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Content of the talk
———————————–

• 1-MAMO: from regular to singular potential

– genus zero

• Scaling limit and critical indexes

– generalized Kazakov’s potential

• The moments and higher genera

• Generalization of KdV hierarchy



1. Introduction



Hermitian one-matrix model
———————————–

Ensemble of random matrices.

Z1h =
∫

dϕ e−NtrV (ϕ) V (ϕ) =
∑

i

gi trϕi

where dϕ is the measure for integrating over Hermitian N×N matrices.

Representing ϕ = UP U† with unitary U and diagonal

P = diag {p1, . . . , pN}, dϕ can be written in a standard Weyl form

dϕ = dU
N∏

i=1

dpi∆2(P ) ,

where ∆(P ) =
∏
i<j

(
pi − pj

)
is the Vandermonde determinant.

Angular degrees of freedom residing in U factorize, so Z1h depends

on the N eigenvalues of ϕ. Thus the saddle point applies at large N :

N integrals but the action

NtrV (ϕ) = N
N∑

i=1

V (pi) ∼ N2



Hermitian one-matrix model (cont.)
———————————–
Large N addle-point equation Brézin, Itzykson, Parisi, Zuber (1978)

V ′(p) = 2
∫
6 dλ

ρ(λ)

p− λ
p ∈ support of ρ

for the (continuous nonnegative normalized) spectral density

ρ(p) = lim
N→∞

1

N

N∑

i=1

δ(1)(p− pi)

which describes the distribution of eigenvalues of ϕ.

For polynomial V (p) the simplest is one-cut solution when ρ(p) has
support on a single interval [a, b] like Wigner’s semicircle law

ρ(p) =
M(p)

2π

√
(p− a) (b− p)

Here a and b are the ends of the cut and M(p) is a polynomial of
degree K−2 if V (p) is a polynomial of degree K.

One-cut solution works if M(p) ≥ 0 for p ∈ [a, b] which always hap-
pens for small couplings g3, g4, etc. With increasing couplings a more
complicated multi-cut solution is realized.



Logarithmic singular potential
———————————– Y.M. (1993, 1995)

Logarithmic potential (V has two cuts while V ′ has two poles)

V (φ) = (α+ 1) ln (β + φ)− α ln (β − φ)− 2βφ

and we can set β = 1 without loss of generality

The cut from a to b always avoids singularities of V

Limiting cases:
• quadratic potential
• Penner potential
• cubic potential
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2. From Riemann-Hilbert method

to Loop equation



Riemann-Hilbert at work
———————————–
Inspired by Le Gall, Miermont (2011), Borot, Bouttier, Guitter (2012)

Let V ′ has cuts and poles at the real axis. To solve the integral
saddle-point equation

V ′(x) = 2
∫
6 dy

ρ(y)

x− y
x ∈ support of ρ

we introduce the analytic function

W (z) =
∫

dy
ρ(y)

z − y
W (z)

z→∞→
1

z

and rewrite the equation on the real axis as

=
(
W2 − V ′W

)
+ =V ′<W = =W

(
2<W −<V ′

)
= 0

Usually, the term with =V ′ is missing since V ′ is real at the real axis

This implies the following equation in the whole complex plane:

W2(z)− V ′(z)W (z) +
∫

C2

dω

2πi

V ′(ω)W (ω)

(z − ω)
= Q(z),

where C2 encircles possible cuts and poles of V ′(ω) at the real axis,
leaving outside z and the cut(s) of W (ω). Q(z) is an entire function



Riemann-Hilbert at work (cont.)
———————————–
Deforming the contour, we can rewrite the latter equation as

W2(z)−
∫

C1

dω

2πi

V ′(ω)W (ω)

(z − ω)
= 0,

where C1 encircles (clockwise) the cut(s) of W (ω), leaving outside z
and possible cuts and poles of V ′(ω). The difference between C1 and
C2 is the residuals at ω = z and ω =∞ which equals Q(z).

We got the usual loop equation of the one-matrix model at N = ∞
whose standard derivation by an infinitesimal shift of ϕ works for all
potentials, including the ones with cuts at the real axis
=⇒ the usual (Migdal’s) formula for the one-cut solution

W (z) =
∫ b
a

dx

2π

V ′(x)

(z − x)

√
(z − a)(z − b)

√
(x− a)(b− x)

, W (z)
z→∞

=
1

z

For even V (x) = V (−x) we have a = −b and

W (z) =
∫ b

0

dx

π

xV ′(x)

(z2 − x2)

√
z2 − b2√
a2 − x2

,
∫ b

0

dx

π

xV ′(x)√
b2 − x2

= 1



Simplest example: logarithmic potential
———————————–

Simplest potential with V ′ having a cut at the real axis from 1 to ∞

V (x) =
1

g
[(1− x)log(1− x) + x] =

1

g

∞∑

n=1

xn+1

n(n+ 1)
,

V ′(x) = −
1

g
log(1− x) =

1

g

∞∑

n=1

xn

n

The one-cut solution

W (z) =
1

g

[
actanh

√
(z − b)
(z − a)

− actanh

√
(1− a)(z − b)
(1− b)(z − a)

−
1

2
log(1− z)

]

a = b− 4
(
1−
√

1− b
)
, g =

(b− a)2

16
=
(
1−
√

1− b
)2
.



Simplest example: logarithmic potential (cont.)
———————————–

The solution has all required properties: analytic outside of [a, b],

reproduces Wigner’s law as g → 0 etc.. The discontinuity across the

cut determines the (normalized) spectral density

ρ(x) =
1

πg

[
arctan

√
(1− a)(b− x)

(1− b)(x− a)
− arctan

√
(b− x)

(x− a)

]

which indeed obeys the saddle-point equation as can be checked.

The spectral density is positive for b < 1, vanishes at the ends of the

cut, but looks pretty different from the previously known cases, where

V ′ has no cut at the real axis. In those cases ρ had a square root

singularity, which is now hidden under the arctan.

Critical behavior is reached as b→ 1, when

g → g∗ − 2
√

1− b, g∗ = 1



3. Generalized Kazakov’s potentials



Multi-critical long-tail potential
———————————– Ambjørn, Budd, Y.M. (2016)

Singular potential with a cut for x ≥ 1

V (x) =
∞∑

n=1

1

4g

Γ(n+ 1
2 − s)Γ(1

2)

Γ(3
2 − s)Γ(n+ 1

2)n
x2n =

1

g
3F2

(
1,1,

3

2
− s; 2,

3

2
;x2

)
x2

2

For s 6= m+ 1/2 the coefficients behave as x2n/ns+1 for n→∞.

For s = m+ 1/2 the infinite sum terminates at n = m giving the mth

multi-critical Kazakov potential.

We have

xV ′(x) =
1

g
2F1

(
1,

3

2
− s,

3

2
, x2

)
x2 ∼ (1− x)s−1 as x→ 1

g(a2) =
1− (1− a2)s−1/2

4(s− 1/2)
,

dg

da2
=

1

4
(1− a2)s−3/2, g∗ =

1

4(s− 1/2)

which is the most obvious generalization to s 6= m+ 1/2



Multi-critical long-tail potential (cont.)
———————————–
One-cut solution

W (z) =
1

2
V ′(z)−

1

2g
2F1

(
1,

3

2
− s,

3

2
,
z2 − a2

1− a2

)
(1− a2)s−

3
2

√
z2 − a2

becomes the standard one for the polynomial Kazakov potential.
Several equivalent forms possible because of Kummer’s relations.
The discontinuity of W (z) across the cut

ρ(x) =
2F1

(
1, s, 3

2,
a2−x2

1−x2

)
(1− a2)s−

1
2

√
a2 − x2

2πg(1− x2)
a→1→

Γ(s+ 1
2)

√
πΓ(s)

(1−x2)s−1

Plot of ρ(x) versus x for s = 1.2, 2.4, 4, 6, 10 from bottom to top:
ρ(x) > 0 in x ∈ ]−a, a[, ρ(x) = 0 at x = ±a ρ(x)→ δ(1)(x) as s→∞



Scaling limit
———————————–

Let g → g∗ =
1

4(s− 1/2)
so that a2 = 1−

(
1−

g

g∗

) 1
s−1

2 → 1

Susceptibility index γs:

χ(g) =

(
g

d

dg

)2 1

N2
logZ = χ(g∗) + c(g∗ − g)−γs + less singular.

Expanding Z in (1− a2) we find

γs = −
1

s− 1
2

For s ∈ ]m − 1/2,m + 1/2[ the potential has many features of the

s = m+ 1/2 multicritical potential: the first m terms have oscillating

signs, the signs of terms x2n, n ≥ m are the same.

γs interpolates between the values −1/m of the multicritical points.

For 3/2 < s < 5/2 the coefficients of the Taylor expansion of V (x)

beyond quadratic are negative (unitarity)

Otherwise, the same relation to the minimal conformal models (KPZ)

as for Kazakov’s multicritical potentials



4. Generalized moments



The moments
———————————–
Introduced in Ambjørn, Chekhov, Y.M. (1992)

Inspired by Itzykson, Zuber (1992) for the Kontsevich model
Inspired by Y.M., Semenoff (1991) the Kontsevich model at genus zero
Elaborated in Ambjørn, Chekhov, Kristjansen, Y.M. (1993)

Moments or an even potential V (x) = V (−x)

Mn =
∫

C2

dz

4πi

zV ′(z)

(z2 − a2)n+1/2

The partition function Z to genus h depends on only n ≤ 3h−2 lower
moments (n ≤ 3h− 2 +N for N-loop correlators)

F1 = −
1

12
log

(
M1a

2
)
, etc.

F2 = −
53

120M2
1 · 16a4

−
181M2

2

320M4
1 · 4a2

+
43M3

96M3
1 · 4a2

(for slightly different moments).
Very nice algebraic structure to the next orders

But the scaling limit of Mn is not well defined for singular potentials



New moments for singular potential
———————————–

Well-defined for the singular potential new moments (α = s− [s])

(−1)α−1/2 M̃n =
∫

C2

dz

4πi

zV ′(z)

(z2 − a2)n+1/2(z2 − 1)α−1/2
,

where the extra factor compensates the singularity of the potential.
The old moments Mn and the new moments are related by

Mn =
n−1∑

k=0

(−1)k
Γ(α− 1

2)

Γ(α− k − 1
2)k!

(1− a2)α−k−1/2M̃n−k.

only the new moments with lower indexes enter this relation
α = 1/2 for Kazakov’s potential =⇒ M̃n = Mn

Continuum moments

µ̃n ≡ 4εn+1/2−sM̃n = (−1)1/2−α
∫

C2

dZ

2πi

Ṽ ′(Z)

(Z +
√

Λ)n+1/2Zα−1/2
,

are finite in the scaling limit (ε has canceled)

a2 = 1− ε
√

Λ, z2 = 1 + εZ ε→ 0

where Ṽ (Z) = (−1)α−1/2Zs



Interpolating model
———————————–

Sum over the generalized multicritical potentials

V ′(z) =
∞∑

n=1

T̃n
ε−n−α√

G

2Γ(n+ α+ 1)
√
πΓ(n+ α− 1

2)
2F1(1,3/2− n− α,3/2, z2)z.

(−1)α−1/2 T̃n =
2
√
Gεn+α

n+ α

∫

C2

dz

2πi

zV ′(z)

(z2 − 1)n+α

Continuum interpolating potential

Ṽ (Z) = (−1)α−1/2
∞∑

n=1

T̃nZ
n+α α = s− [s]

For Kazakov’s multicritical points s = m+ 1/2, so α = 1/2.

Before we have T̃n = δnm with m = [s − 1/2] Critical behavior is

governed by the boundary equation

g =
∞∑

n=1

T̃n[1− (1− a2)n+α−1/2]

4(n+ α− 1/2)

ε−n−α√
G

2Γ(n+ α+ 1)
√
πΓ(n+ α− 1

2)



Interpolating model (cont.)
———————————–
We tune T̃n’s for the critical behavior to be again

(g∗ − g) ∝ (1− a2)s−1/2 = (ε
√

Λ)s−1/2

with the normalization constant

T0 = 4
√
Gε



∫

C2

dz

2πi

zV ′(z)√
z2 − 1

− 1




(−1 comes from the normalization W (z)→ 1/z as z →∞)
to be finite for

√
G = 1/εs that determines the associated double

scaling limit, because the genus expansion goes in

G =
G

N2
=

1

N2ε2s
.

Equation for T0 gives for the interpolating potential

T0 = 4ε1/2−s[
g∗
g
− 1], g∗ =

∞∑

n=1

T̃nεs−n−α

4(n+ α− 1/2)

2Γ(n+ α+ 1)
√
πΓ(n+ α− 1

2)

It is now clear that T̃n with n > m (m is the integer part of s − 1/2)
must vanish, while the ones with n ≤ m are allowed. This determines
a critical hypersurface of the same universality class.



5. Generalized KdV hierarchy



Gel’fand-Dikii at work
———————————–

Gel’fand-Dikii differential polynomials for analytic V ′(z)

Rn[u] =

(
GD2 +

u+D−1uD

2

)n
·

1

2

where D = −d/dT0 and explicitly

R0 =
1

2
, R1 =

u

4
, R2 =

G
4
D2u+

3

16
u2

G is the string coupling that enters the string equation

∞∑

n=0

(n+ 1
2)TnRn[u] = 0

which expresses u through Tn’s. Introducing the resolvent

R(Z) =
〈
T0

∣∣∣∣
1

−GD2 − u+ Z

∣∣∣∣T0

〉
=
∞∑

n=0

Rn[u]

Zn+1/2
,

we write the string equation as

T0 =
∫

C1

dω

2πi
ωṼ ′(ω2)

[
R(ω2)−

1

2ω

]
,

This form applies for singular potential as well



Genus zero
———————————–

To genus zero

R(0)(Z) =
1

2
√
Z − u

and the string equation gives

T0

4
=
∞∑

n=1

T̃nun+α−1/2

4(n+ α− 1/2)

Above scaling limit is reproduced if T̃n = 0 (n ≥ 1) for n 6= [s− 1/2].



Genus expansion
———————————– Ambjørn, Chekhov, Y.M. (2018)

Genus expansion of the Gel’fand-Dikii resolvent

R(ω2) =
∞∑

k=0

GkR(k)(ω2)

From the third-order (linear) equation on the GD resolvent

∂

(√
ω2 − uR(ω2)

)
=

G√
ω2 − u

∂3R(ω2)

we get the recurrence relation

R(n+1)(ω2) =
1√

ω2 − u
∂−1 1√

ω2 − u
∂3R(n)(ω2), R(0)(ω2) =

1

2
√
ω2 − u

or

R(n)(ω2) =




1√
ω2 − u

∂−1 1√
ω2 − u

∂3




n

R(0)(ω2)

R(0) =
1

2
√
ω2 − u

, R(1) =
5(u′)2

16
(
ω2 − u

)7/2
+

u′′

4
(
ω2 − u

)5/2



Genus expansion (cont).
———————————–

R(2) =
1155(u′)4

256
(
ω2 − u

)13/2
+

231(u′)2u′′

32
(
ω2 − u

)11/2
+

21(u′′)2

16
(
ω2 − u

)9/2

+
7u′u′′′

4
(
ω2 − u

)9/2
+

u′′′′

4
(
ω2 − u

)7/2
.

R(3) =
425425

2048

(u′)6

(
ω2 − u

)19/2
+

255255

512

u′′(u′)4

(
ω2 − u

)17/2
+

35607

128

(u′′)2(u′)2

(
ω2 − u

)15/2

+
2145

16

u(3)(u′)3

(
ω2 − u

)15/2
+

825

32

u(4)(u′)2

(
ω2 − u

)13/2
+

1419

16

u(3)u′′u′
(
ω2 − u

)13/2

+
671

32

(u′′)3

(
ω2 − u

)13/2
+

69

16

(u(3))2

(
ω2 − u

)11/2
+

57

8

u(4)u′′
(
ω2 − u

)11/2

+
27

8

u(5)u′
(
ω2 − u

)11/2
+

1

4

u(6)

(
ω2 − u

)9/2



Pseudo-differential polynomials?
———————————–
Integrating we find to order G2

Rs−1/2[u] ∝
[
us−1/2 +Gus−7/2(s− 1/2)(s− 3/2)[

1

2
u′′u+

1

3
(u′)2(s− 5/2)]

+G2us−13/2(s− 1/2)(s− 3/2)(s− 5/2)[
4

15
u(4)u3

+(
8

15
u(3)u′u2 +

2

5
(u′′)2u2)(s− 7/2) +

22

45
u′′(u′)2u(s− 7/2)(s− 9/2)

+
1

18
(u′)4(s− 7/2)(s− 9/2)(s− 11/2) ]}+O(G3)

It is possible to go to arbitrary genus n.

Recurrently

Rs+1/2 =

(
G∂2 +

u+ ∂−1u∂

2

)
Rs−1/2

which for s = m+1/2 reproduces the recurrence relation between the
GD differential polynomials. For an arbitrary s we can also write

Rs−1/2 =

(
G∂2 +

u+ ∂−1u∂

2

)s−1/2

·
1

2



Conclusion
———————————–

• Singular potential are interesting for applications

• Standard methods apply for singular potentials to genus zero

• Generalized multicritical potentials given by the

hypergeometric functions are very convenient

• String susceptibility index γs = −1/(s− 1/2) interpolates between

that for minimal models

• The double scaling limit applies for higher genera like usually

• Gelfand-Dikii technique is useful in the continuum but is to be

extended for noninteger s− 1/2


