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2 INTRODUCTION TO STOCHASTIC ANALYSIS

9. Appendix 84

notations, classical (admitted) notions

• A measurable space (Ω,G) is given by
-the sample space Ω, an arbitrary non-empty set ∅,
-the σ-algebra G(also called σ-field) a set of elements of Ω such that: G

contains the empty set ∅, G is closed under complements (if A ∈ Fa,Ω\A ∈
G), G is closed under countable unions (if Ai ∈ G, ∪iAi ∈ G)

• A function f : X→Y between two measurable spaces (X,G) and (Y,G)
is measurable iff for all B ∈ G, f−1(B) ∈ G. We will use that pointwise
limits of measurable functions are measurable (exercise).

• Convergence in law : A sequence µn, n ≥ 0 of probability measures on a
measurable space (Ω,G) converges in law towards a probability measure
µ iff for any bounded continuous function F on (Ω,G)

lim
n→∞

∫
Fdµn =

∫
Fdµ

• The monotone convergence theorem asserts that if fn ≥ 0, fn ≤ fn+1

grows P-as to f then

lim
n→∞

∫
fndP =

∫
fdP

• The bounded convergence theorem asserts that if fn is a sequence of uni-
formly bounded functions converging P as to f then

lim
n→∞

∫
fndP =

∫
fdP .

• Borel-Cantelli lemma states that if An is a sequence of measurable sets
of a measurable space (Ω,G) equipped with a probability measure P such
that

∑
P(Acn) <∞, then

P(lim supAn) = 1 lim supAn = ∪n≥0 ∩p≥n Ap .
• ' denotes asymptotic equality (in general, An ' Bn iff An − Bn goes to

zero, but it can also mean that An/Bn goes to one)

1. Brownian motion and stochastic processes

Stochastic processes theory is the study of random phenomena depending on
a time variable. Maybe the most famous is the Brownian motion first described
by R. Brown, who observed around 1827 that tiny particles of pollen in water
have an extremely erratic motion. It was observed by Physicists that this was due
to an important number of random shocks undertaken by the particles from the
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(much smaller) water molecules in motion in the liquid. A. Einstein established in
1905 the first mathematical basis for Brownian motion, by showing that it must
be an isotropic Gaussian process. The first rigorous mathematical construction of
Brownian motion is due to N. Wiener in 1923, after the work of L. Bachelier in 1900
who is considered to be the first to introduce this notion.

1.1. Microscopic approach. In order to motivate the introduction of this
object, we first begin by a microscopical depiction of Brownian motion. Suppose
(Xn, n ≥ 0) is a sequence of Rd valued random variables with mean 0 and covariance
matrix σ2I, which is the identity matrix in d dimensions, for some σ2 > 0. Namely,
if X1 = (X1

1 , . . . , X
1
d), we have

E[X1
i ] = 0, E[X1

iX
1
j ] = σ2δij , 1 ≤ i, j ≤ d

We interpret Xn as the spatial displacement resulting from the shocks due to water
molecules during the n-th time interval, and the fact that the covariance matrix
is scalar stands for an isotropy assumption (no direction of space is privileged).
From this, we let Sn = X1

1 + · · ·+X1
n and we embed this discrete-time process into

continuous time by letting

B
(n)
t := (

1√
n
S[nt], t ≥ 0)

Let ‖.‖2 be the Euclidean norm on Rd and for t > 0 and x ∈ Rd, define

pt(x) =
1

(2πt)d/2
exp(−‖x‖

2
2

2t
)

which is the density of the Gaussian distribution N(0, tId) with mean 0 and covari-
ance matrix tId. By convention, the Gaussian law N(m, 0) is the Dirac mass at
m.

Proposition 1.1. Let 0 < t1 ≤ t2 < · · · < tk. Then the finite marginal
distributions of B(n) with respect to times t1, . . . , tk converge weakly as n goes to
infinity. More precisely, if F is a bounded continuous function, and letting x0 =
0, t0 = 0,

lim
n→∞

E[F (B
(n)
t1 , . . . , B

(n)
tk

)] =

∫
F (x1, . . . , xk)

∏
1≤i≤k

pσ2(ti−ti−1)(xi−xi−1)dxi

Proof. The proof boils done to the central limit theorem as

B
(n)
ti −B

(n)
ti−1

=
1√
n

[nti+1]∑
j=[nti]+1

Xj

are independent and converges in law towards centered Gaussian vectors with co-
variance σ2(ti+1 − ti) by the central limit theorem. The latter can be checked by
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computing the Fourier transform given for any real parameters ξj ∈ Rd by

E[e
i
∑k
j=1 ξi.(B

(n)
tj
−B(n)

tj−1
)
] =

k∏
j=1

E[e
iξj(B

(n)
tj
−B(n)

tj−1
)
]

while

lim
n→∞

E[e
iξj .(B

(n)
tj
−B(n)

tj−1
)
] = e−

σ2

2 (tj+1−tj)

as can easily be checked (at least if the Xi’s have a moment of order 2 + ε for some
ε > 0) as

E[e
iξi.(B

(n)
ti
−B(n)

ti−1
)
] =

[nti+1]∏
j=[nti]+1

E[e
1√
n
ξi.Xj ]

'
[nti+1]∏

j=[nti]+1

(1− n−1σ2‖ξi‖22/2) ' e−σ
2

2 (ti+1−ti)

�

This suggests that B(n) should converge to a process B whose increments are
independent and Gaussian with covariances dictated by the above formula. The
precise sense of this convergence as well as the state space in which the limit should
live is the object of the next subsections. The limit of B(n) should be described as
follows:

Definition 1.2. An Rd-valued stochastic process (Bt, t ≥ 0) is called a standard
Brownian motion if it is a continuous process, that satisfies the following conditions:

(1) B0 = 0 a.s.,
(2) for every 0 = t0 ≤ t1 ≤ t2 · · · ≤ tk, the increments (Bt1 − Bt0 , Bt2 −

Bt1 , . . . , Btk −Btk−1
) are independent,

(3) for every t, s ≥ 0, the law of Bt+s − Bt is Gaussian with mean 0 and
covariance sId.

The properties (1), (2), (3) exactly amount to say that the finite-dimensional
marginals of a Brownian motion are given by the formula of Proposition 1.1. There-
fore the law of the Brownian motion is uniquely determined.

1.2. Equivalent processes, indistinguishable processes. The previous
section yields several remarks; how can we construct a random continuous pro-
cess with given marginals ? how does it compares to other constructions ? How can
we speak about the law of the Brownian motion ? etc etc In this section we make
all these definitions more precise. We will denote throughout (Ω,G,P) a probability
space. T will be the space time, often T = R+. (E, E) is the measurable space of
state.
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Definition 1.3. A stochastic process with values in (E, E) based on (Ω,G,P)
is a family (Xt)t∈T of random variables from (Ω,G,P) into (E, E).

To any ω ∈ Ω, we associate the map

T → E

t → Xt(ω)

called the trajectory of (Xt)t∈T associated with ω.

To simplify, we will hereafter restrict ourselves to the case T = R+, E = Rd
and E = B(Rd).

We say that (Xt)t∈T is P-a.s right (resp. P-a.s left, resp. P-a.s) continuous if
for almost all ω ∈ Ω, the trajectory of (Xt)t∈T associated with ω is right (resp. left,
resp.) continuous.

We will say that two stochastic processes describe the same random phenome-
non if they are equivalent in the following sense

Definition 1.4. Let (Xt)t∈T and (X ′t)t∈T be two processes with values in the
same state space (E, E) with (Xt)t∈T (resp. (X ′t)t∈T) based on (Ω,G,P)(resp. (Ω′,G′,P′)).
We say that (Xt)t∈T and (X ′t)t∈T are equivalent if for all n ≥ 1, for all t1, . . . , tn ∈ T,
all B1, · · · , Bn ∈ E,

P (Xt1 ∈ B1, . . . , Xtn ∈ Bn) = P′
(
X ′t1 ∈ B1, . . . , X

′
tn ∈ Bn

)
.

We also say that these processes are “ a version of each other” or a version of the
same process.

Note that this defines an equivalence relation.

The family of the random variables (Xt1 , . . . , Xtn) for ti ∈ T is called the family
of the finite dimensional marginals of (Xt)t∈T. Two processes are equivalent if they
have same finite marginal distributions. Note however that this does not imply in
general that Xt = X ′t almost surely for every t as the set of parameters T is not
countable, unless the processes under study possess some regularity. The latter
property refers to indistinguishable processes

Definition 1.5. Two processes (Xt)t∈T and (X ′t)t∈T defined on the same prob-
ability space (Ω,G,P) are indisguishable if

P(Xt(ω) = X ′t(ω) ∀t ∈ T) = 1

Note that, up to indistinguishability there exists at most one continuous modifi-
cation of a given process (Xt, t ≥ 0). We will say that a process X is a modification
of another process X ′ if they are indisguishable.
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1.3. Kolmogorov’s criterion. Kolmogorov’s criterion is a fundamental re-
sult which guarantees the existence of a continuous version (but not necessarily
indistinguishable version) based solely on an Lp control of the two-dimensional dis-
tributions. We will apply it to Brownian motion below, but it is useful in many
other contexts.

Theorem 1.6. (Kolmogorov’s continuity criterion) Let Xt, t ∈ R+ be a sto-
chastic process with values in Rd. Suppose there exist α > 0, β > 0, C > 0 so
that

E[‖Xt −Xs‖α] ≤ C|t− s|1+β

for some norm ‖.‖ on Rd. Then, there exists a modification (X ′t)t∈R+ of (Xt)t∈R+

which is almost surely continuous, and even ε Hölder for ε < β/α.

As a direct application we deduce that

Corollary 1.7. If (Xt)t∈R+ is a d-dimensional Brownian motion defined by
Definition 1.2, there exists a a modification (X ′t)t∈R+ of (Xt)t∈R+ with continuous
(and even ε-Hölder with ε < 1/2) trajectories.

Indeed it follows from the fact that for all integer number n,

E[‖Xt −Xs‖2n2 ] = Cn(t− s)n

with Cn the 2nth moment of a centered d-dimensionnal Gaussian variable with
variance one, so that Kolmogorov Theorem holds with ε < (n− 1)/2n.

Proof. It is enough to restrict ourselves to T = [0, 1] up to put

Bt =

[t]∑
i=1

Bi1 +B
[t]
t−[t]

with Bi independent copies of the Brownian motion on [0, 1]. Let Dn = {k2−n, 0 ≤
k ≤ 2n} denote the dyadic numbers of [0, 1] with level n, so Dn increases as n
increases. Then letting ε < β/α, Tchebychev’s inequality gives for 0 ≤ k ≤ 2n

P
(
‖Xk2−n −X(k+1)2−n‖ ≥ 2−nε

)
≤ 2nεαE[‖Xk2−n −X(k+1)2−n‖α] ≤ C2nεα−n(1+β)

Summing over k we deduce that

P
(

max
0≤k≤2n

‖Xk2−n −X(k+1)2−n‖ ≥ 2−nε
)
≤ C2n2nεα−n(1+β) ≤ C2nεα−nβ

which is summable. Therefore, Borel Cantelli’s lemma implies that there exists
N(ω) almost surely finite so that for n ≥ N(ω),

max
0≤k≤2n

‖Xk2−n −X(k+1)2−n‖ ≤ 2−nε .

We claim that this implies that for every s, t ∈ D = ∪Dn,

‖Xs −Xt‖ ≤M(ω)|s− t|ε
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for some almost surely finite constant M(ω). Indeed take s, t ∈ D so that 2−r−1 ≤
|s− t| ≤ 2−r for some r ≥ N(ω). We can always write the diadyc decomposition of
t and s

t = η02−r +

m∑
i=1

2−r−iηi s = η02−r −
p∑
i=1

2−r−iη′i

for some ηi, η
′
i ∈ {0, 1} and set

tj = k2−r +

j∑
i=1

2−r−iηi sj = k2−r −
j∑
i=1

2−r−iη′i

to deduce from the triangle inequality that, as Xt = Xt0 +
∑m
i=1(Xti −Xti−1), with

Xt0 = Xs0 ,

‖Xt −Xs‖ ≤ ‖Xt0 −Xs0‖+

m∑
i=1

‖Xti −Xti−1‖+

l∑
i=1

‖Xsi −Xsi−1‖

≤
m∑
i=1

2−(r+i)ε +

l∑
i=1

2−(r+i)ε

≤ C(ε)2−rε ≤ C(ε)|t− s|ε

as |t − s| ≥ 2−r−1. Therefore the process (Xt(ω), t ∈ D) is uniformly continuous,
and even ε-Hölder, for all ω such that N(ω) < ∞ Since D is an everywhere dense

set in [0,1], this process admits a unique continuous extension X̃(ω) on [0, 1], which

is also ε-Hölder. It is defined by X̃t(ω) = limn→∞Xtn(ω), where (tn, n ≥ 0) is
any D- valued sequence converging to t. On the exceptional set where (Xd, d ∈ D)

is not uniformly continuous (that is N(ω) = +∞), we let X̃t(ω) = 0 so X̃(ω) is

continuous. It remains to show that X̃ is a version of X. But by Fatou’s lemma, if
tn is a sequence of diadyc numbers converging to t, we have

E[‖Xt − X̃t‖p] ≤ lim inf E[‖Xtn −Xt‖p] = 0

So that indeed the finite marginals of X coincide with those of X̃. �

From now on we will consider exclusively a continuous modification of Brownian
motion, which is unique up to indistinguishability. Hence, we have constructed a
Brownian motion B which can be seen as an application from a probability space
(Ω,P) into the space C(R+,R) of continuous function from R+ into R. The Wiener
measure, or law of the Brownian motion, is by definition the image of P by this
application; it is therefore a probability measure on C(R+,R). In the next part, we
study this measure, as a warming up to what we will soon develop for more general
processes.
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1.4. Behaviour of Brownian motion trajectories. In this paragraph we
are given a Brownian motion (Bt)t≥0 : Ω→C(R+,R) and study the properties of its
trajectories.

1.4.1. Generic properties. Here we derive some information on the shape of the
trajectories. A very useful result is the so-called 0-1 Blumenthal law which states
as follows.

Lemma 1.8. For all t ≥ 0 let Ft be the sigma algebra generated by {Bs, s ≤ t},
that is the smallest σ-algebra on Ω that contains all pre-images of measurable subsets
of Ω for times s ≤ t. Let F+

0 = ∩s>0Fs. Then any A ∈ F+
0 is such that P (A) = 0

or 1.

Proof. Take A ∈ F+
0 and 0 < t1 < · · · < tn, and f : Rn→R a bounded

continuous function. Then, by continuity as Bε goes to zero with ε

E[1Af(Bt1 , . . . , Btn)] = lim
ε→0

E[1Af(Bt1 −Bε, . . . , Btn −Bε)]

= lim
ε→0

P (A)E[f(Bt1 −Bε, . . . , Btn −Bε)]

= P (A)E[1Af(Bt1 , . . . , Btn)]

where we used the Markov property (see the second point in Definition 1.2). Hence,
F+

0 is independent of σ(Bt1 , . . . , Btn), and thus of σ(Bs, s > 0). Finally, σ(Bs, s >
0) = σ(Bs, s ≥ 0) as B0 is the limit of Bt as t goes to zero. On the other hand
F+

0 ⊂ σ(Bs, s > 0), and therefore we have proved that F+
0 is independent of itself,

which yields the result. �

As a corollary, we derive the following property

Proposition 1.9. We almost surely have for all ε > 0

sup
0≤s≤ε

Bs > 0, inf
0≤s≤ε

Bs < 0 .

For all a ∈ R, let Ta = inf{t ≥ 0 : Bt = a} (with the convention that this is infinite
if {Bt = a} =). Then almost surely Ta is finite for all a ∈ R. As a consequence

lim inf
s→∞

Bs = −∞, lim sup
s→∞

Bs = +∞

Proof. Note that sup0<s≤εBs is measurable as Bs is continuous so that
sups∈[0,ε]Bs = sups∈[0,ε]∩QBs. This type of argument will be repeated in many
places hereafter. We put for some sequence εp going to zero with p

A = ∩{ sup
0≤s≤εp

Bs > 0}

A belongs to F+
0 as a decreasing intersection of events in Fεp and

P (A) = lim
p→∞

P( sup
0≤s≤εp

Bs > 0) ≥ lim
p→∞

P(Bεp > 0) ≥ 1/2
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implying with Blumenthal law that P (A) = 1. By changing B into −B we obtain
the statement for the inf. To prove the last result observe that we have proved

1 = P( sup
0≤s≤1

Bs > 0) = lim
δ↓0

P( sup
0≤s≤1

Bs > δ) = lim
δ↓0

P( sup
0≤s≤1

Bsδ−4 > δ−1)

where we used that (cBt/
√
c, t ≥ 0) has the law of the Brownian motion for any

c > 0 (see Exercise 2.19). But

P( sup
0≤s≤1

Bsδ−4 > δ−1) = P( sup
0≤s≤δ−4

Bs > δ−1) ≤ P( sup
0≤s≤∞

Bs > δ−1)

and hence we conclude that

P( sup
0≤s≤∞

Bs > δ−1) = 1

for all δ > 0. The same result with the infimum is derived by replacing B by −B.
The fact that Ta is almost surely finite follows from the continuity of the trajectories,
which takes all values in (−∞,+∞). �

1.4.2. Regularity. Note that in fact Corollary 1.7 is optimal in the sense that

Theorem 1.10. Let B be a continuous modification of the Brownian motion.
Let γ > 1/2. Then

P
(
∀t ≥ 0 : lim sup

h→0+

|Bt+h −Bt|
hγ

= +∞
)

= 1 .

Proof. We first observe that{
∃t ≥ 0 : lim sup

h→0+

|Bt+h −Bt|
hγ

< +∞
}
⊂ ∪∞p,k,m=1 {∃t ∈ [0,m] : |Bt+h −Bt| ≤ phγ ,∀h ∈ (0, 1/k)}

so that it is enough to show that for any δ > 0

P (∃t ∈ [0,m] : |Bt+h −Bt| ≤ phγ ,∀h ∈ (0, δ)) = 0

and in turn if Ai,n = {∃t ∈ [i/n, (i+ 1)/n] : |Bt+h −Bt| ≤ phγ ,∀h ∈ (0, δ)},

lim
n→∞

mn−1∑
i=0

P (Ai,n) = 0 .

Fix a large constant K > 0 to be chosen suitably later. We wish to exploit
the fact that on the event Ai,n many increments must be small. The trick is to
be able to fix in advance the times at which these increments will be too small.
More precisely, on Ai,n, as long as n ≥ (K + 1)/δ, for all 1 ≤ j ≤ K so that
t− (i+ j)/n ≤ K/n ≤ δ

|Bt −B i+j
n
| ≤ p(K + 1

n
)γ
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and therefore by the triangular inequality

|B i+j−1
n
−B i+j

n
| ≤ 2p(

K + 1

n
)γ

Hence

P(Ai,n) ≤ P
(
∩Kj=2{|B i+j−1

n
−B i+j

n
| ≤ 2p(

K + 1

n
)γ}
)

= P
(
|B i+j−1

n
−B i+j

n
| ≤ 2p(

K + 1

n
)γ
)K−1

with B i+j−1
n
−B i+j

n
with law N/

√
n for a standard Gaussian variable N so that

P
(
{|B i+j−1

n
−B i+j

n
| ≤ 2p(

K + 1

n
)γ}
)

= P(|N | ≤
√
n2p(

K + 1

n
)γ) ' C

√
n2p(

K + 1

n
)γ

for some finite constant C as long as
√
n2p(K+1

n )γ is small, that is γ > 1/2. Hence,
keeping K fixed we find a finite constant C so that

P(Ai,n) ≤ CKn( 1
2−γ)(K−1)

and therefore
mn−1∑
i=1

P(Ai,n) ≤ CKn( 1
2−γ)(K−1)mn

which goes to zero when n goes to infinity as soon as K is chosen big enough. �

We will later spend a lot of time to give a precise and rigorous construction
of the stochastic integral, for as large a class of processes as possible, subject to
continuity. This level of generality has a price, which is that the construction can
appear quite technical without shedding any light on the sort of processes we are
talking about. The real difficulty in the construction of the integral is in how to
make sense of an integral against the Brownian motion, denoted∫ t

0

HsdBs

as B. is at best Hölder 1/2. To do that we will need to use randomness and
martingale theory. We will enlarge our scope and consider more general processes
than the Brownian motion soon. Before doing so we introduce (and hopefully
motivate) some notions that we will discuss later in a wider scope, namely strong
Markov property and stopping times.
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1.4.3. Strong Markov property. We have already seen that the Wiener law sat-
isfies the Markov property:

“ For all s ≥ 0, the process Bt+s−Bs, t ≥ 0 is a Brownian motion independent
of σ(Br, r ≤ s).”

The goal of this paragraph would be to extend this result to the case where s
is itself a random variable. To do so, we need to resterict ourselves to the so-called
stopping times; a random variable T with values in [0,∞] is a stopping time if, for
all t ≥ 0, {T ≤ t} ∈ Ft = σ(Bs, s ≤ t). We define

FT = {A ∈ F∞ : ∀t ≥ 0, A ∩ {T ≤ t} ∈ Ft}

We set

1T<∞BT (ω) =

{
BT (ω)(ω) if T (ω) <∞
0 otherwise.

1T<∞BT is FT measurable. Indeed by continuity of the trajectories

1T<∞BT = lim
n→∞

∞∑
k=1

1k2−n≤T<(k+1)2−nBk2−n = lim
n→∞

∞∑
k=1

1T<(k+1)2−n(1k2−n≤TBk2−n) ,

where 1k2−n≤TBk2−n is FT measurable.

Theorem 1.11. (Strong Markov Property) Let T be a stopping time such that
P(T <∞) > 0. Then, the process

B
(T )
t = 1T<∞(BT+t −BT ), t ≥ 0

is a Brownian motion independent of FT under P(.|T <∞).

Proof. We first assume T <∞ a.s. and show that if A ∈ FT , for all bounded
continuous function f

E[1Af(B
(T )
t1 , . . . , B

(T )
tk

)] = P(A)E[1Af(Bt1 , . . . , Btk)]

which is enough to prove the statement. We denote [T ]n = ([2nT ] + 1)2−n with [a]
the integer part of a real a. Observe that by continuity of the trajectories,

f(B
(T )
t1 , . . . , B

(T )
tk

) = lim
n→∞

f(B
([T ]n)
t1 , . . . , B

([T ]n)
tk

)

so that by dominated convergence theorem, for all bounded continuous function f

E[1Af(B
(T )
t1 , . . . , B

(T )
tk

)]

= lim
n→∞

E[1Af(B
([T ]n)
t1 , . . . , B

([T ]n)
tk

)]

= lim
n→∞

∞∑
k=0

E[1A1(k−1)2−n<T≤k2−nf(Bt1+k2−n −Bk2−n , . . . , Btk+k2−n −Bk2−n)]
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For A ∈ FT , A∩{(k−1)2−n < T ≤ k2−n} = (A∩{T ≤ k2−n})∩{T ≤ (k−1)2−n}c
is Fk2−n measurable. Hence, the usual Markov property implies that

E[1A1(k−1)2−n<T≤k2−nf(Bt1+k2−n −Bk2−n , . . . , Btk+k2−n −Bk2−n)]

= E[1A1(k−1)2−n<T≤k2−n ]E[f(Bt1+k2−n −Bk2−n , . . . , Btk+k2−n −Bk2−n)]

from which the result follows. The same arguments can be followed when T < ∞
with positive probability. �

A nice application of the strong Markov property is the reflexion principle :

Theorem 1.12. For all t > 0, denote by St = sups≤tBs. Then, if a ≥ 0 and
b ≤ a we have

P(max
s≤t

Bs ≥ a,Bt ≤ b) = P(Bt ≥ 2a− b)

In particular maxs≤tBs has the same law as |Bt|.

Proof. We apply the strong Markov property with the stopping time

Ta = inf{t ≥ 0 : Bt = a}

We have already seen that Ta is finite almost surely. Moreover

P(max
s≤t

Bs ≥ a,Bt ≤ b) = P(Ta ≤ t, B(Ta)
t−Ta ≤ b− a)

By the strong Markov property, B
(Ta)
t−Ta is independent of Ta and also has the same

law as −B(Ta)
t−Ta where B is a Brownian motion. Hence we get

P(Ta ≤ t, B(Ta)
t−Ta ≤ b− a) = P(Ta ≤ t,−B(Ta)

t−Ta ≤ b− a)

= P(Ta ≤ t,−Bt +BTa ≤ b− a)

= P(Ta ≤ t, Bt ≥ 2a− b) = P(Bt ≥ 2a− b)

where we used that 2a− b ≥ a in the last line. For the last point we notice that for
a ≥ 0,

P(St ≥ a) = P(St ≥ a,Bt ≥ a) + P(St ≥ a,Bt ≤ a) = 2P(Bt ≥ a) = P(|Bt| ≥ a)

�

2. Processes with independent increments

We will often consider stochastic processes with independent increments

Definition 2.1. A stochastic process (Xt)t∈T based on (Ω,G,P) with values in
(Rd,B(Rd)) is a process with independent increments (abbreviated I.I.P) iff

(1) X0 = 0 a.s.,
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(2) For all n ≥ 2, for all t1, . . . , tn ∈ R+ so that t1 < t2 < · · · < tn, the
random variables

Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

are independent.

A stochastic process is a stationary process with independent increments (abbreviated
S.I.I.P) if it is a I.I.P so that for all s, t ∈ R+, 0 ≤ s < t, Xt −Xs has the same
law than Xt−s.

When T = N, stationarity is described by the fact that there exists a sequence
(Zi)i∈N of i.i.d. variables so that

Sn = Z1 + · · ·+ Zn

In this case Sn is also called a random walk.

A family (µt)t∈R+∗ of probability measures on (Rd,B(Rd)) is called a convolu-
tion semi-group if for all s, t ∈ [0,+∞),

µs+t = µs ∗ µt .

Proposition 2.2. If (Xt)t∈R+ is a S.I.I.P and µt is the law of Xt, (µt)t∈R+ is
a convolution semi-group. It is called the convolution semi-group of (Xt)t∈R+ .

More generally if (Xt)t∈R+ is a I.I.P so that for all s < t Xt −Xs has law µs,t
then for any s < t < u, we have

µs,u = µs,t ∗ µt,u .

Proof. We write

Xu −Xs = (Xu −Xt) + (Xt −Xs)

and use the independence of Xu −Xt and Xt −Xs to conclude.

�

For SIIP we have an easier way to characterize the equivalence relation defined
in 1.4

Proposition 2.3. a) If X and X ′ are two SIIP with the same convolution
semi-group, they are equivalent.

b) More generally, if X and X ′ are two IIP so that for all s < t, Xt −Xs and
X ′t −X ′s have the same distribution, then they are equivalent.

Let us give some examples

1) µ = δat

2)µt is the Poisson law Pλt with parameter λt for all t > 0 (Px(k) = e−xxk/k!).
We will call Poisson process with parameter λ > 0 the SIIP with such convolution
semi-group.
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3)µt is the centered Gaussian law with covariance t. Check that the SIIP with
such convolution semi-group is the Brownian motion.

More generally we will say that a stochastic process is a Gaussian real process
iff

• It takes its values in (R,B(R)),
• For all n ≥ 1, all t1, . . . , tn ∈ R+, the random variable (Xt1 , . . . , Xtn) is

Gaussian.

Note that in this case the semi-group is determined by the mean

m(t) = E[Xt]

and the covariance

C(t, s) = E[XtXs]−m(t)m(s) ,

as so is any Gaussian law.

Note that any covariance C(t, s) is positive semi-definite, namely C(s, t) =
C(t, s) ∀s, t ∈ T and ∀ n ≥ 1,∀ t1, . . . , tn ∈ T,∀ λ1, . . . , λn ∈ R,

n∑
i,j=1

c(ti, tj)λiλj ≥ 0.

Proposition 2.4. A real stochastic process is a real Brownian motion iff it is
a centered Gaussian real process with covariance

E[XtXs] = t ∧ s

Proof. ⇒ If X is a real Brownian motion,

-X0 = 0,

-For all t > 0, Xt follows N(0, t)

-For all n ≥ 2 and all t1, . . . , tn so that t1 < t2 < · · · < tn, (Xt1 , Xt2 −
Xt1 , . . . , Xtn −Xtn−1

) are independent Gaussian.

Hence X is a SIIP. Finally, for s ≤ t
E[XsXt] = E[X2

s ] + E[(Xt −Xs)Xs] = E[X2
s ] = s = s ∧ t

by independence and centering.

⇐ Let X be a centered Gaussian process with covariance s ∧ t. The first thing
we need to check is that the increments are independent ; but this follows from the
vanishing of the covariance

E[(Xt2 −Xt1)(Xt4 −Xt3)] = 0 if t1 < t2 ≤ t3 < t4

Hence X is a IIP. To check stationnarity it is enough to check that the covariances
are stationary. But

E[(Xt −Xs)
2] = t+ s− 2s ∧ t = t− s
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which completes the argument. �

2.1. Law of a stochastic process, canonical process. Let (E, E) be a
measurable space. Let T be a non empty set. We denote

ET = {x = (xt)t∈T : xt ∈ E,∀t ∈ T}.

We will call product σ-algebra on ET (associated to the σ-algebra E and T) the
smallest σ-algebra on ET so that the coordinate mappings :

γt : x = (xs)s∈T 7→ xt

are measurable as t ∈ T. It is denoted by E⊗T. We call measurable product space
associated with (E, E) and T the space (ET, E⊗T) = (E, E)T.

Proposition 2.5. Let (Ω,F) be a measurable space. Let U be a map from
Ω into ET.Then, U is measurable from (Ω,F) into (E, E)T iff ∀ t ∈ T, γt ◦ U is
measurable from (Ω,F) into (E, E).

Proof. ⇒: If U is measurable, then γt ◦ U is measurable as the composition
of measurable maps.
⇐: Reciprocally, if ∀ t ∈ T, γt ◦ U is measurable, then (γt ◦ U)−1(A) ∈ F ,∀ A ∈ E .
But, (γt ◦ U)−1(A) = U−1((γt)

−1(A)). Thus, U−1(B) ∈ F for all

B ∈ D := {(γt)−1(A) : t ∈ T, A ∈ E}.

Since E⊗T is the sigma-algebra generated by D, this implies that

U−1(B) ∈ F

for all B ∈ E⊗T. �

Let (Xt)t∈T be a family of maps from Ω into E.
We denote by X the map :

Ω −→ ET

ω 7−→ (Xt(ω))t∈T.

We then have, recall the definition 1.3 of stochastic processes,

Corollary 2.6. (Xt)t∈T is a stochastic process with values in (E, E) iff the
map X is measurable from (Ω,F) into (E, E)T.

Proof. Follows from the previous Proposition. �

According to the last corollary, we can identify the stochastic process (Xt)t∈T
and the measurable map X. In the following we will set X = (Xt)t∈T.

We denote law, on (E, E)T, of X the push-forward of the probability measure
P by the measurable map X. We denote it PX .
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Proposition 2.7. Two stochastic processes (Xt)t∈T and (X ′t)t∈T ( based re-
spectively on (Ω,F ,P) and (Ω′,F ′,P′)) with values in (E, E) are equivalent iff they
have the same law on (E, E)T.

Proof. ⇐: If PX = P′X′ , then the processes are equivalent as : for any
t1, . . . , tn ∈ T, if A =

∏
t∈TAt with

At =

{
Bi ∈ E if t = ti, 1 ≤ i ≤ n
E if t /∈ {t1, . . . , tn},

we have :

X−1(A) = {Xt1 ∈ B1, . . . , Xtn ∈ Bn}.

X ′−1(A) = {X ′t1 ∈ B1, . . . , X
′
tn ∈ Bn}.

Therefore,

P′(X ′t1 ∈ B1, . . . , X
′
tn ∈ Bn) = P′X′(A) = PX(A) = P(X−1(A)) = P(Xt1 ∈ B1, . . . , Xtn ∈ Bn).

⇒: If (Xt)t∈T and (X ′t)t∈T are equivalent, we have : PX(A) = P′X′(A) for any cylin-
der A in ET. But, E⊗T = σ(C) with C the cylinder family (see exercise 2.23). But,
C is stable under finite intersection and therefore following exercise 2.16 (Monotone
class Thm), see also Lemma 9.2, we deduce that PX = P′X′ . �

Let X = (Xt)t∈T be a stochastic process, based on (Ω,F ,P), with values in
(E, E).

The canonical process (Yt)t∈T, on (E, E)T, associated with (Xt)t∈T is the sto-
chastic process based on (ET, E⊗T,PX) defined by :

Yt(x) = γt(x) = xt,∀x = (xs)s∈T ∈ ET.

Proposition 2.8. (Xt)t∈T and its canonical process (Yt)t∈T are equivalent.

Proof. Let t1, . . . , tn ∈ T and B1, . . . , Bn ∈ E . If A =
∏
t∈TAt with

At =

{
Bi if t = ti, 1 ≤ i ≤ n
E if t /∈ {t1, . . . , tn},

we have :

X−1(A) = {Xt1 ∈ B1, . . . , Xtn ∈ Bn}.
We also have

A = {x;Yt1(x) ∈ B1, . . . , Ytn(x) ∈ Bn}.
Therefore,

P(Xt1 ∈ B1, . . . , Xtn ∈ Bn) = PX(A) = PX(Yt1 ∈ B1, . . . , Ytn ∈ Bn).

�
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2.2. Canonical process with given finite partitions. Let T be an infinite
set. We denote I the set of finite (non empty) subsets of T. Let (E, E) be a measur-
able space. Let (PI)I∈I be a family of probability measures indexed by I, so that

for all I ∈ I, PI is a probability measure on (E, E)card(I) = (Ecard(I), Ecard(I)).

We say that (PI)I∈I is a compatible system ( or a projective system) if : for
all I ∈ I, any J ∈ I so that J ⊂ I, PJ is the push-forward of PI by the map

ΠI,J : (xt)t∈I −→ (xs)s∈J .

Let X = (Xt)t∈T be a stochastic process, based on (Ω,F ,P), with values in
(E, E). If, for I = {t1, . . . , tn} ∈ I, we denote PI the law of the random variable
(Xt1 , . . . , Xtn), then (PI)I∈I is the family of the finite partitions of the stochastic
process X = (Xt)t∈T. Moreover, we have :

Proposition 2.9. The finite partitions of X = (Xt)t∈T are a compatible sys-
tem.

Proof. If I = {t1, . . . , tn} ⊃ J = {ti1 , . . . , tik}, with ti ∈ T,∀i = 1, . . . , n, n ≥
2, 1 ≤ k < n, 1 ≤ i1 < i2 < . . . < ik ≤ n. We have :

PJ(B1 × . . .×Bk) = P(Xti1
∈ B1, . . . , Xtik

∈ Bk)

= P(Xtj ∈ E,∀j ∈ {1, . . . , n} \ {i1, . . . , ik}, Xti1
∈ B1, . . . , Xtik

∈ Bk)

= PI(Π−1
I,J(B1 × . . .×Bk))

�

Reciprocally, let us be given a compatible system of probability measures (PI)I∈I
(with for all I ∈ I, PI a probability measure (E, E)card(I)).
We set :
Ω = ET = {ω = (ωt)t∈T : ωt ∈ E,∀t ∈ T}.
F = E⊗T.
Yt(ω) = ωt.
Let P be a probability measure on (Ω,F), (Yt)t∈T can be seenas a stochastic process
based on (Ω,F ,P). It is called the associated canonical process associated with P
(on (ET, E⊗T,P)).

Theorem 2.10. [Kolmogorov] (admitted) If E is a Polish space and if E is
the Borel σ-algebra of E, there exists a unique probability measure P on (Ω,F) :=
(E, E)T so that the canonical process (Yt)t∈R+ on (Ω,F ,P) has (PI)I∈I has finite
partitions family.

Applications :

Corollary 2.11. a). To any convolution semi-group (µt)t∈]0,+∞[ on (Rd,B(Rd))
corresponds a SIIP (Yt)t∈R+ , which is unique up to equivalence, so that for all
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t ∈]0,+∞[, µt is the law of Yt.
b). To any family (µs,t)0≤s<t of probability measures on (Rd,B(Rd)) satisfying :

∀s, t, u so that 0 ≤ s < t < u, µs,u = µs,t ∗ µt,u,

corresponds an IIP (Yt)t∈R+ , unique up to equivalence so that ∀s, t ∈ R+ so that 0 ≤
s < t, Yt − Ys has law µs,t.

Remark : a). allows in particular to show existence of the homogeneous Poisson
process and of the Brownian motion, and b) that of inhomogeneous Poisson process.

Proof. It is enough to prove b). : Let I = {t1, . . . , tn} with 0 ≤ t1 < t2 <
. . . < tn, PI the push-forward of µ0,t1 ⊗ µt1,t2 ⊗ . . . ⊗ µtn−1,tn , by the map φn :
(x1, . . . , xn) 7→ (x1, x1 + x2, . . . , x1 + x2 + . . .+ xn).
Let us show that (PI)I is compatible :
Let J = {ti1 , . . . , tik} with 1 ≤ i1 < i2 < . . . < ik ≤ n, (and k < n). We have :

PJ = φk · (µ0,ti1
⊗ µti1 ,ti2 ⊗ . . .⊗ µtik−1

,tik
),

that is that the push-forward by φk of the probability measure µ0,ti1
⊗ µti1 ,ti2 ⊗

. . .⊗ µtik−1
,tik

.

But,

µ0,ti1
⊗ µti1 ,ti2 ⊗ . . .⊗ µtik−1

,tik
= γ · (µ0,t1 ⊗ µt1,t2 ⊗ . . .⊗ µtn−1,tn),

with

γ(x1, . . . , xn) = (
∑

0<i≤i1

xi,
∑

i1<i≤i2

xi, . . . ,
∑

ik−1<i≤ik

xi).

Therefore

PJ = (φk ◦ γ) · (µ0,t1 ⊗ µt1,t2 ⊗ . . .⊗ µtn−1,tn).

It is easy to see that φk ◦ γ = Π ◦ φn where Π := ΠI,J . We hence deduce that

PJ = Π · (φn · (µ0,t1 ⊗ µt1,t2 ⊗ . . .⊗ µtn−1,tn)) = ΠI,J · PI .

�

Corollary 2.12. Let m be a map from T into R and let c be a semi-definite
positive function from T2 into R. There exists a real Gaussian process, unique up
to equivalence, with mean m and covariance c.

Proof. Let I = {t1, . . . , tn} with 0 ≤ t1 < t2 < . . . < tn, PI the Gaussian law
on (Rn,B(Rn)) with mean (m(t1), . . . ,m(tn)) and covariance matrix (c(ti, tj))i,j=1,...n.
Let J ⊂ I, with ΠI,J · PI and PJ be two Gaussian probability measures with same
mean and covariance. Hence, (PI)I∈I is compatible and we can conclude by Kol-
mogorov theorem. �
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Example : Take T = R+. The function c is defined on R+ × R+ by c(s, t) =
s ∧ t is a covariance function as ∀s1, . . . , sn so that 0 ≤ s1 < s2 < . . . < sn,
the matrix (si ∧ sj)i,j=1,...,n is positive semi-definite as the covariance matrix of
(U1, U1 + U2, . . . , U1 + . . . + Un) where the variables (U1, . . . , Un) are independent
and with centered Gaussian law N (0, s1) for U1 and N (0, sk − sk−1) for Uk.

2.3. Point processes, Poisson processes. In this last paragraph, we con-
sider random partitions of points in ]0,+∞[.

A point process on ]0,+∞[ is a sequence (Sk)k≥1 of random variables defined
on the same probability space (Ω,F ,P), so that we have : 0 < S1(ω) < S2(ω) <
. . . < Sk(ω) < . . . and limk→+∞ Sk(ω) = +∞ for all ω ∈ Ω. The Sk represent the
arrival time of a random phenomenon(cf the arrival times of clients etc) ...
We set : Z1 = S1 and for all k ≥ 2, Zk = Sk − Sk−1 (delay between two successive
arrivals). So for all n ≥ 1, Sn =

∑n
k=1 Zk.

To any point process (Sk)k≥1 on ]0,+∞[, we associate a stochastic process called
random counting function (Nt)t∈R+ given by: N0(ω) = 0 for all ω ∈ Ω and

Nt(ω) =

+∞∑
n=1

1{Sn(ω)≤t}(ω)

the number of arrivals during the time interval ]0, t].
As limk→+∞ Sk(ω) = +∞, we have Nt(ω) < +∞ for all t > 0 and all ω ∈ Ω.
Moreover, (Nt)t∈R+ takes values in N and has non decreasing, right continuous,
trajectoires, following a stair shape with jumps no larger than one unit. The data
of the point process (Sk)k≥1 is equivalent to that of (Nt)t∈R+ since (S0 ≡ 0)

{Nt = n} = {Sn ≤ t < Sn+1}

We also have for all n ∈ N∗, {Nt < n} = {Sn > t}.

Theorem 2.13. If the random variables Zk are independent, exponentially dis-
tributed with parameter λ, then we have :
a) For all t > 0, the random variable Nt has Poisson distribution with parameter
λt.
b) (Nt)t∈R+ is a SIIP.

Proof. a). The random variable Sn is the sum of n independent random
exponential variables with parameter λ, and therefore follows a Gamma distribution

with density gn(x) = λn xn−1

(n−1)!e
−λx1R+(x). Therefore,

P(Nt < n) =
λn

(n− 1)!

∫ +∞

t

xn−1e−λx dx

= e−λt
(

1 + λt+
(λt)2

2!
+ . . .+

(λt)n−1

(n− 1)!

)
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Hence, P(Nt = 0) = P(Nt < 1) = e−λt and so for all n ≥ 1,

P(Nt = n) = P(Nt < n+ 1)− P(Nt < n) = e−λt
(λt)n

n!
.

Moreover, N is a SIIP as we can write

Nt −Ns =

∞∑
n=Ns+1

1Sn−SNs≤t−s

where SNs = s and conditionally to Ns, Sn − SNs has the same law than Sn−Ns
and is independent from Ns. Hence, the law of Nt −Ns conditionally to Ns is the
same as the law of Nt−s, or in other words N is a SIIP. �

We call standard Poisson process any real stochastic process (Xt)t∈R+ so that
(Xt)t∈R+ is a Poisson process so that X0 ≡ 0 and all trajectories are non-decreasing,
right-continuous and with jump bounded by one. As a reciprocal to the previous
theorem we have

Theorem 2.14. Assume that the counting function (Nt)t∈R+ of the point pro-
cess (Sk)k≥1 is a SIIP.
a) There exists λ > 0 so that the random variable Z1 is exponential with parameter
λ.
b) For any t > 0, the random variable Nt is exponential with parameter λt.
c) The sequence (Zk)k≥1 is i.i.d with exponential distribution with parameter λ.

Proof. a). Noticing that {Z1 > t} = {Nt = 0}, we deduce

P(Z1 > t+ s) = P(Nt+s = 0)

= P(Nt+s −Ns = 0, Ns = 0)

= P(Nt+s −Ns = 0)P(Ns = 0)

= P(Nt = 0)P(Ns = 0)

= P(Z1 > t)P(Z1 > s)

Hence the fonction t→ P(Z1 > t) taking values in [0, 1], non increasing and so that
P(Z1 > 0) = 1, there exists λ > 0 so that for all t ∈ R+,

P(Z1 > t) = e−λt =

∫ +∞

t

λe−λxdx.

Moreover, let ε ∈ (0, t) so that, as N is a SIIP,
(2.1)

P(Nt = n)−P(Nt−ε = n) = (P(Nε = 0)−1)P(Nt−ε = n)+

n∑
y=1

P(Nε = y)P(Nt−ε = n−y)
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We next claim that again by the SIIP property, P(Nε ≥ 2) ≤ Cε2. Indeed, we can
write

pε = P(Nε ≥ 2) ≤ P(Nε/2 ≥ 2) + P(Nε/2 ≥ 1)2 ≤ e−λε/2pε/2 +
λ2ε2

4

where we used P(Nε/2 ≥ 1) = 1 − e−ελ/2 ≤ ελ/2. The result follows by iteration.
We therefore deduce from (??) that

(2.2)

∣∣∣∣ε−1(P(Nt = n)− P(Nt−ε = n))− ε−1(P(Nε = 0)− 1)P(Nt−ε = n)

+ε−1P(Nε ≥ 1)P(Nt−ε = n− 1)

∣∣∣∣ ≤ Cε
We thus see that t→P(Nt = n) is continuous and even differentiable with, by letting
ε going to zero,

∂tP(Nt = n) = −λP(Nt = n) + λP(Nt = n− 1) .

It follows by induction over n that P(Nt = n) = e−λt(λt)n/n! for all integer number
n, which proves the second point. Hence, the law of (Nt)t≥0 is uniquely determined
and so is the law of (Sn)n≥0. As it corresponds to the sum of i.i.d exponential
variables, we are done.

�

EXERCISES

Exercise 2.15. Prove the following monotone class theorem :

Let C be a family of subsets of Ω, non empty and stable under finite intersec-
tion. Then the σ-algebra σ(C) generated by C coincides with the smallest family
D of subsets of Ω containing C, with Ω ∈ D, which is stable under difference and
increasing limit.

Exercise 2.16. Prove the following corollary to the previous monotone class
theorem:

Let (Ω,F) be a mesurable space and let C be a family of subsets of Ω contained
in F , stable under finite intersection and such that σ(C) = F .
Let P and Q be two probability measures on (Ω,F) which coincide on C (i.e. such
that P(A) = Q(A), ∀A ∈ C). Then we have P = Q.
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Exercise 2.17. Show that the d-dimensionnal stochastic process (Xt)t∈R+ iff
if we set Fot = σ(Xs; s ≤ t), we have : X0 = 0 P-a.s. and if ∀s, t ∈ R+ so that s < t,
the random variable Xt −Xs is independent from the σ-algebra Fos .
(Indication : Use the monotone class theorem to show that if (Xt)t∈R+ is a IIP the
random variable Xt −Xs is independent from Fos ).

Exercise 2.18. A stochastic process (Xt)t∈R+ is self-similar (of order 1) if, for
all λ > 0, the stochastic processes (Xλt)t∈R+ and (λ Xt)t∈R+ are equivalent.
Show that if (Bt)t∈R+ is a real Brownian motion, the process (Bt2)t∈R+ is self-similar
of order one.

Exercise 2.19. Show that if (Bt)t∈R+ is a real Brownian motion, the following
stochastic processes are real Brownian motions :
a)(−Bt)t∈R+ .
b) (c Bt/c2)t∈R+ , ∀c > 0.
c) (Xt)t∈R+ defined by : X0 = 0 and by Xt = t B1/t, ∀t > 0.

Exercise 2.20. Let (Bt)t∈R+ a real Brownian motion on (Ω,F ,P). We set for
t ∈ [0, 1], Yt = Bt − t B1 et Zt = Y1−t.
a) Show that (Yt)t∈[0,1] et (Zt)t∈[0,1] are centered Gaussian process and compare
their finite dimensional laws.
b) We set for t ∈ R+, Wt = (t+ 1)Yt/(1+t). Show that (Wt)t∈R+ is a real Brownian
motion.

Exercise 2.21. Let (Bt)t∈R+ be a real Brownian motion on (Ω,F ,P). Let
λ > 0. We set for t ∈ R+, Ut = e−λtBe2λt .
a) Show that (Ut)t∈R+ is a centered Gaussian process and determine its covariance
c.
b) Deduce from the form c that (Ut)t∈R+ is stationnary, i.e. that :
∀n ≥ 1, ∀t1, . . . , tn ∈ R+, ∀s > 0, with 0 ≤ t1 < t2 < . . . < tn, the random variables
(Xt1 , . . . , Xtn) and (Xt1+s, . . . , Xtn+s) have the same law.

Exercise 2.22. Let d ≥ 2 and denote by < ., . > the scalar product on Rd
and ||.|| the Euclidean norm. On a probability space (Ω,F ,P), we consider d real
independent Brownian motions (B1

t )t∈R+ , (B2
t )t∈R+ , . . . , (Bdt )t∈R+ and we set for
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t ∈ R+, Bt = (B1
t , . . . , B

d
t ). (Bt)t∈R+ is a d-dimensionnal Brownian .

a) Show that ∀x = (x1, . . . , xd) ∈ Rd such that ||x|22 =
∑
x2
i | = 1, the real stochastic

process (< Bt, x >)t∈R+ is a real Brownian motion.
b) Take d = 2 and set Xt = (X1

t , X
2
t ) with

X1
t = B1

2t
3
−B2

t
3

and X2
t = B2

2t
3

+B1
t
3

If x = (x1, x2) ∈ R2 has norm one, what can we say about the process (< Xt, x >
)t∈R+? Are the stochastic processes (X1

t )t∈R+ and (X2
t )t∈R+ independent ? Are

they real Brownian motions ?
c) If (Xt)t∈R+ = (X1

t , . . . , X
d
t )t∈R+ is a d dimensionnal stochastic process such

that x ∈ Rd has norm one, (< Xt, x >)t∈R+ is a real Brownian motion, are
(X1

t )t∈R+ , . . . , (Xd
t )t∈R+ independent Brownian motions ?

Exercise 2.23. Show that the product σ-algebra E⊗T on ET coincides with
the σ-algebra generated by cylinders of ET, that is by the sets B =

∏
t∈TAt where

At ∈ E ,∀ t ∈ T and At = E except for a finite number of times t.

3. Martingales

3.1. Filtration. Adapted process. Martingale. A filtration (Ft)t∈R+ on
a probability space (Ω,F ,P) is an increasing sequence of sub-σ-algebras of F (i.e.
s < t, Fs ⊂ Ft). A measurable space (Ω,G) endowed with a filtration (Gt)t≥0 is
said to be filtered.

The filtration (Ft)t∈R+ is said to be right-continuous if ∀t ∈ R+, we have

Ft =
⋂
s>t

Fs.

To any filtration (Ft)t∈R+ , we can associate a right-continuous filtration denoted
(Ft+)t∈R+ given by

Ft+ :=
⋂
s>t

Fs.

We say that (Ft)t∈R+ is complete (for P) if F0 contains all the neglectable
ensembles of G(for P). If (Ft)t∈R+ is a filtration on (Ω,F ,P), we associate to it its
completed filtration (for P): (F̄t)t∈R+ by adding to each Ft the neglectable sets of G.
We assume in general that (Ft)t∈R+ is complete up to replacing it by its completed
filtration.

Let (Xt)t∈R+ be a stochastic process on (Ω,F ,P), with values in (E, E). The
natural filtration (F0

t )t∈R+ associated to (Xt)t∈R+ is given by:

F0
t = σ(Xs : s ≤ t),∀t ∈ R+.
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Let (Ft)t∈R+ be a filtration on (Ω,F ,P). A stochastic process (Xt)t∈R+ is said
(Ft)t∈R+-adapted if for all t ∈ R+, the random variable Xt is Ft−measurable. Any
stochastic process is clearly adapted to its natural filtration. A stochastic process
(Xt)t∈R+ is (Ft)t∈R+ -adapted if for all t ∈ R+, F0

t ⊂ Ft. If (Ft)t∈R+ is complete
for P, if (Xt)t∈R+ is (Ft)t∈R+ -adapted and (Yt)t∈R+ is a modification of (Xt)t∈R+ ,
then (Yt)t∈R+ is also adapted.

A real stochastic process (Xt)t∈R+ is a supermartingale with respect to (Ft)t∈R+

if :

i) (Xt)t∈R+ is (Ft)t∈R+ -adapted.

ii) ∀t ∈ R+, the random variable Xt is integrable.

iii) ∀s ∈ R+, ∀t ∈ R+, so that s ≤ t, we have :

Xs ≥ E(Xt|Fs), P− a.s.

A real stochastic process (Xt)t∈R+ is a a submartingale with respect to (Ft)t∈R+ if
(−Xt)t∈R+ is a super-martingale, that is :

i) (Xt)t∈R+ is (Ft)t∈R+ -adapted.

ii) ∀t ∈ R+, the random variable the random variable Xt is integrable.

iii) ∀s ∈ R+, ∀t ∈ R+, so that s ≤ t, we have :

Xs ≤ E(Xt|Fs), P− a.s.

A real stochastic process (Xt)t∈R+ is a a martingale with respect to (Ft)t∈R+ if it is
both a supermartingale and a submartingale, that is

i) (Xt)t∈R+ is (Ft)t∈R+ -adapted.

ii) ∀t ∈ R+, the random variable the random variable Xt is integrable.

iii) ∀s ∈ R+, ∀t ∈ R+, so that s ≤ t, we have :

Xs = E(Xt|Fs), P− a.s.

Remark :
a) . If (Xt)t∈R+ is a sub (resp. super, resp. ) the function t→ E(Xt) is decreasing
(resp. increasing, resp constant)

b). If (Xt)t∈R+ is a sub(resp. super)martingale so that the function t→ E(Xt)
is constant then (Xt)t∈R+ is a martingale. (Exercise !)

Example :
Let U ∈ L1 and set Mt = E(U |Ft),∀t ∈ R+, then (Mt)t∈R+ is a martingale.
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A d-dimensionnal stochastic process (Xt)t∈R+ is a (Ft)t∈R+-IIPiff:
i). X0 = 0, P-a.s.
ii). (Xt)t∈R+ is (Ft)t∈R+ - adapted.
iii). ∀s ∈ R+, ∀t ∈ R+, so that s ≤ t, the random variable Xt −Xs is independent
from Fs.
A d-dimensionnal stochastic process (Xt)t∈R+ is a (Ft)t∈R+-SIIP if it is a (Ft)t∈R+ -
IIP so that :
iv). ∀s ∈ R+, ∀t ∈ R+, so that s ≤ t, the random variable Xt −Xs has the same
law as Xt−s.

Theorem 3.1. If (Xt)t∈R+ is a real (Ft)t∈R+-IIP and if ∀t ∈ R+, the random
variable Xt is centered and integrable, then (Xt)t∈R+ is a (Ft)t∈R+-martingale.

Proof. If s ≤ t with s, t ∈ R+, we have :

E(Xt −Xs|Fs) = E(Xt −Xs) = E(Xt)− E(Xs) = 0,P− a.s.
But

E(Xt −Xs|Fs) = E(Xt|Fs)−Xs,P− a.s.
Therefore

E(Xt|Fs) = Xs,P− a.s.
�

As a corollary one easily deduces the following

Corollary 3.2. a). If (Bt)t∈R+ is a real Brownian motion, then (Bt)t∈R+ is
a martingale with respect to its natural filtration (F0

t )t∈R+ and also for the natural
completed filtration (F̄0

t )t∈R+ .
b). If (Nt)t∈R+ is a Poisson process with parameter λ > 0 then (Nt − λt)t∈R+ is a
martingale with respect to the natural filtration of (Nt)t∈R+ .

We have also

Proposition 3.3. a). If (Bt)t∈R+ is a real Brownian motion then (B2
t − t)t∈R+

is a martingale for the natural completed filtration of (Bt)t∈R+ .

For all α 6= 0, (exp(αBt − α2

2 t))t∈R+ is a martingale for the natural completed fil-

tration (F̄0
t )t∈R+ .

b). If (Nt)t∈R+ is a Poisson process with parameter λ > 0 then ((Nt − λt)2 −
λt)t∈R+ is a martingale with respect to the natural filtration (F0

t )t∈R+ of (Nt)t∈R+ .
For all α 6= 0, (exp(αNt − (eα − 1)λt))t∈R+ is as well a martingale for (F0

t )t∈R+ .

Proof. a)Clearly B2
t ∈ L1 and moreover

E[B2
t −B2

s |Fs] = E[(Bt −Bs)2 + 2Bs(Bt −Bs)|Fs]
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As Bt −Bs is independent of Fs and centered we deduce that

E[B2
t −B2

s |Fs] = E[(Bt −Bs)2] = t− s

from which the result follows. Similarly for all α exp{αBt} ∈ L1 and

E[eαBt |Fs] = eαBsE[eα(Bt−Bs)] = eαBse
α2

2 (t−s)

The proof of b) is similar.

We next prove an important inequality due to Doob.

Theorem 3.4. [ Doob’s inequality]
Let (Xt)t∈R+ be a right-continuous non-negative submartingale or a right-continuous
martingale with respect to the filtration (Ft)t∈R+ , a).then for all t > 0, and c > 0,

P( sup
s∈[0,t]

Xs ≥ c) ≤
E(|Xt|)

c
.

b). Assume as well that for all t ∈ R+, Xt ∈ Lp, with p > 1 given, then for all
t > 0, all c > 0,

P( sup
s∈[0,t]

|Xs| ≥ c) ≤
E(|Xt|p)

cp
.

c). Under the hypotheses of b). we deduce that sups∈[0,t] |Xs| ∈ Lp and

|| sup
s∈[0,t]

|Xs|||p ≤ C||Xt||p,

where C = p/(p− 1)

Proof. The proof of a) will be deduced from the following Lemma

Lemma 3.5. Let (Yk)k∈N be a submartingale with respect to the filtration (Gk)k∈N
on (Ω,F ,P), then for all m ≥ 1, all c > 0,

P( max
0≤k≤m

Yk ≥ c) ≤
E(|Ym|1max0≤k≤m Yk≥c)

c
≤ E(|Ym|)

c
.

Proof. Let for k ≥ 1,

Ak = {Y0 < c} ∩ . . . ∩ {Yk−1 < c} ∩ {Yk ≥ c}

and A0 = {Y0 ≥ c}. Let A = {max0≤k≤m Yk ≥ c}. As A is the disjoint union of the
Ak’s, we get

c P(A) =

m∑
k=0

c P(Ak)

≤
m∑
k=0

E(Yk1Ak)
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Fix k ≥ 0, Ak ∈ Gk, so

E(Yk1Ak) ≤ E(E(Ym|Gk)1Ak)

≤ E(E(Ym1Ak |Gk))

≤ E(E(|Ym|1Ak |Gk)) = E(|Ym|1Ak)

Hence

c P(A) ≤
m∑
k=0

E(|Ym|1Ak)

= E(|Ym|1A) ≤ E(|Ym|)

�

We apply the Lemma for n ≥ 1, to

Y
(n)
k = X k

2n

with Gk = F k
2n

, ∀k ∈ N.

- If t ∈ D the set of the dyadic numbers of R+, we obtain, letting n going to +∞,
that

P( sup
s∈[0,t]∩D

Xs ≥ c) ≤
E(|Xt|)

c
.

But as (Xt)t∈R+ is right continuous, sups∈[0,t]Xs = sups∈[0,t]∩DXs, so that the

point a) follows.
- If t /∈ D, we use a sequence (tn)n≥1 in D so that tn ↓ t,

sup
s∈[0,t]

Xs = lim
n
↓ sup
s∈[0,tn]

Xs.

Letting n going to infinity in

P( sup
s∈[0,tn]

Xs ≥ c) ≤
E(|Xtn |)

c
,

we obtain

P( sup
s∈[0,t]

Xs ≥ c) ≤
lim infn→∞ E(|Xtn |)

c
,

and in fact lim infn→∞ E(|Xtn |) = E[|Xt|]. Indeed, we may assume without loss of
generality that tn ≤ t+ 1. Then,

E(|Xtn |) ≤ E[|Xt|] + ε+ E[(|Xtn | − |Xt|)1|Xtn |≥|Xt|+ε)
whereas as Xis a submartingale and we assume tn ≤ t+ 1

E[(|Xtn | − |Xt|)1|Xtn |≥|Xt|+ε) ≤ E[(|Xt+1| − |Xt|)1|Xtn |≥|Xt|+ε) .

Since |Xt+1| − |Xt| ∈ L1 and P(|Xtn | ≥ |Xt|+ ε) goes to zero as n goes to infinity
by right continuity, the conclusion follows.
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The point b) is a direct application of the point a) as if X is a martingale or
a non-negative subartingale, as in both cases |Xt|p is a non-negative submartingale
since by Hölder’ inequality, for s ≤ t

|Xs|p ≤ |E[Xt|Fs]|p ≤ E[|Xt|p|Fs]
so that b) follows by applying a) to (|Xt|p)t∈R+ .

To deduce c), observe that for any fixed k, with S = sups∈[0,t] |Xs| ∧ k,

E[Sp] = E[

∫ S

0

pxp−1dx] =

∫ k

0

pP (S ≥ x)xp−1dx(3.1)

so that b) implies that for all p′ < p, there exists a finite constant c so that

E[Sp
′
] ≤ c‖Xt‖p

Letting k going to infinity and invoking the monotone convergence theorem yields
the estimate with p′ < p. To derived it as announced we need to show the bound

(3.2) xP (S ≥ x) ≤ E[|Xt|1S≥x]

This inequality was proved in Lemma 3.5 in the discrete case. To show that it
extends to the continuous setting we can proceed by discrete approximation exactly
as in the previous proof to deduce that if t ∈ D, (3.2) holds, and then for all t by
density as if tn is a sequence of dyadic numbers decreasing to t,

E[|Xtn |1sups∈[0,tn] |Xs|∧k≥x] ≤ lim inf
n→∞

E[(|Xt|+ε)1sups∈[0,tn] |Xs|∧k≥x]+E[(|Xt+1|−|Xt|)1|Xtn |≥|Xt|+ε]

As 1sups∈[0,tn] |Xs|∧k≥x and 1|Xtn |≥|Xt|+ε go to 1sups∈[0,t] |Xs|∧k≥x and 0 respectively

while |Xt and |Xt+1| − |Xt| are in L1 we conclude that

lim inf
n→∞

E[|Xtn |1sups∈[0,tn] |Xs|∧k≥x] ≤ E[|Xt|1sups∈[0,t] |Xs|∧k≥x]

so that (3.2) extends to all t ∈ R+.

From (3.2) once plugged into (4.4) we deduce

E[Sp] ≤
∫ k

0

pE[|Xt|1S≥x]xp−2dx =
p

p− 1
E[|Xt|Sp−1] ≤ p

p− 1
E[|Xt|p]1/pE[Sp]

p−1
p

by Hölder inequality. Hence we conclude that

E[Sp] ≤ (
p

p− 1
)pE[|Xt|p]

Letting k going to infinity and applying monotone convergence theorem concludes
the argument.

�

Application of Theorem 3.4 (a):
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Proposition 3.6. Let (Bt)t∈R+ be a real Brownian motion and set

St = sup
s∈[0,t]

Bs.

Then for all a > 0,

P(St ≥ a t) ≤ exp(−a
2t

2
).

Proof. We may assume without loss of generality that the trajectories of B

are continuous by Corollary 1.7. Let’s use the martingales (M
(α)
t )t∈R+ given for

α > 0, by :

M
(α)
t = exp(αBt −

α2

2
t).

We have :

exp(α St −
α2

2
t) = exp(α( sup

s∈[0,t]

Bs)−
α2

2
t)

≤ sup
s∈[0,t]

M (α)
s .

As for α > 0, x→ exp(αx) is increasing, we have

P(St ≥ a t) = P(exp(α St −
α2

2
t) ≥ exp(αat− α2

2
t))

≤ P( sup
s∈[0,t]

M (α)
s ≥ exp(αat− α2

2
t))

≤ exp(−αat+
α2

2
t) E(|M (α)

t |) by the first Doob inequality

= exp(−αat+
α2

2
t) E(M

(α)
0 ) = exp(−αat+

α2

2
t)

But infα>0(−αat+ α2

2 t) = −a
2t
2 , so that the result follows �

4. Stopping time.

Let (Ft)t∈R+ be a filtration on (Ω,F ,P). A stopping time with respect to
(Ft)t∈R+ is a map T : Ω→ [0,+∞] so that for all t ∈ R+, {T ≤ t} ∈ Ft.

We denote T the family of stopping times. We set :

F∞ = σ(
⋃
t∈R+

Ft).

Let T be a stopping time for (Ft)t∈R+ . We call σ-algebra of the events anterior to
T and denote it FT , the family of elements A in F∞ so that :

∀t ∈ R+, A ∩ {T ≤ t} ∈ Ft.
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We verify that FT is indeed a σ-algebra.

Properties:
a). If T ≡ t, T is a stopping time.
b). If T ∈ T and if S = T + t with t ∈ R+, then S ∈ T .
c). If T ∈ T , then T is FT -mesurable.
d). If S, T ∈ T , and if S ≤ T , then FS ⊂ FT .
e). If S, T ∈ T , then S ∧ T ∈ T and S ∨ T ∈ T .

Remark :
We have the following result :
T : Ω→ [0,+∞] is a (Ft+)t∈R+ -stopping time iff

∀t ∈ ]0,+∞[, {T < t} ∈ Ft.

Examples of stopping time:
Let A ∈ B(Rd) and (Xt)t∈R+ be a stochastic d-dimensionnal process. We set

TA(ω) = inf{t > 0 : Xt(ω) ∈ A}
(+∞ if {−} = ø).
TA is called the hitting time of A.

Proposition 4.1. Let A be open. If (Xt)t∈R+ is right continuous then TA is a
stopping time for the natural filtration (F0

t+)t∈R+ .

Proposition 4.2. Let A be closed. If (Xt)t∈R+ is continuous then the random
variable DA defined by

DA(ω) = inf{t ≥ 0 : Xt(ω) ∈ A}
is a stopping time for (F0

t )t∈R+ . DA is called entry time in A .

The proof of these propositions follows from writing by right continuity

{TA < t} = ∪s∈[0,t[∩Q{Xs ∈ A} ∈ F0
t

whereas by continuity

{DA ≤ t} = ∪s∈[0,t]∩Q{Xs ∈ F} ∈ F0
t .

Let (Xt)t∈R+ be a d-dimensionnal stochastic process on (Ω,F ,P) and let (Ft)t∈R+

be a filtration on (Ω,F ,P). We say that (Xt)t∈R+ is strongly adapted if for all
T ∈ T , the map ω → XT (ω)(ω)1{T (ω)<∞} is FT -measurable. If (Xt)t∈R+ is strongly
adapted , then (Xt)t∈R+ is adapted. We next give conditions so that (Xt)t∈R+ is
strongly adapted. We say that (Xt)t∈R+ is progressively measurable if for all t > 0,
the map (s, ω)→ Xs(ω) is measurable on ([0, t]×Ω,B([0, t])⊗Ft) in (Rd,B(Rd)).If
(Xt)t∈R+ is progressively measurable, then (Xt)t∈R+ is adapted.

Theorem 4.3. If (Xt)t∈R+ is progressively measurable, then it is strongly adapted.
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Proposition 4.4. If (Xt)t∈R+ is adapted, right-continuous, then (Xt)t∈R+ is
progressively measurable.

Proof. Let t > 0 and define

Y (n)(s, ω) =

n∑
k=1

X kt
n

(ω)1
[
(k−1)t
n , ktn [

(s) +Xt(ω)1{t}(s).

Then

(s, ω)→ Y (n)(s, ω)

is measurable (as sum of measurable maps as (Xt)t∈R+ is adapted).
But, as (Xt)t∈R+ is right continuous, if n goes to +∞, Y (n)(s, ω) goes to Xs(ω) so
(s, ω)→ Xs(ω) is measurable. �

Proof. (of the Theorem) We use the following result: A map U : Ω → Rd
which vanishes on the event {T = +∞} is FT -measurable iff for all t ∈ R+, U.1{T≤t}
is Ft−measurable.

As a consequence, it is enough to show that for all t > 0, XT1{T≤t} is Ft-
measurable. To see that, write

XT1{T≤t} = XT∧t1{T≤t}

The random variable 1{T≤t} is Ft-measurable and ω → XT (ω)∧t(ω) can be de-
composed into ψ ◦ φ(ω) where φ : ω → (T (ω) ∧ t, ω) is measurable from Ft into
B([0, t])⊗Ft and ψ : (s, ω)→ Xs(ω) is measurable, by hypothesis, from B([0, t])⊗Ft
into B(Rd).

4.1. Stopping time theorem for bounded stopping time.

Theorem 4.5. [(Optional) Stopping theorem] Let (Xt)t∈R+ be a right contin-
uous martingale with respect to the filtration (Ft)t∈R+ .
a). For all bounded stopping time S, the random variable XS is integrable and FS-
measurable.
b). If S and T are two bounded stopping time and if S ≤ T , then

XS = E(XT |FS).

Corollary 4.6. Let (Xt)t∈R+ be a real right continuous adapted stochastic
process. Then , (Xt)t∈R+ is a martingale iff for all T ∈ T bounded , XT is integrable
and E(XT ) = E(X0).

Proof. ⇒: If (Xt)t∈R+ is a martingale, according to the stopping theorem, XT

is integrable and X0 = E(XT |F0) (S ≡ 0 ≤ T ), so E(XT ) = E(X0).
⇐: i) Take T = t to check that Xt is integrable for all t ∈ R+. We want to show
that P-a.s., for all t ≥ s,

Xs = E(Xt|Fs)
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i.e. E(Xs1A) = E(Xt1A),∀A ∈ Fs.
Let A ∈ Fs, and set

T = s 1A + t 1Ac .

T is a bounded stopping time. So, XT ∈ L1 and

E(X0) = E(XT ) = E(Xs1A) + E(Xt1Ac).

and so E(X0) = E(Xt) gives E(Xs1A) = E(Xt1A). �

Let (Ft)t∈R+ be a filtration on (Ω,F ,P). If (Xt)t∈R+ is a real adapted right
continuous stochastic process and if T is a stopping time we denote (XT

t )t∈R+ the
stochastic process given by

XT
t = Xt∧T .

The process (XT
t )t∈R+ is called the process stopped at time T .

Corollary 4.7. Let (Xt)t∈R+ be a right continuous martingale and T be a
stopping time, then (XT

t )t∈R+ is a right continuous martingale.

Proof. (XT
t )t∈R+ is clearly right continuous

. To show that it is a martingale, it is enough to show that for any bounded
stopping time S, we have : XT

S ∈ L1 and E(XT
S ) = E(XT

0 ), according to the
previous corollary. But, XT

S = XS∧T and S ∧ T is a bounded stopping time, so, by
the stopping theorem we deduce that XS∧T ∈ L1 and E(XS∧T ) = E(X0). �

Proof. (Proof of the stopping theorem ) : It is enough to show that for any
stopping time S bounded by c (i.e. S(ω) ≤ c,∀ω ∈ Ω), we have : XS ∈ L1 and

XS = E(Xc|FS),P− a.s.

In fact, if S and T are two stopping times such that S ≤ T bounded by c, then

XS = E(Xc|FS),P− a.s.

and

XT = E(Xc|FT ),P− a.s.
and therefore, as FS ⊂ FT ,

E(XT |FS) = E[E(Xc|FT |FS ] = E(Xc|FS) = XS .

Let S be a bounded stopping time so that for all ω ∈ Ω, S(ω) ≤ c. Set :

Sn(ω) =

{
k
2n if k−1

2n ≤ S(ω) < k
2n for 1 ≤ k < c2n.

c otherwise ( i.e. if S(ω) = c)

For all integer number n 6= 0, Sn is a stopping time which takes a finite number of
values . Moreover for all ω ∈ Ω, Sn(ω) ↓ S(ω).
We shall use the following
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Lemma 4.8. Let (Yk)k∈N be a martingale with respect to the filtration (Gk)k∈N.
a). For all bounded stopping time S, YS ∈ L1.
b). For all bounded stopping time S, T so that S ≤ T ,

YS = E(YT |GS) P− a.s.

The proof is straightforward as if |S| ≤ c, by definition

E[|YS |] ≤
c∑

k=1

E[|Yk|1S=k] ≤ cmax
k≤c

E[|Yk|] .

Whereas if S ≤ T are two stopping times bounded by c, it is enough to show the
result for T = c as then

YS = E[Yc|GS ] YT = E[Yc|GT ]

from which as GS ⊂ GT , the result follows. But

E[Yc1A] =
∑
`≤c

E[Yc1A1S=`] =
∑
`≤c

E[E[Yc|G`]1A1S=`] =
∑
`≤c

E[Y`1A1S=`] = E[YS1A] .

We apply the lemma to (Y
(n)
k )k∈N given by

Y
(n)
k =

{
X k

2n
if 1 ≤ k < c2n.

Xc if k ≥ c2n,
with

G(n)
k =

{
F k

2n
if 1 ≤ k < c2n.

Fc if k ≥ c2n.

For all n ≥ 1, (Y
(n)
k )k∈N is a martingale with respect to (G(n)

k )k∈N. We therefore
have

XSn = E(Xc|FSn), P− a.s.
by applying the lemma to (Y

(n)
k )k∈N and the stopping times :

Tn = 2nSn, T
′ = c2n.

For all ω ∈ Ω, XSn(ω) goes to XS(ω) when n goes to infinity (as Sn ↓ S and by right

continuity of the trajectories). If we show that XSn
L1

→XS , we will have ∀A ∈ FS ,∫
Ω

XS1A dP = lim
n

∫
Ω

XSn1A dP =

∫
Ω

Xc1A dP.

The fact that XS ∈ L1 and the convergence in L1 of XSn to XS as n goes to infinity
is due to the uniform integrability of the sequence (XSn)n in the sense that

Definition 4.9. A family (Ui)i∈I of random variables defined on (Ω,F ,P) is
uniformly integrable if

sup
i∈I

∫
{|Ui|≥λ}

|Ui| dP→ 0

when λ→ +∞.
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The following are left as exercises.

Exercise 4.10. (1) (Ui)i∈I defined on (Ω,F ,P) is uniformly integrable
iff
i) supi∈I E(|Ui|) < +∞.
ii) Equicontinuity property: :
∀ε > 0,∃η > 0 so that if A ∈ F and if P(A) ≤ η, then

sup
i∈I

(∫
A

|Ui| dP
)
≤ ε.

(2) Any family Ui so that there exists U in L1 so that for all i ∈ I,

|Ui| ≤ U

(3) Let (Xn)n≥1 be a family of integrable random variables and let X be a
random variable. The following conditions are equivalent :

i) X is integrable and when n→ +∞, Xn
L1

→X.
ii) When n→ +∞, Xn

P→X and (Xn)n≥1 is uniformly integrable.

To complete the proof of the stopping time theorem, we therefore need to show
that (XSn)n≥1 is uniformly integrable. We have :

XSn = E(Xc|FSn), P− a.s.

so

|XSn | ≤ E(|Xc| |FSn), P− a.s.
and therefore for all a > 0,∫

{|XSn |≥a}
|XSn | dP ≤

∫
{|XSn |≥a}

|Xc| dP.

Note that the family {|Xc|}(Xc ∈ L1) is uniformly integrable and therefore equicon-
tinuous. In fact we can write for all M ≥ 0∫

{|XSn |≥a}
|Xc| dP ≤MP(|XSn | ≥ a) +

∫
{|Xc|≥M}

|Xc| dP

where if we set An = {|XSn | ≥ a}, so that Tchebychev (or Markov) inequality
yields

P(An) ≤ 1

a
E(|XSn |) ≤

1

a
E(|Xc|).

Finally, we conclude

sup
n≥1

(∫
{|XSn |≥a}

|XSn | dP
)
≤M 1

a
E(|Xc|) +

∫
{|Xc|≥M}

|Xc| dP ≤ ε

if we choose M and then a large enough. �
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4.2. Convergence theorem. Stopping theorem for a uniformly inte-
grable martingale. In this paragraph, we study diverse forms of convergence for
martingales and give a stopping theorem for possibly unbounded stopping time. Let
(Ft)t∈R+ a filtration of (Ω,F ,P).

Theorem 4.11. [Almost sure convergence theorem ]
a) Let (Xt)t∈R+ be a right continuous submartingale bounded in L1 (i.e. supt∈R+ E(|Xt|) <
+∞), then (Xt)t∈R+ converges P−a.s. when t→ +∞ towards a limit in L1.
b) Let p > 1. If (Xt)t∈R+ is a right continuous martingale bounded in Lp (i.e.
supt∈R+ E(|Xt|p) < +∞), then (Xt)t∈R+ converges P−a.s. as t → +∞ towards a
limit in Lp.

Remark :
When (Xt)t∈R+ is a right continuous submartingale, (Xt)t∈R+ is bounded in L1 as
soon as

sup
t∈R+

E(X+
t ) < +∞.

(here x+ = x ∨ 0). Indeed, we have

E[|Xt|] = E[X+
t ] + E[X−t ] = 2E[X+

t ]− E[Xt] ≤ 2E[X+
t ]− E[X0]

Corollary 4.12. If (Yt)t∈R+ is a right continuous positive supermartingale,
then Yt converges P-a.s. as t→ +∞ and the limit is integrable.

Proof. We set Xt = −Yt. (Xt)t∈R+ is a right continuous submartingale and
X+
t = (−Yt)+ = 0,∀t ∈ R+. The proof is then a direct consequence of the theorem

and the previous remark. �

Proof. a). can be shown by using the discrete version of Theorem 9.3 with

T = N instead of R+ and setting Y
(n)
k = X k

2n
,∀n ≥ 1,∀k ≥ 0.

∀n ≥ 1, when k → +∞,

Y
(n)
k → Y (n)

∞ , P− a.s.
with Y

(n)
∞ integrable.

Denote Dn the dyadic numbers of order n. As Dn+1 ⊂ Dn, we see that the Y
(n)
∞

are equal P−a.s.. We set : Y∞ = Y
(n0)
∞ . We conclude by using right continuity as

t→ +∞,
Xt → Y∞, P− a.s..

b) Let p > 1. By a), when t→ +∞,

Xt → X∞ ∈ L1, P− a.s..
Let us show that X∞ ∈ Lp. Thanks to Fatou’s Lemma, we have

E(|X∞|p) ≤ lim inf
t→+∞

E(|Xt|p) ≤ sup
t∈R+

E(|Xt|p) < +∞

(as |Xt|p → |X∞|p P− a.s. when t→ +∞ ). �
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Theorem 4.13. [ Mean convergence theorem of order 1 or p.]
a). Let (Xt)t∈R+ be a right continuous martingale.
The three following conditions are equivalent :
i). (Xt)t∈R+ converges in L1 as t→ +∞.
ii). There exists a random variable X∞ ∈ L1 so that :

Xt = E(X∞|Ft),∀t ∈ R+.

iii) (Xt)t∈R+ is uniformly integrable.
b). Moreover, if p > 1 and if (Xt)t∈R+ is bounded in Lp (i.e. supt∈R+ E(|Xt|p) <
+∞) then the convergence holds as well in Lp with X∞ ∈ Lp.

Proof. a). i) ⇒ ii) : Denote X∞ an integrable random variable so that Xt

converges towards X∞ in L1 as t→ +∞. Let 0 ≤ s < t. We have P−a.s.,

E(Xt|Fs) = Xs.

Letting t going to infinity we get

E(X∞|Fs) = Xs P− a.s..
( We used that the map U → E(U |G), G sub σ algebra of F is a continuous linear
operator from L1 into L1 so that E(|E(U |G)− E(V |G)|) ≤ E(|U − V |)).
ii) ⇒ iii) : Set for a > 0 and t ∈ R+,

At(a) =

∫
{|Xt|≥a}

|Xt| dP.

We have

At(a) ≤
∫
{|Xt|≥a}

E(|X∞| |Ft) dP =

∫
{|Xt|≥a}

|X∞| dP.

|X∞| being uniformly integrable, it is also equicontinuous that is for all ε > 0, exists
η > 0 so that if A ∈ F with P(A) ≤ η then∫

A

|X∞| dP ≤ ε.

But, by Markov’s inequality,

P(|Xt| ≥ a) ≤ 1

a
E(|Xt|) ≤

1

a
E(|X∞|)→ 0, a→ +∞.

We deduce that
sup
t∈R+

At(a)→ 0, a→ +∞.

iii)⇒ i) : (Xt)t∈R+ is uniformly integrable, and therefore bounded in L1. Hence, by
the almost sure convergence theorem Xt → X∞ P-a.s. when t goes to +∞. Using
uniform integrability, we get that Xt converges in L1, towards X∞ when t goes to
+∞.

b) If p > 1 and if
sup
t∈R+

E(|Xt|p) < +∞,
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then

sup
t∈R+

|Xt| ∈ Lp.

(See Theorem 3.4 c) which extends to the case where [0, t] is replaced by R+).
(|Xt|p)t∈R+ is uniformly integrable as it is bounded by (supt∈R+ |Xt|)p ∈ L1. We
deduce that X∞ ∈ Lp as |X∞|p ≤ (supt∈R+ |Xt|)p ∈ L1 and that Xt converges
towards X∞ in Lp as t→ +∞ by the following result :
Let (Xn)n≥1 be a sequence of random variables in Lp, the two following statements
are equivalent :
i) Xn converges in probability towards X as n goes to infinity and (|Xn|p)n is
uniformly integrable.
ii) X ∈ Lp and Xn converges in Lp towards X as n tends to infinity. �

Notation : Let (Xt)t∈R+ be a right continuous martingale with respect to the
filtration (Ft)t∈R+ uniformly integrable and let X∞ ∈ L1 be the limit (in L1) of
(Xt)t∈R+ . Let S be a stopping time. Define :

XS(ω) =

{
XS(ω)(ω) if S(ω) < +∞.
X∞(ω) if S(ω) = +∞.

We state (without proof) a more general version of the previous theorem:

Theorem 4.14. [Modified stopping theorem ] Let (Xt)t∈R+ be a uniformly in-
tegrable right continuous martingale with respect to the filtration (Ft)t∈R+ .
a). For any stopping time S, the random variable XS is integrable (and FS-
measurable).
b). If S and T are two stopping times so that S ≤ T , then

XS = E(XT |FS), P− a.s.

Remark :
The uniform integrability condition is fundamental: the continuous martingale

(M
(α)
t )t∈R+ defined for α > 0 by

M
(α)
t = exp(αBt −

α2t

2
)

does not verify the conclusion of the stopping theorem. Indeed, as M
(α)
t → 0,P−a.s.

as t goes to +∞, the stopping time

T = inf{t ≥ 0;M
(α)
t ≤ 1/2}

is finite P-a.s. and E(M
(α)
T ) = 1

2 . But

E(M
(α)
0 ) = 1.

Indeed, (M
(α)
t )t∈R+ is bounded in L1 but not equicontinuous.
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5. Finite variation process and Stieltjes integral

5.1. Finite variation functions and Stieltjes integral.

Finite variation functions. Let A be a function defined on R+ with values in R,
right continuous and left limited (cad lag). At ≡ A(t). Let t > 0. A partition ∆t

of the interval [0, t] is a sequence of points (ti)i=0,1,...,n so that t0 = 0 < t1 < t2 <
. . . < tn = t. For all t > 0, we define

V (A)t = sup
∆t

∑
ti∈∆t

|Ati+1 −Ati |

Definition 5.1. The function A has finite variation if for all t ∈ R+, V (A)t is
finite. The function t→ V (A)t is called the (total) variation of A.

Property 5.2. a)- The function t→ V (A)t is increasing.
b)- The function t→ V (A)t is right continuous and has left limits. Moreover,

V (A)t = V (A)t− + |∆At|

where ∆At = At −At− is the jump of A at t.
c)- The function A can be rewritten as

At = Act +
∑
s≤t

∆As

where Act is the continuous part of At. Then,

V (A)t = V (Ac)t +
∑
s≤t

|∆As|.

d)- .(
∑
s≤t ∆As)t≥0 is a finite variation function and

V (
∑
s≤t

∆As) =
∑
s≤t

|∆As|.

. If A and B are two finite variation functions, then A+B has finite variation and

V (A+B) ≤ V (A) + V (B).

Examples : If A is C1 or monotone, then A has finite variation.

Remark :
A function A has finite variation iff it has locally bounded variations (A function
f = (f(t))t≥0 is locally bounded if for all t <∞, there exists Kt so that |f(s)| ≤ Kt,
for all s ≤ t.)

Property 5.3. Any finite variation function is the difference of two increasing
non-negative functions.
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Proof. Let A+ = 1
2 (V (A) + A − A0) and A− = 1

2 (V (A) − A + A0). Clearly,
A+ +A− = V (A) and A+−A− = A−A0. Let us show that A+ is increasing : Let
t′ > t,

V (A)t′ = V (A)t + V (A−At)[t,t′].

As V (A−At)[t,t′] ≥ |At′ −At|,

V (A)t′ − V (A)t +At′ −At = V (A−At)[t,t′] + (At′ −At) ≥ 0.

So, A+ is an increasing function, vanishing in 0 (Idem for A−). �

Finite variation functions and measures on R+,∗. We can associate to any right
continuous non decreasing functions A+ and A− a positive σ−finite measure on
(R+,∗,B(R+,∗)) denoted µA+ and µA− such that for all t > 0,

µA+(]0, t]) = A+
t

and

µA−(]0, t]) = A−t .

Hence, we can associate to any finite variation function A a σ-finite measure on
(R+,∗,B(R+,∗)) by setting

µA = µA+ − µA− .
In particular for all t > 0,

µA(]0, t]) = At −A0.

For any borelian locally bounded function f from R+ into R localement bornee, we
can define the Stieljes integral of f with respect to A by :∫ t

0

f(s) dAs ≡
∫ t

0

f(s)µA(ds).

Notice that ∣∣∣∣∫ t

0

f(s)µA(ds)

∣∣∣∣ =

∣∣∣∣∫ t

0

f(s)µA+(ds)−
∫ t

0

f(s)µA−(ds)

∣∣∣∣
≤
∫ t

0

|f(s)| (µA+ + µA−)(ds) ≤ sup
[0,t]

|f(s)| V (A)t < +∞.

Moreover

µA(]0, t[) = At− −A0

and

µA({t}) = ∆At.

If f is a bounded function on [0, t], then V (
∫

]0,s]
f(u) dAu)s≤t is finite and

V (

∫
]0,t]

f(u) dAu) =

∫
]0,t]

|f(u)| dV (Au).
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5.2. Integration by parts.

Theorem 5.4. Let A and B be two finite variation functions. Then, for all
t > 0,

(5.1) AtBt = A0B0 +

∫ t

0

As− dBs +

∫ t

0

Bs dAs

and

(5.2) AtBt = A0B0 +

∫ t

0

As− dBs +

∫ t

0

Bs− dAs +
∑
s≤t

∆As∆Bs.

Proof. The second equality comes from the first when noticingg that Bs =
Bs− + ∆Bs and µA({s}) = ∆As.
Let µA and µB be the measures associated with A and B.
a) By definition of the product measure,

µA ⊗ µB(]0, t]×]0, t]) = µA(]0, t])µB(]0, t])

= (At −A0)(Bt −B0)

b) Moreover

µA ⊗ µB(]0, t]×]0, t]) =

∫
]0,t]×]0,t]

µA(dx)µB(dy)

=

∫
0<x<y,0<y≤t

µA(dx)µB(dy) +

∫
0<y≤x,0<x≤t

µA(dx)µB(dy)

=

∫
]0,t]

µA(]0, y[)µB(dy) +

∫
]0,t]

µB(]0, x])µA(dx)

=

∫
]0,t]

(As− −A0) dBs +

∫
]0,t]

(Bs −B0) dAs

=

∫
]0,t]

As− dBs +

∫
]0,t]

Bs dAs −A0(Bt −B0)−B0(At −A0)

= AtBt −A0Bt −B0At +A0B0, according to a),

from which the first result follows. The second follows. �

We easily deduce from the theorem the following corollary :

Corollary 5.5. Let A be a finite variation function such that A0 = 0. Then,

A2
t = 2

∫ t

0

As− dAs +
∑
s≤t

(∆As)
2.



INTRODUCTION TO STOCHASTIC ANALYSIS 41

5.3. Formule de changement de variable.

Theorem 5.6. Let A une finite variation function and F : R → R a C1 func-
tion. Then, F (A) is a finite variation function and, for all t > 0,

F (At) = F (A0) +

∫ t

0

F ′(As−) dAs +
∑
s≤t

(
F (As)− F (As−)−∆AsF

′(As−)
)
.

Remark :
If A is continuous then

F (At) = F (A0) +

∫ t

0

F ′(As) dAs.

For instance, if F (x) = ex,

exp(At) = exp(A0) +

∫ t

0

exp(As) dAs.

Proof. The proof of the theorem goes in two steps:we first show the formula
is true for F (x) = x (which is clear) then extend it to polynomial functions by
applying integration by parts formula. We then entend the result to C1 functions
by approximating F and F ′ uniformly by a sequence of polynomial functions. �

Property 5.7. Let A be a finite variation function and let Y be defined by

Yt = Y0

∏
s≤t

(1 + ∆As) exp(Act −Ac0).

Then, Y is the unique solution with finite variation of the differential equation

Yt = Y0 +

∫ t

0

Ys− dAs.

Proof. a)- Notice that if X is a finite variation function, then t → exp(Xt)
has finite variations :
Let 0 = t0 < t1 < . . . tn = t,

n−1∑
i=0

| exp(Xti+1)− exp(Xti)| ≤ sup
s≤t

(exp(Xs))

n−1∑
i=0

|Xti+1 −Xti |

⇒ V (exp(X))t ≤ exp(V (X)t) V (X)t.

b)- Set

Ut = Y0

∏
s≤t

(1 + ∆As)

and

Vt = exp(Act −Ac0).
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U and V are finite variation functions as their logarithm is. The integration by part
formula gives

Yt = UtVt = Y0 +

∫ t

0

Us− dVs +

∫ t

0

Vs dUs.

But, dVs = VsdA
c
s and dUt = Y0

∏
s<t(1 + ∆As)∆At = Ut−d(

∑
u≤t ∆Au), so, as

Vs = Vs− ,

Yt = Y0 +

∫ t

0

Us−Vs dA
c
s +

∫ t

0

Vs−Us− d(
∑
u≤s

∆Au)

= Y0 +

∫ t

0

Ys− dAs

by noticing that As = Acs +
∑
u≤s ∆Au.

c)- We finally prove uniqueness. Assume that we have two solutions with finite
variations of the differential equation. Denote Z the difference of these two solutions.
Then Z is also solution of this differential equation and

|Zt| ≤Mt V (A)t

where Mt = supu≤t |Zu|. Iterating the procedure by using the new bounds for Z
yields

|Zt| ≤
∫ t

0

Ms V (A)s dV (A)s ≤Mt
V (A)2

t

2
≤ . . . ≤Mt

V (A)nt
n!

→ 0

as n→ +∞. �

Time change. Let A be an increasing function, therefore with finite variations,
so that A0 = 0. We define for each t ∈ R+,

τt =

{
inf{s : As > t} if {. } 6= ∅
+∞ if {. } = ∅.

The function t→ τt is called “pseudo-inverse” of the function A.

Property 5.8. Let f be a borelien positive function borelienne on [0,+∞[ and
bounded on [0, t]. Then, ∫

]0,t]

f(s) dAs =

∫ At

0

f(τs) ds.

Proof. We prove the proposition for f(s) = 1]0,u](s) with u ≤ t. The gener-
alization to all borelian function is classical.
. f ◦ τs = 1]0,u](τs) = 1{τs≤u} = 1{Au≥s} Lebesgue a.s..
Using that A is increasing, we find that∫ At

0

1]0,u](τs) ds =

∫ At

0

1{Au≥s} ds =

∫ Au

0

ds = Au.
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.
∫

]0,t]
f(s) dAs =

∫
]0,t]

1]0,u](s) dAs =
∫

]0,u]
dAs = Au −A0 = Au. �

5.4. Finite variation process. Let (Ft)t∈R+ be a filtration on a probability
space (Ω,F ,P), that we assume complete for P and (At)t∈R+ an (Ft)t∈R+ -adapted
process.

The process A has finite variations if P-almost all trajectories t→ At(ω) have
finite variations.

Remark :
Note that V (A), A+ and A− are adapted processes for (Ft)t∈R+ .

Let A be a finite variation process. For t ≥ 0 and P− almost all ω ∈ Ω, we can

define (if exists) the stochastic integral
( ∫ t

0
Xs dAs

)
(ω) as the Stieltjes integral∫ t

0

Xs(ω) dAs(ω).

The next proposition gives sufficient conditions for this integral to be well defined.

Property 5.9. (admitted) Let X be a progressively mesurable process, bounded

on any interval [0, t] and let A be a finite variation process. Then
( ∫ t

0
Xs dAs

)
t∈R+

is a adapted finite variation process.

(On the neglectable set where A is not finite variation, the integral is set to zero).

Example : Let N = (Nt)t∈R+ be the Poisson process with intensity λ. We have
already seen that (Nt−λt)t∈R+ is a martingale with respect tp the natural filtration
(F0

t )t∈R+ of (Nt)t∈R+ . Let α > −1. Let us consider the martingale with respect to
the natural filtration (F0

t )t∈R+

Lαt = exp[ln(1 + α)Nt − λαt].

Observe that the Poisson process can be written

Nt =
∑
s≤t

∆Ns

with ∆Ns = 1{∆Ns 6=0}. We can write (Lαt )t∈R+ as

Lαt = exp(−λαt)
∏
s≤t

(1 + α)∆Ns

= exp(−λαt)
∏
s≤t

(1 + ∆(αNs − αλs))
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According to Property 5.7, Lαt is the unique finite variation solution of the stochastic
equation

Yt = Y0 +

∫ t

0

Ys−d(αNs − αλs).

In other words ∫ t

0

Lαs−d(αNs − αλs) = Lαt − 1.

As (Lαt )t∈R+ is a martingale with respect to the natural filtration (F0
t )t∈R+ , we

deduce that
( ∫ t

0
Lαs−d(αNs − αλs)

)
t∈R+

is a martingale with respect to (F0
t )t∈R+ .

A natural question is the following: being given a martingale M with finite vari-

ations, when we can say that
( ∫ t

0
Xs dMs

)
t∈R+

is a martingale? It is not always

true. Let us take the standard Poisson process with parameter λ = 1. The process(∫ t

0

(Ns − s) d(Ns − s)
)
t∈R+

is not a martingale
1)- Indeed by integration by parts formula

(Nt − t)2 =

∫ t

0

(Ns − s)− d(Ns − s) +

∫ t

0

(Ns − s) d(Ns − s)

So, ∫ t

0

(Ns − s) d(Ns − s) = (Nt − t)2 −
∫ t

0

(Ns− − s) d(Ns − s)

2)- As Ns = Ns− + ∆Ns, we have∫ t

0

(Ns − s) d(Ns − s) =

∫ t

0

(Ns− − s) d(Ns − s) +

∫ t

0

∆(Ns − s) d(Ns − s)

But ∆(Ns − s) = ∆Ns, therefore∫ t

0

∆(Ns − s) d(Ns − s) =
∑
s≤t

(∆Ns)
2 =

∑
s≤t

(∆Ns) = Nt.

We then deduce the relation∫ t

0

(Ns − s) d(Ns − s) =

∫ t

0

(Ns− − s) d(Ns − s) +Nt.

Adding the above formula we get

2

∫ t

0

(Ns − s) d(Ns − s) = (Nt − t)2 − t+Nt − t+ 2t.
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But we already saw that the processes ((Nt − t)2 − t)t∈R+ and (Nt − t)t∈R+ are

martingales, hence
( ∫ t

0
(Ns − s) d(Ns − s)

)
t∈R+

is not a martingale. However

2

∫ t

0

(Ns − s)− d(Ns − s) = (Nt − t)2 − t− (Nt − t).

is a martingale as difference of two martingales. This shows that the right notion
is to require the process which is integrated to be adapted. This is the content of
the next theorem.

Theorem 5.10. Let H be an adapted process, left continuous, bounded on all
interval [0, t]. Let M be a martingale with integrable variations on all [0, t] (i.e.

E(V (M)t) < +∞). Then,
( ∫ t

0
Hs dMs

)
t∈R+

is a martingale.

Proof. Let Hs = αu1]u,v](s) with u ≤ v, αu bounded and Fu-measurable.
Then, ∫ t

0

Hs dMs = αu(Mv∧t −Mu∧t) = αu(Mv
t −Mu

t ).

(with the notation for stopped martingales).
Let s ≤ t.
a)- Case u ≤ s.

E
(∫ t

0

Ht′ dMt′

∣∣∣Fs) = E(αu(Mv
t −Mu

t )|Fs)

= αu(E(Mv
t |Fs)− E(Mu

t |Fs))
= αu(Mv

s −Mu
s )

=

∫ s

0

Ht′ dMt′ .

b)- Case s < u.

E
(∫ t

0

Ht′ dMt′

∣∣∣Fs) = E(αu(Mv
t −Mu

t )|Fs)

= E(E(αu(Mv
t −Mu

t )|Fu)|Fs)
= E(αu(Mv∧u −Mu∧u)|Fs) = 0

=

∫ s

0

αu1]u,v](t
′) dMt′ .

The result extends by linearity to Hs =
∑
i αui1]ui,ui+1](s) with bounded Fui-

measurable αui . For s ≤ t, we shall approximate the left continuous process H by
Hn of the form :

Hn
s =

p(n)∑
i=1

αnuni 1]uni ,u
n
i+1](s).
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It is enough to show the following three points to prove the theorem:
i) For all A ∈ Fs, when n→ +∞,

E(1A

∫ t

0

Hn
u dMu) −→ E(1A

∫ t

0

Hu dMu).

Note that dMu = dµ+
M − dµ

−
M , so that it is enough to consider

E(1A

∫ t

0

Hn
u dµ

+
M (u)) =

∫
Ω×]0,t]

1AH
n
u (ω)µ+

M (ω, du)P(dω).

The convergence follows from bounded convergence theorem.

ii) (
∫ t

0
Hs dMs)t∈R+ is adapted with respect to the filtration (Ft)t∈R+ . This is clear

from property 5.9 as H is progressively measurable ( H being adapted and left
continuous ).
iii) H being bounded by say Kt on all interval [0, t],

E(|
∫ t

0

Hs dMs|) ≤ E(

∫ t

0

|Hs| dV (M)s) ≤ Kt E(V (M)t) < +∞.

�

Theorem 5.11. A martingale M is continuous and with finite variation iff it
is constant.

Proof. We can assume that M0 = 0. Fix t ∈ R+ and n ∈ N. Let

Sn =

{
inf{s : V (M)s ≥ n} if { . } 6= ∅ for s ≤ t
t if { . } = ∅.

Sn is a stopping time and the martingaleMSn has bounded variations. It is therefore
enough to show the theorem for a continuous martingale M such that M and its
variation are bounded by a constant K. Let ∆ = {t0 = 0, t1, . . . , tp = t}, ti < ti+1

be a partition of [0, t], with |τ | = supi |ti+1 − ti|. Let us compute

E(M2
t ) =

p−1∑
i=0

E(M2
ti+1
−M2

ti).

But for all u ≤ v,

E(M2
v −M2

u) = E((Mv −Mu)2).
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Hence

E(M2
t ) =

p−1∑
i=0

E((Mti+1
−Mti)

2)

≤ E
[
(sup
i
|Mti+1 −Mti |)×

p−1∑
i=0

|Mti+1 −Mti |
]

≤ E
[
V (M)t sup

i
|Mti+1 −Mti |

]
≤ KE

[
sup
i
|Mti+1

−Mti |
]
→ 0

when |τ | goes to 0 ( by bounded convergence theorem as M is bounded continuous
). Hence, M ≡ 0.

�

We have seen that Stieltjes integral allows to integrate a process with respect
to another one provided it has finite variation. This integral holds trajectory by
trajectory. The previous theorem shows that this is not possible if we want to
integrate with respect to a continuous martingale, for instance with respect to a
real Brownian motion.

6. Continuous local martingales

6.1. Quadratic variation of a bounded continuous martingale. The
Brownian motion having infinite variations, cf Theorem 1.10, we can not define
its Stieltjes integral. We shall define another type of integral, in the L2 sense. Let
(Ω,F , (Ft)t∈R+ ,P) be a probability space and put X = (Xt)t∈R+ to be a real valued
process. Let ∆ = {t0 = 0 < t1 < . . .} be a subdivision of R+ with finitely many
points in each [0, t]. We define for all t > 0, the random variable

T∆
t (X) =

k−1∑
i=0

(Xti+1 −Xti)
2 + (Xt −Xtk)2

where k is such that tk ≤ t < tk+1.

Definition 6.1. X has a finite quadratic variation if there exists a process
〈X,X〉 such that for all t > 0,

T∆
t (X)

P−→ 〈X,X〉t
when ∆ goes to 0.

Theorem 6.2. A bounded continuous martingale M has a finite quadratic vari-
ation 〈M,M〉. Moreover, 〈M,M〉 is the unique continuous increasing process, van-
ishing at the origin and such that M2 − 〈M,M〉 is a martingale.
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Proof. a) - Uniqueness : Direct consequence of Theorem 5.11 as if A and B
are two such processes A − B is a martingale with finite variation which vanishes
at the origin.
b) - Existence :
. Observe that if ti < s < ti+1,

E((Mti+1
−Mti)

2|Fs) = E((Mti+1
−Ms)

2|Fs) + (Ms −Mti)
2.

Hence, we see that

(6.1) E(T∆
t (M)− T∆

s (M)|Fs) = E((Mt −Ms)
2|Fs) = E(M2

t −M2
s |Fs).

We deduce that (M2
t − T∆

t (M))t is a continuous martingale.

. Set a = tn > 0. We shall see that if (∆n) is a sequence of subdivisions of
[0, a] such that |∆n| goes to 0, then (T∆n

a )n converges in L2. Let ∆ and ∆′ be two
subdivisions of [0, a], and denote ∆∆′ = ∆ ∪ ∆′. According to (6.1), the process

X = T∆(M) − T∆′(M) is a martingale and since by definition of T∆∆′

t (X), since

(X2
t − T∆∆′

t (X))t is a martingale,

E(X2
a) = E

(
(T∆
a (M)− T∆′

a (M))2
)

= E(T∆∆′

a (X)).

As (x+ y)2 ≤ 2(x2 + y2) and

(Xti+1
−Xti)

2 =
[
(T∆
ti+1

(M)− T∆
ti (M))− (T∆′

ti+1
(M)− T∆′

ti (M))
]2
,

we have

T∆∆′

a (X) ≤ 2{T∆∆′

a (T∆(M)) + T∆∆′

a (T∆′(M))}.
Hence it suffices to show that

E(T∆∆′

a (T∆(M)))

goes to zero as |∆|+ |∆′| goes to zero : Let sk ∈ ∆∆′ and tl ∈ ∆ so that tl ≤ sk <
sk+1. We have

T∆
sk+1

(M)− T∆
sk

(M) = (Msk+1
−Mtl)

2 − (Msk −Mtl)
2

= (Msk+1
−Msk)(Msk+1

+Msk − 2Mtl)

and consequently

T∆∆′

a (T∆(M)) ≤
(

sup
k
|Msk+1

+Msk − 2Mtl |2
)
T∆∆′

a (M).

By Cauchy-Schwarz inequality, we deduce

E
(
T∆∆′

a (T∆(M))
)
≤ E

(
sup
k
|Msk+1

+Msk − 2Mtl |4
)1/2

E(T∆∆′

a (M)2)1/2.
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When |∆|+ |∆′| goes to zero, the first term goes to zero by continuity of M . The
second is bounded by a constant independent of the choice of ∆ and ∆′ : indeed,
compute

(T∆
a (M))2 =

(
n∑
k=1

(Mtk −Mtk−1
)2

)2

= 2

n∑
k=1

(T∆
a (M)− T∆

tk
(M))(T∆

tk
(M)− T∆

tk−1
(M)) +

n∑
k=1

(Mtk −Mtk−1
)4.

Thanks to (6.1), we have

E(T∆
a (M)− T∆

tk
(M)|Ftk) = E((Ma −Mtk)2|Ftk)

and therefore

E(T∆
a (M))2) = 2

n∑
k=1

E[(Ma −Mtk)2(T∆
tk

(M)− T∆
tk−1

(M))] +

n∑
k=1

E[(Mtk −Mtk−1
)4]

≤ E
[(

2 sup
k
|Ma −Mtk |2 + sup

k
|Mtk −Mtk−1

|2
)
T∆
a (M)

]
Let us assume that M is bounded by a constant C. Then by (6.1) we see that

E(T∆
a (M))) ≤ 4C2

so that
E(T∆

a (M))2) ≤ 12C2E(T∆
a (M))) ≤ 48C4.

Hence we have shown that the sequence (T∆n
a (M))n has a limit in L2, and therefore

in probability, that we denote 〈M,M〉a, for any sequence (∆n) of subdivisions of
[0, a] so that |∆n| goes to 0.

. In this last part, we show that the limiting process (〈M,M〉t)t has all the
announced properties.
- Let (∆n)n be defined as above. Doob’s inequality for the martingale (T∆n

t (M)−
T∆m
t (M))t can be written

E
[
sup
t≤a
|T∆n
t (M)− T∆m

t (M)|2
]
≤ 4 E[(T∆n

a (M)− T∆m
a (M))2].

Hence there exists a subsequence (∆nk) such that T
∆nk
t (M) converges almost surely

uniformly on [0, a] towards the limit 〈M,M〉t which is therefore almost surely con-
tinuous.
- The sequence(∆n)n can be chosen so that ∆n+1 is a refinement of the subdivision
∆n and so that

⋃
n ∆n is dense [0, a]. For all (s, t) ∈

⋃
n ∆n such that s < t, there

exists an integer number n0 so that both s and t belong to all subdivisions ∆n with
n ≥ n0. But T∆n

s ≤ T∆n
t so that

〈M,M〉s ≤ 〈M,M〉t
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and therefore 〈M,M〉 is increasing on
⋃
n ∆n and therefore on [0, a] as 〈M,M〉 is

continuous.
- Last point : we show that M2 − 〈M,M〉 is a martingale by going to the limit
∆→ 0 in (6.1). �

Property 6.3. Let M be a bounded continuous martingale, T be a stopping
time. We denote by MT the martingale stopped in T . Then,

〈MT ,MT 〉 = 〈M,M〉T .

Proof. . 〈MT ,MT 〉 is the unique increasing continuous process, which van-
ishes at the origin and so that

(M2)T − 〈MT ,MT 〉

is a martingale.
. (M2−〈M,M〉)T = (M2)T−〈M,M〉T is a martingale and 〈M,M〉T is a continuous
increasing process, vanishing at the origin and hence 〈MT ,MT 〉 = 〈M,M〉T . �

6.2. Continuous local martingales.

Definition 6.4. LetM be a continuous real valued process defined on (Ω,F , (Ft)t∈R+ ,P).
We say that M is a local continuous martingale if
i) M0 is integrable.
ii) There exists a sequence (Tn)n of stopping times, Tn ↑ +∞ a.s. and MTn is a
uniformly integrable martingale.

Remarks :

(1) Condition ii) can be replaced by :
ii’) There exists a stopping time (Tn)n such that Tn ↑ +∞ a.s. and such
that MTn is a martingale. Indeed it is enough to stop the martingale at
n so that it becomes uniformly integrable.

(2) A martingale is a local martingale (take Tn = n).
(3) A stopped local martingale is a local martingale : Take S a stopping time,

M a local martingale.
There exists a sequence of stopping times (Tn) such that Tn ↑ +∞ a.s.
and MTn is a uniformly integrable martingale. (MS)Tn = MTn∧S is also
a uniformly integrable martingale.

(4) The sum of two local martingales is a local martingale.

Exercises :
Show that :

(1) A non negative local martingale is a supermartingale (Use Fatou’s lemma).
(2) A local bounded martingale is a martingale.
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(3) Let M be a continuous local martingale and let Tn = inf{t : |Mt| ≥ n}
then MTn is a bounded martingale and Tn ↑ +∞ a.s.

(4) There exists local martingales which are not martingales (cf exercise 7.7).

Basic example : The real Brownian motion (Bt) is a martingale, hence a local
martingale, which is not uniformly integrable as

sup
t

E(|Bt|) = +∞.

However, there exists a sequence (Tn)n of stopping times such that Tn ↑ +∞ a.s.
so that BTn is a uniformly integrable martingale.

Theorem 6.5. Let M be a continuous local martingale. There exists a unique
process 〈M,M〉 non decreasing, continuous, vanishing at the origin and so that
M2 − 〈M,M〉 is a local martingale.
Moreover,

sup
s≤t
|T∆n
s (M)− 〈M,M〉s|

converges in probability towards zero as n→+∞.

Proof. . Let (Tn)n be a sequence of stopping times so that Tn ↑ +∞ a.s.
and such that MTn is bounded. According to Theorem 6.2, for all n, there exists a
process An = 〈MTn ,MTn〉 so that (M2)Tn−An is a uniformly integrable martingale.(

(M2)Tn+1 −An+1
)Tn

= (M2)Tn − (An+1)Tn

so that, by uniqueness,

(An+1)Tn = An.

We can construct a process 〈M,M〉 non decreasing, continuous, vanishing at the
origin so that 〈M,M〉Tn = An for all integer n. By this construction, M2−〈M,M〉
is a local martingale since (M2−〈M,M〉)Tn = (M2)Tn−An is a uniformly integrable
martingale
. Let t be given. Let ε > 0 and S be a stopping time so that MS is bounded,
P(S ≤ t) ≤ δ. On [0, S], T∆(M) and 〈M,M〉 coincide with T∆(MS) and 〈MS ,MS〉,
so that

P(sup
s≤t
|T∆
s (M)− 〈M,M〉s| > ε) ≤ δ + P(sup

s≤t
|T∆
s (MS)− 〈MS ,MS〉s| > ε)

and the last term vanishes when ∆ goes to zero. �

Corollary 6.6. Let M,N be two continuous local martingales. There exists
a unique continuous process 〈M,N〉 , with finite variation, vanishing at the origin
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so that MN − 〈M,N〉 is a continuous local martingale.
Moreover, for all t and any sequence of subdivisions (∆n)n of [0, t] so that |∆n|→0,

sup
s≤t
|T̂∆n
s (M,N)− 〈M,N〉s|

converges in probability towards 0 as n→+∞, where

T̂∆n
s (M,N) =

∑
ti∈∆n

(Ms
ti+1
−Ms

ti)(N
s
ti+1
−Ns

ti).

Proof. . We have

T̂∆n
t (M,N) =

1

4

(
T∆n
t (M +N)− T∆n

t (M −N)
)
.

We set :

〈M,N〉 =
1

4

(
〈M +N,M +N〉 − 〈M −N,M −N〉

)
.

But

MN =
1

4

(
(M +N)2 − (M −N)2

)
so that MN − 〈M,N〉 is a local continuous martingale according to Theorem 6.5.
. Let A and A′ be two continuous processes with finite variation so that MN − A
and MN −A′ are local martingales. Then, A−A′ is a continuous local martingale
with finite variations. There exists Tn ↑ +∞ such that (A − A′)Tn is a uniformly
integrable martingale with finite variations, hence for all n

(A−A′)Tn = 0

and thus going to the limit, A ≡ A′. �

Exercise :
Let M,N be two local martingales locales and T be a stopping time. Then,

〈MT , NT 〉 = 〈M,NT 〉 = 〈MT , N〉 = 〈M,N〉T .
(Hint : Show that M(N −NT ) is a local martingale).
Remarks :

(1) The map (M,N)→ 〈M,N〉 is bilinear, symmetric and non negative. It is
also non-degenerate in the sense that

〈M,M〉 = 0⇔M = M0 a.s.

(2) Let M and N be two continuous local martingales.
MN is a local martingale ⇔ 〈M,N〈= 0.

Property 6.7. [Kunita-Watanabe inequality] Let M,N be two continuous local
martingales and H and K be two measurable processes. Then∫ ∞

0

|Hs||Ks||d〈M,N〉s| ≤
(∫ ∞

0

H2
s d〈M,M〉s

)1/2(∫ ∞
0

K2
s d〈N,N〉s

)1/2

.
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Proof. Using Cauchy-Schwarz inequality as well as the approximations of
〈M,M〉 and 〈M,N〉 obtained in Theorem 6.5, as well as corollary 6.6, we deduce

|〈M,N〉ts| ≤
√
〈M,M〉ts

√
〈N,N〉ts

where 〈M,N〉ts = 〈M,N〉t − 〈M,N〉s.
Let s = t0 < t1 < . . . tp = t,

p∑
i=1

|〈M,N〉titi−1
| ≤

p∑
i=1

√
〈M,M〉titi−1

√
〈N,N〉titi−1

≤

(
p∑
i=1

〈M,M〉titi−1

)1/2( p∑
i=1

〈N,N〉titi−1

)1/2

=

√
〈M,M〉ts

√
〈N,N〉ts

so that, since
∫ t
s
|d〈M,N〉u| = sup

∑p
i=1 |〈M,N〉ti+1

ti
|, we deduce that∫ t

s

|d〈M,N〉u| ≤
√
〈M,M〉ts

√
〈N,N〉ts

We then generalize this inequality to all bounded borelian sets A of R+ by the
monotone convergence theorem∫

A

|d〈M,N〉u| ≤

√∫
A

d〈M,M〉u

√∫
A

d〈N,N〉u.

Let h =
∑
i λi1Ai and k =

∑
i µi1Ai be two nonnegative stepwise constant func-

tions. Then,∫
hsks|d〈M,N〉u| =

∑
i

λiµi

∫
Ai

|d〈M,N〉s|

≤
(∑

λ2
i

∫
Ai

d〈M,M〉s

)1/2(∑
µ2
i

∫
Ai

d〈N,N〉s

)1/2

=

(∫
h2
sd〈M,M〉s

)1/2(∫
k2
sd〈N,N〉s

)1/2

We conclude by using the fact that any non negative measurable function is the
increasing limit of stepwise constant functions and the monotone convergence the-
orem. �

Property 6.8. A continuous local martingale M is a martingale bounded in
L2 iff

• M0 ∈ L2.
• 〈M,M〉∞ is P-integrable.
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Proof. . ⇒ - M is bounded in L2 so that M0 ∈ L2

-There exists a sequence of stopping times Tn ↑ +∞ such that for all n, MTn is a
bounded martingale. We have

(6.2) E(M2
Tn∧t)− E(〈M,M〉Tn∧t) = E(M2

0 ).

As M is bounded in L2, we can pass to the limit and get that

E(M2
∞)− E(〈M,M〉∞) = E(M2

0 ).

Hence, 〈M,M〉∞ is integrable.
. ⇐ - According to (6.2),

(6.3) E(M2
Tn∧t) ≤ E(〈M,M〉∞) + E(M2

0 ) = K <∞.
According to Fatou’s lemma,

E(M2
t ) ≤ lim inf

n
E(M2

Tn∧t) ≤ K.

Hence, M is bounded in L2.
- Moreover (MTn

t )t is a martingale, so that

E(MTn∧t|Fs) = MTn∧s p.s.

and we obtain by passing to the limit that

E(Mt|Fs) = Ms p.s..

As a consequence, M is a martingale. �

Remark : It is easy to see that (M2−〈M,M〉)t is a uniformly integrable martingale
since

sup
t
|M2

t − 〈M,M〉t| ≤ (M?
∞)2 + 〈M,M〉∞ ∈ L1

with M?
∞ = supt∈R+ |Mt|.

Corollary 6.9. A local continuous martingale converges a.s when t→∞ on
the set {〈M,M〉∞ < +∞}.

The proof is left as an exercise (hint: use the stopping time Tn = inf{t; 〈M,M〉t ≥
n} and consider (MTn

t )t).

6.3. Continuous semi-martingales. Let (Ω,F , (Ft)t∈R+ ,P) a filtered prob-
ability space and let X = (Xt)t∈R+ be a real valued process.
X is a continuous semi-martingale if X can be written

X = M +A

where M is a continuous local martingale and A is a continuous finite variation
process, vanishing at the origin. Such a decomposition is unique. Indeed if we have
two such decompositions

X = M +A and X = M ′ +A′,
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then M −M ′ = A′ − A is a continuous local martingale with finite variations and
therefore is a constant.

Property 6.10. A continuous semi-martingale X with decomposition X =
M +A has a quadratic variation denoted 〈X,X〉 and

〈X,X〉 = 〈M,M〉.

Proof. For all t > 0,

T∆
t (X) =

k−1∑
i=0

(Xti+1 −Xti)
2 + (Xt −Xtk)2

=

k−1∑
i=0

(Mti+1
−Mti)

2 + (Mt −Mtk)2 +

k−1∑
i=0

(Ati+1
−Ati)2 + (At −Atk)2

+ 2

k−1∑
i=0

(Mti+1 −Mti)(Ati+1 −Ati) + 2(Mt −Mtk)(At −Atk)

The first term converges in probability towards 〈M,M〉 as ∆ goes to 0. It remains
to check that the other terms go to zero as |∆| goes to 0.
By continuity of A, we obtain∣∣∣∣∣

k−1∑
i=0

(Ati+1
−Ati)2 + (At −Atk)2

∣∣∣∣∣ ≤ sup
i
|Ati+1

−Ati | V (A)t→ 0,

as |∆|→ 0.
Similarly, by continuity of M ,∣∣∣∣∣
k−1∑
i=0

(Mti+1
−Mti)(Ati+1

−Ati) + (Mt −Mtk)(At −Atk)

∣∣∣∣∣ ≤ sup
i
|Mti+1

−Mti | V (A)t→ 0,

as |∆|→ 0. �

If X = M +A and Y = N +B are two continuous semi-martingales, we define
the bracket of X and Y by

〈X,Y 〉 = 〈M,N〉 =
1

4
[〈X + Y,X + Y 〉 − 〈X − Y,X − Y 〉].

Clearly, 〈X,Y 〉t is the limit in probability of∑
i

(Xti+1
−Xti)(Yti+1

− Yti).

f
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7. Stochastic Integral

7.1. Stochastic integral with respect to a martingale bounded in L2.
We denote H2 the space of continuous martingales bounded in L2 such that M0 = 0.
According to Proposition 6.8., if M ∈ H2, then E(〈M,M〉∞) < +∞. According
to Kunita-Watanabe inequality, if M,N ∈ H2, then E(|〈M,N〉∞|) < +∞. We can
therefore define on H2 a scalar product by

〈M,N〉H2 = E(〈M,N〉∞).

The norm associated to this scalar product is given by

||M ||H2 = E(〈M,M〉∞)1/2.

Property 7.1. The space H2 is a Hilbert space for the norm

||M ||H2 = E(〈M,M〉∞)1/2.

Proof. Let us first show that H2 is complete for the norm ||.||H2 . Let (Mn)n
be a Cauchy sequence in H2 for this norm. According to Proposition 6.8., we have

lim
m,n→+∞

E[(Mn
∞ −Mm

∞)2] = lim
m,n→+∞

E[〈Mn −Mm,Mn −Mm〉∞] = 0.

Doob’s inequality gives therefore that

lim
m,n→+∞

E[sup
t≥0

(Mn
t −Mm

t )2] = 0.

We can therefore construct a subsequence nk of integer numbers such that

E

[ ∞∑
k=1

sup
t
|Mnk

t −M
nk+1

t |

]
≤
∞∑
k=1

E
[
sup
t
|Mnk

t −M
nk+1

t |2
]1/2

<∞

We deduce that almost surely

∞∑
k=1

sup
t
|Mnk

t −M
nk+1

t | <∞

and hence the sequence (Mnk
t )t≥0 converges uniformly on R+ towards a limit M .

We easily see that the limit M is a continuous martingale (Note that (Mnk
t )t≥0

converges also in L2 towards M as a Cauchy sequence in L2). As the variables Mn
t

are uniformly bounded in L2, the martingale M is also bounded in L2 and hence
M ∈ H2. Finally

lim
k→+∞

E[〈Mnk −M,Mnk −M〉∞] = lim
k→+∞

E[(Mnk
∞ −M∞)2] = 0

which shows that the subsequence Mnk converges a.s. Hence also (Mn) converges
towards M in H2. �
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If M ∈ H2, we call L2(M) the space of progressively measurable processes K
such that

||K||2M = E
[∫ ∞

0

K2
s d〈M,M〉s

]
< +∞.

For all A ∈ P = B(R+)⊗F∞, we set

PM (A) = E
[∫ ∞

0

1A(s, ω) d〈M,M〉s(ω)

]
< +∞.

PM is a bounded measure on P and L2(M) is the space of progressively measurable
functions with integrable square with respect to PM . We will denote L2(M) the
space of the equivalence classes of elements of L2(M). This is an Hilbert space for
the norm ||.||M (The associated scalar product is denoted (., .)M ).
Note that L2(M) contains the continuous bounded adapted processes.
We denote E the family of the elementary processes defined by

Hs(ω) =

p−1∑
i=0

H(i)(ω)1]ti,ti+1](s)

where the H(i) are Fti-measurables and bounded.

Property 7.2. For all M ∈ H2, E is dense in L2(M).

Proof. It is enough to show that if K ∈ L2(M) is such that (K,N)M = 0 for
all N ∈ E , then K = 0. Let 0 ≤ s < t, and F be a Fs-measurable bounded variable.
If (H,K)M = 0 for all H = F1]s,t] ∈ E , then

E
[
F

∫ t

s

Kud〈M,M〉u

]
= 0.

Set for all t ≥ 0,

Xt =

∫ t

0

Kud〉M,M〉u.

By using Cauchy-Schwarz inequality and the fact that M ∈ H2 and K ∈ L2(M),
this integral is a.s. converging and in L1. Hence, for all F Fs-measurable variable,
E(F (Xt − Xs)) = 0. As X0 = 0 and X has finite variation, X = 0 according to
Theorem 5.11. Hence, almost surely, Ku = 0 d〈M,M〉u−a.s., Hence K = 0 in
L2(M). �

We start by defining
∫ t

0
Hs dMs for H ∈ E an elementary process defined by

Hs(ω) =

p−1∑
i=0

H(i)(ω)1]ti,ti+1](s)
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where the H(i) are Fti-measurables and bounded.
We set :

(H.M)t =

∫ t

0

Hs dMs =

p−1∑
i=0

H(i)(ω)(Mt∧ti+1
−Mt∧ti).

For all H ∈ E , (
∫ t

0
Hs dMs)t≥0 belongs to H2 if M ∈ H2.

Theorem 7.3. i). The map H → H.M can be extended into an isometry from
L2(M) into H2.
ii). Moreover, H.M is characterized by

〈H.M,N〉 = H.〈M,N〉,∀N ∈ H2.

Proof. i) IfH ∈ E , thenH.M is the sum of the martingalesM
(i)
t = H(i)(Mt∧ti+1

−
Mt∧ti) such that 〉M (i),M (j)〉t = 0 if i 6= j and

〈M (i),M (i)〉t = (H(i))2(〈M,M〉t∧ti+1
− 〈M,M〉t∧ti).

Consequently,

〈H.M,H.M〉t =

p−1∑
i=0

(H(i))2(〈M,M〉t∧ti+1
− 〈M,M〉t∧ti)

and hence

||H.M ||2H2 = E

[
p−1∑
i=0

(H(i))2(〈M,M〉ti+1
− 〈M,M〉ti)

]

= E
[∫ ∞

0

H2
sd〈M,M〉s

]
= ||H||2M .

The map H → H.M is therefore an isometry from E into H2. According to propo-
sition 7.2, E is dense in L2(M) and H2 is an Hilbert space, we can entend uniquely
a map as an isometry from L2(M) into H2.

ii) If H ∈ E ,

〈H.M,N〉 =

p−1∑
i=0

〈M (i), N〉

and

〈M (i), N〉t = H(i)(〈M,N〉t∧ti+1
− 〈M,N〉t∧ti).

We therefore deduce that

〈H.M,N〉t =

p−1∑
i=0

H(i)(〈M,N〉t∧ti+1
− 〈M,N〉t∧ti) =

∫ t

0

Hsd〉M,N〉s.
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Hence, ii) is proved if H ∈ E . According to Kunita-Watanabe inequality 6.7, for all
N ∈ H2, the map X → 〈X,N〉∞ is continuous from H2 into L1. If Hn ∈ E and
Hn → H are in L2(M), we have

〈H.M,N〉∞ = lim
n→+∞

〈Hn.M,N〉∞ = lim
n→+∞

(Hn.〈M,N〉)∞ = (H.〈M,N〉)∞

where convergence holds in L1. The last equality comes from Kunita-Watanabe
inequality:

E
[∣∣∣∣∫ ∞

0

(Hn
s −Hs)d〈M,N〉s

∣∣∣∣] ≤ E[〈N,N〉∞]1/2||Hn −H||M .

Taking N t instead of N in the equality 〈H.M,N〉∞ = (H.〈M,N〉)∞, we deduce ii).
H.M is characterized by ii), in the sense that if X is another martingale in H2, we
have for all N ∈ H2,

〈H.M −X,N〉 = 0

and hence, taking N = H.M −X, we deduce X = H.M . �

Property 7.4. If K ∈ L2(M) and H ∈ L2(K.M), then HK ∈ L2(M) and

(HK).M = H.(K.M).

Proof. First,

〈K.M,K.M〉 = K2.〈M,M〉
Hence HK ∈ L2(M). Moreover, according to Theorem 7.3, for all N ∈ H2,

〈(HK).M,N〉 = (HK).〈M,N〉
= H.(K.〈M,N〉)
= H.〈K.M,N〉
= 〈H.(K.M), N〉

�

Property 7.5. If T is a stopping time and if M ∈ H2,

K.MT = K1[0,T ].M = (K.M)T .

Proof. We have MT = 1[0,T ].M since for all N ∈ H2,

〈MT , N〉 = 〈M,N〉T = 1[0,T ].〈M,N〉 = 〈1[0,T ].M,N〉.

By the previous proposition,

K.MT = K.(1[0,T ].M) = K1[0,T ].M

and

(K.M)T = 1[0,T ].(K.M) = 1[0,T ]K.M.

�
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The martingale H.M is called stochastic integral of H with respect to M and is
denoted ∫ .

0

Hs dMs.

7.2. Stochastic integral with respect to a local martingale. Let B be
a Brownian motion with values in R. We know that B /∈ H2 but B stopped at t

belongs to H2. Hence, we can define
∫ t

0
Hs dBs for all t ∈ R+ in H satisfying

E
[∫ t

0

H2
s ds

]
<∞.

If M is a continuous local martingale, we denote by L2
loc(M) the set of progres-

sively measurable processes H such that

E

[∫ Tn

0

H2
s d〈M,M〉s

]
<∞

where Tn is a sequence of stopping time ↑ +∞ a.s..

Property 7.6. For all H ∈ L2
loc(M), there exists a unique continuous local

martingale vanishing at the origin, denoted by H.M , such that for all continuous
local martingale N ,

〈H.M,N〉 = H.〈M,N〉.

Proof. We can construct a sequence of stopping times (Tn)n ↑ +∞ such that
MTn ∈ H2 and HTn ∈ L2(MTn). Hence, for all n, we can define the stopped
martingale,

X(n) = HTn .MTn ∈ H2.

If we stop X(n+1) at Tn, we obtain

(X(n+1))Tn = (HTn+1 .MTn+1)Tn

= HTn+11[0,Tn].M
Tn+1

= H1[0,Tn].M
Tn

We can therefore define H.M by putting

(H.M)t = X
(n)
t on [0, Tn].

(H.M)t is a local continuous martingale as (H.M)Tn = X(n) ∈ H2.
We clearly have

〈H.M,N〉 = H.〈M,N〉
since

〈H.M,N〉Tn = (H.〈M,N〉)Tn

where (Tn)n ↑ +∞. �
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H.M , the stochastic integral of H with respect to M , is denoted by∫ .

0

Hs dMs.

A progressively measurable process H is said to be locally bounded if there
exists a sequence of stopping times (Tn)n ↑ +∞ and finite constants Cn such that

|HTn | ≤ Cn.
An adapted and continuous process H is progressively measurable : we can choose
the stopping times

Tn = inf{t; |Ht| ≥ n}.
The interest of this definition lies in the fact that if H is progressively measurable and
locally bounded, then for all continuous local martingales M we have H ∈ L2

loc(M).

7.3. stochastic integral with respect to a continuous semi-martingale.
Let X = M +A be a continuous semi-martingale , H be a locally bounded process,
then the stochastic integral of H with respect to X is the continuous semi-martingale
:

H.X = H.M +H.A

where H.M is the integral of H with respect to the continuous local martingale M
and H.A the integral of H with respect to A in the sense of Stieltjes integral.
The semi-martingale H.X is denoted∫ .

0

Hs dXs.

Stochastic integral properties:

• The map (H,X)→ H.X is bilinear.
• If H and K are locally bounded then H.(K.X) = (HK).X.
• For all stopping times T , (H.X)T = H1[0,T ].X = H.XT .
• If X is a local martingale (resp. a finite variation process), then H.X is a

local martingale (resp. a finite variation process).

• If H ∈ E can be written Hs(ω) =
∑p−1
i=0 H

(i)(ω)1]ti,ti+1] with H(i) Fti-
measurable and bounded, then

(H.X)t =

p−1∑
i=0

H(i)(Xt∧ti+1 −Xt∧ti).

We next show a dominated convergence theorem for stochastic integrals

Theorem 7.7. Let X be a continuous semi-martingale . If (Hn)n is a sequence
of continuous locally bounded processes converging pointwise to 0, and if there exists
a locally bounded process H such that |Hn| ≤ H for all n, then Hn.X converges
towards 0 in probability, uniformly over all compact intervals.
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Proof. We restrict ourselves to the case where X is a continuous local martin-
gale. Let Tn be the sequence of stopping time localizing X, then (Hn)Tm converges
towards 0 In L2(XTm) and according to Theorem 7.3., (Hn.X)Tm converges to 0 in
H2. We conclude as in the proof of Theorem 6.5. �

The next result will be crucial to establish Itô’s formula.

Property 7.8. If H is a left continuous adapted process and if (∆n)n is a
sequence of subdivisions of [0, t] such that |∆n| → 0, then

∫ t

0

Hs dXs = P− lim
n→+∞

∑
tni ∈∆n

Htni
(Xtni+1

−Xtni
).

Proof. If H is bounded, the right hand side are the stochastic integrals of the
elementary processes

∑
iH

(i)1]ti,ti+1] which converge point wise towards ||H||∞;
hence this proposition is a direct consequence of the previous theorem. The general
case is obtained by localization. �

7.4. Integration by parts formula. LetX,Y be two continuous semi-martingales.

Property 7.9.

i). XtYt = X0Y0 +

∫ t

0

Xs dYs +

∫ t

0

Ys dXs + 〈X,Y 〉t.

ii). X2
t = X2

0 + 2

∫ t

0

Xs dXs+ < X,X >t .

Example : Xt = Bt the standard Brownian motion, < B,B >t= t, B0 = 0. We
then have :

B2
t − t = 2

∫ t

0

Bs dBs.

In particular (
∫ t

0
Bs dBs)t is a martingale.
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Proof. i). If ii) is proved, by applying it to X + Y and X − Y , we get :

XtYt =
1

4
[(Xt + Yt)

2 − (Xt − Yt)2]

=
1

4
[(X0 + Y0)2 − (X0 − Y0)2]

+
1

4
[2

∫ t

0

(Xs + Ys) d(Xs + Ys)− 2

∫ t

0

(Xs − Ys) d(Xs − Ys)]

+
1

4
[< X + Y,X + Y >t − < X − Y,X − Y >t]

= X0Y0 +

∫ t

0

Xs dYs +

∫ t

0

Ys dXs + 〈X,Y 〉t

as by definition

〈X,Y 〉t =
1

4
[〈X + Y,X + Y 〉t − 〈X − Y,X − Y 〉t]

ii) Let us prove ii). Let (∆n)n be a sequence of subdivisions of [0, t] such that
|∆n| → 0.
Then,

X2
t −X2

0 =
∑
i

(X2
tni+1
−X2

tni
)

= 2
∑
i

Xtni
(Xtni+1

−Xtni
) +

∑
i

(Xtni+1
−Xtni

)2

Hence, as |∆n| → 0, X2
t −X2

0 converges in probability towards

2

∫ t

0

Xs dXs + 〈X,X〉t.

�

7.5. Change of variables formula. Let d be an integer, X = (X1, . . . , Xd)
a Rd-valued process is a semi-martingale if each of its marginal Xi, i = 1, . . . , d, is
a real semi-martingale.

Theorem 7.10. [ Itô’s formula] Let F : Rd → R be a C2 function, X a contin-
uous semi-martingale with values in Rd. Then, F (X) is a semi-martingale and

F (Xt) = F (X0) +

d∑
i=1

∫ t

0

∂F

∂xi
(X)s dX

i
s +

1

2

d∑
i,j=1

∫ t

0

∂2F

∂xi∂xj
(X)s d〈Xi, Xj〉s.

Example : Let Xt = (B1
t , B

2
t ) where (B1

t )t, (B2
t )t are two independent real Brow-

nian motions. Note that < B1, B2 >= 0, by independence (so that (B1B2)t is a
martingale.)
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Proof. We restrict ourselves to the case d = 1.
a) Let G(x) be a monomial such that the formula is satisfied for G (For instance,
G(x) = x2). Let F (x) = xG(x). By the integration by parts formula, we have

F (Xt) = XtG(Xt) = X0G(X0) +

∫ t

0

Xs dG(Xs) +

∫ t

0

G(Xs) dXs + 〈X,G(X)〉t.

But

G(Xt) = G(X0) +

∫ t

0

G′(Xs) dXs +
1

2

∫ t

0

G′′(Xs) d〈X,X〉s.

so that we deduce∫ t

0

Xs dG(Xs) =

∫ t

0

XsG
′(Xs) dXs +

1

2

∫ t

0

XsG
′′(Xs) d〈X,X〉s

as well as

〈X,G(X)〉t = 〈X,
∫ .

0

G′(Xs) dXs〉t +
1

2
〈X,

∫ .

0

G′′(Xs) d〈X,X〉s〉t

=

∫ t

0

G′(Xs) d〈X,X〉s

(as (
∫ .

0
G′′(Xs) d < X,X >t)t has finite variation).

Hence,

F (Xt) = F (X0) +

∫ t

0

(G(Xs) +XsG
′(Xs)) dXs +

1

2

∫ t

0

(XsG
′′(Xs) + 2G′(Xs)) d〈X,X〉s

= F (X0) +

∫ t

0

F ′(Xs) dXs +
1

2

∫ t

0

F ′′(Xs) d〈X,X〉s

b) The result trivially extends to polynomials.
c) General case : Let F be a C2 function. Let n ∈ N and Tn = inf{t; |Xt| ≥ n}. For
all n, there exists a sequence of polynomiale (Fn,m)m∈N converging uniformly to F

on [−n, n] as m goes to infinity. Moreover, (Fn,m
′
)m∈N and (Fn,m

′′
)m∈N converge

uniformly towards F ′ and F ′′ respectivly on [−n, n]. For all t > 0, on the set
{Tn ≥ t}, we therefore have the following convergence as m→ +∞,

Fn,m(Xt)→ F (Xt)

Fn,m
′
(Xt)→ F ′(Xt)

Fn,m
′′
(Xt)→ F ′′(Xt)

(Fn,m) being a polynomial, the following formula holds

Fn,m(Xt∧Tn) = Fn,m(X0)+

∫ t∧Tn

0

Fn,m
′
(Xs) dXs+

1

2

∫ t∧Tn

0

Fn,m
′′
(Xs) d〈X,X〉s.

On {Tn > 0}, we let m going to +∞ and apply the dominated convergence theorem.
�
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Remarks : 1- One often writes Itö’s formula under the differential form :

dF (Xt) =

d∑
i=1

∂F

∂xi
(Xt) dX

i
t +

1

2

d∑
i,j=1

∂2F

∂xi∂xj
(Xt) d〈Xi, Xj〉t.

2- If X is a real semi-martingale, then by Itô’s formula, if F is a C2 function,
then F (Xt) is a real semi-martingale.Hence, the set of semi-martingales is invariant
under composition by C2 functions (which is not true for local martingales).

7.6. Applications of Itô’s formula. Itô’s formula has many applications, a
few of which we now review.

7.6.1. Doléans exponential of a continuous local martingale.

Theorem 7.11. Let X be a continuous local martingale, λ a complex number,
then the following equation (in Z)

(7.1) Zt = 1 +

∫ t

0

Zs d(λXs)

has a unique solution which is the continuous local martingale :

Zt = exp

[
λ(Xt −X0)− λ2

2
< X,X >t

]
.

The process (Zt)t≥0 is called Doleans exponential of λX and denoted

Z = E(λX).

Proof. a) Existence : Assume that X0 = 0 and apply Itô to the function

F (x) = ex and Ys = λXs − λ2

2 〈X,X〉s :

F (Yt) = F (Y0) +

∫ t

0

eYs dYs +
1

2

∫ t

0

eYs d〈Y, Y 〉s

that is

eλXt−
λ2

2 〈X,X〉t = 1 +

∫ t

0

eλXs−
λ2

2 〈X,X〉s d(λXs)

by noticing that

〈Y, Y 〉t = 〈λX, λX〉t = λ2〈X,X〉t.

b) Uniqueness : Let Y be another solution of (7.1). We apply Itô’s formula to the
function F (u, v) = u/v and u = Ys, v = E(λX)s :

Yt
E(λX)t

= 1 +

∫ t

0

1

E(λX)s
dYs −

∫ t

0

Ys
(E(λX)s)2

dE(λX)s

−
∫ t

0

1

(E(λX)s)2
d < Y, E(λX) >s +

1

2

∫ t

0

2Ys
(E(λX)s)3

d < E(λX), E(λX) >s .
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. As Y and E(λX) are solutions of (7.1), we deduce that dE(λX) = E(λX)d(λX)
and dYs = Ysd(λXs).
. 〈Y, E(λX)〉s = 〈

∫
Y d(λX),

∫
E(λX) d(λX)〉 = (Y E(λX)).〈λX, λX〉

Hence
d〈Y, E(λX)〉s = Y E(λX)d〈λX, λX〉.

. d〈E(λX), E(λX)〉s = E(λX)2
s d〈λX, λX〉s.

We conclude that Yt = E(λX)t for all t. �

7.6.2. (Lévy) Characterization of the Brownian motion. Let (Ω,F , (Ft)t,P) be
a filtered probability space.

Theorem 7.12. Let M be a continuous real local martingale, vanishing in 0,
such that < M,M >t= t for all t. Then, M is a (Ft)t-Brownian motion.

Proof. Let u ∈ R, E(iuMt) = exp(iuMt+ u2

2 t) is a local martingale according
to the previous theorem and

|E(iuMt)| = exp(
u2

2
t),

Hence (E(iuMs))s∈[0,t] is a bounded martingale (cf previous section). For all s, t
such that s ≤ t, we therefore have

E(exp(iu(Mt−Ms))|Fs) = E
(
E(iuMt)

E(iuMs)
exp(−u

2

2
(t− s))|Fs)

)
= exp(−u

2

2
(t− s)).

Consequently , Mt −Ms is a standard Gaussian variable N (0, t − s) and is inde-
pendent of Fs. �

7.6.3. Dubins-Schwarz representation theorem.

Theorem 7.13. Let M be a continuous local martingale on a filtered probability
space (Ω,G, (Gt)t≥0,P) such that M0 = 0 and 〈M,M〉∞ =∞a.s.. Then, there exists
a Brownian motion B such that

∀t ≥ 0,Mt = B〈M,M〉t a.s.

Proof. For all r ≥ 0 we denote

τr = inf{t ≥ 0 : 〈M,M〉t ≥ r}
τr is a stopping time as an entry time for an adapted process, see Proposition
4.2. Moreover by hypothesis τr is finite almost surely. It will be useful to take
the convention that τr ≡ 0 on the neglectable set N = {〈M,M〉∞ < ∞}. As
the filtration is complete, τr is still a stopping time. Moreover r〉τr is increasing,
continuous (by continuity of 〈M,M〉, see Theorem ??) . We set Br = Mτr for
all r ≥ 0. By Proposition (4.4), M is progressively measurable and hence B is
adapted with respect to the filtration Gr = Gτr . More precisely, B is a continuous
Gr- martingale and 〈B,B〉r = 〈M,M〉τr = r. hence by Lévy’s characterization, B
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is a Gr-Brownian motion. To prove that B〈M,M〉t = Mt we just need to make sure
that M is constant whenever 〈M,M〉 is. More precisely

Lemma 7.14. Almost surely, for all 0 ≤ a < b,

Mt = Ma, ∀t ∈ [a, b]⇔ 〈M,M〉b = 〈M,M〉a.

Proof. By continuity of the trajectories, it is enough to show that for any
given a < b,

{Mt = Ma, ∀t ∈ [a, b]} := S1 = S2 := {〈M,M〉b = 〈M,M〉a} a.s.

It is clear that S1 ⊂ S2 by the construction of 〈M,M〉 given in Theorem 6.5. To
show that S2 ⊂ S1 observe that the local martingale

Nt = Mt∧b −Mt∧a =

∫ t

0

1[a,b](s)dMs

is such that 〈N,N〉t = 〈M,M〉t∧b − 〈M,M〉t∧a. For ε > 0 let Tε be the stopping
time

Tε = inf{t ≥ 0 : 〈N,N〉t ≥ ε}
NTε is a bounded martingale in L2 and E[NTε

t ] = E[〈N,N〉t] ≤ epsilon. In partic-
ular as S2 ⊂ {Tε ≥ b}, we deduce

E[1S2N
2
t ] = E[1S2N

2
t∧Tε ] ≤ ε .

We can finally let ε going to zero to conclude that Nt vanishes almost surely on S2

and hence S2 ⊂ S1 almost surely. �

�

7.6.4. Burkholder’ s inequality.

Theorem 7.15. Let M be a continuous martingale such that

E(< M,M >
p/2
T ) <∞

where T > 0 is given, M0 = 0 and p ≥ 2. Then,
i) There exists a constant C ′p (independent of M) such that

∀t ≤ T,E(|Mt|p) ≤ C ′pE(〈M,M〉p/2t ).

ii) There exists a constant Cp (independent of M) such that

E(sup
t≤T
|Mt|p) ≤ CpE(〈M,M〉p/2T ).

Proof. We first assume M bounded. We apply Itô’s formula with F (x) = |x|p,
p ≥ 2 and x = M .

|Mt|p = p

∫ t

0

|Ms|p−1sign(Ms) dMs +
p(p− 1)

2

∫ t

0

|Ms|p−2 d〈M,M〉s
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Hence,

E(|Mt|p) =
p(p− 1)

2
E
[∫ t

0

|Ms|p−2 d〈M,M〉s
]

≤ p(p− 1)

2
E
[
sup
s≤t
|Ms|p−2 〈M,M〉t

]
≤ p(p− 1)

2

(
E
[
sup
s≤t
|Ms|p

])(p−2)/p (
E
[
〈M,M〉p/2t

])2/p

by Hölder’s inequality.
Hence,

E(|Mt|p)p ≤ (
p(p− 1)

2
)p
(
E
[
sup
s≤t
|Ms|p

])p−2 (
E
[
〈M,M〉p/2t

])2

According to Doob’s inequality,

E
[
sup
s≤t
|Ms|p

]
≤ qpE(|Mt|p)

for all q such that 1/p+ 1/q = 1.
Hence,

E(|Mt|p)p ≤ (
p(p− 1)

2
qp−2)pE(|Mt|p)p−2

(
E
[
〈M,M〉p/2t

])2

that is

E(|Mt|p) ≤ (
p(p− 1)

2
qp−2)p/2

(
E
[
〈M,M〉p/2t

])
.

The generalization to all continuous martingale is obtained by considering the stop-
ping times

Tn = inf{t; |Mt| ≥ n}.

�

Burkholder’s inequality can be strengthened into Burkholder-Davis-Gundy in-
equalities

Theorem 7.16. Let M be a continuous local martingale. Then for every p ∈ R+

there exists two constants cp and Cp such that

cpE[〈M,M〉p/2] ≤ E[(sup
t≥0
|Mt|)p] ≤ CpE[〈M,M〉p/2]

We refer the reader to Revuz-Yor, Chapter IV, section 4.
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7.7. Girsanov’s theorem. Let (Ω,F , (Ft)t,P) be a filtered probability space.
The goal of this paragraph is to study the probability measures Q which are absolutely
continuous with respect to P. We start with the Radon-Nikodym theorem (stated
without proof)

Theorem 7.17. Let (Ω,F , (Ft)t,P) be a filtered probability space. Let Q be a
probability measure which is absolutely continuous with respect to P : Q << P (i.e.
for all A ∈ F , P(A) = 0→ Q(A) = 0).
Then, there exists a random variable F-measurable, positive such that for all A ∈ F ,

Q(A) =

∫
A

Z dP.

Then,

Z =
dQ
dP

is called the Radon-Nikodym density.

We set, for all t ≥ 0,

Zt = E(Z|Ft).
Then, (Zt)t is a right continuous martingale and is uniformly integrable. Let T be
a stopping time with respect to the filtration (Ft)t. We set QT = Q|FT , PT = P|FT
the measures Q and P restricted to the σ-algebra FT of events prior to T . Then
one easily shows that

ZT =
dQT
dPT

.

We leave the proof to the reader.

Lemma 7.18. (Zt)t is Q-a.s. positive.

Assume that t→ Zt is continuous.

Lemma 7.19. Let X be continuous, adapted process. If the process XZ is a
P-local martingale then X is a Q-local martingale.

Theorem 7.20. [Girsanov] Let Q be a mesure absolutely continuous with respect
to P on F∞. We assume that (Zt)t is continuous. Then,
i). each P−semi-martingale is a Q−semi-martingale.
ii). If M is a P−continuous local martingale and if

M ′ = M − 1

Z
.〈M,Z〉,

then M ′ is well defined on (Ω,F , (Ft)t,Q) and (M ′t)t is a Q−local martingale.
Moreover,

〈M ′,M ′〉 = 〈M,M〉 Q− a.s.
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Proof. Assume that ii) is proved. If X is a P−semi-martingale which we write
as X = M +A (under P), then

X = M ′ +
1

Z
.〈M,Z〉+A

is a Q−semi-martingale.
We next show ii). First, M ′ is well defined (under Q) as 1/Z is Q-locally bounded
(According to lemma 7.18 ). Let us show that M ′Z is a P−local martingale. By
the integration by parts formula,

M ′tZt = M ′0Z0 +

∫ t

0

M ′sdZs +

∫ t

0

Zs dM
′
s + 〈M ′, Z〉t

= M ′0Z0 +

∫ t

0

M ′sdZs +

∫ t

0

Zs dMs.

We use the lemma 7.19 to conclude. �

The two following corollaries show some applications of Girsanov’s theorem:

Corollary 7.21. Let (Bt)t∈R+ be an (Ft)t∈R+- standard Brownian motion on
(Ω,F , (Ft)t∈R+ ,P). For all t ∈ R+, we set

B̃t = Bt −
1

Z
.〈B,Z〉t.

Then, (B̃t)t∈R+ is a Brownian motion on (Ω,F , (Ft)t,Q).

Proof. Use theorem 7.12. �

Corollary 7.22. Let L be a continuous local martingale on (Ω,F , (Ft)t,P)
such that L0 = 0. We assume that

E
[
exp(

1

2
〈L,L〉∞)

]
<∞.

Then,
i) E(L) is a uniformly integrable martingale.

ii) If we define B̃t = Bt − 〈L,B〉t, then (B̃t)t is a Q−Brownian motion if (Bt)t is
a P−Brownian motion.

Proof. The proof of i) is based on exercise 7.23 and ii) is straightforward. �

EXERCISES
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Exercise 7.23. Let Z be a local non negative continuous defined on a filtered
space and with initial value 1.
I.
a) Show that Z is a non-negative supermartingale and that E(Z∞) ≤ 1.
b) Show that Z is a uniformly integrable martingale off E(Z∞) = 1.
II.
We consider Z of the form Z = E(M) where M is a continuous local martingale
(E(M) denotes Doléans exponential of M) and we assume that

E
[
exp

(
1

2
〈M,M〉∞

)]
<∞.

a) Show that 〈M,M〉∞ is integrable and that M converges a.s. as t goes to infinity.
b) Let 0 < λ < 1. Show that for all t ≥ 0,

E(λM)t = (E(M)t)
λ exp [(λ(1− λ)/2)〈M,M >t]

and that E(λ M) is a uniformly integrable martingale.
(Use Hölder inequality with exponent p = 1/λ).
c) Deduce by letting λ going to one that

E[E(M)∞] ≥ 1

and that E(M) is a uniformly integrable martingale.

Exercise 7.24. I. Let M = (Mt)t≥0 be a real continuous martingale defined
on a filtered space (Ω,F , (Ft)t≥0,P) , M0 = 0. Let A = (At)t≥0 be a continuous
increasing adapted process, vanishing at 0. Consider the process Z = (Zt)t≥0 given
by :

Zt =

∫ t

0

dMs

1 +As

a) SHow that Mt =
∫ t

0
(Zt − Zs) dAs + Zt.

b) Show that for u such that 0 < u < t, we have :∣∣∣∣ Mt

1 +At

∣∣∣∣ ≤ |Zt|
1 +At

+

∫ u
0

(Zt − Zs) dAs
1 +At

+
At −Au
1 +At

sup
u<s≤t

|Zt − Zs|.

c) Assume that (Zt)t≥0 converges P-a.s. towards a finite limit as t goes to infinity.
Deduce that on the set {A∞ =∞} :

Mt

1 +At
→ 0 P− a.s. as t→∞.

II. Let L = (Lt)t≥0 be a real local martingale defined on the filtered probability
space (Ω,F , (Ft)t≥0,P), vanishing in 0. Show that (Lt)t≥0 converges P-a.s. on the
set {〈L,L〉∞ <∞} towards a finite limit as t goes to infinity.
(Hint : one can considere the local martingale L2 − 〈L,L〉 and for each n, the time
Tn = inf{t; 〈L,L〉t ≥ n} if {−} 6= ∅ and Tn = ∞ if {−} = ∅, and then study the
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behavior of L2 − 〈L,L〉 on the sets Ap = {〈L,L >∞< p} where p ∈ N).

Exercise 7.25. Let M be a local continuous martingale vanishing at the origin.
We set

Lt = sup
s≤t

Ms and Ut = Lt −Mt.

Let a be a non-positive real number and b a positive real number.
a) Applying Itô formula to : (x, y)→ F (x, y) = xy where
x = exp(aL− (b2/2)〈M,M >) and y = φ(Ut) where φ is C2, show that

Z = φ(U) exp(aL− (b2/2)〈M,M >)

is a local martingale if for all t ≥ 0, we have :∫ t

0

(aφ(Us) + φ′(Us)) dLs = 0 and

∫ t

0

(b2φ(Us) + φ′′(Us)) d〈M,M〉s = 0

Show that the function φ given by : φ(x) = b cosh(bx)− a sinh(bx) can be used.
b) Let λ > 0. We define the stopping times :

T =

{
inf{t;Ut > λ} if {−} 6= ∅
+∞ otherwise

and

S =

{
inf{t;Mt < −λ} if {−} 6= ∅
+∞ otherwise

Show that ZT and E(aMS) are bounded martingales and that

E
[
exp(−a2/2〈M,M〉S)

]
≥ 1

exp(−aλ)
.

c) Assume that 〈M,M〉∞ =∞ P-a.s., deduce from the above that

P(S <∞) ≥ 1

exp(−aλ)

and therefore P(S <∞) = 1 and finally P(T <∞) = 1.
d) Show that

E[exp(aLt − (b2)/2〈M,M〉t)] = b/(b cosh(bλ)− a sinh(bλ)).

e) Deduce that LT follows an exponential law with parameter 1/λ.

Exercise 7.26. Let X be a continuous process independent from a σ-algebra
F and such that

E(sup
t≤K
|Xt|) <∞.

Let T be a random variable, F-measurable and bounded by K.
Show that

E(XT |F) = φ(T )
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where φ(t) = E[Xt].
(Hint : start with the case where T is a finite combination of indicateor functions.)

Exercise 7.27. Let (Bt)t∈R+ be a standard real Brownian motion defined on
a filtered probability space (Ω,F , (Ft)t∈R+ ,P), the filtration (Ft)t∈R+ being right
continuous. Being given a > 0, we define the stopping time Ta by

Ta =

{
inf{t; Bt ≥ a} if { } 6= ∅
+∞ otherwise

1) We denote by Z = E(λBTa) the Doléans exponential of λBTa where λ is a positive
real number.
a)- Show that Z is a bounded martingale. Using E(Z∞) and letting λ going to 0,
show that

P[Ta <∞] = 1.

b)- Compute E[exp(−λTa)].

2) Consider the local martingale M = E(iuB) the Doléans exponential of iuB where
u is a real number.
a)- Show that for all s, t ∈ [0,+∞[ such that s < t, for all K > 0, we have

E[exp{iu(B(Ta∧k)+t −B(Ta∧k)+s)}|F(Ta∧k)+s] = exp{−u
2

2
(t− s)}.

(Hint : use the stopped local martingale E(iuB(Ta∧k)+t)).
b)- Deduce by letting K going to infinity, that the process B(Ta) defined by

B(Ta)t = BTa+t −BTa
is a Brownian motion with respect to the filtration (Gt)t where Gt = FTa+t. Show
that for all t > 0, B(Ta)t is independent of FTa .

3) Let b > a. Consider Tb defined as Ta.
a)- Show that Tb − Ta is a stopping time with respect to the filtration (Gt)t.
b)-Using the martingale E(λBTb) show that

E[exp{−λ
2

2
(Tb − Ta)}|FTa ] = exp{−λ(b− a)}.

c)- Deduce that the process (Ta)a≥0 has independent increments.

The following questions are independent from 3) but exercise 7.26 is useful for
question (4).

4) a)- Show that for all borelian bounded f, we have

E[f(Bt)1{Ta≤t}] = E[1{Ta≤t}ψ(t− Ta)]
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where ψ(u) = E[f(Bu + a)].
b)- Noticing that E[f(Bu + a)] = E[f(−Bu + a)], deduce from a) that

E[f(Bt)1{Ta≤t}] = E[f(2a−Bt)1{Ta≤t}].

5) Show that, if we denote St = sups≤tBs, and for a > 0, we have

P[Bt ≤ a;St ≥ a] = P[Bt ≥ a;St ≥ a] = P[Bt ≥ a] =
1

2
P[St ≥ a].

Deduce that St has the same law as |Bt|.
6) Show that for a ≥ b and a ≥ 0, we have

P[Bt ≤ b;St ≥ a] = P[Bt ≥ 2a− b;St ≥ a] = P[Bt ≥ 2a− b].
Show that for a ≤ b and a ≥ 0, we have :

P[Bt ≤ b;St ≥ a] = 2P[Bt ≥ a]− P[Bt ≥ b].
7) Verify that the law of the cpuple (Bt, St) has density :

1{y≥0}1{y≥x}
2(2y − x)√

2πt3
exp

{
− (2y − x)2

2t

}
Exercise 7.28. Let a, b and X be real valued processes defined on a filtered

probability space (Ω,F , (Ft)t∈R+ ,P). The processes a and b are progressively mea-
surable and locally bounded; X is continuous and X0 = 0.
For all function f on R which is C2, we set:

Ls(ω)f(x) =
1

2
a2
s(ω)f ′′(x) + bs(ω)f ′(x)

and Mt(f) = f(Xt)−
∫ t

0

Lsf(Xs) ds.

1) Show that the two following facts are equivalent :
(i) For all C2 function f , M(f) is a local martingale.
(ii) The process M defined by :

Mt = Xt −
∫ t

0

bs ds

is a local martingale with quadratic variation :

〈M,M >t=

∫ t

0

a2
s ds.

2) For λ ∈ R, we denote Eλt = exp{λXt − λ
∫ t

0
bs ds− λ2

2

∫ t
0
a2
s ds}. We consider :

(iii) For all λ ∈ R réel, Eλ is a local martingale.
a)- Show that (ii) implies (iii).
b)- Show that (iii) implies (i) for all functions of the form f(x) = exp(λx).
(Hint : consider the process V such that exp(λX) = EλV ).
c)- Deduce by a density argument that (iii) implies (i).
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Exercise 7.29. Let Bt = (B
(1)
t , B

(2)
t , B

(3)
t ) be a 3-dimensionnal Brownian (i.e.

for i = 1, 2, 3, (B
(i)
t )t∈R+ are 3 independent Brownian motions ) starting from x 6= 0.

For t ≥ 0, we set :

Rt =

√
(B

(1)
t )2 + (B

(2)
t )2 + (B

(3)
t )2.

1) Show that ( 1
Rt

)t≥0 is a local martingale. (Hint: use Itô’s formula).

2) Compute for t ≥ 0, E( 1
Rt

) et E( 1
R2
t
).

3) Deduce that ( 1
Rt

)t≥1 is a local martingale which is uniformly integrable, but not
a martingale.

8. Stochastic differential equations (SDE)

The goal of this chapter is to provide a mathematical model for a differential
equation perturbed by a noise. Let us start with the ordinary differential equation
(ODE)

dXt

dt
= b(Xt).

These equations describe the evolution of a physical system such as the position
of a satellite at time t. The equation which describe its evolution can be thought
as random because so many parameters are unknowns, or too complicated to be
analyzed. We then add a random noise of the form σ(Xt)dBt where Bt is a Brownian
motion and σ(.) represents the intensite of the noise which depends on the system
state at time t. We arrive at the stochastic differential equation (abreviation :
S.D.E.) of the following form

dXt = b(Xt)dt+ σ(Xt)dBt.

The Itô integral introduced in the previous chapters gives a mathematical meaning
to this equation under the form

(8.1) Xt = X0 +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) dBs.

Notice that we have already encounter the (linear)stochastic differential equation :

Xt = 1 +

∫ t

0

Xs dBs

whose solution is

Xt = exp
(
Bt −

t

2

)
.

More generally the equation

Xt = x0 + a

∫ t

0

Xs dBs + b

∫ t

0

Xs ds, (x0, a, b ∈ R)
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has solution the stochastic process

Xt = x0 exp
(
aBt + (b− a2

2
)t
)
.

In general the solution of a SDE is not so easily determined. There exists sufficient
conditions on b and σ to insure existence and uniqueness of the solutions to the SDE
(8.1). We next discuss them, in the more general setting that they may depend on
time. We study the SDE :

(8.2) Xt = X0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs.

Let (Ω,F , (Ft)t∈R+ ,P) be a filtered probability space and (Bt)t∈R+ be a Brownian
motion. We fix the interval [0, T ] and s ∈ [0, T ]. We set

Fs,t = σ(Bu −Bs; s ≤ u ≤ t).
Then , (Xx

t )t∈[s,T ] is solution of the S.D.E. :

(8.3) Xx
t = x+

∫ t

s

b(r,Xx
r ) dr +

∫ t

s

σ(r,Xx
r )dBr

if Xx
t is Fs,t-measurable for all t ∈ [s, T ] and satisfies (8.3).

Hypothesis :
(H1) : Lipschitz condition :
There exists L > 0 such that

|b(t, y)− b(t, x)| ≤ L|x− y|
|σ(t, y)− σ(t, x)| ≤ L|x− y|

for all t ∈ [0, T ].
(H2) : The functions t→ b(t, x) and t→ σ(t, x) are continuous for all x ∈ R.
We deduce that there exists A > 0 such that for all x ∈ R and t ∈ [0, T ],

|b(t, x)|+ |σ(t, x)| ≤ A(1 + |x|).

Theorem 8.1. Under the hypotheses (H1) and (H2), the stochastic differential
equation (8.2) has a unique solution for any initial condition x ∈ Lp, for any p ≥ 2.

Proof. i) Existence of a solution to(8.2) :
We use the successive approximation method :

X
(0)
t = x,X

(1)
t = x+

∫ t

s

b(r, x) dr +

∫ t

s

σ(r, x)dBr,

. . .

X
(n)
t = x+

∫ t

s

b(r,X(n−1)
r ) dr +

∫ t

s

σ(r,X(n−1)
r )dBr.

We thus have

X
(n+1)
t −X(n)

t =

∫ t

s

[
b(r,X(n)

r )− b(r,X(n−1)
r )

]
dr+

∫ t

s

[
σ(r,X(n)

r )− σ(r,X(n−1)
r )

]
dBr.
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Set

α
(n)
t = E

(
sup
s≤u≤t

|X(n+1)
u −X(n)

u |p
)

Then,

α
(n)
t ≤ 2p

[
E
(

sup
s≤u≤t

∣∣∣∣∫ u

s

(
b(r,X(n)

r )− b(r,X(n−1)
r )

)
dr

∣∣∣∣p)
+ E

(
sup
s≤u≤t

∣∣∣∣∫ u

s

(
σ(r,X(n)

r )− σ(r,X(n−1)
r )

)
dBr

∣∣∣∣p)] .
Note

Σ1(n) = E
(

sup
s≤u≤t

∣∣∣∣∫ u

s

(
b(r,X(n)

r )− b(r,X(n−1)
r )

)
dr

∣∣∣∣p)
and

Σ2(n) = E
(

sup
s≤u≤t

∣∣∣∣∫ u

s

(
σ(r,X(n)

r )− σ(r,X(n−1)
r )

)
dBr

∣∣∣∣p) .
By Burkholder’s inequality, we can bound Σ2(n) by

Σ2(n) ≤ Cp E

[(∫ t

s

(
σ(r,X(n)

r )− σ(r,X(n−1)
r )

)2

dr

)p/2]
.

We are going to use the following result:
Let f be a positive function, then(∫ t

s

f(r) dr

)p/2
≤ (t− s)p/2−1

∫ t

s

f(r)p/2 dr.

Then

Σ2(n) ≤ Cp (t− s)p/2−1

∫ t

s

E
[∣∣∣σ(r,X(n)

r )− σ(r,X(n−1)
r )

∣∣∣p] dr.
≤ Cp Lp(t− s)p/2−1

∫ t

s

E
[∣∣∣X(n)

r −X(n−1)
r

∣∣∣p] dr
by using hypothesis (H1). Consequently, there exists a constant k2 such that

Σ2(n) ≤ k2

∫ t

s

E
[

sup
s≤u≤r

∣∣∣X(n)
u −X(n−1)

u

∣∣∣p] dr.

Using the same type of argument we show that there exists a constant k1 such that

Σ1(n) ≤ k1

∫ t

s

E
[

sup
s≤u≤r

∣∣∣X(n)
u −X(n−1)

u

∣∣∣p] dr.

We deduce that there exists a constant K such that

α
(n)
t ≤ K

∫ t

s

α(n−1)
r dr.
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By induction

α
(n)
t ≤ Knα

(0)
t

∫ t

s

dt1

∫ t1

s

dt2 . . .

∫ tn−1

s

dtr

≤ Kn

n!
α

(0)
t (t− s)n ≤ Kn

n!
α

(0)
t Tn

But

α
(0)
t = E

[
sup
s≤u≤t

∣∣∣∣∫ u

s

b(r, x) dr +

∫ u

s

σ(r, x) dBr

∣∣∣∣p]
≤ 2p

(
E
[

sup
s≤u≤t

∣∣∣∣∫ u

s

b(r, x) dr

∣∣∣∣p]+ E
[

sup
s≤u≤t

∣∣∣∣∫ u

s

σ(r, x) dBr

∣∣∣∣p])
≤ 2p

(
(t− s)p−1E

(∫ t

s

|b(r, x)|p dr
)

+ (t− s)p/2−1E
(∫ t

s

|σ(r, x)|p dr
))

≤ KApE
(

(1 + |x|)p
)

= C <∞

by assumption. Hence,

α
(n)
t ≤ C (KT )n

n!
.

We deduce that

∞∑
n=0

(
E
[

sup
s≤u≤t

|X(n+1)
u −X(n)

u |p
])1/p

≤ C1/p
∞∑
n=0

(
(KT )n

n!

)1/p

<∞

Hence, (X
(n)
u ) is a Cauchy sequence in Lp. Consequently, the limit exists and belong

to Lp.

ii) Uniqueness of the solution :
Let X and X ′ be two solutions of the SDE (8.2) defined on (Ω,F , (Ft)t∈R+ ,P).
Then, we show that X and X ′ are not distinguishable in the sense that

P[∃u ∈]s, t];Xu 6= X ′u] = 0,

by using Gronwall’s lemma :
Let g be a Borelian fonction defined on [0, T ] with values in R+ such that

sup
t≤T

g(t) <∞.

If

g(t) ≤ A+B

∫ t

0

g(s) ds,

then for all t ∈ [0, T ],

g(t) ≤ A exp(Bt).



INTRODUCTION TO STOCHASTIC ANALYSIS 79

In particular if A = 0, then g(t) = 0.
Let Tn = inf{t; |Xt| = n or |X ′t| = n}. Then there exists a constant K > 0 such
that for all t ∈ [0, Tn],

E(|Xt −X ′t|2) ≤ K E(

∫ t

s

|Xr −X ′r|2 dr).

The process X is therefore a modification on [0, Tn] of X ′, hence on R+ (Tn ↑ +∞
P−a.s.), which implies indistinguishability of X and X ′ by continuity.

�

The previous result shows that the solutions exists path wise and is measurable
with respect to the filtration of the Brownian motion. This is what is called a strong
solution. A weaker form of existence and uniqueness is given in terms of laws; there
is uniqueness in law when two solutions started from the same initial data have the
same law. It is possible to have existence of a weak solution and uniqueness in law
without path wise uniqueness. For instance if B is a Brownian motion with B0 = x
and we set

Wt =

∫ t

0

sign(Bs)dBs

where the sign of x is −1 if x ≤ 0 and +1 otherwise. by Lévy’s characterization, W
is a Brownian motion started from zero and we have

Bt = x+

∫ t

0

sgn(Bs)dWs

Any solution of the latter differential equation is a Brownian motion by Lévy’s
characterization. However, if x = 0, B and −B are two path wise distinct solutions
as

−Bt =

∫ t

0

sgn(−Bs)dBs + 2

∫ t

0

1Bs=0dBs

where the last term is a martingale with vanishing quadratic variations, hence is
almost surely equal to zero. However, existence in law and pathwise uniqueness
yields uniqueness in law ( by Yamada-Wantanabe Thm)

Proof of Gronwall’s lemma.
Iterarting the condition on g we get for all n ≥ 1,

g(t) ≤ A+A(Bt)+A
(Bt)2

2
+. . .+A

(Bt)n

n!
+Bn+1

∫ t

0

ds1

∫ s1

0

ds2 . . .

∫ sn

0

dsn+1g(sn+1).

If g is bounded by a constant C, the last term is bounded by C(Bt)n+1/(n + 1)!,
hence goes to zero as n goes to infinity �



80 INTRODUCTION TO STOCHASTIC ANALYSIS

8.1. Strong Markov property and diffusion processes. In an ordinary
differential equation, the future of the trajectory of a particle is entirely determined
by its present position. The stochastic analogue for stochastic differential equa-
tions is true as well: solutions to SDE’s have the strong Markov property, i.e., the
distribution of their future depends only on their present position. (In fact, SDE
solutions should be viewed as the prototypical example of a strong Markov process.)

Theorem 8.2. (Strong markov property). Assume that σ and b are two Lip-
schitz functions. Then for all x ∈ Rd, if Xx denotes a weak solution started from
x if F is any measurable nonnegative functional on C(R+,Rd) then almost surely,
for any stopping time T

E[F (Xx
T+t, t ≥ 0)|FT ] = E[F (Xy

t , t ≥ 0)]y=XT

on the event T <∞.

Proof. We can assume without loss of generality that T is finite up to replace
it by T ∧ n. As X is solution we have

Xx
T+t −Xx

t =

∫ T+t

T

σ(Xx
s )dBs +

∫ T+t

T

b(Xx
s )ds

We thus only need to show that for any pre visible locally bounded process and
continuous local martingales X we have, if XT

t = XT+t −XT ,

(8.4)

∫ T+t

T

HsdXs =

∫ t

0

Hs+T dX
T
s

But this is clear if Hs(x) = 1s∈[t1,t2]1x∈A, extends to simple processes by linearity

and then by Itô isometry extends to all H ∈ L2. The general result is deduced by
localization. Therefore we deduce that Yt = XT+t satisfies

Yt = Y0 +

∫ t

0

σ(Ys)dB
T
s +

∫ t

0

b(Ys)ds

and therefore by strong existence and uniqueness the result follows. �

We next provide a brief introduction to the theory of diffusion processes, which
are Markov processes characterized by martingale properties. We first construct
these processes with SDE’s and then move on to describe some fundamental con-
nection with PDE’s. In the next section we show how diffusions arise as scaling
limits of Markov chains. Define for f ∈ C2(Rd) the infinitesimal generator L given
by

(8.5) Lf(x) =
1

2

d∑
i,j=1

ai,j(x)
∂2f

∂xi∂xj
+

d∑
i=1

bi(x)
∂f(x)

∂xi

We assume that (aij(x))1≤i,j≤d is a symmetric nonnegative matrix for all x ∈ Rd.
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Definition 8.3. Let (Ω,F ,Ft,P) be a filtered probability space. We say that
a processs X is an L-diffusion if for all f ∈ C2

b (Rd), the process

Mf
t := f(Xt)− f(X0)−

∫ t

0

Lf(Xs)ds

is a local martingale.

We next check that any solution of the SDE (8.1) is an L-diffusion for some
choices of a and b, simply as a direct consequence of Itô’s formula.

Theorem 8.4. Let X be a solution to the SDE (8.1) for σ and b measurable
functions. Then, X is a L-diffusion for a = σσT and b.

Any non negative matrix a has a square root σ. If a is positive definite, a is
Lipschitz iff σ is. Hence, if we assume that a ≥ cId with c > 0 independent of x, a
and b Lipschitz, then there exists an L-diffusion (the solution of the SDE)

8.2. Applications to PDEs.

8.2.1. The Cauchy problem. Solutions toSDE’s can be used to construct solu-
tions of PDEs, more precisely of the Cauchy problem.

Theorem 8.5. Let g : Rd〉R be a bounded C2 function and let X be an L-
diffusion with a = σσT and σ, b uniformly Lipschitz. Then if we define:

u(t, x) = Ex[g(Xt)]

is the unique solution in C2,1(R+ × Rd) to the problem:

∂tu(t, x) = Lu(t, x) ∀(t, x) ∈ R+ × Rd, u(0, x) = g(x) ∀x ∈ Rd

Proof. It is obvious by applying Itô’s formula that

∂tEx[g(Xt)] = ∂tEx[g(x) +

∫ t

0

Lg(Xs)ds] = Ex[Lg(Xt)]

If t goes to zero we deduce that

∂tEx[g(Xt)]|t=0 = Lg(x)

by continuity of Lg. To deduce the result for all t > 0 we need to show that the
operator L “commutes” with Ex. This is due to the strong Markov property, which
implies that the law Pt of Xt is such that Pt+ε = Pε ∗ Pt and therefore for all t > 0

∂tEx[g(Xt)] = lim
ε〉0

1

ε
(Pt+ε−Pt)(g) = lim

ε〉0

1

ε
(Pε−I)(Pt(g)) = ∂sPs|s=0∗Ptg = LEx[g(Xt)]
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Hence u(t, x) = Ex[g(Xt)] indeed satisfies Cauchy problem. To prove uniqueness let
v be another solution and let f(t, x) = v(T − t, x) for t ≤ T . Due to Itô’s formula,
Mt = v(T − t,Xt), t ≤ T is a martingale and therefore

E[v(0, XT )] = Ex[MT ] = Ex[M0] = v(T, x)

which completes the proof as v(0, x) = g(x) by hypothesis.

8.2.2. The Dirichlet problem. We have already seen that the laws of solutions
of SDE’s are solutions for the heat equation. This relation can be used to construct
solutions of other questions, such as the Dirichlet or Poisson problem. In the fol-
lowing we fix an open set D in Rd, an infinitesimal generator L as in (8.5) as well
as a function φ smooth on the boundary of D. The Dirichlet problem consists in
finding a function u C2(D) such that

Lu(x) = 0 ∀x ∈ D , lim
x→y
x∈D

u(x) = φ(y) ∀y ∈ ∂D .

The Poisson problem consists in requiring that Lu + g = 0 for some continuous
function g on D, and keep the same boundary constraint. The natural candidate
to be a solution of Poisson problem in view of what we have already seen is

u(x) = Ex[

∫ TD

0

g(Xs)ds+ φ(XTD )1TD<∞]

where Xt is the solution of the SDE with generator L (here we assume a, b uniformly
Lipschitz) and TD = inf{t > 0 : Xt /∈ D}. Indeed, if u is a solution, we can apply
Itô’s calculus to find that

u(Xt∧TD ) = u(x)−
∫ t∧TD

0

g(Xs)ds+

∫ t∧TD

0

∇u(Xs).dBs

from which the result formally follows by taking expectation and letting t going
to infinity, if the solution is indeed C2. It turns out that a sufficient condition to
make this argument rigorous when g = 0 is that L is uniformly elliptic, that is
(aij(x))1≤i,j≤d ≥ cI for some c > 0, we refer to Oksendal book, Thm 9.2.14 for a
full proof.

8.2.3. Feynmann-Kac formula. Feynamnn Kac formula allows to construct a
slightly different type of PDE.

Theorem 8.6. Let f ∈ C2
b (Rd) and V ∈ C0

b (Rd), V being uniformly bounded.
We set

u(t, x) = Ex[f(Bt) exp

(∫ t

0

V (Bs)ds

)
] .

Then, u is the unique solution w ∈ C1,2
b (R+ × Rd) of

∂tu =
1

2
∇u+ V u (t, x) ∈ R+ × Rd, u(0, .) = f x ∈ Rd

The proof is again an easy application of Itô’s formula.
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8.2.4. Stroock-Varadhan martingale problem. Let (σi,j)1≤i,j≤d and (bi)1≤i≤d be
measurable functions with values in R and set a = σσT .

Definition 8.7. We say that a process X with values in Rd together with a
filtered probability space (Ω,G, (|Fat)t≥0 solves the martingale problem M(a, b) iff
for all 1 ≤ i, j ≤ d the processes

Y i = (Xi
t −

∫ t

0

bi(Xs)ds, t ≥ 0) and (Y it Y
j
t −

∫ t

0

ai,j(Xs)ds, t ≥ 0)

are local martingales.

Of course the second condition implies that the martingale bracket of X is as
well given by the integral of a.

As an exercise, we leave the reader to check that if X solves M(a, b), is adapted
and continuous, iff for all function f ∈ C2(Rd,R)

Mf
t = f(Xt)− f(X0)−

∫ t

0

Lf(Xs)ds

is a local martingale, with L the infinitesimal generator

Lf(x) =
1

2

∑
i,j

ai,j(x)∂i∂jf(x) +
∑

bi(x)∂if(x)

It is also left as an exercise that any solution of the SDE (8.1) solves the mar-
tingale problem M(σσT , b). Remarkably the converse is true.

Theorem 8.8. Let a = σσT and let X and a filtered probability space (Ω,G, (|Fat)t≥0

solve the martingale problem M(a, b). Then there exists an (Gt)t≥0 Brownian mo-
tion (Bt, t ≥ 0) in Rd defined on an enlarged probability space so that (X,B) solves
the SDE

Xi
t = Xi

0 +

∫ t

0

bi(Xs)ds+
∑
j

∫ t

0

σij(Xs)dB
j
s

Proof. Assume that σ is invertible and set Y it = Xi
t −

∫ t
0
bi(Xs)ds. Define

Bit =

∫ t

0

∑
(σ−1)i,k(Xs)dY

k
s

B is a local martingale with martingale bracket equal to identity. Hence, by Léve’s
characterization it is a Brownian motion. Moreover X satisfies the announced SDE
as ∑

j

∫ t

0

σij(Xs)dB
j
s =

∑
j,k

∫ t

0

σij(Xs)σ
−1)j,k(Xs)dY

k
s = Y it
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When σ is not everywhere invertible, let us first restrict ourselves to d = 1 for
simplicity. Then we put

Bt =

∫ t

0

1σ(Xs) 6=0σ
−1(Xs)dYs +

∫ t

0

1σ(Xs)=0dWs ,

with W an additional Brownian motion (hence the necessity to enlarge the filtra-
tion), independent from Y . Then again by Lévy characterization, B is a Brownian
motion whereas ∫ t

0

σ(Xs)dBs =

∫ t

0

1σ(Xs)6=0dYs

To conclude, we use Lemma 7.14 which implies that∫ t

0

1σ(Xs)6=0dYs = Yt a.s

as

〈
∫ .

0

1σ(Xs)6=0dYs,

∫ .

0

1σ(Xs) 6=0dYs〉t = 〈Y, Y 〉t

To conclude in the general case we first observe that we can find a matrix-valued
function O which is orthogonal, and a diagonal matrix d with non negative entries
such that for all x

a(x) = O(x)d(x)O(x)T

If O(x) = Id, then the question amounts to the one dimensional one. So we put

Bt =

∫ t

0

O(Xs)F (d(Xs))O(Xs)
T dYs +

∫ t

0

O(Xs)G(d(Xs))O(Xs)
T dWs .

with F (x) =
√
x1x 6=0 and G(x) = 1x=0, and W a d dimensional Brownian motion,

independent from Y Then, we also have σ = O(x)
√
d(x)O(x)T and therefore∫ t

0

σ(Xs)dBt =

∫ t

0

O(Xs)
√
d(Xs)O(Xs)

T [O(Xs)F (d(Xs))O(Xs)
T dYs

+O(Xs)G(d(Xs))O(Xs)
T dWs]

as
√
d(Xs)F (d(Xs)) = I whereas

√
d(Xs)G(d(Xs)) = 0 , we conclude as above

that ∫ t

0

σ(Xs)dBt = Yt a.s

from which the conclusion follows.

�



INTRODUCTION TO STOCHASTIC ANALYSIS 85

9. Appendix

9.1. Monotone class Theorem. The monotone class theorem is a result
from measure theory that we use in several instances in this course. Let E be a set
and P (E) the set of subsets of E. If C ⊂ P (E), σ(C) denotes the smallest sigma-
algera generated by C (this is also the intersection of all the σ algebras containing
C)

Definition 9.1. A subset M of P (E) is said to be monotone class if

(1) E ∈M ,
(2) If A,B ∈M then B\A ∈M ,
(3) if An is an increasing sequence in M , then ∪n∈NAn ∈M .

Any σ algebra is monotone class. Any intersection of monotone class is mono-
tone class. If C is a set in P (E) we can define the monotone class M(C) generated
by C by putting

M(C) = ∩
Mmonotone class,C⊂MM

Lemma 9.2. If C ⊂ P (E) is stable under finite intersection then M(C) is the
σ algebra σ(C) generated by C.

Proof. As σ(C) is monotone class, we clearly have M(C) ⊂ σ(C). We there-
fore only need to show that M(C) is a σ-algebra. The only thing we need to show is
that it is stable under finite intersections (indeed, by going to the complement, this
will imply it is stable under finkte union, and then by countable union by taking
an increasing limit). To that end set for A ∈ E

MA = {B ∈M(C) : A ∩B ∈M(C)}
Take first A ∈ C. As C is stable under finite intersection, clearly C ⊂MA. Moreover
MA is monotone class as

E ⊂MA,

if B,B′ ∈ MA and B ⊂ B′, A ∩ (B\B′) = (A ∩ B′)\(A ∩ B) ∈ M(C) and so
B\B′ ∈MA

If Bn ∈ MA for all n, Bn ⊂ Bn+1, A ∩ (∪Bn) = ∪(A ∩ Bn) ∈ M(C) and
therefore ∪Bn ∈M(C).

Hence, M(C) ⊂MA, or in other words

(9.1) ∀A ∈ C, ∀B ∈M(C), A ∩B ∈M(C)

To conclude we need to take A ∈ M(C). By the above, C ⊂ MA. By exactly the
same arguments as above (but replacing the stability by intersection of C by (??))
we deduce that MA is class monotone. Hence M(C) ⊂ MA and therefore M(C) is
stable under finite intersection.

�
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We will apply this lemma as follows:

• Let A be a σ-algebra and (µ, ν) be two probability measures on (E,A).
Assume that there exists C ⊂ A stable under finite intersection such that
σ(C) = A and µ(B) = ν(B) for all B ∈ C. Then µ = ν (indeed {A ∈ A :
µ(A) = ν(A)} is class monotone ).

• Let (Xi)i∈I be a family of random variables on a probability space (Ω,G,P)
and let G be a sub σ algebra. To show that the σ-algebras σ(Xi, i ∈ I)
and G are independent it is enough to establish that (Xi1 , . . . , Xip) is
independent of G for all i1, . . . , ip ∈ I (Observe that the set of events which
only depends on finitely many Xi, i ∈ I is stable under finite intersection
and generates σ(Xi, i ∈ I))

• Let (Xi)i∈I be a family of random variables on a probability space (Ω,G,P)
and Z be a bounded real variable. To show that for some j ∈ I

E[Z|Xi, i ∈ I] = E[Z|Xj ]

it is enough to show that for any choice of i1, . . . ip ∈ I,

E[Z|Xj , Xi1 , . . . , Xip ] = E[Z|Xj ]

(observe that the set of events A such that E[1AZ] = E[1AE[Z|Xj ]] is
monotone class)

9.2. Useful discrete martingale properties.

Theorem 9.3. Let (Xn)n∈N be a submartingale such that

sup
n≥0

E[X+
n ] <∞

Then, the limit limnXn = X∞ exists almost surely. Moreover, X∞ belongs to L1

Observe above that the convergence does not hold in L1 in general (cf Mn =∏
k≤nXk with i.i.d Bernouilli Xk which equals 2 with probability 1/2 and 0 other-

wise)

Proof. Let T0 = 0, Ti = inf{p > T̃i−1 : ∃k > p : Xp ≤ a ≤ b ≤ Xk} and put

T̃i the smallest such k. Then we set

un([a, b]) =
∑
i≥1

1Ti≤n

the number of times Mn crosses [a, b] upward. If for all a < b un([a, b]) converges
towards a finite limit, then the sequence Mn converges or goes in absolute value
to infinity. It is therefore enough to prove that un([a, b]) has finite expectation by
Doob’s uncrossing inequality

(9.2) (b− a)E[un([a, b])] ≤ E[(Mn − a)+]
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To prove this inequality, define the two sequences of stopping times τ0 = 0,

σj+1 = inf{k > τj : Mn ≤ a} τj+1 = min{k > σj+1 : Mn ≥ b}
Then, as τn ≥ n, it goes to infinity and we can write with Yn = (Mn − a)+,

Yn = Y0 +

∞∑
i=1

(Yn∧τi − Yn∧σi) +

∞∑
i=0

(Yn∧σi+1
− Yn∧τi)

But
∞∑
i=1

(Yn∧τi − Yn∧σi) ≥ (b− a)un([a, b])]

whereas as Mn is a submartingale, Yn is also a submartingale so the for all i

E[Yn∧σi+1
− Yn∧τi ] ≥ 0

from which (9.2) follows. �
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