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SOME REMARKS ON CONFORMAL PSEUDO-RIEMANNIAN
ACTIONS OF SIMPLE LIE GROUPS

Charles Frances and Abdelghani Zeghib

Abstract. We improve recent results on conformal pseudo-Riemannian actions of
simple Lie groups obtained by U. Bader and A. Nevo, and get optimal statements.

1. Introduction

A general motivation of our work is to understand actions of “big” Lie groups
preserving a rigid geometric structure on a compact manifold. An account on
this subject can be found, for instance, in [4], where it is vaguely conjectured
that such actions should be sufficiently peculiar to be “classified”. Yet, many
constructions show that this is by no means a simple matter, and even very
special situations still resist to existing approaches. In a recent work [1], U. Bader
and A. Nevo made a substantial progress towards the understanding of conformal
actions of simple Lie groups on compact pseudo-Riemannian manifolds. The
technics they used relied essentially on Lie algebraic considerations, in a way
that was pioneered a few years ago by N. Kowalsky (see [10]). Our aim in these
“remarks” is to show how extra geometrical and dynamical arguments allow us
to sharpen these results, in order to get optimal statements.

To fix the notations, let Rp,q be the Minkowski space of type (p, q), i.e. Rp+q

endowed with the quadratic form of type (p, q): −dx2
1−. . .−dx2

p+dy2
1 +. . .+dy2

q .

One defines a pseudo-Riemannnian manifold M of type (p, q) as a manifold
such that the tangent space at each point is endowed with a non degenerate
quadratic form of signature (p, q) (the distribution of these quadratic forms being
moreover smooth). Given a pseudo-Riemannian metric g0 of signature (p, q) on
M , the conformal structure associated to g0 is the class of metrics which are
conformal to g0, i.e. of the form eσg0, for some smooth function σ. Equivalently,
two pseudo-Riemannian metrics are conformal if and only if they determine the
same isotropic cone (of course, we exclude here the “trivial” Riemannian case).

A distinguished class of conformal pseudo-Riemannian manifolds is the locally
conformally flat ones, i.e. those which are locally conformal to the Minkowski
space Rp,q. An important example of such a manifold is the conformal compact-
ification of Minkowski space, denoted by Cp,q. This later space can be defined
as the projection of the isotropic cone of the space Rp+1,q+1 on the projective
space RPp+q+1. The manifold Cp,q inherits from Rp+1,q+1 a natural conformal
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structure of type (p, q), which is conformally flat and invariant under the action
of O(p + 1, q + 1). In fact, Cp,q admits a conformal two-fold covering, which is
the product Sp × Sq endowed with the conformal class of −gSp + gSq . Let us
recall two fundamental properties of the space Cp,q. First of all, the existence of
a stereographic projection, which embeds conformally the space Rp,q as a dense
open subset of Cp,q. Secondly, a theorem of Liouville on Cp,q, asserting that
when p + q ≥ 3, any conformal diffeomorphism between open subsets of Cp,q

extends to a unique element of O(p + 1, q + 1) (see for instance [12] or [6]). The
two previous results show that Cp,q is the universal substratum of conformally
flat pseudo-Riemannian geometry of type (p, q). Indeed, in dimension ≥ 3, a
conformal pseudo-Riemannian manifold of type (p, q) is conformally flat if and
only if it supports a (O(p + 1, q + 1), Cp,q)-structure.

We will always consider in the following, manifolds of dimension ≥ 3. More-
over, to simplify notations, we adopt the convention p ≤ q. Since we are not
concerned with the Riemannian case, we also assume 1 ≤ p. Of course, the
translation of our statements to the case where p ≥ q ≥ 1 is straightforward.

In [1], the authors consider a simple Lie group G with finite center, acting confor-
mally on a compact pseudo-Riemannian manifold of signature (p, q). They first
prove that the real rank of G, denoted by rkR(G), must satisfy the inequality
rkR(G) ≤ p + 1 (recall that for us, p ≤ q). Of course, one wonders what can be
said when the rank of G is the maximal possible. The main result of [1] answers
partially this question:

Theorem 1. [1] Let G be a connected simple Lie group with finite center acting
smoothly and conformally on a smooth compact pseudo-Riemannian manifold M
of type (p, q). Assume the (real) rank of G equals p + 1. Then:

• The group G is locally isomorphic to SOo(p + 1, k + 1), for some k such
that p ≤ k ≤ q.

• There exists a closed G-orbit, which is conformally equivalent to a finite
cover of Cp,k.

• In particular, if the G action is minimal, then M is conformally equivalent
to a finite cover of Cp,k.

It is the last part of the statement, which suggests that a rigidity property
should hold for these actions. Unfortunately, it involves a minimality extra-
condition. Our main result is to relax this condition (by the way, we will also re-
lax the finiteness condition on the center of the Lie group). In the non-Lorentzian
case, i.e. the case p ≥ 2, we get the

Theorem 2. Let G be a connected simple Lie group acting smoothly and confor-
mally on a smooth compact pseudo-Riemannian manifold M of type (p, q) with
p ≥ 2. If the rank of G equals p + 1, then:

• The group G is locally isomorphic to SOo(p+1, k +1) for some k such that
p ≤ k ≤ q.

• Up to finite cover, M is conformally equivalent to the space Cp,k.
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Let us precise here that “up to finite cover” means, for us, “after a finite
number of manipulations consisting in taking finite quotients or finite covers”.

In the Lorentzian case, i.e. when p = 1, M is not necessarily C1,k, but all
possibilities are completely described as follows:

Theorem 3. Let G be a connected simple Lie group of rank 2, acting smoothly
and conformally on a smooth compact Lorentz manifold M of dimension n.
Then:

• The group G is locally isomorphic to SOo(2, k) for some k such that 3 ≤
k ≤ n.

• M is, up to finite cover, a complete conformally flat structure on S1×Sn−1,
i.e M is a quotient of C̃1,n−1 (the universal cover of C1,n−1) by an infinite cyclic
group Γ.

• The possible groups Γ are those generated by any element in a product
Z∗ × O(n − k) ⊂ Õo(2, n) (the universal cover of Oo(2, n)), where the Z factor

is the center of Õ(2, n).

Remark 4. In the last theorem, it follows easily from the proof that when k = n
or k = n − 1, the manifold M is, up to finite cover, conformally equivalent to
the space C1,n−1.

2. Proofs of the main theorems

2.1. About the finiteness of the center. We first study what become the
conclusions of theorem 1 if we remove the asumption that the center of G is
finite.

Theorem 5. Let G be a simple Lie group acting smoothly and conformally on
a smooth compact pseudo-Riemannian manifold M of type (p, q). If the rank of
G equals p + 1, then:

• The group G is locally isomorphic to SOo(p + 1, k + 1) for p ≤ k ≤ q. In
particular, its Lie algebra is the full Lie algebra of conformal vector fields of Rp,q

(or, equivalently, of any open subset of Rp,q).
• Each G-invariant closed subset contains a G-orbit N which is locally con-

formally flat.

Proof. we have to recall the main steps of the proof of theorem 1. The authors
prove first the existence of a point m ∈ M such that StabG(m) = H is normalized
by a real algebraic cocompact group Q ⊂ G. It is done thanks to the remark
that the points of M where the orbits have minimal dimension l is a compact
subset M ′ ⊂ M , and the existence of a G-equivariant continuous Gauss map
ψ : M ′ −→ P(g
 ⊗ g
) × Grl(g) (where Grl(g) denotes the Grassmannian of
subspaces of dimension l in g). The conclusion is then obtained by looking at
the algebraic action of G on P(g
 ⊗ g
)×Gr(g) (section 4 of [1]). If we consider
a closed G-invariant subset F instead of M itself, the points of F the orbits of
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which have minimal dimension are still a G-invariant compact subset, and one
can still define the map ψ. So, also in this case, a point m as above exists. The
existence of such a point, and a case by case study involving Lie algebras lead
the authors to prove that g has to be isomorphic to so(p+1, k+1). Remark that
this Lie algebra is exactly the Lie algebra of conformal vector fields of Rp,q, by
Liouville’s theorem. On the other hand, h is isomorphic to the Lie algebra of the
parabolic subgroup P , stabilizer of a point in Cp,k, for the action of O(p+1, k+1)
(see [1] section 5). Until this point of the proof, no asumption on the center of G
is needed. Now, making the asumption that G has a finite center, the authors get
that G/P is compact, and the orbit of m as well. Moreover, since the action of
Ad(H) on g/h can leave invariant a single pseudo-Riemannian conformal class,
the orbit has to be (up to finite cover) conformally equivalent to Cp,k. Now,
without the finiteness asumption on the center, the orbit N of m may not be
closed, but remains locally conformally equivalent to Cp,k.

2.2. Conformal flatness. We can now prove:

Theorem 6. Let G be a simple Lie group acting conformally on a compact
pseudo-Riemannian manifold M of type (p, q), such that the rank of G equals
p + 1. Then M is conformally flat.

Proof. We consider a G-orbit N given by theorem 5. Let x be a point of N ,
and H = StabG(m). There is a neighbourhood of x in N which is conformally
equivalent to some neighbourhood V of 0 in Rp,q. The Lie algebra h is exactly
the Lie algebra of conformal vector fields of V vanishing at 0. So, in [articular,
there is a subgroup H ′ ⊂ H, isomorphic to R × SOo(p, k) (up to finite index),
and acting faithfully on TxN . This action is moreover the same as the linear
action of R × SOo(p, k) on Rp,k.

The action of SOo(p, k) ⊂ H ′ on TxM is easy to describe. On TxN , it is, as
we just said, the usual linear action on Rp,k. On TxN⊥, the action is trivial.
Indeed TxN⊥ has Riemannian signature, and since SOo(p, k) is simple without
compact factor, any morphism from SOo(p, k) in a compact group has to be
trivial. Now, the following theorem ensures that in a neighbourhood of x, the
action of SOo(p, k) is linearizable.

Theorem 7. If a semi-simple Lie group acts conformally on a pseudo-Rieman-
nian manifold by fixing some point, then its action is linearizable near that point.

We will prove this result in §3.
Thanks to theorem 7, we know that in some neighbourhood of x, the fixed

points of SOo(p, k) constitute a smooth submanifold N⊥ ⊂ M . At x, one
has Tx(N⊥) = (TxN)⊥. The R-action commutes with SOo(p, k), and hence it
preserves N⊥. (Actually, in order to get a global N⊥ we saturate it by the
R-action).

Let us choose an element f in H ′ lying in the R factor. The differential Dxf
acts as a homothety of distorsion λ on TxN . But since N is of signature (p, k)
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and Dxf must be in R × O(p, q) (f is a conformal transformation of M), the
action of Dxf on TxN⊥ is that of a euclidean similarity λR (R ∈ O(n)).

The conformal Riemannian manifold N⊥ has therefore an essential (i.e. non
proper) conformal group. By Ferrand’s Theorem [5] (in both the compact and
the non compact case), this manifold is conformally a standard sphere or a
Euclidean space. In any case, the action of f on N⊥ is smoothly linearizable near
x, so it is smoothly locally conjugated to the action of λR in a neighbourhood of
0. Moreover, on (TN⊥)⊥, the action of Df has to commute with that of O(p, k)
(which is irreducible). Therefore, in some trivialisation Rq−k × Rq−k × Rp,k

of TM over a neighbourhood U of x in N⊥, the action of Df is as follows:
(y, u, v) �−→ (λR.y, λR.u, λv).

Let us suppose that f is a contraction, i.e that 0 < λ < 1, and consider W
the Weyl tensor of the conformal structure [11]. This tensor vanishes if M has
dimension 3, so we suppose in a first time that the dimension of M is ≥ 4.
Let us put the euclidean norm N on the factor Rq−k × Rp,k, we get that for
y ∈ U , v ∈ TyM and n ∈ N, N (Dfn

y (v)) = λnN (v). Now let X, Y, Z ∈ TyM ,
and set T = Wy(X, Y, Z). By conformal invariance of the Weyl tensor, one gets
Dfn

y T = Wfn(y)(DfnX, DfnY )DfnZ. But the norm N (Dfn
y T ) behaves like

λnN (T ) while the norm N (Wfn(y)(DfnX, DfnY )DfnZ) behaves like λ3nrn

(where rn is a bounded sequence of reals). We get a contradiction as n tends to
+∞, unless W = 0 at y, and hence all along N⊥.

When x runs over N , the corresponding submanifolds N⊥, fills a neighbor-
hood of N in M . Therefore the Weyl tensor vanishes on an open G-invariant
set Ω.

To conclude, let us consider a maximal G-invariant open set Ω on which the
Weyl tensor vanishes. If it is not the whole M , we apply theorem 5 to its
complementary F . Doing the proof above once again, we will find some x ∈ F
such that the Weyl tensor vanishes on some neighbourhood of x. This yields a
contradiction with the maximality of Ω. We conclude that W = 0 on the whole
M , i.e M is conformally flat.

When M has dimension 3, another tensor (the Schouten tensor of type (2, 1))
is left invariant by G, and vanishes if and only if the manifold is conformally flat.
We prove by the same arguments as above that such a tensor must be identically
zero.

2.3. Proof of Theorem 2. Let M be as in Theorem 2. We infer from Theorem
6 that M is conformally flat. Therefore, there is a holonomy morphism ρ :
π1(M) −→ O(p+1, q+1) and a developping map δ from the universal cover M̃ to
C̃p,q, the universal cover of Cp,q. The map δ is a conformal local diffeomorphism,
which is ρ-equivariant. The holonomy morphism ρ extends to a morphism ρ :
Conf(M̃) −→ O(p + 1, q + 1), and δ is also ρ-equivariant. By theorem 5, the
group G is locally isomorphic to SOo(p + 1, k + 1) for p ≤ k ≤ q. Now, since we
are not in the Lorentzian case, the fundamental group of SOo(p+1, k+1) is finite
and so, up to finite index, we can suppose that G = SOo(p + 1, k + 1). Then, ρ
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embeds the group G in O(p + 1, q + 1). But up to conjugacy, there is a unique
way to embed SOo(p + 1, k + 1) in O(p + 1, q + 1), and looking at the canonical
one, we see that the centralizer of ρ(G) in O(p+1, q +1) is a compact subgroup
K ⊂ O(p+1, q +1), which is isomorphic to O(q−k). Since G acts on M , and so
is centralized by π1(M), the image of the holonomy homomorphism is contained
in K. But up to conjugacy, K is included in a product O(p + 1) × O(q + 1),
so that our structure is in fact a (C̃p,q, O(p + 1) × O(q + 1))-structure. It is a
standard fact (see e.g [15] proposition 3.4.10) that such a structure on a compact
manifold has to be complete. In other words, δ is a diffeomorphism and M is a
finite quotient of C̃p,q (which is itself a double covering of Cp,q).

2.4. Proof of Theorem 3. As in the previous discussion we get that G is
locally isomorphic to SOo(2, k) for 3 ≤ k ≤ n. Let us consider the developping

map δ : M̃ −→ C̃1,n−1 and the holonomy morphism ρ : π1(M) −→ Õ(2, n). We

denote by π the projection from C̃1,n−1 to C1,n−1. We call δ̂ the composition
π ◦ ρ̂ and ρ̂ the morphism ρ followed by the projection on O(2, n). Since G is
locally isomorphic to SOo(2, k), there is a family of conformal vector fields on
M whose Lie algebra is so(2, k). Now, looking at the image of these vector fields
by δ̂, we get again that the image of the morphism ρ̂ centralizes a subgroup
of O(2, n) which is isomorphic to O(2, k). As in the previous proof, we deduce
that the image ρ̂(π1(M)) is included in some compact group K isomorphic to
O(n − k). Now, the lift of any compact subgroup of O(2, n) is included, up to

conjugacy, in a product R × O(n) ⊂ Õ(2, n). Recall that C̃1,n−1 is R × Sn−1.
The R-factor of R×O(n) acts by translation on R and trivially on Sn−1, and the
O(n) factor acts trivially on R and by rotations on Sn−1. Observe that R×O(n)

acts transitively on C̃1,n−1 with compact stabilizers. Then, proposition 3.4.10 of
[15] ensures that the structure on M is complete, i.e δ is a diffeomorphism. Now,
observe that any discrete subgroup of R × O(n) yielding a compact quotient of

C̃1,n−1 is infinite cyclic (up to finite index). Moreover, quotients by such infinite
cyclic groups are always finitely covered by S1 × Sn−1. On the other hand, an
element (t, σ) ⊂ R×O(n) centralizes a subgroup with Lie algebra so(2, k) exactly

when t = kπ, k ∈ Z∗ (recall that (π, Id) generates the center of Õ(2, n)), and σ
is included in some subgroup O(n − k) ⊂ O(n).

3. Proof of Theorem 7

Much has been written about (local) linearization of a semi-simple Lie group
action near a fixed point (see [2] for a report on the question). Essentially, it
is known that linearization is possible in the analytic case, but not always in
the smooth one. Theorem 7 is a first evidence for thinking that a linearization
theorem should be true for actions of semi-simple Lie groups preserving a rigid
structure.
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There are many (but non-obvious) ways to show that conformal structures are
rigid at order 2 (i.e. of finite type 2). In general, one associates to the conformal
structure a natural pseudo-Riemannian metric on a natural fiber bundle over
M . Here, we adopt the approach of [6]. There, one considers the bundle X1(M)
of 1-jets of metric in the conformal class, and shows that it is naturally endowed
with a pseudo-Riemannian metric, and with a horizontal distribution H, for
which the projection π : X1(M) → M is horizontally conformal, that is for any
u ∈ X1(M), dπu : Hu → Tπ(x)M is conformal. Actually, the advantage of this
construction (with respect to the others) is that X1(M) is an affine fiber bundle,
i.e its fibers are affine spaces. Now, if G is a group acting conformally on M
with a fixed point x0, then it acts affinely on X1

x0
(M). In particular, if G is

a semi-simple Lie group, thanks to the standard theorems on vanishing of its
H1-cohomology (with respect to any representation), one infers that G fixes a
point u0 in X1

x0
(M). Let h = π◦expu0

: Hu0 → M , where exp is the exponential
map of the pseudo-Riemannian metric on X1(M) (defined on a neighbourhood
of the 0 section of TX1(M)). Then h conjugates the action of G near x0 with
the linear action of G on Hu0 (which is the same via dπu0 as its linear action on
Tx0M). ♦
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