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Abstract. Geometric problems are usually formulated by means of (exterior) differential
systems. In this theory, one enriches the system by adding algebraic and differential
constraints, and then looks for regular solutions. Here we adopt a dual approach, which
consists of enriching a plane field, as this is often practised in control theory, by adding
brackets of the vector fields tangent to it and, then, looking for singular solutions of the
obtained distribution. We apply this to the isometry problem of rigid geometric structures.

0. Content
In §1 we exhibit a natural class of plane fields for which the accessibility behaviour, as
studied in control theory, possesses, essentially, the same nice properties as in the analytic
case.

In §2, we observe that there is a control theory approach to the local isometry problem
of affine manifolds (e.g. pseudo-Riemannian manifolds), which is dually equivalent, to the
usual differential systems (i.e. partial differential relations) approach. We then apply the
results of §1 to deduce a celebrated corollary of Gromov’s theory on rigid transformation
groups.

In fact the developments of §1 suggest how to proceed in order to recover essentially
most of the part of Gromov’s theory related to Corollary 2.1, together with some
independent results. However, we will not follow this because our primary goal here is
to be as elementary as possible. Further extensions and applications of our approach will
be developed elsewhere.

1. Control theory
Let P be a smooth plane field of dimensiond on a manifoldN . From an integrability
viewpoint there are two extremal cases, described by the classical Frobenius and Chow’s
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theorems, which concern the completely integrable and absolutely non-integrable cases,
respectively.

Let χ(N) be the Lie algebra ofC∞ vector fields ofN , and denote byG the Lie
subalgebra generated by smooth vector fields everywhere tangent toP . Let G be the
‘evaluation plane field’,G(x) = {X(x) : X ∈ G} (this is not necessarily a continuous
plane field).

Frobenius’ theorem states that in the ‘degenerate case’ whereP is involutive, that is
G = P , then through each point ofN passes aleaf of P that is a submanifold of dimension
d (the same as that ofP ) which is (everywhere) tangent toP . In contrast, in the ‘generic
case’, whenG = TM, Chow’s theorem says that any pair of points can be joined by
a curve tangent toP . However (unfortunately), it is the intermediate (non-generic and
non-degenerate) situation that one usually meets in geometric and differential problems.

Integrability and infinitesimal integrability domains.In searching leaves, let us ‘naively’
introduce theintegrability domainD as the set of points ofN , through which passes a
(germ of a) leaf ofP . This set may behave very badly, for instance, it is nota priori
closed. For this, let us introduce its infinitesimal variant, the ‘involutivity domain’,
D∞ = {x ∈ N/G(x) = P(x)}. We callD∞ the infinitesimal integrability domainof P .
Clearly,D∞ containsD, and it is closed since it is the set of points where the dimension
of G equals that ofP , that is the dimension ofG is minimal (obviously, the dimension of
G is lower semi-continuous).

Along D∞, the Frobenius condition is satisfied, and so, one may hope to find leaves
through each of its points, that isD = D∞. However,D∞ is not,a priori, a manifold,
and we do not yet know a fractal Frobenius’ theorem. Worse, even if we assumeD∞ is a
submanifold it is not clear thatP is tangent to it!

In the analytic case everything works well and there are many ways leading to the
equalityD = D∞ [7]. For instanceD∞ is an analytic set, and may be thought out as being
a submanifold, and so in order to apply Frobenius’ Theorem to the restrictionP |D∞, one
just has to show thatP is tangent toD∞.

Distributions. However, the most consistent approach to this problem is a generalization
of Frobenius’ theorem in another direction, that of (singular)distributions (the singularity
is topological and not differential). Recall that aC∞ distribution1 onN is aC∞(N)-
submodule ofχ(N), the space ofC∞ vector fields onN . For example, a smooth plane
field P is associated with distribution of vector fields tangent to it. Conversely, to a
distribution1, one defines its ‘evaluation plane field’ by1(x) = {X(x)/X ∈ 1}. In
general, this determines a discontinuous plane field (i.e. a plane field with non-constant
dimension). One calls a distributionregular if its ‘evaluation plane field’ has a constant
dimension.

A distribution is calledinvolutive if it is a Lie subalgebra ofχ(N). Any distribution
generates an involutive distribution, this is the advantage of generalizing plane fields to
distributions, since the involutive distributions generated by plane fields, are not plane
fields in general, i.e. they are not necessarily regular.

The integrability problem.A leaf of a distribution1 is a submanifoldS such that along
S the tangent space ofS coincideswith the evaluation of1. The distribution is called
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integrableif leaves exist everywhere, i.e. anyx ∈ N belongs to a leaf. In particular, if
the involutive distributionG generated by a plane fieldP is integrable, then we have in
particular the equalityD = D∞. Indeed, ifx ∈ D∞, then itsG-leaf, is a leaf ofP . (In the
generic, but non-interesting case,G is integrable, andD∞ = ∅).

Obviously, an integrable distribution has the same leaves as its generated involutive
distribution. However, an involutive distribution is not integrable in general (see §2.1
for counter-examples). The integrability problem consists of finding conditions so that
involutive implies integrable. For instance, Frobenius’ theorem says nothing but regular
involutive distributions are integrable.

Finitely generated distributions.A distribution1 is called locally finitely generated, if
for any x ∈ N , there is a neighbourhoodU of x, and a finite familyV1, . . . , Vl of
vector fields of1, such that, onU , anyV ∈ 1 can be written asV = ∑

giVi , where
gi ∈ C∞(U). Regular distributions are locally finitelyfreelygenerated. Conversely, there
are many pieces of evidence leading to speculation that there exists a suitable ‘blowing
up’ manipulation transforming a locally finitely generated distribution to a regular finitely
generated distribution. In any case, Frobenius’ theorem is valid in this context.

THEOREM 1.1. (Frobenius’ theorem for finitely generated distributions; R. Hermann [7],
see §3.1 for an outline of the proof.)A locally finitely generated involutive distribution is
integrable. In particular, letP be a smooth plane field such that its associated involutive
distribution is finitely generated. ThenD = D∞.

Partially algebraic vector fields.The theorem above applies in the analytic case, due to
standard Noetherian facts. We are now going to extend the applicability of the above
theorem to a partially analytic, in fact partially algebraic, situation. The starting point is
to considerpartially algebraicvector fields onRn × Rm. These areC∞ vector fields of
the form: (x, u) ∈ Rn × Rm → (R(x, u),Q(x, u)) such that, forx fixed,R(x, u) and
Q(x, u) are polynomials. In other words, partially algebraic vector fields are mapping:
R
n × Rm → Rn × Rm, with co-ordinates in the ringC∞(Rn)[X1, . . . , Xm]. Observe that

the bracket of two partially algebraic vector fields is a partially algebraic vector field. That
is, partially algebraic vector fields form a Lie subalgebra.

Let8 be a partially linear (local) diffeomorphism ofR
n × Rm, that is8 has the form

8(x, u) = (f (x),Ax(u)), wheref : U → U ′ is a local diffeomorphism ofRn, and
A : x ∈ U → Ax ∈ GL(m) is aC∞ mapping.

Observe that partially linear diffeomorphisms preserve the space of partially algebraic
vector fields. (Here one can also consider partially polynomial diffeomorphisms, but for
the sake of simplicity we restrict ourselves to the partially linear case).

Fiberwise algebraic vector fields on vector bundles.Suppose thatN → B is a vector
bundle. The above, allows us to definefiberwise algebraic vector fieldson N . They
form a Lie subalgebra. One can also definefiberwise algebraic plane fieldsandfiberwise
algebraic distributions. The involutive distribution generated by a fiberwise algebraic
distribution is fiberwise algebraic. One can also define fiberwise algebraic functions, and
thenfiberwise algebraic sets, as zero loci of systems of fiberwise algebraic functions.
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THEOREM 1.2. (Integrability)Let P be a fiberwise algebraic plane field on a vector
bundleπ : N → B. Then, there is an open dense setU ⊂ B over whichD = D∞.
More precisely, the involutive distribution generated byP is integrable onπ−1(U).

Proof. Let G be the involutive distribution generated byP . From the previous
discussion, it can be described locally as anR-submoduleI of Rn+m, whereR =
C∞(Rn)[X1, . . . , Xm].

Following Theorem 1.1, it suffices to show that over an open dense setU of Rn, I is
locally finitely generated. This will follow from the Noetherian Theorem 3.2. The intuitive
proof of it is that we have a family{Ix : x ∈ Rn} of R[X1, . . . , Xm]-submodules of
(R[X1, . . . , Xm])n+m. EachIx is finitely generated and, in a dense open subset ofRn, the
cardinality of the generating family ofIx is locally bounded. 2

Differential structure ofD. The infinitesimal integrability domainD∞ (and hence the
integrability domainD, if we restrict overU ) is a fiberwise algebraic set. Indeed,D∞
is the set of points where the involutive distributionG generated byP , has dimension
d (that is the dimension ofP ). Thus,D∞ = {x ∈ N/V1 ∧ · · · ∧ Vd+1 = 0 for all
V1, . . . , Vd+1 elements ofG}. Locally D∞ is the zero locus of a family of elements of
C∞(Rn)[X1, . . . , Xm]. The fibersD∞

x are thus algebraic sets ofRm. In fact, fiberwise
algebraic sets enjoy, in addition, many regularity properties regarding the dependence
on x ∈ B. In local co-ordinates, around a point where the distributionG is locally
finitely generated,D∞ is the common zero locus of a finite setf1, . . . , fl of elements
of C∞(Rn)[X1, . . . , Xm]. However, because we reason here overR (and notC), D∞
equals the zero locus of a single elementg = ∑

f 2
i . This elementg may be seen as a

mapf : Rn → R[X1, . . . , Xm]≤k, the space of polynomials of degree≤ k (f (x) is the
restriction ofg to {x} × Rm). More concretely, by definition ofC∞(Rn)[X1, . . . , Xm], we
have a representationg(x,X1, . . . Xm) = ∑

|I |≤k gI (x)XI , whereI is a multi-index, then
f (x) is the polynomial with coefficients(gI (x))|I |≤k.

Suppose for example thatf (x) has a unique (real) rootz(x) ∈ Rm, and thusD∞
is the graph ofz. Then,z(x) is expressed ‘algebraically’ from the coefficients off (x).
Therefore,D∞ is the graph of a very ‘tame’ function.

The same idea may be adapted whenf (x) has infinitely many roots. This may lead to a
stratified structure ofD∞, after removing singular fibers. We will restrict our investigation
here to a weak regularity aspect, which will follow from the following general fact.

LEMMA 1.3. LetB be a topological space andf : B → R[X1, . . . , Xm]≤k, a continuous
map which associates a polynomialf (x) of degree≤ k, to eachx ∈ B. LetY = {x ∈ B :
f (x) has a (real) root}. ThenY contains an open dense set of its closure.

Proof. Consider the ‘universal’ polynomial

8 : (X1, . . . , Xm, p) ∈ R
m × R[X1, . . . , Xm]≤k → p(X1, . . . , Xm) ∈ R

(p is a polynomial of degree≤ k on (X1, . . . , Xm)).
Consider the ‘universal’ algebraic set8−1(0) determined by8. LetZ be the projection

of 8−1(0) on R[X1, . . . , Xm]≤k. It is not a priori an algebraic set, but, almost by
definition, asemi-algebraic set.
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One fundamental fact about semi-algebraic sets is that they admit good stratification
(see, for example, [1]). In particular,Z is a finite disjoint unionZ = ∪Zi , whereZi
are locally closedsets, that is, there are open setsOi in R[X1, . . . , Xm]≤k, such that
Zi = Zi ∩Oi .

For the lemma, we may assume thatY is dense inB, we have then to show thatY
contains an open dense set ofB. By continuity,f (B) is contained inZ (which also equals
∪Zi). We have,Y = f−1(Z).

If Z itself were locally closed (for example form = 1), thenf−1(Z) would be open in
B, and we would be done.

We argue as follows in the general case. LetFi = f−1(Zi) andAi = f−1(Zi). Then
Ai is open inFi (becauseZi is locally closed). We have,B = ∪Fi . One firstly observes
that∪ int(Fi) is dense inB, where int stands for the interior (this is Baire’s theorem, for the
finite union of closed sets, which is true for all topological spaces). Next, sinceY = UAi

is dense inB, it follows thatU = ∪(Ai ∩ int(Fi)) is dense inB. MoreoverU is open inB
(sinceAi is open inFi ) and is contained inY . 2

The discussion before the lemma applies to any fiberwise algebraic set (such asD∞),
and therefore leads to the following result.

COROLLARY 1.4. LetS be a fiberwise algebraic set ofN andY its projection onB. Then
Y contains an open dense subset of its closureY .

Fiberwise constructible sets.In view of further applications, we need the following slight
generalization of fiberwise algebraic sets. A subsetS ofN is calledfiberwise constructible
if it can be written as a differenceS1 − S2 of two fiberwise algebraic setsS1 andS2.

Such a set has a structure as nice as that of a fiberwise algebraic set. Indeed,
locally, suppose thatS1 and S2 are respectively defined byf and g elements of
C∞(Rn)[X1, . . . , Xm]. Then, consider the mappingφ : (x,X) ∈ Rn × Rm − S2 →
(x,X,1/g(x,X)) ∈ Rn × Rm+1 (hereX = (X1, . . . , Xm)). Then, the imageφ(S1 − S2)

becomes fiberwise algebraic, since it is defined by the equationsXm+1g(x,X) − 1 = 0
andf (x,X) = 0.

The above corollary is therefore valid for fiberwise constructible sets.

THEOREM 1.5. (Rough structure)Let S be a fiberwise constructible set ofN andY its
projection onB. ThenY contains an open dense subset of its closureY . In particular if Y
is dense inB, thenY contains an open dense subset ofB.

Integrability with constraints.One is sometimes interested in leaves through points in a
given subsetS ⊂ N (the plane fieldP is not assumed to be tangent toS, although this
usually happens in practice). The following result unifies Theorems 1.1 and1.5 above.

THEOREM 1.6. LetP be a fiberwise algebraic plane field on a vector bundleπ : N → B,
andS a fiberwise constructible subset ofN . There is an open dense setU ⊂ B, over which,
the sets of integrability and infinitesimal integrability points ofP in S are equal, that is,
D ∩ S|U = D∞ ∩ S|U .

In addition, the projection ofD ∩ S|U is a closed (posisibly empty) subset ofU .
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Proof. LetU1 be an open dense set given by the integrabilty theorem, Theorem 1.1, that is
D|U1 = D∞|U1. OverU1,D∩S is fiberwise constructible. LetY1 ⊂ U1 be its projection,
and letY1 be its closure inU1. From the structure theorem, Theorem 1.5, there is an
open subsetU2 of U1, such thatY1 containsY1 ∩ U2, which is in addition dense inY1. In
particularY1 ∩ U2 is closed inU2.

We claim thatU = U2 ∪ (U1 − Y1) satisfies the conditions of the theorem. Indeed,U

is open, and it is dense inU1 (and hence inB), sinceY1 ∩ U2 is dense inY1. Furthermore,
U ∩ Y1 = U ∩ Y1 and hence, overU , the projection ofD ∩ S is closed. 2

2. The isometry pseudo-group of an affine connection
Fiberwise algebraic objects are abundant in geometry. For instance, a fiberwise algebraic
function on the cotangent bundle of a smooth manifold generates a fiberwise algebraic
Hamiltonian vector field. In particular the geodesic flow of a Riemannian metric is
fiberwise algebraic (being seen on the cotangent as well as on the tangent bundles).

The tautological geodesic plane field of an affine manifold.More generally, let(M,∇)
be an affine manifold, that is,∇ is a torsion free connection onM (not necessarily
flat). Its geodesic flow is generated by a fiberwise algebraic vector field. Indeed,
locally, this vector field has the form:V : (x, p) = (x1, . . . , xn, p1, . . . , pn) ∈ U ×
R
n → (p1, . . . , pn,

∑
ij 0

1
ij (x)pipj , . . . ,

∑
ij 0

n
ij (x)pipj ). (The0kij are the Christoffel

symbols).
Now, we introduce a generalization of geodesic flows as plane fields on Grassmann

bundles. Letπ : Grd(M) → M be the Grassman bundle ofd-planes tangent toM. The
connection determines a splittingTGrd(M) = V

⊕
H , whereV is the vertical andH

is the horizontal space (given by∇). For p ∈ Grdx (M), dpπ maps isomorphicallyHp
ontoTxM. Let τd(p) be thed-plane contained inHp which is mapped bydpπ to p (as a
subspace ofTxM). Thusτd is ad-plane field onGrd(M), called thetautological geodesic
plane field onGrd(M). (We think that this construction must be known, although we have
not found any reference where it is explicitly mentioned, see [9] for more details and a
systematic study).

The tautological character ofτd is clear. The geodesic adjective is justified by the fact
that, the projection of a leaf ofτd is a (totally) geodesic submanifold of dimensiond in
M. Conversely, ifS is a d-dimensional geodesic submanifold ofM, then its Gauss lift
x ∈ S → TxS ∈ Grd(M) is a leaf ofτd .

The fiberwise algebraic discussion on vector bundles, extends in a straightforward
way, to projective bundles (i.e. fiber bundles whose fibers are projective spaces. . . ). In
particular, here, as in the case of the geodesic flow, the tautological plane fieldsτd are
fiberwise algebraic. In fact, for the following application, we will immediately come back
to a vector bundle situation.

The pseudo-group of local isometries.A (local) isometry or a (local) affine diffeo-
morphism is a local diffeomorphism ofM, which preserves∇. Equivalently, an
affine diffeomophism is a diffeomorphism which sends (parametrized) geodesics to
(parameterized) geodesics. One may also defineaffine mappingsas, not necessarily
diffeomorphic mappings, sending geodesics to geodesics.
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One may naturally construct a product connection∇ ⊕ ∇ on the productM ×M. If ∇
is the Levi-Civita connection of a pseudo-Riemannian metricg, then∇ ⊕ ∇ is the Levi-
Civita connection of the product metricg

⊕
g (which is the same as the Levi-Civita of the

productg
⊕ −g). A curve t → (c(t), d(t)) is (a parameterized) geodesic iff both of its

projectionst → c(t), andt → d(t) are geodesic inM.

Let f : U → V be a smooth map. Its graph Graph(f ) is an-submanifold ofM ×M.
One easily sees, from the characterization of geodesics inM × M, that f is an affine
mapping, iff Graph(f ) is a (totally) geodesic submanifold inM ×M (the proof works as
in the case ofRn). In particular, local affine mappings give rise to leaves of the tautological
geodesic plane fieldτn onGrn(M ×M).

Let Gr∗(M ×M) consist ofn-planes which are graphs, that isp ∈ Gr∗(x,y)(M × M)

iff p is a graph of a linear mapTxM → TyM (or equivalentlyp projects injectively on
TxM). Then, a leaf ofτn trough an elementp ∈ Gr∗(M ×M), determines a local affine
mapping.

Observe thatGr∗(M × M) is a vector bundle onM × M, the fiber over(x, y) being
Hom(TxM → TyM).

To get local affine diffeomorphisms, one considersGr∗∗(M ×M), the set ofn-planes
transverse to each of the factorsM × {·} and{·} ×M, that is,p ∈ Gr∗∗

(x,y)(M ×M) iff p
is the graph of an isomorphismTxM → TyM.

We have the following interpretation:(x, y) belongs to the projection of the integrability
domain ofτn onGr∗∗(M ×M) iff there is a local affine diffeomorphism sendingx to y,
that isx andy have the same orbit under the pseudo-group of local affine diffeomorphisms.

It is easy to seeGr∗∗(M × M) as the complement inGr∗(M × M) of a fiberwise
algebraic set, and hence in particular, it is an (open) fiberwise constructible set.

COROLLARY 2.1. (Gromov [6], see also [3]) LetM be an affine manifold. Suppose that
its pseudo-group of local affine diffeomorphisms admits a dense orbit, then, it has an open
dense orbit (that is there is an open dense homogeneous set inM).

Proof. Apply Theorem 1.6 toP = τn on Gr∗(M × M), with a constraint setS =
Gr∗∗(M ×M).

Let x0 ∈ M, be a point with a dense orbitO0 under the affine pseudo-group. The
projection ofS ∩ D containsO0 × O0. From Theorem 1.6, the projection ofS ∩ D

contains an open dense setU in M ×M. Let (x, y) ∈ U , then the orbitOx of x under the
affine pseudo-group contains the open (non-empty) set({x} ×M) ∩ U of {x} ×M. Since
the orbitO0 is dense, we haveO0 ∩Ox 6= ∅, and henceO0 = Ox , but obviously, an orbit
with a non-empty interior is open, thereforeO0 is open and dense. 2

2.1. Some comments

Example.Consider onRn a connection∇=∇0 + T , where∇0 is the usual flat connection
(that is ∇0

XY = DXY ), andT = (T kij ) is a symmetric tensorTR
n × TR

n → TR
n.

Suppose thatT is flat at zero, that is, all the partial derivatives of all orders of the functions
T kij , vanish at zero.
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Consider the tautological geodesic plane fieldτn of R
n × R

n. It is easy to see, that
D∞
(0,0) = Grn(0,0)(R

n × R
n). If the integrability domainD containsD∞, or more precisely,

D∞
(0,0), then, in particular, every linear mapA : Rn → Rn, will be the derivative of a

local affine (for(Rn,∇)) mapFA fixing zero. It is easy to see that this implies thatT is
very special. Indeed, the existence of non-diffeomorphic affine maps leads to vanishing
relations of the curvature, not only at zero, but also near it.

Other constraints.In the proof of the above corollary, one may add further constraints of
an algebraic nature. For example, ifM is endowed with a pseudo-Riemannian metricg,
then one considersn-planes ofM × M, which are isotropic with respect to the pseudo-
Riemannian metricg

⊕ −g onM ×M. The obtained solutions correspond then to local
isometries of(M, g). Observe that the constraint set here is tangent toτn, and it is in fact
fiberwise algebraic (not only fiberwise constructible) inGr∗(M ×M), since an isotropic
plane which belongs toGr∗(M ×M)must belong toGr∗∗(M ×M).

Similarly, one may treat the isometry pseudo-group of a unimodular affine structure,
and in general, any algebraic enrichment of the affine structure.

The full Gromov theorem.It is the above corollary of Gromov’s theory that was used in
the celebrated work [2].

The full Gromov theorem, that is for non-necessarily topologicaly transitive isometry
pseudo-groups and for general rigid geometric structures was utilized in [4], in the analytic
case. As we have said above, in our approach, there are no integrability or structure
difficulties in the analytic case. In fact, [5] contains a direct approach in the analytic case.

It is generally admitted that there are no serious difficulties to pass from affine structures
to general rigid (algebraic) structures.

Observe that here, just the idea of affine structures enriched with algebraic constraints
allows us to generalize Corollary 2.1 to a large class of rigid structures (for example that
utilized in the proof of the main result of [4]).

Now, for affine structures with non-necessarily topologicaly transitive isometry pseudo-
group, the idea of the proof of Gromov’s theorem, is to find a submanifold inM × M,
which, ‘essentially’, contains as an open subset, the projection of the infinitesimal
integrability domain ofτn.

Compactification. Singular isometries.We hope that our approach here provides elements
leading to the analysis of the non-completeness of the locally homogeneous open dense set
U inM (here, by non-completeness, we mean the fact thatU 6= M). Indeed,D is naturally
compact byD∞, and there is sometimes strong evidence (as in the Anosov case of [2]) that
the setD∞ − D must be empty.

Moreover,Gr∗∗(M ×M) is naturally compacted byGrn(M ×M). The (new) leaves
of τn in this latter space may be interpreted as singular affine mappings, and from another
point of view, as ‘stable laminations’ of (regular) affine mappings.

In fact, compactifications may be defined in the general set-up of control theory of §1.
Indeed, asRn is projectively compactified byRPn (and notRPn−1), any vector bundle
N → B with fiber typeR

n can be (fiberwise) compactified by a ‘projective’ bundle
N̄ → B, with fiber typeRPn. Fiberwise objects onN extend toN̄ , and it seems interesting
to interpret them there.
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Fiberwise algebraic closure.Let us try to see, among the integrabilty Theorem 1.1 and the
structure Theorem 1.5, what is the most important for the proof of Corollary 2.1, or, more
exactly, what is the contribution of each of them in this proof. For this, let us consider the
following situation. TakeG, a group of (global) affine diffeomorphisms ofM. We have a
proper embedding(g, x) ∈ G ×M → Graph(Dxg) ∈ Gr∗∗(M ×M). Denote its image
by L. The projection ofL in M ×M is the union of the graphs of all the elements ofG,
andL itself is nothing but the union of the Gauss lifts of these graphs. For this, let us call
L the graph ofG.

For example, ifG is discrete and infinite, then the projection ofL is a countable union
of graphs. Therefore, from the structure theorem,L is far from being a fiberwise algebraic

set (although it is closed). It is thus natural to take thefiberwise algebraic closureL
fib,alg

of L. The structure theorem ensures thatL
fib,alg

has a nice projection. However, one needs

to interpret elements ofL
fib,alg

; in other words, one asks, what properties of elements ofL

pass to its fiberwise algebraic closure? It is the integrability theorem which answers this

question by stating that, away from a nowhere dense set, the new elements ofL
fib,alg

are
local isometries.

In other words, the integrability theorem states, essentially, that in contrast toL the
graph of the local isometry pseudo-group is a fiberwise algebraic set. The structure theorem
says that one has won much from the statement of the integrability theorem.

Remark 2.2.Similarly to the above embedding, there is a classical way of breaking the
dynamics ofG (i.e. killing its recurrence, in such a way that the action becomes proper),
by letting it act on the frame bundleP → M. To keep everything elementary, compactify
P by seeing it as an open set inN , the vector bundle with fibers,Nx = Hom(Rn → TxM)

(n = dimM). It is endowed with a principalGL(n,R)-action.
Suppose that theG-action onM is topologically transitive, that is, it has a dense orbit.

Then, there is an open dense setU of M, such that for allp ∈ P , overU , the fiberwise-

algebraic closure ofG.p
fib,alg

projects ontoU . Of course,GL(n,R) permutes these

fiberwise algebraic closures. The stabilizer inGL(n,R) of any closureG.p
fib,alg

, may
be identified to theC∞-algebraic hullof G, as introduced in [10]. One may define in
a natural way,Cs -fiberwise algebraic sets, for anys ≥ 0, and findCs -algebraic hulls as
defined by Zimmer, for alls ≥ 0.

3. Proofs
3.1. Sketch of proof of Theorem 1.1.Let 1 be an involutive locally finitely generated
distribution onN . At x ∈ N , we denote1(x) the evaluation of1 atx.

Let x0 ∈ N . To construct a leaf ofx0, start with a vector fieldV0 of 1, non-singular at
x0, and letφt be its flow. Suppose that(φt )∗ preserves the evaluation of1 along the orbit
φt(x0), that isDx0φ

t (1(x0)) = 1(φt(x0)).
Take another vector fieldV1 linearly independent ofV0, and letψt be its flow. Suppose

that, like φt , the flowψt preserves the evaluation of1, then the surface obtained by
saturating theφt -orbit by the flowψt is tangent to1.

Reiterating the construction, by taking a maximal family of linearly independent similar
vector fields,V2, . . . , we would obtain a leaf, provided that we check that each of the flows
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of these vector fields preserves the evaluation of1. So, let us show this property forV0

(the vector fields are indiscernible).

Locally, in some co-ordinate system, we may assumeN = R × Rn−1, andV0 = ∂/∂t.
So,V0 generates a translation flow.

Let V1, . . . , Vk a finite set of generating vector fields of1 near x0. Since1 is
involutive, [∂/∂t, Vi] = ∂Vi/∂t ∈ 1 (here we seeVi as vectorial maps onRn). Write:
∂Vi/∂t = ∑

1≤j≤k aij Vj .
So, the problem becomes the following, along thet-axis (t,0) ∈ R × Rn−1, we are

given vector fields,V1(t), . . . , Vk(t), and there are smooth functionsaij (t), such that
∂Vi/∂t = ∑

aijVj . Does this imply that the space generated by{V1(t), . . . , Vk(t)} is
independent oft (i.e. it is parallel along thet-axis)?

This is clear in the casek = 1, that is, if a vector fieldV (t) satisfies a relation
∂V/∂t = a(t)V (t), for a(t) continuous, thenV (t) has a parallel direction, and ifV (t)
vanishes somewhere then it vanishes everywhere. Indeed,e(t) = V/|V (t)| is parallel
where it is defined, that is, whereV (t) 6= 0. Now, if for example zero is a boundary point
of the set whereV (t) = 0, then, on a semi-open interval, say[0, ε[, we haveV (t) = f (t)e

(e = e(t)), and thus,f (t) is aC0 non-trivial solution of the equationf ′ = a(t)f (t), with
f (0) = 0, which is impossible.

Next, in the general case, that isk > 1, near a generict , it is possible to write all of the
vector fieldsV1, . . . , Vk as smooth combinations ofr-linearly independent elements, say
V1, . . . , Vr . One then considers the exterior productV (t) = V1(t)∧· · ·∧Vr(t). It satisfies
(near a generic point) a relation∂V/∂t = aV , and is therefore parallel by the first step.

To finish the proof, it suffices to show that the dimension of the space generated by
theVi(t) is constant. This dimension equals the rank of the matrixX = (xij )i≤k,j≤n,
defined byVi = ∑

j xij ej , where(ei)1≤i≤n is the canonical basis ofRn. We have,
∂Vi/∂t = ∑

j (∂xij /∂t)ej . On the other hand,∂Vi/∂t = ∑
l ailVl = ∑

lj ailxlj ej . Thus
X satisfies the equation (onk×nmatrices)X′ = A(t)X, whereA is thek×k matrix(aij ).
ThusX(t) = R(t)X(0), whereR(t) is thek × k matrix, resolvent of the equation onRk,
Y ′ = A(t)Y (Y ∈ Rk). In particular, the rank ofX(t) does not depend ont .

3.2. Noetherian properties. We will deal here with polynomials (with many
indeterminates) on a ringR which is C0(Y ), the ring of continuous functions on a
topological spaceY , or Ck(Y ), 0 ≤ k ≤ ∞, the ring ofk-differentiable functions on a
subsetY of a smooth manifoldB. (Recall thatf ∈ Ck(Y ), means thatf extends locally
to an element ofCk(B)).

If Y ′ is a subset ofY , there is a restriction homomorphismCk(Y ) → Ck(Y ′), and by
the same way restriction homomorphismsCk(Y )[X1, . . . , Xm] → Ck(Y ′)[X1, . . . , Xm].

This allows us to restrict other associated objects, for example, ifI is an ideal of
Ck(Y )[X1, . . . , Xm], then its restrictionI |Y ′ is the ideal ofCk(Y ′)[X1, . . . , Xm] generated
by the restriction toY ′ of all the elements ofI .

An idealI ofCk(Y ) (orCk(Y )[X1, . . . , Xm]) is locally finitely generated if everyx ∈ Y
admits a neighbourhoodUx such thatI |Ux is finitely generated.
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LEMMA 3.1. Let I1 ⊂ · · · Ij ⊂ · · · be an increasing sequence of ideals inCk(Y ). Then,
there is an open dense setU ⊂ Y over which all of the ideals are locally finitely generated
(that is Ii |U is locally finitely generated, for alli), and the sequence of ideals is locally
stationary (onU ).

Proof. LetUx be a neighbourhood ofx, andI an ideal. We say thatI |Ux is trivial, if either
I |Ux = 0, orI |Ux = Ck(Ux).

Observe that to ensure the existence ofUx , such thatI |Ux equalsCk(Ux), it suffices
thatI contains an elementf such thatf (x) 6= 0.

LetU = {x ∈ Y/there is a neighbourhoodUx of x, such that, for allj , Ij |Ux is trivial}.
By definition,U is open. It is clear, that, overU , the sequence of ideals satisfies the

requirements of the lemma. Therefore, it suffices to show thatU is dense.
Firstly,U is non-empty. Indeed, letj be the first integer such thatIj 6= 0. Then, there

is x ∈ Y andf ∈ Ij such thatf (x) 6= 0, and hence there is a neighbourhoodUx such that
Ij |Ux = Ck(Ux) and, thus (by definition ofj ), we have 0= I1|Ux = · · · Ij−1|Ux , and
Ck(Ux) = Ii |Ux , for all i ≥ j , that isx ∈ U .

To see thatU is dense, suppose the contrary, and consider the open (non-empty
set) Y − U . Restrict everything to it, and conclude, as we have just proved, that its
correspondingU , is non-empty. Therefore, there isx in Y − U , having a neighbourhood
Ux (relative toY − U ), such that all the restrictionsIj |Ux are trivial, but, sinceY − U is
open inY , Ux is a neighbourhood ofx in Y and, therefore, by definition,x ∈ U , which
contradicts our hypothesis. 2

THEOREM 3.2. (Noetherian theorem)Let A = Ck(Y )[X1, . . . , Xm] and leta be anA-
submodule ofAl (l is an integer). Then, there is an open dense setU ⊂ Y , over which,a
is locally finitely generated.

Proof. Firstly, as in the classical case, it suffices to consider the casel = 1, that isa is an
ideal ofA. The proof (in this case), then follows, as for Hilbert’s basis theorem, that is, if
a ringR is Noetherian, thenR[X1, . . . , Xm] is also Noetherian.

The (classical) proof of this theorem is achieved by induction onm (see for example
[8]). Let us recall how the reduction fromR[X1] to R works. One associates to the ideal
a of R[X1], an increasing sequenceIi of ideals ofR, whereIi is the set of elements
appearing as a leading coefficient of an element ofa of degree≤ i. One then arranges a
finitely generating set fora, if one knows that the sequence is stationary, and has at one’s
disposal finite generating sets for eachIi (the number ofi’s in account is finite).

In our case, from Lemma 3.1, the sequence of idealsIi , satisfies the finiteness
requirements, after restricting to an open dense setY ′. Thereforea|Y ′ is finitely
generated. 2
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