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Abstract. The above title is the same, but with “semisimple” instead of
“simple,” as that of a notice by Nadine Kowalsky. There, she announced
many theorems on the subject of actions of simple Lie groups preserving a
Lorentz structure. Unfortunately, she published proofs for essentially only
half of the announced results before her premature death. Here, using a
different, geometric approach, we generalize her results to the semisimple
case, and give proofs of all her announced results.

1 Introduction

Isometric actions on Lorentz manifolds were first investigated in the com-
pact case (see [Zi2], [G], [AS1,2], [Z3,4]). The natural question was then:
how can a compact Lorentz manifold have a noncompact isometry group?
There is strong evidence that such a question is in fact “decidable” for a
wide class of geometric structures (see, for instance [DG], [Zi1]).

1.1 Framework. One new aspect of Kowalsky’s work was to deal with
actions of groups on noncompact Lorentz manifolds. Obviously, nothing
can be said about such actions without compensating for noncompactness
with a dynamical counterpart ensuring some kind of recurrence. A natural
and rather weak condition used by Kowalsky is nonproperness of the action.

The noncompact case is important, at least from a physical point of
view, according to which compact spacetimes have little interest. Having a
nonproper isometry group is a manifestation of the non-Riemannian char-
acter of the geometry of spacetime. It is in such spaces that one can observe
“dilation of length” and “contraction of time.” It is surely interesting to try
to classify spacetimes with nonproper isometry groups. This job, however,
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does not seem to be easy. Some extra hypotheses are therefore in order.
Kowalsky restricted her study to actions of simple Lie groups.

1.2 Kowalsky’s main theorem. The de Sitter and anti-de Sitter
spaces, dSn and AdSn+1, respectively, are the homogeneous spaces
O(1, n)/O(1, n−1) and O(2, n)/O(1, n). Geometrically, they are the univer-
sal Lorentz spaces of constant positive and negative curvature, respectively.
A striking fact proved by Kowalsky is that, at a group level , they are the
only Lorentz nonproper G-spaces, with G simple.

Theorem 1.1 (Kowalsky [K1, 5.1]). Let G be a simple Lie group with finite
center acting isometrically and nonproperly on a connected Lorentz mani-
fold. Then G is locally isomorphic to either O(1, n), n ≥ 2, or O(2, n), n ≥ 3.

Remark 1.2. The groups O(1, 1) and O(2, 2) are not simple.

1.3 Geometry of semisimple isometric actions. Once the acting
group is known, the problem arises of understanding the geometry of the
Lorentz space, or at least that of orbits. Here, one hopes the space looks like
de Sitter or anti-de Sitter space, depending on whether G is locally O(1, n)
or O(2, n). Nadine Kowalsky announced results to this effect in [K2] and
wrote proofs for the O(1, n) case in her thesis [K3]. We will recall their
statements below in section 1.7. Unfortunately, she died before publishing
proofs.

1.4 The technique. When a Lie group G acts on M preserving a
pseudo-Riemannian metric, one can consider a Gauss map from M to S2(g),
the space of quadratic forms on the Lie algebra g of G. When S2(g) is en-
dowed with the natural adjoint G-action, the Gauss map is equivariant,
and the G-space S2(g) reflects the dynamics on M . It is via this map that
the non-properness condition is translated as a geometric condition on the
induced metrics on orbits. This idea, due to Kowalsky, has become a basic
tool in similar questions on the subject, e.g. Adams–Stuck [AS1,2], and
Bader–Nevo [BN]. (Note here that variants of the Gauss map, with other
natural spaces instead of S2(g) were used by other authors, e.g. Gromov
[G] and Zimmer [Zi1].) However, this is the starting point; further work in
the proof is algebraic and Lie theoretic.

1.5 Other works. Another proof of Theorem 1.1 was proposed by
S. Adams [A3]; his methods involve an analysis similar to Kowalsky’s, ex-
cept that zero jets of germs of Killing vector fields are replaced by higher or-
der jets. In other directions, Adams investigated Lorentz-isometric actions,
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for simply connected Lie groups, with the stronger dynamical condition
that some orbit either is not closed or has noncompact stabilizers ([A1,2]).

Concerning Kowalsky’s unpublished proofs, we note a contribution by
D. Witte Morris [W], in which he considers the homogeneous case. More
precisely, he takes G locally isomorphic to the isometry group of de Sitter
or anti-de Sitter space, respectively, and considers a nonproper Lorentz
homogeneous space G/H – that is, H is noncompact, and the G-action on
G/H preserves some Lorentz metric. He proves that h is isomorphic to
a standard copy of o(1, n − 1) in o(1, n) or of o(1, n) in o(2, n); it follows
that G/H is locally homothetic to de Sitter or anti-de Sitter space. Witte
Morris’ proof is quite algebraic.

1.6 On the present contribution. Our investigation here relies heav-
ily on the approach of [ArDZ], although the two articles can be read com-
pletely independently. From [ArDZ], we will use the result recalled below
as Theorem 2.2. In light of this result, on the structure of nonproper orbits
of Lorentz type, the present paper addresses the case in which the acting
group has a nonproper degenerate orbit.

Before stating our results, let us give some motivations and emphasize
new features:

• Completing Kowalsky’s work: One major goal is to prove the an-
nounced results of Nadine Kowalsky.

• Geometric approach: The approach here is different from that of
Kowalsky (as well as from others’, for instance Adams’). Together with
[ArDZ], we get proofs of the main results, in particular, of Theorem 1.1,
using many geometric arguments, where one sees the global structure of
proofs.

• From simple to semisimple: More importantly, we generalize results
to the semisimple case, assuming there are no local SL2(R)-factors. A
semisimple Lie group is essentially a product of simple Lie groups, but, in
general, a nonproper action of a product does not derive from a nonproper
action of one factor. However, in the Lorentz setting, we conclude that it
necessarily does – that is, the semisimple case reduces to the simple one.
This is really an important fact, since it leads one to hope to reduce the
remaining work to the case in which the group is solvable. Of course, the
reason for this is the Levi decomposition of Lie groups, which says that a
Lie group is essentially a semidirect product of a semisimple and a solvable
group.
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1.7 Kowalsky’s legacy. In [K2], the following theorems are stated.
For Theorem 1.3 below, see also [K3, 6.2]. The manifold M and group G
are assumed connected throughout.
Theorem 1.3. Let G be locally isomorphic to O(1, n), n ≥ 3, and
suppose that G acts on a manifold M preserving a Lorentz metric. Then
all noncompact stabilizers have a Lie algebra isomorphic to either o(1, n),
o(1, n − 1), or o(n − 1) � Rn−1.

Theorem 1.4. Let G be locally isomorphic to O(2, n), n ≥ 6, with G
having finite center. Suppose that G acts nontrivially on a manifold M
preserving a Lorentz metric. Then all noncompact stabilizers have a Lie
algebra isomorphic to o(1, n).

Theorem 1.5. Let G and M be as in Theorem 1.4 above, and assume
there is a point of M with noncompact stabilizer. Then the universal cover
M̃ is Lorentz isometric to a warped product L ×w ÃdSn+1, where ÃdSn+1

is the simply connected (n + 1)-dimensional Lorentz space of constant cur-
vature −1, and L is a Riemannian manifold. Further, the induced action of
the universal cover G̃ on M̃ is via the canonical G̃-action on ÃdSn+1 and
the trivial action on L.

See section 2 below for the definition of warped product.

1.8 Results. As said above in section 1.6, here we provide proofs of all
of Kowalsky’s previous statements, together with some improvements.

A submanifold N in a Lorentz manifold is degenerate if TxN⊥ ∩ TxN �= 0.
In Minkowski space R1,n, the simple subgroup O(1, n) ⊂ Isom(R1,n) has
one degenerate orbit, which, together with the origin, forms the light cone,
the set of all isotropic vectors in R1,n. The stabilizer in O(1, n) of a nonzero
vector in the light cone is isomorphic to O(n− 1)�Rn−1, where the action
of O(n − 1) on Rn−1 is the usual representation.

In the degenerate case, we have the following theorem, which says that
a degenerate orbit for a simple group acting nonproperly is locally homo-
thetic to the Minkowski light cone. Together with Theorem 1.5 of [ArDZ],
which classifies nonproper orbits of Lorentz type, it implies Kowalsky’s
Theorems 1.3 and 1.4 above.
Theorem 1.6. Suppose G is a connected group with finite center, locally
isomorphic to O(1, n) or O(2, n) for n ≥ 3. If G acts isometrically on a
Lorentz manifold and has a degenerate orbit O with noncompact stabilizer
G(x), then

(1) G is locally isomorphic to O(1, n);
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(2) The Lie algebra g(x) is isomorphic to o(n − 1) � Rn−1;
(3) The orbit O is locally homothetic to the light cone in Minkowski space.

The following result implies Theorem 1.5 above.

Theorem 1.7. If G, a group with finite center locally isomorphic to
O(2, n), n ≥ 3, acts isometrically and nontrivially on a Lorentz mani-
fold M , with some noncompact stabilizer, then, up to finite covers, M is
equivariantly isometric to a warped product L×w AdSn+1 of a Riemannian
manifold L with the anti-de Sitter space AdSn+1.

We extend the above results to semisimple groups. Note that the non-
compact stabilizer assumption is weakened to nonproperness of the action.
A local factor of a semisimple Lie group G is a Lie group G1 such that
the Lie algebra g1 is a direct summand of g. If |Z(G)| < ∞ and G acts
on a manifold M , then a finite cover of any local factor G1 acts on M .
Below we will abuse terminology slightly by referring to the “G1-action”
and “G1-orbits” on M .

Theorem 1.8. Let G be a semisimple group with finite center and no
local SL2(R)-factor, acting isometrically, faithfully, and nonproperly on a
Lorentz manifold M . Then

(1) G has a local factor G1 isomorphic to O(1, n) or O(2, n);
(2) There exists a Lorentz manifold S, isometric, up to finite cover, to dSn

or AdSn+1, depending whether G1 is isomorphic to O(1, n) or O(2, n),
and an open subset of M , in which each G1-orbit is homothetic to S;

(3) Any such orbit as above has a G1-invariant neighborhood isometric to
a warped product L ×w S, for L a Riemannian manifold.

For O(1, n)-actions, we can also describe orbits with compact isotropy
(Proposition 8.2). Nonproper O(1, n)-actions for which compact isotropy
occurs strongly resemble the standard action on R1,n. As a fusion, we can
give the following “full” theorem:

Theorem 1.9. Let G be a semisimple Lie group with finite center and
no local SL2(R)-factor, acting nonproperly and isometrically on a Lorentz
manifold M . Then, G has a simple local factor G1 that acts nonproperly.
There are two possibilities for G1:

(1) G1
∼= O(2, n). In this case, there is a Lorentz manifold S isometric, up

to finite cover, to AdSn+1, such that all G1-orbits are homothetic to S.
In fact, up to finite cover, M is a warped product L ×w AdSn+1.

(2) G1
∼= O(1, n). There are open sets U and V such that M = U�∂U�V ,

where
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• For any x ∈ U , there exists S, isometric to dSn up to finite cover,
such that the G1-orbit of x is homothetic to S. The component of
x in U is G1-equivariantly isometric to a warped product L×w S,
for some Riemannian manifold L.

• Orbits of G1 on the boundary of U are either fixed points or locally
homothetic to the light cone in Minkowski space R1,n; further
∂U = ∂V .

• For any x ∈ V , the G1-orbit of x is homothetic to Hn. The set V is
globally G1-equivariantly isometric to a warped product L×w Hn,
for some Lorentz manifold L.

The following two examples of nonproper SL2(R)-actions illustrate the
necessity of the hypothesis of no SL2(R)-factors.

Example 1.10. In this example, the manifold has constant curvature,
but has no common finite cover with any of the constant-curvature models.
The group PSL2(R) with the Lorentz metric arising from the Killing form
is isometric to AdS3. For Γ a cocompact lattice in PSL2(R), the manifold
M = AdS3/Γ admits an isometric, nonproper left-action by PSL2(R).

Example 1.11. This example is a transitive, nonproper, isometric
SL2(R)-action on a manifold with nonconstant curvature. Let g be the
Killing form on sl2(R). Let λ1, λ2 and λ3 be the standard basis for (R3)∗.
There is an isomorphism sl2(R) ∼= R3 for which the Killing form is
2λ1 · λ2 + λ2

3. Under this isomorphism, an R-split element of sl2(R) maps
to the basis element e3. Let c �= 1 be a positive number. Let g′ be the
pullback of the form 2λ1 · λ2 + cλ2

3 to sl2(R). The adjoint action of the
R-split torus A of SL2(R) preserves g′. Let Γ be a lattice in A. The form
g′ gives rise to an SL2(R)-invariant Lorentz metric on M = SL2(R)/Γ.
The isometric SL2(R)-action is nonproper, but M does not have constant
curvature.

For Lorentz-isometric actions of SL2(R) on finite-volume manifolds,
Gromov has shown that all stabilizers are discrete, and the universal cover
is isometric to a warped product L ×w ÃdS3 ([G, 5.4.A]).

This final example illustrates the necessity for the results above of the
hypothesis that G has finite center. We thank the referee for bringing this
example to our attention.

Example 1.12. The main result of [A4] implies that, if Z is a central
closed subgroup of a Lie group G, and if Z acts isometrically on a Lorentz
manifold M , then the manifold G ×Z M admits a G-invariant Lorentz
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metric. There exists a Lorentz manifold M , diffeomorphic to a torus, with
an Anosov action of the integers Z by isometries (see [BaZ, §6.3.3]); in
fact, this action has a fixed point. Then Õ(2, n) acts isometrically and
nonproperly on Õ(2, n) ×Z M . All stabilizers are discrete, and there is
obviously no warped product as in the theorems above.

Notation and terminology. The Lie algebra of a Lie group G will
be denoted g. The stabilizer subgroup in G and corresponding subalgebra
of a point x will be denoted G(x) and g(x), respectively.

Lie groups G and H are locally isomorphic if g ∼= h. As discussed above,
a group G1 is a local factor of G if g1 is a direct summand of g.

The dimension of the Lorentz manifold M will be denoted d throughout.

2 Background: Warped Product near Lorentz Orbits

Definition 2.1. For two pseudo-Riemannian manifolds (L, λ) and (S, σ),
a warped product L×w S is given by a positive function w on L: the metric
at (l, s) is λl + w(l)σs.

2.1 Results of [ArDZ]. We will make use of the following theorem:
Theorem 2.2 [ArDZ, 1.5]. Let G be a connected semisimple Lie group
acting isometrically on a Lorentz manifold M of dimension ≥ 3. Suppose
that no local factor of G is isomorphic to SL2(R) and that there exists an
orbit O of Lorentz type with noncompact isotropy.

Then, up to a finite cover, G factors G ∼= G2 × G1, where

(1) G1 possesses an orbit O1 which is a Lorentz space of constant, non-
vanishing curvature, and G1 equals Isom0(O1);

(2) There is a G-invariant neighborhood U of O1 which is a warped product
L ×w O1;

(3) The factor O1 corresponds to G1-orbits, and G2 acts along the L-factor.

3 Properties of the Isotropy Representation

Here we collect some algebraic facts about the structure of nonproper de-
generate orbits. Suppose that x is a point of M with degenerate G-orbit.
Denote this orbit by O. Recall that d is the dimension of M , and assume
that G is semisimple.

Fix an isometric isomorphism of TxM with R1,d−1, determining an iso-
morphism O(TxM) ∼= O(1, d − 1). Let V be the image of TxO in R1,d−1.
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Let Φ : G(x) → O(1, d − 1) be the resulting isotropy representation. Be-
cause G acts properly and freely on the bundle of Lorentz frames of M , the
isotropy representation is an injective, proper map. The invariant subspace
V is degenerate, so Φ(G(x)) leaves invariant the line V ⊥∩V . The stabilizer
of an isotropic line is conjugate in O(1, d − 1) to the parabolic

P = (K × A) � U

where U ∼= Rd−2 is unipotent, A ∼= R∗, and K ∼= O(d − 2) with the
conjugation action of K×A on U equivalent to the standard representation
of the conformal group of Rd−2. Denote by p the Lie algebra of P , and
by k, a, u, the subalgebras corresponding to K, A and U . Let ϕ : g(x) →
o(1, d − 1) be the Lie algebra representation tangent to Φ.

Note that g/g(x) can be identified with TxO by the map
Y 
→ Y (x) = ∂

∂t

∣
∣
0
etY x .

For g ∈ G(x), differentiating the relation getY x = (getY g−1)x gives
Dxg

(
Y (x)

)
= Adg(Y )(x) .

In other words, Φ restricted to V is equivalent to the representation Ad
of G(x) on g/g(x) arising from the adjoint representation. Let ad be the
representation tangent to Ad.

An element Y of g is called nilpotent if ad(Y ) is nilpotent. An element
Y is R-split if ad(Y ) is diagonalizable over R.

Lemma 3.1. The stabilizer subalgebra g(x) ⊂ g has the following proper-
ties:

(1) For all Y ∈ g(x), the endomorphism ad(Y ) has no real nonzero eigen-
values. In fact, the same is true for ϕ, so ϕ(g(x)) is conjugate to a
subalgebra of k � u;

(2) The stabilizer subalgebra g(x) contains no element R-split in g;

(3) There exists a subalgebra s(x) in which g(x) has codimension one such
that [s(x), s(x)] ⊂ g(x), and the representation of g(x) on g/s(x) is
skew-symmetric – that is, every endomorphism is diagonalizable with
purely imaginary eigenvalues.

Proof. (1) Suppose that ad(Y ) has eigenvalue λ > 0. Then λ is also an
eigenvalue of ϕ(Y ) on V . Since ϕ(Y ) is skew-symmetric on V/(V ∩ V ⊥),
the generalized eigenspace for λ in V is one-dimensional and equals V ⊥∩V .
The trace of ϕ(Y ) on V is λ, so the trace of ad(Y ) on g/g(x) is λ.

Next we will show that the trace of ad(ϕ(Y )) on ϕ(g(x)) is nonnegative.
Recall that p decomposes (a × k) � u. The restriction of ad(p) to u factors
through the projection to a × k, which acts as the standard conformal



Vol. 18, 2008 SEMISIMPLE GROUP ACTIONS ON LORENTZ MANIFOLDS 471

representation on Rd−2. If ϕ(Y ) has eigenvalue λ on V ∩ V ⊥, then it
projects to λI + K in a + k ∼= conf(Rd−2). Therefore, the characteristic
roots of ad(ϕ(Y )) on u are in λ + iR. On p/u ∼= a ⊕ k, the characteristic
roots of any adjoint endomorphism are all purely imaginary. Therefore, the
characteristic roots of ad(ϕ(Y )) on p are in (λ + iR) ∪ iR, implying that
the trace of ad(ϕ(Y )) is nonnegative on ϕ(g(x)).

Then the trace of ad(Y ) on g(x) is also nonnegative. Finally, the trace
of ad(Y ) on g is positive, contradicting the unimodularity of g. If λ < 0, the
same argument shows that the trace of ad(Y ) on g is negative. Therefore,
no ad(Y ) has any nonzero real eigenvalues, and no ϕ(Y ) has any nonzero
real eigenvalues on V .

If ϕ(Y ) has a nonzero real eigenvalue on R1,d−1, then an eigenvector
must be isotropic. It either lies in V or is not orthogonal to V ⊥ ∩ V . In
either case, ϕ(Y ) has a nonzero real eigenvalue on V , a contradiction.

(2) If an R-split element H ∈ g(x), then by (1), all root vectors on
which ad(H) is nontrivial must project to 0 in g/g(x). In this case, g(x)
contains a subalgebra isomorphic to sl2(R). Applying the monomorphism
ϕ would yield a subalgebra isomorphic to sl2(R) in p, which is impossible.

(3) Take any Z ′ spanning V ⊥ ∩ V . Item (1) implies ϕ(g(x)) annihi-
lates Z ′. Take the corresponding vector in g/g(x), and let Z be any lift
to g. Then ad(g(x))(Z) ⊆ g(x), so s(x) = RZ + g(x) is the desired subal-
gebra.

From the equivalence of ϕ|V with ad, the representations V/(V ∩ V ⊥)
and g/s(x) are equivalent. The former is skew-symmetric. �

4 Root Spaces in Isotropy Subalgebra

By a nonproper orbit we will mean one with noncompact isotropy. The-
orem 1.8 of [ArDZ] asserts the existence of a nonproper orbit under the
assumptions of our Theorem 1.8 above. The proof in [ArDZ] was easily
deduced from the following result of [K1].

Proposition 4.1. If the G-action is nonproper, then there is x ∈ M , and
an R-split element H of g such that the negative root space

Σα(H)<0gα

is isotropic at x. If G has noncompact stabilizer at some point y of M ,
then we may take y = x above.
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If x has a nonproper degenerate orbit, the subalgebra s(x) of Lemma 3.1
is exactly the maximal subspace s ⊆ g such that {Y (x) ∈ TxM : Y ∈ s} is
an isotropic subspace.

Fact 4.2 of [ArDZ] is that
(
Σα(H)<0gα

) ∩ g(x) �= 0 .

If this intersection were 0, then the subalgebra ⊕α(H)≥0gα would have
codimension one in g. Such a subalgebra could only exist if sl2(R) were a
factor of g, but our hypotheses exclude this.
Remark 4.2. Point stabilizers are discrete for the SL2(R)-actions given
in Examples 1.10 and 1.11.

Denote by a and ∆ the Cartan subalgebra and root system, respectively,
of Proposition 4.1. The remainder of this section is devoted to showing the
following proposition.
Proposition 4.3. Suppose x ∈ M has a nonproper degenerate orbit.
Then there exist J ∈ a and S ⊂ ∆ such that

(1) s(x) = RJ + g(x);
(2) α(J) < 0 for all α ∈ S;
(3) Σα∈Sgα ⊆ g(x);
(4) dim(Σα∈Sgα) ≥ 2.
Proof. Fix H as in Proposition 4.1. Let

0 �= X ∈ (
Σα(H)<0gα

) ∩ g(x) .

There exist J ∈ a and a nilpotent Y in g such that [J,X] = −2X
and [X,Y ] = J (see [S, 2.4.B]). The operator ad(X) is nilpotent; on the
other hand, by Lemma 3.1 (3), ad(X) is skew-symmetric on g/s(x), so
ad(X)(g) ⊆ s(x). Therefore, J belongs to s(x).

Note J /∈ g(x) by Lemma 3.1 (2). Therefore s(x) = RJ + g(x), prov-
ing (1).

Let S be the set of α ∈ ∆ such that α(H) < 0 and α(J) < 0, so (2)
is obviously satisfied. From the relation [J,X] = −2X, any α such that
X has a nontrivial component in gα satisfies α(J) = −2, so any such α
belongs to S; in particular S is not empty.

For α ∈ S, we have gα ⊂ s(x) and
gα = [J, gα] ⊂ [

s(x), s(x)
] ⊂ g(x) ,

by Lemma 3.1 (3), showing statement (3) above.
Now, replacing X by a nonzero element of some gα, α ∈ S, we may

assume that −J is a basic translation – that is, there exists cα < 0 such
that

α(J) = −2 and α(Z) = cακ(J,Z) ,
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for any Z ∈ a, where κ denotes the Killing form. In this case, we have that
for any root β, the reflection

σα(β) = β + β(J)α
is again a root (see [S, II.5.A]).

Now, to show (4) it suffices to show that dim(gα) ≥ 2 or that there
exists some γ �= α also in S.

Suppose dim(gα) = 1. The assumption that g has no sl2(R)-factor
implies that there exists some nonzero root δ �= α such that δ(J) �= 0. We
may assume δ(J) < 0. If δ(H) < 0, then δ ∈ S, as desired. So suppose
that δ(H) ≥ 0. Now let

γ = −σα(δ) = −δ − δ(J)α .

Then
γ(J) = −δ(J) − δ(J)α(J) = −δ(J)(1 − 2) = δ(J) < 0 ,

and
γ(H) = −δ(H) − δ(J)α(H) < 0 ,

so γ ∈ S. �

5 Nonproper Semisimple Actions: Proof of Theorem 1.8

Reduction of the proof. As discussed in the previous section, it is proved
in [ArDZ] that G has an orbit O with a noncompact stabilizer. It is also
proved (Theorem 1.5) that if O is Lorentzian, then the situation is exactly
as described in Theorem 1.8. If an orbit is not Lorentzian, then it is degen-
erate, fixed, or Riemannian. Riemannian isometries always have compact
isotropy, so the existence of noncompact stabilizers implies that either O is
degenerate, or some simple local factor fixes it pointwise. The proof would
be finished using the following two propositions, which state that in either
situation, there is a nonproper Lorentzian orbit.

Proposition 5.1. Let O be a G-orbit on which some simple noncompact
normal subgroup G1 acts trivially. Then G has (near O) Lorentzian orbits
with noncompact isotropy.

Proposition 5.2. Let O be a degenerate G-orbit with noncompact
isotropy. Then, G has (near O) Lorentzian orbits with noncompact isotropy.

Proof of Proposition 5.1. Let x be a point of O. The isotropy rep-
resentation Φ : G1 → O(TxM) is faithful and proper. No noncompact
simple subgroup of O(TxM) ∼= O(1, d − 1), can preserve an isotropic line.
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Therefore, Theorem 1.1 of [BoZ] applies, so Φ(G1) preserves an (n + 1)-
dimensional Lorentz subspace V1 of TxM for some 2 ≤ n ≤ d − 1; further,
Φ(G1) contains a subgroup conjugate to the standard copy of O0(1, n) in
O(1, d − 1). Because Φ(G1) is simple and G has no local SL2(R)-factors,
G1 is locally isomorphic to O(1, n), and n ≥ 3.

Any spacelike vector v ∈ V1 has Lorentzian Φ(G1)-orbit isometric
to dSn. The stabilizer of v is locally isomorphic to O(1, n−1); in particular,
it is noncompact. The G1-orbit of expx(v) is again of Lorentzian type, by
the Gauss lemma (see [O, 5.1]). The G-orbit of expx(v) is Lorentzian be-
cause it contains a Lorentzian submanifold, and this orbit has noncompact
isotropy, as desired. �

The remainder of the section is devoted to the proof of Proposition 5.2;
the orbit O will be assumed degenerate with noncompact isotropy below.

5.1 The asymptotic geodesic hypersurface Fx.

Fact 5.3. For x ∈ O, let Rnx be the null direction in TxO. Then, the
orthogonal n⊥

x is tangent to a lightlike geodesic hypersurface Fx (defined
in a neighborhood of x).

Proof. Let X be a nilpotent element of g(x) given by Proposition 4.3,
and consider the isometry f = etX , for some t �= 0. The derivative
Dxf(nx) = nx. Recall that d is the dimension of M ; let g denote the
Lorentz metric. The graph Graph(f) ⊂ M × M is an isotropic totally
geodesic d-dimensional submanifold of M × M , equipped with the met-
ric g ⊕ (−g). The graphs Graph(fm) converge to E, a d-dimensional,
isotropic, totally geodesic submanifold, which is no longer a graph, since
fm is divergent (see [Z2] or [DG, 7.4]). The intersection E ∩ ({x} × M)
is nontrivial, but has dimension at most 1, because it is isotropic, and M
is Lorentzian. Therefore, the projection Fx of E is a totally geodesic hy-
persurface in M × {x}. Because the derivative Dx(fm) fixes nx for all m,
the vector (nx, nx) ∈ T(x,x)E. Because T(x,x)E is isotropic, its intersection
with 0 × TxM is exactly Rnx. Then (nx,0) ∈ T(x,x)E, so the projection
Tx(Fx) = n⊥

x , as desired. �

Fact 5.4. The hypersurface Fx carries a 1-dimensional foliation C, such
that

(1) Any isotropic curve in Fx is tangent to a leaf of C;
(2) Each leaf of C is an isotropic geodesic;
(3) The (local) quotient space Fx/C inherits a Riemannian metric, infinites-

imally preserved by the elements of g preserving Fx.
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Proof. At any point y of a degenerate hypersurface F , there exists a unique
tangent isotropic direction Cy. These lines determine a characteristic 1-
dimensional foliation C of F , proving (1). Since Fx is totally geodesic, (2)
follows. For (3), it is known (see, for instance, [Z1]) that C is transversally
Riemannian if and only if Fx is totally geodesic. Here, transversally Rie-
mannian means that the flow along any parameterization of C preserves the
induced degenerate metric, or equivalently, that the degenerate metric can
be projected as a Riemannian metric on the (local) quotient space Fx/C.
Finally, if an isometric flow locally preserves Fx, then it induces a local
diffeomorphism of Fx/C that is obviously an isometry by construction of
the Riemannian metric. �

Fact 5.5. The subalgebra s(x) preserves the isotropic geodesic Cx, so it
preserves Fx.

Proof. Indeed, any Y ∈ s(x) has Y (x) isotropic, and hence the whole
Y -orbit of x is isotropic. But, as stated above, isotropic curves of Fx are
contained in leaves of C – that is, all Y -orbits through x are contained in Cx.
The image of Cx by any element of the one-parameter group generated by
Y is an isotropic geodesic tangent to Cx at some point, thus equals Cx. �

Fact 5.6. The action of Σα∈Sgα on the tangent space of the (local) quotient
space Fx/C at the point corresponding to Cx is trivial.

Proof. The tangent space to Fx/C at Cx is identified with n⊥
x /Rnx. Note

that the subspace RJ +Σα∈Sgα as in Proposition 4.3 is in fact a subalgebra
of s(x). We have a representation ρ of RJ + Σα∈Sgα into the orthogonal
algebra of n⊥

x /Rnx, which is endowed with a positive definite inner prod-
uct. But in such an orthogonal algebra, an equality [ρ(J), ρ(Y )] = λρ(Y ),
becomes trivial – that is ρ(Y ) = 0 (since λ �= 0); �

Corollary 5.7. Σα∈Sgα acts trivially on the (local) quotient space Fx/C.
That is, Σα∈Sgα preserves individually each leaf of C.

Proof. The action of Σα∈Sgα on Fx/C is trivial, since it is a Riemannian
action with a fixed a point and a trivial derivative at it. �

Corollary 5.8. Any point of Fx has a noncompact isotropy algebra.

Proof. Indeed, Σα∈Sgα has dimension ≥ 2 and has orbits of dimension 1.
Therefore, stabilizers are nontrivial. They are not compact since all ele-
ments of Σα∈Sgα are nilpotent. �
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Fact 5.9. Let Γ be the set of fixed points of Σα∈Sgα in Fx. Then, Γ has
an empty interior (in Fx). In particular, the orbit of any point of Fx − Γ
under Σα∈Sgα locally coincides with its C-leaf.

Proof. No element of Σα∈Sgα can fix points of an open subset of Fx. Indeed,
in general, a Lorentz transformation fixing one point and acting trivially
on a tangent lightlike hyperplane at that point has a trivial derivative, and
is therefore trivial. �

Corollary 5.10. No point of Fx has a spacelike G-orbit.

Proof. If a point y ∈ Fx has a spacelike orbit, then all orbits of points in
a neighborhood of y are spacelike, as well. However, any neighborhood of
y meets Fx − Γ; orbits of points in here cannot be spacelike, because they
contain at least one isotropic geodesic. �

5.2 End of the proof of Proposition 5.2.

Fact 5.11. The degenerate orbit O cannot be locally contained in Fx –
that is, Fx ∩ O does not contain an open subset of O.

Proof. Suppose O is locally contained in Fx. Then the group G locally
preserves Fx. From Corollary 5.7, the infinitesimal action of g on the
quotient space Q = Fx/C is not faithful. More precisely, any factor b of
g which contains an element like J (in Proposition 4.3) must act trivially
on Q. However, orbits of b cannot be 1-dimensional, since g has no sl2(R)-
factor. Therefore, b acts trivially on Fx. As in the proof of Fact 5.9, this
implies b acts trivially on M . �

Now, from Corollary 5.8, the proof of Proposition 5.2 would be finished
once one proves that there is a point of Fx with a Lorentz orbit. It suf-
fices to show existence of nondegenerate orbits, since from Corollary 5.10,
points of Fx cannot have spacelike orbits. Assume, for a contradiction,
that all G-orbits of points of Fx are degenerate. For any y ∈ Fx − Γ, the
orbit Gy locally contains the isotropic geodesic Cy by Fact 5.9; therefore,
Ty(Gy) ⊂ n⊥

y = Ty(Fx). In other words, for any Killing field X ∈ g and
any y ∈ Fx−Γ, the evaluation X(y) is tangent to Fx, so X defines a vector
field in this open subset of Fx. The flow of any y ∈ Fx−Γ along X for suffi-
ciently short time is again contained in Fx. In particular, since x ∈ Fx −Γ,
the orbit O is locally contained in Fx, contradicting the previous fact.
Corollary 5.12 (from proof). There is a simple local factor G1 of G for
which the G1-orbit of x is a point or degenerate with noncompact stabi-
lizer. In other words, if G has a nonproper orbit that is either a point or
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degenerate, then a subgroup G1 locally isomorphic to O(1, n) or O(2, n)
has an orbit with the same properties.

Proof. First suppose that G has a nonproper fixed or Riemannian orbit O1.
Then any local factor G1 in the kernel of the restriction to O1 has the desired
properties.

Now suppose that G has a nonproper degenerate orbit. We have seen
that some nilpotent elements stabilizing a point in the degenerate orbit
O stabilize a point y with Lorentzian orbit. But, from Theorem 2.2, a
Lorentz orbit can be nonproper only if there is a local factor G1 acting
nonproperly with O1 = G1y Lorentzian of constant curvature; moreover,
there is a warped product L ×w O1 preserved by G, and G splits up to
finite cover as G2 ×G1. If X ∈ g(y), the projection of X on g2 generates a
precompact 1-parameter group, so X cannot be nilpotent unless it belongs
to g1. We infer from this that G1 acts nonproperly on the degenerate orbit
O = Gx. Because G1 is simple and the stabilizer G1(x) is noncompact, the
orbit G1x must be degenerate or one point. �

6 Degenerate Stabilizers: Proof of Theorem 1.6

Now as in Theorem 1.6, assume g ∼= o(1, n) or o(2, n) for some n ≥ 3 and
that g has a degenerate orbit on M with noncompact stabilizer g(x). It is
proved in the first section below that g ∼= o(1, n) and in the second that
g(x) ∼= o(n − 1) � Rn−1. The final point of the theorem follows from these
two.

6.1 Excluding o(2, n). Let J, a, and S ⊂ ∆ be as in Proposition 4.3.
Observe that there can be at most one negative root α with gα ∩ g(x) �= 0.
For if X ∈ gα∩g(x), then let Y ∈ g−α be as in [S, 2.4.B], so [X,Y ] = Hα ∈ a.
Since ad(X) is nilpotent but skew-symmetric on g/s(x) (Lemma 3.1 (3)),
the R-split element Hα must belong to s(x). Any X ′ ∈ gβ would give rise
to Hβ ∈ a ∩ s(x). If α �= β, then for some c ∈ R, the difference Hα − cHβ

would be a nonzero R-split element of g(x), contradicting Lemma 3.1 (2).
Suppose that g ∼= o(2, n). Let β and γ be distinct negative roots, each

with (n − 2)-dimensional root spaces. The other negative roots are β − γ
and β + γ, with one-dimensional root spaces.

First suppose X ∈ gβ∩g(x). Let L be a generator of g−β−γ . The adjoint
(adX)2(L) is a nonzero element of gβ−γ . On the other hand, Lemma 3.2 (3)
implies that any nilpotent element of g(x) has nilpotence order 2 on g/g(x).
Then we would have gβ−γ ∩ g(x) �= 0, a contradiction.
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Therefore, X cannot be in gβ. The same argument shows X cannot be
in gγ . Proposition 4.3 says that g(x) contains a sum of negative root spaces
with total dimension at least 2, but since gβ−γ and gβ+γ are 1-dimensional,
and because only one can be contained in g(x), we have a contradiction.

6.2 Full stabilizer. Now g must be o(1, n). Let α and J be as above,
so α(J) < 0 and gα ⊆ g(x). Let k be the maximal compact subalgebra of
the centralizer of J in g; it is isomorphic to o(n − 1).

Suppose Y ∈ s(x) ∩ g−α. By Lemma 3.1 (3),
J ∈ [Y, gα] ⊂ [

s(x), s(x)
] ⊂ g(x) .

But this contradicts Lemma 3.1 (2). Therefore, s(x) ∩ g−α = 0.
On the other hand, since ad(X) is nilpotent for all X ∈ gα, Lemma 3.1 (3)

forces
k ⊂ [g−α, gα] ⊂ ad(gα)(g) ⊂ s(x) .

Since g = g−α + k + RJ + gα, the algebra s(x) is exactly k + RJ + gα.
Suppose there were X = cJ +M ∈ (RJ + k)∩g(x) for some nonzero c ∈ R.
The subspace g−α is ad(X)-invariant and maps onto g/s(x). But ad(X) is
clearly not skew-symmetric here, contradicting Lemma 3.1 (3). Therefore,
g(x) is exactly k+gα, which is isomorphic as a Lie algebra to o(n−1)�Rn−1.

7 Global AdS Warped Product: Proof of Theorem 1.7

Suppose G is locally isomorphic to O(2, n), n ≥ 3, with finite center, and
G acts isometrically on M . By the argument of Kowalsky and the as-
sumption of no local SL2(R)-factors, we know that there is a G-orbit with
noncompact stabilizer (see section 4). By Theorem 1.6, any G-orbit with
noncompact stabilizer is Lorentzian. Then by Theorem 2.2, a neighborhood
of some G-orbit is a warped product of the form L×w S, where S is isomet-
ric to AdSn+1 up to finite cover. The set of orbits having a neighborhood
isometric to L×w S, for some Riemannian manifold L and w : L → R+, is
open. Let us prove that this set is also closed, and thus equals the whole
of M . A limit O of a sequence Ok of such orbits is a non-Riemannian orbit
O of dimension ≤ n+1. Suppose that such a limit O has compact isotropy
G(x) for x ∈ O. Then G(x) is contained in a maximal compact subgroup
K of G. The Lie algebra k ∼= o(2) × o(n), which has codimension 2n in g.
Since n ≥ 3, this is impossible. Therefore, for any x ∈ O, the stabilizer
G(x) is noncompact. From Theorem 1.6, O cannot be degenerate; hence,
it is Lorentzian. Then by the [ArDZ] result (Theorem 2.2 above), a neigh-
borhood of this orbit is isometric to a warped product. Any orbit of M has
a neighborhood isometric to L ×w S, for some L and w.
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From this, one sees in particular that the G-action determines a folia-
tion O. In addition, O admits an orthogonal foliation O⊥. We will use the
G-action to show that the pair of foliations O and O⊥ arise from a global
warped product of the form L ×w AdSn+1 on a finite cover of M .

Choose a point x0 ∈ M . Let O0 and O⊥
0 be the leaves of x0 in the

foliations O and O⊥, respectively. Let H0 be the stabilizer of x0. Note
that O⊥

0 is a component of the fixed set Fix(H0); this fixed set is a closed,
totally geodesic submanifold, everywhere transverse to G-orbits. It is well
known that N(H0)/H0 is finite, where N(H0) is the normalizer of H0 in G.

Let i and i⊥ denote the respective inclusions of O0 and Fix(H0) in M .
Let G act on Fix(H0) × O0 by g(x, y) = (x, gy). Define a mapping φ :
Fix(H0) × O0 → M , by φ(x, gx0) = g(i⊥(x)). One sees that φ is well
defined, and it is in fact the G-equivariant extension of the inclusions.

Next, φ is a covering map. Clearly φ is a local diffeomorphism. It is
also easy to see that φ is surjective: the orbit of any y ∈ M is homothetic
to S. Let Hy be its stabilizer. There is some g ∈ G conjugating Hy to H0.
Then gy ∈ Fix(H0), and y = φ(gy, g−1x0). Finally, φ is everywhere N -to-1,
where N = |N(H0)/H0|, because every G-orbit in M is homothetic to S.
An N -to-1 surjective local diffeomorphism is a covering map.

The submanifold Fix(H0) is Riemannian. Let L = Fix(H0) with the
metric pulled back by i⊥. By G-equivariance of φ, all leaves φ(L×{y}) are
isometric. Also by G-equivariance, the metrics along G-orbits φ({y} × S)
are all homothetic, with homothety factor depending only on y ∈ L. Since
S and AdSn+1 have a common finite cover, M is isometric, up to finite
cover, to a warped product L ×w AdSn+1. �

8 Full Description: Proof of Theorem 1.9

Item (1) of Theorem 1.9 follows from Theorems 1.8 and 1.7.
In this section, we consider the case in which G1

∼= O(1, n). We will
take U and V to be the points of M having G1-orbit homothetic, up to
finite cover, to dSn and Hn, respectively. The first point of item (2) follows
from Theorem 1.8 and an argument just as above in section 7, to obtain
the warped product on each component (see also Lemma 8.1). In the first
subsection below, we will deduce the second point of (2) from Theorem 1.6.
Next, we address the last point of item (2), to obtain a warped product near
Riemannian G1-orbits, as well as the global decomposition M = U�∂U�V .
These two subsections will complete the proof of Theorem 1.9.



480 M. DEFFAF, K. MELNICK AND A. ZEGHIB GAFA

8.1 Degenerate orbits. In this subsection, we assume G is locally
isomorphic to O(1, n) for some n ≥ 3, and that G acts nonproperly on M .
Let U be the set of points having G-orbit homothetic, up to finite cover,
to dSn. In order to deduce the second point of (2) from Theorem 1.6, it
suffices to prove the following lemma:

Lemma 8.1. Let x ∈ ∂U . Then the G-orbit of x is either a fixed point or
degenerate with noncompact isotropy.

Proof. The G-orbit of x cannot be Riemannian and has dimension at
most n. Suppose G(x) is compact, so it is contained in a maximal compact
subgroup K of G. The Lie algebra k ∼= o(n) and has codimension n,
so g(x) ∼= o(n); further, Gx is either Lorentzian or degenerate and n-
dimensional. In either case, the isotropy representation of g(x) has a 1-
dimensional invariant subspace tangent to Gx and an (n − 1)-dimensional
complementary representation in Tx(Gx), which is necessarily trivial.

On the other hand, x is the limit of a sequence xi ∈ U for which the
isotropy g(xi) is trivial on T (Gxi)⊥, because o(1, n − 1) ∼= g(xi) has no
nontrivial representation in o(d − n). The limit lim g(xi) ⊆ g(x), and,
because these subalgebras have the same dimension, they must be equal.
Then continuity of the action implies that g(x) is trivial on T (Gx)⊥. Now,
whether Gx is Lorentzian or degenerate, the isotropy g(x) is trivial on all
of TxM . But isometries fixing a point and having trivial derivative at that
point are trivial, so we have a contradiction.

Now G(x) is noncompact. If the orbit Gx were Lorentzian, then the
result of [ArDZ] (Theorem 2.2 above) would give that x ∈ U . Therefore,
the G-orbit of x is fixed or degenerate. �

8.2 Riemannian orbits. As above, we assume in this subsection that
G is locally isomorphic to O(1, n) for some n ≥ 3, and that G acts non-
properly on M . By Theorem 1.8 (3), the set U defined above is open and
nonempty. The following proposition implies the last point of item (2) in
Theorem 1.9, as well as the claimed decomposition of M into de Sitter
orbits, fixed points and light cone orbits, and hyperbolic orbits.

See Chapter 6 of [K3] for local versions of many of the results below.

Proposition 8.2. Let U and V be the points of M having orbits ho-
mothetic up to finite cover to the de Sitter space dSn and the hyperbolic
space Hn, respectively. Then

(1) V is open, and is G-equivariantly isometric to a warped product
L ×w Hn, for some Lorentz manfiold L.
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(2) ∂U = ∂V , and it consists of all fixed points and orbits locally homo-
thetic to the Minkowski light cone.

(3) M = U � ∂U � V .

Notation. There exists a neighborhood of the 0-section of TM on which
the exponential map is defined and injective on each fiber. We fix one such
neighborhood and denote it by Ω below.

We first collect some lemmas for the proof.

8.2.1 Maximal subalgebras of o(1, n). We begin with two facts
about certain natural subalgebras of o(1, n). A subalgebra h ⊂ g is maximal
if it is not contained nontrivially in another subalgebra: if h ⊆ h′ ⊆ g, then
h′ = h or h′ = g.

Consider the infinitesimal action of g = o(1, n) on the projectivization
P(R1,n) of the standard representation with the standard inner product of
type (1, n). For v ∈ R1,n, denote by v the image in P(R1,n).

• If v is spacelike, then g(v) = g(v) is conjugate to g(e2), which is
isomorphic to o(1, n − 1), with an obvious embedding in o(1, n).

• For v timelike, g(v) = g(v) is conjugate to g(e1), which is isomorphic
to o(n), with an obvious embedding in o(1, n).

• Finally, for v nonzero and isotropic, g(v) is conjugate to g(e1 + e2),
which is isomorphic to the parabolic subalgebra p as in section 3. This
subalgebra is isomorphic to sim(n − 1), the algebra of infinitesimal
affine similarities of Rn−1. The annihilator of a nonzero isotropic v
is a codimension-1 ideal of g(v), isomorphic to euc(n−1), the algebra
of infinitesimal affine isometries of Rn−1.

Lemma 8.3. (1) sim(n − 1) is a maximal subalgebra of o(1, n).
(2) euc(n−1) is contained in exactly one maximal subalgebra, sim(n−1).
(3) Let h be a compact proper subalgebra of o(1, n) containing two

different conjugates k and k′, each isomorphic to o(1, n − 1). Then h is
conjugate to o(n).

Proof. (1) The subalgebra sim(n − 1) acts infinitesimally conformally on
the projectivization of the light cone, which is conformally equivalent to
Sn−1. It is the infinitesimal stabilizer of one point and acts transitively on
the complement of this point. Then, for any X /∈ sim(n − 1), the algebra
generated by X and sim(n − 1) is transitive on Sn−1 and contains the full
stabilizer subalgebra of each point. It follows that any subalgebra properly
containing sim(n − 1) is o(1, n) ∼= conf(Sn−1), so sim(n − 1) is a maximal
subalgebra.
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(2) Let h be a maximal subalgebra of o(1, n) containing euc(n− 1), and
suppose that h does not preserve any isotropic line in R1,n. Because the
corresponding connected group H ⊂ O(1, n) is not compact, Theorem 1.1 of
[BoZ] implies that h preserves some Lorentz subspace of R1,n and contains
the full infinitesimal linear isometry algebra of this subspace. Because
euc(n − 1) preserves no proper Lorentz subspace, h must equal o(1, n).

(3) Let H be the connected subgroup of O(1, n) with Lie algebra h. If
H is compact, it is conjugate to a subgroup of O(n) containing two copies
of SO(n−1). By an argument similar to that for sim(n−1), the subalgebra
o(n − 1) is maximal in o(n), so h = o(n). �

8.2.2 Fixed point sets. Recall that, for H a subgroup of G, the
fixed set is denoted Fix(H). Recall also that the exponential map is defined
on Ω and injective on each fiber in it. Each component of Fix(H) is a
totally geodesic submanifold of M . Let D be the points of M having
degenerate G-orbit with noncompact isotropy. By Theorem 1.6, any x ∈ D
has g(x) ∼= o(n − 1) � Rn−1 ∼= euc(n − 1).

Lemma 8.4. Let x ∈ D, and denote by O its G-orbit. Near x, the fixed
set Fix(G(x)) coincides with expx(TxO⊥ ∩Ω). It has dimension d− n, and
intersects O along the isotropic geodesic in O through x.

Proof. By Proposition 5.2, we can approximate the degenerate orbit O by
Lorentzian orbits Oi with noncompact isotropy. By Theorem 2.2, each Oi

is homothetic, up to finite cover, to dSn. Take xi ∈ Oi with xi → x ∈ O.
The limit lim g(xi) is contained in g(x) ∼= euc(n − 1); since dim(g(xi)) =
dim(g(x)) for all i, the limit equals g(x). As in the proof of Lemma 8.1,
triviality of g(xi) on (TxiOi)⊥ for all i implies that, in the limit, the isotropy
g(x) is trivial on (TxO)⊥. It is easy to see from the form of the isotropy rep-
resentation of g(x) ∼= euc(n− 1) that the maximal trivial subrepresentation
in TxM is exactly (TxO)⊥. Then the lemma follows with the exponential
map and dimension counting. �

Lemma 8.5. Let K be a maximal compact connected subgroup of G(x).
Then Fix(K) has dimension d − n + 1 and is of Lorentzian type. It meets
O along the isotropic geodesic in O through x.

Proof. The subgroup K is conjugate to SO(n − 1) ⊂ Euc(n − 1). The
isotropy representation of K at x fixes any nonzero normal vector nx ∈
(TxO)⊥∩TxO and acts irreducibly on an (n−1)-dimensional complementary
spacelike subspace Lx ⊂ TxO. Then Fix(K) ∩ O = Nx, where Nx is the
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isotropic geodesic in O through x. Now, Lx ⊕ (TxO)⊥ has codimension 1
in TxM . There is a K-invariant 1-dimensional complementary represen-
tation, which is necessarily trivial. We have therefore a (d − n + 1)-
dimensional Lorentzian subspace L′

x containing (TxO)⊥, complementary
to Lx, on which K acts trivially. This subspace is exactly the maximal
trivial subrepresentation of K on TxM . �

Lemma 8.6. Let

Xx = ∪{
Tx(Fix(K)) \ {0} : K ⊂ G(x) maximal compact connected

}
.

Then Xx is open in TxM . More precisely,

Xx =
(
(TxO)⊥ × P c

) ∪ (
(TxO)⊥ \ {0}) ,

where P is a hyperplane in a subspace F complementary to (TxO)⊥.

Proof. Fix one maximal connected compact K0 ⊂ G(x), locally isomorphic
to SO(n−1). Let F0 be a K0-invariant degenerate complement to (TxO)⊥,
and let v0 be a nonzero isotropic vector in F0. Then (TxO)⊥ + Rv0 =
Tx(Fix(K0)). Choose a generator nx of (TxO)⊥∩TxO; note that nx is fixed
by G0(x). Now any other maximal compact, connected subgroup of G(x)
equals gK0g

−1 for some g ∈ G0(x). The fixed subspace Tx(Fix(gK0g
−1)) =

(TxO)⊥+Rgv0. As g ranges over G0(x), the projection of gv0 to F0 ranges
over all vectors v with 〈v,nx〉 = 〈v0,nx〉. Then the projection of RG0(x)v0

to F0 ranges over all v with 〈v,nx〉 �= 0. Now the lemma is proved, with
F = F0 and P = F0 ∩ n⊥

x . �

8.2.3 Hypersurface of degenerate orbits. Let O be as above,
a degenerate orbit with isotropy euc(n − 1). We will next show that any
neighborhood of a point of O meets U or V . Then we will show that O lies
in a hypersurface of degenerate orbits with the same isotropy, and, finally,
that this hypersurface locally separates U from V .

Let Xx be as in Lemma 8.6 above. Consider X(O) = ∪{Xx ∩Ω : x∈O}.
This is an open set in the restriction TM |O.

Lemma 8.7. The image exp(X(O)) ⊂ U ∪ D ∪ V – that is, for any
y ∈ exp(X(O)), the stabilizer g(y) ∼= o(n), euc(n − 1), or o(1, n − 1).

Proof. Denote by Φ the restriction of the exponential map Φ = exp :
X(O) → M . Reducing Ω if necessary, we may assume Φ(X(O)) contains
no fixed points. Each Xx is open in TxM , so Φ has maximal rank, and is
in particular an open map. Its image is an open set containing O in its
closure. Any point y in this image is a regular value; the inverse image S =
Φ−1(y) ⊂ X(O) has dimension dim(X(O)) − dim(M) = n. Because exp is
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injective on each fiber of Ω, and hence of X(O), the inverse image S projects
injectively under π : TM → M onto some open set W in O. For any
z ∈ W , there exists a maximal compact Kz ⊂ G(z) such that y ∈ Fix(Kz).
Because n ≥ 3, there exist z, z′ ∈ W which do not lie on a common isotropic
geodesic of O, so that Kz and Kz′ are contained in G(y) and are distinct.
By Lemma 8.3 (3), either g(y) ∼= o(n), or it is noncompact. In the latter
case, by [ArDZ] and Theorem 1.6, g(y) ∼= o(1, n − 1) or euc(n − 1). �

Let x ∈ O, and let R be a neighborhood of x in Fix(G(x)). Let Ô be
the union of all the G-orbits of all points of R.
Lemma 8.8. For R sufficiently small, Ô is a degenerate hypersurface in
which every orbit is degenerate with isotropy euc(n−1); further, Ô∪U ∪V
is a neighborhood of Ô.

Proof. From Lemma 8.4, R equals exp((TxO)⊥ ∩Ω) near x and has dimen-
sion d − n. Since g(x) ∼= euc(n − 1) lies in a unique maximal subalgebra of
o(1, n) by Lemma 8.3 (2), the orbit of any z ∈ R is either a fixed point or
degenerate. Shrink R so that the G-orbit of any z ∈ R is degenerate; in this
case, g(z) ∼= euc(n−1). The tangent space TzÔ = Tz(Gz)+Tz(Fix(G(x)) =
Tz(Gz) + (Tz(Gz))⊥, because z is also as in Lemma 8.4; hence, Ô is a de-
generate hypersurface.

Now consider X(Ô) = ∪{X(Gz) : z ∈ R} ⊂ TÔ, and let Φ be the
restriction of exp to X(Ô). From Lemma 8.7, the image of the restriction
of Φz to X(Gz) is open and contained in U ∪ D ∪ V , and its closure is a
neighborhood of Gz. If y ∈ D, then g(y) is conjugate to euc(n − 1). But y
is close to a point of Ô, with stabilizer also conjugate to euc(n − 1). Then
y has the same stabilizer as a nearby point of Ô. The set Ω can be chosen
sufficiently small that any such y is contained in Ô. Then the union

⋃

z∈R

Φz(X(Gz))

is contained in U ∪ Ô ∪ V , and its closure is a neighborhood of Ô. The
subset of points of this closure with dim(g(y)) ≤ dim euc(n − 1) still forms
a neighborhood of Ô, and is contained in U ∪ Ô ∪ V . �

Lemma 8.9. Let Φ be the restriction of the exponential map to X(Ô),
in a sufficiently small neighborhood of the 0-section. One component of
Φ(X(Ô))\Ô lies in U , and the other is in V .

Proof. From the last lemma, any point x ∈ Ô has a neighborhood in
which dim(g(x)) = dim(g(y)) for all y in the neighborhood; let N be this
common dimension. In this neighborhood, the map y 
→ g(y) ∈ GrN (g) is
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continuous. There are smaller neighborhoods Z ⊂ W of x such that W is
a normal neighborhood of each of its points, and, whenever z, z′ ∈ Z are
such that g(z) = Ad(g)(g(z′)), then gz′ ∈ W . (Note: We take g to be the
element of Ad−1(Ad(g)) closest to the identity.)

Suppose for a contradiction that points on opposite sides of Ô have the
same orbit type. Let Z1, Z2 be the components of Z\Ô, and W1,W2 the
components of W\Ô. Take z ∈ Z1 and z′ ∈ Z2. By assumption, g(z) and
g(z′) are conjugate in G. Let g be a conjugating element with minimal dis-
tance to the identity. Then z, gz′ ∈ W are connected by a unique geodesic,
which necessarily passes through Ô. The common stabilizer g(z) = g(gz′)
fixes the geodesic pointwise, so it fixes a point of Ô. Whether g(z) is iso-
morphic to o(n) or to o(1, n−1), neither embeds in the stabilizer of a point
of Ô. �

8.2.4 Proof of Proposition 8.2. Suppose that U �= M , so ∂U �= ∅.
By Lemma 8.9, not only is V nonempty, but the interior int(V ) �= ∅. The
following fact will be key for the rest of the proof.
Fact 8.10. For x ∈ int(V ) with orbit O, the isotropy representation of
g(x) is trivial on (TxO)⊥.

Proof. The stabilizer g(x) ∼= o(n) acts on the orthogonal space (TxO)⊥ via a
homomorphism o(n) → o(1, d−n−1). There is a neighborhood W of (x,0)
in (TO)⊥ on which the exponential map is a diffeomorphism onto its image.
For any y ∈ expx(W ∩ TxM), the stabilizer g(y) ⊆ g(x). If all orbits near
O have the same dimension, then g(x) = g(y) for all y ∈ exp(W ∩ TxM).
Then the orthogonal representation of g(x) is trivial. �

Now we can show that ∂(int(V )) = ∂U . Suppose xn ∈ int(V ) and
xn → x. Denote by O the orbit of x. As usual, we have lim g(xn) ⊆ g(x),
and dim(O) ≤ n. The orbit of x is either Riemannian, degenerate, or fixed.

First suppose O is Riemannian. Then g(x) is compact, so it is conjugate
to a subalgebra of o(n). The dimension restriction forces g(x) to be conju-
gate to o(n), so x ∈ V . As in the proof of 8.1, the isotropy g(x) is trivial
on (TxO)⊥, so orbits near x have isotropy containing o(n). The orbit O
has a neighborhood consisting of Riemannian G-orbits. Because o(n) is a
maximal subalgebra, orbits near x all have isotropy g(x). Then x ∈ int(V ),
a contradiction.

If O is degenerate, the same argument as in Lemma 8.1 implies that
g(x) is noncompact. Then Proposition 5.2 implies that x ∈ ∂U . If x is a
fixed point, then Proposition 5.1 implies that x ∈ ∂U . Now Lemma 8.1
gives item (2).
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Now U ∪∂U ∪ int(V ) is closed. It is open by Lemma 8.8, so it equals M .
Therefore, int(V ) = V , and M = U � ∂U � V , proving item (3).

It remains to prove item (1), the warped product structure in V . As
in the proof in [ArDZ, §2.3] of warped products around Lorentz orbits and
as in section 7, the key properties are irreducibility of the isotropy along
orbits and triviality of the isotropy orthogonal to orbits.

Fix x ∈ V = int(V ) with G-orbit O, and let Lx = expx((TxO)⊥ ∩ Ω).
Since G(x) is irreducible on TxO and trivial on (TxO)⊥, the leaf Lx is ex-
actly the set of common fixed points of G(x) near x. Let L = Fix(G(x))∩V .
Define φ : L × O → V by φ(y, gx) = gy. This map is a local dif-
feomorphism because, for any y ∈ Fix(G(x)) ∩ V , the fixed set L co-
incides near y with exp((Ty(Gy))⊥ ∩ Ω). If φ(y, gx) = φ(y′, g′x), then
g−1g′ ∈ NG(G(x)), and g−1g′y′ = y. The stabilizer G(x) is a maximal com-
pact subgroup of the semisimple connected group G, so NG(G(x)) = G(x)
(see [E, 1.13.14 (4)]). It follows that φ is injective. Any y ∈ V has G(y)
compact and dim G(y) = dim G(x); because G(x) is connected, there ex-
ists g ∈ G such that gG(y)g−1 = G(x). Then φ(gy, g−1x) = y, so φ is
surjective. In conclusion, φ is a G-equivariant diffeomorphism L×O → V .

The orbit O is assumed to be homothetic, up to finite cover, to Hn.
Because Hn is simply connected, it has no finite covers. Because any finite
subgroup of Isom(Hn) has a common fixed point, there are no smooth
finite quotients of Hn. Therefore, the orbit O, and every other orbit of V ,
is globally homothetic to Hn. The metric on V pulls back by φ to L × O.
The transverse fibers of the product are orthogonal by construction. All
L-fibers are isometric because they are related by the action of G. Also
by equivariance, O-fibers in L × O correspond to G-orbits in V , so each is
homothetic to Hn. In conclusion, there exists w : L → R+ such that V is
isometric to L ×w Hn. �

The referee kindly communicated to us the following lemma. It syn-
thesizes arguments that we used in many proofs, especially in the proof of
Proposition 8.2 above. Actually, this proof above includes the proof of the
lemma.

Lemma 8.11 (The anonymous referee). Let G act by isometries of a pseudo-
Riemannian manifold M with no isotropic orbits. Suppose that, for all
x ∈ M , the identity component G0(x) is conjugate to S, for S a fixed closed,
connected subgroup of G. Assume that the adjoint representation of s on
g/s is absolutely irreducible. Let L be the set of S-fixed points in M . Then
the G-action lifts to an N -to-1 cover M ′ of M , where N = [NG(S) : S].
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Further, M ′ is G-equivariantly isometric to a warped product L ×w G/S,
where G/S carries a nondegenerate G-invariant pseudo-Riemannian metric,
and L carries the metric induced from M .

The hypothesis that all stabilizers are conjugate in G means that orbits
are all isomorphic as homogeneous G-spaces. Together with the irreducibil-
ity hypotheses, one obtains that the set of points having a given stabilizer
S′ is transverse to the orbit foliation, and in fact equals Fix(S′). This sit-
uation is exactly that of the proof above. Not only in the proof of (1) in
Proposition 8.2, but also in section 7, as part of the proof of Theorem 1.7,
we prove a case of this lemma. Note that the hypothesis that all stabi-
lizers are conjugate is strong, and, in each of our two cases, fulfilling the
hypotheses of the lemma is intertwined with the rest of the proof.
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