A positivity bootstrap technique for validating the generating function of loop-decorated maps

Linxiao Chen University of Helsinki

Workshop on random matrices, maps, and gauge theories ENS de Lyon, 25 June 2018

1 / 18

- 4 回 ト 4 ヨ ト

A *planar map* is a *proper* embedding (i.e. no crossing edges) of a finite connected graph into the sphere \mathbb{S}^2 , viewed up to the orientation-preserving homeomorphisms of \mathbb{S}^2 .

A *planar map* is a *proper* embedding (i.e. no crossing edges) of a finite connected graph into the sphere \mathbb{S}^2 , viewed up to the orientation-preserving homeomorphisms of \mathbb{S}^2 .

2 / 18

A *planar map* is a *proper* embedding (i.e. no crossing edges) of a finite connected graph into the sphere \mathbb{S}^2 , viewed up to the orientation-preserving homeomorphisms of \mathbb{S}^2 .

To avoid symmetry issues, we consider planar maps with a special *corner* (the *root*). Their edges/vertices/faces can be enumerated deterministically. *external face* = face containing the root, *perimeter* = degree of external face

A *planar map* is a *proper* embedding (i.e. no crossing edges) of a finite connected graph into the sphere \mathbb{S}^2 , viewed up to the orientation-preserving homeomorphisms of \mathbb{S}^2 .

To avoid symmetry issues, we consider planar maps with a special *corner* (the *root*). Their edges/vertices/faces can be enumerated deterministically. *external face* = face containing the root, *perimeter* = degree of external face

In the following, we will consider *quadrangulations with boundary*, that is, (rooted planar) maps in which all internal faces have degree *four*.

Linxiao Chen

2 / 18

(4月) キヨト キヨト

 $Q_p := \{$ quadrangulations with boundary of perimeter $2p\}$

3 / 18

590

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivations

random maps

 \rightarrow (discretized) random metric of 2D space-time (Liouville quantum gravity)

5900

3 ×

Motivations

random maps

 \rightarrow (discretized) random metric of 2D space-time (Liouville quantum gravity) random maps + a statistical physics model

 \rightarrow random metric of space-time coupled to a matter field

Motivations

random maps

 \rightarrow (discretized) random metric of 2D space-time (Liouville quantum gravity) random maps + a statistical physics model

 \rightarrow random metric of space-time coupled to a matter field

Also:

- integrable models
- universality
- • •

and, nice pictures !

Linxiao Chen

4 / 18

Definition of model

Linxiao Chen

A positivity bootstrap technique for counting loop-decorated maps

≣ 5 / 18 5990

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Definition (rigid loop-decorated quadrangulation)

Let q be a quadrangulation with boundary. A *loop configuration* on q is a set of *disjoint simple closed paths* on the dual of q avoiding the external face. It is *rigid* if the loops always enter and exit from the *opposite sides* of a face.

Definition (rigid loop-decorated quadrangulation)

Let q be a quadrangulation with boundary. A *loop configuration* on q is a set of *disjoint simple closed paths* on the dual of q avoiding the external face. It is *rigid* if the loops always enter and exit from the *opposite sides* of a face.

 $\mathcal{LQ}_p := \left\{ (\mathfrak{q}, \boldsymbol{\ell}) \, \middle| \, \mathfrak{q} \in \mathcal{Q}_p, \, \boldsymbol{\ell} \text{ is a rigid loop configuration on } \mathfrak{q}. \right\}$

San

Definition (rigid loop-decorated quadrangulation)

Let q be a quadrangulation with boundary. A *loop configuration* on q is a set of *disjoint simple closed paths* on the dual of q avoiding the external face. It is *rigid* if the loops always enter and exit from the *opposite sides* of a face.

 $\mathcal{LQ}_p := \left\{ (\mathfrak{q}, \boldsymbol{\ell}) \, \middle| \, \mathfrak{q} \in \mathcal{Q}_p, \, \boldsymbol{\ell} \text{ is a rigid loop configuration on } \mathfrak{q}. \right\}$

Definition (rigid loop-decorated quadrangulation)

Let q be a quadrangulation with boundary. A *loop configuration* on q is a set of *disjoint simple closed paths* on the dual of q avoiding the external face. It is *rigid* if the loops always enter and exit from the *opposite sides* of a face.

 $\mathcal{LQ}_p := \left\{ (\mathfrak{q}, \boldsymbol{\ell}) \, \middle| \, \mathfrak{q} \in \mathcal{Q}_p, \, \boldsymbol{\ell} \text{ is a rigid loop configuration on } \mathfrak{q}. \right\}$

$$\mathbb{D}:=[0,\infty) imes(0,\infty) imes(0,2)$$

For $(g, h, n) \in \mathbb{D}$, let

$$F_p(g,h,n) := \sum_{(\mathfrak{q},\boldsymbol{\ell})\in\mathcal{LQ}_p} g^{\#\square} h^{\#\square} n^{\# \mathcal{Q}}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

$$\mathbb{D}:=[0,\infty)\times(0,\infty)\times(0,2)$$

For $(g, h, n) \in \mathbb{D}$, let

$$F_p(g,h,n) := \sum_{(\mathfrak{q},\boldsymbol{\ell})\in\mathcal{LQ}_p} g^{\#\square} h^{\#\square} n^{\#\square}$$

A triple (g, h, n) is *admissible* if $F_p(g, h, n) < \infty$. (This is independent of *p*).

Definition

Fix $p \ge 1$. For each admissible triple $(g, h, n) \in \mathbb{D}$, we define a probability distribution on \mathcal{LQ}_p by

$$\mathbb{P}_{g,h,n}^{(p)}(\mathfrak{q},\boldsymbol{\ell}) := \frac{g^{\# \square} h^{\# \square} n^{\# \bigcirc}}{F_p(g,h,n)}$$

Results

Linxiao Chen

A positivity bootstrap technique for counting loop-decorated maps

≣ 8 / 18 900

・ロト ・四ト ・ヨト ・ヨト

Theorem (Borot-Bouttier-Guitter '12)

Assume that $(g, h, n) \in \mathbb{D}$ is admissible, then as $p \to \infty$,

$$F_p(g,h,n) \sim C \cdot \gamma^{2p} p^{-a}$$

where $C, \gamma > 0$ and $a \in \{\frac{3}{2}, \frac{5}{2}, 2-b, 2+b\}$ with $b = \frac{1}{\pi} \arccos(\frac{n}{2}) \in (0, \frac{1}{2})$.

San

Theorem (Borot-Bouttier-Guitter '12)

Assume that $(g, h, n) \in \mathbb{D}$ is admissible, then as $p \to \infty$,

$$F_p(g,h,n) \sim C \cdot \gamma^{2p} p^{-a}$$

where $C, \gamma > 0$ and $a \in \{\frac{3}{2}, \frac{5}{2}, 2-b, 2+b\}$ with $b = \frac{1}{\pi} \arccos(\frac{n}{2}) \in (0, \frac{1}{2})$.

$$egin{aligned} \mathcal{D} &:= \{(g,h,n,\gamma) \,:\, (g,h,n) \in \mathbb{D}, 0 < \gamma \leq h^{-1/2} \} \ \mathring{\mathcal{D}} &:= \{(g,h,n,\gamma) \in \mathcal{D} \,:\, \gamma < h^{-1/2} \} \end{aligned}$$

Theorem (Borot-Bouttier-Guitter '12, C. '18)

There exist explicit functions \mathfrak{h} , \mathfrak{f} and \mathfrak{g} defined respectively on \mathcal{D} , \mathcal{D} and \mathbb{D} such that a triple $(g, h, n) \in \mathbb{D}$ is admissible and ...

a = 3/2 if and only if $\mathfrak{h}(g, h, n, \gamma) = 1$ and $\mathfrak{f}(g, h, n, \gamma) > 0$ for some γ .

a = 5/2 if and only if $\mathfrak{h}(g, h, n, \gamma) = 1$ and $\mathfrak{f}(g, h, n, \gamma) = 0$ for some γ .

a = 2 - b if and only if $\mathfrak{h}(g, h, n, h^{-\frac{1}{2}}) = 1$ and $\mathfrak{g}(g, h, n) > 0$.

a = 2 + b if and only if $\mathfrak{h}(g, h, n, h^{-\frac{1}{2}}) = 1$ and $\mathfrak{g}(g, h, n) = 0$. Moreover, the four cases are all non-empty.

Linxiao Chen

Phase diagram

Theorem (Borot-Bouttier-Guitter '12)

Assume that $(g, h, n) \in \mathbb{D}$ is admissible, then as $p \to \infty$,

$$F_p(g, h, n) \sim C \cdot \gamma^{2p} p^{-a}$$

where $C, \gamma > 0$ and $a \in \{\frac{3}{2}, \frac{5}{2}, 2-b, 2+b\}$ with $b = \frac{1}{\pi} \arccos(\frac{n}{2}) \in (0, \frac{1}{2}).$

イロト イポト イヨト イヨト

Phase diagram

Theorem (Borot-Bouttier-Guitter '12)

Assume that $(g, h, n) \in \mathbb{D}$ is admissible, then as $p \to \infty$,

$$F_p(g, h, n) \sim C \cdot \gamma^{2p} p^{-a}$$

where $C, \gamma > 0$ and $a \in \{\frac{3}{2}, \frac{5}{2}, 2-b, 2+b\}$ with $b = \frac{1}{\pi} \arccos(\frac{n}{2}) \in (0, \frac{1}{2}).$

$$\mathcal{W}_{g,h,n}(x) := 1 + \sum_{k=1}^{\infty} F_k(g,h,n) x^{-2k} \qquad (x \in \overline{S}_{\gamma})$$

$$\rho_{\dots}(x) := \frac{\mathcal{W}_{\dots}(\gamma x - i0) - \mathcal{W}_{\dots}(\gamma x + i0)}{2\pi i x} \qquad (x \in [-1,1]) \xrightarrow{\gamma x - i0} \gamma$$

Linxiao Chen

A positivity bootstrap technique for counting loop-decorated maps

11 / 18

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

$$\mathcal{W}_{g,h,n}(x) := 1 + \sum_{k=1}^{\infty} F_k(g,h,n) x^{-2k} \qquad (x \in \overline{S}_{\gamma})$$

$$\rho_{\dots}(x) := \frac{\mathcal{W}_{\dots}(\gamma x - i0) - \mathcal{W}_{\dots}(\gamma x + i0)}{2\pi i x} \qquad (x \in [-1,1]) \xrightarrow{\gamma x - i0} \gamma$$

Proposition (Borot-Bouttier-Guitter '12) (Equation of resolvent)

• If $(g, h, n) \in \mathbb{D}$ is admissible, then *there exists* $\gamma \in (0, h^{-1/2}]$ such that the function $\mathcal{W}(x) \equiv \mathcal{W}_{g,h,n}(x)$ satisfies

 $\begin{cases} \mathcal{W} \text{ is an even holomorphic function on } \overline{S}_{\gamma} \text{ such that for all } x \in (-\gamma, \gamma), \\ (*) \end{cases}$

$$\mathcal{W}(x-i0) + \mathcal{W}(x+i0) + n \mathcal{W}((hx)^{-1}) = n + x^2 - gx^4.$$

Moreover, $\rho_{g,h,n}$ is a *non-negative* continuous even function on [-1,1].

• For any $(g,h,n) \in \mathbb{D}$ and $\gamma \in (0,h^{-1/2}]$, (*) has a unique solution $\mathcal{W}^{(\gamma)}_{g,h,n}$.

$$\mathcal{W}_{g,h,n}(x) := 1 + \sum_{k=1}^{\infty} F_k(g,h,n) x^{-2k} \qquad (x \in \overline{S}_{\gamma})$$

$$\rho_{\dots}(x) := \frac{\mathcal{W}_{\dots}(\gamma x - i0) - \mathcal{W}_{\dots}(\gamma x + i0)}{2\pi i x} \qquad (x \in [-1,1]) \xrightarrow{\gamma x + i0} \xrightarrow{\gamma x - i0} \gamma$$

Proposition (Borot-Bouttier-Guitter '12) (Equation of resolvent)

• If $(g, h, n) \in \mathbb{D}$ is admissible, then *there exists* $\gamma \in (0, h^{-1/2}]$ such that the function $\mathcal{W}(x) \equiv \mathcal{W}_{g,h,n}(x)$ satisfies

 $\begin{cases} \mathcal{W} \text{ is an even holomorphic function on } \overline{S}_{\gamma} \text{ such that for all } x \in (-\gamma, \gamma), \\ \mathcal{W}(x - i0) + \mathcal{W}(x + i0) + n \mathcal{W}((hx)^{-1}) = n + x^2 - gx^4. \end{cases}$

Moreover, $\rho_{g,h,n}$ is a *non-negative* continuous even function on [-1,1].

• For any $(g,h,n) \in \mathbb{D}$ and $\gamma \in (0,h^{-1/2}]$, (*) has a unique solution $\mathcal{W}^{(\gamma)}_{g,h,n}$.

Additional observations: • $W_{g,h,n}(\infty) = 1$. • $\forall p, F_p(g,h,n) = \gamma^{2p} \int_{-1}^{1} x^{2p} \rho_{g,h,n}(x) dx$, so $\rho_{g,h,n} \ge 0 \Rightarrow F_p(g,h,n) \ge 0$.

Questions:

• How to show that a tripe (g, h, n) is admissible ?

• How to characterize the γ in the combinatorial solution ?

Linxiao Chen

A positivity bootstrap technique for counting loop-decorated maps

$$(g,h,n)\in\mathbb{D}$$
, $\gamma\in(0,h^{-1/2}]$.

Proposition (analytic condition of admissibility.)

If
$$\mathcal{W}_{g,h,n}^{(\gamma)}(\infty) = 1$$
 and $\rho_{g,h,n}^{(\gamma)} \ge 0$, then (g,h,n) is admissible and $\mathcal{W}_{g,h,n}^{(\gamma)} = \mathcal{W}_{g,h,n}$

≣ 12 / 18 DQC

イロト イポト イヨト イヨト

$$(g,h,n)\in\mathbb{D}$$
, $\gamma\in(0,h^{-1/2}]$.

Proposition (analytic condition of admissibility.)

If
$$\mathcal{W}_{g,h,n}^{(\gamma)}(\infty) = 1$$
 and $\rho_{g,h,n}^{(\gamma)} \ge 0$, then (g,h,n) is admissible and $\mathcal{W}_{g,h,n}^{(\gamma)} = \mathcal{W}_{g,h,n}$

Proposition (positivity bootstrap)

 $\rho_{g,h,n}^{(\gamma)}(x) \ge 0$ for all $x \in [-1,1]$ if and only if $\rho_{g,h,n}^{(\gamma)}(x) \ge 0$ for all x close to 1. More precisely,

• When
$$\gamma < h^{-1/2}$$
, $\rho_{g,h,n}^{(\gamma)}(x) = \mathfrak{f}(g,h,n,\gamma) \cdot (1-x^2)^{1/2} + O((1-x)^{3/2})$,
and $\rho_{g,h,n}^{(\gamma)}(x) \ge 0$ for all $x \in [-1,1]$ if and only if $\mathfrak{f}(g,h,n,\gamma) \ge 0$.
• When $\gamma = h^{-1/2}$, $\rho_{g,h,n}^{(\gamma)}(x) = \mathfrak{g}(g,h,n) \cdot (1-x^2)^{1-b} + O((1-x)^{1+b})$,

and
$$\rho_{g,h,n}^{(\gamma)}(x) \ge 0$$
 for all $x \in [-1,1]$ if and only if $\mathfrak{g}(g,h,n) \ge 0$.

Linxiao Chen

Idea of Proof

Linxiao Chen

A positivity bootstrap technique for counting loop-decorated maps

E 13 / 18

5990

・ロト ・四ト ・ヨト ・ヨト

 $(\mathfrak{q}, \boldsymbol{\ell}) \in \mathcal{LQ}_p$

Linxiao Chen

A positivity bootstrap technique for counting loop-decorated maps

イロト イヨト イヨト

DQC

 $(\mathfrak{q}, \boldsymbol{\ell}) \in \mathcal{LQ}_p$

 $\mathcal{G}(\mathbf{q}, \boldsymbol{\ell}) \in \mathcal{M}_p$

A (1) > 4

Linxiao Chen

A positivity bootstrap technique for counting loop-decorated maps

14 / 18

DQC

 $(\mathfrak{q}, \boldsymbol{\ell}) \in \mathcal{LQ}_p$

 $\mathcal{G}(\mathbf{q}, \boldsymbol{\ell}) \in \mathcal{M}_p$

The gasket decomposition consists of:

- A mapping $\mathcal{G} : \mathcal{LQ}_p \to \mathcal{M}_p := \{ \text{bipartite maps of perimeter } 2p \}.$
- For each $\mathfrak{m} \in \mathcal{M}_p$, a bijection

$$\mathcal{G}^{-1}(\mathfrak{m}) \leftrightarrow \mathcal{L}\mathcal{Q}_{p_1} \times \mathcal{L}\mathcal{Q}_{p_2} \times \cdots \times (\mathcal{L}\mathcal{Q}_2 \cup \{\Box\}) \times \cdots$$

where $2p_1, 2p_2, \ldots$ are the degrees of the faces of \mathfrak{m} .

$$(\mathfrak{q}, \boldsymbol{\ell}) \in \mathcal{LQ}_p$$

Consequences

• Fixed point equation

$$\begin{cases} F_p(g, h, n) = B_p(g_1, g_2, \ldots) \\ g_k = g \boldsymbol{\delta}_{k,2} + n h^{2k} F_k(g, h, n) \end{cases}$$

where
$$B_p(g_1, g_2, \ldots) = \sum_{\mathfrak{m} \in \mathcal{M}_p} \left(\prod_f g_{\frac{1}{2} \deg f} \right)$$

4 ∃ ≥

DQC

 $\mathcal{G}(\mathbf{q}, \boldsymbol{\ell}) \in \mathcal{M}_p$

▲□ ► ▲ □ ►

$$(\mathfrak{q}, \boldsymbol{\ell}) \in \mathcal{LQ}_p$$

Consequences

• Fixed point equation

$$\begin{cases} F_p(g,h,n) = B_p(g_1,g_2,\ldots) \\ g_k = g\boldsymbol{\delta}_{k,2} + n \, h^{2k} \, F_k(g,h,n) \end{cases}$$

where
$$B_p(g_1, g_2, \ldots) = \sum_{\mathfrak{m} \in \mathcal{M}_p} \left(\prod_f g_{\frac{1}{2} \deg f} \right)$$

 $\mathcal{G}(\mathfrak{q},\boldsymbol{\ell})\in\mathcal{M}_p$

- Recursive sampling algorithm of an *O*(*n*)-quadrangulation
- →→ Sample a bipartite map \mathfrak{m} with Boltzmann weights $(g_1, g_2, ...)$
- → Fill each face with a "necklace" + an O(n)-quadrangulation

 \rightsquigarrow Repeat

Sac

Background: enumeration of bipartite maps

Lemma (well-known results in disguise)

A sequence of weights $(g_1, g_2, ...)$ is admissible (i.e. $B_k(g_1, g_2, ...) < \infty, \forall k$) if and only if there exists $\gamma > 0$ such that the (unique) solution of the system

 $\begin{cases} \mathcal{W} \text{ is an even holomorphic function on } \overline{S}_{\gamma} \text{ such that for all } x \in (-\gamma, \gamma), \\ \mathcal{W}(x - i0) + \mathcal{W}(x + i0) = x^2 - \sum_{k=1}^{\infty} g_k x^{2k}. \end{cases}$

satisfies $\mathcal{W}(\infty) = 1$ and $\lim_{x\to 1^-} \frac{\rho(x)}{\sqrt{1-x^2}} \ge 0$. In this case, $\mathcal{W}(x) = 1 + \sum_{k=1}^{\infty} B_k(g_1, g_2, \ldots) x^{-2k}$, and ρ is *non-negative* and continuous on [-1, 1].

Sac

Background: enumeration of bipartite maps

Lemma (well-known results in disguise)

A sequence of weights $(g_1, g_2, ...)$ is admissible (i.e. $B_k(g_1, g_2, ...) < \infty, \forall k$) if and only if there exists $\gamma > 0$ such that the (unique) solution of the system

 $\begin{cases} \mathcal{W} \text{ is an even holomorphic function on } \overline{S}_{\gamma} \text{ such that for all } x \in (-\gamma, \gamma), \\ \mathcal{W}(x - i0) + \mathcal{W}(x + i0) = x^2 - \sum_{k=1}^{\infty} g_k x^{2k}. \end{cases}$

satisfies $\mathcal{W}(\infty) = 1$ and $\lim_{x\to 1^-} \frac{\rho(x)}{\sqrt{1-x^2}} \ge 0$. In this case, $\mathcal{W}(x) = 1 + \sum_{k=1}^{\infty} B_k(g_1, g_2, \ldots) x^{-2k}$, and ρ is *non-negative* and continuous on [-1, 1].

Assume that (g, h, n) is admissible, then:

The fixed point equation $g_k = g \delta_{k,2} + n h^{2k} B_p(g_1, g_2, ...)$ $\Rightarrow \sum_{k=1}^{\infty} g_k x^{2k} = g x^4 + n(\mathcal{W}((hx)^{-1}) - 1) \text{ and } \gamma \leq h^{-1/2}.$ \Rightarrow The equation of the resolvent for $\mathcal{W}_{e,h,n}$.

5900

・ロト ・四ト ・日ト ・日ト

Admissibility condition

Inversely, fix some (g, h, n) and assume that the equation of resolvent has a solution such that $\mathcal{W}_{g,h,n}^{(\gamma)}(\infty) = 1$ and $\rho_{g,h,n}^{(\gamma)}(x) \ge 0$ for all $x \in [-1,1]$. $\Rightarrow (g_1, g_2, \ldots)$ is admissible.

16 / 18

200

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Admissibility condition

Inversely, fix some (g, h, n) and assume that the equation of resolvent has a solution such that $\mathcal{W}_{g,h,n}^{(\gamma)}(\infty) = 1$ and $\rho_{g,h,n}^{(\gamma)}(x) \ge 0$ for all $x \in [-1,1]$. $\Rightarrow (g_1, g_2, \ldots)$ is admissible. $\rightsquigarrow Is (g, h, n)$ admissible ?

16 / 18

NQ C

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Admissibility condition

Inversely, fix some (g, h, n) and assume that the equation of resolvent has a solution such that $\mathcal{W}_{g,h,n}^{(\gamma)}(\infty) = 1$ and $\rho_{g,h,n}^{(\gamma)}(x) \ge 0$ for all $x \in [-1,1]$. $\Rightarrow (g_1, g_2, \ldots)$ is admissible.

 \rightsquigarrow *Is* (g, h, n) *admissible* ? Yes: use the recursive algorithm from the gasket decomposition to sample an O(n)-quadrangulation of parameters (g, h, n).

Proposition (Budd '18+)

For any admissible weight sequence $(g_k)_{k\geq 1}$ such that $g_k = g\delta_{k,2} + nh^{2k}B_p(g_1, g_2, ...)$ for some $g, h, n \geq 0$, the sampling algorithm almost surely stops.

(The *number of vertices* discovered by the sampling algorithm is bounded from above by some explicit super-martingale.)

・ロト ・四ト ・日ト ・日ト

Sac

Positivity bootstrap

Lemma (Integral equation for the spectral density)

Let
$$\tau = \gamma^2 h \in [0, 1]$$
, then for all $x \in [-1, 1]$,

$$-\frac{2\pi \rho_{g,h,n}^{(\gamma)}(x)}{\sqrt{1 - x^2}} = -\gamma^2 + g\gamma^4 (x^2 + 1/2) + n \int_{-1}^1 \frac{\tau^2 y^2}{1 - \tau^2 x^2 y^2} \frac{\rho_{g,h,n}^{(\gamma)}(y) \, \mathrm{d}y}{\sqrt{1 - \tau^2 y^2}} ,$$

17 / 18

• • • • •

DQC

Positivity bootstrap

Lemma (Integral equation for the spectral density)

Let
$$\tau = \gamma^2 h \in [0,1]$$
, then for all $x \in [-1,1]$,

$$-\frac{2\pi \rho_{g,h,n}^{(\gamma)}(x)}{\sqrt{1-x^2}} = -\gamma^2 + g\gamma^4(x^2 + 1/2) + n \int_{-1}^1 \frac{\tau^2 y^2}{1-\tau^2 x^2 y^2} \frac{\rho_{g,h,n}^{(\gamma)}(y) \, \mathrm{d}y}{\sqrt{1-\tau^2 y^2}} ,$$

Consequences:

- $x \mapsto \rho_{g,h,n}^{(\gamma)}/\sqrt{1-x^2}$ extends to an analytic function on $[-\tau^{-2}, \tau^{-2}]$. In particular, if $\tau < 1$, then $\mathfrak{f}(g, h, n, \gamma) := \lim_{x \to 1^-} \rho_{0,h,n}^{(\gamma)}(x)/\sqrt{1-x^2}$ exists.
- (x; g, h, n, γ) → ρ^(γ)_{g,h,n}/√1 x² is continuous on this extended domain.
 ρ^(γ)_{g,h,n} ≥ 0 on [-1,1], then ρ^(γ)_{g,h,n} > 0 on (-1,1).

Sa C

(4回) (1日) (日) 日

Positivity bootstrap

Lemma (Integral equation for the spectral density)

Let
$$\tau = \gamma^2 h \in [0,1]$$
, then for all $x \in [-1,1]$,

$$-\frac{2\pi \rho_{g,h,n}^{(\gamma)}(x)}{\sqrt{1-x^2}} = -\gamma^2 + g\gamma^4(x^2 + 1/2) + n \int_{-1}^1 \frac{\tau^2 y^2}{1-\tau^2 x^2 y^2} \frac{\rho_{g,h,n}^{(\gamma)}(y) \, \mathrm{d}y}{\sqrt{1-\tau^2 y^2}} ,$$

Consequences:

- $x \mapsto \rho_{g,h,n}^{(\gamma)}/\sqrt{1-x^2}$ extends to an analytic function on $[-\tau^{-2}, \tau^{-2}]$. In particular, if $\tau < 1$, then $\mathfrak{f}(g, h, n, \gamma) := \lim_{x \to 1^-} \rho_{0,h,n}^{(\gamma)}(x)/\sqrt{1-x^2}$ exists.
- (x; g, h, n, γ) → ρ^(γ)_{g,h,n}/√1 x² is continuous on this extended domain.
 ρ^(γ)_{g,h,n} ≥ 0 on [-1,1], then ρ^(γ)_{g,h,n} > 0 on (-1,1).

Claim: For all h > 0, $n \in (0, 2)$, $\gamma \in (0, h^{-1/2})$, we have $\mathfrak{f}(0, h, n, \gamma) > 0$.

 $\Rightarrow \text{ The set } \left\{ (g, h, n, \gamma) \, : \, \mathfrak{f}(g, h, n, \gamma) \geq 0 \right\} \text{ is connected.}$

Linxiao Chen

17 / 18

Thank you for your attention !

Linxiao Chen

A positivity bootstrap technique for counting loop-decorated maps

18 / 18

Sar

イロト イポト イヨト イヨト