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Abstract

We study the asymptotic behavior of the spectrum of a random matrix where a non-linearity
is applied entry-wise to a Wigner matrix perturbed by a rank-one spike with independent and
identically distributed entries. In this setting, we show that when the signal-to-noise ratio scale
as N

1
2 (1−1/k⋆), where k⋆ is the first non-zero generalized information coefficient of the function,

the non-linear spike model effectively behaves as an equivalent spiked Wigner matrix, where the
former spike before the non-linearity is now raised to a power k⋆. This allows us to study the phase
transition of the leading eigenvalues, generalizing part of the work of Baik, Ben Arous and Peché
to these non-linear models.
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1 Introduction and Notations

1.1 Introduction

Random Matrix Theory (RMT)[4, 41, 50, 53] has its roots in Wishart’s 1928 statistical investigations
[56] and Wigner’s 1950s work on nuclear models [55]. Since then, its influence has spread to a variety of
fields, including high-energy physics [30, 54], spin glass models [25, 6], and number theory [33]. At its
core, RMT delves into the intricate high-dimensional and spectral nuances of select random matrices.
Notably, seminal RMT insights determined that the spectrum of matrices first explored by Wishart
and Wigner aligns with the semi-circular law and the Marčenko-Pastur distribution, respectively.

While Wigner and Wishart matrices can be considered as pure noise random matrices, one of the
most studied models beyond these two examples is the spiked models, in which a fixed rank matrix,
playing the role of a signal, is added to the former Wigner or Wishart matrix. In its simplest form,
for example, when one studies the rank-one perturbation of a Wigner matrix (see Sec. 2.2 for the
quantitative details), one can show [9, 44, 10, 51, 45] that in the high-dimensional regime, the highest
eigenvalue in absolute value λ1 of this new random matrix undergoes a phase transition, depending
on the strength γ of the rank-one perturbation, from a regime where it sticks to the edge of the
limiting spectral distribution, to the one where it pops out of the bulk. Similarly, the associated
eigenvector behaves as a random vector uniformly sampled on the sphere before the transition and
becomes partially aligned with the vector of the rank-one perturbation after the transition.

This phenomenon is now commonly referred to as the ‘BBP phase transition’ after the names of
the three authors [9] who studied fluctuations around the deterministic limit for this type of model.
This BBP phase transition phenomenon has been generalized and applied to a variety of different
settings; in particular, we refer the reader to [19, 27, 17] for other studies of the fluctuations in similar
spike models, to [43, 16] for the study of the large deviation of the top eigenvalue and eigenvector
whenever the noise is Gaussian, to [14, 15] for finite-rank perturbation of unitary invariant matrices
and to [37, 12, 26, 36, 35, 38, 11] for the study of these spike models from the information-theoretic
point of view.

A second family of models that has been extensively studied in the past decade due to its connection
with high-dimensional statistical problems when both the number of samples and the dimension diverge
is the family of nonlinear (random matrix) models, where one study the property of an entry-wise
non-linearity function f(·) applied to a given random matrix, and we refer in particular to the works
[32, 31, 13, 52, 29] for their relation to kernel methods and to [47, 46, 42, 28, 39, 49, 21, 48] for the
relation to the spectrum of one-layer neural network at initialization (or random features).

This paper aims to consider a mixture of these two important families of models by establishing the
spectral properties of non-linear matrix models applied to rank-one perturbation of Wigner matrices

Y
(f)

ij := 1√
N

[
f

(
Zij + γ√

N
xixj

)
− EZf(Z)

]
, (1.1)

for ‘arbitrary’ non-linearity functions f , and ‘arbitrary’ distributions of Zij and x = (x1, . . . , xN ).
Studying the spectrum of these matrices, we will see that the most interesting regime is when the
signal-to-noise ratio (SNR) γ scaled with the system size N .

Matrices of the form (1.1) are also important in theoretical machine learning. They can be seen as
kernel methods applied to spiked models, but they also appear in the studies of gradient descent in
deep neural networks where Z corresponds to the pre-activations at initialization, f is the non-linear
activation function, and the low-rank perturbation originates from the dynamics of the early steps of
training with gradient descent such as in [7, 22, 23].

A special case of the problem we study was considered by [57], who studied the information-theoretic
aspects of recovering a low-rank signal x from unsigned observations of the matrix, corresponding to
f(x) = |x|, but they have not studied the spectrum of such matrices.

Our main goal is to study the asymptotic behavior of the leading eigenvalue of the matrix Y (f),
namely the largest eigenvalue in absolute value of the matrix Y (f): depending on the sign of γ and f ,
it can be the smallest or the largest eigenvalue of Y (f).
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Figure 1: Illustration of the main results for the matrix model defined by Eq. (1.2) with non-linearity
f1(x) = |x| and Gaussian noise for which the information index is k⋆ = 2. (Left) The position of
the leading eigenvalue as a function of the SNR γ for different matrix sizes N . As N increases, one
observes a shift of the curves towards the right, suggesting that one should rescale the SNR with N .
(Middle) The same data plotted against the rescaled SNR γ0 = γN−1/4 given by Eq. (1.7). The
dotted black curves represent the theoretical values given by a BBP-like theorem Eq. (1.9). (Right)
The squared overlap of the leading eigenvector with the vector u ≡ xk⋆/∥xk⋆∥ where x is the signal
vector as a function of the rescaled SNR γ0 given by Eq. (1.7) and different sizes N . The dotted black
curves represent the theoretical values given by a BBP-like theorem Eq. (1.10).

1.2 Motivating Examples

As an empirical motivation of the non-trivial behavior one can obtain in this setting, let’s consider xi

and Zij standard independent Gaussian random variables and construct the two (N × N) symmetric
matrices Y (f1) := (Y (f1)

ij )1⩽i,j⩽N
and Y (f2) := (Y (f2)

ij )1⩽i,j⩽N
with

Y
(fa)

ij := 1√
N

[
fa

(
Zij + γ√

N
xixj

)
− EZfa(Z)

]
for a = 1, 2 , (1.2)

with f1(x) := |x| and f2(x) := x3 −3x (one has EZf1(Z) =
√

2/π and EZf2(Z) = 0 in these cases). In
the leftmost plot of Fig. 1 and Fig. 2, we have plotted the empirical position of the top eigenvalue λ1
of each matrix, as a function of γ, for different values of the size N . Unlike the well-known result for
the usual ‘linear’ setting (f(x) := x), as one increases the dimension N , one observes a shift towards
the right of the curves. This empirical phenomenon suggests rescaling the constant γ ≡ γ(N) with N
to get a deterministic limit in the large N limit. An empirical fit further suggests a scaling of the form
γ = Nα with α ≈ 0.25 for Y (f1) and α ≈ 0.33 for Y (f2) and a natural question is to give a theoretical
explanation for these scaling.

1.3 Summary of the Main Results

We now give a broad overview of the main results obtained in this work and explain quantitatively the
behavior of leading eigenvalues and eigenvectors observed in the motivating examples in a more general
framework. A careful statement of these main results with precise conditions on the assumptions will
be stated in Section 2. Motivated by the examples above, we seek to understand what happens to the
spectrum of a matrix

Y
(f)

ij := 1√
N

[
f

(
Zij + γ√

N
xixj

)
− EZf(Z)

]
, (1.3)

for ‘arbitrary’ non-linearity functions f , and ‘arbitrary’ distributions of Zij and x = (x1, . . . , xN ). For
the sake of simplicity, suppose that the law of Zij has a smooth density function wZ that vanishes at
infinity, and that the entries of x are independent with exponential decay. Both of these assumptions

3
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Figure 2: The same as Fig. 1 for the non-linearity f2(x) = x3 − 3x and Gaussian noise for which the
information index k⋆ = 3 leading to a rescaling of the SNR γ0 = γN−1/3.

are weakened and stated in more generality in Section 2, but the statements of the following results
become slightly less explicit without densities.

The relevant scaling for the SNR γ at which the leading eigenvalue is of order one depends on
certain statistics that build on the non-linearity f and the law of the noise wZ . We define the k-th
information coefficient associated with the non-linearity f and density wZ of Z by

ϑk(f) := (−1)k
∫
R

f(x)w(k)
Z (x)dx . (1.4)

where w
(k)
Z is the k-th derivative of the density. We then define the associated information index k⋆

by the first non-zero component of the information coefficient as

k⋆ := inf {1 ⩽ k ⩽ k0 such that ϑk(f) ̸= 0} . (1.5)

Whenever the entries Zij are standard Gaussian random variables, the generalized information
coefficients ϑk(f) appearing in this paper reduce to the classical Hermite coefficients, that is, the
scalar product of f with the k-th Hermite polynomial in the L2 space weighted by the Gaussian
measure. These Hermite coefficients appear naturally in various high-dimensional learning problems,
for example [5], where the associated critical index k⋆ dictates in a certain manner the rate of the
learning, in a similar fashion as the relevant scaling of the SNR in this problem, depends on k⋆. In
Ref. [5], these coefficients are called ‘information coefficients’ rather than ‘Hermite coefficients’, hence
the name ‘generalized information coefficients’ used here to denote the more general framework where
the noise is not necessarily Gaussian. It will be interesting to know if one can reinterpret these results
in terms of the spectral properties of a non-linear rank-one perturbation model.

A consequence of the first main result of our paper indicates that the relevant scaling α of the
signal-to-noise ratio is given by

γ(N) = γ0N
1
2 (1− 1

k⋆
) . (1.6)

Furthermore, under this scaling and for large N , we show that the non-linear model studied in this
paper behaves, up to a vanishing error term, as the usual ‘Wigner matrix plus rank-one perturbation’
model, with a ‘new’ rank-one perturbation aligned with the vector xk⋆ = (xk⋆

1 , . . . , xk⋆
N ).
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Theorem 1.1 (Rank-one Equivalence for the Non-Linear Model (Informal))
Suppose that Z has a smooth density wZ vanishing exponentially fast at infinity and that x has

independent entries with exponential tails. Assume that f is a measurable function such that
E[f(Z)4] < ∞. Moreover, assume that we are in the scaling regime for the SNR where there exists
a positive constant γ0 such that

γ(N) = γ0N
1
2 (1− 1

k⋆
) . (1.7)

Then for all N ⩾ 1, we have

Y (f) D=
√

ϑ0(f2) − ϑ0(f)2 W + γ0
ϑk⋆(f)

k⋆!

[ xk⋆

√
N

( xk⋆

√
N

)⊺]
+ E , (1.8)

where W is a centered and normalized Wigner matrix with entries with bounded fourth moment
and the operator norm of E goes to 0 as N → ∞. Moreover, W and x are independent.

The rank-one equivalence at the relevant scaling allows us to obtain the limiting behavior of both the
leading eigenvalue and associated eigenvector of this non-linear model through classical methods. In
particular, the matrix Y (f) exhibits the usual BBP transition [9].
Corollary 1.1 (The BBP Transition (Informal))

Under the same Hypothesis of Theorem 1.1, if we denote by λ1 and v1 the leading eigenvalue and
eigenvector of Y (f), we have:

λ1
a.s.−−−−→

N→∞
l
(

γk⋆
0

ϑk⋆(f)
k⋆! m2k⋆ ,

√
ϑ0(f2) − ϑ0(f)2

)
, (1.9)

and 〈
v1,

xk⋆

∥xk⋆∥

〉2
a.s.−−−−→

N→∞
m
(

γk⋆
0

ϑk⋆(f)
k⋆! m2k⋆ ,

√
ϑ0(f2) − ϑ0(f)2

)
. (1.10)

where l(., .) and m(., .) are the classical quantities for the leading eigenvalue and squared overlap for
rank-one perturbations of Wigner matrices as defined in Eq. (2.6).

Putting these results into action for the Gaussian noise and the non-linear functions f1(x) := |x|
and f2(x) := x3 − 3x in Sec. 1.2, one has respectively k⋆ = 2 and k⋆ = 3 such that the relevant scaling
of Eq. (2.11) writes γ(N) = γ0Nα, with α = 1/4 and α = 1/3 respectively, in accordance with the
scaling of the SNR found numerically. In the middle plots of Fig. 1 and Fig. 2, we then plot the
leading eigenvalues as a function of the rescaled SNR γ0 to see that the empirical data points collapse
to the theoretical curve from the BBP transition of Corrollary 2.2. In the rightmost plots of Fig. 1
and Fig. 2, we then plot the overlap between the leading eigenvector and the signal again the rescaled
SNR γ0, again seeing a collapse of the theoretical prediction of the BBP transition of Corollary 2.2
with again a perfect agreement.

A major advantage of our approach is that our decomposition is quite robust, and our result can
be trivially extended to deal with variants and generalizations of such a model, such as finite rank
deformations of Wigner matrices, rank-one deformations of variance-profile Wigner matrices, and
rank-one deformations of rectangular matrices (see Section 3).

Organization of the paper - The rest of this article is organized as follows: in Sec. 2, we introduce
the main non-linear model studied in this work and define formally the important coefficients ϑk(f).
We then introduce the main result of our paper, summarized in Theorem 2.2 from which Theorem 1.1
and Corollary 1.1 are merely special cases under stronger assumptions. Next, in Sec. 3, we generalize
our result to higher-rank perturbations and non-symmetric matrices.

The remaining sections of the paper are devoted to the proof of our result. We give a broad overview
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of the proof here, and defer to Sec. 4 for a detailed overview of the proof strategy. Our approach uses
a rank-one equivalence of the non-linear model to obtain the spectral phase transitions, in comparison
to other approaches which involve computing moments or using Stieltjes transforms. From the rank-
one equivalence, we can read off the critical scaling as a function of k⋆ and apply classical results for
perturbations of Wigner matrices to obtain the phase transitions at this critical scaling. Furthermore,
the proof of the rank-one equivalence is given entrywise, so it can be easily adapted to prove similar
equivalences in for higher rank and non-symmetric matrices as stated in Sec. 3.

The rank-one equivalence is first proved in a simpler case when the non-linearity is smooth, in Sec. 5
through an application of Taylor’s theorem and generic bounds on the operator norms of random
matrices with independent entries to control the error. In Sec. 6, we prove that the results extend to
non-smooth non-linearities provided that there exists a sequence of smooth approximating functions
which preserves the information index. Lastly, in Sec. 7, we show that when the noise has a smooth
density function, we can explicitly construct this sequence of index preserving smooth approximating
functions through a truncation and smoothing argument, showing that we can relax the assumptions
on the function f .

1.4 Notations

We recall that a sequence of events (EN )N∈N occurs with overwhelming probability if for any fixed
A > 0, there exists a constant CA independent of N such that P(EN ) ⩾ 1 − CAN−A for every N ∈ N.
Similarly, a sequence of events (EN )N∈N occurs with high probability if for some c > 0 independent
of N , there exists constants c, C > 0 independent of N such that P(EN ) ⩾ 1−CN−c. We say that the
law P(·) of a random variable X has stretched exponential tails if there exists a constant α > 0
and universal constants C, c > 0 such that for every M > 0, P(|X| > M) ⩽ Ce−cMα . We call α an
exponent of the stretched exponential decay. Equality in law between two random variables A and B

is denoted by A
D= B.

A function f is locally Lipschitz with polynomial constant if for every L > 0, there exists a
constant C(L) such that

sup
|x|,|y|⩽L

∣∣∣∣f(x) − f(y)
x − y

∣∣∣∣ ⩽ C(L), (1.11)

and C(L) is bounded by a polynomial, that is there exists a β ∈ N and a finite constant C such that
for every real number L, |C(L)| ⩽ C|L|β. We recall that if C(L) ≡ C is independent of L and the
supremum is over the set of definition of f , then f is Lipschitz.

For x := (x1, . . . , xN ) and k an integer, we denote by xk := (xk
1, . . . , xk

N ) the vector where each entry
is raised to the power k. For (N × M) matrices (or vectors if M = 1) A and B, the Hadamard
product is denoted by (A ⊙ B)ij := AijBij and the Hadamard power by (A⊙k)ij := Ak

ij . The
leading eigenvalue and eigenvectors of a symmetric matrix, refer to the eigenvalue with the largest
absolute value and its associated eigenvector.

2 Main Results

2.1 Model and Assumptions for the Non-Linear Rank-One Perturbation

We consider the symmetric matrix Y (f) with entries given by

Yij := 1√
N

[
f

(
Zij + γ(N)√

N
xixj

)
− Ef(Zij)

]
, (2.1)

where x = (x1, . . . , xN )⊤ is the signal vector, Z = (Zij)1⩽i,j⩽N is a symmetric noise matrix, f is the
non-linearity and γ(N) is the signal-to-noise ratio (SNR) which, in this work, might depend on the
dimension N . Subtracting the constant terms Ef(Zij) avoids the appearance of a (non-informative)

6



Perron-Frobenius mode. We now list the assumptions needed for our main result to hold, where some
of them involve an integer k⋆ defined in the next section.

For the signal vector:

(H1) We assume the entries of the vector x to be independent and identically distributed (iid),
that is with law π⊗N

X and the distribution πX(·) has stretched exponential tails and is assumed
to be independent of the dimension N . For simplicity, we also assume the distribution to be
non-trivial, that is πX ̸= δ0.

We also denote by mk := Ex∼πX [xk], the k-th moment associated to this distribution.

For the noise matrix:

(H2) We assume the entries Zij are iid and with distribution µZ for i ⩽ j, where µZ has stretched
exponential tails and is independent of the dimension N .

We denote by I the support of the distribution of Z and by {Pk}k∈N the family of orthogonal polyno-
mials associated to µZ , which always exists since µZ admits moments of any order. The case where
dµZ(x) = dµG(x) := wG(x)dx := (2π)−1/2e−x2/2dx is the Gaussian distribution is of particular im-
portance and in this case, we simply denote Z ≡ G. We recall that for the Gaussian measure, the
associated orthogonal polynomials are the famous Hermite polynomials Hek(x) defined as the solu-
tion of the differential-recurrence relation Hen+1 = xHen − He′

n with initial conditions He0 = 0 and
He1 = 1.

For the non-linearity:

For a function f ∈ Ck0 for some k0 ⩾ 1 and f (k) ∈ L1(dµZ) for k ⩽ k0, we define for k ⩽ k0 the k-th
(generalized) information coefficient of f as

ϑk(f) = EZf (k)(Z) ; (2.2)

When k = 0, this coefficient simplifies to ϑ0(f) = EZf(Z) and in particular ϑ0(f2) − ϑ0(f)2 is the
variance of the random variable f(Z) for f ∈ L2(dµZ). We define the (generalized) information
index k⋆ as:

k⋆ := inf {1 ⩽ k ⩽ k0 such that ϑk(f) ̸= 0} . (2.3)

Next, we either assume that f is sufficiently smooth and bounded in the following sense:

(H̃3) f ∈ Ck⋆+1 such that f (k) ∈ L4(µZ) for k ⩽ k⋆ and ∥f (k⋆+1)∥∞ < ∞.

or in the case that f is not smooth, that

(H3) (a) f ∈ L4(µZ) and f is locally Lipschitz with polynomial constant,

and we can find a sequence (ft)t of smooth functions ft ∈ L4(µZ) such that

(b) ft −−−→
t→∞

f in L4(µZ).

(c) ft ∈ C∞ has compact support.

(d) There exists k⋆ such that f
(k)
t ∈ L4(µZ) for 0 ⩽ k ⩽ k⋆, ∥f

(k⋆+1)
t ∥∞ < ∞ for all t and

(e) ϑk(ft) −−−→
t→∞

0 for all k < k⋆ and ϑk⋆(ft) converges as t goes to infinity towards a non-
vanishing quantity that we denote ϑk⋆(f). In this case, we define the information index
of f to be this index k⋆.

7



Note that while (H̃3) is stronger than the more general assumption (H3), it allows us to obtain a
quantitative estimate of the error rate in the main theorem (Thm. 2.2) of this paper, while this rate
will be lost in the more general setting of (H3).

Assumption (H3) is the most general form of our assumption on f which does not need the non-
linearity f to be smooth. It is, in particular, satisfied - and this is proven in Sec. 7 - in the critical
case where f satisfies (H3)a and the noise distribution is sufficiently smooth and bounded, that is, if
we have the following joint assumptions on f and µZ .

(H4) (a) The distribution µZ admits a density wZ := dµZ
dz , with support on the whole real line.

Moreover, there exists an integer number ℓ such that its k-th derivative w
(k)
Z exists

almost everywhere for all k ⩽ ℓ + 1 and satisfies w
(k)
Z ∈ L2(dx) ∩ L∞(dx), for all k ⩽ ℓ.

(b) f is a measurable function such that
∫

|f(x)w(k)
Z (x)| dx < ∞ for k ⩽ ℓ + 1.

(c) We then set, for k ≤ ℓ,

ϑk(f) := (−1)k
∫
R

f(x)w(k)
Z (x)dx . (2.4)

and we assume that ℓ is larger than k⋆, the smallest index k so that ϑk(f) does not
vanish. In this case, we define the information index of f to be this index k⋆.

Note that whenever f is sufficiently smooth, Eq. (2.4) simply corresponds to the integration by part
of Eq. (2.2).

Remark 2.1. The motivating example of f1(x) = |x| and Z is Gaussian in Figure 1 satisfies Hypoth-
esis (H3) because the Gaussian noise satisfies Hypothesis (H4).

We conclude this section on the model with two remarks relating the information exponent ϑk(f) to
orthogonal polynomials.

Remark 2.2 (Gaussian Noise and Hermite coefficients). For Gaussian noise, the density wG(x) sat-
isfies (H4) and using Stein’s identities, w

(k)
G (x) = (−1)kHek(x)wG(x), one can write the information

coefficient in terms of the Hermite coefficients of f , namely ϑk(f) = ⟨f, Hek⟩L2(µG). These coefficients
appear naturally in several recent studies related to RMT.

Remark 2.3 (Information coefficients and orthogonal decomposition). Under additional assump-
tions on ft and µZ , one can differentiate term by term the decomposition of ft in the orthogo-
nal polynomials basis {Pk}k∈N associated to µZ , to write down its k-th information coefficient as
ϑk(ft) =

∑∞
n=k

⟨ft,Pn⟩
⟨Pn,Pn⟩EZP(k)

n (Z) and by Hypothesis (H3)b, this yields the following formula:

ϑk(f) =
∞∑

n=k

⟨f, Pn⟩
⟨Pn, Pn⟩

EZP(k)
n (Z) . (2.5)

2.2 Reminder on the BBP Phase Transition for the Linear Model

Before jumping to the main result of this paper, let us first recall the classical result for the linear
model, as the result for the non-linear model will be similar.

We say that a matrix W is a centered and normalized Wigner matrix with bounded fourth
moment if up to the symmetry constraint, Wij = Wji, the entries

√
NWij are independent and

distributed according to a law P(.) which is independent of N , with mean zero and variance one,
and admits a finite fourth moment. For such matrices, it is well known that as N → ∞ the limiting
spectral distribution is given by the semi-circular distribution with support between −2 and 2 (see for
example [4]) and the operator norm converges to 2 since the fourth moment is bounded [8].
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Similarly, if we introduce the two deterministic piecewise functions

l(γ̃, σ) := 2σ sign(γ̃) 1(|γ̃|<σ) +
(

γ̃ + σ2

γ̃

)
1(|γ̃|⩾σ) and m(γ̃, σ) :=

(
1 − σ2

γ̃2

)
1(|γ̃|⩾σ) , (2.6)

where 1(x⩾c) is the indicator function, that is 1(x⩾c) = 1 if x ⩾ c and is null otherwise, we have the
following result for the rank-one perturbation of such matrices:

Theorem 2.1 ([45, 51] Rank-one perturbation of Wigner matrices)
Let W be a centered and normalized Wigner matrix with bounded fourth moment, u ∈ RN such
that ∥u∥ → 1 as N → ∞, σ > 0 and γ̃ real, then if we denote by λ1 and v1 the leading eigenvalue
and corresponding eigenvector of σW + γ̃uu⊤, we have:

λ1
a.s.−−−−→

N→∞
l(γ̃, σ) , (2.7)

and

⟨v1, u⟩2 a.s.−−−−→
N→∞

m(γ̃, σ) . (2.8)

where l(., .) and m(., .) are defined in Eq. (2.6).

Note that, up to re-scaling of γ̃ and λ1, one can always set σ = 1 without loss of generality. Yet,
forecasting the result of the non-linear case of the next section, it will be convenient to consider the
general setting σ > 0. We refer the readers to the works of Capitaine et al. [19] and Diaconu [24] for,
respectively, the study of the fluctuations around these deterministic limits and the case where the
fourth moment is infinite.

2.3 Phase Transition for the Non-Linear Model

We are now ready to state the main result of the paper:
Theorem 2.2 (Rank-one Equivalence for the non-linear model)

Suppose that f , µZ and πX satisfy hypotheses (H1), (H2) and (H3). Let k⋆ be the generalized
information index associated with f and suppose γ(N) satisfies

Q(log(N))|γ(N)|k⋆+1

N
k⋆
2

→ 0

for every polynomial Q. Then, for every ε > 0 and all N sufficiently large depending on ε, with
high probability we have the following decomposition:

Y (f) D=
√

ϑ0(f2) − ϑ0(f)2 W + P + E , (2.9)

where

1. W is a centered and normalized Wigner matrix with bounded fourth moment,

2. P is the rank-one matrix:

P := γ(N)k⋆

N
k⋆
2 − 1

2

ϑk⋆(f)
k⋆!

[ xk⋆

√
N

( xk⋆

√
N

)⊺]
, (2.10)

3. E is a symmetric matrix with operator norm bounded by ε with high probability.

Moreover, W and P are independent.
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Remark 2.4. If f is sufficiently smooth and satisfies (H̃3) then one can get explicitly the error rate
∥E∥op = O(Q(log(N))|γ(N)|k⋆+1

N
k⋆
2

) (see Lemma 5.1). The function Q(.) in this error rate is explicitly given
in Sec. 4 and only depends on the stretched exponential decay of the distributions πX and µZ , and in
particular can be set to be a constant function whenever the two have a finite support.

Note that the matrix
√

ϑ0(f2) − ϑ0(f)2W corresponds to the case without rank-one perturbation
(γ(N) = 0). Thus, Theorem 2.2 states that in the high-dimensional regime, the non-linear model
effectively behaves as a linear model with the original rank-one perturbation γ(N)(x/

√
N)(x/

√
N)⊤

replaced by the matrix P of Eq. (2.10). This phenomenon, where one can effectively lift the non-
linearity, has been observed in other matrix models, see for example Refs. [31, 32, 21, 46, 49].

Lastly, let’s remark that, unlike many standard results in RMT, this result is non-universal by nature
as the coefficients ϑk(f) depend on both the non-linearity function f and the noise distribution µZ ,
for example replacing µZ by a different distribution µZ′ might lead to a different scaling of the SNR
(see Cor. 2.1 bellow).

As a consequence of this theorem, it follows that the correct scaling of the SNR γ(N) is such that the
non-zero eigenvalue of the matrix P of Eq. (2.10) is of order one, which leads to the following result.
Corollary 2.1 (Relevant Scaling)

Under the same hypothesis as in Thm. 2.2, the relevant scaling of the SNR is given

γ(N) = γ0N
1
2 (1− 1

k⋆
) . (2.11)

Furthermore, if f satisfies (H̃3) we have ∥E∥op = O(Q(log(N)) N− 1
2k⋆ ) → 0 at this scale.

Note that γ(N) is independent of N only if k⋆ = 1. In particular and as a sanity check if f is the
identity map, one retrieves the usual BBP setting with u ≡ x/

√
Nm2. Let’s also remark that whenever

the noise is symmetric (Z D= −Z) and f is even, one can easily check that ϑ1(f) = 0 and hence k⋆ ⩾ 2,
leading to a N -dependent scaling of the SNR for the rank-one perturbation to survive in the large
dimensional regime. Note also the bound for the error term in Cor. 2.1 gets significantly worse as one
increases the critical index k⋆, implying that, in practice, one needs to push to larger values of N for
the non-linear matrix Y (f) to effectively ‘look like’ a rank-one perturbation of a Wigner matrix, see
Fig. 1 and Fig. 2 for illustrations.

As Y (f) behaves as the standard rank-one perturbation of a Wigner matrix, one can get the limiting
position of the possible outlier and the overlap of the top eigenvector thanks to Thm. 2.1. Note that
xk⋆/

√
N is not normalized to have a unit norm but since the xi are i.i.d with stretched exponential

tails, one has ∥xk⋆∥2/N
a.s−−−−→

N→∞
m2k⋆ , leading to the following result.

Corollary 2.2 (The BBP Transition)
Under the same Hypothesis of Theorem 2.2 and under the relevant scaling of Eq. (2.11), if we denote
by λ1 and v1 the leading eigenvalue and eigenvector of Y (f), we have:

λ1
a.s.−−−−→

N→∞
l
(

γk⋆
0

ϑk⋆(f)
k⋆! m2k⋆ ,

√
ϑ0(f2) − ϑ0(f)2

)
, (2.12)

and 〈
v1,

xk⋆

∥xk⋆∥

〉2
a.s.−−−−→

N→∞
m
(

γk⋆
0

ϑk⋆(f)
k⋆! m2k⋆ ,

√
ϑ0(f2) − ϑ0(f)2

)
. (2.13)

where l(., .) and m(., .) are defined in Eq. (2.6).

After the phase transition, the leading eigenvector v1 becomes partially aligned with xk⋆ and not the
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original vector x. In particular, whenever k⋆ is even, even after the transition, the matrix v1v
⊤
1 loses

all information on the sign of all the entries of xixj .

Let’s conclude this section regarding the assumptions on the signal vector x. One should expect to lift
the assumption (H1) to extend the result to the case where the entries of x are independent but not
necessarily identically distributed, for example only being identically distributed (and different from
zero) inside each block Bn(N) of a partition of N conditioned to |Bn(N)|/N → ρn

1. Similarly, one can
hope to replace the global independence condition by a weakly dependence condition, for example by
replacing x/

√
N by a vector σ drawn uniformly over SN−1, since for large N , σ behaves as a standard

Gaussian vector normalized by its norm. However, one cannot replace x/
√

N with any vector u with
a fixed norm. Indeed, a crucial condition for the result to hold is that the vector x/

√
N is delocalized,

with each entry carrying approximately the same weight of order O(N−1/2) and replacing x/
√

N by
a localized vector (say for example e1 = (1, 0, . . . , 0)) will lead to a different scaling.

3 Variants and Generalizations
In this section, we extend our result for natural variants and generalizations of Thm. 2.2.

3.1 Rank-K Deformation of Wigner Matrices

A natural extension of the previous setting is to replace the rank-one perturbation inside the non-
linearity of Eq. (2.1) by a rank-K matrix where K is an integer independent of N , that is we consider
the matrix Y

(f)
K with entries YK,ij given by:

YK,ij := 1√
N

[
f

(
Zij +

K∑
l=1

γl(N)√
N

xi,lxj,l

)
− Ef(Zij)

]
. (3.1)

For l = 1, . . . , K, we suppose the column vectors independent and distributed according to xl :=
(x1,l, . . . , xN,l) ∼ π⊗N

X,l (.) where the distributions πX,l might be different for different index l. Let’s
remark that, in general, the family of vectors {xl}l=1,...,K does not form an orthogonal basis2. In the
following, Hyp. (H1) has to be understood for each πX,l. The result of this generalization is as follows.
Theorem 3.1 (Small-Rank Equivalence For Non-Linear Rank-K Perturbation)

Suppose that Hypothesis (H1), (H2) and (H̃3) hold, then with high probability, the matrix model
Y

(f)
K has the following decomposition:

Y
(f)

K
D=
√

ϑ0(f2) − ϑ0(f)2 W + PK + E , (3.2)

where

1. W is centered and normalized Wigner matrix with entries with a bounded fourth moment,

2. PK is the finite-rank matrix:

PK := ϑk⋆(f)
N

k⋆
2 k⋆!

[ K∑
l=1

γl(N)xlx⊺
l

]⊙k⋆

, (3.3)

3. E is a symmetric matrix with operator norm bounded by Q(log(N))|γ(N)|k⋆+1

N
k⋆
2

with high proba-
bility, with Q(.) bounded by a polynomial function and γ(N) := maxl |γl(N)|.

Furthermore, W and PK are independent.

1note that one should replace m2k⋆ by the appropriate limit of ∥xk⋆ ∥2/N in this case.
2however if one further assumes one of the K distributions (say πX,1(.) without loss of generality) to have zero mean

then for any l ̸= 1 we have ⟨x1/
√

N, xl/
√

N⟩ = 0 with high probability, such that two different normalized vectors are
almost surely orthogonal in the large N limit.
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As before, the relevant scaling of each SNR γl(N) is given by γl(N) = O(N
1
2 (1− 1

k⋆
)).

Remark 3.1 (rank of PK). For K ⩾ 2, if for each l = 1, . . . , K, one has the relevant scaling
γl(N) = γ0,l N

1
2 (1− 1

k⋆
), the rank of the matrix PK is - unlike the case K = 1 - always higher than the

one of the original perturbation matrix. In general, the rank of PK is given as the number of different
terms in its expression, that is rank(PK) =

(K+k⋆−1
K−1

)
⩾ K. For example, in the case K = k⋆ = 2 one

has:

PK=k⋆=2 = ϑk⋆(f)
k⋆!

[
γ2

0,1
x2

1√
N

( x2
1√
N

)⊺

+ γ2
0,2

x2
2√
N

( x2
2√
N

)⊺

+ 2γ0,1γ0,2
x1 ⊙ x2√

N

(x1 ⊙ x2√
N

)⊺
]

, (3.4)

which, in general, is of rank three and contains a ‘cross-term’ of the form x1 ⊙ x2.

3.2 Variance-Profile Wigner Matrices

In this section, we consider a generalization of our main result to inhomogeneous matrices. We refer
to the series of work [2, 3, 1] for a study of the spectral property of these models when there is no
spike.

Let ∆ = (∆ij)i,j⩽N ∈ RN×N be a (sequence of) block-constant variance profile matrix, that
is given n ⩾ 1, there exists a partition of [N ] := {1, . . . , N} given by

[N ] =
n⊔

s=1
Is (3.5)

such that the ∆i,j are constant in the groups Is × It for s, t ∈ {1, . . . , n}

∆ij = ∆st, for i ∈ Is, j ∈ It (3.6)

and (∆st)s,t⩽n are independent of N . Furthermore, the proportions of indices in each group converges
in the limit

|Is|
N

→ ρs ∈ (0, 1) for all s ⩽ n. (3.7)

The decomposition of Y (f) in Theorem 2.2 implies the following.
Corollary 3.1 (Small Rank Equivalence with Variance Profiles)

Under the same Hypothesis of Theorem 2.2 and if ∆ is a variance profile matrix, we have with
high probability

∆ ⊙ Y (f) = ∆ ⊙
(√

ϑ0(f2) − ϑ0(f)2 W

)
+ ∆ ⊙ P + E , (3.8)

where W , P and E are as in Theorem 2.2.

3.3 Rank-One Deformation of Rectangular Matrices

In this section, we consider the following ‘rectangular’ counterpart of the main result.

We say that a (N × M) matrix X is an i.i.d standard random rectangular matrix (with entries
with bounded fourth moment) if all its entries are i.i.d from a centered distribution, independent of
N , with variance one and bounded fourth moment. We recall that a Wishart matrix W is given in
terms of i.i.d standard random rectangular matrix by W :=

(
X√
M

) (
X√
M

)⊤
and in the double scaling

where N, M → ∞ with fixed aspect ratio q = N/M , the empirical distribution of W converges to the
Marčenko-Pastur distribution [40].
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Similar to the rank-one deformation of Wigner matrices, the rank-one deformation of Wishart matrices
of the form

W ′ :=
(

σ
X√
M

+ γuv⊤
)(

σ
X√
M

+ γuv⊤
)⊤

, (3.9)

has been studied extensively in the literature, and the behaviors of the leading eigenvalue and leading
eigenvector of W ′ also exhibit a phase transition depending on the value of the constants γ and q, see
for example Ref. [9, 44].

Our goal is to relate the natural non-linear extension of this model, to the usual ‘linear’ setting.
Namely, we consider the matrix

Y (f) := 1
M

(
f [Z + γ(N)√

N
uv⊤] − Ef(Z)J(N,M)

)(
f [Z + γ(N)√

N
uv⊤] − Ef(Z)J(N,M)

)⊤
, (3.10)

where the function f is applied entry-wise, Z = (Zij)1⩽i⩽N,1⩽j⩽M with Zij
i.i.d∼ µZ , u = (u1, . . . , uN )

and v = (v1, . . . , vM ) with ui
i.i.d∼ πU and vi

i.i.d∼ πV and J(N,M) is the matrix of size (N × M) with
entries equal to one. We assume the same set of assumptions as in Sec. 2.1 (where Hyp. (H1) has to
be understood for both the distribution πU and πV and Z is not symmetric anymore), we also assume
N ⩽ M without loss of generality. To study the eigenvalues of Y (f), we consider the symmetrized
matrix Y (f) ∈ R(N+M)×(N+M) defined by

Y (f) := 1√
M

 0 f [Z + γ(N)√
N

uv⊤] − Ef(Z)J(N,M)

f [Z + γ(N)√
N

uv⊤]⊤ − Ef(Z)J(M,N) 0

 , (3.11)

The matrix Y (f) has 2N non-zero eigenvalues coming by pair {+λi, −λi}1⩽i⩽N where the λi’s are
given as the square root of the N eigenvalues of Y (f)3. One can express this new matrix Y (f) as

Y (f) = ∆ ⊙ Ỹf with ∆ :=

√
1 + N

M

[
0 J(N,M)

J(M,N) 0

]
(3.12)

and Ỹf := 1√
N + M

(
f [Z̃ + γ̃(N + M)√

N + M
x̃x̃⊤] − Ef(Z)J(N+M,N+M)

)
, (3.13)

where Z̃ is now a ((N + M) × (N + M)) symmetric matrix with iid entries distributed according to
µZ , γ̃(N + M) := γ(N)

√
1 + M/N , x̃ := [u, v] ∈ RN+M . Note that even though the entries of x̃ are

only identically distributed inside each block B1 := (1, . . . , N) and B2 := (N + 1, . . . , N + M) but not
globally, a quick check of the proof indicates that Corollary 3.1 still holds. As a result, one can get
the asymptotic decomposition of Y (f), and hence of Y (f), as the spectrum of the two matrices are in
one-to-one correspondence, up to the trivial M − N zero eigenvalues of Y (f). Eventually the factors√

1 + N/M cancel out and one gets the following result for the original matrix Y (f).
3the reader not familiar with this classical result may find it by simply looking at the characteristic polynomial of

Y (f) and express it in terms of the one of Y (f).
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Corollary 3.2 (Rank 1 Equivalence for Rectangular Matrices)

Assume that Hypotheses (H1), (H2), and (H̃3) hold, for Y (f) given by Eq. (3.10). Then, in the
scaling limit where M(N) = ⌊N/q⌋ with fixed aspect ratio q, we have with high probability the
following decomposition:

Y (f) D=
(√

ϑ0(f2) − ϑ0(f)2 X√
M

+ P
)(√

ϑ0(f2) − ϑ0(f)2 X√
M

+ P
)⊤

+ E , (3.14)

where

1. X is i.i.d standard random rectangular matrix,

2. P is the rank-one matrix

P = γ(N)k⋆

N
k⋆
2 − 1

2

ϑk⋆(f)
k⋆!

[ uk⋆

√
N

( vk⋆

√
M

)⊺]
, (3.15)

3. E is a symmetric matrix with operator norm bounded by Q(log(N))|γ(N)|k⋆+1

N
k⋆
2

with high proba-
bility.

Furthermore, X and P are independent. In particular, it follows that the perturbation P is of
non-trivial order precisely when γ = O(N

1
2

(
1− 1

k⋆

)
) and ∥E∥op = N− 1

2k⋆ → 0 at this scale.

Remark 3.2. Corollary 3.2 can be generalized to non-smooth f satisfying Hypothesis (H3)a with a
sequence of smooth approximations (H3). We will lose the explicit rate on ∥E∥op as in Theorem 2.2.

4 Outline of the Proof
The main idea of the proof is to notice that γ(N)√

N
xixj is of order γ(N)√

N
and hence if γ(N) does not grow

too fast with N , this term is small compared to Zij ≈ O(1), such that one can hope to perform and
control the expansion of f

(
Zij + γ(N)√

N
xixj

)
around f (Zij) in terms of powers of xixj .

This is done in practice by comparing the result to the case where one adds additional smoothness
and boundedness assumptions to the model for which such expansion can be easily controlled and
then one obtains the general case by approximations of the former case.

Precisely, we first obtain in Sec. 5 the main result of this paper in the case where we add to the
assumptions (H1), (H2) and (H̃3) the following assumptions

(H̃5) The entries of x and Z are bounded;

as a result of Taylor’s theorem.
Next, in Sec. 6 we detail how to remove the assumption (H̃5) and replace the assumption (H̃3) by

the more general assumption (H3) using concentration and tail inequalities.
Eventually, in Sec. 7, we prove that if f satisfies (H3)a and the noise satisfies the smooth conditions

(H4), we can explicitly construct a sequence (ft)t of cut-smoothed-and-regularized approximations of
f such that (H3) is satisfied.

5 Analysis for Smooth Functions
In this section, we describe the main intuition behind the derivation of the rank-one equivalence.
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Lemma 5.1 (Rank-one Equivalence for the non-linear model)
Suppose that Hypotheses (H1), (H2), (H̃3) and (H̃5) hold, then with high probability we have
the following decomposition:

Y (f) D=
√

ϑ0(f2) − ϑ0(f)2 W + P + E , (5.1)

where W , P,E are as in Thm. 2.2. Furthermore, for Q(x) = x2k⋆+2, E has an operator norm
bounded by

Q(log(N))
N

1
2

|γ(N)|1+ 1
k⋆ (5.2)

with high probability.

Proof. Under Hypothesis (H̃5), there exists a constant L ⩾ 1 such that max1⩽i⩽N |xi| ⩽ L almost
surely. Although it is not needed in this proof, we will write our error terms explicitly with respect to
the constant L, which will be useful in future computations.

We start by doing Taylor expansion of our function around Zij , since we assume f is Ck⋆+1 in (H̃3),

Yij = 1√
N

(f(Zij) − EZf(Z)) +
k⋆∑

k=1

1√
N

f (k)(Zij)
k!

[
γ(N)√

N
xixj

]k

+ f (k⋆+1)(ξij)
(k⋆ + 1)!

[
γ(N)√

N
xixj

]k⋆+1
,

(5.3)

where ξij ∈ [Zij − | γ√
N

xixj |, Zij + | γ√
N

xixj |]. We now approximate each term in the Taylor expansion

1. Constant Term: The first term leads to the matrix
1√
N

[f(Z) − EZf(Z)I] := 1√
N

[(f(Zij) − EZf(Z))]1⩽i,j⩽N , (5.4)

where the entries (f(Zij) − EZf(Z)) are i.i.d (up to the symmetry), of mean zero, variance
ϑ0(f2) − ϑ0(f)2 and have a bounded fourth moment since f ∈ L4(µZ). This term gives rise to
the scaled matrix W in Theorem 2.2.

2. Sub Critical Terms (k < k⋆): The non-critical terms admit the following decomposition

γ(N)k

N
k
2 − 1

2

[
f (k)(Zij)

k!

[
xk

i√
N

xk
j√
N

]
− EZf (k)(Z)

k!

[
xk

i√
N

xk
j√
N

]
+ EZf (k)(Z)

k!

[
xk

i√
N

xk
j√
N

]]
(5.5)

where the first term can be controlled using the fact that the matrix

1√
Nk!

[
f (k)(Z) − EZf (k)(Z)I

]
:= 1√

N

[ 1
k! (f

(k)(Zij) − EZf (k)(Z))
]

1⩽i,j⩽N
, (5.6)

is again a Wigner matrix, which has a bounded operator norm since f (k) ∈ L4(µZ) thanks to
the additional assumption (H̃3). Since the entries of x are uniformly bounded thanks to the
additional assumption (H̃5), the diagonal matrix D(xk) := Diag(xk

1, . . . , xk
N ) is also bounded in

operator norm which leads to the following bound:

γ(N)k

N
k
2 k!

∥∥∥∥[f (k)(Zij)√
N

[
xk

i xk
j

]
− EZf (k)(Z)√

N

[
xk

i xk
j

]]
ij

∥∥∥∥
op

= γ(N)k

N
k
2 k!

∥∥∥∥D(xk)
(

f (k)(Z)√
N

− EZf (k)(Z)√
N

)
D(xk)

∥∥∥∥
op

⩽ O

(
Q(L)|γ(N)|k

N
k
2

)
, (5.7)

with high probability. Hence the matrix coming from the first term in (5.5) can be absorbed in
the error matrix E. We recall that if f is smooth, we have ϑk(f) = EZf (k)(Z) which is null by
definition of k⋆ and since k < k⋆. Hence the second term in (5.5) vanishes.
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3. Critical Terms k⋆: The reasoning for the critical term is identical: we have again Eq. (5.5)
with k = k⋆, but now the remainder term is non-zero and given by:

γ(N)k⋆

N
k⋆
2 − 1

2
EZ

f (k⋆)(Z)
k⋆!

[
xk⋆

i√
N

xk⋆
j√
N

]]
= γ(N)k⋆

N
k⋆
2 − 1

2

ϑk⋆(f)
k⋆!

[
xk⋆

i√
N

xk⋆
j√
N

]
, (5.8)

which is nothing else than the (ij) entry of our matrix P in Theorem 2.2.

4. Remainder Terms: The last terms can be written in matrix form as

R := γ(N)k⋆+1

(k⋆ + 1)!N
k⋆
2 +1

D(xk⋆+1)
(
f (k⋆+1)(ξ)

)
D(xk⋆+1) . (5.9)

By our assumption (H̃3), we have ∥f (k⋆+1)∥∞ ⩽ C. We can now obtain a L2 bound on the
spectrum for some universal constant C̄ that only depends on C

∥R∥2
F := Tr(R2) ⩽ C̄Q(L)2N2 γ(N)2k⋆+2

((k⋆ + 1)!)2Nk⋆+2 , (5.10)

which goes to zero if |γ(N)|2k⋆+2

Nk⋆
→ 0. Since

∥R∥op ⩽ ∥R∥F ⩽ O

(
Q(L)|γ(N)|k⋆+1

N
k⋆
2

)
, (5.11)

we can absorb this into the error term E.

6 Analysis for Functions Satisfying Hypothesis (H3)
In this section, we generalize the result in Section 5 to general (not necessarily smooth) functions f
satisfying Hypothesis (H3)a which admit a sequence of smooth approximations (H3). We also remove
the conditions that Z and x have bounded support in Hypothesis (H̃5), but satisfy Hypothesis (H1)
and Hypothesis (H2).

6.1 Bounding the Tails

We begin by weakening the assumptions in Hypothesis (H̃5). Given L > 1, consider the following
smooth cutoff function

χL(x) =
{

1 |x| ⩽ L − 1
0 |x| > L

, (6.1)

and interpolated such that χL(x) is smooth for |x| ∈ [L − 1, L]. We can further assume that this
smooth approximation satisfies, for some integer number K large enough,

sup
0⩽k⩽K

∥χ
(k)
L ∥∞ < ∞ . (6.2)

Such a cutoff function can be generated by taking a mollification of the indicator function. We define
the following truncated versions of f and x,

fL(x) = f(x)χL(x) , (6.3)

and

xL
i = xi 1(|xi|⩽L) +L1(|xi|>L) . (6.4)

We define the following matrix

Y
(fL)

L = 1√
N

[
fL

(
Zij + γ(N)√

N
xL

i xL
j

)
− EfL(Zij)

]
. (6.5)

The main result of this section is the following estimate which states that the truncated matrix Y
(fL)

L

and Y (f) are equivalent with high probability.
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Lemma 6.1 (Truncation Lemma)
Suppose that Hypothesis (H1) and Hypothesis (H2) and Hypothesis (H3)a hold. Let γ =

O((log(N))2k⋆+1N
1
2

(
1− 1

k⋆

)
). Assume that the exponents of the stretched exponential decay of πX

and µZ are bounded below by some α > 0 and assume that L ≥ L(N) = (3
c log(N))

1
α for some

small enough constant c. We have

P(∥Y (f) − Y
(fL)

L ∥∞ ̸= 0) ⩽ (N + N2)e−cLα
.

goes to zero polynomially fast in 1/N .

Proof. Notice that

{∥Y (f) − Y
(fL)

L ∥∞ ̸= 0} = {(Y (f))ij = (Y (fL)
L )ij ∀i, j}C

=
⋃

i⩽N

{xi ̸= xL
i } ∪

⋃
i,j⩽N

{f(Zij + γ(N)√
N

xL
i xL

j ) ̸= fL(Zij + γ(N)√
N

xL
i xL

j }

By the union bound, it follows that

P(∥Y (f) − Y
(fL)

L ∥∞ ̸= 0) ⩽ NP(x1 ̸= xL
1 ) + N2P

(
f(Z12 + γ(N)√

N
xL

1 xL
2 ̸= fL(Z12 + γ(N)√

N
xL

1 xL
2 )
)
(6.6)

⩽ NP(x1 ⩾ L(N)) + N2P
(

|Z12| ⩾ L(N) − γ(N)L(N)2
√

N

)
. (6.7)

Next, notice that γ(N)L(N)2
√

N
⩽ L(N)

2 for N sufficiently large. By the stretched exponential bound on
the tails in Hypothesis (H1) and Hypothesis (H2), it follows that

P(∥Y (f) − Y
(fL)

L ∥∞ ̸= 0) ⩽ (N + N2)e−cL(N)α (6.8)

which goes to zero for our choice of L.

In particular, moving forward it suffices to study the spectrum of Y (fL)
L instead of Y (f).

6.2 Smooth Approximations

By Hypothesis (H3)b and Hypothesis (H3)e, we can find a sequence of smooth ft converging to f in
L4(µZ) such that

ϑk(ft) −−−→
t→∞

ϑk(f) (6.9)

for all k ⩽ k⋆. We can construct a perturbation of the smoothing function such that the critical
exponent is preserved, instead of being arbitrarily close. We define

g(x) :=
k⋆−1∑
l=0

cl(ft)xl , (6.10)

where the coefficients cl(ft) are chosen to satisfy

EZg(k)(Z) =
k⋆−1∑
l=k

l!
(l − k)!cl(ft)E[Z l−k] = −ϑk(ft) , (6.11)

for all k ⩽ k⋆ − 1. Such coefficients can be found recursively by setting

ck⋆−1(ft) = −1
(k⋆ − 1)!ϑk⋆−1(ft) ,
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ck(ft) = 1
k!

(
− ϑk(ft) −

k⋆−1∑
l=k+1

l!
(l − k)!cl(ft)E[Z l−k]

)
for k < k⋆ − 1, (6.12)

(the system of equations we have to solve is an upper triangular matrix with non-zero diagonal so
such coefficients exist). In particular, the constants cl(ft) are continuous functions of the ϑk(ft). It
follows that

fpert
t (x) := ft(x) + g(x) , (6.13)

preserves the critical exponent by linearity

ϑk(fpert
t ) = 0 for k < k⋆ and ϑk⋆(fpert

t ) ̸= 0 . (6.14)

We now prove the main result of this subsection, which is an approximation theorem, which states
that the spectrums of the smoothed random matrix Y

(fpert
t )

L is a good approximation for the spectrum
of Y (fL)

L .
Lemma 6.2 (Approximation Lemma)

Let f satisfy Hypothesis (H3)c and Hypothesis (H3)b and suppose that γ(N) is such that
γ(N)L(N)2

√
N

→ 0. For every fixed t ⩾ 0 and N sufficiently large depending on N , we have with
high probability that

∥Y (fL)
L − Y

(fpert
t )

L ∥op ⩽ O(∥f − fpert
t ∥2

L4(µZ) + ∥f − fpert
t ∥4

L4(µZ)) ⩽ ot(1) + oN (1) ,

where limt→∞ ot(1) = 0 and limt→∞ limN→∞ oN (1).

Proof. We first fix an x and do the computation conditionally on x.

Step 1: Notice that fL is globally Lipschitz with constant Q(L(N)) and ft is globally Lipschitz with
constant ∥ft

′∥∞ < ∞ because it is compactly supported and smooth by Hypothesis (H3)c. The op-
erator norm is convex and a Lipschitz functions of its entries, so Talagrand’s concentration inequality
implies that

PZ(|∥Y (fL)
L − Y

(fpert
t )

L ∥op − EZ∥Y (fL)
L − Y

(fpert
t )

L ∥op| ⩾ t) ⩽ e
− t2N

Ct(L)2 . (6.15)

The constant Ct(L) = C(Q(L(N)) + ∥ft
′∥∞)2 is independent of x and only depends on the Lipschitz

constants of f and fpert
t , and is at most a polynomial in L. Therefore, the upperbound will tend to 0

as N → ∞. In particular, with high probability the operator norm is close to its expected value.

Step 2: We define f̃(Z) = fL(Z + γ(N)√
N

xixj) and f̃pert
t (Z) = fpert

t (Z + γ(N)√
N

xixj) to be shifted functions.
We will show that

EZ∥Y (fL)
L − Y

(fpert
t )

L ∥op ⩽ O(∥f̃ − f̃pert
t ∥4

L4(µZ) + ∥fL − fpert
t ∥4

L4(µZ)) . (6.16)

Conditionally on x, the matrix Y
(fL)

L − Y
(fpert

t )
L has independent entries, we can apply Latala’s The-

orem ([34] or [20, Lemma 6.3]) which bounds the expectation of the operator norm of a matrix with
independent entries by the L2 norm of its rows and the L4 norm of its entries. Integrating with respect
to the noise variables conditionally on x

1
N

E
(

fL

(
Zij + γ(N)√

N
xixj

)
− EfL(Zij) − fpert

t

(
Zij + γ(N)√

N
xixj

)
+ Efpert

t (Zij)
)2

(6.17)

⩽
2
N

E
(

fL

(
Zij + γ(N)√

N
xixj

)
− fpert

t

(
Zij + γ(N)√

N
xixj

))2

+ 2
N

E
(
EfL(Zij) − Efpert

t (Zij)
)2

(6.18)
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⩽
2
N

∥f̃L − f̃pert
t ∥2

L2(µZ) + 2
N

∥fL − fpert
t ∥2

L1(µZ) . (6.19)

A similar computation for the fourth moment implies that

1
N2E

(
fL

(
Zij + γ(N)√

N
xixj

)
− EfL(Zij) − ft

(
Zij + γ(N)√

N
xixj

)
− Eft(Zij)

)4

⩽
8

N2E
(

fL

(
Zij + γ(N)√

N
xixj

)
− ft

(
Zij + γ(N)√

N
xixj

))4

+ 8
N2E

(
EfL(Zij) − Eft(Zij)

)4

⩽
8

N2 ∥f̃L − f̃pert
t ∥4

L4(dµZ ) + 8
N2 ∥fL − ft∥4

L1(dµZ ) .

Therefore, Latala’s Theorem implies (6.16). Since L4(µZ) ⊆ L2(µZ) ⊆ L1(µZ) and our assumption
on the integrability of f , it suffices to control the fourth moment which gives us (6.16).

Step 3: We now control the norm in the right hand side of (6.16). By the classical inequality

(a + b)4 ⩽ 24(a4 + b4) , (6.20)

there exists a universal constant Ck⋆ such that

∥fL − fpert
t ∥4

L4(µZ) = Ck⋆

(
∥fL − ft∥4

L4(µZ) +
∑

k<k⋆

c4
k(ft)∥xk∥4

L4(µZ)

)
. (6.21)

The second term is small order because c4
k(ft) goes to zero as ϑℓ(ft) go to zero for ℓ < k⋆ by (6.12)

and Z has finite moments by Hypothesis (H2).
To control the first term, the triangle inequality implies that

∥fL − fpert
t ∥4

L4(µZ) ⩽ 24∥f − fL∥4
L4(µZ) + 24∥f − ft∥4

L4(µZ). (6.22)

The first term tends to 0 as N → ∞ while the second term goes to 0 by Hypothesis (H3)b.
Next, we need to control

∥f̃L − ˜
fpert

t ∥4
L4(µZ) ⩽ 24∥f̃ − f̃L∥4

L4(µZ) + 24∥f̃ − f̃t∥4
L4(µZ). (6.23)

Notice that for any ε > 0 and all N sufficiently large c = γ(N)√
N

xL
i xL

j ∈ [−ε, ε] almost surely because
xL

i xL
j ∈ [−L(N)2, L(N)2] so |γ(N)√

N
xL

i xL
j | → 0 for all N sufficiently large by our Theorem assumptions.

Since f is locally Lipschitz with polynomial constant, there exists a polynomial P with bounded degree
such that

EZ(f̃)4 ⩽ 24EZf4 + 24E(f(Z + c) − f(Z))4 ⩽ 24EZf4 + 24c4EP (|Z + c|) < ∞

because f ∈ L4 and Hypothesis (H2) implies that all moments of Z are finite. This bound is also
holds almost surely in c. Therefore, the first term of (6.23) goes to zero. To control the second term,
notice that

E∥f(Z + c) − ft(Z + c)∥4
L4(µZ) (6.24)

⩽ 34(E∥f(Z + c) − f(Z)∥4
L4(µZ) + E∥ft(Z + c) − ft(Z)∥4

L4(µZ) + E∥f(Z) − ft(Z)∥4
L4(µZ)) (6.25)

The first and second term are clearly bounded by O(ε4) because f is locally Lipschitz with polynomial
constant and ft is Lipschitz because it is smooth and compactly supported by Hypothesis (H3)c. The
third term tends to zero by the convergence Hypothesis (H3)b.

We, therefore, conclude that

∥f − fpert
t ∥4

L4(µZ) = ot(1) + oN (1) , (6.26)

uniformly for all c. All the bounds are held almost surely in x and are independent of x, so our results
hold unconditionally as well, so our smooth approximations are exact in the limit.
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6.3 A Smooth Approximation of the Main Theorem

We now combine the arguments to prove Theorem 2.2.

Proof of Theorem 2.2. By the truncation Lemma 6.1 we have that with high probability that Y (f)

and Y
(fL)

L have the same spectrum. The approximation Lemma 6.2, we also have that with high
probability,

Y
(fL)

L
D= Y

(fpert
t )

L + Et + E(N) , (6.27)

where ∥Et∥op ⩽ ot(1), ∥E(N)∥op ⩽ oN (1) when N is sufficiently large depending on t.
For every t ⩾ 1, the function fpert

t satisfies the conditions of Hypothesis (H̃3) because of Hypothe-
sis (H3)b. We can conclude that with high probability we have the following decomposition:

Y
(fpert

t )
L

D=
√

ϑ0(f2) − ϑ0(f)2 W + P + E(N) . (6.28)

We conclude by Lemma 6.1 that with high probability and all N sufficiently large depending on t that

Y (f) D=
√

ϑ0(f2) − ϑ0(f)2 W + P + E(N) + Et (6.29)

where the operator norm of ∥E(N)∥op → 0 as N → ∞ for any fixed ε. In particular, given any ε > 0,
we may fix a t such that ∥Et∥op ⩽ ε/2 and then take N sufficiently large depending on ε such that
∥E(N)∥op < ε/2 to conclude the proof.

Remark 6.1. If we assume sufficient regularity on the function f and are able to find a sequence of
approximating fpert

t with uniformly bounded k⋆ + 1 derivatives for all n, then an explicit bound of the
operator norm E in terms of N can be computed.

We end this section with a remark that our proof naturally generalizes to the cases introduced in
Section 3.

Proof of Theorem 3.1, Corollary 3.1, Corollary 3.2. It is easy to see that the proof of Theorem 2.2
also holds entry wise, so the proofs of the generalizations are identical to the simple case. We sketch
the essential modifications. The critical observation is that the Taylor expansion done in Eq. (5.3)
holds if the function f depends on the index, that is f = fij , and in the presence of a higher order
spike. The bound in (5.7) also holds for fij in the setting with a (bounded) variance profile by Latala’s
theorem. The same construction of smooth approximators also holds in this setting, so Section 6.

Corollary 3.2 naturally follows from Corollary 3.1 and the Girko Hermitization trick in equation
(3.11).

7 Approximations in the Case of Smooth Density for the Noise
In this section, we show that under the assumptions that f is locally Lipschitz and the noise Z has a
sufficiently smooth density given by Hypothesis (H4), we explicitly construct a sequence ft satisfying
Hypothesis (H3).

7.1 Smooth Truncation fδ,M

We now construct a sequence of smooth approximations of f satisfying the Hypothesis (H3). We first
truncate the domain of f to a compact set and then smooth this truncated function. We will show
that the smoothing can be made exact by taking the smoothing parameter to 0 and then taking the
truncation to infinity.

For M > 0, we define the following truncation

fM (x) := f(x)1(|x|⩽M) . (7.1)
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Next, we consider a standard smoothing of the non-linearity. We define the mollifier ηδ ∈ C∞(R) by

η(x) := 1∫ 1
−1 exp( 1

y2−1) dy
exp

( 1
x2 − 1

)
1(|x|<1) and ηδ(x) = 1

δ
η
(x

δ

)
. (7.2)

Let fδ,M be its smoothing with a mollifier,

fδ,M = fM ∗ ηδ. (7.3)

We recall the following standard facts about the mollifiers, see [18, Proposition 4.18 and Theorem 4.22]:

Lemma 7.1
If f ∈ Lp(dx), then fδ,M is a smooth function and fδ,M → fM in Lp(dx). Furthermore,

supp(fδ,M ) ⊆ supp(fM ) + supp(ηδ) ⊆ [−M − δ, M + δ]. (7.4)

Now suppose that the density wZ(z) of Z satisfies Hypothesis (H3). We define

ϑk(f) = (−1)k
∫

f(x)w(k)
Z (x)dx . (7.5)

We first prove that ϑk(fδ,M ) converges to ϑk(f).
Lemma 7.2

If Hypothesis (H3)a and Hypothesis (H4) holds, then

|ϑk(f) − ϑk(fδ,M )| = oM (δ) + oM (1) . (7.6)

for all k ⩽ k⋆ < ∞. The oM (δ) term goes to 0 as δ → 0 uniformly for all M .

Proof. Since fδ,M is smooth, we can integrate by parts to conclude that

ϑk(fδ,M ) = EZfδ,M
(k)(Z) = (−1)k

∫
fδ,M (x)w(k)

Z (x)dx . (7.7)

In particular,

|ϑk(fδ,M ) − ϑk(f)| =
∣∣∣∣ ∫ (fδ,M (x) − f(x))w(k)

Z (x)dx

∣∣∣∣ ⩽ ∫
|fδ,M (x) − f(x)| |w(k)

Z (x)|dx . (7.8)

We decompose this integral into two regions∫
|fδ,M (x) − f(x)||w(k)

Z (x)|dx

=
∫

|x|⩽M
|fδ,M (x) − f(x)||w(k)

Z (x)|dx +
∫

|x|>M
|fδ,M (x) − f(x)||w(k)

Z (x)| dx .
(7.9)

On the first region, we can use Holder’s inequality and use the assumption (H4)a to see that∫
|x|⩽M

|fδ,M (x) − f(x)||w(k)
Z (x)| dx (7.10)

⩽
(∫

|fδ,M (x) − f(x)|2dx

)1/2(∫
|x|⩽M

|w(k)
Z (x)|2dx

)1/2
(7.11)

⩽ Ck∥fδ,M (x) − fM (x)∥L2(dx) = oM (δ) , (7.12)
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where there error goes to 0 for every fixed M . On the second region, since fδ,M is supported on a
subset of [−M − δ, M + δ], we have∫

|x|>M
|fδ,M (x) − f(x)||w(k)

Z (x)| dx

⩽
∫

|x|>M+δ
|fδ,M (x) − f(x)||w(k)

Z (x)| dx +
∫

M<|x|<M+δ
|fδ,M (x) − f(x)||w(k)

Z (x)| dx.
(7.13)

The first term tends to 0 as M → ∞ uniformly for all δ since f is integrable so the integral of its tail
converges. For fixed M , we have using the assumption that w

(k)
Z is uniformly bounded

sup
M<|x|<M+δ

|fδ,M (x) − f(x)||w(k)
Z (x)| ⩽ C(M) , (7.14)

so the second integral vanishes if we send δ → 0. Therefore, we have

lim
M→∞

lim
δ→0

|ϑk(fδ,M ) − ϑk(f)| = 0 . (7.15)

We now prove that there exists a parametrization (δ(t), M(t)) such that (δ(t), M(t)) → (0, ∞) and
ft = fδ(t),M(t) satisfies Hypothesis (H3).

Proposition 7.1
There exists a sequence (δ(t), M(t)) → (0, ∞) such that ft = fδ(t),M(t) satisfies Hypothesis (H3).

Proof. We prove each property separately.

Hypothesis (H3)b: We have

∥f − fδ,M ∥4
L4(µZ) = EZ [(f(Z) − fδ,M (Z))4

1(|Z|⩽M)] + EZ [(f(Z) − fδ,M (Z))4
1(|Z|>M)] . (7.16)

On the set |Z| ⩽ M the fact that the density dPZ
dz = wZ is bounded by Hypothesis (H2) implies that

EZ [(f(Z) − fδ,M (Z))4
1(|Z|⩽M)] = EZ [(fM (Z) − fδ,M (Z))4

1(|Z|⩽M)] (7.17)
⩽ EZ [(fM (Z) − fδ,M (Z))4] (7.18)
⩽ C∥fM − fδ,M ∥4

L4(dx) = oM (δ) , (7.19)

because fM is compactly supported so fδ,M → fM in L4(dx) .
On the set, |Z| > M , we have fδ,M (Z) = 0 for Z ∈ [−M − δ, M + δ]c so using the Lipschitz property

of f

EZ [(f(Z) − fδ,M (Z))4
1(|Z|>M)] (7.20)

= EZ [(f(Z) − fδ,M (Z))4
1(M⩽|Z|⩽M+δ))] + EZ [(f(Z))4

1(|Z|⩾M+δ)] (7.21)
⩽ sup

M⩽x⩽M+δ
|f(x) − fδ,M (x)|P(M ⩽ |Z| ⩽ M + δ) + o(M) = oM (δ) + o(M) , (7.22)

where oM (δ) → 0 as δ → 0 for every fixed M . In the third line, we used the fact that f ∈ L4(µZ) so
its tails are integrable by the dominated convergence theorem and the fact that f is Lipschitz. We can
control our error by first sending δ → 0 then M → ∞. In particular, we can jointly define a sequence
by taking δ sufficiently small depending on M , which gives us our sequence (δ(t), M(t)).

Hypothesis (H3)c: This is immediate by Lemma 7.1.

22



Hypothesis (H3)d: We will prove that ∥f
(k∗+1)
M,δ ∥ ⩽ C(M, δ) for some constant that does not depend

on N . By Young’s inequality and the fact that the perturbation term is a polynomial of degree less
than k⋆,∥∥∥∥ dk⋆+1

dxk⋆+1

(
fM ∗ ηδ +

k∗−1∑
l=0

cl(fδ,M )xl
)∥∥∥∥

∞
⩽ ∥fM ∗ η

(k⋆+1)
δ ∥∞ ⩽ ∥fM ∥L1(dx)∥η

(k⋆+1)
δ ∥∞. (7.23)

We have

∥fM ∥L1(dx) ⩽ 2M
(

sup
x∈[−M,M ]

f(x)
)

(7.24)

and

∥η
(k⋆+1)
δ ∥∞ ⩽

1
δk⋆+1 ∥η(k⋆+1)∥∞. (7.25)

Both of these constants are independent of N , so we have control of the remainder term for free.
By the same argument, we also get that the fourth moment assumption is automatically satisfied

for k < k⋆ because ∥∥∥∥ dk

dxk

(
fM ∗ ηδ +

k∗−1∑
l=0

cl(fδ,M )xl
)∥∥∥∥

L4(µZ)

= ∥fM ∗ η
(k)
δ +

∑
l⩾k

cl(fδ,M )xl∥L4(µZ)

⩽ Ck⋆,k

(
∥f4

M ∥L1(dx)∥η
(k)
δ ∥L4(µZ) +

∑
l⩾k

cl(fδ,M )∥xl∥L4(µZ)

)
.

This quantity can clearly be bounded independently of N , because we assumed control of the moments
of Z in Hypothesis (H4). And in particular, the fourth moment condition is satisfied automatically
if we assume sufficient integrability on Z.

Hypothesis (H3)e: This is immediate by Lemma 7.2. We can take a modify our sequence by possible
taking δ even smaller depending on M such that Hypothesis (H3)b is satisfied as well.
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