
AAECC 8, 511—537 (1997)

Fast Parallel Algorithms for Matrix Reduction
to Normal Forms

Gilles Villard

LMC-IMAG, B.P. 53, F-38041 Grenoble Cedex 9, France (e-mail: gilles.villard@imag.fr.)

Received: February 29, 1996; revised version: August 29, 1997

Abstract. We investigate fast parallel algorithms to compute normal forms of
matrices and the corresponding transformations. Given a matrix B in M

n,n
(K),

where K is an arbitrary commutative field, we establish that computing a sim-
ilarity transformation P such that F"P~1BP is in Frobenius normal form can be
done inNC2

K
. Using a reduction to this first problem, a similar fact is then proved

for the Smith normal form S(x) of a polynomial matrix A(x) in M
n,m

(K[x]); to
compute unimodular matrices º(x) and »(x) such that S(x)"º (x)A(x)»(x) can
be done in NC2

K
. We get that over concrete fields such as the rationals, these

problems are in NC2.
Using our previous results we have thus established that the problems of

computing transformations over a field extension for the Jordan normal form, and
transformations over the input field for the Frobenius and the Smith normal form
are all inNC2

K
. As a corollary we establish a polynomial-time sequential algorithm

to compute transformations for the Smith form over K[x].

Keywords: Parallel algorithm,NC2
K
, Matrix normal forms, Unimodular matrices,

Similarity matrices.

1 Introduction

The classical problem of computing canonical form of matrices is widely addressed
in the literature and has many applications in various areas. In this paper we deal
with the Frobenius and the Jordan normal forms of matrices over a commutative
field K, and with the Smith normal form over a ring K[x] of univariate poly-
nomials.

For theoretical aspects about the existence and the computation of the normal
forms, the reader may refer to [20, 6]. The forms are well understood if considered
as giving informations about a module decomposition [14]. From a practical
point of view, fast sequential and parallel algorithms are known to compute the
normal forms themselves. The problems of computing the Frobenius and the
Smith form are in class P (sequential polynomial-time problems) and in classes



NC and NC
K
. We refer to [4] for the definitions of the boolean parallel

complexity classNC and to [8] for the arithmetic parallel complexity classNC
K
.

A computational problem with input size n is in NC (resp. NC
K
) under the

boolean (resp. arithmetic over K) model of parallel computation, if for a non-
negative integer k, this problem can be solved by using O(logkn) parallel boolean
(resp. arithmetic) steps and a polynomial number nO(1) of processors.

A number of problems concerning computation of the transformation matrices
have until now not been overcome. Efficient probabilistic solutions have been
given but no deterministic algorithm was known to compute a transformation
for the Frobenius form in NC

K
. The same question was also open for the Smith

form: how to compute unimodular transformations fast and deterministically in
parallel? How to obtain transformations over K[x] even for small fields? Our new
results will strongly rely on previous results in [25, 29] that will be referred to often
throughout this paper.

We will first focus on the problem of computing a transformation for the
Frobenius form. We propose a reduction of this problem to the one of computing
a transformation for the Jordan normal form and we use known solutions for this
latter problem. This will establish a fast parallel deterministic algorithm.

Next we will compute transformations over K[x] for the Smith normal form.
We will see that the problem is somehow equivalent to the one of computing
a transformation for the Frobenius form (see °4.2 and °5.2). Indeed, we compute
unimodular transformations from similarity transformations for an associated
Frobenius form and conversely. This will give a fast parallel and a polynomial-
time sequential solution.

1.1 The Smith and Frobenius Normal Forms

The normal forms we deal with are from the following two theorems of Smith and
Frobenius. In the following the identity matrix of dimension n will be denoted by
I
n
or by I if the dimension can be deduced from the context.

Definition 1.1 A square matrix of polynomials in K[x] is said to be unimodular if its
determinant is a non-zero element in K. It is easily seen that a matrix is unimodular if
and only if it has an inverse over K[x].

Theorem 1.2 If A(x) is a n]m matrix of polynomials of rank r, there exist unimodu-
lar matrices º(x) of dimension n and »(x) of dimension m such that the only non-zero
entries of S(x)"º(x)A(x)»(x) are the first r diagonal entries s

i,i
(x) for 16i6r,

these latter are monic and s
i,i

(x) is a factor of s
i`1,i`1

(x) for 16i(r. ¹he diagonal
form satisfying these conditions is unique.

We call this unique form S(x) the Smith normal form of A(x). Further, p poly-
nomials among the s

i,i
(x) are not units in K[x], say for r!p#16i6r, we will

call them the non-trivial invariant factors of A(x) and denote them by
s
1
(x), . . . , sp(x). The square diagonal submatrix of S(x) consisting of the p non-

trivial invariant factors will be denoted by Sp (x).

Theorem 1.3 If B is a n]n matrix with entries in K, B is similar to a matrix
F (F"P~1BP with P over K) which is block-companion, the polynomials associated
to the companion blocks are the non-trivial invariant factors of xI!B.

This unique form F is called the Frobenius normal form of B.
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1.2 Previous Algorithms and Limitations

We overview the known methods and algorithms before introducing our new
approach.

The first polynomial-time algorithms to compute the Frobenius form has
been independently proposed in [19] and in [24]. They are polynomial-time
in the dimension of the matrix, and also in the coefficient lengths for concrete
fields such as the field of the field of the rationals Q or GF

q
, the finite field

with q elements. These algorithms consist in elimination processes and are
consequently highly sequential. They can be adjusted to compute an associated
transformation matrix over K even for small fields [21, 10]. The n steps of
the elimination process can be avoided by randomization to give Monte-Carlo
or Las Vegas algorithms. The key idea used in [23, 12] is that a random construc-
tion of a transformation matrix leads with high probability to the form. This
approach is proven to be reliable and efficient in [12], where corresponding
sequential and fast parallel (processor efficient) probabilistic algorithms are
given.

Algorithms to compute the Smith normal form has been first proposed for
matrices of integers. Computing the diagonalization by repeated triangulariz-
ations of the matrix and of its transpose has led to the first polynomial-time
algorithms in [5, 18]. Using intermediate banded and bidiagonal matrices instead
of triangular ones, better complexity results are given in [27]. The same type of
diagonalization has been proposed for polynomial matrices [17]; this bounds the
degrees of the polynomials involved during the calculations, but seems to be
inadequate to bound the coefficients of those polynomials in particular over the
rational polynomials.

The first polynomial-time algorithm to compute the Smith form over Q[x]
appeared in [15], it is based on the Chinese remainder algorithm. Subsequently it
has been established in [30] that the form and associated unimodular transforma-
tions can be computed over any ring K[x], with coefficient lengths remaining
polynomially bounded over Q[x]. The algorithm deterministically computes
a conditioning of the matrix so that in one triangularization, the diagonal form is
obtained. The same idea has been applied in [28] over the integers to reduce the
problem to the extended gcd problem, and to compute very small transformation
matrices.

A drawback of this latter method over the polynomials is that a field extension
is needed if K has less than 2dmin Mn,mN#1 elements, where d is the degree of the
polynomials in input, and consequently the unimodular transformations are not
obtained over K[x] but involve elements of the extension. As for the computation
of the Frobenius form, randomization can remove the sequential iterations (suc-
cessive triangularizations). This has been used in [15, 16, 26, 11]. The key idea is
equivalent to the one used for the Frobenius form: after a random transformation
of the input matrix only one triangularization is sufficient with high probability
(randomized construction of the previously seen conditioning). This gives a prob-
abilistic parallel solution for the problem and speeds the sequential methods
themselves.

All the above algorithms are sequential elimination processes that can be
randomized to give fast sequential and parallel solutions. A different approach has
been only recently used for algorithmic purposes. It is based on the following
theorem about characteristic subspaces of a matrix [6].
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Theorem 1.4 ¸et B a n]n matrix with entries in K and let s(x) be its characteristic
polynomial. If s

1
(x) and s

2
(x) are relatively prime such that s(x)"s

1
(x)s

2
(x) then

Kn"kers
1
(B)=kers

2
(B).

If e
1
, e

2
, . . . , e

n1
and f

1
, f

2
, . . . , f

n2
are bases for ker s

1
(B) and ker s

2
(B), let P be the

n]n matrix which columns are the e
i
’s and the f

i
’s in this order, then

P~1BP"C
B

1
0

0

B
2
D

is block-diagonal, the blocks B
1

and B
2

are of dimension n
1

and n
2
.

This fact shows us that provided a factorization of the characteristic poly-
nomial is known, B can be brought into a corresponding special form. This
approach is used in [1] for sequential algorithms over finite fields, using an
irreducible decomposition of the characteristic polynomial. Avoiding the factoriz-
ation step, it can also be used to develop fast algorithms which work over any fields.
See [13] for sequential and [25, 29] for parallel aspects. Introducing the linear
factors x!j

i
, 16i6l, of s(x) and using an arithmetic on algebraic numbers, the

Jordan, the Frobenius and the Smith normal forms can be computed fast in parallel
in a deterministic way. But it was still an open question, even with this approach, to
compute transformation matrices over K for the Frobenius and the Smith form.

1.3 A New Approach

To answer the raised questions about the computation of transformation matrices
over an arbitrary field K both sequentially and in parallel, we propose new
reductions between problems. The paper is organized as follows: we begin at °2
with basic reminders about the Hermite normal form (echelon form of the input
matrix) and the Jordan normal form which will be needed as intermediate forms.
In addition, for computing the Smith form, two applications of the Hermite form
will allow us to focus on square non-singular matrices for the rest of the paper. In
°3 we present an algorithm for computing transformations for the Frobenius form.
We reduce the problem to the computation of transformation matrices for the
Jordan form. This establishes that the problem REDºC¹ION ¹O FROBENIºS
FORM O»ER K (the normal form and a similarity transformation) is in NC2

K
.

Then in °4 and °5, considering Kn as a K[x]-module, we show how the problems of
computing transformations for the Frobenius form over K and transformations
for the Smith form over K[x] can be viewed as equivalent. We solve the former
from the latter and vice versa. From these results we derive an algorithm in °6 and
show that the problem REDºC¹ION ¹O SMI¹H FORM O»ER K[x] (the
normal form and unimodular transformations) is inNC2

K
. This will also establish,

as a corollary, a sequential polynomial-time algorithm which is independent of K.

2 Hermite and Jordan Normal Form: Technical Results

Two intermediate forms will play an important role: the Hermite normal form
— to compute the Smith normal form — and the Jordan normal form — to
compute the Frobenius normal form.
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2.1 Hermite Normal Form Computation

Definition 2.1 Two matrices A(x) and A@(x) of polynomials are said to be right
(resp. left) equivalent if there exist a unimodular matrix »(x) (resp. º(x)) such that
A(x)"A@(x)»(x) (resp. A(x)"º(x)A@(x)). If A(x)"º(x)A@(x)»(x) then A(x) and
A@(x) are said to be equivalent.

The Hermite normal form has been originally developed for square matrices
[20], it is triangular and unique if the matrix is non-singular. We are going to
follow a treatment found in [16] giving the canonical form for right or left
equivalence of arbitrary matrices over a principal ideal domain. For arbitrary
rectangle matrices, only an echelon form can be obtained, which we will also call
the Hermite normal form.

Definition 2.2 A matrix H(x) of rank r is in (right) Hermite normal form if:

— r non-zero columns precede zero columns,
— the tailing non-zero element in each column is monic and of row index

strictly lower than the row indexes of the tailing elements of the following columns,
— in each row which contains the tailing non-zero element of some column, the

entries following that entry are of lower degree.

With such a definition, each matrix in M
n,m

(K[x]) is right equivalent to
a unique matrix in (right) Hermite normal form; associated unimodular trans-
formations are not unique. If H(x) is square and non-singular it is upper-triangu-
lar. Fast parallel algorithms to compute the form are given in [15, 31].

Theorem 2.3 ¹he (right) Hermite normal form H(x) of a polynomial matrix A(x) and
a unimodular matrix R(x) such that A(x)"H(x)R(x) can be computed inNC2

K
. Over

the rationals or finite fields GF
q

this can be done in NC2.

Transposing everything in the above, we can define a left Hermite normal form
with similar properties. With the following corollary we will restrict ourselves to
the case of non-singular square matrices.

Corollary 2.4 Each matrix A(x) in M
n,m

(K[x]) is equivalent to a matrix

I 0 0

0 Hq (x) 0

0 0 0

(2.1)

where Hq(x) is a square non-singular matrix of dimension q in (right) Hermite normal
form and which diagonal entries are at least of degrees 1. One can compute form (2.1)
and associated left and right unimodular multipliers inNC2

K
(NC2 over Q and GF

q
).

Proof. Let r be the rank of A(x). Applying theorem 2.3 twice we compute the left
Hermite normal form ¸ (x) of A(x) and the (right) Hermite normal form of ¸ (x) to
obtain:

A(x)"º
1
(x)C

H
r
(x)

0

0

0D»1
(x)

where H
r
(x) is square of rank r in (right) Hermite normal form. Further, H

r
(x) has

non-zero diagonal entries with say r!q unit ones and in each row which contains
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a unit element on the diagonal, all the other entries are zero. By elementary row
operations every entries above a unit diagonal one can be zeroed. Then by row and
column permutations we can construct an identity submatrix with the r!q unit
diagonal entries, the other entries give Hq (x) and the form (2.1) is obtained. K

In the rest of the paper — unless it is specified — only the (right) Hermite
normal form is considered, which we will simply call the Hermite normal form.

2.2 Jordan Normal Form Computation

We now consider the parallel construction of the Jordan normal form of a matrix
B in M

n,n
(K).

Definition 2.5 Each matrix B in M
n,n

(K) is similar to a unique (up to permutation)
block-diagonal matrix J whose blocks are banded matrices J

k
(j

i
) in M

k,k
(K) of the

form:

j
i

1 0 2

0 j
i

} 0

F } 1

0 2 0 j
i

where j
i
, 16i61, is an eigenvalue of B. ¹his form is called the Jordan form of B.

In general, the exact Jordan normal form cannot be computed, as this involves
finding all roots of the characteristic polynomial. Fortunately, it is well known that
most of the informations given by the form can be computed over an arbitrary
field. Especially, from [25] we know that a symbolic form can be computed fast
in parallel. More precisely, we can compute a symbolic Jordan form in
M

n,n
(K[j3

1
, . . . , j3

l
]): this form gives the structure of J with indeterminates

j3
1
, . . . , j3

l
that take the place of the distinct eigenvalues. Each indeterminate j3

i
is

associated with a polynomial "
i
(x) in K[x], with the understanding that "

i
is

a representation of the corresponding eigenvalue j
i
, i.e. "

i
(j

i
)"0; "

i
(x) is a gener-

alized eigenvalue. The "
i
’s are divisors of the characteristic polynomial of B.

Clearly, this symbolic form is not unique, different choices are possible for the "
i
’s.

Following [16, 25] we only need to distinguish between eigenvalues having Jordan
blocks with different structures. We are going to consider symbolic Jordan forms
corresponding to "

i
’s such that: if there is a dimension k such that j

i
and j

j
do not

have the same number of Jordan blocks of dimension k then "
i

and "
j

are
relatively prime, otherwise the representations are the same.

Theorem 2.6 ¹he problem of computing a symbolic Jordan form in M
n,n

(K
[j3

1
, . . . , j3

l
]) of a matrix B in M

n,n
(K), is in NC2

K
. Over the rationals or finite fields

GF
q

the problem is in NC2. ¹he indeterminates are associated to generalized
eigenvalues, "

i
(x), that are equal if and only if the corresponding eigenvalues have the

same Jordan structure and are relatively prime otherwise. Further, the multiplicity
of each root of "

i
(x) is at least the dimension of the smallest corresponding Jordan

block.

Proof. Up to the time complexity, this is theorem 7 of [25]. As shown there, the
property on the "

i
(x)’s is satisfied by computing a gcd-free basis. Using the
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algorithm in [9] this is done in O (log2n) arithmetic or boolean steps using
polynomially many processors. K

3 A Transformation for the Frobenius Form

From the previous theorem concerning the symbolic Jordan form, we are going to
develop an algorithm to compute a transformation P for the Frobenius form. At
this point, we may emphasize that it seems hard to compute P over K fast in
parallel directly, i.e. without using the Jordan form, for an arbitrary field. Even
though this is probably easy if K is such that polynomial factorization is in NC

K
.

We will need the following result of [29] to compute the form itself.

Theorem 3.1 ¹he problem of computing the Frobenius normal form F in M
n,n

(K ) of
a matrix B inM

n,n
(K) is inNC2

K
. Over the rationals or finite fields GF

q
the problem is

in NC2.

Let us give an idea of our method. Using at first a classical construction [6, 32],
we obtain a transformation matrix involving the eigenvalues (indeterminates
representing them), then a transformation over the input field is computed. For the
former matrix, we begin by computing a transformation ¸ for the symbolic Jordan
normal form of B (lemma 3.4 and lemma 3.5), J"¸~1B¸, then we consider
a transformation M from the symbolic Jordan form to the Frobenius form
(Lemma 3.6), F"M~1JM, and finally we will take P"¸M. We will have to
ensure that P can be obtained over K. This will rely on the particular structure of
¸ and on that of M.

The matrix ¸ is computed conformable to J i.e. the structure of ¸ and the way
the j3

i
appear match the structure of J [13, 24]. Each Jordan block of dimension

k of J is associated to k columns in ¸, the corresponding vectors form a so called
Jordan chain of length k [6]. Note that a matrix is conformable to its symbolic
Jordan normal form, if and only if it is conformable to its ‘‘true’’ Jordan normal
form.

Definition 3.2 Let ¸ in M
n,n

(K[j3
1
, . . . , j3

l
]) be a transformation from B to its

symbolic Jordan normal form, ¸ is said to be conformable to J if:

— to each block J
k
(j3

i
) composed of the columns indexed, for a fixed j

0
, from

j
0
#1 to j

0
#k in J correspond the columns indexed from j

0
#1 to j

0
#k in ¸; the

corresponding k column vectors form a Jordan chain of length k ;
— these columns of ¸ depends only on j3

i
: their entries are elements of K[j3

i
];

— if two indeterminates j3
i1

and j3
i2

are associated to the same generalized
eigenvalue "

i
(x), the entries in the columns of ¸ corresponding to the blocksJ

k
(j3

i1
)

and the entries in the columns corresponding to J
k
(j3

i2
) are polynomials with the

same coefficients.

Example 3.3 Let B and its Jordan normal form be

B"

11/4 7/4 5/4

!1/2 1/2 !3/2

!3/4 !7/4 3/4

,

2 0 0

0 1!J2 0

0 0 1#J2

.
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The three distinct eigenvalues are simple and are thus associated to the same
generalized eigenvalue "(x). Further, since the dimension of the matrix is 3, "(x)
must be the characteristic polynomial x3!4x2#3x#2. A matrix ¸ conformable
to J must have its three columns identical up to the indeterminates. For instance:

J"

j3
1

0 0

0 j3
2

0

0 0 j3
3

,

¸ (j3
1
, j3

2
, j3

3
)"

j3 2
1
!5/4j3

1
!9/4 j3 2

2
!5/4j3

2
!9/4 j3 2

3
!5/4j3

3
!9/4

!1/2j3
1
#3/2 !1/2j3

2
#3/2 !1/2j3

3
#3/2

!3/4j3
1
#5/4 !3/4j3

2
#5/4 !3/4j3

3
#5/4

.

Obviously, one could obtain here a simpler matrix ¸. Anyway, this will not be
possible in the general case since decomposition into primes and even square-free
factorization of polynomials, may not be available over the ground field K. K

As a corollary of theorem 2.6, using nullspace computations over algebraic
numbers [25, 9], an associated transformation matrix ¸ (j3

1
, . . . , j3

l
) in M

n,n
(K

[j3
1

, . . . , j3
l
]) can also be computed. The following classical results are derived

from [6]. Let B*(x) denote the reduced adjoint matrix of x!B:

(x!B)~1"B*(x)/t (x)

where t(x) is the minimum polynomial of B. To construct the Jordan chains giving
the columns of ¸, one can take, up to constants 1/k!, certain linear combinations of
the column vectors of the successive derivatives of B*(x). To ensure the algorithm
works over any field, as done in [7] for the square-free decomposition, we define:

(xn) *k+"Ck
n
xn~k, n, k70.

By linearity, this gives a mapping K[x]PK[x] such that for any polynomial a (x),

(a (x)) *k+"
1

k !

dka

dxk
, k!O0. (3.1)

Lemma 3.4 For each B in M
n,n

(K) a transformation matrix ¸(j3
1
, . . . , j3

l
) for the

symbolic Jordan form, conformable to J, can be computed inNC2
K
. Over the rationals

or finite fields the problem is in NC2.

Proof. We refer to [6] for this construction. Let [ j
1
, j
2
, . . . , j

k
] be k consecutive

columns of a Jordan blockJ
k
(j

i
) of dimension k of J. The corresponding columns

[l
1
, l

2
, . . . , l

k
] of ¸ constitute a Jordan chain of length k associated to j

i
:

(B!j
i
I )l

1
"0, (B!j

i
I)l

i
"l

i~1
, 26i6k. (3.2)

We first focus on the computation of the Jordan chains of length k for any given
k and j

i
, thus working over the algebraic extension K(j

i
). Then we will see that

symbolically the transformation matrix can be computed as announced.
If the successive transforms of the adjoint B* (x), using (3.1) entry-wise, are

denoted by B *k+ :

B *k+(x)"(B* (x)) *k+, k70 (3.3)
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we know [6] that

(B!j
i
I)B *0+ (j

i
)"0, (B!j

i
I)B *i+(j

i
)"B *i~1+(j

i
), 26i6k. (3.4)

We denote by i the length of the longest Jordan chain associated to j
i
.

We first assume k(i, k"i will be a particular case of this general situation.
Let r

k`1
be the rank of B *i~k~1+ (j

i
) and let N

k
(j

i
) be an invertible matrix such that

the first r
k`1

columns of B *i~k~1+(j
i
)N

k
(j

i
) are linearly independent and the others

are null. From (3.4) the last n!r
k`1

columns of B *i~k+(j
i
)N

k
(j

i
) are eigenvectors.

They belong to chains of lengths greater than k [6]. Now, we isolate the one
belonging to chains of length k exactly. If r

k
denotes the rank of B *i~k+, they are

r
k
!2r

k`1
such eigenvectors. They are found by computing a maximal linearly

independent set of vectors in the span of the last n!r
k`1

column ones of
B *i~k+(j

i
)N

k
(j

i
) and linearly independent with respect to the first r

k
columns of

B *i~k~1+(j
i
)N

k
(j

i
). We assume that this is done by computing a transformation

matrix N3
k
(j

i
)"N

k
(j

i
)M

k
(j

i
) such that the columns r

k`1
#1, . . . , r

k
!r

k`1
of

B *i~k+(j
i
)NI

k
(j

i
) satisfy this property. Once these n

k
"r

k
!2r

k`1
eigenvectors

belonging to the chains of length k are obtained, the chains themselves are easily
derived. Indeed, let l

1
be one of these vectors, being the column c

1
of

B *i~k+(j
i
)N3

k
(j

i
), then the remaining vectors [l

2
, . . . , l

k
] of the associated chain

(given by (3.2)) are the c
1
-th columns of B *i~k+(j

i
)N3

k
(j

i
), k!16j61. The set of

the chains constructed this way for all lengths k, 16k6n and all eigenvalues j
i
,

16i6l, give the columns of a transformation matrix from B to its Jordan form
[6]. For k"i, the computation is a particular case of the above construction. The
eigenvectors are directly found to form a maximal linearly independent set of
columns of B *0+ (x)"(B*(x))*0+"B*(x). We compute them using NI i(x) such that
the first r

k
columns of B *0+ (x)Ni(x) are linearly independent. The rest of the chain is

deduced as before.
We now perform the computation symbolically. The Jordan chains are going

to be given by polynomials with equal coefficients for all the roots of a given
generalized eigenvalue "

i
(x). Chains can be constructed for all k and i simulta-

neously, so we can restrict ourselves to a given k and a given "
i
(x). By definition of

the "
i
(x)’s, all their roots are eigenvalues with the same Jordan structure, the ranks

r
k`1

and r
k

are also independent of the choice of the eigenvalue represented by
"

i
(x). We may thus directly apply a parallel arithmetic on algebraic numbers as

introduced in [25]. The eigenvalues are represented as polynomials in
K[x]/("

i
(x)). The matrices B *k+ (x) given by (3.3) are computed in parallel modulo

"
i
(x). Then we apply proposition 4 in [25] (for maximal linearly independent set of

columns and nullspace computation over algebraic numbers) to compute N
k
(x)

and M
k
(x), with the understanding that NI

k
(x) is a suitable matrix for all the roots

of "
i
(x). The r

k
!2r

k`1
target eigenvectors are read off B *k+ (x)NI

k
(x). For the rest of

the chains, we simply pick up the corresponding columns in B *i~j + (x)NI
k
(x),

k!16j61. Substituting the symbol x by the symbols of the symbolic eigen-
values j3

j
which representation is "

i
we get the associated blocks of columns in

¸(jI
1
, . . . , jI

l
). For all the roots of a given generalized eigenvalue, the entries of the

vectors of the associated chains are polynomials with the same coefficients since
this true by construction [25] for the matrices N

k
(x) and M

k
(x). The matrix

¸(j3
1
, . . . , j3

l
) has been computed conformable to the Jordan form. Finally, the

announced complexity is valid since it holds for matrix product, for a maximal
linearly independent set of columns and for the nullspace [25]. K
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We give a complement to this lemma that will be useful to show that the target
transformation P"¸M will be actually computed over K (Theorem 3.7). This will
be proven using Newton’s identities [14] over any fields. The only complication
requiring some extra care will concern computations over fields of characteristic p,
p'0.

Lemma 3.5 ¸et K be a field of characteristic p, p'0. ¸et B and ¸ be as in lemma
3.4 and assume "

i
(x) to be a generalized eigenvalue representing eigenvalues

associated to Jordan blocks J
kp a(jj

) (k71 and a70) which dimensions are only
multiples of pa. In particular we assume that "

i
(x) is a polynomial in xp a i.e. can be

written as "1
i
(xp a). ¹hen, the entries in ¸ (j3

1
, . . . , j3

l
) of the ends of the chains (last

vectors of the Jordan chains) associated to "
i
(x), are polynomials in xp a.

Proof. This is a direct consequence of the previous proof. Let us compute the last
vectors of the chains of length kpa ; again, the longest chains with kpa"k

m
pa"i

will be particular cases. The ends of chain are columns of

E
k
"B *i~1+(x)N

kp a(x)M
kp a(x).

It is sufficient to prove the claim of the lemma respectively for the three matrices of
the above right-hand term.

First consider B *i~1+(x). We view it as a matrix polynomial (of degree d!1 if
the minimum polynomial t (x) is of degree d) :

B *i~1+(x)"(B*(x)) *i~1+"(xd~1) *i~1+#B
d~2

(xd~2) *i~1+#. . . #Bi~1
(3.5)

"Ci~1
d~1

xd~i#Ci~1
d~2

B
d~2

xd~i~1#. . . #Bi~1
.

But since K is of characteristic p, Ci~1
j

"Ckm pa!1

j
is equal to zero if jOk@pa!1 for

some integer k@. If j"k@pa!1 then j!(i!1)"(k@!k
m
)pa and only such powers

may appear in (3.5).
Now, concerning M

kp a (x). We very briefly describe the procedures in [3, 25] to
compute a maximal linearly independent set of columns. Over an abstract field, for
a set of columns B"(B

1
, . . . , B

n
), a maximal set is constructed by taking the

columns j such that rank (B
1
, . . . , B

j~1
)(rank (B

1
, . . . , B

j
). Over algebraic

numbers, this implies some extra work to ensure that the corresponding trans-
formation matrix M

kp a(x) is independent of the root of "
i
(and further that ¸ is

conformable to J ). Indeed, even if the rank of B is the same for all the roots, the
choice of the columns may depend on them. We refer to [25] for a satisfying
solution that consists in weighting the columns by suitable factors of the genera-
lized eigenvalue. These latter factors can be chosen polynomials in xp a as "

i
is. This

yields a matrix M
kp a(x) that satisfies the claimed property.

Finally, for N
kp a (x). The nullspace of a matrix can be obtained [3] by comput-

ing a maximal linearly independent set of columns, then a maximal linearly
independent set of rows and by inverting the corresponding submatrix. As in-
dicated in Lemma 3.4, to compute a chain of length kpa, this operation is done on
B *i~kp a~1+(x) (k(k

m
). For the same reason than for matrix (3.5) only pa-th powers

of x appear in B *i~kp a~1+(x). The property is preserved by matrix inversion and is
true for N

kp a(x). For the longest chains, we just take NI i (x)"Mi(x) and the
property also holds. K
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From [32, 24] we now compute a transformation between a companion matrix
and its Jordan normal form. This will be applied to sub-blocks of the companion
blocks of the target Frobenius form.

Lemma 3.6 ¸et Cs be a n]n companion matrix with characteristic polynomial s (x).
If s (x) is a q-th power of a square-free polynomial of degree l (Cs has l distinct
eigenvalues with the same multiplicity) then the Jordan form of Cs is

J"diag(J
q
(j

1
),J

q
(j

2
), . . . , . . . ,J

q
(j

l
)).

A transformation matrix M in M
n,n

(K[j3
1
, . . . , j3

l
]) from J to Cs is the n]n matrix

(M
q
(j3

i
))l
i/1

where

M
q
(x)"

0 2 0 1 2 Cn~2
q~1

xn~q~1 Cn~1
q~1

xn~q

F

0 1 2x 3x2 2 Cn~2
1

xn~3 Cn~1
1

xn~2

1 x x2 x3 2 xn~2 xn~1

3M
q,n

(K[x]).

(3.6)

We now prove the main fact of this section by first reducing the general case to
the situation of Lemma 3.6, where the Frobenius form is given by a unique
invariant factor, power of a square-free polynomial.

Theorem 3.7 ¸et K be a commutative field. ¹he problem of computing the Frobenius
normal form F of a matrix B inM

n,n
(K) and a similarity transformation P inM

n,n
(K)

such that F"P~1BP is inNC2
K
. Over the rationals or finite fields GF

q
the problem

is in NC2.

Proof. The set of the invariant factors of xI!B, i.e. the Frobenius form of B, is
pre-computed using Theorem 3.1. If F has p companion blocks, let the Jordan
blocks of J be numbered by increasing dimensions, considering that some blocks
are of dimension 0 to have exactly p blocks for each eigenvalue j

i
, 16i6l. We

denote these blocks byJ( j) (j
i
), 16i6l and 16j6p. For any fixed j, 16j6p,

the companion block C
sj
of F associated to the j-th non-trivial invariant factor s

j
(x)

is constructed from the blocksJ( j)(j
i
), 16i6l. Thus each block C

sj
is computed

independently of the others from J; in addition, by Lemma 3.4, the transformation
matrix ¸ can be split into blocks of columns corresponding to each J(j) (j

i
) and

C
sj
. Consequently, we can restrict ourselves to the computation of one of the

blocks of F, let this block be the j
0
-th one and be denoted by C

s
with characteristic

polynomial s (x)"s
j0
(x) the j

0
-th non-trivial invariant factor. By definition, each

distinct eigenvalue of B is associated with a unique Jordan block in C
s
.

To use the particular structure of conformable matrices we split s(x) with
respect to the generalized eigenvalues "

i
(x)’s computed by Theorem 2.6. This leads

us to compute a block-companion matrix FM more refined than the Frobenius form.
Each block of FM will involve eigenvalues belonging to the same generalized
eigenvalues and thus leading to the same dimension of Jordan block in C

s
as

required to apply Lemma 3.6. From a transformation for FM , a transformation for
F will be easily computed. If there is d distinct "

i
(x) we split s (x) in d factors:

s(x)"s
1
(x)s

2
(x). . . s

d
(x)
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where

s
i
(x)"gcd (s(x),"n

i
(x)), 16i6d. (3.7)

All the roots of s
i
(x), 16i6d, are eigenvalues of B with the same Jordan

structure. In addition, from identity (3.7), if it is non-trivial then s
i
(x) has the same

roots as "
i
(x) all with multiplicity the dimension, say q, of the corresponding

Jordan blocks:

s
i
(x)"<

j

(x!j(i)
j

)q

the product being taken on the roots j(i)
j

of s
i
(x). If we compute a transformation

from B to the block-diagonal matrix FM composed of the companion blocks
associated to the s

i
(j)

FM "diag (Cs1
, . . . , Csd

)

a transformation matrix for F is readily obtained: as a cyclic vector it suffices to
take the sum of the cyclic vectors giving the blocks Cs i

. Since ¸ can be split into
blocks of columns corresponding to each Csi

(Lemma 3.4), we can finally restrict
ourselves to the case where F is a companion block associated to a s

i
(x). From

now on, we may thus assume that F is a companion matrix of dimension n and that
its characteristic polynomial is a polynomial s(x) which roots have the same
multiplicity q. Let l@"n/q denote the number of distinct eigenvalues of F. The
current generalized eigenvalue is "

i
(x).

We apply Lemma 3.4 and Lemma 3.6 to compute transformation matrices
¸ and M in M

n,n
(K[j3

1
, . . . , j3

l{
]). A symbolic transformation PI from B to F is

PI "¸M"[¸
q
(j3

1
) D. . . D¸

q
(j3

l{
)]

M
q
(jI

1
)

. . .

M
q
(j3

l{
)

(3.8)

where the n]q matrix ¸
q
(x) is formed by a Jordan chain of length q and where the

q]n matrix M
q
(x) is given by identity (3.6). This construction gives a matrix PI in

M
n,n

(K[j3
1
, . . . , j3

l{
]), it remains to deduce a matrix P in M

n,n
(K). Actually,

substituting the symbols in PI by the eigenvalues leads to such a matrix P in
M

n,n
(K). Indeed, the entries of PI are polynomials of K[j3

1
, . . . , j3

l{
]; simplifying

them using s(x) (s (j3
i
)"0) and using (3.8) we get homogeneous polynomials of the

form

PI
ij
"p(0)

ij
#p(1)

ij
(j3

1
#. . .#j3

l{
)#p(2)

ij
(j3 2

1
#. . .#j3 2

l{
)

#. . .#p(n~1)
ij

(j3 n~1
1

#. . .#j3 n~1
l{

) (3.9)

where the p(k)
ij

’s are constants in K. The indeterminates j3
i
stands for the eigenvalues

j
i
, consequently in the algebraic closure of K, the matrix P with entries

P
ij
"p(0)

ij
#p(1)

ij
(j

1
#. . .#j

l{
)#p(2)

ij
(j2

1
#. . .#j2

l{
)

#. . .#p(n~1)
ij

(jn~1
1

#. . .#jn~1
l{

) (3.10)

is a transformation matrix for the Frobenius form. We denote by &
k

the power
sums of the distinct eigenvalues: &

k
"jk

1
#. . .#jk

l{
, 16k6n!1.

Different cases arise depending on q. Firstly, if qO0 in K — either K is of
characteristic p"0 or gcd(q, p)"1 — then the &

k
’s are elements of K. They can be
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computed as &
k
"&1

k
/q where the &1

k
’s are the power sums of the zeros of s(x)

(themselves obtained by Newton’s identities [14]). And, as claimed, P is a matrix in
M

n,n
(K):

P
ij
"p(0)

ij
#p(1)

ij
&
1
#. . .#p(n~1)

ij
&

n~1
3K. (3.11)

If the division by q is not allowed, we will employ Lemma 3.5. Indeed, we can
restrict ourselves to PI

1
"t[PI

11
, PI

21
, . . . , PI

n1
], the first column vector of PI : we

know the j-th column vector is computed from the first as PI
j
"Bj~1PI

1
, since we

build a transformation for a companion block. Now, from the particular form of
M (Lemma 3.6), PI

1
is the sum of the ends of Jordan chains of length q. It is thus

sufficient to prove that the entries of this sum can be computed as elements of K.
We show that only selected power sums appear and that we can bypass the
problem of the division by q.

Let q"rpb and b be maximal i.e. gcd(r, p)"1. If the assumption of Lemma 3.5
on "i (x) is true with a"b, only multiples of pb appear as exponents in relations
(3.9) and (3.10) for the PI

i1
’s. The involved power sums are the &

kp b’s. Analogously
to the regular case (qO0), we first compute power sums &3

kp b with multiplicity
r from

s
p b (x)"s (x1@p b ), (3.12)

and the &
kp b ’s are derived by division by r. Now, if the assumption on "

i
(x) in

Lemma 3.5 is not true. For some other invariant factor sN (x) involving the same
eigenvalues than s(x) — but with a lower multiplicity qN — we are led to the
previous situation. We have qN "rN pbM , with bM such that gcd(rN , p)"1, and we can
take a"bM . Thus with sN (x) and

s6 (x)"gcd (sN (x),"n
i
(x)),

the involved power sums can be computed as done above using relation (3.12), and
used as in (3.11) to show that the sums of the ends of chain and thus P have entries
in K.

To conclude the proof we have to verify that computations can be done fast in
parallel. We first get the generalized eigenvalues "

i
(x)’s, the invariant factors of

B!xI from Theorems 2.6 and 3.1. Then using (3.7) we simultaneously compute
the s

i
(x) and solve the problem for each corresponding companion blocks. The

transformation PI is obtained using Lemmata 3.4 and 3.6. It remains to compute
the power sums. In the regular case, the sums with multiplicities are computed by
Newton’s identities as shown in [2]. For the general case, one can first search for
an exponent bM to apply Lemma 3.5. This can clearly be done in O (log n) poly-
nomial divisions between the s

i
(x)’s having the same roots but with different

multiplicities. For concrete fields such as the rationals or finite fields, the problem
is in NC2 since the algorithm is a fixed number of solutions of problems in NC2.

K

Example 3.8 We take the data of example 3.3 and follow the proof above. We have
seen that the unique generalized eigenvalue, s (x)"s

1
(x)"x3!4x2#3x#2, is

the characteristic polynomial of B. The Frobenius normal form F will be a com-
panion block of dimension 3. A transformation matrix ¸ for the Jordan form has
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been given in example 3.3. For M, using Lemma 3.6 we take:

1 j3
1

j3 2
1

1 j3
2

j3 2
2

1 j3
3

j3 2
3

.

Thus — after simplification using s (x) — a transformation for F is:

P"¸M"

&
2
!5/4&

1
!27/4 11/4&

2
!21/4&

1
!6 23/4&

2
!41/4&

1
!33/2

!1/2&
1
#9/2 !1/2&

2
#3/2&

1
!1/2&

2
#3/2&

1
#3

!3/4&
1
#15/4 !3/4&

2
#5/4&

1
!7/4&

2
#9/4&

1
#9/2

where &
1
"j

1
#j

2
#j

3
"4 and &

2
"j2

1
#j2

2
#j2

3
"10. Consequently,

P"

!7/4 1/2 0

5/2 1 4

3/4 !5/2 !4

is such that

F"P~1BP"

0 0 !2

1 0 !3

0 1 4

is the Frobenius normal form of B. K

4 K [x]-Modules for the Smith and the Frobenius Forms

This section is intended to point out the correspondence between transformations
for the Frobenius normal form of a constant matrix and transformations for the
Smith normal form of a polynomial matrix. This will lead, at °5, to a reduction of
the latter problem to the former and, at °6, to an algorithm based on this reduction
and on Theorem 3.7.

Our approach is an extension of the one in [22] for computing normal forms of
matrices. In [22], following the classical approach [14], the author computes
transformations for the Frobenius normal form of a constant matrix, from trans-
formations for the Smith normal form of an associated polynomial matrix. The
algorithm is based on a similar correspondence to the one between the Frobenius
form of a matrix B and the Smith form of xI!B (Theorem 1.3). This section is
intended to recall these basic facts. Then we will show that the converse approach
also is valid, even if it is less usual, to compute transformations for the Smith form
from transformations for the Frobenius one.

4.1 Kn as K[x]-module

The following presentation is derived from standard results in ([14], °3.10), the
proofs are omitted. Let B be a matrix in M

n,n
(K). We make Kn with basis (u

i
),
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16i6n, a K[x]-module by defining the action of x on a vector v3Kn as:

xv"Bv.

If we call N
0

the submodule of K[x]n generated by the columns of xI!B, N
0

is
the kernel of p

0
:

G
p
0
: K[x]nPKn

p
0
( t[g

1
, g

2
, . . . , g

n
])"g

1
u
1
#g

1
u
2
#. . .#g

n
u
n

and Kn is isomorphic to K[x]n/N
0
. The following diagram commutes:

K[x]n/N
0

p0
P

Kn

Bx BB
K[x]n/N

0
p0
P

Kn

Now we consider a matrix H(x) equivalent to xI!B with H(x)"º
0
(x)

(xI!B)»
0
(x) where º

0
(x) and »

0
(x) are invertible inM

n,n
(K[x]). We may assume

(corollary 2.4) that H(x) has the block-diagonal form:

C
I
n~q

Hq (x)D (4.1)

where I
n~q is the identity matrix of dimension n!q and Hq (x) is in Hermite

normal form of rank q, with diagonal entries of degrees d
1
, . . . , dq at least 1. As

previously, if N is the submodule of K[x]q generated by the columns of Hq(x), since
H(x) and xI!B are equivalent, N is isomorphic to N

0
and we can make Kn

isomorphic to K[x]q/N. To construct a corresponding commuting diagram we
choose as the natural K-basis of K[x]q/N:

(1, 0, . . . , 0), (x, 0, . . . , 0), . . . , (xd1~1, 0, . . . , 0), . . .

. . . , (0, 0, . . . , 1), (0, 0, . . . , x), . . . , (0, 0, . . . , xdq!1), (4.2)

and we denote by p the coordinate function with respect to this basis. We have:

K[x]q/N p
P

Kn

Bx BC
K[x]q/N p

P
Kn

(4.3)

where, by construction, C is in polycyclic or shift-Hessenberg form. More precisely,
C is block upper triangular with q diagonal blocks. If the entries of Hq (x) are
denoted by:

h
i,j

(x)"a(j )
i,0
#a (j )

i,1
x#. . .#a(j )

i,di~1
xdi~1, 16i(j6q

h
i,i

(x)"a(i)
i,0
#a (i)

i,1
x#. . .#a(i)

i,di~1
xdi~1#xdi, 16i6q,

the diagonal blocks C
i,i

of C are the companion blocks associated to the h
i,i

(x); the
upper diagonal blocks C

i,j
have non-zero entries only in their last column which is

equal to t[!a( j )
i,0

,!a( j )
i,1

, . . . , !a( j )
i,di~1

].
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We can do the same thing for the submatrix Sp(x) of the Smith normal form of
xI!B formed by the p non-trivial invariant factors,

S (x)"C
I 0

0 Sp(x)D
the associated polycyclic form is the Frobenius normal form F of B. If we let N@ be
the submodule of K[x]p generated by the columns of Sp (x), the diagram (4.3)
becomes:

K[x]p/N@ p{
P

Kn

Bx BF
K[x]p/N@ p{

P
Kn

(4.4)

where p@ denotes the coordinate function according to the natural K-basis of
K[x]p/N@:

(1, 0, . . . , 0), (x, 0, . . . , 0), . . . , (xd
1
!1, 0, . . . , 0), . . .

. . . , (0, 0, . . . , 1), (0, 0, . . . , x), . . . , (0, 0, . . . , xdp!1) , (4.5)

where the d
i
’s are the degrees of the non-trivial invariant factors s

i
(x), 16i6p.

We summarize in the following Lemma.

Lemma 4.1 ¸et Hq(x) be a matrix inMq,q (K[x]) of full rank which determinant is of
degree n. ¼e assume Hq (x) to be in Hermite normal form with diagonal entries of
degrees at least 1. ¸et S (x) be its Smith normal form, S (x)"º(x)Hq(x)»(x), and
Sp(x) be the submatrix of S (x) given by the p non-trivial invariant factors. ¹he
columns of Hq (x) and of Sp (x) generate the submodules N and N@ of K[x]q and K[x]p.
¹o Hq (x) and Sp (x) we respectively associate matrices C and F in M

n,n
(K): C has

polycyclic form and F has Frobenius form. ¹hen the following K[x]-module isomor-
phism diagram commutes:

K[x]q/N /
u

P
K[x]p/N@

Bp Bp {
Kn p~1

P
Kn

(4.6)

where /
u
is the restriction of the isomorphism associated to º(x) and P is invertible in

M
n,n

(K) and satisfies F"P~1CP. ¹he isomorphisms p and p@ are the coordinate
functions with respect to the bases

(1, 0, . . . , 0), (x, 0, . . . , 0), . . . , (xd
1
!1, 0, . . . , 0), . . . , (0, 0, . . . , xdq~1)

(1, 0, . . . , 0), (x, 0, . . . , 0), . . . , (xd
1
!1, 0, . . . , 0), . . . , (0, 0, . . . , xdp~1)

of K[x]q/N and K[x]p/N@.

Proof. Combining diagrams (4.3), diagram (4.4) and S (x)"º(x)Hq(x)»(x) leads to
the diagram (4.6) with p and p@. Taking P"p °/~1

u ° p@~1, we have:

P (xu)"xP(u), u3Kn, i.e. PFu"CPu,
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and,

F"P~1CP

as announced. K

We notice that only º(x) plays a role in the above construction, Hq(x) and S (x)
can be considered up to a unimodular matrix »(x). We also remark that from
P only /

u
, the restriction of the isomorphism associated to º(x) from K[x]q/N to

K[x]p/N@, can be directly computed. We will need a ‘‘completion phase’’ to recover
a satisfying matrix º(x) from /

u
(see °5). Now we assume the assumptions of

Lemma 4.1 are satisfied. We first look at the information given by diagram (4.6)
about the relations between the matrices P~1 and º(x) and we compute P~1 from
º(x).

4.2 From º(x) to a transformation for the Frobenius normal form

To compute the columns of P~1 from º(x), let us take Kn with the canonical basis
rewritten as

(c(0)
1

, . . . , c(d1!1)
1

, . . . , c(0)q , . . . , c(dq~1)q )

and let

(e(0)
1

, . . . , e(d1!1)
1

, . . . , e(0)q , . . . , e(dq~1)q )

denotes the basis (4.2). For i, 16i6q, and j, 06j6d
i
!1, we have:

P~1c(j )
i
"(p@ °/

u °
p~1)c( j )

i
"(p@ °/

u
)e ( j )

i
"(p@ °/

u
) (xje(0)

i
)

"x j (p@ °/
u
)e(0)

i
"xjp@º

i
(x)"xjºM

i
"FjºM

i

where º
i
(x) is given by the vector º(i)(x) formed by the last p entries of the i-th

column of º(x), and ºM
i

is the image of º
i
(x) under p@. More precisely, as

a representative º
i
(x) of the class Mº(i)(x)#N@N, one can take the unique element

of the class for which the degree of the numerator of each entry of S~1p (x) º
i
(x) is

less than the degree of the denominator polynomial. It can be computed by finding
the polynomial matrix Q(x) such that:

º(i)(x)"Sp(x)Q(x)#º
i
(x). (4.7)

It can be easily seen that this consists in reducing each entry of º(i)(x) modulo the
entry of Sp(x) with the same row index. Since p6q, invariant factors are non-
constant: only the last p rows of º(x) are involved in computing P~1 (the others
are zeroed by the reduction modulo Sp(x)).

From the above identities and applying p@ column-wise, we express P~1 by:

P~1"p@ A[º(1)(x), . . . , xd
1
!1

º(1)(x), . . . , º(q)(x), . . . ] mod

s
1
(x)

. . .

sp(x) B .
Equivalently, let the entries of the last p columns of º~1(x) be denoted by u( j )

i
(x),

16j6p and 16i6q, then from [14] we know that p cyclic vectors P
j
to build
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P are given by:

P
j
"u( j )

1
(x)c(0)

1
#. . .#u( j )q (x)c(0)q , 16j6p. (4.8)

These relations can be easily used to compute a transformation P for the
Frobenius form, once a transformation º(x) for the Smith form is known. This has
been used in [22].

Example 4.2 Let S
2
(x) (q"p"2) the Smith normal form of H

2
(x) be given by:

S
2
(x)"º(x)H

2
(x)»(x)

"C
1 0

2x!x2 1D C
x2!1 x#1

0 x2!x!2D C
!1 !1

x x!1D
"C

x#1 0

0 (x!2) (x2!1)D .

To H
2
(x) we associate the matrix C in polycyclic form:

C"

0 1 0 !1

1 0 0 !1

0 0 0 2

0 0 1 1

.

Looking at the degrees of the diagonal entries of C(x), for K-basis of K[x]q/N we
take (1, 0), (x, 0), (0,1), (0, x). A transformation P~1 is constructed from the columns
º(1)(x), xº(1)(x), º(2)(x) et xº(2)(x) reduced modulo the columns of S(x):

P~1"p@ A C
1

2x!x2

x

2x2!x3 K
0 0

1 x D mod C
x#1

x3!2x2!x#2D B
thus,

º (x)"C
1

2x!x2 K
0

1 D % P~1"

1 !1 0 0

0 2 1 0

2 !1 0 1

!1 0 0 0

.

The Frobenius form F of C satisfies:

F"P~1

0 1 0 !1

1 0 0 !1

0 0 0 2

0 0 1 1

P"

!1 0 0 0

0 0 0 !2

0 1 0 1

0 0 1 2

.

The matrix P~1 is completely determined by the choice of º(x). K
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5 Transformations for the Smith Normal Form

We still assume that matrices are as in Lemma 4.1. Now, the problem is to
compute a transformationº(x) for the Smith form from a transformation P for the
Frobenius form. As underlined previously, only /

u
, the restriction of the isomor-

phism associated to º(x) from K[x]q/N to K[x]p/N@ is known. This will readily
give us matrices ºM p,q (x) and Mp,q (x) in Mp,q (K[x]) such that

ºM p,q (x)Hq(x)"Sp (x)Mp,q(x).

Then, ºM p,q (x) will be completed and modified to give a unimodular matrix º(x).

5.1 Partial Construction

As seen above (identity (4.7)), we choose as representatives for the elements of
K[x]q/N (resp. K[x]p/N @ ), elements of K[x]q (resp. K[x]p) taken modulo Hq (x)
(resp. modulo Sp(x)). Let (e

1
, . . . , eq) and ( f

1
, . . . , fp) denote the constant vectors

of the bases (4.2) and (4.5), they are minimal sets of generators of K[x]q/N and
K[x]p/N @ . Using diagram (4.6) and /

u
"p@~1 ° P~1 ° p we compute the matrix

ºM p,q (x)"[/
u
(e

1
), . . . , /

u
(eq)]3Mp,q (K[x]). (5.1)

With the chosen representation of the elements of K[x]q/N , ºM p,q (x) is well defined.
Since /

u
is an isomorphism and since the p vectors ( f

1
, . . . , fp) generates

K[x]p/N @, the rank of ºM p,q (x) is p. By construction, any column of Hq (x) is sent,
under the homomorphism associated to ºM p,q(x): K[x]qPK[x]p, into the module
generated by the columns of Sp (x). Thus there exists a matrix Mp,q(x) in
Mp,q (K[x]) such that

ºM p,q(x)Hq (x)"Sp (x)Mp,q(x). (5.2)

If p"q and ºM p,q(x) is unimodular, we have S(x)"Sp(x), obviously we can take
º(x)"ºM p,q (x). And »(x)"M~1q,q (x) is a satisfying right multiplier.

Unfortunately, when p"q, ºM p,q (x) may be non-unimodular and further, the
generic case is p(q. We show below that ºM p, q (x) satisfies conditions allowing it to
be modified and completed to a correct transformation matrix. The matrices
ºM p,q (x) and Sp (x) are left coprime.

5.2 Completion to a Unimodular Matrix

In the following, ºM p,q (x) has been computing by (5.1). The next proposition will be
proven using two additional Lemmata.

Proposition 5.1 If ºM p,q (x) is defined as in (5.1), then it satisfies (5.2):

ºM p,q(x)Hq (x)"Sp (x)Mp,q(x);

ºM p,q (x) can be completed and modified to give unimodular matrices º (x) and »(x)
such that

º(x)Hq(x)» (x)"S (x)

is the Smith normal form of H (x).

The first Lemma is a trivial construction.
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Lemma 5.2 ¸et ºM p,q (x) be a matrix of rank p in Mp,q(K[x]), with 06p6q. ¸et
[HM p,p (x), 0] be its Hermite normal form. ¹hen there exists a bordering matrix
BM q~p,p(x) in Mq~p,q (K[x]) such that the Hermite normal form of

ºM (x)"C
BM q~p,p (x)

ºM p,q (x) D
is

C
Iq~p
0

0

HM p,p (x)D .

In particular, if HM p,p(x)"Ip , ºM p,q (x) has been completed to a unimodular matrix
º(x)"ºM (x).

Proof. Let R(x) be a unimodular transformation in Mq, q(K[x]) such that

ºM p,q (x)"[0, HM p,p(x)]R(x).

We can take

C
BM q~p,p (x)

ºM p, q(x) D"C
Iq~p
0

0

HM p,p(x)D R.

by construction, BM q~p,p satisfies the Lemma. K

The second Lemma gives a skew Bezout identity. The two considered left
coprime matrices are actually internally coprime following the terminology of [33].

Lemma 5.3 ¼e consider matrices in Mq, q (K[x]). ¸et ºM (x) and S(x) be two left
coprime non-singular matrices, S (x) is assumed to be in Smith normal form, then there
exist a diagonal matrix ¹(x) and a matrix ¼(x) such that

º(x)"¹ (x)ºM (x)#S(x)¼(x) (5.3)

is unimodular.

Proof. Since the matrices ºM (x) and S (x) are left coprime, there exist [20] two
matrices X (x) and ½ (x) such that:

ºM (x)X(x)#S (x)½(x)"Iq . (5.4)

We are going to prove the result in two steps. Firstly, we use the fact that the above
Bezout identity (5.4) on matrix polynomials can be rewritten on well chosen scalar
polynomials. Next, the Bezout coefficients obtained from these latter identities on
polynomials will give target matrices ¹ (x) and ¼(x). We compute the Hermite
normal form H

u
(x) of ºM (x):

ºM (x)"H
u
(x)R(x).
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Let h
1
(x), . . . , hq(x) be the diagonal entries of H

u
(x), the s

1,1
(x), . . . , sq, q(x) are the

invariant factors, (5.4) may be rewritten as:

h
1

] ] ]
0 h

2
] ]

F } ]
0 2 0 hq

RX"

1!s
1,1

y
1,1

!s
1,1

y
1,2

2 !s
1,1

y
1,q

!s
2,2

y
2,1

1!s
2,2

y
2,2

2 !s
2,2

y
2,q

}

!sq, qyq,1 !sq, qyq,2 2 1!sq,qyq,q

.

For all i, 16i6q, let us consider the minor computed with the last q!i#1 rows
and columns of the right-hand side matrix:

h
i

] ] ]
0 h

i`1
] ]

F } ]
0 2 0 hq

rJ
i
"

1!s
i, i

y
i, i

!s
i, i

y
i, i`1

2 !s
i, i

y
i,q

!s
i`1, i`1

y
i`1, i

1!s
i`1, i`1

y
i`1, i`1

2 !s
i`1, i`1

y
i`1,q

}

!sq, qyq, i !sq,qyq, i`1
2 1!sq,qyq,q

.

where rJ
i
denotes the minor computed with the last q!i#1 rows and columns of

RX. Since s
i, i

(x) is a factor of s
j,j

(x) for i6j6q, there exist polynomials yJ
i
(x) such

that:

h
i
(x) (h

i`1
(x) . . . hq (x)rJ

i
(x))"1!s

i, i
(x)yJ

i
(x), 16i6q,

this is simply a Bezout identity showing that h
i
(x) and s

i, i
(x) are relatively prime.

Taking t
i
(x)"h

i`1
(x). . . hq(x)rJ

i
(x), as announced we get the translation of (5.4) on

scalar polynomials:

h
i
(x)t

i
(x)#s

i, i
(x)yJ

i
(x)"1, 16i6q. (5.5)

We now construct the matrices ¹(x) and ¼(x), clearly this can be done with any
Bezout coefficients satisfying (5.5); ¹(x) is the diagonal matrix defined by:

¹(x)"diag(t
1
(x), . . . , tq(x))

and ¼(x) is:

¼(x)"½I (x)R(x)

where ½I (x)"diag(yJ
1
(x), . . . , yJ q (x)). It remains to check that º(x)"¹ (x)ºM (x)#

S(x)¼(x), is unimodular. We have:

º(x)"(¹ (x)H
u
(x)#S (x)½I (x))R (x)

the matrix ¹(x)H
u
(x)#S (x)½I (x) is triangular with diagonal identity, since R(x) is

unimodular so is º(x). K
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We are now ready to prove the proposition.

Proof of Proposition 5.1 A matrix º(x) is constructed by applying Lemma 5.2 and
Lemma 5.3 with ºp,q (x). We essentially need to show that it satisfies a left
coprimeness criterion with S (x).

As for the construction of ºM p,q (x), using diagram (4.6) and /~1
u

"p~1 ° P ° p@ we
compute the matrix

ºM (~1)q,p (x)"[/~1
u

( f
1
), . . . , /~1

u
( fp)]3Mq,p (K[x]).

Since /
u
is an isomorphism, we know that:

n (ºM p,q (x)ºM (~1)q,p (x))"Ip

where n :K[x]pPK[x]p is applied column-wise and associates to a vector the
representative of the corresponding class in K[x]p/N @, i.e. n reduces modulo Sp (x).
Consequently — see (4.7) — there exists a matrix ½p (x) in Mp,p(K[x]) such that:

ºM p,q (x)ºM (~1)q,p (x)#Sp (x)½p (x)"Ip .

Following Lemma 5.2 we consider:

[0, HM p,p (x)]R(x)ºM (~1)q,p (x)#Sp (x)½p (x)"Ip
where HM p,p (x) and Sp(x) are left coprime. This coprimeness remains true for the
matrices diag (Iq~p , HM p,p(x)) and S(x)"diag(Iq~p , Sp (x)). Thus ºM (x) constructed
by Lemma 5.2 and S (x) are left coprime. To finish we can apply Lemma 5.3 to
ºM (x), we get

º(x)"¹(x)ºM (x)#S (x)¼(x).

It remains to prove that º(x) is a transformation matrix for the Smith form. From

ºM p,q(x)Hq (x)"Sp (x)Mp,q (x)

it can be easily deduced that there exist M(x) such that

ºM Hq (x)"S (x)M (x).

Now for º(x),

º (x)Hq (x)"¹ (x)ºM (x)Hq (x)#S (x)¼(x)Hq (x)

"¹ (x)S (x)M(x)#S (x)¼(x)Hq (x)

and using that ¹ (x) and S (x) commute since they are diagonal we obtain:

º(x)Hq (x)"S (x)(¹ (x)M(x)#¼ (x)Hq(x))

"S (x)M@(x).

It is obvious that M@(x) must be unimodular so we can take »(x)"(M@(x))~1.
K

Example 5.4 Let

H
2
(x)"C

x2!1

0

1

x2!x!2D , S
1
(x)"[(x2!x!2)(x2!1)].
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A transformation matrix P for the Frobenius form of the constant matrix C asso-
ciated to H

2
(x) is given by:

F"P~1CP"

!6 2

!1 !5

4 !4

!1 3

!3 0

1 !3

0 1

0 0

0 1 0 !1

1 0 0 0

0 0 0 2

0 0 1 1

]

3
32

9
32

27
32

49
32

0
32

3
32

9
32

27
32

~1
2

~1
2

~3
2

~5
2

~1
4

~3
4

~5
4

~11
4

.

Here, q"2 and p"1. Following (5.1) we get:

ºM
1,2

(x)"[!6!x#4x2!x3 x!3].

Notice that ºM
1,2

(x) cannot be directly completed to a unimodular matrix since the
greatest divisor of its entries is x!3O1. As explained in Lemma 5.2 to complete
ºM

1,2
(x) and in Lemma 5.3 to modify it, we compute a unimodular matrix R(x) for

the Hermite normal form of ºM
1,2

(x):

ºM
1,2

(x)"[0 HM
1,1

]R(x)"[0 x!3] C
x!x2

x!x2#2

1

1D
x!3 is relatively prime to s

2,2
(x), if t

2
(x) and yJ

2
(x) are corresponding Bezout

coefficients, this leads to

º (x)"AC
1

0

0

t
2
(x)D C

1

0

0

x!3D#C
1

0

0

s
2,2

(x)D C
1

0

0

yJ
2
(x)DBR(x)

so in fact we can take º (x)"R(x). The Hermite normal form of º (x)H
2
(x) is

S(x)"C
1

0

0

(x2!x!2) (x2!1)D
that is the Smith normal form of H

2
(x) (here »(x)"I ). K

6 Reduction to Smith Normal Form: The Complexity

We know that a reduction (F, P~1) to the Frobenius form over K is readily
computed from a reduction (S (x), º(x)) to the Smith form over K[x]. Indeed, the
transformation P~1 is computed by reducing º (x) modulo S (x) (see °4.2). Con-
versely, from °5, in addition to P~1, we have used matrix Bezout identities
(reductions to Hermite normal form) to obtain relation (5.3) for the ‘‘lifting’’ of
º(x).

The two problems — computing the Frobenius form and computing the Smith
form — have the same parallel time complexity. In particular, next Theorem
concerning the Smith form of polynomial matrices is ‘‘equivalent’’ to Theorem 3.7
concerning the Frobenius form of scalar matrices by virtue of above remarks.
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Theorem 6.1 ¸et K be a commutative field. ¹he problem of computing the Smith
normal form S (x) of a matrix A(x) of degree d in M

n,m
(K[x]), and unimodular

transformations º (x) in M
n,n

(K[x]) and »(x) in M
m,m

(K[x]) such that
S(x)"º(x)A(x)»(x), is inNC2

K
. Over the rationals or finite fields GF

q
the problem

is in NC2.

Proof. We simply associate to A(x) a constant matrix B which Frobenius form
F gives S (x) and from a transformation P for F (Theorem 3.7) we compute
a transformation º(x) (Proposition 5.1).

We first determine the dimension l of an appropriate matrix B. Let us remind
that if N

A
in the module generated by the columns of A(x), this dimension is the

dimension of K[x]n/N
A

as K-vector space. Applying corollary 2.4 we bring A(x)
into form (2.1):

I 0 0

0 Hq (x) 0

0 0 0

"º
1
(x)A(x)»

1
(x).

It is now sufficient to deal with the regular matrix Hq (x). If Sq(x) is its Smith form
with Sq (x)"º

2
(x)Hq (x)»

2
(x), we have

S(x)"

I 0 0

0 Sq (x) 0

0 0 0

"

I 0 0

0 º
2
(x) 0

0 0 I

º
1
(x)A(x)»

1
(x)

I 0 0

0 »
2
(x) 0

0 0 I

.

We are led to the same matrix form than in (4.1), we choose for B the polycyclic
form associated to Hq(x) by Lemma 4.1. In particular, the dimension l is the degree
of the determinant of Hq(x) which is also the determinant of Sq (x). If A(x) is of rank
r, l is the degree of the greatest common divisor of the r]r non-zero minors of
A(x).

Once B is known, applying Theorem 3.7, we compute a transformation P and
its inverse. Also F and S (x) are known. Then a matrix ºM p,q , residue modulo S(x) of
º

2
(x), is constructed by identity (5.1) and finally unimodular matrices º

2
(x) and

»
2
(x) — and further, º(x) and » (x) — are given by Proposition 5.1.
Computations can clearly be done in NC2

K
. The problem reduces to the

Frobenius normal form computation of the matrix which dimension l is lower
than d min(n, m). The only cost that has not been given yet, is the cost of the lifting
of the residue matrix to get º (x) at Proposition 5.1. This consists in computing the
Hermite normal form H

u
(x) of ºM p,q (inNC2

K
from [15, 31]) and to compute Bezout

identities between the diagonal entries of H
u
(x) and the diagonal entries of S (x)

(using the algorithm in [3]). By reduction to a fixed number of problems in NC2
the problem is in NC2 for concrete fields. K

Example 6.2 We calculate a reduction to the Smith form of

A (x)"

1 0 !2 x

3 x2!1 !5 4x!x3

3x2!2x!6 0 3x!5x2#10 3x3!2x2!6x

x#3 x2!1 !2x!5 x2!x3#4x

.
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By two Hermite normal form reductions (on the left and on the right) we get
H(x)"º

1
(x)A(x)»

1
(x) in form (2.1):

1 0 0 0

0 x2!1 1 0

0 0 x2!x!2 0

0 0 0 0

"

1!x2 !x 0 x

0 1 0 0

!x 0 1 0

!x !1 0 1

]A(x)

2x!5 0 2 !x

!2x 1 0 x

!3 0 1 0

!2 0 0 1

.

Here the K-vector space for B is of dimension l"4, the 2]2 polynomial regular
submatrix H

2
(x) of H(x) is the matrix we have considered at Example 5.4. K

As an obvious corollary we obtain a polynomial-time sequential algorithm to
compute transformations for the Smith form. Since it is valid over any field K, this
result slightly improves the old ones (see °1.2).

Corollary 6.3 For any commutative field K, the proposed algorithm for computing
the Smith normal form of a polynomial matrix A(x) and associated unimodular
transformations º(x) and »(x) over K[x], runs in a polynomial number of operations
in K. Over Q[x] it runs in a polynomial number of bit operations.

Remark 6.4. The same improvement could have been obtained using polynomials
over K, instead of elements in a field extension, to run the algorithm of [30].

Conclusion

We have shown that normal forms of matrices and associated transformation
matrices over the input field, can be computed fast in parallel. The main difficulty
was to avoid, in the outputs, the field extensions used during intermediate stages.

This is to some extent a result for a rather ‘‘unrealistic’’ model of computation:
we have not considered processor counts and communication costs. But this will
be the basis for future works in these directions. In particular it seems that field
extensions should be completely avoided to reach processor-efficiency.

Acknowledgements: Thanks go to referee 1 for text improvements and grammar corrections.
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13. Gómez-Dı́az, T.: Quelques applications de l’e[valuation dynamique. PhD thesis, Université
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