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ISOMETRY GROUPS AND GEODESIC FOLIATIONS OF
LORENTZ MANIFOLDS.

PART I: FOUNDATIONS OF LORENTZ DYNAMICS

A. Zeghib

Abstract
This is the first part of a series on non-compact groups acting iso-
metrically on compact Lorentz manifolds. This subject was recently
investigated by many authors. In the present part we investigate the
dynamics of affine, and especially Lorentz transformations. In partic-
ular we show how this is related to geodesic foliations. The existence
of geodesic foliations was (very succinctly) mentioned for the first
time by D’Ambra and Gromov, who suggested that this may help
in the classification of compact Lorentz manifolds with non-compact
isometry groups. In the Part II of the series, a partial classification of
compact Lorentz manifolds with non-compact isometry group will be
achieved with the aid of geometrical tools along with the dynamical
ones presented here.

1 Lorentz Dynamics

We are interested here in the following question: when is the isometry group
of a compact Lorentz manifold non-compact? Much progress has been made
towards answering it, see for instance the works by Zimmer [Zi], Gromov
([Gr], [DGr]), D’Ambra [D], Kowalsky [Ko], Adams-Stuck ([ASt1,2]), and
the author ([Z1,2]). At this stage, from the different investigations due to
these authors, we know the list of non-compact connected Lie groups acting
isometrically on compact Lorentz manifolds. For some groups in the list,
we also understand completely the geometric structure of the underlying
Lorentz manifold. However, we do not know enough things about this
structure, in the case of the remaining groups, such as, for example, the case
of abelian groups. In the case of non-connected groups, nothing significant
is known about their algebraic structure or about the geometric structure
of the Lorentz manifold on which they act.

Our approach here is to study the dynamics of Lorentz transformations,
i.e. diffeomorphisms preserving Lorentz metrics. By this approach, we in-
tend to understand, at the same time, the structure of Lorentz manifolds
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with large isometry groups, and the dynamics of the individual isometries
themselves.

It is natural to think about Lorentz metrics as the nearest to Rieman-
nian metrics, among all the geometric structures. This is why, among
geometric dynamics, one might claim that the Lorentz dynamics is the
simplest one after the Riemannian dynamics. It is worth saying that this
latter dynamics is very poor. More precisely, let f be an isometry of a
compact Riemannian manifold M . Then the closure of an orbit of f is
diffeomorphic to a torus, on which f induces a linear translation. One can
then say that there is only one pattern of Riemannian dynamics: a linear
translation on a torus. On the other hand, one can (roughly) characterize
Riemannian isometries, by topological properties, such as equicontinuity.

We know many patterns of Lorentz dynamics. For instance, on the unit
tangent bundle of a hyperbolic compact surface, the circle, the horocycle
and the geodesic flows coexist. All of them preserve the Killing Lorentz
metric, although they present extremely different dynamics. Now the ques-
tion is: find (fundamental) patterns with the help of which, one can build
up any Lorentz isometry. Also, what are the topological properties charac-
terizing diffeomorphisms that preserve Lorentz metrics?

Let us first observe that the Liapunov theory is not efficient for our
purpose. Indeed, this theory is only sensitive to hyperbolicity, since it deals
with the asymptotic exponential behavior of vectors under the derivative of
a dynamical system. For instance, this theory does not distinguish between
the circle and horocycle flows!

Here we will introduce another growth notion, which appears to be
efficient in studying some dynamical systems with geometric properties (at
least permitting us to detect a difference between the horocycle and circle
flows !).

Essentially, our fundamental growth notion is the following: Consider a
diffeomorphism f of a compact manifold M . We say that a vector v ∈ TM
is f -approximately stable, if v is a limit of a sequence (vn) (in TM) such
that the image sequence (Dfnvn) is bounded (i.e. lies in a compact subset
of TM). We denote the set of such vectors by AS(f) ⊂ TM (observe that
AS(x, f) = AS(f) ∩ TxM is not a priori a vector subspace of TxM).

The weakness of this notion with regard to the Liapunov theory is clear,
the set AS(f) may behave very badly. Its efficiency appears in Lorentz
dynamics. For a circle flow, the situation is trivial: AS = TM . For the
horocycle flow, AS is the codimension 1 weakly stable or unstable bundle
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of the geodesic flow, that contains the given horocycle flow (so AS has
dimension 2 and not 1). For the geodesic flow, AS is exactly its weak
stable bundle.

The following theorem is one of our main results. It claims that, in
Lorentz dynamics, the codimension 1 property of AS occurs for any isome-
try that is not contained in a compact group. It seems also, that this same
property, gives a (rough) topological characterization of Lorentz isometries
(however, we will not develop this point of view here).

Theorem 1.1. Let M be a compact Lorentz manifold (i.e. M is endowed
with a non-degenerate symmetric 2-tensor of signature −+ · · ·+). Let f be
an isometry of M generating a non-equicontinuous subgroup of isometries of
M (that is {fn/n ∈ Z} is not precompact in Isom(M)). Then the following
statements hold:
Existence of approximately stable foliations. The approximately sta-
ble set AS(f) is a codimension one bundle tangent to a codimension 1 Lip-
schitz foliation AS(f), called the approximately stable foliation of f . The
leaves of this foliation are geodesic and lightlike (that is the restriction of
the Lorentz metric to them is degenerate). The isometry f preserves both
its approximately stable foliation, and that of f−1, which will be called the
approximately unstable foliation of f .
Dynamics of f . In the subset of points where AS(f) and AS(f−1) are
transverse, their (one dimensional) normal spaces AS(f)⊥ and AS(f−1)⊥

are respectively the negative and positive Liapunov spaces of f .
The dynamics of Df on the projective tangent bundle P(TM) has the

following “source-sink” description: Let U and V be respectively neigh-
borhoods of the associated projective bundles P(AS(f)) and P(AS(f−1)),
then Dfn(P(TM)− U) ⊂ V , for n sufficiently large.
Ergodic properties. Let O be an open f -invariant subset and σ a con-
tinuous f -invariant function defined in O. Then σ is constant along the
leaves of the restriction to O of the two 1-dimensional foliations tangent to
AS(f)⊥ and AS(f−1)⊥.

Finally, the topological entropy of f vanishes exactly when the approx-
imately stable and unstable foliations of f are identical.

It is a nuisance that we were not able to exclude, a priori, the possibility
that the approximately stable and unstable foliations of an isometry, may
be different but coincide somewhere!

Generalized dynamical systems. The following terminology will
be useful. Consider a sequence (fn) of diffeomorphisms of a compact man-
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ifold M . To emphasize the fact that we are treating such a sequence in a
dynamical viewpoint, we shall call it a generalized dynamical system. For
instance we say that a vector v ∈ TM is (fn)-approximately stable, if v is
a limit of a sequence (vn) in TM such that the image sequence (Dfnvn) is
bounded. We denote the set of such vectors by AS((fn)) ⊂ TM .

So, classical dynamical systems correspond to the case: fn = fn, where
f is a diffeomorphism. But, even the less classical case fn = fkn , for a se-
quence (kn) of integers (for example the return times to some subset) is very
interesting. Our philosophy here is that, sometimes, one does not need the
rich structure of classical dynamical systems, especially the various associ-
ated cocycles. Conversely, sometimes (in fact in many situations in dynam-
ical systems), one cannot avoid use (implicitly) of generalized dynamical
systems. For instance, in our situation, it might happen that the theorem
above is dramatically empty, because every isometry f of M generates a
precompact subgroup, although the groupIsom(M) itself is non-compact
(for example,Isom(M) might be an infinite discrete torsion group). In fact
the proof of the theorem above, will come via the following generalized
version.

Theorem 1.2. Let M be a compact Lorentz manifold and (fn) a non-
equicontinuous sequence of isometries of M (that is (fn) is not contained
in a compact subset of Isom(M)).

Then there is a subsequence (φn) such that the approximately stable set
AS((φn)) is a codimension one bundle tangent to a codimension 1 Lipschitz
foliation AS((φn)), called the approximately stable foliation of (φn). The
leaves of this foliation are geodesic and lightlike (that is the restriction of
the Lorentz metric to the leaves is degenerate).

After passing to a subsequence, we can assume that the same is true
for (φ−1

n ). In this case, if v ∈ TM −AS((φn)), Dφnv tends to ∞, and con-
verges projectively (i.e. after normalization) to AS(φ−1

n ). The convergence
is uniform in compact subsets of TM − AS((φn)). That is, if U and V
are neighborhoods of the associated projective bundles P(AS((φn))) and
P(AS((φ−1

n ))), respectively, then Dφn(P(TM)−U) ⊂ V , for n sufficiently
large.

In addition, we have the following ergodic property. Let σ : O → R be
a continuous function defined in an open subset O. Suppose that σ and
O are invariant by each fn. Then σ is constant along the leaves of the
restriction to O of the two 1-dimensional foliations tangent to AS((φn))⊥

and AS((φ−1
n ))⊥.
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More details and a non-compact variant of this theorem are in §8.

Previous works (see also §4.2). The idea of the existence of geodesic
foliations whenIsom(M) is non-compact appears for the first time in [DGr].
There, they are called asymptotic foliations and are introduced as follows.
Keeping the notation above, consider the sequence of graphs Gr(fn) ⊂
M ×M of (fn). They are geodesic and isotropic in the sense of a natural
pseudo-Riemannian structure on M ×M . The non-equicontinuity of (fn)
implies that Gr(fn) does not converge to a graph, but rather, to a “foli-
ated object”, with isotropic geodesic leaves (in M ×M) having the same
dimension as M .

The projections onto M of these leaves are lightlike geodesic hypersur-
faces. These properties (i.e. codimension 1, geodesibility and degeneracy)
seem to be characteristic of Lorentz dynamics. They were considered in a
similar context in [Ca], but in the special flat case.

There is also in [DGr] a sketch of proof of the fact that, taking a suit-
able subsequence (φn), the projected hypersurfaces in M give rise to a
foliation on M . However, I do not see how to prove this fact, following the
suggestions of [DGr], without passing by the approximate stability inter-
pretation, together with all its subtleties (the distinction between punctual
and non-punctual approximate stability, modulus of stability, ..., see §§3
and 4).

2 Results on Isometry Groups

2.1 Compactification. The following compactification is discussed in
[DGr]. The space of codimension 1 geodesic foliations of a compact affine
manifold M (i.e. M is endowed with a torsion free connection) is naturally
compact (this is because such a foliation is uniformly Lipschitz, see §8).
The same is true for the space of codimension 1 lightlike geodesic foliations
if M is Lorentzian. We denote this space by FG. We construct a topol-
ogy on IsomM ∪ FG, essentially by the following rule: a sequence (φn) in
IsomM converges to F ∈ FG if F is the approximately stable foliation of
(φ−1
n ) (that is, if AS((φ−1

n )) = TF ). One then shows that IsomM ∪FG is a
(metrizable) compact space, and that the action of IsomM on it is contin-
uous. Therefore, by taking its closure we get a natural compactification of
IsomM . The same construction yields a compactification and a boundary
∂∞Γ for any closed subgroup of IsomM .

As an example, in the case of the unit tangent bundle PSL(2,R)/Γ of
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a hyperbolic surface H2/Γ, the isometry group is PSL(2,R). Its boundary
is the circle, endowed with the usual projective action, see §15 for further
examples.

2.2 Elementary groups. The source-sink property described in the
two preceding theorems tends to suggest that the action of IsomM on its
boundary is of convergence type, as in the case of Fuschian groups [Tu].
This analogy between Lorentz isometry groups and Fuschian groups may
arise in dynamical as well as in geometrical contexts. In §9 we will see how a
Lorentz geometry gives rise to a fiberwise hyperbolic geometry, i.e. a family
of hyperbolic spaces... This suggests that one could translate and update
notions on Fuschian groups to Lorentz isometry groups. Let us formulate
the simplest one.

Definition 2.1. A compact Lorentz manifold M is called polarized if the
boundary of its isometry group is one point.

As an example, an important geometrical class of polarized Lorentz
manifolds (that we will not consider here) consists of manifolds for which
the holonomy group is reducible, but non-decomposable (this cannot hap-
pen in Riemannian geometry). In this case the polarizing foliation is par-
allel, i.e. its tangent bundle is invariant by parallel transport. (In this case
the term “polarization” may be justified by physical, symplectical or optical
considerations.)

The Fuschian notion which corresponds to polarization is that of ele-
mentary parabolic groups. Now, elementary hyperbolic Fuschian groups
are those with limit sets of cardinality 2. In the Lorentz case, it is not
obvious (at least at this stage) how to check that parabolic and hyperbolic
behaviors do not coexist. So, we were able to define elementary groups only
via the following somewhat technical notion.

Definition 2.2. A codimension 1 lightlike geodesic bifoliation is a map
x ∈ M → L(x) = a pair of hyperplanes of TxM , such that there exist
two codimension 1 lightlike geodesic foliations F1 and F2, with L(x) =
{TxF1

x , TxF2
x}. We will denote such a bifoliation by F1 ∪ F2.

For instance, a pair of two (perhaps identical) foliations gives a bifo-
liation. Notice, however, that in our definition, the foliations F1 and F2

are not part of the data. Any foliation F such that TxF ∈ L(x), for any
x ∈ M , is called tangent to the given bifoliation. The nuisance here is
that the coincidence locus C where the bifoliation is one-valued, i.e. where
the two defining foliations are tangent, may be non-empty, or even worse,



Vol. 9, 1999 FOUNDATIONS OF LORENTZ DYNAMICS 781

M − C may have infinitely many connected components (because one has
not assumed things are analytic). In this case the space of tangent fo-
liations (to the given bifoliation) is an infinite compact space! Here, by
analogy, not with Fuschian groups, but with higher rank groups, one may
call this space, the apartment generated by the bifoliation, and denote it
by Apa(F1,F2) (in despite of the reference in notation to the foliations F1

and F2, the apartment is clearly related to the bifoliation, only).
Definition 2.3. We say that a closed non-compact subgroup of IsomM
is elementary if it preserves a codimension 1 lightlike geodesic bifoliation.
We say that M is bipolarized if its isometry group is elementary.

The following is a characterization of elementary groups.
Theorem 2.4. Let Γ be a closed non-compact subgroup of IsomM . Then
Γ is elementary if and only if its boundary has cardinality 1 or 2.

In the case ∂∞Γ = 1 point, there is no other 1-codimension geodesic
lightlike foliation, preserved by Γ. All the elements of Γ have vanishing
topological entropy.

In the case ∂∞Γ = 2 points, up to a finite index subgroup, Γ is a direct
product of a compact group by Z or R. Any element of the Z or the R
factor has positive entropy.

Remark 2.5. In the case where the boundary of Γ is is one point, we obtain
nothing but the Alexendroff compactification. In fact the group Γ may be
very large in this case. For instance, there are many compact homogeneous
polarized Lorentz manifolds. Their isometry groups contain solvable groups
obtained as semi-direct products of the circle S1 with Heisenberg groups
(see [ASt1] and [Z1]).

2.3 Amenable groups. Dynamical structure of one parameter
groups. We also have the following convergence aspect of the action of
IsomM on its boundary.
Theorem 2.6. A closed non-compact amenable subgroup of IsomM is
elementary.

Theorem 1.1 concerning groups isomorphic to Z will be a consequence
of the two above theorems. Similarly, the following result describes the nice
dynamical structure of non-equicontinuous isometric flows.
Theorem 2.7. Let X be a Killing field on a compact Lorentz manifold M ,
generating a non-equicontinuous flow f t.

Then X is everywhere isotropic or spacelike, that is 〈X(x),X(x)〉 ≥ 0.
Furthermore, X is contained in (and hence ft preserves) two codimension
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1 geodesic lightlike foliations, called the approximately stable and approx-
imately unstable foliations of ft.

These two foliations coincide on the (invariant) set of points where X
is isotropic (but the coincidence may occur in a larger set). (In particu-
lar, if X is everywhere isotropic, then X⊥ is integrable. This is false for
equicontinuous isotropic Killing fields).

Remark 2.8. It may happen that the approximately stable and unstable
foliations are identical, as in the case of the horocycle flow. They might
also, a priori, coincide in some proper subset of M .

2.4 Ergodic properties of non-bipolarized manifolds. Let M be
a compact non-bipolarized manifold, that is by definition, it has a non-
compact and non-elementary isometry group. Let S be the set of isotropic
vector fields X, which are tangent to foliations F belonging to the bound-
ary ofIsom(M) (note that because X is isotropic, then X tangent to F is
equivalent to X normal to F). We denote Sx = {X(x)/X ∈ S} the evalu-
ation of S at x, and TASx ⊂ TxM the linear space that it generates. The
“bundle” TAS, obtained in this way will be called the total approximately
stable bundle. In a straightforward way, one sees that somewhere the di-
mension of TAS is ≥ 3, because Isom(M) is not elementary. In the open
subset where its dimension is locally constant, TAS is a Lipschitz bundle.
The same is true for its orthogonal TAS⊥. Observe that this last bundle is
integrable. Indeed the geodesic foliation obtained as the intersection of all
the foliations belonging to ∂∞ Isom(M) is a natural candidate to be tan-
gent to TAS⊥. The starting point of Part II of this work, will be the claim
that TAS is also integrable, in fact with umbilical leaves, which yields a
local warped product structure for M . Here we will not deal with these
geometric details but instead with the following ergodic property behind
their proofs.

Theorem 2.9. Let E be a measurable linear subbundle of TM , containing
TAS and invariant by Isom(M). Let t : E ×E → TM be a measurable in-
variant bilinear bundle map. Let U be the open set {x∈M/dimTASx ≥ 3}.
Then there is a vector field n defined almost everywhere in U , such that
t(X,Y ) = 〈X,Y 〉n, when X ∈ TAS and Y ∈ E. In addition, we have the
following ergodic property. Let σ : O → R be a C1 function defined in an
open set O, and invariant by Isom(M). Then σ is constant along TAS,
that is TAS is contained in Ker(dσ).
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2.5 Approximate isometries. Questions on isometry groups of (fixed)
Lorentz metrics on a manifold M , may be translated in a more stable way
to questions on the dynamics of the action of the group of diffeomorphisms
Diff(M) on the space of Lorentz metrics Lor(M). So, the compactness
of Isom(M,g) for any Lorentz metric g on M , means that the stabilizers
of the Diff(M)-action are compact. A well known result of D’Ambra [D]
states this is true, for compact simply connected manifolds, but, only in
the analytic category. In fact one could ask for the more stable:

Question 2.10 ([DGr]). Let M be a compact simply connected manifold.
Is the action of Diff2(M) on Lor2(M) proper? (The exponent 2 stands for
the C2 differentiability and the C2 topology.)

Also here the language of generalized dynamical systems is pertinent.

Definition 2.11. Let g and h be two elements of Lor2(M) and (fi) ⊂
Diff2(M) a generalized dynamical system. We say that (fi) is approxi-
mately isometric for (M,g, h) if f∗i g → h in Lor2(M).

Such dynamical systems occur exactly when the action of Diff2(M) on
Lor2(M) is not proper. In this article, we will not treat approximately
isometric dynamical systems (to avoid interference with the approximate
stability notion, which is more central for us). However, most of the re-
sults, in particular Theorem 1.2, generalizes, with the same proofs, to this
context. As a corollary we have:

Theorem 2.12. Let M be a compact manifold such that Diff2(M) acts
non-properly on Lor2(M). Then, M admits a codimension 1 lightlike
geodesic foliation, in the sense of some metric g ∈ Lor2(M).

From a result of [Z3], a 3-manifold admitting such a foliation is covered
by R3. So, we have the following partial positive answer to the previous
question asked in [DGr].

Theorem 2.13. Let M be a compact 3-manifold not covered by R3. Then
Diff2(M) acts properly on Lor2(M).

2.6 Organization of the article. In the sequel, in order to simplify
notation, we shall restrict our presentation to compact manifolds. At cer-
tain points, we shall remark on the differences in definitions and statements,
for the non-compact case. Our investigation of approximate stability starts
with the linear case and is contained in §4. The general affine (i.e. con-
nection preserving) appears in §§5, 6 and 7, and is followed by the Lorentz
case in §8. Next, we introduce a bundle compactification (§9), a first step



784 A. ZEGHIB GAFA

towards the (foliation) compactification of isometry groups of Lorentz man-
ifolds (§10). Theorem 1.2 is proved in §8 and §9. In §§11 and 12 we study
elementary groups. This part is somewhat technical due to the fact of the
possible coexistence of parabolic and hyperbolic behavior for elementary
groups. The last sections are devoted to proofs of theorems and exposition
of illustrative examples.

Acknowledgments. I would like to thank M. Messaoudene and G. Mc-
Shane for their help.

3 Approximate Stability

Here we give precise definitions of approximately stable objects associated
to a generalized dynamical system (M, (fn)) (that is (fn) is just a sequence
of diffeomorphisms on M).

Definition 3.1. Let (fn) be a generalized dynamical system.

1. Stability. A sequence of vectors (vn) in TM is stable if (fn(vn)) is
bounded. Similarly, a sequence Pn ⊂ TxnM of tangent linear sub-
spaces (of some fixed dimension) is stable, if Dxnfn|Pn is bounded.

2. Approximate stability. A vector v ∈ TxM is approximately stable
if v is a limit of a stable sequence of vectors, that is there exists a
convergent sequence vn → v, such that Dfnvn is bounded. We denote
by AS((fn)) the set of approximately stable vectors of (fn) and by
AS(x, (fn)) ⊂ TxM its intersection with TxM .
We say that v is approximately strongly stable if in additionDfnvn→0
(in TM).

3. Punctual approximate stability. A vector v is punctually approxi-
mately stable, if it is a limit of stable sequence in the same tangent
space TxM : vn ∈ TxM , vn → v and Dxfnvn bounded. As above
we introduce the notation PAS((fn)) and PAS(x, (fn)). We define
analogously a notion of punctually approximately strongly stable.

Similarly, we define the same notions for tangent subspaces in TM .

Remark 3.2 (Punctual and non-punctual). Observe that PAS(x, (fn))
is a linear space but AS(x, (fn)) is not. It is also important to observe
that if P ⊂ TxM is such that each v ∈ P is approximately stable (i.e.
P ⊂ AS(x, (fn))), then one cannot infer that P is an approximately stable
subspace. The vectors of P may be approximated by stable sequences
of vectors with different base-points, and there is no way to sum (or even



Vol. 9, 1999 FOUNDATIONS OF LORENTZ DYNAMICS 785

approximately sum) them (since we have no control on the distance between
base-points). In the punctual case, it is clear that P ⊂ PAS(x, (fn)) is
equivalent to P being an approximately stable subspace.

Remark 3.3 (The non-compact case). If M is not compact, then in the def-
inition of stable sequence of vectors, we require that the sequence (fn(xn))
lie in a compact subset of M .

3.1 Sizes and modulus of stability. Although, when considering ap-
proximate stability, we are far from uniform estimates, we will sometimes
need to specify the sizes of objects. Since we are working on a compact
manifold M , we choose a fixed continuous norm |.| on TM .

Let (Pn) ⊂ TxnM be a stable sequence with respect to a generalized
dynamical system (M, (fn))). The modulus of stability of (Pn) is the inverse
of the supremum of the norms of the restrictions Dxnfn|Pn, that is, mod
(Pn) = (supn |Dxnfn|Pn|)−1. So, by definition, (Pn) stable means exactly
that mod(Pn) > 0.

Now, consider a family of stable sequences (Pn(ξ))ξ∈Λ (generally Λ is a
subset of M). The modulus of stability of the family is mod(Pn(ξ))ξ∈Λ =
infξ∈Λmod(Pn(ξ)), and we say that (Pn(ξ))ξ∈Λ has a uniform modulus
of stability if its modulus of stability is > 0.

Similarly, a family P (ξ)ξ∈Λ of stable subspaces is said to have a uniform
modulus of stability if each P (ξ) is a limit of a sequence (Pn(ξ)) such that
the family of sequences (Pn(ξ))ξ∈Λ has a uniform modulus of stability.

Let (Pn(ξ))ξ∈Λ be a family of sequences of subspaces, say, Pn(ξ) is a
subspace of Txn(ξ)M , then, we have the following obvious inclusion:

Dfn
(
Pn(ξ) ∩Bxn(ξ)(ε)

)
⊂ Bfn(xn(ξ))(1) ,

where Bx(r) denotes the ball of radius r in TxM , and ε is the modulus of
stability of (Pn(ξ))ξ∈Λ.

However, to avoid explicit use of a particular norm, which would make
the statements rather technical, and which has no natural relation with
data, we prefer to think of sizes in a “rough” sense, that is up to multi-
plicative constants, given by the geometric context.

For example, one may express the previous inclusion in a qualitative
way, by saying that there is a family (Vx)x∈M where Vx is a neighborhood
of 0 in TxM , depending continuously on x, and with a size proportional
to the modulus of stability of (Pn(ξ))ξ∈Λ, such that Dfn(Pn(ξ) ∩ Vxn(ξ)) is
contained in a neighborhood of 0 in Tfn(xn(ξ))M , having a fixed size.

For instance, in the affine context of §§5, 6 and 8, we insist that the
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image by the exponential map of Dfn(Pn(ξ) ∩ Vxn(ξ)), is contained in a
convex neighborhood of fn(xn(ξ)) in M .

4 Examples. First Calculations

The fundamental example. We consider here (classical) linear dy-
namical systems on Rd of the form fn = An, where A ∈ GL(d,R). The
fundamental example is the following. Let d = 3, endow R3 with its canon-

ical basis {e1, e2, e3}, and take fn = An =
(

1 n n2/2
0 1 −n
0 0 1

)
= expn

(
0 1 0
0 0 1
0 0 0

)
.

Here approximate stability and pointed approximate stability coincide.
At x = 0, we have AS(0) = PAS(0) = Re1 ⊕ Re2. For instance to see
that e2 is approximately stable, observe that the vector sequence vn =
(0, 1,−2/n) is stable. Indeed, An(vn) = (0, 3,−2/n) is bounded.

Observe that e1 which is obviously stable, is in fact strongly approxi-
mately stable. To check this consider vn = (1, 1/n2,−2/n2), and note that
An(vn) = (0, 1/n2 + 2/n,−2/n2).

Note, however, that in the case of R2 and An = ( 1 n
0 1 ) = expn ( 0 1

0 0 ),
the approximately stable space is reduced to Re1.

In general, consider on Rd, An = expnB, where B is a Jordan block,

B =
(

0 1 0 0....
0 0 1 0...
... 0 0 1..
... ... 0 0

)
. Then AS(0) = PAS(0) = Re1 ⊕Re2, if d ≥ 3.

Finally, for fn = An, with A semi-simple, approximate stability coin-
cides with stability.

4.1 Generalized linear systems of Rd. In this section, we consider
a general sequence (An) ∈ GL(d,R) of linear transformations of Rd.

Let A+ ⊂ GL(d,R) denote the semi-group of diagonal matrices
diag{λ1, . . . , λd} where 0 < λ1 ≤ · · · ≤ λd. Then we can write An =
LnDnRn where Dn ∈ A+ and Ln and Rn belong to SO(d). Therefore, a
sequence of vectors (vn) is stable in the sense of (An) if and only if (R−1

n vn)
is stable in the sense of (Dn).

Now, it is straightforward to calculate the approximately stable space
for a diagonal sequence. Indeed, as in the classical case above, approximate
stability coincides with stability. We point out the following special case.

Fact 4.1. Let An = LnDnRn be such that Dn has only one eigenvalue
(with multiplicity) > 1, that is, there exists i such that λi ≤ 1 < λi+1 =
· · · = λd. Assume that An is divergent (i.e. has no convergent subsequence),
then a subspace P is approximately stable if and only there is a subsequence
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Qn of subspaces of Ri×{0}, such that P = limn→∞R−1
n Qn. In particular,

if limn→∞R−1
n (Ri × {0}) exists, then it equals AS(0, (An)). Furthermore

the moduli of stability are always uniform (they do not depend on (An)).
In any case, we can always extract a subsequence of (An), which has an
approximately stable space of dimension i, and with uniform modulus of
stability.

The linear Lorentz case. Here we consider sequences (An) in
SO(1, d − 1), i.e. the orthogonal group of the Lorentz quadratic form on
Rd : q = −x2

1 + x2
2 + · · · + x2

d. We note firstly that the above observation
holds.

Fact 4.2. An element A ∈ SO(1, d− 1) can be written as A = LDR, with
L,R ∈ SO(d) and D = diag{λ, 1, . . . , 1, λ−1}, with λ ≤ 1.

Proof. The KA+K-decomposition for semi-simple Lie groups yields in our
case, K = SO(1, d− 1) ∩ SO(d) = SO(d− 1), and A+ any one parameter
group of symmetric matrices that belongs to SO(1, d− 1). So, after conju-
gation by a rotation r ∈ SO(d), rA+r−1 becomes diagonal. The eigenspace
associated to an eigenvalue < 1 (resp. eigenvalues > 1) is isotropic (for the
form q). Hence, it is one dimensional (because q is Lorentz). This proves
the fact. �

Corollary 4.3. Let (An) be a divergent sequence in SO(1, d − 1).
Then, there is a subsequence (Bn) such that the approximately stable
space AS(0, (Bn)) is a lightlike hyperplane. The strongly approximately
stable space of (Bn) is the orthogonal of AS(0, (Bn)). It is an isotropic
one-dimensional space. The approximately stable space of (An) is the in-
tersection of the hyperplanes obtained from all the subsequences (Bn). In
particular, if all the approximately stable hyperplanes involved coincide,
then, this equals the approximately stable space of (An) itself.

Finally, all the moduli of stability are uniform.

4.2 Some comments.

Discompactness. In what follows we give an equivalent definition
of the approximately stable space, reminiscent to the Carrière’s notion of
discompactness [Ca]. The codimension 1 fact in the Lorentz case translates
to that SO(1, d − 1) has discompactness 1. This fact is as crucial for our
work, as it was for Carrière’s.

Consider a sequence (An) in GL(d,R), and let U be the unit ball of Rd.
Then En = U ∩ AnU is a d-dimensional ellipse. A limit (in the sense of
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Hausdorff) of (En) is an ellipse of dimension ≤ d. Let U ′ be the intersection
of all the limits of all convergent subsequences of (En). It is an ellipse of
certain dimension. Observe that AS(0, (An)) is the linear space generated
by U ′.

Graphs. The approach of [DGr] consists of taking graphs. Keeping
the notation above, consider the Graphs Gr(An) = {(x,An(x)/x ∈ Rd} ⊂
Rd × Rd. Then AS(0, (An)) is the intersection of all the projections of
all the limits of subsequences of (Gr(An)). In the Lorentz case, we endow
Rd ×Rd with the product 〈.,.〉 ⊕ −〈.,.〉. Thus, an element A of GL(d,R)
belongs to SO(1, d − 1) iff Gr(A) is isotropic. Observe that if for some
sequence (An), (Gr(An)) converges to (a d-plane) E ⊂ Rd ×Rd, then the
intersection of E with each of the factors Rd×{0} and {0}×Rd are isotropic
and hence of dimensions ≤ 1. This is the content of discompactness 1.

Rank one groups. The analogue of the fact above is valid for all
the simple groups of non-compact type and of rank one, but now we allow
diagonal matrices of the form: diag{λ, . . . , λ, 1, . . . , 1, λ−1, . . . , λ−1}. The
multiplicity of λ (or λ−1) may then be 1, 2, 4 or 8 (thanks to the classifi-
cation of simple Lie groups).

Chaos. Consider the two Lorentz linear systems: Bn =
(

1 bn b2n/2
0 1 −bn
0 0 1

)
and Cn =

(
cn 0 0
0 1 0
0 0 c−1

n

)
. They are orthogonal for the form: q = x1x3 + x2

2.

We suppose that both (bn) and (cn) go to ∞ when n→∞. So we have as
above, AS(0, (Bn)) = Re1 ⊕Re2, and AS(0, (Cn)) = Re2 ⊕Re3. Let now
An = CnBn and observe that as above, we have AS(0, (An)) = Re1 ⊕Re2
and that e1 is strongly approximately stable, that is, there is a sequence
un → e1 such that An(un)→ 0. Of course, An(e1) = cne1 →∞ !

4.3 The derivative cocycle. In the (Liapunov) measurable theory one
uses measurable trivializations of TM , with respect to which the derivative
of a diffeomorphism f , is written as a map Cf : M → GL(d), where
d = dimM . In consideration of approximate stability, one needs some
control of the “continuity” of the trivialization. So, to treat the punctual
approximate stability, it suffices to consider a bounded trivialization. That
is a frame-field with image in a compact set of the frame bundle. To
handle approximate stability at some point, we further assume that the
frame-field is continuous at this point. So we will always suppose that the
trivializations satisfy the needed requisitions.
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Let now (M, (fn)) be a generalized dynamical system on a compact
manifold M . We denote Cn = Cfn . In the classical case, i.e. fn = fn, we
obtain a cocycle C : M × Z → GL(d). In the generalized case, we just
obtain a collection of linear systems (Cn(x)), for x running over M . So one
can relate the punctually approximately stable space of (fn) at a point x
with the analogous one of (Cn(x)) at 0.

Fact 4.4. We have: PAS(x, (fn)) = PAS(0, (Cn(x))) = AS(0, (Cn(x))).

The Lorentz case. From the above facts we deduce:

Proposition 4.5. Let (fn) be a non-equicontinuous sequence of iso-
metries of a compact Lorentz manifold M . Let M ′ be a countable subset
of M . Then there is a subsequence (φn) of (fn) such that, for x ∈ M ′,
PAS(x,(φn)) is a lightlike hyperplane, and PAS(x,(φn))⊥ = SPAS(x,(φn))
(= the strongly punctually approximately stable space of (φn) at x). All
these hyperplanes have a uniform modulus of stability.

Proof. Keeping the notation above and using a Lorentz trivialization, we
have at each x, a derivative sequence (Cn(x)). We shall see in 5.2, since
(fn) is not equicontinuous, that for any x, (Cn(x)) is not equicontinuous.
The proof follows by using a diagonal procedure and Corollary 4.3. �

5 Affine Dynamics: Uniformity

Henceforth, we will only consider affine generalized dynamical systems,
that is M is endowed with a linear torsion free connection ∇ and (fn) is a
sequence of connection preserving transformations.

Equicontinuity. Divergent sequences. The first fundamental pro-
perty of affine dynamics is the following:

Proposition 5.1 (Uniformity). Let (fn) be an affine generalized dy-
namical system on a compact manifold M . Suppose that there is a se-
quence (xn) such that (Dxnfn) is equicontinuous (that is (Dxnfn) and
(Dxnf

−1
n = Dfn(xn)f

−1
n ) are bounded). Then (fn) is equicontinuous, that

is, (fn) lies in a compact subset of the affine group Affin(M).

The proof follows easily from the fact that Affin(M) acts properly on
the frame bundle of M [K].

Corollary 5.2 (The unimodular case). Let (fn) be an affine unimodular
generalized dynamical system on a compact manifold M , that is all the fn
preserve a volume form. (This is for example the case if there is a parallel
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volume form, e.g. the connection derives from a pseudo-Riemannian met-
ric). Suppose that there is a sequence (xn) such that (Dxnfn) is bounded.
Then (fn) is equicontinuous.

Proof. The unimodularity and the boundedness of (Dxnfn), imply that
(Dxnf

−1
n ) is also bounded, and hence (Dxnfn) is equicontinuous. �

In the sequel we will be only interested in the opposite situation of
equicontinuity. Specifically, we say that a sequence (fn) is divergent if
{fn/n ∈ N} is a closed discrete subset of the group of homeomorphisms
of M . So (fn) is not divergent if it contains a convergent subsequence (in
the group of homeomorphisms of M).

The codimension 0 case. We use the notation of the proposition
above. By definition Dxnfn is bounded if and only if (TxnM) is a (fn)-
stable sequence of subspaces (of codimension 0). In particular if xn → x,
then TxM is an approximately stable subspace. So the corollary above
translates to the fact that an unimodular affine generalized dynamical sys-
tem is equicontinuous whenever TxM is an approximately subspace, for
some x ∈ M . So, in particular a divergent sequence (fn) can only have
approximately stable subspaces of codimension > 0.

Modulus of stability. One may then ask whether or not the uni-
modularity condition is necessary. The answer is yes, as we shall see be-
low in the case of Hopf manifolds. These examples also explain why the
phenomena of “propagation of stability” (expressed in 6.1), which gener-
alizes the uniformity fact 5.1, is only local (more precisely, proportional
to modulus of stability). In fact, the pathology of Hopf manifolds is due
to their non-completeness. In affine flat dynamics, non-unimodularity and
non-completeness are generally thought of as being equivalent phenomena.

An example: Hopf manifolds. Recall that an affine (flat) Hopf
manifold is the quotient of Rd − {0} by a linear contraction. The simplest
case is when this contraction is given by a multiplication map: x → αx,
0 < α < 1. The quotient Hα is thus endowed with an affine action of
GL(d,R). This action does not preserve any (non-trivial) measure. One
can see this in the following way. For the sake of simplicity, we only consider
the the case d = 2, so that the Hopf manifold is topologically a torus. Let
At be a non-compact one parameter group of SL(2,R). Then, its orbits
determine a Reeb foliation, and hence has only finitely many recurrent
leaves.

Let f be the diffeomorphism of Hα corresponding to a matrix
(

1 0
0 λ

)
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with λ > 1. Then fn corresponds to any of the matrices
(
α−m 0

0 λnα−m

)
,

for any integer m. Let x ∈ Hα, be the projection of a point (a, b) ∈
R2 − {0}. For calculation, one chooses a fundamental domain containing
(a, b) and for each n, one chooses m such that

(
α−m 0

0 λnα−m

)
( ab ) belongs to

the same domain. If b = 0, x is a fixed point of f and so Dxf
n is identified

with
(

1 0
0 λn

)
. Therefore, the approximately stable space is the x-axis. For

a 6= 0, in order to return to the fundamental domain, we will need an
integer m increasing with n and such that λnα−mb is proportional to b.
Therefore, Dxf

n equals
(
α−m 0

0 λnα−m

)
and is thus equivalent to

(
α−m 0

0 1/b

)
modulo multiplication by α. In particular, (Dxf

n) is bounded (but not
equicontinuous). Despite the fact the modulus of stability is not uniform.

6 Approximate Stability in Affine Dynamics: Partial
Uniformity

In the present section, we prove some integrability and geodesibility prop-
erties for the approximately stable objects, due to a propagation of stability
phenomenon, which holds in affine dynamics, and generalizing the unifor-
mity Proposition 5.1.

For x ∈ M , the exponential map expx is defined in an open subset of
Defx ⊂ TxM . We recall that a submanifold V of M is geodesic if whenever
a geodesic c : [a, b] → M is somewhere tangent to M : c′(t0) ∈ Tc(t0)V
then c(t) ∈ M , when t belongs to some neighborhood of t0. Notice that
in general, if P is a linear subspace of TxM , then expx P ∩ Defx is not
geodesic except when dimP = 1 or for specific nice manifolds (see Part II).

Notation. In the sequel, for any y ∈ M , we choose Vy ⊂ TyM a
neighborhood of 0, with size proportional to the modulus of stability of a
given (fn)-stable sequence of linear subspaces (Pn).

6.1 Propagation of stability.

Proposition 6.1 (Propagation of stability). Let (Pn) be a (fn)-stable
sequence of linear spaces, with Pn ⊂ TxnM . Let Pn = expxn(Pn ∩ Vxn)
and yn ∈ Pn. Consider the restrictions hn = fn|Pn. Then, the derivatives
Dynhn are uniformly bounded by the size of (Pn).

In particular, let vn ∈ Pn be a convergent sequence of vectors, yn =
expxn vn and P ′n = Tyn(expxn Pn∩Vyn). Then (P ′n) is a (fn)-stable sequence,
with size controlled by means of that of Pn.
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Proof. Firstly, observe that the claim is obvious if fn are linear transforma-
tions of an Euclidean space Rd, and xn = 0 (here, without size restriction).

The proof of the general case follows by linearization. Assume to begin
with that the sequence (xn) is stationary: xn = x0, and furthermore, x0
is fixed by all the fn, fn(x0) = x0, so that the problem becomes linear
after conjugation by expx0

. More precisely, let gn = exp−1
x0
fn expx0

be
defined on some neighborhood U of 0 in Tx0M . It follows from the stability
of (Pn), we may choose U so that gn(Pn ∩ U) is contained in some fixed
small neighborhood U ′ of 0. Hence, the derivatives of fn = expx0

gn exp−1
x0

along points of expx0
(Pn ∩ U) are comparable to the corresponding ones

for gn, because of the fact that all things stay in a compact set, where the
derivatives of expx0

and exp−1
x0

are controlled.
When (xn) is not stationary, we consider the family of derivatives gn =

Dxnfn : TxnM → Tfn(xn)M . Inasmuch as these spaces are equipped with
norms induced from a metric on TM , with respect to which we define
stability, these norms are defined up to a bounded distortion. Now, since
by definition xn and fn(xn) stay in a compact set, we can find identifications
of bounded distortion of all our linear tangent spaces with a fixed Euclidean
space. Therefore the stability notions are preserved and the proof goes as
in the previous case. �

Proposition 6.2 (Compatibility with parallel transport). Keeping the
notation of the proposition above, let (cn) be a sequence of curves, such that
the image of cn : [0, 1]→M is contained in expxn Pn∩Vxn with cn(0) = xn.
Consider P ′′n the parallel transport of Pn along cn. Suppose that (cn) is
bounded in the C1 topology. Then P ′′n is a stable sequence.

Proof. From the proposition above the image curves dn = fn(cn) are
bounded in the C1 topology. Let τn = Tcn(0)M → Tcn(1)M be the parallel
transport along cn and let τ ′n be the analogous parallel transport along dn.
Then, τn and τ ′n are uniformly bounded (since cn and dn are C1 bounded).
Now because fn are affine, they commute with parallel transport, in partic-
ular: Dcn(1)fn = (τ ′n)Dcn(0)fnτ

−1
n . Therefore, (τn(Pn)) is a stable sequence. �

6.2 Geodesibility properties.

Proposition 6.3. Suppose that the stable sequence (Pn) converges to an
approximately stable linear subspace P ⊂ TxM , which is maximal among
such subspaces (that is not strictly contained in another approximately
stable subspace). Then expx P ∩ Vx is geodesic in M . The same result is
true in the punctual approximately stable case, that is, for any x ∈ M ,
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expx(PAS(x, (fn)) ∩ Vx) is geodesic.

Proof. Let cn : [0, 1]→ expxn Pn∩Vxn be a sequence of curves converging in
the C1 topology to a curve c : [0, 1]→ expx P∩Vx, and such that cn(0) = xn.
Let yn = cn(1), P ′n ⊂ TynM be the tangent space of expxn Pn ∩ Vxn at yn,
and P ′′n ⊂ TynM the parallel transport of Pn along cn. By the above
propositions, both (P ′n) and (P ′′n ) are stable sequences of linear subspaces.

Denote the analogous objects at y = c(1) by P ′ and P ′′, which are
obviously the limits of P ′n and P ′′n , respectively.

To prove that expx P ∩ Vx is geodesic, it suffices to check the equality:
P ′ = P ′′. Indeed, if this is true for arbitrary c, then the tangent space of
expx P ∩Vx is parallel (along itself), which is equivalent to the geodesibility
(for torsion free connections).

But, if P ′ 6= P ′′, then P ′⊕P ′′ is an approximately stable linear subspace.
Indeed, let {ei} be a basis of this later subspace, and choose {ein} vectors of
P ′n ⊕ P ′′n , such that ein → ei. Denote by En the vector subspace generated
by the {ein}. Then (En) is a stable sequence converging to P ′ ⊕ P ′′. This
contradicts the fact that P is maximal. Therefore P ′ = P ′′. �

6.3 The codimension 1 case: lamination properties.
Fact 6.4. Assume that (fn) has no codimension 0 approximately stable
subspace (that is for no x ∈M , TxM is an approximately stable space). Let
P ⊂ TxM be an approximately stable hyperplane. Then AS(x, (fn)) = P .
In particular, in this case P is maximal and hence from the proposition
above, expx P ∩ Vx is a geodesic hypersurface.

Proof. Assume the contrary, that is there exists an approximately stable
vector v ∈ TxM which is transverse to P . Thus, P and v are respectively
limits of stable sequences Pn ⊂ TxnM , and vn ∈ TynM . By transversality
(of P and v), expxn Pn ∩ Vxn and expyn Rvn ∩ Vyn intersect, in an uniform
transverse meaner at a point zn (near x, for n large). Moreover by Propo-
sition 6.1, Dznfn is uniformly bounded along the tangent spaces at zn, of
each of the submanifolds expxn Pn ∩ Vxn and expyn Rvn ∩ Vyn . By definite
transversality, Dznfn is bounded in TznM , that is (TznM) is a (fn)-stable
sequence, a fact that is excluded by hypothesis. �

Corollary 6.5. With the same hypothesis, if y ∈ expx P ∩ Vx, then
AS(y) = Ty(expx P ∩ Vx).

Proof. It follows from Proposition 6.1, that Ty(expx P ∩ Vx) ⊂ AS(y),
and we infer from the fact above, the equality: AS(y) = Ty(expx P ), as
desired. �
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By the same argument we get:
Corollary 6.6. If Px ⊂ TxM and Py ⊂ TxM are approximately sta-
ble hyperplanes, then the two geodesic hypersurfaces expx Px ∩ Vx and
expy Py ∩ Vy are either disjoint or tangent, in which case their intersection
is open in each of them.

The method of Graphs. As in the linear case (§4), there is a graph
approach leading to some geometric proofs of the above properties of the
approximately stable submanifolds expx P ∩Vx. To see this, note that if we
endow the product M×M with the product connection. Then (Graph(fn))
is a sequence of geodesic submanifolds in M×M . Any approximately stable
submanifold expx P ∩Vx is obtained as a projection of a limit of a sequence
of connected components of U ∩Graph(fn), where U is an open subset of
M ×M .

The geodesic character of expx P ∩ Vx is thus obvious. Nevertheless,
neither the lamination properties (6.4), nor the control of sizes by modulus
of stability, seems to be easy to treat, via this approach.

7 The Approximately Stable Foliation Theorem

Here follows a fundamental existence and regularity result:
Theorem 7.1. Suppose that there is a dense subset M ′ ⊂ M , in
which PAS(x, (fn)) is a hyperplane, with uniform modulus of stability.
Then AS((fn)) is a Lipschitz codimension 1 subbundle of TM , tangent
to a geodesic foliation AS((fn)), called the approximately stable foliation
of (fn).

For the proof we need:

Digression: Codimension 1 geodesic laminations. Geodesic
laminations (and in particular foliations) of codimension 1, enjoy some
remarkable regularity properties. These properties are well known for lam-
inations of hyperbolic surfaces [T], but are in fact valid in the general
context of codimension 1 geodesic laminations, in the sense of a connection
(and also some codimension 1 foliations with other geometric origins). For
proofs and related questions, see [Z3] and [S]. Behind all of the regular-
ity results for geodesic laminations, is the following fundamental Lipschitz
regularity fact.
Lemma 7.2. Let M be a compact manifold endowed with a torsion free
connection and an auxiliary norm |.| on TM . Let M ′ be a subset of M
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and suppose given a real r and for x ∈M ′ a hyperplane Px ⊂ TxM and let
Lx,r = expx Px ∩ Bx(r) where Bx(r) is the ball of TxM centered at 0 and
with radius r. Also, suppose that Lx,r is geodesic and that if two plaques
Lx,r and Ly,r intersect at some point, then they are tangent at that point
(and hence by geodesibility, the intersection Lx,r∩Ly,r is open in both Lx,r
and Ly,r). Then, along M ′, the map x → Px is Lipschitz, with Lipschitz
constant depending only on the geometry of the connection, the auxiliary
norm and r.

We infer from the above lemma the following corollary:

Corollary 7.3. (i) A codimension 1 geodesic lamination on M is Lips-
chitz, with Lipschitz constant depending only on the geometry of the con-
nection and the auxiliary norm. It then follows that the space of codi-
mension 1 geodesic foliations of M , endowed with the C0 topology (or
equivalently the Lipschitz topology) on hyperplane fields, is compact.

(ii) With the same hypothesis as in the lemma above, suppose that
the set M ′ is dense. Then, the geodesic plaques Lx,r extend to a geodesic
foliation of M .

Proof of Theorem 7.1. Since the modulus of stability is uniform, the
geodesic plaques expx PAS(x, (fn)) ∩ Vx given by 6.4, satisfy the condi-
tions of 7.2. Therefore, we have a geodesic foliation F of M such that
TxF = PAS(x, (fn)) for x ∈ M ′. Again by uniformity of the modulus of
stability, and the assumption that M ′ is dense, for any x ∈ M , TxF is an
approximately stable hyperplane at x. Therefore, it follows from Fact 6.4
that for any x ∈M , AS(x, (fn)) = TxF . �

8 Lorentz Dynamics. Proof of the Existence Part in
Theorem 1.2

Henceforth, we will only deal with transformations preserving a Lorentz
structure. So M is now a compact Lorentz manifold and fn ∈IsomM .
In the present section, we shall prove the existence part of Theorem 1.2
that is the existence of approximately stable foliations for subsequences
(cf. Fact 8.1). The remaining part of Theorem 1.2, will be proved in §9.3.
To begin with, we recall some facts about lightlike geodesic foliations.

Lightlike geodesic foliations. The compact space FG. A (codi-
mension 1) foliation F is lightlike if the restriction of the metric to TF is
degenerate. This metric is thus positive non-definite and its Kernel is a



796 A. ZEGHIB GAFA

1-dimensional sub-foliation of F , denoted by NorF and called the normal
foliation of F . This 1-dimensional foliation is isotropic (i.e. the metric van-
ishes along it) and completely determines F , since TF is just the orthogonal
of T (NorF).

Here, we consider lightlike geodesic foliations [Z3]. One of their basic
properties is that their (1-dimensional) normal foliations are also geodesic.

We denote by FG the space of all lightlike geodesic foliations on M .
It is a closed subset in the space of all the geodesic foliations, and so it is
compact whenever M is.

Existence of approximately stable lightlike geodesic foliations.
The existence part in Theorem 1.2 is a consequence of:

Fact 8.1. Let M be a compact Lorentz manifold and (fn) a non-
equicontinuous sequence of isometries. Then, there is a subsequence φn
admitting an approximately stable lightlike (codimension 1) geodesic folia-
tion AS((φn)), that is the approximately stable set AS((φn)) is a codimen-
sion one bundle tangent to a codimension 1 geodesic lightlike foliation.

In fact, AS((φn)) coincide with PAS((φn)), the punctually approxi-
mately stable bundle. Furthermore, the 1-dimensional normal foliation
of AS((φn)) equals the (punctually or not) approximately strongly stable
bundle of (φn).

Proof. Choose a countable dense subset M ′ of M . Then, by 4.5, there
is a subsequence (φn) such that PAS(x, (φn)) is a lightlike hyperplane,
with uniform modulus of stability, when x ∈ M ′. We may infer from
Theorem 7.1, the existence on M of a codimension 1 lightlike geodesic
foliation AS((φn)) tangent to AS((φn)).

On M ′, we have the equality: AS(x, (φn)) = PAS(x, (φn)). To prove
the equality for an arbitrary x ∈M , we apply 4.5 for (φn) (instead of (fn))
and for M ′ = {x}. We obtain a subsequence (ψn) for which PAS(x, (ψn)) is
a hyperplane and hence equals AS(x, (φn)) (since obviously AS(x, (φn)) ⊂
AS(x, (ψn)) and AS(x, (ψn)) = PAS(x, (ψn)) from 6.4). In particular
PAS(x, (ψn)) does not depend on the subsequence (ψn) (provided it is a
hyperplane). By 4.3, this implies that PAS(x, (φn)) is itself a hyperplane,
and thus equals AS(x, (φn)).

The fact that the normal direction of AS((φn) is strongly approximately
stable follows from the analogous statement in the linear case, 4.3. In the
same fashion, one can prove the coincidence between strong approximate
stability and strong punctual approximate stability. �
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The non-compact case. If M is not compact, it may happen that
for some x, AS(x, (φn)) = {0} for any subsequence (φn) of (fn). Indeed,
from our Definition 3.1, this happens when x satisfies the uniform escaping
property: for any sequence xn → x and a subsequence (φn) of (fn), (φn(xn))
tends to ∞ (i.e. leaves all compact subsets of M).

“Recurrence” for generalized dynamical systems. There is no
natural way to define recurrence notions for generalized dynamical systems,
so that they satisfy a kind of Poincaré recurrence lemma. For our purpose,
the following notion seems interesting:

Definition 8.2. Let K be a compact subset of M . Define its non-
escaping subset NE(K, (fn)) as the (compact) subset of points x ∈ K such
that there is xn ∈ K, xn → x and fnxn ∈ K. In other words NE(K, (fn))
is the Hausdorff limit of the sequence of compact sets K ∩ f−1

n K. In par-
ticular Vol(NE(K, (fn)) ≥ VolK ∩ f−1

n K) ≥ 2 Vol(K)− Vol(M) (because
the fn are volume preserving). (In particular, letting K having a large
relative volume, we see that almost every x ∈ M is non-escaping for some
compact K).

We lose uniformity when M is not compact, and so to estimate sizes,
we will choose a norm |.| on TM . As sizes may depend upon the choice of
such a norm, the previous uniformity of modulus of stability (4.5) fails. A
straightforward localization of the previous arguments yields:

Proposition 8.3. Let M be a (not necessarily compact) Lorentz manifold,
(fn) a sequence in Isom(M) and K a compact subset of M . Then there
is a subsequence (φn) such that, on NE(K, (fn)), AS((φn)) is a Lipschitz
codimension 1 bundle, and there is r = r(K) (not depending on (fn)), such
that the family of plaques Lx,r = expxAS(φn)) ∩ Bx(r) determine a codi-
mension 1 lightlike geodesic lamination of a neighborhood of NE(K, (fn)),
tangent to AS((φn)) in NE(K, (fn)).

This applies at least in the finite volume case, because for instance if
Vol(K) > Vol(M)− ε, then, Vol(NE(K, (fn))) > Vol(M)− 2ε. Therefore,
approximately stable bundles of some subsequences of (fn), give rise to
laminations, along big volume subsets of M . However, in order to obtain a
foliation, on the whole of M , we must find a volume exhausting sequence
of compact sets (Kj) with non-collapsing radii (r(Kj)). This is generally
impossible because of non-compatibility of the auxiliary metric |.| with the
natural data.

Therefore, to avoid use of such a norm, we introduce for x ∈ M ,
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Defx ⊂ TxM to be the domain of definition of the exponential map expx.
It is open (by definition) and star shaped in TxM , that is, if u ∈ Defx, then
tu ∈ Defx, for t ∈ [0, 1]). Consider also the regular domain of definition
Def∗x defined as the (open) set of vectors u ∈ Defx, such that tu is a regular
point of expx for any t ∈ [0, 1]. Thus, if E is a linear subspace of TxM ,
then expx(E ∩Def∗x) is an immersed submanifold of M . This defines open
subsets Def and Def∗ of TM , which are invariant by Isom(M).

The propagation of stability 6.1 is valid a priori only in a domain having
a size proportional to the modulus of stability. The obstruction lies in fact
essentially in non-completeness, as this was shown in the examples of Hopf
manifolds. Therefore, one may hope for a propagation of stability in Def .
Indeed, this was shown in [Z5] in the context of (strict) stability (instead of
approximate stability here), but only generically. The point is that we just
need to ensure continuity (by using Lusin’s Theorem) of the map x→ Def∗x ,
and also the continuity of its variants obtained by intersection with stable
(here approximately stable) bundles. The same proof yields the following
fact:

Proposition 8.4. Let M be a (not necessarily compact) Lorentz man-
ifold, (fn) a sequence of Isom(M). Let µ be a Borel finite measure (not
related to data, but serves in applying the Lusin almost everywhere con-
tinuity theorem). Given a positive real ε, there is a compact K in M ,
with µ(K) > µ(M) − ε and there is a subsequence (φn) such that, the
family of plaques Lx = expxAS((φn)) ∩ Def∗x , for x ∈ NE(K, (fn)),
determines a codimension 1 lightlike geodesic lamination of a neighbor-
hood of NE(K, (fn)), tangent to AS((φn)) in NE(K, (fn)) (that is if
y ∈ NE(K, (fn)) ∩ Lx, then AS(y, (φn)) = TyLx).

In the finite volume case, we use this proposition for the Lorentz mea-
sure. As we remarked earlier, we get Vol(NE(K, (fn) > Vol(M)− 2ε. By
letting K get larger and larger, and applying a diagonal process, we obtain
a foliation:

Theorem 8.5 (The finite volume case). Theorem 1.2, extends to the case
of M of finite volume: a divergent sequence (fn) of Isom(M) possesses a
subsequence (φn) admitting an approximately stable foliation AS((φn)).
Furthermore, almost everywhere: AS(x, (φn)) = PAS(x, (φn)) (this equal-
ity is everywhere true in the compact case).

A relative version. Here we give a relative version:

Theorem 8.6. Let M be a finite volume Lorentz manifold, (fn) a diver-
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gent sequence of isometries that leaves invariant a finite volume Lorentz
submanifold N . Let (φn) be a subsequence of (fn) having an approxi-
mately stable foliation AS((φ)). Then, the restriction (φn|N) admits an
approximately stable foliation, which is just the trace of AS((φn)) on N . In
particular, the intersection of a leaf of AS((φn)) with N is geodesic in N .

This result follows from the fact that: if x ∈ N , then PAS(x, (φn|N)) =
PAS(x, (φn)) ∩ TxN

A foliated version. We also have the following foliated version:

Theorem 8.7. Let M be a finite volume Lorentz manifold and (fn)
a divergent sequence of isometries. Let U be an open subset of M and
L ⊂ TM |U a C0 subbundle over U , invariant by each Dfn (in particular U
itself is invariant by fn). Let M0 be the subset of U where L is of Lorentzian
type (i.e. the restriction of the metric has signature − + · · ·+). Let (φn)
be a subsequence of (fn) having an approximately stable foliation AS((φ)).
Then in U −M0, L ⊂ AS((φn)) and in M0, L⊥ ⊂ AS((φn)) (where L⊥ is
the orthogonal of L).

Suppose that L is integrable. Then, in M0, the leaves of AS((φn)) ∩ L
are geodesic inside the leaves of L.

9 Bundle Compactification

Let M be a manifold. One may naturally construct a fiber metric on its
(principal) frame bundle PM → M , so that any C1 diffeomorphism acts
isometrically on the fibers. In fact, instead of PM , it is more convenient to
consider the associated bundle SM → M whose typical fiber the universal
symmetric Riemannian space Sk = SL(k)/SO(k), where k = dimM . So,
SM may be interpreted as the bundle of conformal structures on (the fibers
of) TM .

One may then naturally compactify the fibers to get a bundle SM →M
with a compact fiber Sk, the Hadamard compactification of Sk which is
topologically a closed ball.

It is also interesting to interpret recurrence properties of the action
of f , or more generally, of a generalized dynamical system (fn) on SM . The
philosophy is that recurrence conditions may be related to classical notions,
such as Oseldec’s decomposition, invariant metrics (of some regularity)... In
the sequel, we will rather use this construction to interpret the approximate
stability.



800 A. ZEGHIB GAFA

Notice that these constructions generalize to fiber dynamical systems on
a linear bundle E →M . It is also possible to consider the case of bundles
with a G-structure (i.e. a reduction of the structural group of the principal
bundle PM → M to G) where G is a semi-simple subgroup of SL(k,R)
of non-compact type. In which case, one can build the same constructions
with the symmetric space associated to G. In fact, instead of developing the
general situation, we shall henceforth restrict ourselves to the case where
G is SO(1, k − 1), and E is the tangent bundle of M . This exactly means
that M has a Lorentz structure. We mention at this stage that some but
not all of the next results are valid in the general case.

Fiberwise hyperbolic geometry. Let (M1+d, 〈.,.〉) be a Lorentz
manifold. Note T rM = {v ∈ TM/〈v, v〉 = r}. After passing if neces-
sary to a double cover of M , we can choose a sheet of T−1M that we note
HM . It is a bundle over M with type fiber the hyperbolic space Hd (recall
that the Lorentz metric has signature − + · · ·+). It is compactified by
adding the projectivization S∞M of the isotropic cone T 0M . We denote
it by HM the bundle over M with type fiber a topological closed ball of
dimension d.

The group Isom(M) acts on HM and on HM , by preserving the hyper-
bolic metric and the conformal structure on the fibers, respectively. This
is reminiscent, as the following analogies will confirm, to a Kleinian group
acting on the Riemann sphere.

9.1 Limit sets.

Definition 9.1. Consider s : M → HM a continuous section (this always
exists since Hd is contractible). Let A be a closed non-compact subset
of Isom(M). The limit set LA of A is the set of the limits in HM of
the sequences (γn(s(xn))), for (xn) a sequence in M and (γn) a divergent
sequence of A (i.e. {γn/n ∈ N} is a closed discrete subset of Isom(M)).

Fact 9.2. The definition above does not depend on the choice of the
section s. The limit set LA is a non-empty closed subset of S∞M .

Proof. LA is non-empty since HM is compact. One easily see that if for a
sequence (γn), there is s0 ∈ HM , such that the elements {γn(s0)/n ∈ N}
remain in a compact subset of HM , then (γn) is equicontinuous. This shows
that LA is contained in S∞. To see that LA does not depend on the choice
of the section s, consider a distance d on HM inducing the hyperbolic
metric on the fibers. If s′ is another section, then d(fns(x), fns′(x)) =
d(s(x), s′(x)). As usual, this implies that if (γn(s(x))) converges in HM ,
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then, (γn(s′(x))) also tends to the same limit. �

Proposition 9.3. Let Γ be a closed non-compact subgroup of Isom(M).
Then the limit set LΓ is the smallest Γ-invariant closed subset of S∞M
which projects surjectively onto M .

Proof. The proof is the same as for Kleinian groups. Let F be a Γ-invariant
subset of S∞M projecting onto M . One naturally construct H(F ) ⊂ HM ,
the fiberwise convex hull of F . We can choose the section s (in the definition
of limit sets) to have image in H(F ) ∩HM (since the fibers of H(F ) are
still contractible and since F projects onto M). Therefore LΓ ⊂ H(F ) since
H(F ) is closed and invariant. In fact LΓ ⊂ H(F ) ∩ S∞M = F . �

In the definition of limit sets, we used continuous sections. In fact, less
regular sections may be equally useful. We will need later the particular
following statement

Fact 9.4 (Measurable sections). Suppose that a closed subgroup Γ of
Isom(M) preserves a measurable section N → HM , defined over a measur-
able Γ-invariant subset N with a positive volume. Then, Γ is compact.

Proof. Let s : M → HM be a measurable Γ-invariant section. Let K
be a compact subset of M , along which s is continuous and such that
Vol(K) > 1/2 Vol(M). Let (fn) be a sequence in Γ and xn ∈ f−1

n K ∩K,
this exists because of the volume condition. By continuity of s|K, the
set {fn(s(xn)), n ∈ N} ⊂ HM is precompact. This implies that (fn) is
equicontinuous. Therefore, Γ is compact. �

9.2 Limit sets and approximately stable foliations.

Proposition 9.5. Let (fn) be a sequence of Isom(M) such that (f−1
n )

admits an approximately stable foliation AS((f−1
n )). Then the limit set

L(fn) is the image of a section M → S∞M , i.e. a field of isotropic lines,
which is in fact the normal direction of AS((f−1

n )).
Assume furthermore that (fn) admits an approximately stable foliation.

Then if v ∈ TM −AS((fn)), Dfnv tends to ∞, and converges projectively
(i.e. after normalization) to L(fn). The convergence is uniform in compact
subsets of TM −AS((fn)).

This convergence is in particular valid in HM (since it is missed by
lightlike hyperplanes and hence HM ⊂ TM − AS((fn)). More precisely,
let U and V be neighborhoods of respectively AS((f−1

n ))⊥ and AS((fn))⊥

in S∞. Then there is N , such for, fn(S∞M − V ) ⊂ U , for n > N .



802 A. ZEGHIB GAFA

Proof. We argue by contradiction to prove that the direction L(fn) is the
normal direction of AS((fn)). Let s : M → HM be a section, that is a
vector field 〈s(x), s(x)〉 = −1 for x ∈ M . We have to prove that Dfns
converges projectively (i.e. in direction) to AS((f−1

n ))⊥. If this were false,
there would exist a sequence xn such that Dxnfn(s(xn)) converges projec-
tively to a vector u /∈ AS((f−1

n ))⊥. Hence,, Dxnfn(s(xn)) = αnun, with
un → u and αn →∞ (because if not (fn) would be equicontinuous). Thus
Df−1

n un = α−1
n s(xn). Thus, by definition u is strongly approximately sta-

ble for (f−1
n ), and hence by 4.5, belongs to AS((f−1

n ))⊥, which yields a
contradiction. The last statement may be checked in a similar fashion. �

From the above theorem, one can conclude the two following “continu-
ity” corollaries:
Corollary 9.6. Let (fn) be a sequence of Isom(M) such that (fn)
and (f−1

n ) admit approximately stable foliations AS((fn)) and AS((f−1
n )).

Let X (resp. Y ) be a continuous vector field tangent to AS((fn))⊥ (resp.
AS((fn))). Then there is sequence (Xn) (resp. (Yn)) of continuous vector
fields converging in the C0 topology to X (resp. Y ), and such that (DfnXn)
converges in the C0 topology to 0 and (DfnYn) is bounded.

Proof. We will only prove the claim for X, as the same argument works
for Y . To simplify notation, we will do the proof for gn = f−1

n instead
of (fn). By the proposition above, after passing to subsequences, we may
find sequences of neighborhoods (Un) and (Vn), collapsing to AS((fn))⊥

and AS((f−1
n ))⊥, respectively, and such that Dfn(TM − Un) ⊂ Vn. Now,

let (X ′n) be a sequence of vector fields such that X ′n /∈ Un, but (X ′n)
converges to some non-singular vector field tangent to AS((fn))⊥. Thus,
from the proposition above, we infer that X ′′n = DfnX

′
n is a vector field

with a big norm and converging in direction in AS((f−1
n ))⊥. Therefore,

for suitable distortion functions λn, going uniformly to ∞, we may get
Xn = λnX

′′
n → X. But DgnXn = (1/λn)X ′n → 0. �

Corollary 9.7. Let A be a closed non-compact subset of IsomM and
u ∈ LA ∩ S∞x M . Then, there is a continuous (in fact Lipschitz) section
σ : M → LA with σ(x) = u.

Proof. u is a (projective) limit of a sequence (fn(s(xn))) where (fn) is a
sequence in A and xn → x (and s is fixed section of HM). After passing to
a subsequence we may assume that (f−1

n ) admits an approximately stable
foliation. We set σ(x) = AS((f−1

n ))⊥. From the proposition above, we
conclude that σ(x) = u. �
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9.3 End of the proof of Theorem 1.2. The statement in Theo-
rem 1.2, about the dynamics of (Dφn) on TM , follows from Proposition 9.5.

To finish the proof of Theorem 1.1, it remains to check its ergodicity
statement. For this end, to simplify notation, suppose that φn = fn. let
σ : O → R be a continuous function, invariant by all the fn.

Consider a vector field Xn as in 9.6. Let α be a real such that
expx αXn(x) exist for any x ∈ M . Then, σ(expx αXn(x)) − σ(x) =
σ(expfnx αDfnXn(x))− σ(fnx). Denote this difference by ∆n(x).

Let (xn) be sequence such that fnxn belong to the same compact K.
Then ∆n(xn) → 0, as DfnXn → 0, in the C0 topology and because σ is
uniformly continuous on K.

Suppose that xn→x and Xn(xn)→u∈AS(f)⊥. Then σ(expx αu)−σ(x)
= lim(σ(expxn αu)− σ(xn)) = lim ∆n(xn) = 0, for any α such that
expx αu ∈ O. That is σ is locally constant along the leaf of AS(f)⊥ passing
through x. Remember finally that, from 8.2, almost every x is a limit of a
sequence such as (xn), for some compact K.

10 Foliation Compactification

Here we define a topology on Isom(M) ∪ FG and then an ideal boundary
∂∞Γ for Γ a closed non-compact subgroup of Isom(M).

We fix a section s : M → HM and we choose a distance d on HM
(in fact the choice of s permit to construct a natural Euclidean fiberwise
distance, we then tensorize by a distance on M and thus we get a semi-
canonical distance d). Now we embed IsomM ∪ FG in the Sect HM , the
space of sections of HM . To f ∈ IsomM , we associate the section fs, and
to a foliation F we associate its normal direction field F⊥. We then endow
IsomM ∪ FG with the C0 topology defined by the distance ρ(σ1, σ2) =
supx∈M d(σ1(x), σ2(x)).

From 9.5, we deduce:

Fact 10.1. If a sequence (fn) of IsomM converges to F ∈ FG, then
F = AS((f−1

n )).

Since FG is compact, we have:

Corollary 10.2. IsomM ∪FG is a (metrizable) compact space endowed
with a natural continuous action of IsomM .

Definition 10.3. Let Γ be a closed non compact subgroup of IsomM . Its
boundary ∂∞Γ is the intersection with FG of the closure of Γ in IsomM∪FG.
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11 Preliminaries on Elementary Groups. Proof of
Theorem 2.6

Let F1 ∪ F2 be a bifoliation (Definition 2.2). Its set of tangent foliations
Apa(F1,F2) has the following description. Let C be the coincidence set
{x ∈ M/TxF1 = TxF2}. Let π0(M − C) be the set of connected com-
ponents of M − C, and consider a map: c : π0(M − C) → {1, 2}. This
allows to construct a foliation, Fc, by the rule: TxFc = TxFc(U), in the
connected component U of M − C, and TxFc = TxF1 = TxF2 in C. It is
straightforward to verify that Fc ∈ Apa(F1,F2) (in particular there is no
loss of continuity or Lipschitz character in this construction). In fact we
have a topological identification of Apa(F1,F2) with {1, 2}π0(M−C).

Observe that we have a natural distance in Apa(F1,F2) defined by
d(Fc,Fc′) = ΣU∈π0(M−C)(c(U) − c′(U)) Vol(U). Any group preserving the
volume and the bifoliation, preserves this distance.

Fact 11.1. Let Γ ⊂ Isom(M) be a closed non-compact subgroup with the
property that for any x ∈M , LΓ(x) = LΓ ∩HM = S∞M , has exactly 1 or
2 points. Then, Γ is elementary.

Proof. Let u ∈ LΓ(x). From the corollary above there is a foliation F(u),
such that the normal direction F⊥ is contained in LΓ and equals u at x.
Let C be the coincidence set of all these foliations. Obviously, it equals
the set of points x where LΓ(x) has cardinality 1. Let U be a component
of M − C, then the restrictions to U of two foliations F(u) and F(u′) are
identical or everywhere transverse. Therefore, as above, one may construct
two foliations F1 and F2, which are transverse in each component U , and
each of them equals a foliation of the form F(u) (in the component U).
Therefore, LΓ can be defined by a bifoliation. �

Proof of Theorem 2.6. Let Γ ⊂ Isom(M) be a closed non-compact
amenable subgroup. To prove that it is elementary, we will check that
it satisfies the condition of the fact above. By amenability, there is a Γ-
invariant probability measure µ onto S∞M , projecting onto the Lorentz
measure of M . Let µx the conditionals of µ on the fibers S∞x M .

Let us show that for almost all x ∈ M (in the sense of the Lorentz
measure), the support of µx has exactly 1 or 2 points. Indeed, if not a
fiberwise barycenter construction (see, for instance, [BCoG] for the classical
one) yields a measurable Γ-invariant section σ : N ⊂ M → HM over a Γ
invariant subset N . This is impossible by Fact 9.4. �
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The bifoliation of an elementary group. Observe that an elemen-
tary group may preserve many bifoliations. However we have the following
fact allowing to define the bifoliation associated to an elementary group:
Fact 11.2. Let Γ be an elementary group. Then Γ preserves a unique
bifoliation F1 ∪ F2 determining a maximal apartment among that deter-
mined by all the bifoliations preserved by Γ. It is characterized by: LΓ(x) =
{(TxF1)⊥, (TxF2)⊥} for any x ∈M . We call it the bifoliation of Γ.

Proof. For a bifoliation G1 ∪ G2, denote by T (G1,G2) = {x ∈ M/TxG1 6=
TxG2} its transversality (open) set. Now, we will consider only bifoliations
preserved by Γ. Let G1∪G2 and L1∪L2 be two of them. Observe then that
along T (G1,G2), L1 and L2 are tangent to G1 ∪ G2. Indeed, the opposite
situation, would give a Γ-invariant 3− or 4−valued section of S∞M along
some open subset of T (G1,G2). As above, the barycenter construction (the
classical one in this case), yields a Γ-invariant section of HM , over some
open subset of M . This implies Γ is compact, by Fact 9.4.

Observe now that by the above gluing process, one may construct a
bifoliation M1 ∪M2 such that T (M1,M2) = T (G1,G2) ∪ T (L1,L2). We
construct the wished maximal foliation as one having a maximal transver-
sality set. This exists by compactness of the space of bifoliations. �

Remark 11.3. We close this section by making some remarks on the gen-
eral set-up of the “bundle compactification” (§9), when we let a generalized
dynamical system of C1 diffeomorphisms acting on the bundle SkM →M .
One considers a given measure ν preserved by the dynamical system, and
choose an invariant measure µ on SkM of maximal support and project-
ing onto ν. It may happen (in fact generically) that ν has a full measure
in SkM , or even worse, ν can be ergodic. If not, i.e. ν has support in-
side SkM (that is the support of ν does not interest ∂∞SkM) then, the
barycenter construction (in general Hadamard spaces) yields an invariant
measurable metric. However, if k > 2, the universal symmetric space
Sk = SL(k,R)/SO(k) is not of negative curvature (i.e. it has a higher
rank), and there is no way to construct barycenters for measures supported
in the Hadamard boundary. In fact, there are alternative boundaries which
may be efficient in this matter. Depending on the interpretation of such a
boundary, that is by modeling it as a kind of flag spaces, the construction of
limit sets yields, roughly speaking, flag-fields on M . For example, Oseldec’s
decomposition for a diffeomorphism f may be handled by looking to points
in the limit set (of the group {fn, n ∈ Z}), with special “approach”. For
instance, the conical and horospherical limit sets may be interesting in this
regard (see [Su]).
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12 Partial Hyperbolicity

Definition 12.1. An elementary group Γ is called partially hyperbolic if
its associated bifoliation F1∪F2 is non-trivial, that is the (open) transver-
sality locus T = {x ∈M /TxF1 6= TxF2} is non-empty, or equivalently, the
(closed) coincidence locus C = {x ∈M /TxF1 = TxF2} is a proper subset
of M .

Now, we will justify the word “partially hyperbolic” in a dynamical
viewpoint (of course, partially hyperbolic, is also reminiscent to the term
“elementary hyperbolic” in the theory of Fuschian groups). We keep the
notation above. Denote by N 1 and N 2 the two (one dimensional) normal
directions of F1 and F2, respectively. We may assume that they are ori-
entable, after passing to a finite covering. Let X1 and X2 be two Lipschitz
non-singular vector-fields orienting N 1 and N 2, respectively.

The group Γ respects the set of (open) connected components of the
transversality locus T . Since these components have positive Lorentz vol-
ume and since Γ preserves the volume, then each component U is preserved
by a finite index subgroup of Γ, say Γ itself. It then follows that Γ pre-
serves the closure Ū and the directions of X1 and X2, along it. There-
fore we get two derivative cocycles: λ1 and λ2 : Ū × Γ → R, defined by
Dxf(Xi(x)) = λi(f, x)Xi(f(x)), for i ∈ {1, 2}. This section is devoted to
the proof of:

Theorem 12.2. Let Γ be a partially hyperbolic elementary group. Then,
up to a subgroup of finite index, Γ is a direct product of a compact group
by Z or R. Furthermore, we can find two foliations L1 and L2 generating
the same bifoliation F1∪F2, and defining two cocycles c1 and c2 satisfying
the following condition. Let g be a non-trivial element of the Z or the R
part of Γ and K a compact subset in the transversality set of the bifoliation.
Then, there is an integer p = p(K) > 0, such that for f = gp, we have:

c1(fn, x) < 1/2, if n > 0, x ∈ K and fnx ∈ K, and
c2(fn, x) > 2, if n > 0, x ∈ K and fnx ∈ K.
Finally, in the transversality set T , the normal foliation of L1 and L2 are

respectively the negative and positive Liapunov spaces of g. In particular,
L1 and L2 are preserved by g.

Beginning of the proof. Consider an auxiliary complete distance ρ on Γ.
For example embed Γ is the frame bundle PM , and take ρ to be the restric-
tion of a distance on PM induced by a complete Riemannian metric. We
denote open balls around the identity by Bρ(1, r).
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Fact 12.3. With the notation above let K be a compact of U . There
are:

(i) a function: r ∈ R+ → cKr ∈ R+ such that limr→∞ cKr =∞, and
(ii) a map s : K × Γ→ {1, 2}, defined for (f, x) such that f(x) ∈ K. We

denote u(f, x) = s(f, x) + 1 mod 2.
These maps satisfy the condition that whenever, f /∈ Bρ(1, r), then:

λs(f,x)(f, x) < (cKr )−1 and λu(f,x)(f, x) > cKr .

Proof. In U , Γ preserves the directions N 1 and N 2, and hence also the
orthogonal (N 1 ⊕ N 2)⊥. This last space is spacelike, i.e. the Lorentz
metric restricted to it is positive definite. Therefore, in the compact K
of U , we have an uniform bound of the restriction Dxf |(N 1 ⊕ N 2)⊥ and
(Dxf)−1|(N 1 ⊕N 2)⊥, for x ∈ K and f ∈ Γ, such that f(x) ∈ K.

It then follows by the volume preservation property that the product
λ1(f, x)λ2(f, x) belongs to some fixed compact interval (around 1) in ]0,∞[,
for x ∈ K, and f ∈ Γ, with f(x) ∈ K. That is the cocycles λ1 and λ2 are
almost one the inverse of the other, provided we restrict ourself to K.

To prove the estimates contained in the statement of the fact, we argue
by contradiction. Suppose that for a divergent sequence (fn) in Γ, there
is a sequence (xn) of points of K, such that fn(xn) ∈ K and such both
λ1(fn, xn) and λ2(fn, xn) remain bounded. Hence, (Dxnfn) is equicontin-
uous and thus it follows from 5.2,that (fn) is not divergent! Therefore,
there is a function cKr , satisfying property (i) of the fact, and such that for
any x and f as in the fact, there is some s = s(f, x) ∈ {1, 2}, such that
the following inequalities hold: λs(f, x) < (cKr )−1 and λu(f, x) > cKr with
u = s+ 1 mod 2. �

Fact 12.4. There is a partition f = A1 ∪ A2 satisfying the following
conditions. Let U1 (resp. U2) be a neighborhood in (the projective isotropic
cone) S∞M of N 1 (resp. N 2) along the closure Ū .

There is r such for f ∈ Γ−Bρ(1, r), we have:
if f ∈ A1, then : Df(S∞M − U1) ⊂ U2, and

if f ∈ A2, then : Df(S∞M − U2) ⊂ U1 .

Proof. It is easily seen that one can localize the compactification of isometry
groups of M to that of Ū . So, here the boundary of Γ (acting on Ū)
consists of the two foliations F1|Ū and F2|Ū . Let B1 and B2 be two disjoint
neighborhoods of these last foliations in the compact Isom(Ū). So, for r
big enough, every element f , with ρ(1, f) > r, belongs to exactly one of
the neighborhoods B1 or B2. Suppose that we cannot find r (big enough)
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satisfying the claim. Then there is a divergent sequence (fn) contained
in B1 or B2 (say B1) and not satisfying the desired inclusions. Thus the
approximately stable foliation of (fn) is F1|Ū . Now we apply the expanding
property of the approximately stable foliation 9.5. This would lead to
a contradiction if we check that for some subsequence (φn) of (fn), the
approximately stable foliation AS(φ−1

n ) is F2. For this last fact, we just
remark that the opposite situation, i.e. AS((f−1

n )) = F1 is impossible,
indeed this would imply that the complementary of a small neighborhood
of N 1 is mapped by Dfn to a small neighborhood of N 2. This contradicts
the fact that Dfn preserves N 2.

Finally, extend arbitrarily the partial partition B1 ∪ B2 to a partition
Γ = A1 ∪A2. �

Fact 12.5. s(f, x) and u(f, x) are independent of x.

Proof. It is clear that by choosing U1 and U2 small enough that for f ∈ A2
far from the identity map, s(f, x) cannot be 2 for any x ∈ K. Therefore,
s(f) = 1, and thus does not depend on x. �

Liapunov exponents. Henceforth, we will assume that the following
hypothesis holds:

Hypothesis. Vol(K) > (1/2)Vol(U) and choose r0 such that cKr0 > 2.
Lemma 12.6. Let f and g be two elements of Γ outside the ball Bρ(1, r0)
such that s(f) = s(g). Then there is x ∈ K such that f(x) and gf(x)
belong to K and λs(f)(gf, x) < 1/4. In particular, if gf /∈ Bρ(1, r0), then
s(gf) = s(f) (= s(g)). Furthermore, if fn /∈ Bρ(1, r0) for all n > 0, then
s(fn) = s(f) for all n > 0.

Proof. Observe that if three subsets A, B and C of U have volume >
(1/2)Vol(U), then A ∩ B ∩ C 6= ∅. Apply this to K, f−1K and gf−1K,
we get a point x ∈ K such that f(x) ∈ K, and gf(x) ∈ K. Thus
λ1(gf, x) = λ1(g, f(x))λ1(f, x), and hence λ1(gf, x) < 1/4, if f and g
satisfy the conditions of the lemma. Of course if gf /∈ Bρ(1, r0), then
s(gf) 6= 2, and thus s(gf) = 1. Using this, the last part of the lemma is
proved by induction. �

Consider l1(f, x) = limn→+∞(log λ1(fn, x))/n. Define analogously
l2(f, x). They are Liapunov exponents and thus exist almost everywhere.
Fact 12.7. Let f be such that fn /∈ Bρ(1, r0) for all n > 0. Suppose that
s(f) = 1. Then, for almost every x ∈ U , l1(f, x) < 0, that is N 1 is the nega-
tive Liapunov space of f |U . Furthermore,

∫
U l

1(f, x)dx < (− log 2) Vol(K).
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Proof. To x ∈ K, associate its sequence of positive return times (ni(x))i∈N.
To simplify notation, fix x and denote the sequence by (ni). Thus, fnix∈K.
From Lemma 12.6, s(fn) = 1 for all n > 0, and hence λ1(fni+1−ni , fnix) <
1/2. Thus, by the cocycle property of λ1, λ1(fni , x) < (1/2)i, and hence,
log λ1(fni , x)/ni < i/ni(− log 2). Let χK denote the characteristic function
of K. Observe that i/ni equals the partial Birkhoff sum (χK(x)+χK(fx)+
. . . χK(fnix))/ni. So, we have proved l1(f, x) < (− log 2)χ∗K(x), where χ∗K
stands for the Birkhoff sum of χK . In particular l1(f, x) < 0 for almost ev-
ery x ∈ K. Let K∗ be the saturation of K, by f , l1(f, x) < (− log 2)χ∗K(x),
for x ∈ K∗, because both of the two functions l1(f, x) and χ∗K are f -
invariant.

In particular:
∫
K∗ l

1(f, x)dx(− log 2)
∫
K∗ χ

∗ =
∫
U χ
∗
K = Vol(K).

It remains to prove that l1(f, x) < 0, almost everywhere in U . To this
end, observe that the sequence generated by f is divergent because f has
non-vanishing exponents. Hence if we replace K by a bigger compact K ′,
then for some g = fp, p > 0, the powers {gn, n > 0} lie outside the ball
analogous to Bρ(1, r0) associated to K ′. Obviously, the index sK

′
(g) is

the same as s(f) and thus equals 1. Therefore, almost everywhere in K ′,
l1(fp, x) < 0. But l1(f, x) = l1(fp, x)/p. �

Consider now the map Λ1 : Γ→ R, Λ1(f) =
∫
U log λ1(f, x)dx.

Fact 12.8. Λ1 is a homomorphism and for f such that fn /∈ Bρ(1, r0)
for all n > 0, we have |Λ1(f)| > log 2 Vol(K). Furthermore, Λ1(f) 6= 0
if and only if f generates a non-precompact group (that is {fn/n ∈ Z} is
non-compact).

Proof. We have log λ1(fg, x) = log λ1(f, gx) + log λ1(f, x). Thus Λ1 is a
homomorphism because g is volume preserving and hence:

∫
U log λ1(f, gx)

=
∫
U log λ1(f, x).
The remaining parts of the fact are obvious or follow from the preceding

fact. �

Corollary 12.9. Suppose that Ker Λ1 is compact. Then, up to a
subgroup of finite index, Γ is a direct product of a compact group by Z
or R.

Proof. Suppose to start with that Ker Λ1 is trivial, that is every element
f ∈ Γ generates a non-precompact group. Therefore, from Fact 12.8, Λ1

is injective, and thus Γ is abelian and torsion free. Let G be a closed
subgroup of Γ isomorphic to Z2. It is obvious that for a big enough radius r,
f ∈ G − Bρ(1, r) =⇒ fn /∈ Bρ(1, r0). But, from Lemma 12.6, |Λ| is
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bounded from below for elements satisfying this condition. This means
that Λ1 : G → R is proper, which is impossible. Thus, because it cannot
contain a closed copy of Z2, Γ must be isomorphic to Z or R (remember
that it is torsion free).

Now when Ker Λ1 is merely compact, we may argue with the quotient
Γ/Ker Λ1 which enjoys the same properties as Γ. So, we obtain that Γ is a
semi-direct product of Z or R by a (normal) compact group. We may find
in a standard way a subgroup of finite index which is a direct product of Z
or R by a compact group. �

Torsion. We now check that Ker Λ1 is compact. Equivalently, we
suppose that Λ1 = 0 and thus show that Γ is compact. This is standard for
the identity component of Γ. Indeed, a Lie group for which every element
generates a precompact subgroup, is compact (see for instance [D]). Hence,
without loss of generality, we may restrict ourselves to the case where Γ is
discrete. It is thus a torsion group, and we have to check it is finite.

Let f be an element of order k. Consider I1(f) = {i ∈ {1, . . . ,
k − 1} | f i /∈ Bρ(1, r0), s(f) = 1}. Define analogously I2(f).

From Lemma 12.6, we have the following “semi-group” property:
Fact 12.10. Let α, β ∈ I1(f), then α+β ∈ I1(f), unless, fα+β∈Bρ(1, r0).
The same statement holds for I2(f).

Consider P = {fn | f ∈ Bρ(1, r0), n ∈ Z}. Since Bρ(1, r0) is finite and
any element has finite order, it follows that P is finite.

We deduce from the fact above that every (finite cyclic) group intersects
non-trivially the ball Bρ(1, r0). Indeed, if not, we would obtain a partition
{1, . . . , k−1} = I1(f)∪I2(f), where f is a generator of order k of the given
cyclic subgroup. The fact above implies that only one part, say I1(f) is
non-empty. So, we apply, Lemma 12.6 to f and fk−1 and we obtain that
λ1(Identity, x) < 1/4 which is obviously impossible.

If f is of prime order, then, all its non- trivial powers generate the same
group, and hence f is a power of some element of Bρ(1, r0), that is f ∈ P .

To treat the general case, represent the congruence group Z/kZ as
{0̇, 1̇, . . . , ˙(k − 1)}. Let G = {α̇/(α, k) = 1} be the set of generators of
Z/kZ.

Let f be an element of order k that does not belong to P , then
fα /∈ Bρ(1, r0), for α̇ ∈ G. Hence, we have a partition G = (G ∩ I1(f)) ∪
(G ∩ I2(f)), as above.

Suppose that k = pm with p prime and 6= 2. Then α̇ ∈ G if and only α
is not a multiple of p. Therefore, we cannot have α̇ and ˙α+ 1 in G, noting
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that p 6= 2. Also, suppose that 1̇ ∈ I1(f), then 2̇ ∈ I2(f). Let α be the
smallest number such that α̇+ 1̇ /∈ I1(f). Then necessarily, α̇ ∈ I1(f) and
α̇ + 1̇ /∈ G, and hence α̇ + 2̇ ∈ I1(f). By recurrence, we get I2(f) ∩ G = ∅.
In particular f and fk−1 belong to I1(f). We get a contradiction as in the
above case where k was prime.

To treat the case p = 2, the previous combinatorial approach fails.
However, this may be adapted, if we suppose a stronger “ semi-group”
property of I1(f) and I2(f), involving three instead of two elements. That
is, given three elements α̇, β̇ and γ̇ of I1(f), then each of the elements
α̇ + β̇, and α̇ + β̇ + γ̇ belongs to I1(f), unless it belongs to Bρ(1, r0). To
have this, we choose K in Lemma 12.6, with relative big volume (that is
Vol(K) > 3/4 Vol(U)), and we obtain a statement (of the lemma) involving
three elements of Γ.

We have thus proved that P contains all the elements having order of the
form pm with p prime. One may push forward the combinatorial argument
to prove that P = Γ. Instead, we prefer to argue as follows. Since every
cyclic group is generated by groups with order of the form pm, we deduce
that every subgroup Γ′ of Γ is generated by its intersection with P . In
particular, Γ′ is a finitely generated torsion group. Consider the adjoint
action of Γ on itself. It preserves the finite set P . Its Kernel Γ′ is of finite
index in Γ, and centralizes Γ because it centralizes the generating set P .
Therefore, Γ′ is finite as it is a finitely generated abelian torsion group. It
then follows that Γ is finite. �

End of the proof of Theorem 12.2. Let g ∈ Γ be as in Theo-
rem 12.2. From the previous development, for each component U of the
transversality set T , we can associate s(U) ∈ {1, 2}, such that the normal
direction of Fs(U)|U is the negative Liapunov space of the restriction g|U .
As in §11, this allows us to construct two foliations L1 and L2, elements of
Apa(F1,F2) whose normal directions are the negative and positive spaces
of g|T , respectively. Now let K be a compact subset of T , then it meets
only finitely many components U , and hence for a sufficiently big positive
integer p, we have the estimates stated in the theorem for the power f = gp.
This ends the proof of the theorem.

13 Proofs of Theorems 2.4, 1.1 and 2.7

The case where the bifoliation of Γ is trivial. This means there
is a foliation F1 such that everywhere LΓ(x) = TxF⊥. It then follows from
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Proposition 9.5, that the approximately stable foliation of any sequence of
of Γ is F1 and therefore the boundary of Γ consists exactly of F1.

To chow the vanishing of the entropy of the elements of Γ, we argue
by contradiction. Suppose that some f ∈ Γ has positive entropy with
respect to some invariant measure. Then f must have somewhere non-
trivial negative and positive Liapunov spaces E1 and E2. Observe then
that these spaces must be isotropic (in the sense of the Lorentz metric) and
hence are 1-dimensional. At most only one of these directions, say E1, is
contained in F . However, by the uniform attraction of F (Proposition 9.5),
the direction E2 is mapped by powers of f , near F , which contradicts the
fact that it is preserved by f .

The case of partially hyperbolic groups. In order to estimate its
boundary, it is easy to see that we may replace Γ by a subgroup {gn/n ∈
Z} generated by an element g as in Theorem 12.2. We will thus prove:
∂∞Γ = {L1,L2} (following the notation of Theorem 12.2). More precisely,
we will prove that: limn→+∞ gn = L2 and limn→−∞ gn = L1.

Let (fn) be a sequence of Γ of the form fn = gkn , for some sequence
of integers (kn). Suppose that (fn) has an approximately stable foliation,
that is, (f−1

n ) converges in Γ ∪ ∂∞Γ to some foliation F .
Suppose that kn → +∞, when n→ +∞. Then, by localization to larger

and larger compact subsets, and using Theorem 12.2, one deduces that the
limit of (gkn) cannot be different from L2. Therefore, by compactness,
gn → L1, when n→ +∞ (because L2 is the unique limit of its convergent
subsequences). By the same argument limn→−∞ gn = L1.

It then follows that any sequence (fn = gkn) for (kn) oscillating between
−∞ and +∞ is not convergent. Hence, the boundary of Γ is {L1,L2}.
Proof of Theorems 1.1 and 2.7. Let f be an isometry of M generating a
non-equicontinuous subgroup Γ. Firstly, observe that Γ is closed. Indeed,
the closure of Γ is an abelian Lie group and hence, up to finite index, it can
be written as a product Γ = Ti×Rj ×Zk, where T is the torus part. But,
because Γ is non-compact and has Z as a dense subgroup, then we must
have Γ = Z. Therefore, Γ is closed and amenable, and hence elementary.

We apply Theorem 2.4 and we get, with the help of the previous no-
tation, L1 (resp. L2) as an approximately stable (resp. unstable) foliation
for f .

The weak partial ergodicity part of Theorem 1.1 follows from the anal-
ogous statement in Theorem 1.2. This ends the proof of Theorem 1.1.

The same argument yields approximately stable and unstable foliations
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for isometric flows, as stated in Theorem 2.7. The statement concerning
the causal character of non-equicontinuous flows, that is, their infinitesimal
generators must be non-timelike, was noticed in [Z4].

14 Non-bipolarized Manifolds. Proof of Theorem 2.9

Observe that, over U , TAS is Lorentzian, that is the restriction of the
metric along TAS is of Lorentzian type. Indeed, for x ∈ U , TASx contains
at least two different isotropic directions.

Let K be a compact subset of U over which E is continuous. We will
consider as in 8.2, the non-escaping set subset NE(K, (fn)), where (fn) is
sequence in Isom(M). We firstly present the following relative version of
Corollary 9.6:

Fact 14.1. Let K be a compact subset of U over which E is continuous.
Moreover, let F = lim fn ∈ ∂∞ Isom(M), and X (resp. Y ) a vector field
tangent to F⊥ (resp. F). Then, there is a sequence of continuous sections
(Xn) (resp. (Yn)) of E over K, such that Xn → X (resp. Yn → Y ) in the
C0 topology, and satisfying the following. Choose an auxiliary norm |.| on
TM . Then, there is a real sequence (an) converging to 0 (resp. a bounded
real sequence (bn)) such that |DfnXn(xn)| < an (resp. |DfnYn(xn)| < bn)
whenever xn ∈ K ∩ f−1

n K.

Fact 14.2. Let F ∈ ∂∞ IsomM . Then t(u, v) = 0 for u ∈ TxF⊥,
v ∈ TxF ∩Ex, and almost every x ∈ U .

Proof. Let K be a compact subset over which E and t are continuous. Let
x ∈ NE(K, (fn)) and u, v as in the fact. Extend u and v to local vector
fields X and Y tangent to F⊥ and F , respectively. Approximate X and
Y as in Corollary 9.6, and consider a sequence xn → x in K, such that
fnxx ∈ K. Thus, by continuity, t(u, v) = limn→∞ t(X(xn), Y (xn)) which
equals 0, from the properties of Xn and Yn in Corollary 9.6.

Finally, recall that (see 8.2) VolNE(K, (fn)) > Vol(U) − 2ε, whenever
Vol(K) > Vol(U). Therefore, the property holds is almost everywhere
because we can choose the volume of K arbitrarily approaching that of U . �

It then follows that t(u, v) = 0 if u ∈ Sx and v ∈ u⊥ ∩ Ex, for almost
every x ∈ U .

Let {ei} be a basis of TxM , and write t(X,Y ) = Σbi(X,Y )ei where the
bi are bilinear scalar forms. To prove Theorem 2.9, it suffices to show that
for each bi there is αi such that bi(u, v) = αi〈u, v〉, whenever u ∈ TASx.



814 A. ZEGHIB GAFA

So let b be one of this forms and write it b(u, v) = 〈Au, v〉 for some
linear endomorphism of Ex. From the above, one sees that every u ∈ Sx,
is an eigenvector for A, Au = λuu. Now, if λu does not depend on u, A is
a homothety on TASx and we are done. If not, A induces an eigenspace
decomposition on Ex.

By considering all the endomorphisms corresponding to the bi, and by
letting x varying over U , we get an invariant measurable decomposition
E = E1 ⊕ · · · ⊕ Ek of TAS such that Sx ⊂ E1

x ∪ · · · ∪ Ekx . To show that
this is impossible (and hence finishing the proof of the theorem) we use the
following irreducibility fact:
Fact 14.3. There are no Isom(M)-invariant measurable subbundles E1,
...,Ek of TAS, with k≥2, such that Sx⊂E1

x∪...∪Ekx in some subset of U with
positive volume (it is here where we use that Isom(M) is non-elementary).

Proof. We may suppose k = 2 and that E1 is Lorentzian in some subset
of positive volume. Since we are dealing with measurable bundles, we may
suppose this is everywhere true, just restricting domains of definition. So,
we have an orthogonal decomposition TM = E1 ⊕E1⊥.

Let F = lim fn ∈ ∂∞ Isom(M) and apply Fact 14.1, to a compact K
over which E1 and E2 are continuous. Observe that if un ∈ E1⊥

xn → u 6= 0,
and fnxn ∈ K, then (Dfnun) cannot tend to 0 because the metric on E1⊥

is Riemannian (i.e. positive definite). This implies as in the proof of the
fact above, that, over NE(K, (fn)), F⊥ is contained in E1. Choosing K
with larger volume as necessary, we may conclude that this is always true. �

To finish the proof of Theorem 2.9, it remains to check its last partial
ergodicity statement. Let σ be a function as in the theorem. From the er-
godicity property in Theorem 1.2, σ is constant along any (1-dimensional)
foliation defined by a vector field X ∈ S (see the notation of §2.4). There-
fore, by definition dσ|TAS = 0.

15 Examples

Here we will give some examples of boundaries of isometry groups of com-
pact Lorentz manifolds. As we will see in the part II of this work, the
non-trivial (i.e. non-bipolarized) cases, involve constant curvature mani-
folds. In what follows, we therefore investigate the structure of isometry
groups of manifolds which are locally isometric to a product of a Rieman-
nian manifold by a constant curvature Lorentz manifold. The following
theorem summarizes the non-trivial cases.
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Theorem 15.1. Let M be a compact Lorentz manifold whose universal
cover is a product of a simply connected Riemannian manifold Ñ and a
complete simply connected space Xc of constant curvature c. Let π ⊂
Isom Ñ × Isom(Xc). Then,

(i) Such a manifold does not exist if c > 0.
(ii) If c > 0 and M is not bipolarized, then dimM = 3, and M is a

quotient of Ñ × ˜SL(2,R) by a subgroup of Isom Ñ × ˜SL(2,R). The
isometry group of M is a product of a compact group by a finite cover
of PSL(2,R). Its boundary is the circle S1 endowed with the usual
action of this latter group.

(iii) If c = 0 andM is not bipolarized, then there is a metric decomposition
M̃ = Ñ ′ × Rd, where Ñ ′ is a Riemannian manifold, and Rd is a
Minkowski space, and such that π = π1(M) ⊂ Isom Ñ ′ × Rd. The
action of Isom(M) on its boundary factors through the action of a
(arithmetic) lattice of a (d − 1)-dimensional hyperbolic space on its
sphere at infinity.

Remark 15.2 (Erratum). The case (iii), i.e. the flat non-bipolarized case,
was forgotten in [Z6]. So, the statement of the principal result in this
reference has to be modified to take into account this case, see part II of
the present article.

Observe that that we do not address completeness questions, which will
be treated in detail in part II of this article. The theorem will be proved
through the present section, which contains further details. Let us start
with the following general fact about de Rham decomposition of Lorentz
manifolds, which follows from the foliated version 8.7.

Proposition 15.3. Let M be a compact Lorentz manifold whose universal
cover admits a de Rham decomposition M̃ = Ñ ×X, where Ñ is Rieman-
nian and X is Lorentzian. Then any foliation F , element of the boundary
of Isom(M) lifts to a foliation F̃ containing the factor Ñ , that is its leaves
have the form Ñ × L̃x, where L̃ is a codimension one lightlike geodesic
foliation of X, invariant under the action of the projection of π1(M) in
Isom(X).

15.1 De Sitter space. Let Rp,q be the space Rp+q endowed with a
non-degenerate quadratic form of signature (−p, q) (for example R1,q is
endowed with a form of signature − + · · ·+). For a real r, we denote by
Sp,q(r) the level r in Rp,q. The (universal) de Sitter space of dimension
q is S1,q(+1). We only consider the case q > 2, and hence, the de Sitter
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space is simply connected. It inherits from R1,q a Lorentz metric of positive
constant curvature, and has isometry group O(1, q).

The well-known Calabi–Markus phenomena states that a Lorentz man-
ifold covered by S1,q(+1) has a finite fundamental group. Let Ñ be a com-
plete simply connected manifold and consider the product M̃=Ñ×S1,q(+1).
This may have quotients with large fundamental group, but no compact
ones. The proof of this claim resembles that of the Calabi–Markus phe-
nomena and goes as follows. Suppose that π ⊂ Isom Ñ × O(1, q) is the
fundamental group of a compact manifold M . Then, the projection of π
on Isom Ñ is not discrete, otherwise, M would fiber over a quotient of Ñ ,
with fiber a compact quotient of S1,q(+1), which does not exist. Hence,
there is a divergent sequence γn = (gn, hn) ∈ π such that gn → 1 in
Isom Ñ . The basic fact behind the Calabi–Markus phenomena is that if
K = S1,q(+1) ∩ R0,q, then h(K) ∩ K 6= ∅ for any h ∈ O(1, q) (because
both K and h(K) are traces in S1,q(+1) of linear hyperplanes in R1+q).
Therefore, for any open set U ⊂ Ñ , γn(U × K) ∩ (U × K) 6= ∅, because
gn → 1. This means that π does not act properly on Ñ × S1,q(+1).

15.2 Anti-de Sitter manifolds. The anti-de Sitter space of dimension
1 + q corresponds to the level −1 in R2,q. More precisely, the (universal)
anti-de Sitter space H1,q is the universal cover of S2,q(−1). However, it is
more convenient to work in the “linear model” S2,q(−1) and then, translate
into H1,q. In fact one would hope that, one needs to pass to H1,q only in
pathological situations. Indeed, as we will recall below compact quotients
of H1,q are in fact quotients of S2,q(−1). So let us work in this latter
space. Let Q = −x2

1−x2
2 +x2

3 + . . . x2
q+2 be a quadratic form defining R2,q.

Then S2,q(−1) inherits a Lorentz metric of negative constant curvature
and its isometry group is the orthogonal group of Q, that is O(2, q). The
totally geodesic subspaces of S2,q(−1) are exactly the traces on it of linear
subspaces of R2+q. Furthermore, the lightlike geodesic hypersurfaces of
S2,q(−1) have the form: Hu = Ru⊥ ∩ S2,q(−1) for u ∈ R2,q an isotropic
vector.

Two hypersurfaces Hu and Hv (for u and v isotropic) are disjoint if
and only if u and v are orthogonal but not collinear. It follows that a
codimension one lightlike geodesic foliation F of S2,q(−1) is determined by
hypersurfaces Hu, for u running over an isotropic 2-plane P . The group
O(2, q) acts transitively on the space of isotropic 2-planes. Its action on
the space of pairs (P1, P2) of isotropic 2-planes has exactly 3 orbits, one for
P1 = P2, one for dim(P1 ∩ P2) = 1, and the last for P1 ∩ P2 = 0.
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We can write R2,q = R2,2 ⊕R0,q. Because the factor R0,2 is Rieman-
nian, most of the dynamics happens on R2,2. Note that the decomposition
above is not canonical, but we will see this does not matter. So, we now
decorticate the case q = 2, i.e. the 3-dimensional anti-de Sitter space. In-
stead of the standard form Q, one consider the form Q′ on R4 = R2 ×R2

defined by Q′(u, v) = ω(u, v), where ω is the volume form on R2. An ele-
ment A ∈ SL(2,R) acts diagonally: A(u, v) = (Au,Av), by preserving Q′.
The group SL(2,R) acts freely on the non-vanishing levels of Q′. Hence,
the SL(2,R) orbits coincide (for dimension reasons) with the components
of non-vanishing levels. It turns out that metrics defined in that way on
SL(2,R) are multiples of its Killing form. Indeed, one verifies that the
identity component of O(2, 2) contains another copy of SL(2,R) commut-
ing with the given SL(2,R)-action. More precisely, this identity component
is isomorphic to SL(2,R) × Sl(2,R), which turns out to be the identity
component of the isometry group of the Killing form of SL(2,R), acting
by (g, h)x = gxh−1, where g, h, and x belong to SL(2,R).

A lightlike geodesic foliation is determined by the orbits of a subgroup
of the form A × {1} or {1} × A where A is conjugate to the affine group
AG ⊂ SL(2,R). The case of two different subgroups lying in the same
factor {1} × SL(2,R) or SL(2,R) × {1} corresponds to two isotropic 2-
planes such that P1 ∩ P2 = 0. The case of different factors corresponds
to two intersecting 2-planes. It then follows that the symmetry group of
a pair of isotropic 2-planes (P1, P2) is conjugate up to switch of factors to
either SL(2,R)× {1} or AG×AG.

For example, the group SL(2,R) acting as above on (R4, Q′) preserves
each isotropic 2-plane of the form {(u, αu), u ∈ R2} for α a real number,
together with the plane {0} ×R2. The set of the so defined foliations is a
circle, on which the other factor SL(2,R) acts as usually.

From this we deduce that the symmetry group of 3 distinguish isotropic
2-planes is contained up to switch of factors in SL(2,R)×{1}. In particular,
this symmetry group is centralized by the other factor {1} × SL(2,R).
Therefore, if a compact quotient M of a product Ñ × S2,q(−1), is not
bipolarized and has non-compact isometry group, then Isom(M) contains
SL(2,R). From [Gr] (see also [ASt1] and [Z1]), Isom(M) is a product of a
compact group by a finite cover of PSL(2,R).

In higher dimensions the symmetry group of 3 isotropic 2-planes is con-
tained in a product of SL(2,R) by a compact group. This does not act
cocompactly on S2,q(−1). By translating the argumentation to the uni-
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versal cover H1,q, one checks that a cocompact subgroup cannot preserve 3
distinct codimension one lightlike geodesic foliations. This proves the claim
that if a compact Lorentz manifold has a non-compact isometry group and
is not bipolarized, then the anti-de Sitter factor of its universal cover has
dimension 3.

Finiteness of levels. As mentioned above, a compact Lorentz man-
ifold M , which is a quotient of the universal anti-de Sitter space, is in fact
up to finite covers, a quotient of the more concrete one S2,q(−1). This
property was called in [KuR] the finiteness of levels of compact anti-de Sit-
ter manifolds. It is related to isometry groups as follows. The fundamental
group of S2,q(−1) is cyclic, generated by an element σ. The statement is
that some power of σ belongs to π1(M). Because σ is central in Isom(H1,q),
it defines an isometry f of M . The finiteness of the level of M is equiva-
lent to f having finite order. Thus the opposite situation implies Isom(M)
is infinite. If the identity component of Isom(M) is not trivial, we get a
connected subgroup of Isom(H1,q) centralizing π1(M). One can thus com-
pletely understand this latter group, and in particular get a contradiction
to the hypothesis that f is of infinite order. If Isom(M) is discrete, then it
is non-compact, and therefore, it preserves a foliation, and thus π1(M) is
contained in the symmetry group of a foliation as described above. Again
here, by working algebraically, one gets a contradiction to the fact that f
has an infinite order.

15.3 The flat case. Let g be a Lorentz quadratic form on Rk. It is
called rational, if some multiple αg has rational coefficients when expressed
in the canonical basis. The isometry group of the Lorentz space (Rk, g) is
the semi-direct product RkoO(g) whereO(g) ⊂ GL(n,R) is the orthogonal
group of g. Of course all these spaces are isometric to the Minkowski space.
However, this representation may help to understand the modulus of flat
Lorentz structures. For instance, consider a topological torus T k = Rk/Zk,
then the family (Tk, g), for g as above, exhausts the space of Lorentz flat
structures on Tk.

A lightlike geodesic foliation in Rk consists obviously of parallel lightlike
affine hyperplanes, and hence it is determined by specifying an isotropic
direction of g. Let C(g) be the space of such directions. It is a sphere
of dimension k − 2. The action of Rk o O(g) on it, factors via the usual
conformal action of O(g) (i.e. it is isomorphic to the conformal action of
O(1, k − 1) on Sk−2).

Let M be a flat Lorentz manifold obtained as a quotient of (Rk, g) by
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a subgroup π ⊂ Rk o O(g). The space FG(M) of codimension 1 lightlike
geodesic foliations of M , is identified with the fixed points of the action
of π (via its linear part) on C(g). It follows in particular, that in the
torus case, this space is identified with C(g), for any g. Conversely, if
card(FG(M)) ≥ 3, then up to a subgroup of finite index, π is a lattice in
the translation part Rk of RkoO(g). To see this, let E be the linear space
generated by the isotopic directions determined by the elements of FG(M).
Because of the dimension, the quadratic form g is of Lorentz type on E and
is positive on E⊥.

Observe now that if an element A ∈ O(g) fixes 3 isotropic directions
X1,X2 and X3, then A = ± Identity on the linear space F that they
generate. Indeed, write AXi = λiXi, then λiλj = 1 for i 6= j, because
〈Xi,Xj〉 6= 0, and hence λi = ±1.

It then follows that Γ preserves a positive scalar product. Therefore, by
the Bieberbach theorem, π is virtually a lattice in Rk. Equivalently M is
covered by a torus.

As a corollary, we get that a compact flat manifold is bipolarized, unless
it is, up to a finite cover, a torus. Now for a torus (Tk, g), its isometry group
is O(g,Z)oRk, where O(g,Z) = O(g) ∩GL(k,Z).

The action of Isom(Tk, g) on its boundary can be identified with that
of O(g,Z) on its limit set in C(g). So, we are not leaving Kleinian groups,
but what kind of group could O(g,Z) be and what might it have as a limit
set?

A classical theorem of Harish-Chandra and Borel states that O(g,Z) is
a lattice in O(g) if g is rational. Hence its limit set in this case is the whole
of C(g). Let us now treat the general case (that is when g may be partially
rational).

Fact 15.4. Let G be a non-compact connected Lie subgroup of O(g).
Then either G fixes a point of C(g) (that is G is elementary) or G is
reductive. In this last case, there is a Lorentzian plane E in Rk (that is
g restricted to E is of Lorentzian type) which is preserved by G and such
that G = O(g|E)×K, where K is a compact subgroup of O(g|E⊥). (Here
for a non-degenerate plane F , we denote O(g|F ) = {A ∈ O(g)/A(F ) = F
and A|F⊥ = Identity}).

Proof. The proof is standard and briefly the idea is as follows. The radical
R of G fixes a point of C(g). If it is non compact, R contains a parabolic or
hyperbolic one parameter group. It then follows that R fixes at most two
points, and in particular, G also fixes these points, and is thus elementary.
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Therefore, if G is not elementary, then its radical is compact. Hence, it is
by definition reductive. The remaining part of the Fact is standard. �

Let G be the Zariski closure of O(g,Z). It is defined over Q (see for
instance [GrP]). Therefore, if non-elementary, O(g,Z) is a lattice in G, by
the Harish-Chandra–Borel theorem, for general reductive Q-groups. Thus
O(g,Z) may be thought of as a lattice of O(g|E), and so its limit set is the
projective isotopic cone of g|E.

Partial rationality. In fact, it seems that we have more precise par-
tial rationality when O(g,Z) is non-elementary, that is E and E⊥ seem to
be rational. We were able to check it, assuming O(g,Z) non-cocompact
in G. Indeed in this case, O(g,Z) possesses parabolic elements, that is
there exist an element of O(g,Z) of the form A = (B,C) ∈ O(g|E) × K
such that B is unipotent, i.e. B−1 is nilpotent. In fact unipotent elements
of orthogonal groups of Lorentz forms, have degree of nilpotency 3. Let A
be the set of A ∈ O(g,Z) such that B is unipotent.

Then E is contained in the vector subspace F =
⋂
A∈A ker(A − 1)3,

which is rational.
Observe that if A ∈ A, then its projection C in K, acts trivially on

F ′ = F ∩ E⊥, because there it detemines an unipotent element in a com-
pact group. In other words, F⊥ ⊂

⋂
A∈A(ker(A − 1)). In fact, we have

equality. Otherwise, the intersection E ∩
(⋂

A∈A ker(A − 1)
)

would give
a proper subspace of E invariant by O(g,Z); which is easily seen to be
impossible. It then follows that F ′ is rational. By similar arguments, one
sees that E =

⊕
A∈A(A − 1)(F ), and is hence rational. Again, consider

F ′′ =
⊕

A∈A Image(A−1)3. This is a rational space, which is (by a similar
argument) a supplementary of F ′ in E⊥. Hence E⊥ is rational.

In conclusion, at least when O(g,Z) is non-elementary and non-cocom-
pact, then up to a finite cover, M is a metric product of a Lorentz rational
torus with a Riemannian torus.

The product case. Suppose now that M is a quotient of a product
Ñ ×Rk, where Ñ is Riemannian and Rk is a Minkowski space. As above,
assuming M is not bipolarized, we construct another invariant metric de-
composition M̃ = Ñ ′×Rd, where the projection of π1(M) on the isometry
group of the Minkowski space Rd consists of translations, only. Here Rd

corresponds to the space E defined above and Ñ ′ = Ñ ×E⊥. Now we can
write Isom(M) = Nor(π1(M))/π1(M) where Nor(π1(M)) is the normalizer
of π1(M) in Isom(Ñ ′) × Isom(Rd). Nevertheless, it is not obvious how to
exploit further such a formula in an algebraic way, and so we argue as fol-
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lows. Observe that the translations along Rd centralize π1(M) and thus
determine an isometric action of Rd on M . This action is contained in a
compact group because of its obvious equicontinuity. Therefore, we get a
torus Tk in Isom(M). This torus inherits a metric defined on its Lie algebra
T k, by means of the formula: 〈X,Y 〉 =

∫
〈X(x), Y (x)〉, where X and Y are

Killing fields generating flows in Tk. Parallel fields tangent to Rd, allow
us to embed isometrically the Minkowski space Rd in (T k, 〈.,.〉). In fact,
as M̃ itself, T k admits an orthogonal decomposition A⊕Rd, such that the
scalar product 〈.,.〉 on A is positive definite, and hence the metric on Tk

is Lorentzian. This construction is natural in all its steps, and therefore
we have succeeded to essentially incorporate questions about the isometry
group of M into ones concerning Tk. In particular one sees that the action
of Isom(M) on its boundary factors through the action of an arithmetic
lattice of the hyperbolic space Hd−1 on its boundary Sd−2.
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(D. Bernard, Choquet-Bruhat, ed.), Travaux encours 33, Hermann, Paris
(1988).

[GrP] M. Gromov, I. Piatetski-Shapiro, Non-arithmetic groups in Lo-
batchevsky spaces, Publ. Math. IHES 66 (1988), 93–103.

[K] S. Kobayashi, Transformation Groups in Differential Geometry,
Springer-Verlag, 1972.

[Ko] N. Kowalsky, Noncompact simple automorphism groups of Lorentz



822 A. ZEGHIB GAFA

manifolds, Ann. Math. 144 (1997), 611–640.
[KuR] R. Kulkarni, F. Raymond, 3-dimensional Lorentz space-forms and

Seifert fiber spaces, J. Diff. Geom. 21 (1985), 231–268.
[S] B. Solomon, On foliations of Rn+1 by minimal hypersurfaces, Comment.

Math. Helvetici 61 (1986), 67–83.
[Su] D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete

group of hyperbolic motions, in “Riemannian Surfaces and Related Top-
ics”, Proceedings of the 1978 Stony brook Conference, Ann. of Math.
Studies 97 (1981).

[T] W. Thurston, Geometry and Topology of 3-manifolds, Princeton Uni-
versity, 1978.

[Tu] P. Tukia, Homeomorphic conjugates of Fuschian groups, J. reine. angew.
Math. 391 (1988), 1–54.

[Z1] A. Zeghib, Sur les espaces-temps homogènes, Geometry and Topology
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