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Probability and Statistical Physics in Two (and More) Dimensions
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A report by Ivan Corwin (Courant, NYU),
Marcelo Hilario (IMPA), and Adrien Kassel (ENS)

he sunny Brazilian peninsula of Buzios made for

a perfect location for the 2010 Clay Mathematics

Institute Summer School. The goal of the school
was to provide a complete picture of a number of recent
and groundbreaking developments in the study of prob-
ability and statistical physics in two and more dimensions.
In the past ten to fifteen years, various areas of probability
theory related to rigorous statistical mechanics, disordered
systems, and combinatorics have enjoyed an intensive
development with regards to two-dimensional random
structures. Progress has come mainly in two forms: under-
standing large-scale properties of lattice-based models (on
a periodic, deterministic lattice or in the case where the lat-
tice is itself random), and directly constructing and manip-
ulating continuous objects that describe these scaling
limits. These themes guided the three foundational courses
around which the first two weeks centered:

Large random planar maps and their scaling limits
by Jean-Francois Le Gall and Gregory Miermont
SLE and other conformally invariant objects by
Vincent Beffara

Noise-sensitivity and percolation by Jeffrey Steif
and Christophe Garban

Building on the foundations of the first two weeks, a variety
of mini-courses covered very exciting and recent research:

Random geometry and Gaussian free field

by Scott Sheffield

Conformal invariance of lattice models

by Stanislav Smirnov

Integrable combinatorics by Philippe Di Francesco
Fractal and multifractal properties of SLE

by Gregory Lawler

The double-dimer model by Rick Kenyon

The fourth week of the school was held jointly with the
XIV Brazilian School on Probability and focused on two
main courses:

Random polymers by Frank den Hollander
Self-avoiding walks by Gordon Slade

Tutorials were organized for all courses and enabled
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the students to do hands-on work on the proofs of results
mentioned in the lectures as well as to get familiar with
numerous explicit examples. Teaching assistants were
Curien, Duminil-Copin, and Freij for the fundamental courses
and Alberts, Bauerschmidt, Caravenna, Goodman, Hongler,
Pétrélis, and Werness for the mini-courses. Evening research
talks supplemented the courses and mini-courses and were
interspersed among the four weeks. The speakers included
Adams, Benjamini, Biskup, Dubédat, Duplantier, Garcia, loffe,
Koenig, Kozma, Le Jan, Maas, Mountford, Mytnik, Nolin,
Peres, Sidoravicius, Turova, and van der Hofstadt. Students
also organized a lunch-time seminar in which they could
present their own work.

Much of the school was concerned with statistical physics
models on lattices. Such models are random processes
indexed by the vertices or the edges of a lattice, often con-
sidered to be a planar periodic graph (such as Z2). Each index
point has a spin that takes values in a finite alphabet, typically
{o,1}. The energy of a configuration of spins o is given by a
Hamiltonian H(o) and the probability of seeing o is propor-
tional to a Gibbs factor ef1(9) where Bis called the inverse tem-
perature. Different Hamiltonians give rise to different Gibbs
measures and in particular to different behaviors for various
natural observables such as interfaces between regions of o's



and 1s. A variety of such models was introduced in the last
century by physicists to study the properties of matter. The
Ising model is perhaps the most famous lattice model (and
received ample attention during the school).

Bernoulli percolation is another important lattice model
with a particularly simple Gibbs measure, namely, the
product measure such that each index point has spin o or 1
independently with probability 1-p and p. All observables of
this process can thus be expressed as Boolean functions of
these spins. Garban and Steif’s course focused on an innova-
tive approach to the study of this model via the Fourier trans-
form of these Boolean functions. Using results of theoretical
computer scientists on the stability of Boolean functions,
they studied the sensitivity of critical percolation to small
perturbations. This noise sensitivity is measured in terms of
the spectrum of the Boolean functions and gives precise
estimates on the influence of different spins—essentially a
measure of the contribution of the spin at a particular index
point to the probability of an event. Key concepts of pivot-
ality and revealment were introduced as was a dynamical
version of percolation. In addition, Garban and Steif showed
how randomized algorithms may be used to approximate
percolation interfaces at low computation cost.

Complementing the discrete approach of Garban and
Steif, much of the rest of the school focused on studying

lattice models from the perspective of determining their
scaling limits and deducing properties of the discrete models
from these continuum limits. A long-held belief among
statistical physicists is that scaling limits of critically tuned
lattice models will display a great deal of universality with
respect to perturbations of the lattice or model. For instance,
itis believed that regardless of the lattice, the scaling limit of
the interfaces between o's and 1's in percolation with criti-
cally tuned probability p will converge (in law) to the same
random collection of curves and that this limit will be con-
formally invariant (i.e., invariant in law under the action of
conformal maps). Similar beliefs exist for other lattice models
(like Ising). Significant progress was made about ten years
ago with the introduction of the Schramm-Loewner evolution
(SLE) which is a one-parameter family of measures on curves
that should serve as the basis for the critical scaling limits of
a variety of lattice models.

Beffara's course focused on rigorously defining these
random curves and using them to describe the scaling limits
and critical exponents (governing, for instance, correla-
tion length and crossing probabilities) of a variety of lattice
models. As an illustration of the power of these techniques,
Beffara presented a proof (adapted from Smirnov’s work) of
Cardy's formula for the probability that there exists a con-
nected path of 1's between two opposite sides of a large
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rectangle (in a particular lattice called the honeycomb lat-
tice). Beffara also presented results on the geometry of the
random curves, showing that the Hausdorff dimension of
the SLE, is 1+k/8 (x is the aforementioned parameter for
this family of measures). Werner built upon this with some
further techniques necessary to translate these continuum
results into analogous statements about lattice models.
Lawler went into more technical details about the path prop-
erties of SLE including the rigorous proof of their existence
and Holder continuity, as well as their natural time param-
eterization and the reverse Loewner flow.

In his mini-course, Smirnov explained the theory he has
developed to prove scaling limits for a variety of models,
which now includes both percolation and the Ising model
(and more generally the random-cluster model). His approach
emphasized the link between statistical physics in two dimen-
sionsand discrete complexanalysis. In particular he presented
anumber of observables of models (such as his parafermionic
observable) that can be shown to be discrete holomorphic
(or preholomorphic). In certain cases these observables have
been shown to converge to continuous holomorphic func-
tions (as expected by the physics belief of conformal invari-
ance of scaling limits). As Beffara had explained in his course,
using this result as well as methods involving martingales, it
is then possible to prove convergence of the entire interface
of the lattice model to an SLE. To further emphasize the deep
link between lattice models and complex analysis, Smirnov
also gave a beautiful constructive proof of the Riemann map-
ping theorem via a discrete approximation using an appro-
priate measure on uniform spanning trees.

To round out the study of lattice models, Kenyon's mini-
course and Dubédat’s evening talk focused on the dimer
model (related to perfect matchings in graph theory). In
particular, Kenyon lectured on the double-dimer model,
which provides a natural measure on non-intersecting
loops. He gave evidence for the conformal invariance of
the scaling limit of this model that is conjectured to be
given by a variant of SLE called CLE, (the conformal loop
ensemble that looks locally like SLE,). Di Francesco studied
a variety of other models in statistical physics using tech-
nigues from integrable—exactly solvable systems such as
the Yang-Baxter equations, the transfer matrix approach,
and formulas coming from representation theory.

Random discrete surfaces and Riemannian manifolds
play essential roles in combinatorics and statistical physics,
as does the study of lattice models on these surfaces. For
example, significant progress in theoretical physics has
been made in the last thirty years from the understanding
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that in string theory and gauge theory one should sum over
random surfaces (as opposed to over random paths as in
Feynman’s formulation of quantum mechanics). Le Gall and
Miermont approached this subject from the discrete side in
their course on large random planar maps and their scaling
limits. A random map provides a very natural approach to
defining a discrete random surface and its accompanying
metric. They explained an important line of recent progress in
understanding the large limit of these random surfaces and
metrics. Under an appropriate re-scaling of distances there
exist (sub-sequential) limits of these discrete metrics that are
called the Brownian map. Figuring prominently during the
course was the so-called Bijective approach that emphasizes
how these maps can be encoded and studied in terms of a
correspondence with certain decorated plane trees.

On the continuum side, there exists another formulation
(believed to be equivalent to the limit of the large planar
maps) for a random geometry, which is called Liouville
quantum gravity. This random geometry was the subject of
the mini-course by Scott Sheffield and the evening talk of
Bertrand Duplantier. Sheffield’s course built on the founda-
tional courses of both Le Gall and Miermont, as well as Bef-
fara. Based on very recent work, Sheffield showed that SLE
arises when gluing (via conformal welding) two random
geometries together and then conformally mapping the
result to the plane. Duplantier spoke of other exciting con-
nections between statistical physics models on deterministic
lattices and on random geometries. In particular he showed
how to prove the KPZ formula that relates scaling exponents
and fractal dimensions between the two types of geome-
tries. This shows how, by studying lattice models in arandom
geometry, one can gain information about the geometry
itself. In fact, in his evening talk, Benjamini emphasized this
perspective by explaining how the study of two basic lattice
models (percolation and random walks) on deterministic
and random graphs provides a great deal of information in
describing properties of the geometry itself.

The fourth week of the school (held jointly with the XIV
Brazilian School on Probability) shifted focus to the study
of random path measures on Z%. These paths are commonly
called polymers and den Hollander’s mini-course focused
on the general theory of polymers, while Slade’s mini-
course delved deep into a particularly important polymer,
called the self-avoiding walk (SAW). The SAW is a measure
on paths of a fixed length that assigns equal probability to
each nearest neighbor path starting at the origin and never
intersecting itself. More generally, a random polymer is
usually defined by a Gibbs measure (on the set of paths of a



fixed length) with a Hamiltonian that may take into account
the self-interactions, self-avoidance, and possibly interac-
tions with a (possibly random) environment.

Many of the important questions about polymers and the
SAW are expressed in terms of their asymptotic behavior, as
their length goes to infinity. Important questions include
studying the growth in the number of such collections of
paths, the behavior of the mean square displacement, and
the possibility of critical scaling limits. This last point drew us
back to the subjects covered in the first three weeks of the
school. In fact, Beffara had visited this subject in his course
and explained that, while not rigorously established, if the
scaling limit for the SAW in two dimensions exists and is con-
formally invariant, then it ought to be given by SLEg;, due
to the fact that it naturally would inherit a certain restriction
property from the discrete SAW and that this property is only
verified by SLE, for the value k = 8/3.

Much of Slade’s course focused, however, on a large
number of rigorous results about the critical behavior of
the SAW in dimensions d = 4 and d = 5. He introduced a
few critical exponents (governing how the SAW scales and
behaves when very long) and explained the universality of
these exponents, relations between them, and how they
change according to the dimension. Slade then introduced
the Lace Expansion and showed its convergence for suf-
ficiently high dimension (which can be reduced to d = 5)
which, in turn, implies that the number of length n SAWs
grows purely exponentially, just as with the simple random
walk. For d = 4, Slade proved exact functional integral
representation formulas for the two-point function of the
continuous weakly SAW and showed how, via a renormal-
ization-group analysis, these formulas prove that the two-
point function decays as the inverse square of distance.

Rather than totally excluding self-intersection, one may
consider polymers whose Hamiltonian is a function of the
number of self-intersections. In fact, a variety of other ener-
getic rewards (or punishments) are important and studied.
For example, the path can interact with a linear surface
with energy dependent on random charges along the sur-
face. Alternatively, the entire lattice may have charges, pro-
viding a random potential in which the path arranges itself.
A critical simplification to these polymers used in den Hol-
lander’s course was to consider directed, or semi-directed,
versions of polymers (thus avoiding some of the complexi-
ties of the SAW). In his course, large deviations served as
a central tool to prove several recent results related to the
existence of phase transitions in the behavior of polymers.
These included results about collapse, localization, and
pinning of polymers interacting with a linear surface, and
about the diffusivity of the polymer endpoint.

Probability and statistical physics in two and more
dimensions have recently benefited from the introduc-
tion of a variety of important and powerful new tools and
techniques. The summer school was held at a perfect time:
a few important problems in the field have recently been
solved, but many other important open problems remain
unsolved. It is likely that some of these will yield eventually
to variants of these new tools and techniques. Thanks to
the school, a new generation of mathematicians has been
made aware of these problems and new approaches. Per-
haps the main theme underlying this school was that there
exist certain universal classes of continuum scaling limits
that underlie and unite many discrete lattice models and
random geometries. This theme will likely echo for many
years in the work of those who participated in the 2010 Clay
Mathematics Institute Summer School.
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