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Abstract Geometric problems are usually formulated by means of (exterior) differential
systems. In this theory, one enriches the system by adding algebraic and differential
constraints, and then looks for regular solutions. Here we adopt a dual approach, which
consists of enriching a plane field, as this is often practised in control theory, by adding
brackets of the vector fields tangent to it and, then, looking for singular solutions of the
obtained distribution. We apply this to the isometry problem of rigid geometric structures.

0. Content

In 81 we exhibit a natural class of plane fields for which the accessibility behaviour, as
studied in control theory, possesses, essentially, the same nice properties as in the analytic
case.

In 82, we observe that there is a control theory approach to the local isometry problem
of affine manifolds (e.g. pseudo-Riemannian manifolds), which is dually equivalent, to the
usual differential systems (i.e. partial differential relations) approach. We then apply the
results of 81 to deduce a celebrated corollary of Gromov's theory on rigid transformation
groups.

In fact the developments of 81 suggest how to proceed in order to recover essentially
most of the part of Gromov's theory related to Corollary 2.1, together with some
independent results. However, we will not follow this because our primary goal here is
to be as elementary as possible. Further extensions and applications of our approach will
be developed elsewhere.

1. Control theory
Let P be a smooth plane field of dimensidnon a manifoldN. From an integrability
viewpoint there are two extremal cases, described by the classical Frobenius and Chow's
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theorems, which concern the completely integrable and absolutely non-integrable cases,
respectively.

Let x (N) be the Lie algebra o> vector fields of N, and denote by the Lie
subalgebra generated by smooth vector fields everywhere tangént tcet G be the
‘evaluation plane field'G(x) = {X(x) : X € G} (this is not necessarily a continuous
plane field).

Frobenius’ theorem states that in the ‘degenerate case’ wheasdnvolutive, that is
G = P, thenthrough each point &f passes &af of P thatis a submanifold of dimension
d (the same as that df) which is (everywhere) tangent #®. In contrast, in the ‘generic
case’, whenG = T M, Chow’s theorem says that any pair of points can be joined by
a curve tangent t®. However (unfortunately), it is the intermediate (non-generic and
non-degenerate) situation that one usually meets in geometric and differential problems.

Integrability and infinitesimal integrability domaingn searching leaves, let us ‘naively’
introduce theintegrability domainD as the set of points aV, through which passes a
(germ of a) leaf ofP. This set may behave very badly, for instance, it is agiriori
closed. For this, let us introduce its infinitesimal variant, the ‘involutivity domain’,
D*® = {x € N/G(x) = P(x)}. We callD* theinfinitesimal integrability domaiwof P.
Clearly, D*° containsD, and it is closed since it is the set of points where the dimension
of G equals that of?, that is the dimension af is minimal (obviously, the dimension of

G is lower semi-continuous).

Along D*°, the Frobenius condition is satisfied, and so, one may hope to find leaves
through each of its points, that @ = D*>. However,D* is not,a priori, a manifold,
and we do not yet know a fractal Frobenius’ theorem. Worse, even if we asBtfirie a
submanifold it is not clear thak is tangent to it!

In the analytic case everything works well and there are many ways leading to the
equalityD = D [7]. For instanceD* is an analytic set, and may be thought out as being
a submanifold, and so in order to apply Frobenius’ Theorem to the restriétibf*, one
just has to show thak is tangent ta>>°.

Distributions. However, the most consistent approach to this problem is a generalization
of Frobenius’ theorem in another direction, that of (singuiisjributions (the singularity

is topological and not differential). Recall that’&° distribution A on N is a C*(N)-
submodule ofy (N), the space o€ vector fields onV. For example, a smooth plane
field P is associated with distribution of vector fields tangent to it. Conversely, to a
distribution A, one defines its ‘evaluation plane field’ ty(x) = {X(x)/X € A}. In
general, this determines a discontinuous plane field (i.e. a plane field with non-constant
dimension). One calls a distributigagular if its ‘evaluation plane field’ has a constant
dimension.

A distribution is calledinvolutiveif it is a Lie subalgebra ofy (N). Any distribution
generates an involutive distribution, this is the advantage of generalizing plane fields to
distributions, since the involutive distributions generated by plane fields, are not plane
fields in general, i.e. they are not necessarily regular.

The integrability problemA leaf of a distributionA is a submanifoldS such that along
S the tangent space df coincideswith the evaluation ofA. The distribution is called
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integrableif leaves exist everywhere, i.e. anye N belongs to a leaf. In particular, if
the involutive distributiong generated by a plane fieldl is integrable, then we have in
particular the equalitfp = D>°. Indeed, ifx € D, then itsG-leaf, is a leaf ofP. (In the
generic, but non-interesting casgis integrable, an®> = ).

Obviously, an integrable distribution has the same leaves as its generated involutive
distribution. However, an involutive distribution is not integrable in general (see §2.1
for counter-examples). The integrability problem consists of finding conditions so that
involutive implies integrable. For instance, Frobenius’ theorem says nothing but regular
involutive distributions are integrable.

Finitely generated distributionsA distribution A is calledlocally finitely generatedif

for anyx € N, there is a neighbourhood of x, and a finite familyVy, ..., V; of
vector fields ofA, such that, orU, anyV € A can be written ay = }_ g;V;, where

gi € C*°(U). Regular distributions are locally finitefyeely generated. Conversely, there

are many pieces of evidence leading to speculation that there exists a suitable ‘blowing
up’ manipulation transforming a locally finitely generated distribution to a regular finitely
generated distribution. In any case, Frobenius’ theorem is valid in this context.

THEOREM1.1. (Frobenius’ theorem for finitely generated distributions; R. Hermd@pn [
see §3.1 for an outline of the proof) locally finitely generated involutive distribution is
integrable. In particular, letP be a smooth plane field such that its associated involutive
distribution is finitely generated. Thdn = D>°.

Partially algebraic vector fieldsThe theorem above applies in the analytic case, due to
standard Noetherian facts. We are now going to extend the applicability of the above
theorem to a partially analytic, in fact partially algebraic, situation. The starting point is
to considerpartially algebraicvector fields oriR” x R™. These ar&”*> vector fields of
the form: (x,u) € R" x R™ — (R(x,u), Q(x, u)) such that, forx fixed, R(x, u) and
Q(x, u) are polynomials. In other words, partially algebraic vector fields are mapping:
R" x R™ — R" x R™, with co-ordinates in the rin@*°(R")[ X1, ..., X,,]. Observe that
the bracket of two partially algebraic vector fields is a partially algebraic vector field. That
is, partially algebraic vector fields form a Lie subalgebra.

Let ® be a partially linear (local) diffeomorphism &' x R™, that is® has the form
®(x,u) = (f(x), Ay(u)), wheref : U — U’ is a local diffeomorphism oR", and
A:x €U — Ay € GL(m) is aC*™ mapping.

Observe that partially linear diffeomorphisms preserve the space of partially algebraic
vector fields. (Here one can also consider partially polynomial diffeomorphisms, but for
the sake of simplicity we restrict ourselves to the partially linear case).

Fiberwise algebraic vector fields on vector bundi&ippose thalv — B is a vector
bundle. The above, allows us to defifieerwise algebraic vector fieldsn N. They

form a Lie subalgebra. One can also defiiberwise algebraic plane fieldmndfiberwise
algebraic distributions The involutive distribution generated by a fiberwise algebraic
distribution is fiberwise algebraic. One can also define fiberwise algebraic functions, and
thenfiberwise algebraic setsis zero loci of systems of fiberwise algebraic functions.
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THEOREM1.2. (Integrability)Let P be a fiberwise algebraic plane field on a vector
bundler : N — B. Then, there is an open dense §etC B over whichD = D,
More precisely, the involutive distribution generatedys integrable ont ~1(U).

Proof. Let G be the involutive distribution generated b§. From the previous
discussion, it can be described locally as Rsubmodulel of R"*" whereR =
C®RM[X1, ..., Xm].

Following Theorem 1.1, it suffices to show that over an open densg s&tR", I is
locally finitely generated. This will follow from the Noetherian Theorem 3.2. The intuitive

proof of it is that we have a family/, : x € R"} of R[X4,..., X,,]-submodules of
(R[X1, ..., Xx])"T™. Eachl, is finitely generated and, in a dense open subsBt'othe
cardinality of the generating family df is locally bounded. |

Differential structure ofD. The infinitesimal integrability domaiD>° (and hence the
integrability domainD, if we restrict overU) is a fiberwise algebraic set. Indeed®®
is the set of points where the involutive distributigngenerated byP, has dimension
d (that is the dimension oP). Thus,D* = {x € N/Vi1 A --- A Vg1 = 0 for all
Vi, ..., Vy+1 elements ofG}. Locally D*° is the zero locus of a family of elements of
C®RM[X1, ..., Xn]. The fibersD$® are thus algebraic sets &". In fact, fiberwise
algebraic sets enjoy, in addition, many regularity properties regarding the dependence
onx € B. In local co-ordinates, around a point where the distributiois locally
finitely generatedD> is the common zero locus of a finite sgt, ..., f; of elements
of C*(R"[X4,..., Xn]. However, because we reason here diefand notC), D
equals the zero locus of a single elemgnt Y fiz. This elemeng may be seen as a
map f : R" — R[X1, ..., Xnl<k, the space of polynomials of degreek (f(x) is the
restriction ofg to {x} x R™). More concretely, by definition af*°(R")[ X1, ..., X,;], we
have a representatignix, X1, ... X)) = Z\I\gk g1(x) X!, wherel is a multi-index, then
f(x) is the polynomial with coefficient&; (x)) 7 <«.

Suppose for example that(x) has a unique (real) roat(x) € R™, and thusD*®
is the graph of. Then,z(x) is expressed ‘algebraically’ from the coefficients fofx).
Therefore, D> is the graph of a very ‘tame’ function.

The same idea may be adapted wifén) has infinitely many roots. This may lead to a
stratified structure gD>°, after removing singular fibers. We will restrict our investigation
here to a weak regularity aspect, which will follow from the following general fact.

LEMMA 1.3. Let B be a topological space anfl: B — R[X1, ..., X;u]<k, & cOntinuous
map which associates a polynomijélx) of degree< k, to eachx € B. LetY = {x € B :
f(x) has a (real) root}. ThenY contains an open dense set of its closure.

Proof. Consider the ‘universal’ polynomial
D:(X1,...,Xm, p) eR" xR[X1,..., Xpml<k & p(X1,..., Xpn) €R

(p is a polynomial of degree k on (X1, ..., X;)).

Consider the ‘universal’ algebraic set'1(0) determined byb. Let Z be the projection
of ®~1(0) on R[X4, ..., Xml<k. Itis nota priori an algebraic set, but, almost by
definition, asemi-algebraic set
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One fundamental fact about semi-algebraic sets is that they admit good stratification
(see, for example,1]). In particular, Z is a finite disjoint unionZ = UZ;, whereZ;
arelocally closedsets, that is, there are open sélsin R[Xq, ..., X;y]<k, such that
Z; = Z N O;.

For the lemma, we may assume thais dense inB, we have then to show that
contains an open dense setAfBy continuity, f (B) is contained inZ (which also equals
UZ;). We havey = f~1(2).

If Z itself were locally closed (for example for = 1), thenf ~1(Z) would be open in
B, and we would be done.

We argue as follows in the general case. Eet= f~1(Z;) andA; = f~1(Z;). Then
A; is open inF; (becauseZ; is locally closed). We have® = UF;. One firstly observes
thatU int(F;) is dense imB, where int stands for the interior (this is Baire’s theorem, for the
finite union of closed sets, which is true for all topological spaces). Next, $incelU A;
is dense inB, it follows thatU = U(A; Nint(F;)) is dense inB. MoreoverU is open inB
(sinceA; is open inF;) and is contained it . |

The discussion before the lemma applies to any fiberwise algebraic set (sDEh)as
and therefore leads to the following result.

COROLLARY 1.4. LetS be afiberwise algebraic set &f andY its projection onB. Then
Y contains an open dense subset of its clogure

Fiberwise constructible setdn view of further applications, we need the following slight
generalization of fiberwise algebraic sets. A sulssef N is calledfiberwise constructible
if it can be written as a differencg; — S» of two fiberwise algebraic sety andS,.

Such a set has a structure as nice as that of a fiberwise algebraic set. Indeed,
locally, suppose thatS; and S; are respectively defined by and g elements of
C®@®R"[X1, ..., Xn]. Then, consider the mapping : (x,X) € R x R" — Sy —
(x,X,1/g(x, X)) € R" x R"t1 (hereX = (X41,..., X,»)). Then, the image (S1 — S»)
becomes fiberwise algebraic, since it is defined by the equakipnsg(x, X) —1 =0
andf(x,X) =0.

The above corollary is therefore valid for fiberwise constructible sets.

THEOREM1.5. (Rough structurd)et S be a fiberwise constructible set of and Y its
projection onB. ThenY contains an open dense subset of its clogurén particular if ¥
is dense inB, thenY contains an open dense subseBof

Integrability with constraintsOne is sometimes interested in leaves through points in a
given subseS c N (the plane fieldP is not assumed to be tangent&o although this
usually happens in practice). The following result unifies Theorems 1.1 and1.5 above.

THEOREM1.6. Let P be afiberwise algebraic plane field on a vector bundleN — B,
andS afiberwise constructible subset®f There is an open dense gétC B, over which,
the sets of integrability and infinitesimal integrability points®fin S are equal, that is,
DNS|U=D*®NS|U.

In addition, the projection oD N S|U is a closed (posisibly empty) subsetaf
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Proof. Let U1 be an open dense set given by the integrabilty theorem, Theorem 1.1, thatis
D|Uy = D*®°|U1. OverUi, DN S is fiberwise constructible. Lét; C U be its projection,
and letY; be its closure inU1. From the structure theorem, Theorem 1.5, there is an
open subsel/, of Uy, such that’; containsyY; N Uz, which is in addition dense iff;. In
particularYy N Uz is closed inUs.

We claim thaty = U, U (U; — Y1) satisfies the conditions of the theorem. Inde#d,
is open, and it is dense iii; (and hence irB), sinceY1 N U, is dense inY;. Furthermore,
U NY; = U NY;and hence, oval, the projection of> N S is closed. |

2. The isometry pseudo-group of an affine connection

Fiberwise algebraic objects are abundant in geometry. For instance, a fiberwise algebraic
function on the cotangent bundle of a smooth manifold generates a fiberwise algebraic
Hamiltonian vector field. In particular the geodesic flow of a Riemannian metric is
fiberwise algebraic (being seen on the cotangent as well as on the tangent bundles).

The tautological geodesic plane field of an affine manifdlidre generally, let M, V)

be an affine manifold, that isy is a torsion free connection oW (not necessarily
flat). Its geodesic flow is generated by a fiberwise algebraic vector field. Indeed,
locally, this vector field has the formV : (x, p) = (x1,..., %4, P1,..., pn) € U x

R" = (P, -+ -» P> 2 r},.(x)p,-p,-, s X TR Pip))- (Ther{.f,. are the Christoffel
symbols).

Now, we introduce a generalization of geodesic flows as plane fields on Grassmann
bundles. Letr : Gr?(M) — M be the Grassman bundle @éfplanes tangent td/. The
connection determines a splittirlgGri(M) = V @ H, whereV is the vertical andd
is the horizontal space (given by). For p € Gr¢(M), d,m maps isomorphicallyd,
onto7, M. Lett?(p) be thed-plane contained if7,, which is mapped byi,7 to p (as a
subspace of, M). Thust? is ad-plane field onGr? (M), called thetautological geodesic
plane field onGr¢(M). (We think that this construction must be known, although we have
not found any reference where it is explicitly mentioned, $€dr more details and a
systematic study).

The tautological character of’ is clear. The geodesic adjective is justified by the fact
that, the projection of a leaf af is a (totally) geodesic submanifold of dimensidrin
M. Conversely, ifS is ad-dimensional geodesic submanifold &, then its Gauss lift
x €S — T,S e Grl(M) is a leaf ofr?.

The fiberwise algebraic discussion on vector bundles, extends in a straightforward
way, to projective bundles (i.e. fiber bundles whose fibers are projective spacesin
particular, here, as in the case of the geodesic flow, the tautological planerfielte
fiberwise algebraic. In fact, for the following application, we will immediately come back
to a vector bundle situation.

The pseudo-group of local isometrie. (local) isometry or a (local) affine diffeo-
morphism is a local diffeomorphism o#f, which preservesv. Equivalently, an
affine diffeomophism is a diffeomorphism which sends (parametrized) geodesics to
(parameterized) geodesics. One may also dddiffiee mappingss, not necessarily
diffeomorphic mappings, sending geodesics to geodesics.
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One may naturally construct a product connectogp V on the products x M. If V
is the Levi-Civita connection of a pseudo-Riemannian metrithenV @ V is the Levi-
Civita connection of the product metrgad g (which is the same as the Levi-Civita of the
productg € —g). A curver — (c(t),d(t)) is (a parameterized) geodesic iff both of its
projections — c(t), andr — d(t) are geodesic iM.

Let f : U — V be a smooth map. Its graph Grggh is an-submanifold ofM x M.
One easily sees, from the characterization of geodesidg in M, that f is an affine
mapping, iff Graplif) is a (totally) geodesic submanifold M x M (the proof works as
in the case oR"). In particular, local affine mappings give rise to leaves of the tautological
geodesic plane field” on Gr"" (M x M).

Let Gr*(M x M) consist ofn-planes which are graphs, thatpse Gr(*x,y)(M x M)
iff p is a graph of a linear map, M — T, M (or equivalentlyp projects injectively on
Ty M). Then, a leaf of” trough an element € Gr*(M x M), determines a local affine
mapping.

Observe thaGr*(M x M) is a vector bundle oM x M, the fiber overx, y) being
Hom(TxM — TyM).

To get local affine diffeomorphisms, one considérs™(M x M), the set ofi-planes
transverse to each of the factas x {-} and{-} x M, thatis,p € Grg"xfy)(M x M) iff p
is the graph of an isomorphisfyM — T, M.

We have the following interpretatioiit, y) belongs to the projection of the integrability
domain oft” on Gr**(M x M) iff there is a local affine diffeomorphism sendingo y,
that isx andy have the same orbit under the pseudo-group of local affine diffeomorphisms.

It is easy to se&r** (M x M) as the complement iGr*(M x M) of a fiberwise
algebraic set, and hence in particular, it is an (open) fiberwise constructible set.

COROLLARY 2.1. (Gromov f], see also3]) Let M be an affine manifold. Suppose that
its pseudo-group of local affine diffeomorphisms admits a dense orbit, then, it has an open
dense orbit (that is there is an open dense homogeneous&8t in

Proof. Apply Theorem 1.6 toP = t" on Gr*(M x M), with a constraint se§ =
Gr*(M x M).

Let xo € M, be a point with a dense orbi?g under the affine pseudo-group. The
projection ofS N D containsOy x Og. From Theorem 1.6, the projection 6fN D
contains an open dense $éin M x M. Let (x, y) € U, then the orbitD, of x under the
affine pseudo-group contains the open (non-empty){sétx M) N U of {x} x M. Since
the orbitOg is dense, we hav®y N O, # @, and henc&gy = O, but obviously, an orbit
with a non-empty interior is open, therefafg is open and dense. |

2.1. Some comments

Example.Consider orR” a connectiorV_V° + T, whereV? is the usual flat connection
(that isV2Y = DxY), andT = (T%) is a symmetric tensof R" x TR" — TR".
Suppose thaf is flat at zero, that is, all the partial derivatives of all orders of the functions
Tl’; vanish at zero.
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Consider the tautological geodesic plane fiefdof R" x R". It is easy to see, that
DE.0) = Gr(o®" x R"). If the integrability domairD containsD>, or more precisely,
ng’o), then, in particular, every linear map : R" — R”, will be the derivative of a
local affine (for(R", V)) map F4 fixing zero. Itis easy to see that this implies tiats
very special. Indeed, the existence of non-diffeomorphic affine maps leads to vanishing
relations of the curvature, not only at zero, but also near it.

Other constraintsln the proof of the above corollary, one may add further constraints of
an algebraic nature. For exampleMf is endowed with a pseudo-Riemannian megtic
then one considens-planes ofM x M, which are isotropic with respect to the pseudo-
Riemannian metrig @ —g on M x M. The obtained solutions correspond then to local
isometries of M, g). Observe that the constraint set here is tangent t@nd it is in fact
fiberwise algebraic (not only fiberwise constructible)dn*(M x M), since an isotropic
plane which belongs tGr*(M x M) must belong taGr**(M x M).

Similarly, one may treat the isometry pseudo-group of a unimodular affine structure,
and in general, any algebraic enrichment of the affine structure.

The full Gromov theoremit is the above corollary of Gromov's theory that was used in
the celebrated worlk?].

The full Gromov theorem, that is for non-necessarily topologicaly transitive isometry
pseudo-groups and for general rigid geometric structures was utilizéfj in {he analytic
case. As we have said above, in our approach, there are no integrability or structure
difficulties in the analytic case. In facg][contains a direct approach in the analytic case.

Itis generally admitted that there are no serious difficulties to pass from affine structures
to general rigid (algebraic) structures.

Observe that here, just the idea of affine structures enriched with algebraic constraints
allows us to generalize Corollary 2.1 to a large class of rigid structures (for example that
utilized in the proof of the main result of]).

Now, for affine structures with non-necessarily topologicaly transitive isometry pseudo-
group, the idea of the proof of Gromov's theorem, is to find a submanifold i M,
which, ‘essentially’, contains as an open subset, the projection of the infinitesimal
integrability domain ofc”.

Compactification. Singular isometrie8Ve hope that our approach here provides elements
leading to the analysis of the non-completeness of the locally homogeneous open dense set
U in M (here, by non-completeness, we mean the factlthgt M). IndeedD is naturally
compact byD*°, and there is sometimes strong evidence (as in the Anosov ca&jg thit
the setD*® — D must be empty.

Moreover,Gr**(M x M) is naturally compacted b&r" (M x M). The (new) leaves
of " in this latter space may be interpreted as singular affine mappings, and from another
point of view, as ‘stable laminations’ of (regular) affine mappings.

In fact, compactifications may be defined in the general set-up of control theory of §1.
Indeed, aR” is projectively compactified bR P (and notR P"~1), any vector bundle
N — B with fiber typeR" can be (fiberwise) compactified by a ‘projective’ bundle
N — B, with fiber typeR P". Fiberwise objects oV extend taV, and it seems interesting
to interpret them there.
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Fiberwise algebraic closurel et us try to see, among the integrabilty Theorem 1.1 and the
structure Theorem 1.5, what is the most important for the proof of Corollary 2.1, or, more
exactly, what is the contribution of each of them in this proof. For this, let us consider the
following situation. TakeG, a group of (global) affine diffeomorphisms df. We have a
proper embeddingg, x) € G x M — GraphD,g) € Gr**(M x M). Denote its image
by L. The projection ofL. in M x M is the union of the graphs of all the elementhf
andL itself is nothing but the union of the Gauss lifts of these graphs. For this, let us call
L the graph ofG.

For example, ifG is discrete and infinite, then the projectionlofs a countable union
of graphs. Therefore, from the structure theoréns far from being a fiberwise algebraic
set (although it is closed). It is thus natural to takefthberwise algebraic cIosurEf'b’alg
of L. The structure theorem ensures tﬁglf’alg has a nice projection. However, one needs
to interpret elements cﬁf'b’alg; in other words, one asks, what properties of elements of
pass to its fiberwise algebraic closure? It is the integrability theorem which answers this
question by stating that, away from a nowhere dense set, the new eIemEJquagfare
local isometries.

In other words, the integrability theorem states, essentially, that in contrdsthe
graph of the local isometry pseudo-group is a fiberwise algebraic set. The structure theorem
says that one has won much from the statement of the integrability theorem.

Remark 2.2 Similarly to the above embedding, there is a classical way of breaking the
dynamics ofG (i.e. killing its recurrence, in such a way that the action becomes proper),
by letting it act on the frame bundie — M. To keep everything elementary, compactify

P by seeing it as an open setif the vector bundle with fiber&y, = HomR"” — T, M)

(n = dim M). It is endowed with a principal L (n, R)-action.

Suppose that thé-action onM is topologically transitive, that is, it has a dense orbit.
Then, there is an open dense &ebf M, such that for allp € P, overU, the fiberwise-
algebraic closure oG—.pf'b’alg projects ontoUU. Of course,GL(n, R) permutes these
fiberwise algebraic closures. The stabilizerGiL (n, R) of any cIosureG—.pf'b’aIg, may
be identified to theC>°-algebraic hullof G, as introduced inJ0]. One may define in
a natural wayC*-fiberwise algebraic sets, for any> 0, and findC*-algebraic hulls as
defined by Zimmer, for alt > 0.

3. Proofs
3.1. Sketch of proof of Theorem 1.1Let A be an involutive locally finitely generated
distribution onN. At x € N, we denoteA (x) the evaluation ofA atx.

Letxp € N. To construct a leaf afp, start with a vector fieldy of A, non-singular at
x0, and letg’ be its flow. Suppose thap’)* preserves the evaluation afalong the orbit
¢’ (x0), that is Dyy¢' (A(x0)) = A(¢' (x0)).

Take another vector fieltl; linearly independent ofp, and lety! be its flow. Suppose
that, like ¢’, the flow ' preserves the evaluation @f, then the surface obtained by
saturating they’ -orbit by the flowy’ is tangent toA.

Reiterating the construction, by taking a maximal family of linearly independent similar
vector fields,V, . . ., we would obtain a leaf, provided that we check that each of the flows
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of these vector fields preserves the evaluation\0fSo, let us show this property féf
(the vector fields are indiscernible).

Locally, in some co-ordinate system, we may assine R x R"~1, andVy = 9/0r.
So, Vo generates a translation flow.

Let Vi,..., V; a finite set of generating vector fields of nearxg. Since A is
involutive, [9/07, V;] = dV;/dt € A (here we seé/; as vectorial maps oR"). Write:
aVi/ot = Zlgjgk aijVj.

So, the problem becomes the following, along tkexis (r,0) € R x R*~1, we are
given vector fields,Vi(¢), ..., Vi(r), and there are smooth functions (), such that
aVi/at = Y a;;jV;. Does this imply that the space generated{By(7), ..., Vi(1)} is
independent of (i.e. it is parallel along the-axis)?

This is clear in the casé = 1, that is, if a vector fieldV () satisfies a relation
aV /ot = a(t)V(¢), for a(t) continuous, therV (¢) has a parallel direction, and ¥ (¢)
vanishes somewhere then it vanishes everywhere. Indéad= V/|V(¢)| is parallel
where it is defined, that is, whe#é&(r) ## 0. Now, if for example zero is a boundary point
of the set wher&’ (r) = 0, then, on a semi-open interval, 48y e[, we haveV (1) = f(t)e
(e = e(1)), and thusf(¢) is aCY non-trivial solution of the equatiofi’ = a(z) f(¢), with
f(0) = 0, which is impossible.

Next, in the general case, thatkis> 1, near a generig it is possible to write all of the
vector fieldsVi, .. ., Vi as smooth combinations eflinearly independent elements, say
Vi, ..., V.. One then considers the exterior product) = Vi(t) A--- AV, (¢). It satisfies
(near a generic point) a relati@V /39t = aV, and is therefore parallel by the first step.

To finish the proof, it suffices to show that the dimension of the space generated by
the V;(¢) is constant. This dimension equals the rank of the maXrix= (x;;)i<k, j<n.
defined byV; = Z,,' xijej, where(e;)1<i<, is the canonical basis dk”. We have,
aV;/ot = Zj(ax,'j/at)e./. On the other hand)V; /9t = Zl a1V = le ajxjje;. Thus
X satisfies the equation (Gnx n matrices)X’ = A(r) X, whereA is thek x k matrix (a;;).
ThusX (1) = R(t)X (0), whereR(¢) is thek x k matrix, resolvent of the equation @®f,

Y = A()Y (Y € RK). In particular, the rank ok (1) does not depend an

3.2. Noetherian properties. We will deal here with polynomials (with many
indeterminates) on a ring¢ which is CO(Y), the ring of continuous functions on a
topological space’, or C¥(Y), 0 < k < oo, the ring ofk-differentiable functions on a
subsetr’ of a smooth manifoldB. (Recall thatf € C*(Y), means thaff extends locally
to an element o€*(B)).

If Y’ is a subset of, there is a restriction homomorphisef (Y) — Ck(Y’), and by
the same way restriction homomorphis@&Y)[X1, ..., X,u] = CK(Y)[X1, ..., Xl

This allows us to restrict other associated objects, for examplég,isf an ideal of
CK(Y)[X1, ..., Xn], thenits restrictiod | Y’ is the ideal olC* (Y')[ X1, . .., X,»] generated
by the restriction td’ of all the elements of.

Anideall of CK(Y) (orC¥(Y)[X1, ..., X]) is locally finitely generated if every € Y
admits a neighbourhodd, such that’ |U, is finitely generated.
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LEMMA 3.1. Letl; C ---1; C --- be an increasing sequence of idealgdh(Y). Then,
there is an open dense gétc Y over which all of the ideals are locally finitely generated
(that is I;|U is locally finitely generated, for all), and the sequence of ideals is locally
stationary (onU).

Proof. Let U, be a neighbourhood af, and/ an ideal. We say thdt U, is trivial, if either
[|lU, =0, 0rI|U, = CKUy,).

Observe that to ensure the existencd/gf such that/|U, equaIsC"(Ux), it suffices
that/ contains an element such thatf (x) # 0.

LetU = {x e Y/there is a neighbourhodd, of x, such that, for allj, /;|U, is trivial}.

By definition, U is open. Itis clear, that, ovdy, the sequence of ideals satisfies the
requirements of the lemma. Therefore, it suffices to showtihistdense.

Firstly, U is non-empty. Indeed, lgt be the first integer such thag # 0. Then, there
isx e Yandf e I; such thatf (x) # 0, and hence there is a neighbourh@gdsuch that
I;|U, = Cc*(U,) and, thus (by definition of), we have 0= I1|U, = -+ I;_1|Uyx, and
CckUy) = I;|U,, foralli > j, thatisx € U.

To see thatU is dense, suppose the contrary, and consider the open (non-empty
set)Y — U. Restrict everything to it, and conclude, as we have just proved, that its
correspondind/, is non-empty. Therefore, thereisin Y — U, having a neighbourhood
U, (relative toY — U), such that all the restrictions |U, are trivial, but, sinc& — U is
open inY, U, is a neighbourhood of in Y and, therefore, by definition, € U, which
contradicts our hypothesis. m|

THEOREM3.2. (Noetherian theorenbet A = CK(Y)[X1,..., X,»] and leta be anA-
submodule oft! (I is an integer). Then, there is an open denselset Y, over whicha
is locally finitely generated.

Proof. Firstly, as in the classical case, it suffices to consider thelcasg, that isa is an
ideal of A. The proof (in this case), then follows, as for Hilbert's basis theorem, that is, if
aring R is Noetherian, the®R[ X1, ..., X,,] is also Noetherian.

The (classical) proof of this theorem is achieved by inductiomofsee for example
[8]). Let us recall how the reduction froR[X1] to R works. One associates to the ideal
a of R[X1], an increasing sequendg of ideals of R, where]; is the set of elements
appearing as a leading coefficient of an element of degree< i. One then arranges a
finitely generating set fod, if one knows that the sequence is stationary, and has at one’s
disposal finite generating sets for edglfthe number of’s in account is finite).

In our case, from Lemma 3.1, the sequence of iddalssatisfies the finiteness
requirements, after restricting to an open dense ¥Set Thereforea|Y’ is finitely
generated. |
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