to exist only for
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n = 1, 3 or 7. We discussed the case n = 3 above, and the existence of a compact
quotient of S7 was proved in [22]. Here, we dare ask with [22]:

Conjecture 2.3 Sn has no compact quotients, for n �= 1, 3, 7.

A stronger version of our question was proved in [1] for Sn , if n has the form 4m+1.
Keeping in mind our geometric approach, we generalize the question to manifolds

locally modelled on Sn . More exactly:

Conjecture 2.4 A compact complex manifold endowed with a holomorphic Riemann-
ian metric of constant non-vanishing curvature is complete. In particular, such a man-
ifold has dimension 3 or 7.

3 Geometry of the Killing algebra

Recall that a holomorphic Riemannian metric g on M is said locally homogeneous
if for all m, n ∈ M there is a local biholomorphism from an open neighborhood of
m to an open neighborhood of n which sends m to n and preserves g. Such a local
biholomorphism preserving g is called a local isometry.

By Theorem 1.1, each holomorphic Riemannian metric on a compact complex 3-
manifold is locally homogeneous. Equivalently the Lie algebra of local holomorphic
Killing fields (i.e. local holomorphic vector fields whose local flows preserve g) is
transitive on M . In particular, the Killing Lie algebra G of g is of dimension ≥ 3.

Moreover, for any holomorphic tensor field φ on M , the pseudo-group of local
isometries of g preserving also φ acts transitively on M (i.e. if we put together g and
φ, this yields a locally homogeneous geometric structure).

The set of local isometries I of g fixing a point x0 ∈ M generate a local group called
the isotropy group of g. The corresponding Lie algebra I consists in the subalgebra
of Killing fields vanishing at x0. As an isometry fixing x0 is uniquely determined by
its differential at x0 [38], the local group of isotropy at x0 injects into the orthogonal
group of (Tx0 M, gx0) and thus it is of dimension ≤ 3. It follows that G is of dimension
≤ 6.

Let G be the connected simply connected complex Lie group corresponding to G
and I its subgroup corresponding to I. By a Theorem of Mostow [31], I is closed in G
(this will follow also from our classification of G and I). Thus g is locally isometric to
an algebraic model G/I endowed with a G-invariant holomorphic Riemannian metric.
Since the (full) isometry group of G/I has at most finitely many connected compo-
nents, up to a finite cover, M admits a (G, G/I )-geometry in Thurston’s sense [37]:
M admits an atlas with open sets in G/I and transition functions given by elements
in G.

We will classify all possible models (G, G/I ). We settle first the easiest cases where
G has dimension 3, 5 and 6.

3.1 dim G = 3

Lemma 3.1 Let M be a compact connected complex 3-manifold admitting a holo-
morphic Riemannian metric g. Assume one of the following assumptions holds:
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(i) the Killing Lie algebra G of g has dimension 3;
(ii) M admits two linearily independent global holomorphic vector fields.

Then, up to a finite unramified cover, M is a quotient of a complex Lie group G
by a lattice � (hence it admits some holomorphic Riemannian metric of constant sec-
tional curvature) and the pull-back of g on the universal cover of M is a left invariant
holomorphic Riemannian metric on G.

Remark 3.2 If G = C
3, then g is flat and its Killing Lie algebra is of dimension 6

(see Proposition 3.3).

Proof (i) As g is locally homogeneous and G is of dimension 3, the action of G on M
is simply transitive. This gives a (G, G)-structure on M , where the complex Lie group
G acts on itself by left translations. The compactness of M implies the completeness
of the (G, G)-structure [37] and hence M is a quotient of G by a lattice �.

(ii) We apply Theorem 1.1 to the holomorphic geometric structure on M which is
the combination of g with the two global vector fields . Consequently this geometric
structure is locally homogeneous. Moreover, its Killing Lie algebra is easily seen to
be of dimension 3. Indeed, the local isotropy group at x0 ∈ M is trivial because any
element of it which fixes two linearily independent vectors in Tx0 M is trivial. One has
just to check directly the claim for the equivalent situation: O(3, C) acting linearily
on C

3. Finally, we conclude as in the case (i). �	

3.2 dim G = 6

Here we have the following well-known

Proposition 3.3 The dimension of G is 6 if and only if g is of constant sectional
curvature.

Remark 3.4 In this case G has a non trivial semi-simple part.

Proof The dimension of G is 6 if and only if the dimension of I is 3 and if and only
if each element in the connected component of identity of the orthogonal group of
(Tx0 M, gx0) extends to a local isometry. As the identity component of the orthogonal
group of (Tx0 M, gx0) acts transitively on the set of non-degenerate planes in Tx0 M , all
these planes have the same sectional curvature. By local homogeneity, this sectional
curvature does not depend on the point x0.

Conversely the two models of 3-dimensional spaces of constant sectional curvature
have a Killing Lie algebra of dimension 6 which is the Lie algebra of O(3, C) � C

3,
in the flat case, or the Lie algebra of SL(2, C) × SL(2, C), in the non flat one. �	

3.3 dim G = 5

We will see this never happens.
Recall first that SL(2, C) is locally isomorphic to O(3, C). One way to see it is to

consider the adjoint representation of SL(2, C) into the 3-dimensional complex vector
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space sl(2, C) and to note that this action preserves the Killing form. More precisely,
we have SO(3, C) � P SL(2, C), where SO(3, C) is the connected component of the
identity of the orthogonal group and P SL(2, C) is the quotient of SL(2, C) by the
center {I d,−I d}.
Proposition 3.5 The dimension of G is �= 5.

Proof Assume, by contradiction, that dim G = 5 and, equivalently, the dimension of
the isotropy I is 2. Consider the action of the local isotropy group at x0 on Tx0 M and
identify this local isotropy to a 2-dimensional subgroup I of SO(3, C) � P SL(2, C).
The action of I on Tx0 M preserves gx0 , but also the curvature tensor and, in particular,
the Ricci tensor Riccix0 which is a complex quadratic form on Tx0 M .

Consider the action of P SL(2, C) on the complex vector space of complex qua-
dratic forms S2(T ∗

x0
M). This action preserves gx0 and gives an action of P SL(2, C)

on the quotient vector space S2(T ∗
x0

M)/Cgx0 .
The isotropy group lies in the stabilizer of the class of Riccix0 in the quotient

S2(T ∗
x0

M)/Cgx0 . But, for an algebraic action of P SL(2, C) on an affine space, the
stabilizer of an element can not be 1-dimensional. Indeed, by contradiction, up to
an inner automorphism of P SL(2, C), the stabilizer coincides with the subgroup
G ′ ⊂ P SL(2, C) of upper triangular matrices and thus the orbit P SL(2, C)/G ′ is
biholomorphic to the projective line P1(C), which is compact and so can not be
holomorphically embedded in an affine space.

It follows that the stabilizer of the Riccix0 class in S2(T ∗
x0

M)/Cgx0 is of dimension
3 and hence equal to P SL(2, C). This implies that Riccix0 = λgx0 , with λ ∈ C and the
function λ is constant on M by local homogeneity. But then, g has constant sectional
curvature and so G is of dimension 6 which is contrary to our initial assumption. �	

3.4 dim G = 4

This is the most delicate case and all our analysis throughout the paper will be devoted
to it.

Here I has dimension 1. The (local) isotropy group I is algebraic and has finitely
many components. Up to a finite cover, we can assume it connected, i.e. a one param-
eter group. Therefore, I is conjugate in P SL(2, C) to one of the following:

(1) A unipotent one-parameter subgroup

(
1 t
0 1

)

fixing in Tx0 M a vector of norm 0;

(2) A semi-simple one-parameter subgroup

(
t 0
0 t−1

)

fixing in Tx0 M a vector of

norm 1.

Adapted basis In order to understand the action of I on Tx0 M (as a subgroup of
O(3, C)) we shall consider some adapted bases.

Let us first consider the case where the isotropy is semi-simple. Then the action of
I on Tx0 M fixes some vector e1 of norm 1. The plane e⊥

1 is non degenerate and, up to
a multiplicative constant, the vectors e2, e3 ∈ e⊥

1 are uniquely defined by the follow-
ing conditions: e2, e3 generate the two isotropic directions in e⊥

1 and g(e2, e3) = 1.
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The time t of the flow generated by the isotropy I will be given in this adapted basis
(e1, e2, e3), by the formula (e1, e2, e3) → (e1, et e2, e−t e3).

In the case of a unipotent isotropy, the action of I on Tx0 M fixes an isotropic vector
e1 and so preserves the degenerate plane e⊥

1 (of course e1 ∈ e⊥
1 ). In order to define an

adapted basis, take two vectors e2, e3 ∈ Tx0 M such that: g(e1, e2) = 0, g(e2, e2) = 1,
g(e3, e3) = 0, g(e2, e3) = 0 and g(e3, e1) = 1.

Note that such an adapted basis is uniquely determined by the choice of an unitary
vector e2 ∈ e⊥

1 . Indeed, then e3 is uniquely defined in e⊥
2 by the relation g(e3, e1) = 1

(e1 and e3 generate the two isotropic directions in e⊥
2 ).

The action of the isotropy I on Tx0 M sends an adapted basis to an adapted basis.

This action is given in the basis (e1, e2, e3) by

⎛

⎝
1 t − t2

2
0 1 −t
0 0 1

⎞

⎠ .

Lemma 3.6 (i) If G is of dimension 4, then, up to a finite cover, M admits a global
holomorphic vector field X which is preserved by the action of G. The norm of X is
constant equal to 0 or constant equal to 1, according to that the isotropy is unipotent
or semi-simple.

(ii) The divergence of X (with respect of the volume form of g) is 0.
(iii) If the isotropy is semi-simple, then X is a Killing field.

Corollary 3.7 If the isotropy is semi-simple, then G has a non trivial center.

Remark 3.8 We will see further that the orthogonal X⊥ of the Killing field X con-
structed at the point (iii) of the previous lemma is not always integrable. It follows
that the dual one form associated to X is not closed. This is another difference with
the Kaehler background where holomorphic forms are known to be closed (and one
could study the Albanese map).

Proof (i) At x0, X is defined by X (x0) = e1.
(ii) Denote by φt the complex flow generated by X . Recall that the divergence

div(X) of X , with respect to the volume form vol of g, is given by the formula
L Xvol = div(X)vol, where L X is the Lie derivative in the direction X . As G acts
transitively on M preserving X (and also vol), the function div(X) is holomorphic
and so is a constant λ ∈ C. This means that (φt )∗vol = eλtvol, for all t ∈ C. But the
total real volume of M given by the integral on M of the real form vol ∧ vol has to be
preserved by φt . Thus the modulus of eλt equals 1 for all t ∈ C. It then follows that
λ = 0, that is div(X) = 0.

(iii) The action of G preserves X and so also X⊥. We will show first that φt preserves
X⊥ as well. Take a point x0 ∈ M and consider its image φt (x0). For each t ∈ C let us
choose a local isometry gt sending x0 to φt (x0).

The local diffeomorphism (gt )−1 ◦φt fixes x0 and the vector X (x0) ∈ Tx0 M . Since
X is G-invariant, (gt )−1 ◦ φt commutes with all local isometries . In particular, the
differential Lt of (gt )−1 ◦ φt at x0 commutes with the action of the isotropy at x0 and
hence preserves the eigenspaces of the isotropy. Since the isotropy is supposed to be
semi-simple, the differential Lt preserves the non-degenerate plane X (x0)

⊥ and also
its two isotropic directions.
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As div(X) = 0, the differential Lt preserves the volume. It follows that the product
of the two eigenvalues corresponding to the two isotropic directions of X (x0)

⊥ equals
1. This implies that the differential of (gt )−1 ◦ φt at x0 is an isometry. Consequently
the flow of X acts by isometries and X is Killing. Hence CX is in the center of G. �	
Proposition 3.9 If the isotropy is unipotent, then the holomorphic field of complex

endomorphisms ∇· X of T M, in an adapted basis, is

⎛

⎝
0 0 α

0 0 0
0 0 0

⎞

⎠ , with α a complex

constant.
Then X is Killing if and only if α = 0.

Proof Let us fix x0 ∈ M and an adapted basis (e1, e2, e3) of Tx0 M . In this basis the

differential Lt of I at x0 is given by the one-parameter group

⎛

⎝
1 t − t2

2
0 1 −t
0 0 1

⎞

⎠ .

First we show that any G-invariant holomorphic field of complex endomorphisms


 of T M has, in our adapted basis, the following form:

⎛

⎝
λ β α

0 λ −β

0 0 λ

⎞

⎠ , with α, β

and γ ∈ C.

Let B be the matrix of 
(x0) in the basis (e1, e2, e3). Since 
 is I-invariant, B and
Lt commute. Each eigenspace of B is preserved by Lt and conversely. As Lt does
not preserve any non trivial splitting of Tx0 M , it follows that all eigenvalues of B are
equal to some λ ∈ C. A straightforward calculation shows that B has the previous
form. As 
 is G-invariant, the parameters α, β and γ do not depend of x0.

We apply this result to ∇· X (which is G-invariant because X and ∇ are). As the
trace of ∇· X is the divergence of X , lemma 3.6 implies λ = 0.

It will be (independently) shown in Proposition 5.4 that X is parallel on any direction
tangent to X⊥. It follows that ∇e2 X = 0 and β = 0.

The vector field X is Killing if and only if ∇· X is g-skew-symmetric [38]. But an
endomorphism of rank ≤ 1 is skew-symmetric if and only if it is trivial. It follows that
X is Killing if and only if α = 0. �	
Geodesic foliations The following lemma is just the complexification in the realm of
holomorphic Riemannian metrics of a well-known fact remarked for the first time by
M. Gromov [16] (see also the survey [6]) in the context of Lorentz geometry.

Lemma 3.10 (i) If the isotropy is unipotent, then the plane field X⊥ is integrable.
Its tangent holomorphic foliation of codimension one F is geodesic, g-degen-
erate and G-invariant.

(ii) If the isotropy is semi-simple, then M possesses two holomorphic foliations of
codimension one F1 and F2, which are geodesic, g-degenerate and G-invariant.
The tangent space of each one of these two foliations is generated by X and by
one of the two isotropic directions of X⊥.

Proof The idea of Gromov’s proof is to consider the graph of a local isometry fix-
ing x0 ∈ M as a (3-dimensional) submanifold in M × M passing through (x0, x0).
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This submanifold is geodesic and isotropic for the holomorphic Riemannian metric
g ⊕ (−g) on M × M . If fn is a sequence of elements in the local isotropy group at x0
(identified with the orthogonal group of (Tx0 M, gx0)) which tends to infinity in this
orthogonal group, then the sequence of corresponding graphs tends to a 3-dimensional
geodesic and isotropic submanifold F ′ which is no longer a graph. Nevertheless, the
intersection of F ′ with the vertical space {x0} × M is isotropic in M and thus has
dimension ≤ 1. The projection F of F ′ on the horizontal space M ×{x0} is a geodesic
surface passing through x0.

In our situation I has dimension 1 and we can take a sequence of elements of the
one-parameter group I in the orthogonal group going to infinity (one parameter groups
are not compact, which contrasts with the real case). In exponential coordinates our
local isometries are linear and in some adapted basis they have the form presented pre-
viously. We note that the limit of our sequence of (linear) graphs is the plane X (x0)

⊥
if the isotropy is unipotent and the two planes generated by X (x0) and by each of the
two isotropic directions of X (x0)

⊥ if the isotropy is semi-simple.
These foliations are obviously G-invariants, as everything is. �	
We will also denote by X and F the corresponding vector field and foliation on the

algebraic model G/I .

The stabilizer H of a leaf If the isotropy is unipotent, denote by H the subalgebra of
G stabilizing the leaf F(x0) of F passing through x0 ∈ M and by H the correspond-
ing Lie subgroup of G. We keep the same notation for the stabilizer of F1(x0) if the
isotropy is semi-simple.

Proposition 3.11 The group H is of dimension 3 and acts transitively on F(x0) (or
F1(x0) accordingly). The isotropy I at x0 lies in H.

Corollary 3.12 The leaf F is locally modelled on (H, H/I ).

Proof We give the proof in the case of unipotent isotropy. Take x1 ∈ F(x0) and con-
sider a local isometry φ sending x0 on x1. As φ preserves X and X⊥ it has to send
expx0(X⊥) onto expx1(X⊥). The leaf F(x0) being geodesic, expx0(X⊥) ⊂ F(x0) and
expx1(X⊥) ⊂ F(x0). That means that φ lies in the stabilizer of F(x0). In particular,
if φ fixes x0 then φ lies in the stabilizer of F(x0). This implies I ⊂ H.

As G acts transitively on F(x0), the previous argument shows that H acts transi-
tively on F(x0) (with isotropy of dimension 1). It follows that H has dimension 3.

�	

4 Algebraic models for the local structure: the semi-simple case

In this section the Killing algebra G has dimension 4, and thus the isotropy I has
dimension 1. We assume that G has a non-trivial semi-simple part.

Proposition 4.1 Assume G has a non-trivial semi-simple part. Then, it is a direct
product of Lie algebras C ⊕ sl(2, C), and we have two possible models G/I :

(1) The holomorphic Riemannian metric is left invariant on the group SL(2, C).
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The identity connected component of its isometry group is a direct product of
SL(2, C) acting by left translations and some one parameter subgroup ht ⊂ SL(2, C)

acting on by right translations. The isotropy group I is the image of the diagonal
embedding (ht , ht ) in C × SL(2, C).

(2) The holomorphic Riemannian direct product C × S2, where S2 is the universal
model of a surface with holomorphic Riemannian metric of non zero constant sectional
curvature and C is endowed with its standard metric dz2.

The action of the isometry group G = C × SL(2, C) is split. The isotropy I is the

one-parameter subgroup of SL(2, C) given by

(
et 0
0 e−t

)

.

Corollary 4.2 In the case (1) the action of G on M preserves the holomorphic Rie-
mannian metric of non zero constant sectional curvature coming from the Killing form
on sl(2, C).

Remark 4.3 It will be shown in §7 that the situation (2) cannot occur on compact
3-manifolds.

Proof There is no semi-simple algebra of dimension 4, and sl(2, C) is the unique
semi-simple complex Lie algebra of dimension 3. Therefore, G is a direct product
C × sl(2, C) (see, for instance, [19]).

If the isotropy of some point intersects non-trivially the factor SL(2, C), then this
is the case for all points. In fact, since the isotrop I has dimension 1, it intersects
SL(2, C) iff it is contained inside it.

(1) Therefore, in the case of trivial intersection, the group SL(2, C) acts freely
transitively on M . The metric is thus identified to a left invariant one on SL(2, C).

Consider the action of the isotropy I on SL(2, C) (the base point being the neutral
element I d in SL(2, C)). Our claim reduces to the fact that the I -action coincides
with the adjoint action of some one parameter group ht . For this, it suffices to show
that the metric is preserved by the adjoint action of ht on sl(2, C). Indeed, if so, this
integrates on the adjoint action of ht on the group SL(2, C) which is isometric. But,
since the dimension of the isotropy is one, we get coincidence of I with the adjoint
action of ht .

The I -action on sl(2, C) by the adjoint representation is done by Lie algebras
isomorphisms.

On the other hand the previous action identifies with the I -action on TI d SL(2, C)

and has to fixe some vector. It is easy to check that each one-parameter group of
isomorphisms of the Lie algebra sl(2, C) fixing a vector coincides with the adjoint
representation of some one-parameter subgroup ht of SL(2, C).

(2) Assume now that I ⊂ SL(2, C). The action of I on C ⊕ sl(2, C) gives an
I -invariant non trivial splitting of Tx0 M . It follows that I is semi-simple and the
SL(2, C)-orbits are tangents to X⊥ (in particular, they are g-non degenerate). Then,
the SL(2, C)-orbits are complex homogeneous surfaces endowed with a SL(2, C)-
invariant holomorphic Riemannian metric. They have in particular constant curvature,
and obviously cannot be flat (because their Killing algebra contains sl(2, C)). Up to
a multiplicative constant, they are isometric to S2. �	
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5 Algebraic models for the local structure: the solvable case

We assume here that G is solvable (and of dimension 4).

Proposition 5.1 (i) The derivative Lie algebra [H,H] is 1-dimensional.
(ii) The group H is isomorphic either to the Heisenberg group or to the product

C × AG, where AG is the universal covering of the affine group of the complex line.

Recall that the affine group of the complex line is the group of transformations of
C, given by z → az + b, with a ∈ C

∗ and b ∈ C. If Y is the infinitesimal generator of
the homotheties and Z the infinitesimal generator of the translations, then [Y, Z ] = Z .

Proof (i) It is a general fact that a derivative algebra of a solvable algebra is nilpotent.
Remark first that [H,H] �= 0. Indeed, if not H is abelian and the action of the isotropy
I ⊂ H would be trivial on H and hence on Tx0 F which is identified to H/I. Since
the restriction to the isotropy action to the tangent space of F is injective this implies
that the isotropy action is trivial on Tx0 G/I which is impossible.

As H is 3-dimensional, its derivative algebra [H,H] is a nilpotent Lie algebra of
dimension 1 or 2, hence [H,H] � C or [H,H] � C

2.
Assume by contradiction that [H,H] � C

2.
We first prove that the isotropy I lies in [H,H]. If not, [H,H] � C

2 will act freely
on F . Therefore F is locally identified with the group C

2 endowed with a left invariant
connection, a left invariant holomorphic degenerate Riemannian metric (compatible
with the connection) and a left invariant holomorphic vector field (which is X ).

We show now that the connection is flat. The local model for the left invariant
degenerate metric on F is dh2 in the coordinates (x, h) of C

2. In this coordinates the
left invariant vector field X coincides with ∂

∂x , if the isotropy is unipotent and with
∂
∂h , if the isotropy is semi-simple.

An easy calculation shows that any torsion-free and C
2-invariant connection com-

patible with dh2 is given by ∇ ∂
∂h

∂
∂h = a ∂

∂x , ∇ ∂
∂x

∂
∂x = b ∂

∂x and ∇ ∂
∂h

∂
∂x = ∇ ∂

∂x

∂
∂h =

c ∂
∂x , for some a, b, c ∈ C. The invariance by the isotropy one-parameter group implies

that at least two of the parameters a, b, c vanish. In this case the curvature of ∇ van-
ishes.

The isometry group of this model is C�C
2, where the action of the isotropy I � C

on C
2 is given by the one parameter group of linear transformations

(
1 t
0 1

)

, if I is

unipotent, or by

(
et 0
0 1

)

, if I is semi-simple. Our group is thus isomorphic to the

Heisenberg group or to AG × C. In both cases the derivative group is 1-dimensional
which contradicts our assumption, and hence I ⊂ [H,H].

It follows in particular that the orbits of [H,H] on F are 1-dimensional. We prove
now that the orbits of [H,H] on F correspond to the isotropic direction in F and the
isotropy I is unipotent.

Let Y be a generator of I, {Y, X ′} be generators of [H,H] and {Y, X ′, Z} be a basis
of H. The tangent space of F at some point x0 ∈ F is identified with H/I and the
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infinitesimal (isotropic) action of Y on this tangent space is given in the basis {X ′, Z} by

the matrix ad(Y ) =
(

0 ∗
0 0

)

. This is because [H,H] � C
2 and ad(Y )(H) ⊂ [H,H].

Moreover, ad(Y ) �= 0 since the restriction to the isotropy action to the tangent space
of F is injective.

From this form of ad(Y ), we see that the isotropy is unipotent with fixed direction
CX ′. This direction is exactly the tangent direction of the orbits of [H,H] on F .

Denote by L the derivative algebra [G,G] of G. Then L ⊃ [H,H] ⊃ I. The
dimension of L is 2 or 3 and the L-orbits on G/I have dimension 1 or 2 accordingly.

Assume first that L is 3-dimensional and thus has 2-dimensional orbits on G/I . The
foliation of G/I provided by the L-action is 2-dimensional and invariant by the unipo-
tent isotropy I . Since X ′⊥ is the only plane field on G/I preserved by the isotropy, it
follows that the leafs of the L-action coincide with those of the H-action. So L = H,
as Killing algebra of F . But this is impossible, since L is nilpotent (as a derivative
algebra of a solvable algebra) and H is not (its derivative algebra is supposed to be
2-dimensional).

It remains to settle the case where L is 2-dimensional. We show in this case that
the infinitesimal isometry ad(Y ) of Tx0 G/I has rank 1, which is not possible for an
infinitesimal isometry of a holomorphic Riemannian metric.

Since L = [G,G], the image of G by the isotropy action ad(Y ) at x0 ∈ G/I is
contained in L. Thus this image has at most dimension 2 and as I ⊂ L and the tangent
space at x0 is identified with G/I, the image of ad(Y ) in Tx0 G/I is of dimension at
most 1.

This completes the proof of part (i) of the proposition.
(ii) Let Z be a generator of [H,H] and consider its adjoint map ad(Z) : H → CZ .

If this map is trivial then, Z is central and H is nilpotent isomorphic to the Heisenberg
group.

Consider now the case where ad(Z) is not trivial. Let X ′ be a generator of the
kernel of ad(Z) and take Y ∈ H such that {Y, X ′, Z} is a basis of H. We can assume
that [Y, Z ] = Z . We also have [X ′, Y ] = aZ , with a ∈ C. After replacing X ′ by
X ′ + aZ , we can assume that a = 0. It follows that H = C × AG, where the center
of H is exp(CX ′) and AG is generated by exp(CZ) and exp(CY ). �	

5.1 The case: H = C × AG

In this case, all possible algebraic models (G, G/I ) are described in the following:

Proposition 5.2 The isotropy group I is semi-simple (it is generated by the infinites-
imal generator of the homotheties in AG) and G is one of the following Lie groups:
(1) G = C × SO L
(2) G = C � Heis
(3) G = C

2
� C

2

In case (2) the action of the first factor I � C on Heis, is given by (X ′, Z , T ) →
(X ′, et Z , e−t T ), with respect of a basis (X ′, Z , T ), such that X ′ is central and
[T, Z ] = X ′,
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In case (3) the action of the first copy of C
2 on the second one is given by the

matrices

(
et 0
0 e−t

)

and

(
1 0
0 e−t

)

.

Remark 5.3 As the center of G = C
2

� C
2 is trivial, it follows from Lemma 3.6 that

this Lie algebra cannot occur as a local Killing algebra for a holomorphic Riemannian
metric on a compact complex 3-manifold.

Proof As before suppose that {X ′, Y, Z} is a basis of H with X ′ central and Y, Z
spanning the Lie algebra of AG such that [Y, Z ] = Z . Denote by T a fourth generator
of the Killing algebra G.

We show that, up to an automorphism of H sending Y to Y + aZ + bX ′, with
a, b ∈ C, the isotropy algebra I is CY .

Observe that ad(αX ′ + βZ)(H) ⊂ CX ′ ⊕ CZ , for all α, β ∈ C. If the isotropy
I is C(αX ′ + βZ) then the action of ad(αX ′ + βZ) on Tx0 F � H/I is given by a
matrix of rank 1. Consequently the isotropy is not semi-simple. We then proved that
in the case where the isotropy is semi-simple, the isotropy I doesn’t lie in CX ′ ⊕ CZ
and, up to an automorphism of H sending Y to Y + aZ + bX ′, we can assume that
I = CY .

Now, we show the same result in the case of unipotent isotropy. Observe first
that I �= CX ′ since the central element X ′ acts trivially on H and hence also on
H/I � Tx0 F , which is impossible.

Assume, by contradiction, that I ⊂ CX ′ ⊕ CZ . Up to an automorphism of H
sending Z to Z + αX ′, with α ∈ C, we can assume that I = CZ . Then, the abelian
Lie algebra CX ′ ⊕ CY intersects trivially I and will act freely on F . As in the proof
of Proposition 5.1, this implies that F is flat and the Killing Lie algebra of F is heis.
But, this is impossible, since the Heisenberg group is nilpotent and H = C × AG is
not.

It follows that, up to an automorphism of H , we have I = CY . This is impossible
in the unipotent isotropy case. Indeed, the abelian Lie algebra CX ′ ⊕ CZ acts freely
on F and F is flat. If the isotropy was unipotent then, as before, H is isomorphic to
the Heisenberg group which contradicts our hypothesis.

Therefore, the isotropy is semi-simple. As the isotropy CY fixes X ′ and expands the
direction CZ (because of the relation [Y, Z ] = Z ), we can choose as fourth generator
T of G the second isotropic direction of the Lorentz plane X ′⊥. Then we will have
[Y, T ] = −T + aY , for some constant a ∈ C and we can replace T with T − aY in
order to get [Y, T ] = −T .

In the following, we assume that [Y, T ] = −T .
We will first show that [T, Z ] = aX ′ + bY , with a, b ∈ C and [T, X ′] = cT , for

some c ∈ C.
For the first relation we use the Jacobi relation [Y, [T, Z ]] = [[Y, T ], Z ] +

[T, [Y, Z ]] = [−T, Z ] + [T, Z ] = 0 to get that [T, Z ] commutes with Y and conse-
quently lies in CY ⊕ CX ′.

To get the second one, observe that X ′ et Y commute, and thus T (which is an
eigenvector of ad(Y ), is also an eigenvector of ad(X ′)). This gives [T, X ′] = cT , for
some c ∈ C.

Consider now the derivative algebra L = [G,G] and recall it is nilpotent.
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The relations [Y, Z ] = Z , [Y, T ] = −T and [T, Z ] = aX ′ + bY , show that L con-
tains the Lie algebra generated by Z , T and aX ′ + bY . We have [aX ′ + bY, Z ] = bZ
and this implies b = 0 (if not the Lie algebra generated by aX ′ + bY and Z is iso-
morphic to the Lie algebra of AG, which is not nilpotent and so cannot be embedded
into the nilpotent algebra L). It follows that b = 0 and so [T, Z ] = aX ′.

We also have [T, aX ′] = acT and the same proof yields that a = 0 or c = 0.
Up to an automorphism of G, if a �= 0 we can assume a = 1, and if c �= 0 we can

assume c = 1.
Summarizing, we have the following three possibilities concerning the Lie algebra

structure of G:
(1) If a = 0 and c = 0, the Lie bracket relations are the following: [Y, Z ] =

Z , [Y, T ] = −T, [T, Z ] = 0 and [T, X ′] = 0. Thus X ′ is central in G. The Lie group
generated by {Y, Z , T } is isomorphic to SO L . It then follows that G is isomorphic to
the direct product C×SO L , where X ′ generates the center. The isotropy I = exp(CY )

lies in SO L .
(2) If a = 1 and c = 0 the Lie bracket relations are [Y, Z ] = Z , [Y, T ] =

−T, [T, Z ] = X ′ and [T, X ′] = 0. The corresponding Lie group G is isomorphic
to the semi-direct product C � Heis, where the Lie algebra heis of Heisenberg is
generated by X ′, T and Z .

The first factor C is the isotropy exp(CY ), and its action on heis is given by
(X ′, Z , T ) → (X ′, et Z , e−t T ), where X ′ is the generator of the center of heis. It
follows that X ′ is central in G. The factor Heis, intersects trivially the isotropy and
hence acts freely and transitively on G/I .

(3) For a = 0 and c = 1, we have: [Y, Z ] = Z , [Y, T ] = −T, [T, Z ] =
0, [T, X ′] = T and the Lie group G is a semi-direct product G = C

2
� C

2. The
infinitesimal action of the first copy of C

2 (generated by Y et X ′) on the second copy

of C
2 (generated by Z and T ) is given by the matrices

(
1 0
0 −1

)

and

(
0 0
0 −1

)

. �	

5.2 The case: H = Heis

Under this assumption, we will describe first the geometry of the foliation F and then
we will find all algebraic models (G, G/I ).

Proposition 5.4 (i) The isotropy I is unipotent.
(ii) The F-leaves are flat and X is parallel along them.

Proof The action of the isotropy I on H/I doesn’t preserve any non trivially split-
ting. It follows that I is unipotent and I is different from the center of H (which acts
trivialy). This implies that any copy of C

2 transverse to the isotropy I in H acts freely
on H/I (they exist since I is not central). This means that the H -leaves are flat (see
the proof of Proposition 5.1) and that X is parallel along them. �	
Proposition 5.5 H is a normal subgroup of G.

Corollary 5.6 The H-foliation coincides with F .
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Proof At the Lie algebra level we show that H is an ideal in G. Take A ∈ G and let
B be a local holomorphic vector field tangent to X⊥ (recall T F = X⊥). We have to
prove that [A, B] = ∇A B − ∇B A lies in X⊥. Note that ∇A B ∈ X⊥: g(B, X) = 0
�⇒ g(∇A B, X) = −g(∇A X, B) = 0 (because ∇A X = αX by Proposition 3.9). On
the other hand the Killing field A preserves X and thus ∇X A = ∇A X . As ∇· A is
skew-symmetric, it follows that g(∇B A, X) = −g(B,∇X A) = −g(B,∇A X) = 0,
because ∇A X = αX . The second term ∇B A lies in X⊥, and thus [A, B] ∈ X⊥. �	

Algebraic structure of G. Therefore, G is an extension of the Heisenberg group
H . In order to describe the algebraic structure of this extension denote by {X ′, Y, Z}
a basis of the Lie algebra H of H , such that Y is a generator of the isotropy I, X ′ is
a generator of the center and Z is such that: [Y, Z ] = X ′. We can assume that X ′ and
Z generates the group of translations on the H -leaves.

Denote by T a fourth generator of G. The action of the isotropy CY on G/CY is
such that ad(Y )T = −Z , which implies [Y, T ] = −Z + βY , for some β ∈ C.

As the adjoint transformation of T acts on H preserving the center of H it follows
that: [T, X ′] = cX ′, for some constant c ∈ C.

We have the following

Proposition 5.7 (i) There exists a H-invariant holomorphic function on G/I such
that X ′ = f X ( f is only locally defined on M and constant on the leaves of F).

(ii) X is Killing (and f is constant) if and only if c = 0.

(iii) In the basis {X ′, Z , Y }ofH the action of T is given by ad(T )=
⎛

⎝
c m 0
0 c + β 1
0 k −β

⎞

⎠ ,

with m, k ∈ C.
(iv) If c = 0 and k + β2 = 0, then g is flat.

Proof (i) As X ′ is in the center of H and [T, X ′] = cX ′, the direction CX ′ is
G-invariant. But in the case of unipotent isotropy the only direction in T M which is
G-invariant is CX . Hence X ′ = f · X , for some local holomorphic function f on M .

Moreover, the action of H is transitive on each leaf of F and preserves X ′ and X .
It follows that f is constant on the leaves of F .

(ii) As G preserves X , the vector field X is Killing if and only if it represents a
non trivial element in the center of G. It follows that X is Killing if and only if it is a
multiple of X ′ and X ′ is in the center of G. Equivalently, X ′ is a central element of G
if and only if c = 0.

(iii) We apply the Jacobi relation to the vector fields Y, T and Z to verify that ad(T )

is a derivation if and only if ad(T )Z is of the form m X ′+(c+β)Z +kY , for m, k ∈ C.
(iv) If c = 0 and k + β2 = 0, then the vector fields X ′, Z − βY and T generate a

Lie algebra isomorphic to the Heisenberg algebra heis, which acts freely on M . The
center of this algebra is generated by X ′, which is colinear to X and hence isotropic.
Then, g is locally modelled on a left invariant holomorphic Riemannian metric on the
Heisenberg group which gives to the center of heis the norm 0. These metrics are
known to be flat [33]. �	
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6 Unipotent isotropy

In this section we deal to the case where the isotropy I is unipotent (and G is
4-dimensional and solvable). Then, Propositions 5.2 and 5.4 show that H is isomorphic
to the Heisenberg group. The section is devoted to the proof of the following:

Proposition 6.1 Up to a finite unramified cover, M is a quotient of SO L by some
lattice (and c �= 0).

6.1 Completeness

Each leaf F of the H -foliation is a surface, on which the restriction of the vector field
X is an (isotropic) Killing field for the (H, H/I )-structure (of the leaf). The vector
field X generates the kernel D of the restriction of the metric g to the F . Further-
more, g determines a transverse holomorphic Riemannian structure on the foliation
D (restricted to F), i.e. a (C, C)-structure. For the basic facts concerning the study of
foliations having a transverse (G, G/I )-structure one can see [30].

Lemma 6.2 (i) The leaf F is (H, H/I )-complete, that is, the developing map
F̃ → H/I , on the universal cover, is a diffeomorphism.

(ii) The (G, G/I )-structure of M is complete.

Corollary 6.3 The holonomy � acts properly on G/I .

Proof (i) The (H, H/I )-structure on F is a combination of the Killing filed X and its
transverse (C, C)-structure. One directly sees, since X is complete (by compactness
of M), that it suffices to prove completeness of the transverse (C, C)-structure, i.e.
completeness of the 1-dimensional holomorphic Riemannian metric induced on the
quotient of F by X (or say, to prevent any pathology, the quotient of F̃ by X̃ , where
X̃ is the pull-back of X on F̃).

We will show that for any complex a, there is a complete vector field Va on F
with (constant) g-norm a. This would prove completeness, since such Va come from
translation vector fields on C, and hence the Va’s commute, and they define a (com-
plete) action of R

2, and thus the leaf is homogeneous. This action commute with the
developing map, which must be diffeomorphic.

In order to check existence of the complete vector fields Va , we come back to our
ambient compact manifold M and consider the space of vectors tangent to the H -
foliation and having a norm a. For a = 0, this space is the vector bundle CX which
is known to have the global section X . For a �= 0, this space is a fiber bundle over
M , with fiber two copies of C (endowed with a structure of an affine space). Up to a
double cover, this bundle is trivial and provides a global vector field of norm a on M ,
and hence complete, by compactness of M .

(ii) Since H is an ideal of G, the H -foliation has a transverse (C, C)-structure,
which is complete by compactness of M [30]. Combined with the completeness of the
leaves, this proves completeness of the full (G, G/I )-structure. �	
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We can now prove:

Lemma 6.4 (i) � is not abelian.
(ii) If c = 0, then � is not nilpotent.

Proof Consider � the complex Zariski closure of � in G. As � has finitely many
connected components, up to a finite cover of M , we may assume that the complex
abelian Lie group � is connected.

Let us notice that � can not be contained in H . Indeed, if not, we get a well defined
surjectif projection map M → �\G/I → H\G/I . Since I is contained in H and H
is normal, this last space is C = H\G. This contradicts the compactness of M .

(i) Assume by contradiction � is abelian. Then � is an abelian complex Lie group
on which the action of � by adjoint representation is trivial.

Suppose first that the complex dimension of � is 1. As above, we get a projection
from M to a double coset space �\G/I . Here � is a one-parameter complex group
not included in H and this double coset space is diffeomorphic to H/I which is not
compact. We get a contradiction.

Assume now that the complex dimension of � is >1. Any element of � is invariant
by the holonomy � and it gives a globally defined holomorphic Killing field on M .
With our assumption, M possesses at least two linearily independent holomorphic
(Killing) vector fields and we can use Lemma 3.1. It follows that M is a quotient of a
3-dimensional complex Lie group C , by a lattice �. As � is supposed to be abelian,
C is also abelian and isomorphic to C

3. The holomorphic Riemannian metric g is left
invariant on C

3 and hence it is flat. This is absurde, since the Killing Lie algebra G of
the flat model is of dimension 6 (and not of dimension 4).

(ii) Assume, by contradiction, � is nilpotent. Since � is not abelian, and supposed to
be nilpotent, � is 3-dimensional (because the full group G is not nilpotent) and hence
it is a complex Heisenberg Lie group, and its center is generated by X ′. Take two line-
arily independent elements in the quotient of the Lie algebra of � outside its center.
A straightforward computation (modulo CX ′) gives [T +aY +bZ , T +a′Y +b′Z ] =
(a − a′)(Z −βY )+ (b − b′)(kY +βZ), for all a, a′, b, b′ ∈ C and shows that the Lie
bracket of two such elements can be a multiple of X ′ only if the determinant k + β2

of

(
1 −β

β k

)

vanish. Then Proposition 5.7 implies that g is flat: absurde. �	

Sub-holonomy group � = � ∩ H. Let � be the real Zariski closure of � in H . Denote
by δ the real Lie algebra of �, by δC its complexified Lie algebra and by �C the
associated complex Lie group.

Recall that � acts on G by adjoint representation and has to preserve � and hence
also � and �C.

Proposition 6.5 (i) � is not trivial and acts properly on H/I .
(ii) � is of (real) dimension ≤ 4.

(iii) �C is of (complex) dimension ≤ 2.
(iv) � is abelian.

Proof (i) Assume, by contradiction, that � is trivial. Then the projection of � on
G/H � C is injective and � is abelian. This is in contradiction with Lemma 6.4.
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Since the (H, H/I )-structure of a leaf F is complete, � is a discrete subgroup of
H acting properly on H/I and the F-leafs are diffeomorphic to �\H/I .

(ii) As H is nilpotent, � is also a nilpotent group and by Malcev Theorem � is a
(co-compact) lattice in its real Zariski closure � [35]. This means that � acts properly
on H/I as well. Thus � has to intersect trivially the isotropy group CY � RY ⊕RiY .

It follows that � is a real Lie group of dimension ≤ 4.
(iii) A one-parameter complex group I ′ in H , not included in the subgroup of trans-

lations of F , has a fix point at x ′
0 ∈ F : it coincides with the isotropy at x ′

0. As before,
the isotropy at x ′

0 intersects trivially �. It follows that � lies in the complex Lie group
of translations, whose Lie algebra is CX ′ ⊕ CZ . This implies δC ⊂ CX ′ ⊕ CZ and
�C is of dimension ≤ 2.

(iv) We have � ⊂ �C, which is abelian by the previous point. �	
Proposition 6.6 The following facts are equivalent:

(i) The F-leaves are compact;
(ii) � is of (real) dimension 4;

(iii) The projection of � on G/H has a discrete image.

In this case M is biholomorphic to a holomorphic bundle over an elliptic curve with
fiber type F isomorphic to a 2-dimensional complex torus.

Proof The F-leaves are diffeomorphic to �\H/I . Since � intersects trivially the
isotropy, the action of � on H/I is free and give a trivial foliation of �\H/I with
compact leaves (diffeomorphic to �\�). It follows that �\H/I is compact if and
only if the action of � on H/I is transitive which means that the dimension of � is 4.

The image of � by the projection G → G/H is the holonomy of the transverse
(C, C)-structure of the H -foliation F . The image of � in G/H � C is discrete if and
only if the leaves of F are compact [30].

In this case, the general study of the developing map of the (C, C)-transverse struc-
ture of F shows that M is a bundle over an elliptic curve with fiber F [30].

Since the leaves F � �\� are complex surfaces, � is also a complex group:
� = �C. It follows that �C � C

2 and F is diffeomorphic to �\C
2, which is a

complex torus. �	
Proposition 6.7 If the complex dimension of �C is two, then k = 0. It follows that at
least one of the parameters c and β are �= 0 (see Proposition 5.7).

Proof Here we have δC = CX ′ ⊕ CZ .
Take γ ∈ � not included in H and decompose it as γ = exp(αT )h, with h ∈ H

and α ∈ C
∗.

The holonomy group � lies in the normalizer NG(�C) of �C in G. The group H
normalize �C in G. We have then exp(αT ) ∈ NG(�C). It follows that the action
of ad(T ) on G preserves CX ′ ⊕ CZ . Since (by Proposition 5.7) we have [T, Z ] =
m X ′+(c+β)Z +kY , this implies k = 0. Moreover, if c = β = 0, then Proposition 5.7
implies g is flat: absurde. �	
Proposition 6.8 � is of (real) dimension 4.

Proof Assume, by contradiction, � is of dimension <4. Up to a finite cover, � is
supposed to be connected.

123



Holomorphic metrics 75

The case: � is 1-dimensional Then � is a discrete subgroup (isomorphic to Z) of a
real one parameter subgroup � of H .

As Z does not admit non trivial automorphisms other than z → −z, up to index 2,
the action of � on � is trivial. This implies that the action of � on � is trivial as well,
and any infinitesimal generator Z ′ of � is an element of the real Lie algebra G fixed by
the holonomy. This element (seen as an element of the complex Lie algebra G) gives
a global holomorphic Killing field on M .

If the Killing field is a constant multiple of X , then c = 0 and X is given by a central
element of G. It follows then that � lies in the center of G and hence in the center of
�. As [�,�] ⊂ �, the holonomy � is a (two step) nilpotent group and Lemma 6.4
gives a contradiction.

Assume now the previous Killing field is not colinear with X . Note that � lies in
the centralizer C of Z ′. Since Z ′ is not a multiple of X ′, the centralizer C of Z ′ is at
most 3-dimensional. It follows that, up to a finite cover, M admits a (C, C)-structure
and M is a quotient of C by a lattice.

The Lie algebra of C is generated by Z ′, X ′ and some element T ′ ∈ G not contained
in H. We can assume that T ′ = T (modulo H). In the Lie algebra of C , the element
Z ′ is central, and [T ′, X ′] = cX ′. If c �= 0, then C � C × AG, which is impossible
since this group is not unimodular and has no lattices.

It follows that c = 0 and C � C
3, which implies g is flat: absurde.

The case: � is 2-dimensional The complex dimension of �C is 1 or 2.
We assume first that �C is 1-dimensional. In this case δ = RX ′′ ⊕Ri X ′′, for some

X ′′ ∈ G. The adjoint action of � on δC = CX ′′ is C-linear and preserves the lattice
exp−1(�). It follows that each element of � acts on δC by homotheties given by roots
of unity of order at most 6. Up to a finite covering of M , the holonomy � preserves
X ′′ which gives a globally defined holomorphic Killing field on M . We conclude then
as in the 1-dimensional case.

Assume now �C is 2-dimensional: δC = δ ⊗ C = CX ′ ⊕ CZ .
We show that an element γ ∈ �, not contained H , acts trivially on CX ′ and on

δC/CX ′, as soon as its projection on G/H is small enough. Such elements γ exist,
since, by Proposition 6.6, the image of � in G/H is not discrete.

Consider γn = rnhn a sequence of elements of �, with hn ∈ H and rn /∈ H going
to 0 in G/H � C, when n goes to infinity. We can assume rn = exp(αnT ), with
αn ∈ C

∗ going to 0 when n goes to infinity.
If hn = exp(an X ′)exp(bnY )exp(cn Z), with an, bn, cn ∈ C then the adjoint action

of hn on �C is exactly the action of Ad(exp(bnY )).

The action of Ad(exp(bnY )) on δC = CX ′ ⊕ CZ is given by the matrix

(
1 bn

0 1

)

.

By Proposition 5.7, Ad(rn) = Ad(exp(αnT )) has the following matrix when act-

ing on δC = CX ′ ⊕ CZ :

(
eαnc ∗

0 eαn(c+β)

)

. The matrix of Ad(γn) = Ad(rn)Ad(hn)

has the same form.
Recall now that this action of Ad(γn) preserves δ and the lattice exp−1(�): it is

conjugated to an element of SL(2, Z). It follows that, for all n ∈ N, the previous
matrix of Ad(γn) has a determinant which equals 1 and a trace which is an integer.
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This implies that, for n large enough, the trace equals 2 and eαnc = eαn(c+β) = 1. It
follows c = 0 and β = 0, which contradicts Proposition 6.7.

The case: � is 3-dimensional As in the previous case, we have δC = CX ′ ⊕ CZ . We
can change the infinitesimal generator X ′ of the center of H and also Z into Z + aX ′,
with a ∈ C, such that either δ = CX ′ ⊕ RZ , or δ = RX ′ ⊕ CZ . The previous
transformation keeps unchange the Lie bracket relations.

Take as before a sequenceγn = exp(αnT )hn of elements of�, such that hn ∈ H and
αn ∈ C

∗ converges to 0. As before, the matrix of the Ad(γn)-action on δC = CX ′⊕CZ

is of the form

(
eαnc ∗

0 eαn(c+β)

)

.

Consider the restriction of Ad(γn) to δ. For each n ∈ N, the Ad(γn)-action on δ

preserves some lattice, so it is conjugated to some element in SL(3, Z). When n goes
to infinity, the three eigenvalues of Ad(γn) go to 1. By discreteness of SL(3, Z), it fol-
lows that, for n large enough, all eigenvalues of Ad(γn) equal 1. So, for n large enough,
eαnc = eαn(c+β) = 1. It follows c = 0 and β = 0, which contradicts Proposition 6.7.

�	
We are now able to prove Proposition 6.1.

Proof By Proposition 6.6, M is a fiber bundle over an elliptic curve with fiber F
biholomorphic to a 2-dimensional complex torus. We have seen that � is an abelian
group isomorphic to Z

4, � � R
4 and �C = C

2. As before, we have δC = CX ′ ⊕CZ .
By Proposition 6.6, the projection of � on G/H is a discrete subgroup. This sub-

group is isomorphic to the fundamental group of the basis of our fibration, so it is
� Z

2. Take γ1 and γ2 two elements in � such that their projections in G/H span
the previous Z

2. Then any element of � decomposes as γ
p

1 γ
q
2 d, with p, q ∈ Z and

d ∈ �. Moreover, we can decompose γi as exp(αi T )hi , where i ∈ {1, 2}, hi ∈ H
and αi ∈ C.

Assume by contradiction that c = 0. Then Proposition 5.7 implies that the action
of Ad(T ) on the quotient H/I is of (complex) determinant 1. Hence the determinant
of the action of Ad(γi ) on δC equals 1.

On the other hand the eigenvalues of Ad(γi ) are 1 and eαi β (see the proof of the
case 2 in Proposition 6.8). It follows that eαi β = 1, for i ∈ {1, 2}. This implies
αiβ = 2iπki , where ki ∈ Z. Since αi are Z-independent, we have β = 0. As before,
this is in contradiction with Proposition 6.7.

It follows that c �= 0.
We prove that there exists a basis of δC in respect of which the actions of Ad(γ1)

and Ad(γ2) are (both) diagonal. Recall that CX ′ is stable by the adjoint representa-
tion of G and, in particular, by Ad(γ1) and by Ad(γ2). Denote λi the corresponding
eigenvalue of the restriction of Ad(γi ) to δC, i ∈ {1, 2}. We prove by contradiction
that either the modulus of λ1 or the modulus of λ2 is �= 1. Indeed, if not the modulus
of the “quotient” f of X ′ over X (see Proposition 5.7) is preserved by the projection
of � on G/H (which coincides with the holonomy of the transversal structure of the
H -foliation). This means | f | is globally defined on M . As M is compact and f is
holomorphic, the maximum principle implies f is constant and, by Proposition 5.7,
we have c = 0, which contradicts our assumption.
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Assume now that the modulus of λ1 is �= 1. As Ad(γ1) acts on δC preserving a
lattice, this action is unimodular. It follows that the action of Ad(γ1) on δC has distinct
eigenvalues, and so it is diagonalizable over C. Since γ1 and γ2 commutes (modulo �)
and the action of � on δC is trivial, then Ad(γ1) and Ad(γ2) commutes in restriction
to δC. It follows that the two eigenvectors of Ad(γ1) are invariant by Ad(γ2) as well.
Consequentely the two eigenvectors of Ad(γ1) are �-invariant. The holonomy group
� lies in a subgroup of G for which the adjoint action on δC preserves a non trivial
splitting.

Take T ′ ∈ G such that γ1 = exp(T ′). We have proved that � lies in the 3-dimen-
sional (solvable) complex Lie group C generated by CT ′ and δC. Thus, the manifold
M possesses a (C, C)-structure and M is a quotient of C by a lattice (so C is unimod-
ular). Since c �= 0, the only compatible Lie group structure is SO L and so, up to a
finite cover, M is a quotient of SO L by some lattice. �	

7 Semi-simple isotropy

7.1 Solvable Killing algebra

We study separately the two possible models we got from Proposition 5.2. We prove
the following:

Proposition 7.1 Up to a finite unramified cover, M is a quotient of the Heisenberg
group by a lattice (G is isomorphic to C � Heis).

Together with Proposition 6.1 this will prove part (ii) (G solvable) of the main
Theorem 1.2.

The Case G = C × SO L .

Recall the Lie algebra of SO L is generated by {Z , T, Y }, with the Lie bracket rela-
tions [Y, Z ] = Z , [Y, T ] = −T and [T, Z ] = 0. The center of G is generated by X ′
and the 3-dimensional abelian Lie algebra generated by {X ′, Z , T } acts freely on G/I .
The holomorphic Riemannian metric g is locally identified with a translation-invariant
holomorphic Riemannian metric on C

3. Consequently g is flat, which is impossible.
The case G = C � Heis
Recall that the Lie algebra of Heis is generated by the central element X ′ and by

Z , T such that [Z , T ] = X ′. We have seen that X ′ is fixed by the isotropy I and Z
and T are the two isotropic directions expanded and contracted by I .

Here X ′ generates the global Killing field X of constant norm equal to 1 fixed
by the isotropy. Denote φt , where t ∈ C, the holomorphic flow of X . The flow φt

preserves the orthogonal distribution X⊥. This distribution has dimension 2 and it is
non-degenerate in respect to g. Thus X⊥ has exactly two isotropic line fields which are
locally generated by Z and T . They are naturally preserved by φt . Since [Z , T ] �= 0,
the distribution X⊥ is not integrable.

We will say that X is equicontinuous if φt is. This means by definition that the
closure K of φt in the group of homeomorphisms of M is a compact group. In this
case K will be an abelian compact complex Lie group (a complex torus) acting on M
and preserving g.
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Assume first that X is equicontinuous. If K has complex dimension >1, the fun-
damental fields of the action of K on M give at least two linearily independent global
holomorphic vector fields on M and Lemma 3.1 applies. So the centralizer C of K in
G acts transitively on M , such that M is quotient of C by a lattice. The subgroup C
of G is unimodular and has a center which is at least 1-dimensional. It follows that C
is isomorphic to Heis.

Now consider the case where K is a 1-dimensional complex torus. The quotient of
M by the action of K is a compact complex surface S which inherits a flat holomorphic
Riemannian metric. Indeed, G/exp(CX) � SO L and S is easily seen to be locally
modelled on (SO L , SO L/I ′), where SO L � C � C

2 with the action of C on C
2

given by the complex one-parameter group I ′ =
(

et 0
0 e−t

)

.

Up to a finite unramified cover, this surface is a 2-dimensional complex torus T 2

with a flat holomorphic Riemannian metric (see Theorem 4.3 in [8]). Consequently,
up to a finite unramified cover, M is a principal bundle of elliptic curves over a com-
plex torus and the projection of the holonomy � on G/exp(CX) � SO L lies in the
subgroup of translations C

2. It follows that the holonomy � lies in a complex Lie
group C of dimension 3 which is a central extension of C

2 by C (isomorphic to Heis)
and which acts freely and transitively on G/I . Up to a finite unramified cover, M is
biholomorphic to a quotient of Heis by a lattice.

It remains to settle the case where X is non-equicontinuous, for which we prove:

Proposition 7.2 If the flow φt is non-equicontinuous, then it is holomorphic Anosov
in Ghys sense (see [12]).

Proof The closure of the one-parameter complex group φt in the group of homeomor-
phisms of M is a complex abelian Lie group which is supposed to be non compact.
It follows that the closure of φt is isomorphic to C or to C/ iZ (normalizing the flow
by multiplication with a complex number, we can assume that the stabilizer is iZ). In
the two cases all real one-parameter subgroups in φt are non-equicontinuous (except
{φt , t ∈ iR}, in the last case). We will show that they act on M as the restrictions of
a holomorphic Anosov flow in Ghys sense to a one parameter subgroup and so φt is
holomorphic Anosov in Ghys sense.

By passing, if necessary, to a finite cover, we may assume that the two isotropic
directions of X⊥ are directed by two smooth vector fields T1 and T2. The φt -invari-
ance of these isotropic directions shows that Dxφ

t (T1(x)) = a(x, t)T1(φ
t (x)) and

Dxφ
t (T2(x)) = b(x, t)T2(φ

t (x)), for any x ∈ M and t ∈ C; a and b being some
smooth complex valued functions on M × C. By the volume preserving property
a(x, t)b(x, t) = 1.

Consider α∈C\iR and {φt , t ∈ αR} a non-equicontinuous real one-parameter sub-
group of {φt , t ∈ C}.

We now prove that for any x ∈ M , the orbit {Dxφ
t (T1(x)), t ∈ αR} is not bounded

in T M . Assume, by contradiction, that the modulus of the function a is upper bounded.
If the modulus of a(x, t) stays ≥ a′ >0 for a sequence tn ∈ αR tending to +∞ or −∞,
then Dxφ

tn is equicontinuous and so, by Proposition 3.2 in [39], the flow itself is
equicontinuous, which contradicts our hypothesis. It then follows that a(x, t) → 0,
when t → +∞ or t → −∞. Thus (by continuity of |a|) there are two sequences tn
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and tn′ tending to +∞, such that |a(x,−tn)| = |a(x, t ′n)|. By the cocycle property
of a, applied to xn = φ−tn (x), we get: |a(xn, t ′n + tn)| = |a(x, t ′n)a(xn, tn)|. But
a(xn, tn)a(x,−tn) = 1, and hence |a(xn, tn + t ′n)| = 1. Hence |b(xn, tn + t ′n)| = 1,
and consequently Dxn φ

tn+t ′n is equicontinuous. Since tn + t ′n tends to +∞, Proposition
3.2 of [39] implies then that φt is equicontinuous which contradicts our assumption.

In the same way, the modulus of b is unbounded and hence the orbit of any non zero
vector in X⊥ under the action of Dφt is not bounded. This means, by definition, that
φt is quasi-Anosov and by an easy case of the main Theorem in [27] (see also [3] page
1345-1347) this implies that {φt , t ∈ αR} is the restriction of a holomorphic Anosov
flow in Ghys sense [12].

Since {φt , t ∈ iR} is equicontinuous, it preserves some Riemannian metric on
M . In respect with this Riemannian metric we have ||φt (v)|| = ||φRe(t)(v)||, for all
tangent vectors v and t ∈ C. Hence {φt , t ∈ C} is holomorphic Anosov in Ghys sense.

�	
A simple case of the classification of holomorphic Anosov flows on compact com-

plex 3-manifolds [12] shows that {φt , t ∈ C} preserves some holomorphic Riemannian
metric q of constant sectional curvature. As X⊥ is not integrable, q is necessarily of
non-zero constant sectional curvature [12]. By Theorem 1.1, the intersection G′ of the
Killing Lie algebra of g and the Killing Lie algebra of q acts transitively on M .
This implies that the Heisenberg algebra is contained in the Killing Lie algebra
sl(2, C) ⊕ sl(2, C) of q. This is absurde, and therefore, X is equicontinuous.

7.2 Semi-simple Killing algebra

Here G = C × SL(2, C) and I =
(

et 0
0 e−t

)

⊂ SL(2, C).

We show the following

Proposition 7.3 There are no compact manifolds locally modelled on (G, G/I ).

This will complete the proof of the main Theorem 1.2.

Proof The factor C of G is generated by the flow of the Killing vector field X .
Assume first that X is equicontinuous and consider the complex Lie group K which

is the closure of the flow of X in the group of homeomorphism of M . We have seen
that if the complex dimension of K is >1 then, Lemma 3.1 implies that there exists a
3-dimensional complex subgroup C in G which acts freely and transitively on M and
M identifies with a quotient of C by some lattice. This is impossible because the only
3-dimensional subgroups of G which act freely on M are isomorphic to C × AG and
they do not have lattices (they are not unimodular).

If K has dimension 1 the quotient of M by K is a complex compact surface locally
modeled on (SL(2, C), SL(2, C)/I ). This compact surface possesses a holomorphic
Riemannian metric of non-zero constant sectional curvature. But, by Theorem 4.3
in [8], all holomorphic Riemannian metrics on compact complex surfaces are flat,
which leads to a contradiction.
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Consider now the case where X is non-equicontinuous. The proof of Proposition 7.2
implies that X is an Anosov flow with stable and instable directions given by the iso-
tropic directions of X⊥. Here the holomorphic plane field X⊥ is integrable because
it is tangent to the orbits of sl(2, C)-action. In this situation Ghys’ classification [12]
shows that, up to a finite cover, M is biholomorphic to a holomorphic suspension
(given by the flow of X ) of a complex hyperbolic linear automorphism of a complex
torus T 2. In particular, the orbits of sl(2, C) are 2-dimensional complex tori locally
modelled on (SL(2, C), SL(2, C)/I ). We get the same contradiction as before. �	
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