
Intersection types for explicit substitutions

Stéphane Lengrand
�
, Pierre Lescanne

�
, Dan Dougherty

�
,

Mariangiola Dezani-Ciancaglini
�
, and Steffen van Bakel

�

�
École Normale Supérieure de Lyon

46, Allée d’Italie, 69364 Lyon 07, FRANCE
E-mail:

�
Stephane.Lengrand,Pierre.Lescanne � @ens-lyon.fr�

Department of Computer Science, Worcester Polytechnic Institute
Worcester, MA 101609 USA
E-mail: dd@cs.wpi.edu�

Dipartimento di Informatica, Università di Torino,
Corso Svizzera 185, 10149 Torino, Italy,

E-mail: dezani@di.unito.it,	
Department of Computing, Imperial College of Science, Technology and Medicine,

180 Queen’s Gate, London SW7 2BZ, U.K.,
E-mail: svb@doc.ic.ac.uk,

April 15, 2003

Abstract

We present a new system of intersection types for a composition-free calculus of explicit substitutions with
a rule for garbage collection, and show that it characterizes those terms which are strongly normalizing. This
system extends previous work on the natural generalization of the classical intersection types system, which
characterized head normalization and weak normalization, but was not complete for strong normalization. An
important role is played by the notion of available variable in a term, which is a generalization of the classical
notion of free variable.

1 Introduction

An explicit substitutions calculus is a refinement of traditional
 -calculus in which substitution is not
treated as a meta-operation on terms but rather as an operation of the calculus itself. The inspiration
for such a study is the observation that, in the presence of variable-binding, substitution is a complex
operation to define and to implement, so that making substitutions explicit leads to a more pertinent
analysis of the correctness and efficiency of compilers, theorem provers, and proof-checkers. Abadi,
Cardelli, Curien, and L évy [1] and de Bruijn [12] defined the first calculi of explicit substitutions.

Intersection type disciplines originated in [10, 11] to overcome the limitations of Curry’s type assign-
ment system and to provide a characterization of the strongly normalizing terms of the
 -calculus [33].
Since then, intersection types disciplines were used in a series of papers for characterizing evaluation
properties of
 -terms [26, 25, 37, 38, 20, 2, 19, 14].

As discussed in [17] one can see an explicit substitution calculus as an improvement on both the
system of combinators and the classical
 -calculus, since it is a system whose mechanics are first-
order and as simple as those of combinatory logic, yet which retains the same intensional character as
the traditional
 -calculus. Observe that the classical
 -calculus is a subsystem of explicit substitution
systems, defined by the strategy of “eagerly” applying the substitution induced by contracting a � -
redex. In this sense, explicit substitutions calculi are logically prior to classical
 -calculus, and the
study of explicit substitutions represents a deeper examination of the relationship between abstraction
and application.

A fundamental property of classical typed lambda-calculi is strong normalization: no term admits
an infinite reduction sequence. Melliès [30] made the somewhat surprising discovery that strong nor-
malization fails even for simply-typed terms of the Abadi-Cardelli-Curien-L évy calculus.

1

Given the central place that strong normalization occupies in the theory and application of classical
lambda calculus, it is important to study this property in systems of explicit substitutions. Melli és’
result exploits the existence of a composition operator on substitutions, and so there are two obvious
and complementary directions for research. The first is to define classes of reduction strategies in the
original calculus which support strong normalization; a notable example of work in this area is that of
Eike Ritter [34]. The second direction is to investigate calculi in which substitutions are explicit but
composition is absent; the current paper is part of this effort.

Composition-free calculi of explicit substitutions have been studied in [28, 8, 23, 7, 5] among others.
Here we work in the composition-free calculus
�� [8] and a calculus
������ obtained by adding explicit
garbage collection to
�� . In fact, our rule for garbage collection is stronger than the one originally
presented in [8].

Previous work [16, 17] explored some reduction properties of this system using intersection types.
The natural generalizations of the classical type systems were able to characterize the sets of nor-
malizing and head-normalizing terms in terms of typability. But it was shown in [16] that the naive
generalization of the classical system did not characterize the strongly normalizing terms. Typable
terms were strongly normalizing but the converse fails.

Example 1.1 Let
�

be the term
��	�
��� . Consider the terms

� � � �
�������� ���� ����� ��� ��� and� � � ����� ����� � � ��� � �

and notice that
� �	!�" � � . The term

� � is readily seen to be strongly normalizing. But
� � is not

typable in the system # of [16]: it is obtained from the (not strongly normalizing, hence untypable)
term

� � by contracting a � -redex, and such a contraction does not change the typing behaviour of
terms under # . Finding a type system characterizing the strongly normalizing terms was left as an
open problem in [16].

Main results. In this paper we solve the aforementioned problem: we define an extension $ of sys-
tem # which types precisely the strongly normalizing terms. Furthermore, when a universal type % is
added, the resulting system $'& satisfies the same theorems as those in [16] characterizing the weakly
normalizing, head normalizing, and solvable terms. Our claim, then, is that the system presented here
— with or without a universal type — is a robust type system appropriate for analyzing reduction
properties in explicit substitutions calculi.

In fact, we present two different characterizations of strong normalization, in the form of two dif-
ferent type systems. These systems were discovered independently [39, 27]. Each system starts with
the natural generalization of the classical intersection types system to the explicit substitutions calculus
and adds a new typing rule. In one system [39] the new rule essentially takes into account that, by
putting a term of the shape

� � ��� (� – where � does not occur free in
�

– in an arbitrary context,
the free variables of (will never be replaced. Therefore, we can discharge the assumptions used to
type (when we derive a type for

� � ���)(� . For the second system the key insight for the solution
is a new notion, that of available variable occurrence in a term (Definition 2.2). This is a refinement of
the notion of free variable.

The present paper considers both rules and gives for the so obtained system complete proofs, while
[39, 27] lack some proofs.

As a corollary of our proof methods we are able to define a somewhat more general notion of garbage
collection than has been studied in the literature of
�� and show that adding a reduction for garbage
collection does not change the set of strongly normalizing terms.

Explicit substitutions calculi without composition typically enjoy the preservation of strong normal-
ization property: a pure term is strongly normalizing in the presence of explicit substitutions if it is so
under � -reduction [29, 5, 8, 6, 7, 35, 15]. It follows that the classical intersection types system does

2

characterize strong normalization for pure terms. In contrast, the current results provide information
about all terms. Perhaps more significant is the fact that the proofs here are direct, involving reasoning
in the explicit substitutions calculus itself, not passing through the indirection of an argument about

� -reduction. Herbelin [22] has proposed also a direct proof of strong normalization for a simply typed
calculus of explicit substitution which interprets sequent calculus (he restricts attention to simple types
and so does not achieve a characterization of strong normalization). We recommend his introduction
for other arguments on how explicit substitutions give account of the cut rule [18].

Recently we discovered that Jean Goubault-Larrecq [21] proposes in the exercises of his course a
type system with intersection types for (a version with De Bruijn indices of) the calculus of explicit sub-
stitutions
�� introduced in [28]. Each typable term in this calculus is shown to be strongly normalizing,
but the vice versa is not true.

Plan of the paper. Section 2 presents the syntax and reduction semantics of
�� , and in Section 3 we
derive some important technical results about reduction, including the definition of a perpetual strategy
and an inductive definition of the set of strongly normalizing terms. In Section 4 we present the
type system $ and we show the inter-derivability of the two new typing rules we define. In Section 5
we prove that all strongly normalizing terms are typable in system $, and in Section 6 we show the
converse. Finally in Section 7 we verify that the results of [16] extend to system $�& .

Notation. Our notation is consistent with that of [4], to which we refer the reader for background on
the classical
 -calculus. We will use � for

����� � � � � �	� .

2 The calculus
��
2.1 Syntax and available variables

Definition 2.1 The set x of terms with explicit substitutions is defined as follows :

� � (��� � ���
 � � � � � (�� � � ���)(�
A term of the form

� � ���)(� is called a closure. A term which contains no closure is called a pure
term.

In writing terms, we will use the standard conventions for removing brackets, and use the following
abbreviations: � � � � � � � � � � ��� �������� � � � � � � � � � � � �������� � � � (�� � � � � ��� (� � � � ��� � � � (� � �������

We will see in Table 2 another description of the set of terms with explicit substitutions called head-
form taxonomy whereas the above description could be called the natural taxonomy. One defines the
notions of free and bound variable occurrences in a term as usual. But it turns out that in the presence of
explicit substitutions a refinement of the notion of free variable, called available variable occurrence,
is key.

Definition 2.2 The free variables in a term are:

fv �� � � � � �
fv
 � � � � � fv � ��� � � �
fv � (� � fv � ��� fv (�
fv � � ���)(� � � fv � ��� � � � � � fv (�

3

The available variables in a term are:

av �� � � � � �
av
 � � � � � av � ��� � � �
av � (� � av � � � av (�
av � � ���)(� � �

� av � ��� � � � � � av (� � if ��� av � �
av � � � if ���� av � �

A variable occurrence which is not free is called a bound occurrence.

For pure terms the notions of freeness and availability coincide. But availability differs from freeness
in that the available variables of

� � ���)(� , where � is not available in
�

, are exactly those of
�

,
whereas the free variables in any case are those of

�
and (. The intuition is that � is not available just

when the term (disappears in the course of fully applying the substitutions in
� � ���)(� .

Further discussion of the motivation for defining available variable occurrences will be given after we
present our type system. For now we can observe, referring to Example 1.1, that in the term ����� ����� �
the variable � is free, but not available.

It is easy to show by induction on the structure of terms that the available variable occurrences in a
term are a subset of the free variable occurrences.

Lemma 2.3 av � ��� fv � � .

Notice that, actually, the calculus includes two binders, namely
 in
 � � � which binds � in
�

and
also � ��� � � � in

� � ��� (� which binds � in
�

. In what follows we consider terms up to a 	 -conversion.
Throughout this paper, we will assume the Barendregt convention on variables [3] to be fulfilled: no
variable occurs both free and bound. Since available variables are free it follows that we assume that
no variable occurs both available and bound in the same context. The Barendregt convention extends to
judgments
�� � �� (see Definition 4.5) in which variables occurring in the judgment
 are considered
as free and cannot occur bound in the term

�
. Thus a judgment like �� �� ��� � � ��� (� ��� is prohibited

by the Barendregt convention.

2.2 The rules

Definition 2.4 (��� AND �������) We identify the following reduction rules on
�� terms.

 � � � ��� !�" � � ��� � � B �
 � (��� ��� � � !�" � � ��� � � (� ��� � � App �

'��� � ��� ��� � � !�"
���� � � ��� � � � Abs �
� � ��� � � !�" � VarI �
� � ��� � � !�" � VarK �� � ��� � � !�" � �

if ���� av � � gc �
The Barendregt convention on variables plays a major role in the above definition, especially in rule

 Abs � which otherwise would involve the capture of variables. The notion of reduction
�� is obtained
by deleting rule gc � , and the notion of reduction
���� � is obtained by deleting rule VarK � . The rule
 gc � is called “garbage collection”, as it removes useless substitutions. Notice that here we propose a
form of the gc � rule which differs from the similar rules given in [8, 17], in that it uses availability of
the variable instead of freeness. It gives more generally applicable rules.

By induction on reductions one can check that the set of available variables decreases by reducing
terms: clearly it coincides with the set of free variables for all pure lambda terms.

Lemma 2.5 i) If
� !�" (then av � ��� av (� .

4

ii) If � �� av � � , � !�" (and (is a pure term then ���� fv (� .

In contrast with the classical
 -calculus we are considering a rewrite system with several rules,
which in fact interact with each other in interesting ways. For example, there is a critical pair formed
by the rules B � and App � , which is responsible for much of the complexity in analyzing the theory.

Definition 2.6 (
���

) We say, as usual, that
�

is in normal form if
�

is redex free, and write nf � �
if
�

is in normal from.
�

is normalisable is there exists
���

in normal from such that
� !�" ��� , and�

is strongly normalisable if all reduction sequences starting in
�

are of finite length. We use �	�
for the set of strongly normalizing terms under
�� .

3 Generation of
�� , saturated sets, and a perpetual strategy

In this section we show some properties of the set �	� : the only property which is needed for our
characterization result is that �	� is saturated (Theorem 3.4), but we think that the perpetuality of the
defined strategy is by itself interesting.

3.1 An inductive characterization of ��
We first recall a key closure condition of �	� proved in [17].

Lemma 3.1 The set �	� is closed under rule:

 subs �
� ��� ��� � � ���)(��� ��� � � � � ��� �� ��
� � ����(� ��� ��� � � � ��� �� ��

 gen- �'� �

 � � �
 gen-var �

� � � � � � �
� � � gen-B �

� � ���)(� ��

 � � � � (��

 gen-App �
�� � ���)(� � �� � ��� (� ��� � ��� �� ��

���� ��� ��� (� � � ��� �� �� gen-Abs �

���� � � ���)(� ��� � ��� �� ��

���� � ��� ��� (� � � ��� �� ��

 gen-I �
(� � ��� �� ��

� � ��� (� � � ��� �� �� gen-K � � � � ��� �� �� (
� � ��� (� � � ��� �� ��

Table 1: Generation of �	�
Table 1 tells us how the set of strongly normalizing terms can be generated by induction. More

precisely, each rule has an upper part and a lower part. Rule gen-var � has a number (possibly zero) of
terms as upper part. Top-down it is a generation, in that it states that if the upper terms belong to �	� ,
then the lower term belongs to �	� . Bottom-up it is a characterization of a term with respect to some
other “simpler” terms: it says that if the lower term belongs to �	� , then the upper terms belong to ��� .

Proposition 3.2 �	� is generated by the rules of Table 1.

Proof: It is easy to see that for each rule in Table 1, if the lower term belong to ��� then the upper
term(s) belong to �	� . The converse is more delicate.
We only consider two of the rules: gen-I � , because it is typical, and gen-App � , because it uses a
specificity of this set of rules.

5

 gen-I � : Suppose (� � ��� �� �� is in �	� . Let us reason by contradiction. Suppose
� � ���)(� � � ��� �� �� is not in �	� , then there is an infinite reduction starting from this term.
Either this reduction never contracts the left-outermost redex � � ���)(� and there exists an

infinite reduction starting from (or one of the ��� ’s or one of the ��� ’s, then (� � ��� �� �� is not
in ��� , which is a contradiction. Or this reduction is of the form

� � ���)(� � � ��� �� �� "!�" � � ���)(� � � � ��� � �� � ��
!�" (� � � ��� � �� � ��
"!�" � � �

which is a contradiction with the fact that (� � ��� �� �� � �	� .
 gen-App � : Suppose �� � ��� ��� (� � � ��� �� �� is not in �	� , then there exists an infinite reduction. If

the reduction never reduced the redex ���� ��� ���)(� , neither by App � , nor by B � (in which
case � reduces to an abstraction), then there exists an infinite reduction starting from � , or � , or
(or one of the ��� ’s or one of the ��� ’s, then �� � ���)(� � �� � ��� (� ��� � � � �� is not in �	� ,
which is a contradiction. If

�� � ��� ���)(� � � ��� �� �� "!�" �� � � � ��� ���)(� � � � ��� � �� � ��
!�" �� � � ���)(� � � �� � � ��� (� � ��� � � � � �� � �� �

then the looked for contradiction comes from the fact that �� � ��� (� � �� � ���)(� ��� � ��� �� �� is
in ��� . Suppose now that

���� ��� ���)(� � � ��� �� �� "!�" �
'��� � � � � � ��� ���)(� � � � � � � �� � ��
!�" �� � ��� ��� � � � ���)(� � ��� � ��� � �� � �� �

But �� � ��� (� � �� � ���)(� ��� � ��� �� �� is in �	� , hence
�
���� � � ��� ���)(� � � � � ���)(� � ��� � ��� � �� � �� is in ��� , hence
� � � ���)(� � ��� ��� � � ����(� � � � � ��� � �� � �� is in ��� . Therefore by rule subs � (Lemma 3.1),
�� � ��� � � � � � ��� (� � ��� � ��� � �� � �� in ��� , which is a contradiction.

3.2 Saturated sets

In order to define the notion of saturated set we identify one new closure-condition on sets of terms.

 gen-gc �
� � � ��� �� �� (� �	� ����� av � ���� � ��� (� � � ��� �� ��

Definition 3.3 A set closed under the rules subs � , gen-B � , gen-App � , gen-Abs � , gen-I � and
 gen-gc � is said to be �	� -saturated.

Theorem 3.4 (SATURATION OF
���

) The set �	� is saturated.

Proof: Thanks to Lemma 3.1 and Proposition 3.2 we need only show that ��� is closed under the
new rule. To show closure under rule gen-gc � we reformulate the proof of [17] to take into account
the change from fv � � to av � � in the definition of
�� � � . We define an � -multi-context as a term with �
holes in which we can insert � terms, or simply multi-context if � is understood from the context. If��� � � � � � � � � � � is an � -multi-context and

� � � � � � � � � are terms, then the insertions of those terms in��� � � � � � � � � � � is denoted
��� � � � � � � � � � � � � , or

��� � � �� � � for short. We prove the following more general
statement:

6

Let
��� � � � � � � be a multi-context, and (� � � � � � (� � � � � � � � � � � be terms, with � �� av � � � ,

for
� � � . If

� � � � �� � � � �	� and (� � �	� for
� � � then

��� � � � � ���)(� �� � � � �	� �
We consider triples ��� � M �

N
�

where � is a term, M and N are multisets of terms. Let ��� be the
multiset extension [13] of � , the converse of the proper subterm order, and let !�" � be the multiset
extension of the reduction relation
��'� � . The proof is by induction over the following relation:
��� � M �

N
�	� �
� � � M � � N � � if and only if

� !�" � � or
� � � � and M � � M

� �
or

� � � � � M � M
� �

and N !�" � N
� �

In what follows, � will be
� � � � �� � � and !�" will be well-founded out of � by hypothesis; M will be� � � � � � � � � � � ; N will be
� (� � � � � � (� � and its
���� � -reducts. The relation !�" � will be

well-founded since multiset extension preserves well-foundedness. Therefore,
�

is well-founded and
a Nötherian induction on

�
is possible. A remark on cases (iv) and (v) below: in these cases the term

� does not change, only its representation as
� � � � � � � � does. This means we insert the (� ’s at “lower”

positions, allowing us to perform a Nötherian induction.
Assume the induction hypothesis and that

� � � � �� � � � �	� and that (� � �	� for
� � � . Let us prove that��� � � � � ���)(� �� � � reduces only to terms that are in �	� .

i)
��� � � � � ���)(� �� � � !�" � � � � � ���� � ��� (��� � � � (where the

� � � �), then
��� � � �� � � !�" � � � � � ���� � � � and by

induction
� � � � � ��� � ���)(��� �� � � � ��� .

ii)
� � !�" � �� , works also by induction.

iii) (� !�" (�� , works also by induction. Note that this case occurs only when the (� are in �	� .

iv)
� �	� � �� � �� and

� � � ���)(� � !�" � �� � ���)(� � � �� � ���)(� � . Since

� �� � � �� � � � � � � � � �
we have

��� � � � � ���)(� � � � � � � � �� � ���)(� � � �� � ��� (� � � � � � � � � � � ���)(� � � � � �	� by
induction.

v)
� � �
'��� � �� and

� � � ���)(� � !�"
'��� � �� � ��� (� � � .
� � � � � � � � � � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � �

hence
��� � � � � ���)(� � � � � � �
'��� � �� � ���)(� � � � � � � � � � � ��� (� � � � � �	� by induction.

vi)
� � � ��� (� � !�" � � , which is always applicable since � �� av � � � . Since

� � � � � � � � � ��� � � � � � � ��� ��� � � � ��� � � � � � � � � � �
also

��� � � � � ��� (� � � � � � � � � � � � � � � � � ���)(� � � � � �	� by induction.

We have shown that ��� is closed under the rule gen-gc � . This has as a consequence that �	� is
also the set of terms strongly normalizing under
���� � .

3.3 A perpetual strategy

In what follows we define a perpetual strategy, which is an extension to
�� of the strategy defined in [3],
p. 338. It is based on the reduction of perpetual redexes.

Definition 3.5 (PERPETUAL REDEX) For any term not in normal form, we define its perpetual redex.
� The perpetual redex of
 � � � is the perpetual redex of

�
.

7

� The perpetual redex of
� (is :
� (if

� (itself is a redex
the perpetual redex of

�
if
�

is not a normal form
the perpetual redex of (otherwise

� The perpetual redex of
� � ���)(� is :

the perpetual redex of (if
� � � �� � and (is not a normal form

the perpetual redex of
�

if
�

is a closure� � ���)(� otherwise

Definition 3.6 (PERPETUAL STRATEGY) The perpetual strategy is the strategy that reduces always the
perpetual redex. It is denoted by � .

Table 2 gives both the perpetual strategy and a partition of terms according to the head-form taxon-
omy. The right-hand sides of rules perp- �'� and perp-var � give two forms of irreducible terms when
nf � � and �� is empty. Then together with the left-hand sides of the other rules they split the set of
terms into classes that form the head-normal form taxonomy.

 � � � �
 � � � � � if
�

�
� � perp- � �

� (�
� � (� if

�
is not an abstraction and

�
�
��� perp-fun �

� �� � �� � � �� � � �� � if nf �� �� � and
�

�
� � perp-var �

 � � � � (�� �
� � ���)(� �� perp-B �

���� ��� ���)(� � � ��� �� �� � �� � ��� (� � �� � ���)(� ��� � ��� �� �� perp-App �

'��� � ��� ��� (� � � ��� �� �� �
'��� � � ���)(� ��� � ��� �� �� perp-Abs �

� � ���)(� � � ��� �� �� � (� � ��� �� �� perp-I �
� � ��� (� � � ��� �� �� � � � � ��� �� �� � if nf (� perp-K �
� � ��� (� � � ��� �� �� � � � ��� (� � � � ��� �� �� � if (� (� perp-clo �

Table 2: The perpetual strategy and the head-form taxonomy

Since each term contains at most one perpetual redex, the perpetual strategy is deterministic. Note
that, in the case of
�� � � , the perpetual strategy never reduces by gc � , except when gc � is degenerated
into VarK � , which means that in this case the perpetual redex is of the form � � ����(� .

The perpetual strategy is intended to terminate on a term only when the term is strongly normalizing.
This is why it does not reduce a term � � ��� (� by VarK � or gc � when (is not a normal form. Indeed,
if (is not strongly normalising, the perpetual strategy (to be really perpetual) has to reduce (instead
of causing it to disappear.

Theorem 1 The following are equivalent
� � � �	� .
� The perpetual strategy terminates on

�
.

Proof: For the non-trivial direction, examine the inductive characterization of ��� and observe that
when

�
is not strongly normalizing and has the form of the conclusion of one of the inference rules

there, one of the hypotheses of the rule is obtained from
�

by the perpetual strategy.

8

4 The system
�

of intersection types

We will consider intersection types as first defined in [11] with a pre-order which takes the idem-
potence, commutativity and associativity of the intersection type constructor into account.

Definition 4.1 The set of types, ranged over by � � ����� � � � , is inductively defined as follows.

� � � � � ��� � � � � ��� � � � � ��" � �

where � ranges over a denumerable set of type atoms.
The standard pre-ordering � on types is the smallest transitive and reflexive relation such that

� ��� � � � � � �� ��� � � � � � �
if � � � and � � � then � � ��� � �

The pre-order defines the equivalence relation on types :

�	� if and only if � � and � �
In the notation of types, as usual, � takes precedence over " , right-most outer-most brackets will be

omitted, and, since the type constructor � is associative and commutative, we will write
� ��� � rather
than �
� � � � � .

The notion of environment is standard, but defining the union of environments requires some care
for the presence of the intersection type constructor.

Definition 4.2 An environment is a partial assignment from variables to types, where each individual
assignment is written �� � � � . Environments are partially ordered as follows.

��
 � iff �� ��� � � �
 � �
 �� � � � �� � � � �
 and � � � �
By abuse of notation, we write � �
 for �� � � � �� � � � �
 .
 � � is the environment which does not
contain � in its domain and which assigns the same type as
 to the other variables.

Notice that the direction of the ordering � on environments may seem at first somewhat counter-
intuitive: for example, in the case where for each � and � � we have � � � � ,
��
 � means
 �
 � . But
as we will see,
��
 � can be thought of as an extension of � to types.

Definition 4.3
 ���
 � � � �� � � � �'�� ��� � �
 ��� � ��
 � � �� �� � � � �'�� ��� � �
 ��� � ��
 � � �� �� � � ��� � � � �'�� ��� � � �
 ��� �� � � � � �
 � �
 � �� � � � �
 � � � � �� � � � �
For example,

� �� � � � � � � � �� � � � � � denotes
� �� � � ��� � � � � , while

� �� � � � � � � �� � � � � denotes
� �� � � � � � .

Lemma 4.4 �
 ���
 � �
 � and
 ���
 � �
 � .
� If
 � �
 and
 � �
 then
 ���
 � �
 .

Proof: These are routine verifications.

9

As discussed in the introduction, the key of our type assignment are non-standard cut-rules which
allow to forget the context of the minor premise.

Definition 4.5 (TYPE ASSIGNMENT RULES) Type assignments for terms in x forms the system $ de-
fined as follows:

 start � ��� � � �
 �
�� � �� cut �
 � �� � � � � ���
 � (��

 � � � � � (� ���

 " I �
 � �� �� � � � � �

��
 � � � ��	" � " E �
 � � ��	" �
�� (�

�� � (���
�� I �
�� � �
�� � ���

 � � ��
� � �� E �
 � � �� ��� � � � ������� � �
 � � �� �
 drop �
�� � � � � � (�� �� �� av � ���
 � � � � � (� ��� K-cut �
 � � ��� � � (�� �� ��
 �
�� � � � � (� ���

We write
�� � �� if there exists a derivation constructed using the above rules that has this state-
ment as its conclusion.

The type system of [17] is obtained by removing the last two inference rules: the point of view
taken there was that a closure

� � ���)(� should always have the same typing behaviour as the B-redex

 � � � � (which yields it. This is a plausible strategy since B-reduction involves no (immediate)
erasing of sub-terms, even when � is not free in

�
; and indeed the resulting system — in the presence of

a universal type — yields the expected characterizations of head-normalizing and left-most-normalizing
terms. But as we have seen in Example 1.1 this system failed to provide a characterization of the
strongly normalizing terms. This example makes clear that we must allow the type system to distinguish
between certain B-redexes and their contractions.

Perhaps one’s first instinct is to note that in Example 1.1 the input variable of the B-redex in
� � does

not occur free in the function body (i.e., we have a “K-redex” in classical
 -calculus). This suggests
modifying the cut-rule to obtain one which, when typing

� � ���)(� with � not free in
�

, relaxes
the typing hypothesis for (to merely ask that it be typable under some environment. This seems
particularly appropriate since it echoes the hypotheses of the Subject Expansion Theorem in treatments
of intersection types for classical
 -calculus. But such a rule doesn’t work: it is still too restrictive. For
example, the reader can easily check that the term

� � � ����� ����� � � ����� � cannot be typed in such a
system since � � fv ����� ����� � � , but it is clearly strongly normalizing. This example should motivate
our notion of available variable occurrence and the corresponding typing rule drop � .

One can also observe that no premise for � is necessary when typing � in
� � and this leads to the

introduction of rule K-cut � .
A good exercise at this point is to check that the term

� � can be typed in system $. On the other
hand, notice that rule cut � has no side-condition, therefore, when ���� av � � and
�� (�� , one can
freely use cut � or drop � , and when � ��
 and
 � (�� , one can freely use cut � or K-cut � .

The following are some elementary properties of the type system, which enlighten the relations
between the non-standard cut rules.

Lemma 4.6 i) If
 � �
 , � � � � and
 � � ��� then
 � � � ��� � .
ii) If � � av � � , then
 � � ��� implies � �
 .

iii) If � �� av � � , then
 � � ��� implies
	� � � � � � .
iv) If � �� av � � , then
 � � ��� implies
 � �� � � � � ��� for any type .

Proof: By induction on the structure of derivations, with the exception of part (iv) which follows
immediately from parts (i) and (iii).

10

� Before proving part (i) it is useful to make the following observation. Let
���� denote the result

of substituting (in the traditional sense) � for � in
�

, and let
 � � be the obvious extension of this
notion to environments. If
 � � ��� then
 � � � � �� ��� (this follows by a straightforward
induction). Now, in proving part (i) the only non-trivial case is when the last applied rule is
 K-cut � :

 K-cut �
�� � ��� � � (�� � ��
 �
 � � ��� � (� ���
Now, if � did not occur in
 � , the argument would be a simple appeal to the induction hypothesis.
But there is no reason to assume this, so we have to work a little. Let � � be a fresh variable, not
occurring (free) in
 � � � � � , or (. Since
 � �
 we know that � � does not occur in
 . By our
observation about the preservation of derivations under ordinary substitution,
 � � ���� ��� . So by

induction
 � � � � �� ��� � . Thus
 � � � � �� ��� � � (� ��� � by K-cut � . But � � �� ��� � ��(� is 	 -equivalent
with � ��� ��(� , so we are done.

� For part (ii) three cases have to be looked at. The first one is when
�

is � ��� � (� and the
derivation ends with

 cut �
 � � � � ��� � �
�� (��

���� ��� ��(� ��� �

Since � � av � � , by Lemma 2.3, � is free in
�

and by the variable convention and the fact that
� is bound, we get � �� � . By the definition of available variable, � available in

� � � ��� ��(�
means that � � av � � or ��� av (� . In both cases the induction hypothesis yields ���
 . The
other cases are

 drop �
 � � � � � � (�� � �� av � ���
�� � ��� ��(� ��� K-cut �
�� � ��� � � (� � ��
 �
 ��� ��� � (� ���
In the case of K-cut � notice that, by induction, � ��
 implies � �� av � � . So in each case, from
��� av � � we get ��� av � � . We may then conclude, by induction, that � �
 .

4.1 Derivable rules

By Definition 4.5, the rules of system $ are start � , " I � , " E � , �� I � , �� E � , cut � , drop � , and K-cut � .
# ��� is the system obtained from $ by dropping rule K-cut � and �	��# is the systems obtained from
$ by dropping rule drop � . We write
 ��
��� � �� if there exists a derivation with rules in # ��� that
has this as its conclusion. We write
������
 � �� if there exists a derivation with rules in �	��# that has
this as its conclusion.

We will show that these systems have the same typing power as system $, so we can say that just
one of the rules K-cut � and drop � suffices.

Lemma 4.7 i) Rule K-cut � is derivable in system # ��� .
ii) Rule drop � is derivable in system �	��# .

Proof: i) Each application of rule K-cut �

 K-cut �
�� � ��� � � (�� � ��
 �
 ��� ��� ��(� ���
can be replaced by an application of rule drop � , since, by Lemma 4.6 (ii), � ��
 implies
� �� av � � .

11

ii) Consider an application of rule drop:

 drop �
���� ��� � � (� � �� av � ���
 ��� ��� � (� ���
By Lemma 4.6. (iii)
 � � ��� ��� . Then the K-cut � rule yields
 � � � � ��� ��(� ��� . Then by
Lemma 4.6 (iv) we have
 � � ��� � (� � � .

From the above Lemma we easily get:

Theorem 4.8 The sets of derivable judgments in systems $, # ��� , and � � # coincide.

5 Typing strongly normalizing terms

As usual for type assignment systems, we have a Generation Lemma.

Lemma 5.1 (GENERATION LEMMA)

i)
�� � �� if and only if there exists �� ��� � �
 such that � � .
ii)
�� � (�� if and only if there exist � , and � � � � � � � � such that � � ��� � � � � � � , and
 � � ��� � " � and
 � (��� � .

iii)
��
 � � � � if and only if there exist � , and
� � � � �� � � � � such that � � � � " � � � � � � � � � � " � � ��� ,

and
 � �� � � � � � � ��� � whenever
� � � .

iv)
�� � � ����(� �� if and only if either
a) � � av � � , and there exists � such that
 � �� � � � � � �� and
 � (��� , or
b) � �� av � � ,
�� � �� and (is typeable.

Proof: The right-to-left implications immediately follow from the typing rules. The proof of the
vice-versa by induction on derivations is easy. For part (iv) notice that Theorem 4.8 allows us to skip
(K-cut) rule. If the last applied rule is (� I) we can use Lemma 4.6 (i) and rule �� I � .

A minimal requirement of our system is that it satisfies the subject reduction property (SR). We will
show SR for the reduction
�� � � : this gives us SR for
�� for free.

Theorem 5.2 (SUBJECT REDUCTION) If
� !�" (, then
�� � ��� implies
�� (��� .

Proof: By induction on the definition of the reduction relation, ‘ !�" ’. We only show the base cases.
 B � : Then
 �
 � � � � (� , and, by Lemma 5.1 (ii), there exist types �� ��� � � � � � such that � � ��� � � � � � � , and, for all

� � � ,
��
 � � � � � � " � and
�� (� � � . We can assume none of
the � to be an intersection, so, by Lemma 5.1 (iii)
 � �� � � � � � � �� � , and therefore, by rule
 cut � ,
 � � � � � (� � � . So, by rule �� I � ,
 � � � � � (� �� .

 App � : Then
�� � (��� � � � � �� . Let � � ��� � � � � � � where none of the � is an intersection.
By Lemma 5.1 (iv), we have two cases:
�� � av � (� and there exists � such that
 � �� � � � � � (�� and
�� � ��� � : Then ��� av � �

or � � av (� , and, by Lemma 5.1 (ii), for every
� � � , there exists

� � such that
 � �� � � � � � � � � " � and
 � �� � � � � (� � � . Then, by rule cut � ,
 � � � � � � � � � � " � and
 � (� � � � � � � � .
�� �� av � (� ,
 � � (� and there exist

� � � such that
� � � � � � : Then ���� av � � and

� �� av (� . As above, by Lemma 5.1 (ii), there exists
� � such that
 � � � � � " � and
 � (� � � . Then, by rule drop �
 � � � � � � � � � � " � and
�� (� � � � � � � � .

In both cases, by rule " E � , we get
 � � � � � � � � (� � � � � � �� � , so by rule �� I � ,
 � � � � � � � � (� � � � � � �� .

12

 Abs � : Then
��
���� � ��� � � (� �� . Let � � ��� � � � � � � where none of the � is an intersection.
By Lemma 5.1 (iv), we have two cases:
�� � av � � , and there exists � such that
 � �� ��� � �
���� � � and
 � (��� � : By Lemma 5.1

(iii), for
� � � , there exist

� � � � � such that � � � � " � � and
 � �� � � � � � � � � � � � � � � . Then,
by rule cut � ,
 � � � � � � � � � � � (� � � � .

�� �� av � � ,
��
���� � �� and there exist
� � � such that

� � (��� � : As above, there exist� � � � � such that � � � � " � � and
	� � � � � � � � � � � � � . Then, by rule drop � ,
 � � � � � � � � � � � (� � � � .
In both cases, by rule " I � ,
 �
���� � � � � (� � �� � , and, by rule �� I � ,
��
���� � � � � (� � �� .

 VarI � : Then
 � � � � � (� � , and, by Lemma 5.1 (iv) there exists � such that
 � �� � � � � � �� . and
 � (��� . Then, by Lemma 5.1 (i), � � , and, by Lemma 4.6 (i) we get
 � (�� .
 gc � : Then
�� � � � � (� �� and � �� av � � . Then, by Lemma 5.1 (iv) we get
�� � �� .

Normal forms in x are the same as in classical
 -calculus, and the type system $ is an extension
of the standard system of intersection types for classical
 -calculus. Therefore we get for free the
typability of all normal forms. Moreover, we show that
 -free normal forms have arbitrary types: this
also holds in the the standard system of intersection types.

Lemma 5.3 (NORMAL FORMS ARE TYPABLE) Let
�

be a normal form.
i) If

�
is a
 -free and � is a type, then there is an environment in which

�
has type � .

ii)
�

is typable.

Proof: By simultaneous structural induction on
�

.
� If

�
is a variable, both statements hold.

� If
� � � � � � � � � � where

� � � � � � � � � are normal forms, then by induction there are, for� � � ,
 � � � � such that
 � � � � ��� � . Then
 ��� � � �
 � � � � ��� � " � � � " � � " � � � � ��� . So
�

is
typable with an arbitrary type � in a suitable environment.

� If
� �
 � � � � , then by induction (second statement), there are
 and � such that
�� � � ��� .

Then
 � �� � � � � � ��� , where either �� � � �
 or � ��
 and is any type. Hence,
	� � � � ��	" � .

The key property to obtain the typability of all strongly normalizing terms is the preservation of
typability when we expand using the perpetual strategy. This comes as a corollary of the following
more technical theorem.

Theorem 5.4 (SUBJECT EXPANSION) If
�

� (in one step, then
i) if the rule applied in the reduction is not B � :
�� (� �
 � � ���

ii) if the rule applied in the reduction is B � :

�� (���
����
 � � ��� if

�
is a closure

��
 � �
 ���
 � � � � � if
�

is not an abstraction
�� � � �
 � �
 ���
 � � � � � � if

�
is an abstraction

Proof: (i) The proof is by structural induction on
�

. The base case is when
�

is its own
perpetual redex: let us reason by cases on the rule used.
 App � : We assume
 ��� � ����� � � � ����� � �� , and we want to prove
�� � � ��� ����� � �� .

By Lemma 5.1 (ii), there are types � � � � � � � � such that � � ��� � � � � � � , and

�� � � � ����
 � � � ����� � ��� � " � �
 � � � ����� � ��� �
By rule (� I) it suffices to prove that �� � � � ����
 � � � ��� ����� � �� � . If � �� av � � and
� �� av �� � , we apply Lemma 5.1 (iv), which gives
�� � ��� � " � and
 � � � � � , as well as

13

that � is typable. Consequently,
 � � � �� � and finally by rule (drop)
 � � � ��� ����� � � � � If � � av � � or � � av �� � , it suffices to prove

�� � �� ����
 � � � � �� �
 � �� � � �� � � � ��� � " � �
 � �� � � �� � � � ��� �
(which induces by rule (drop)
�� � � ��� ����� � �� �). In each case, we apply Lemma 5.1 (iv)
on both � and � .

– If � � av � � and ���� av �� � , we get � such that
 � �� � � � � � � � � " � and
�� � � � .
Taking � �� to be � , we use 4.6 (iv) on � to get the result.

– If � �� av � � and ��� av �� � , we get � such that
 � �� � ��� � � � � � and
�� � � � . Taking � ��
to be � , we use 4.6 (iv) on � to get the result.

– If � � av � � and ��� av �� � , we get � and � , such that
�
�� � � � ,
�
�� � � � ,
�
 � �� � � � ��� � � � " � and
�
 � �� � ��� � � ��� �

If we set � �� to � � � we get the result.
 Abs � : Suppose

� �
'����� ��� ��� � � and (�
'��� � � ����� � � . By Barendregt’s convention,
� �� av �� � and � �� � ; then � � av � � if and only if ��� av
������ � . We assume
 �
'��� � � ����� � � � , and want to prove
 �
������ ��� ����� � �� . Using Lemma 5.1 (iii), we
have types � � � � � � � � such that � ��� � " � � � � � � � �� � " � ��� and�� � � � ����
 � � � � � � ��� � ����� � � � � By rule (� I) it suffices to prove that
�� � � � ����
��
'����� ��� ��� � � � � � " � . We apply Lemma 5.1 (iv) on
 � � ��� � � � � � ����� � � �
and thereby,

– If � � av � � we get � such that
 � � � � � � � �� � � � ��� �� � and
 � � � � � � � � � � . Since
� �� av �� � is assumed, applying Lemma 4.6 (i) will get
 � �� � � � � � � � � � � � �� � and
�� � � � , whereby we get the result.

– If � �� av � � we get that � is typable and
 � � ��� � � � � �� � as required.
 VarI � : If
�� � ��� , then clearly
 � �� ��� � � � ��� and
 � � � ����� � � � .
 VarK � : Then � is a normal form, and, by Lemma 5.3, � is typable, so if
�� � �� , the rule
 drop � yields
 �)� � ����� � �� .

Now for the induction step, since the environment and the type of
�

are the same as of (, the
proof is easy using the same typing tree.

(ii) Again, the proof is by structural induction on
�

.
 � is its own perpetual redex � : We wish to prove: if
 ��� � ����� � ��� , then
��
 � � �
 ����
 � � �
 � ��� � � ��� .

– If � � av � � , we have ���� � ����
 � �� � � � � � � � � �
�� � ��� � , so
�� � � ����
��
 � ��� ��� � " � �
 � � � � � which entails
 �
 � ��� � � ��� by rule " E � .

– If � �� av � � , then, using Lemma 5.1 (iv), we have
 ��� ��� and ��
 � � � � ����
 � � � ��� � .
From Lemma 4.6. (i), we get
 � �� � � � � � � ��� which yields
 �
 � ��� ��� � " � by rule
 " I � . Hence ��
 � � � � ����
 �
 � ��� ��� � " � �
 � � � � � � . If we set
 � � to be
 �
 � �
 we
get
 � � �
 � ��� ��� � " � and
 � � � � ��� � which entails
 � � �
 � ��� � � ��� .

 � �
 � � � � � : (�
 � � (� , where
� �

� (� . We assume
��
 � � (� �� and we want to prove
 � �
 � � � � �� � for some environment
 � �
 and type � . Using Lemma 5.1 (iii), we have
types � � � � � � � � such that �� � � � ����
 � � � � � � � (� �� � . Then, by induction, we get
 � �
 ,� �� , and � � such that
 � � �� � � �� � � � � �� � � � Taking � � � � �� " � � we get
 � �
 � � � � � � as
required.

 � � � � � � where
�

is not its own perpetual redex � : (� (� (� where either
� � � (� or� � is a
 -free normal form and

� � � (� . We assume
 � (� (���� , and we want to prove

14

 � � � � � ���� for some environment
 � �
 . Using Lemma 5.1 (ii), we have types� � � � � � � � such that � � � � � � � � � � and �� � � � ����
 � (� ��� � " � �
 � (����� � . Using
Lemma 4.6 (i) it suffices to prove that �� � � � ����
 � � � � � ���� � for some
 � �
 (since then
we can take
 � to be
 ��� � � � �
 � � �
 � �
). Now by Def. 3.5,

� � cannot be an
abstraction, otherwise

�
would be its own perpetual redex.

– If
� � � (� and

� � � (� , then we apply the induction hypothesis to
� � . Hence we

have
 � �
 such that
 � � � � ��� � " � , and using Lemma 4.6 (i) we get
 � � � � ��� � .
Hence
 � � � � � � �� � .

– If
� � � (� and

� � � (� , then we apply the induction hypothesis to
� � . Hence we

have
 �� �
 and � �� such that
 �� � � ����� �� . But we know by Def. 3.5 that
� � is a normal

form, which is by the way
 -free, so applying Lemma 5.3 (i) provides an environment
 � � in which
� � has type � �� " � . Now by taking
 � to be
 �� �
 � � , we get
 � � � � � � �� � as required.

 � � � � � ��� � � � � : By Def. 3.5, either:
– The perpetual redex of

�
is in

� � , and
� � � � �� � . (Hence, (� � � ����(� � where� � � (�). Then assume
 �)� � ����(� � �� . Using Lemma 5.1 (iv), we get
�� � � .

Now by induction we get that
� � is typable. Hence applying the rule drop � we get
�� � � ��� � � � �� as required.

– The perpetual redex of
�

is in
� � , and

� � is a closure. (Hence, (� (� � ��� � � �
where

� � � (�). We assume
 � (� � ��� � � � �� , and we want to prove
�� � � � ��� � � � �� .
� If ��� av (� � , then, using Lemma 5.1 (iv), we have a type � such that
 � �� � � � � (� �� and
�� � ����� . Now we can apply the induction hypothesis to

� � ,
which is a closure. We get
 � �� ��� � � � � �� , and then we can apply rule cut � to get
�� � � � ��� � � � �� .

� If ���� av (� � , then using Lemma 4.6 (iii) we get
 � � � (� � ��� � � � �� . Then we
can apply Lemma 5.1 (iv), and we have
 � � � (� �� and

� � is typable. Now we
can apply the induction hypothesis to

� � , which is a closure. We get
 � � � � � �� .
Note that since � ��
	� � � , we can apply rule K-cut � and get
 � � � � ��� � � � �� .

Corollary 5.5 (WEAK SUBJECT EXPANSION) If
�

� (, then (is typable implies
�

is typable.

Theorem 5.6 All strongly normalizing terms are typable.

Proof: We may induct on the length of the perpetual derivation. For the base case we observe that
normal forms are typable (Lemma 5.3 (ii)), and the induction step is Corollary 5.5.

6 All Typeable Terms are Strongly Normalizable

The general idea of the reducibility method is to interpret types by suitable sets (saturated and stable
sets for Tait [36] and Krivine [24] and admissible relations for Mitchell [31, 32]) of terms (reducible
terms) which satisfy the required property (e.g. strong normalization) and then to develop semantics in
order to obtain the soundness of the type assignment. A consequence of soundness, the fact that every
term typable by a type in the type system belongs to the interpretations of that type, leads to the fact
that terms typable in the type system satisfy the required property, since the type interpretations are
built up in that way.

In order to develop the reducibility method we consider the applicative structure whose domain are
the terms in x and where the application is just the application of terms.

Definition 6.1 (REDUCIBLE TERMS)

15

i) We define the collection of set of terms
���

inductively over types by:

��� � �	������	� � � � � � (� �
� � � (� ��� � �� ���� � � � � � � �
ii) We define the set

�
of reducible terms by:

� � � � � � � � � � � � � � ��� ����� � � .

Notice that, if
� � � � , not necessarily there exists a
 such that
�� � �� . For example, if � � � � are

two different type variables, then
 � � � � � � � � � , since
 � � � � � � ��� whenever
� � ��� , but we

cannot derive � �
 � � � � � " � � . Also, since
 � � � � �	� ,
 � � � � � � , but we cannot derive � �
 � � � � � .
We now show that reducibility implies strong normalization and that all term-variables are reducible.

For the latter, it is convenient to show a generalization: all typable strongly normalisable terms that start
with a term variable are reducible.

Lemma 6.2 i)
� � ��� .

ii) ��(� � �	� � � � ��(� � � � � .
Proof: By simultaneous induction on the structure of types.

i) �� � : By Def. 6.1.
�	" � � :

� � � ����� IH ���� ��� � � � ����� � � � � � �� � � �� � � �
� IH �� ��� � � � �	� � � �	� �
�
� � � :

� � � ���� �� � � � � � � � � � � � � IH �� ��� � � ��� .
ii) �� � : ��(� � ��� �� � � � ��(� � � � .
�	" � � : ��(� � �	� �� � � � gen-var ���� � � �	� � ��(� � � �	� � IH �� ���� � � ��� � ��(� � � ��� � IH ���� ���� � � � � � ��(� � � � � � �� � � � ��(� � � �����
�
� � � : ��(� � �	� IH ���� ��� ��(� � �
� � ��(� � ��� �� � � � ��(� � ������ �

We now show that all sets
���

are closed under the rules subs � , gen-B � , gen-App � , gen-Abs � ,
 gen-I � and gen-gc � . This result is needed in the proof of Theorem 6.5.

Lemma 6.3 (SATURATION) For all
�

the sets
� �

are �	� -saturated.

Proof: All these closures are shown by induction on the structure of types. For the case of a
type-variable,

� � � �	� , which is �	� -saturated (Theorem 3.4). For the rest of the induction, since
the proofs are all very similar, we will not show all in detail, but focus on rule subs � . Then:
�	" � � : � � � � (�� ��� � � � � � (�� � � � � � � ����� �� � � ��! � � � � � � � � (�� ��� � � � � � (�� � � � � � � � � IH ��! � � � � � � ��� ��� � ��� � � (�� � � � � � � � �� � � �

� � ��� ��� � ��� � � (�� � � � � � ����� �
�
� � � : Immediate by Def. 6.1 and induction.

We shall prove our strong normalization result by showing that every typable term is reducible.
For this, we need to prove a stronger property: we will show that if we substitute term-variables by
reducible terms in a typable term, then we obtain a reducible term. This gives the soundness of our
type interpretation.

Theorem 6.4 (SOUNDNESS) If
� �� � � � � � � � � � � �� � � � � � � � � �� ,and, for

� � � , (�� � �
"�# , then� � ���)(�� � � � .

16

Proof: Note that by the convention on variables we may assume that for all
� � � ��� � � , � � �� fv (� � .

The proof is by induction on the structure of derivations. We will use the �	� -saturation of the
saturated sets (Lemma 6.3) just mentioning the rule names. Let
 � � �� � � � � � � � � � � �� � � � � � � .
 start � : Then

� � � � , and � � � , for some
� � � . Since (� � �
" � , (� � ��� . Then, by rules

 gen-I � and gen-gc � , � � � � � (�� � � � .
 " I � : Then

� �
'��� � � , � � " � , and
 � � � � � � � � ��� . Let (� � � , then, by induction,� � � � � (�� ��� ��(� � � � . So, by rule gen-B � ,
���� � � � � � (�� � (� � � , and, by Def. 6.1,

���� � � � � � (�� � � � ��� . We can assume � �� fv (� , so, by rule gen-Abs � ,

���� � � ��� � � (�� � ��� ��� .

 " E � : Then
� � � � � � and there exists � such that
 � � � � ��" and
 � � � ��� . By induction,� � � � � (�� � � � ��� and

� � � � � (�� � � � . But then, by Definition 6.1,� � � � � (�� � � � � � (�� � �
� , so, by rule gen-App � , � � � � ��� � � (�� � �
� .
�� I � : Then � ��� � and, for

� � � ,
�� � �� � . So, by induction,
� � � � (�� � � ��� and� � � � (�� � �
��� , so, by Def. 6.1,

� � � � (�� � ��� .
�� E � : Then there exists � such that
 � � ��
� � , and, by induction,

� � � � (�� � � ��� � . Then, by

Def. 6.1,
� � � � (�� � ��� .

 cut � : Here
� � � ��� ��� � , and there exists � such that
 � � ��� � � � �� and
 � � ��� . Then, by

induction applied to the right-hand hypothesis, � � � � (�� � ��� . Then again by induction, on

the left-hand hypothesis, � � � � (�� ��� ��� � � � (�� � � � � . So, by rule subs � ,
 � ��� ��� � ��� � � (�� � �
� .

 drop � : Here
� � � ��� � � � ,
�� � �� , � ��
 and there exist

� � � such that
� � � ��� . By induction� � � � (�� � �
� . We may be sure that � � �	� by the induction hypothesis applied to the

derivation from
�

. Since ���� av � � we may use closure of
� �

under rule gen-gc � to conclude

that � ��� � � � ��� � � (�� � ��� .
 K-cut � : The proof is very similar to the drop � case, or we may appeal to Theorem 4.8.

Theorem 6.5 If
 � � �� for some
 � then
� � �	� .

Proof: Suppose
 is
� �� � � � � � � � � � � �� � �

�
� � � . By Lemma 6.2 (ii), all term-variables are reducible

for any type, so, by Theorem 6.4, for all
�

,
� � ��� � �� is reducible, where �� are fresh. By Lemma 6.2

(i) the term
� � ��� � �� is strongly normalizing, and since

�
is a subterm of this the result follows.

7 Characterizing weak normalization and head normalization

The system $ is obtained from the system # of [17] by adding the rules drop � and K-cut � . The
system # & is the extension of # obtained by adding a universal type % ; in [17] characterizations of the
head-normalizing and left-most-normalizing terms of
�� were obtained in terms of typability in #�& .

The main result of this paper is that typability in system $ serves to characterize the strongly-
normalizing terms of
�� , and therefore that the rules drop � and K-cut � capture this important aspect
of reduction in explicit substitutions calculi. But a natural question to raise at this point is whether the
addition of rules drop � and K-cut � behaves well in the presence of a universal type. In particular, we
may ask whether the normalization theorems of [17] still hold in the presence of the new rules. In this
section we show that they do continue to hold. That is, we will verify that the # & -characterizations
of normalizing and head-normalizing terms from [17] generalize in the natural way to $ & . The first
observation is that when a universal type is added to $ the resulting system is equivalent to #�& .

17

7.1 Extending the type system

Definition 7.1 The type system $'& is obtained from system $ by adding the type constant % and the
rule:

 % I �
 � � � %
The type system # & is obtained by adding % and rule % I � to the system # of [17].

Theorem 7.2 Suppose
�� � ��� in system $'& . Then
 � � ��� in system # & as well.

Proof: By induction over typing derivations. In light of the equivalence between drop � and K-cut �
it suffices to show that an application of rule drop � can be simulated in # & . So suppose

 drop �
 � � ��� � � (�� �� �� av � ���
 � � � ��� (� ���
By induction we can derive
 � � ��� in # & , so certainly
 � �� � %�� � � ��� . By % I � ,
�� (� % in # & ,
so we have

 cut �
 � �� � %�� � � ���
 � (� %

�� � � ���)(� ���

in # & , as desired.

7.2 Head reduction and left-most reduction

The head and left-most redexes from the classical
 -calculus appear in
�� � � as head or left-most B-
redexes. But the general notions of head or left-most redex in
���� � must take into account the rules for
applying substitutions. In fact, the correct definitions of head and left-most reduction are more subtle
than in the classical calculus. Essentially this is because
���� � has a critical pair, due to the following
overlapping reductions:

 � � � ����� � � � (��� ��� ��� ! �
 � � � � (� ��� ��� � !�" � � ���)(� ��� ��� �

Each of the reductions above has a claim on our intuition for being considered a “head reduction.” In
fact we consider them each to be head reductions.

Definition 2 (HEAD REDUCTION) Head reduction is the closure of the rules of
�� � � (Definition 2.4)
under the structural rules of Table 3.

A term
�

is head normalizing if there is no infinite head-reduction starting from
�

. The set of
head normalizing terms is denoted

� � .

Definition 3 (LEFT-MOST REDUCTION) Left-most reduction is the closure of the rules of
�� � � under
the structural rules in Table 4.

A term
�

is left-most normalizing if there is no infinite left-most reduction starting from
�

. The
set of left-most-normalizing terms is denoted

� � .

Observe that, in contrast to the classical notions, both head reduction and left-most reduction are
non-deterministic strategies. Indeed both reductions out of the critical pair noted earlier count as head
reductions.

For example, let � be �
 � � � � (����� � � � . Then � can rewrite by left-most reduction either to � �� � ���)(� ��� ��� � , or (in two steps) to � � �
 � � � ��� ��� � � (��� ��� � � . Then, since
 � � � ��� � � �
is an abstraction, � left-most-rewrites via rule B leading to � � � � ��� ��� � � ��� (��� ��� � � .

18

� �!�" � � �
not an abstraction

� (�!�" � � (
� �!�" � �

 � � � �!�"
 � � � �
� �!�" � � �

not an abstraction

� � ����� � �!�" � � � ����� �

Table 3: Head reduction

� �!�" � � �
not an abstraction

� (�!�" � � (
� �!�" � �

 � � � �!�"
 � � � �
� �!�" � � �

not an abstraction

� � ��� (� �!�" � � � ��� (�
� � �!�" � �� � � left-most non-normal

� � � � � � � � � � � � � �!�" � � � � � � � �� � � � � �

Table 4: Left-most reduction

7.3 Characterization theorems

We will assume familiarity with [17] in this subsection; we derive the characterization theorems by
indicating how to lift the results of that paper. There is a technical issue to be dealt with, however: the
garbage-collection rule gc � in the current paper is more liberal than the traditional rule in the system
of [17]. In this section we refer to the traditional garbage-collection rule as gc

�
:

� � ���)(� !�" � �
if � �� fv � � gc

� �
Formally, since [17], treats a different reduction system, it is difficult to quote results there in support
of results about the system of this paper. But the arguments of the first paper carry over almost word-
for-word. In light of this we have chosen to indicate below precisely where the distinction between the
systems makes a difference, rather than repeating the entire development.

The following definitions are due to Cardone and Coppo [9]: A type is proper if it has no positive
occurrence of % . A type is trivial if it can be generated by the following rules:

i) % is trivial,

ii) If is trivial and � is any type, then ��" is trivial,

iii) If and � are trivial, then � � is trivial.

The following lemma isolates the place where we must ackowledge the difference in garbage-
collection rules.

Lemma 4 If
�

is typable with a non-trivial type in system # & then
�

is head-normalizing in the
calculus
������ .

If
�

is typable in system # & with a type not involving % then
�

is left-most-normalizing in the
calculus
������ .

19

Proof: Each of these assertions is proved in [17] for the system
�� gc � (Theorems 8.1 and 8.2 there).
We invite the reader to check that in that paper, the only places where the garbage-collection rule is
analyzed are Lemmas 3.2 and 3.5 and that the proofs of each of these Lemmas are essentially
unchanged if the current, more liberal, gc rule is used. The rest of the development in [17] is
unchanged, completing the proof.

Theorem 7.3 Let
�

be a closed term. The following are equivalent.
i)
�

is typable with a non-trivial type in system $�& .
ii)
�

is head-normalizing in the calculus
���� � .
iii)

�
is head-normalizing in the calculus
�� (without garbage-collection).

iv)
�

has a head normal form.
v)
�

is solvable, that is, there is an � and terms
� � � � � � � � such that

��� � � � � � � �
 � � � .

Proof: By Theorem 7.2 we may replace, in (i), “ $ & ” by “ # & .” Then each of the equivalences has
been proved in [17] with the exception of the implication from (i) to (ii) since, in [17]
garbage-collection refers to the more restricted rule gc

�
. But for this impication we here use

Lemma 4.

Theorem 7.4 Let
�

be a closed term. The following are equivalent.
i)
�

is typable in system $ & with a type not involving % .
ii)
�

is typable with a proper type in system $ & .
iii)

�
is left-most-normalizing in the calculus
���� � .

iv)
�

is left-most-normalizing in the calculus
�� (without garbage-collection).
v)
�

has a normal form.

Proof: As for Theorem 7.3.

In Theorem 7.4, the implications (v) to (iii) and (v) to (iv) state that in
�� and
������ left-most
reduction is a normalizing strategy.

8 Conclusion

We have defined an improved system of intersection types for calculi of explicit substitutions and
shown that it characterizes the strongly normalizing terms. The new rules allowing us to type all
strongly normalizing terms are consistent with the addition of a universal type, in the sense that the
characterizations of head- and left-most-normalizing terms obtained in previous work are still valid in
the extended system.

The new notion of available variable occurrence plays an important role in the type system, and
indeed allows us to define a more powerful notion of garbage collection than has appeared elsewhere in
the explicit substitutions literature. We like to remark the similarity between the reduction rule gc � and
the classical mark-and-sweep algorithm for garbage collection. As a matter of fact the computation of
the set of available variables of a term corresponds to the mark phase, while the reduction using only
rule gc � corresponds to the sweep phase. Notice that this is not true for the similar rules of [8, 17]. We
think that it could be interesting to investigate the use of the garbage collection based on availability of
variables in the implementations of functional programming languages.

Acknowledgements

The authors are grateful to Norman Danner, Fr éd éric Lang, Simona Ronchi della Rocca, and Kristoffer
Rose for many helpful discussions and the referees of the conferences LATIN’02 and TCS’02 for
helpful comments.

20

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L évy. Explicit substitutions. Journal of Functional
Programming, 1(4):375–416, 1991.

[2] R. Amadio and P.-L. Curien. Domains and lambda-calculi. Cambridge University Press, 1998.

[3] H. P. Barendregt. The Lambda-Calculus, its syntax and semantics. Studies in Logic and the Foun-
dation of Mathematics. Elsevier Science Publishers B. V. (North-Holland), Amsterdam, 1984.
Second edition.

[4] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabby, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 2, chapter 2, pages 117–309. Oxford
University Press, 1992.

[5] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli.
 � , a calculus of explicit substitutions
which preserves strong normalisation. Journal of Functional Programming, 6(5):699–722, 1996.

[6] R. Bloo. Preservation of Termination for Explicit Substitution. PhD thesis, Technische Univer-
siteit Eindhoven, 1997. IPA Dissertation Series 1997-05.

[7] R. Bloo and J. H. Geuvers. Explicit substitution: on the edge of strong normalization. Theoretical
Computer Science, 211:375 – 395, 1999.

[8] R. Bloo and K. H. Rose. Preservation of strong normalisation in named lambda calculi with
explicit substitution and garbage collection. In CSN ’95, pages 62–72, 1995.

[9] F. Cardone and M. Coppo. Two extension of Curry’s type inference system. In P. Odifreddi,
editor, Logic and Computer Science, volume 31 of APIC Series, pages 19–75. Academic Press,
New York, NY, 1990.

[10] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-terms. Archiv für
mathematische Logik und Grundlagenforschung, 19:139–156, 1978.

[11] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the

 -calculus. Notre-Dame Journal of Formal Logic, 21(4):685–693, 1980.

[12] N. G. de Bruijn. A namefree lambda calculus with facilities for internal definition of expres-
sions and segments. TH-Report 78-WSK-03, Technological University Eindhoven, Netherlands,
Department of Mathematics, 1978.

[13] N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Communications of
the ACM, 22(8):465–476, 1979.

[14] M. Dezani-Ciancaglini, F. Honsell, and Y. Motohama. Compositional characterization of lambda
-terms using intersection types. In M.Nielsen and B.Rovan, editors, MFCS’00, volume 1893 of
Lecture Notes in Computer Science, pages 304–314. Springer-Verlag, 2000.

[15] R. Di Cosmo and D. Kesner. Strong normalization of explicit substitutions via cut elimination in
proof nets. In LICS’97, pages 35–46. IEEEC Society Press, 1997.

[16] D. Dougherty and P. Lescanne. Reductions, intersection types, and explicit substitutions (ex-
tended abstract). In S. Abramsky, editor, TLCA’01, volume 2044 of Lecture Notes in Computer
Science, pages 121–135. Springer-Verlag, 2001.

[17] D. Dougherty and P. Lescanne. Reductions, intersection types, and explicit substitutions. Mathe-
matical Structures in Computer Science, to appear.

[18] A. G. Dragalin. Mathematical Intuitionism: Introduction to Proof Theory, volume 67 of Transla-
tions of Mathematical Monographs. American Mathematical Society, 1987.

[19] J. Gallier. Typing untyped lambda terms, or reducibility strikes again. Ann. Pure Appl. Logic,
91:231–270, 1998.

21

[20] S. Ghilezan. Strong normalization and typability with intersection types. Notre-Dame Journal of
Formal Logicrr, 37(1):44–52, 1996.

[21] J. Goubault-Larrecq. Lambda-calcul, logique et machines. École Normale Sup érieure de Cachan,
2001.

[22] H. Herbelin. Explicit substitutions and reducibility. Journal of Logic and Computation,
11(3):429–449, 2001.

[23] F. Kamareddine and A. R ı́os. Extending a lambda-calculus with explicit substitution which pre-
serves strong normalisation into a confluent calculus on open terms. Journal of Functional Pro-
gramming, 7(4):395–420, 1997.

[24] J.-L. Krivine. Lambda-calcul Types et modèles. Masson, Paris, 1990.

[25] J.-L. Krivine. Lambda calculus, types and models. Ellis Horwood, 1993.

[26] D. Leivant. Typing and computational properties of lambda expressions. Theoretical Computer
Science, 44(1):51–68, 1986.

[27] S. Lengrand, D. Dougherty, and P. Lescanne. An improved system of intersection types for
explicit substitutions. In R. Baeza-Yates, U. Montanari, and N. Santoro, editors, Foundations
of Information Technology in the era of Network and Mobile Computing, IFIP Congress, pages
511–524. Kluwer Academic Publishers, 2002.

[28] P. Lescanne. From
 to
�� : a journey through calculi of explicit substitutions. In Hans-J. Bôhm,
editor, POPL’94, pages 60–69. ACM Press, 1994.

[29] P. Lescanne and J. Rouyer-Degli. The calculus of explicit substitutions
 � . Technical Report
RR-2222, INRIA-Lorraine, January 1994.

[30] P.-A. Melliès. Typed
 -calculi with explicit substitution may not terminate. In M. Dezani and
G.Plotkin, editors, TLCA’95, volume 902 of Lecture Notes in Computer Science, pages 328–334.
Springer-Verlag, 1995.

[31] J. C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 415–431. Elsevier Science Publishers B. V.
(North-Holland), Amsterdam, 1990.

[32] J. C. Mitchell. Foundation for Programmimg Languages. MIT Press, 1996.

[33] G. Pottinger. A type assignment for the strongly normalizable
 -terms. In J.P. Seldin and J.R.
Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pages 561–578. Academic Press, 1980.

[34] E. Ritter. Characterising explicit substitutions which preserve termination. In J.-Y.Girard, editor,
TLCA’99, volume 1581 of Lecture Notes in Computer Science, pages 325–339. Springer-Verlag,
1999.

[35] K.H. Rose. Operational Reduction Models for Functional Programming Languages. PhD thesis,
DIKU, Universitetsparken 1, DK-2100 København Ø, February 1996. DIKU report 96/1.

[36] W. W. Tait. Intensional interpretations of functionals of finite type I. Journal of Symbolic Logic,
32:198–212, 1967.

[37] S. van Bakel. Complete restrictions of the intersection type discipline. Theoretical Computer
Science, 102(1):135–163, 1992.

[38] S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science, 151(2):385–
435, 1995.

[39] S. van Bakel and M. Dezani-Ciancaglini. Characterizing strong normalization for explicit substi-
tutions. In S.Rajsbaum, editor, LATIN’02, volume 2286 of Lecture Notes in Computer Science,
pages 356–370. Springer-Verlag, 2002.

22

