Spectral estimation from a wind sound recording
Copyright (C) 2018 Adrien MEYNARD
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.
Author: Adrien MEYNARD Email: adrien.meynard@univ-amu.fr Created: 2018-05-23
Contents
Load signal
clear all; close all; clc; warning off; addpath('cwt'); addpath('deform_estimation'); addpath('analysis'); load('signals/wind'); T = length(y);
Joint estimation
Dt = 400; % temporal subsampling for the deformation estimation dgamma0 = ones(1,T); % gamma'(t) initialization a0 = ones(1,T); % a(t) initialization wav_typ = 'sharp'; % wavelet type (cf. cwt.m) wav_paramWP = 20; % corresponding parameter for warping estimation wav_param = 500; % corresponding parameter for spectrum and AM estimations NbScales = 125; scalesAM = 2.^(linspace(2.5,6,NbScales)); subrate = 3; % subsampling step for the scales to ensure the covariance invertibility scalesWP = scalesAM(1:subrate:end); r = 1e-5; % regularization parameter stopWP = 2e-2; % minimal gap between two steps in the gradient itWP = 6; % number of gradient iterations Nf = 2500; % number of frequencies for spectrum estimation NbScalesS = 110; scalesS = 2.^(linspace(-1,7,NbScalesS)); % for spectrum estimation Nit = 10; % maximal number of iterations in the joint estimation stop_crit = 5e-3; % relative update threshold paramWAV = {wav_typ,wav_param,wav_paramWP}; paramWP = {scalesWP,itWP,stopWP}; paramS = {scalesS,Nf}; % WP estimation only paramAM = {'AM',scalesAM,r}; % model with time warping only tic; [aML, dgammaML, Sx, evol_crit] = estim_altern(y,Dt,dgamma0,a0,paramWAV,paramWP,paramAM,paramS,stop_crit,Nit); toc;
Iteration 1 Relative update WP: Inf % Relative update AM: 30.43 % Iteration 2 Relative update WP: 44.23 % Relative update AM: 0.11 % Iteration 3 Relative update WP: 16.19 % Relative update AM: 0.21 % Iteration 4 Relative update WP: 13.35 % Relative update AM: 0.18 % Iteration 5 Relative update WP: 12.92 % Relative update AM: 0.22 % Iteration 6 Relative update WP: 16.60 % Relative update AM: 0.07 % Iteration 7 Relative update WP: 16.34 % Relative update AM: 0.21 % Iteration 8 Relative update WP: 18.51 % Relative update AM: 0.25 % Iteration 9 Relative update WP: 14.92 % Relative update AM: 0.30 % Iteration 10 Relative update WP: 33.63 % Relative update AM: 0.11 % Elapsed time is 614.015621 seconds.
Analysis
t = 0:(1/Fs):((T-1)/Fs); figure; subplot(2,1,1);plot(t,dgammaML,'linewidth',2); ylabel('Estimated log(\gamma''(t))'); axis tight; grid on; ylim([0.5 1.5]); %set(gca,'FontSize',24); subplot(2,1,2);plot(t,aML,'linewidth',2); xlabel('Time (s)'); ylabel('Estimated a^2(t)'); axis tight; grid on; ylim([0 2]); %set(gca,'FontSize',24); z = statAMWP(y,aML,dgammaML); alpha = 15; Nff = 50000; Sxw = estim_spec(z,Nff,alpha); freq = linspace(0,Fs,Nff); figure; semilogy(freq,Sxw,'linewidth',2); xlabel('Frequency (Hz)'); ylabel('Estimated spectrum'); axis tight;grid on; xlim([0 3000]); %set(gca,'FontSize',24); scalesdisp = 2.^(linspace(0.5,3.3,250)); dt = 5; Wy = cwt(y(1:dt:end),scalesdisp,wav_typ,wav_param); Wz = cwt(z(1:dt:end),scalesdisp,wav_typ,wav_param); figure; subplot(1,2,1); imagesc(abs(Wy)); subplot(1,2,2); imagesc(abs(Wz)); figure; imagesc(t(1:dt:end),log2(scalesdisp),abs(Wz)); nu0 = Fs/4/dt; sobs = cellfun(@str2num,get(gca,'yticklabel')); fobs = round(nu0./2.^sobs); set(gca,'yticklabel',fobs); %set(gca,'FontSize',26); xlabel('Time (s)'); ylabel('Frequency (Hz)'); colormap(flipud(gray));