
A probabilistic approach to some problems in von Neumann

algebras

A. GUIONNET

�

One of the most famous open questions concerning von Neumann algebras is to know whether free group

factors with di�erent numbers of generators are isomorphic or not

L(F

m

) ' L(F

n

) if n 6= m ???

To try to attack such questions, Voiculescu introduced about twenty years ago free probability theory. Free

probability theory is a probability theory for non-commutative variables equipped with a notion of freeness

analogous to the classical notion of independence. This similarity permits to generalize many concepts from

classical probability such as central limit theorems, Brownian motions etc and provides intuition to the

domain. On the other hand, freeness is related to the usual notion of freeness on groups and is therefore

meaningfull in standard operator algebras theory. Last but not least, independent large Gaussian random

matrices were shown to be asymptotically free by D. Voiculescu [18]. Since then, large random matrices

became a source of examples of interesting laws of non-commutative variables. In these proceedings, we

shall describe how such a philosophy has been developped to try to answer the isomorphism problem and

related issues. Even though this problem has not yet been settled we want to emphasize that such a strategy

has already been fruitful (c.f. [21], [12], [13]). We hope to convince analysts and probabilists that these

issues are very closely related with standard problems in analysis and probability.

We shall follow the following plan

(1) Description of free probability framework. Relation with large random matrices.

(2)The isomorphism problem in free probability terms.

(3)Trying to disprove it by an entropy approach. Entropy theory, large deviations techniques.

Recent developments and discussion.

(4) Conclusion.

For completness, we provide in the appendix the proof of Gelfand-Naimark-Segal construction and show

how non-commutative laws prescribe von Neumann algebras up to isomorphisms.
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1 Free probability versus classical probability

In this section, we provide a short introduction to free probability, comparing it with standard probability

(which elements are written in italic).

1.1 The setting

A non-commutative (or W

�

)- probability space is a couple (A; � ) such that

� A is a von Neumann algebra, i.e a weakly closed sub-C

�

-algebra of the space B(H) of bounded linear

operators on some Hilbert space H.

� � is a state on A, that is a complex-valued linear form on A such that

� (A) = � (A

�

); � (AA

�

) � 0; � (I) = 1; 8A 2 A:

We shall consider in the following tracial states, which are states satisfying the additional hypothesis that

� (AB) = � (BA); 8 A;B 2 A:

Examples 1: a) Let n 2 N, A = M

n

(C ) = B(C

n

). For any v 2 C

n

such that kvk

C

n

= 1, we set

�

v

(M ) =< v;Mv >

C

n

8M 2M

n

(C )

Then, �

v

is a state. There is a unique tracial state on M

n

(C ), which is the normalized trace

tr(M ) =

1

n

n

X

i=1

M

ii

:

b) Let (X;�; d�) be a classical probability space. Then A = L

1

(X;�; d�) equipped with

� : f !

Z

fd�

is a (non-)commutative probability space. Here, L

1

(X;�; d�) is seen as the space of bounded linear operator

on the Hilbert space H = L

2

(X;�; d�)= � equipped with the scalar product < f; g >

�

=

R

f(x)g(x)d�(x) by the

embedding given by the multiplication operator M (f)g = fg. Here, H is obtained by separating L

2

(X;�; d�)

by the equivalence relation f � h, �(jf � gj

2

) = 0 so that < :; : >

�

furnishes it with a Hilbert structure.

c) Let G be a discrete group, and (e

h

)

h2G

be a basis of `

2

(G). Let �(h)e

g

= e

hg

. Then, we take A to

be the von Neumann algebra generated by the linear span of �(G). The (tracial) state is the linear form

given, once restricted to �(G), by

� (�(g)) = 1

g=e

Here, e denotes the neutral element.

We refer to [25] for further examples and details.
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1.2 The law of m self-adjoint non commutative variables

Let (A; � ) be a non-commutative probability space. If (X

1

; � � � ; X

m

) 2 A, X

i

= X

�

i

, their joint law is given

by the restriction of � to the algebra generated by (X

1

; � � � ; X

m

) :

�

X

1

;��� ;X

m

(P ) = � (P (X

1

; � � � ; X

m

)) 8P 2 C hX

1

; � � � ; X

m

i

where C hX

1

; � � � ; X

m

i denotes the set of polynomial functions in m non-commutative variables. Such a

de�nition can of course be extended to the case of non self-adjoint variables by taking polynomial functions

of (X

i

; X

�

i

)

1�i�m

but we shall not consider this generalization here.

Classical setting This de�nition is a generalization of the observation that, in the commutative setting,

the law �

f

1

;��� ;f

m

of m bounded real-valued random variables (f

i

)

1�i�m

2 L

1

(X;�; �) is determined by their

joint moments, i.e if C [X

1

; � � � ; X

m

] denotes the set of polynomial functions in m commutative variables,

the law �

f

1

;��� ;f

m

is determined by

�

f

1

;��� ;f

m

(P ) =

Z

P (f

1

(!); � � � ; f

m

(!))d�(!); 8P 2 C [X

1

; � � � ; X

m

]:

As a consequence, the space M

m

of laws of m self-adjoint non commutative variables can be seen as the

set of linear forms on C hX

1

; � � � ; X

m

i which are

a) non negative :

� (PP

�

) � 0

for all P 2 C hX

1

; � � � ; X

m

i;

b) with mass one :

� (I) = 1:

We shall assume that they are tracial ;

� (PQ) = � (QP ) 8P 2 C hX

1

; � � � ; X

m

i:

This abstract point of view is actually equivalent to the previous one in the sense that by the Gelfand-

Neumark-Segal (GNS) construction, being given � 2 M

m

, we can construct a W

�

-probability space (A; � )

and operators (X

1

; � � � ;X

m

) such that

� = �

X

1

;:::;X

m

: (1.1)

We recall this construction in Appendix 5.1 ; roughly speaking it shows that, as in the commutative setting,

A can be thought as L

1

(�) in the sense that it is embedded into the space B(L

2

(�)) of bounded linear

operators on the space of functions with �nite second moment. We shall also denote W

�

(X

1

; � � � ; X

n

) the

von Neumann algebra A.

If R 2 R, the subset M

m

R

ofM

m

of variables uniformly bounded by R,

M

m

R

= f� 2M

m

; � (X

2n

i

) � R

2n

8n 2 Ng

is Polish when equipped with its weak-� topology

lim

n!1

�

n

= � , lim

n!1

�

n

(P ) = � (P ) 8P 2 C hX

1

; : : :X

m

i:
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Classical setting. Note that M

1

R

is exactly the space P([�R;R]) of probability measures on [�R;R]. The

set P([�R;R]

m

) of probability measures on [�R;R]

m

is more generally described as the set C [X

1

; � � � ; X

m

]

�

of linear forms on C [X

1

; � � � ; X

m

] which are positive and with mass one, and it is a Polish space when

equipped with its weak-� topology.

The assumption that the variables are bounded (i.e R < 1) can be relaxed in the classical setting by

considering bounded continuous test functions, P(R

m

) � C

b

(R

m

)

�

. This approach can be generalized to

M

m

by considering bounded non-commutative test functions (see [6]).

Example 2: Let A

N

1

; � � � ; A

N

m

2 H

m

N

, with spectral radius jjA

N

i

jj

1

bounded by R for 1 � i � m, and

consider

�̂

N

A

N

1

;��� ;A

N

m

(P ) = tr

�

P (A

N

1

; � � � ; A

N

m

)

�

; 8P 2 C hX

1

; � � �X

m

i:

Then, �̂

N

A

N

1

;��� ;A

N

m

2M

m

R

. If (A

N

1

; � � � ; A

N

m

)

N2N

is a sequence such that

lim

N!1

�̂

N

A

N

1

;��� ;A

N

m

(P ) = � (P ); 8P 2 C hX

1

; � � �X

m

i;

then � 2M

m

R

since M

m

R

is Polish.

There is a well known question of A. Connes related with the last example : Can all � 2 M

m

be

constructed as a limit of �̂

N

A

N

1

;��� ;A

N

m

for a sequence A

N

1

; � � � ; A

N

m

2 H

m

N

, N 2 N ?

Classical settingIn the case m = 1, M

1

R

= P([�R;R]) and the question amounts to ask whether for all

� 2 P([�R;R]), there exists a sequence (�

N

1

; � � � ; �

N

N

)

N2N

such that

lim

N!1

1

N

N

X

i=1

�

�

N

i

= �:

This is well known to be true according to Birkho�'s theorem, but is still an open question for m � 2 in the

non-commutative setting.

1.3 Notion of freeness

X = (X

1

; � � � ; X

m

) are said to be free with Y = (Y

1

; � � � ; Y

n

) i� for any P

1

; � � � ; P

q

2 C hX

1

; � � � ; X

m

i and

Q

1

; � � � ; Q

q

2 C hX

1

; � � � ; X

n

i such that �

X

(P

i

) = 0 and �

Y

(Q

i

) = 0 8 1 � i � q,

�

X;Y

(P

1

(X)Q

1

(Y )P

2

(X)Q

2

(Y ) � � �P

q

(X)Q

q

(Y )) = 0: (1.2)

Freeness, as independence, uniquely de�nes the joint law from the marginals �

X

and �

Y

since one easily

checks that �

X;Y

(P ) is uniquely determined for any P 2 C hX

1

; � � � ; X

m

; Y

1

; � � � ; Y

m

i by induction over the

degree of P .

Classical setting In comparison, if X;Y are two bounded random variables with law � , X is independent

of Y under � i� for all P;Q 2 C [X

1

; � � � ; X

m

]� C [Y

1

; � � � ; Y

m

]

�

X

(P ) = 0; �

Y

(Q) = 0) � (P (X)Q(Y )) = 0:

Note here that if X;Y are centered random variables which are commutative and independent under � ,

� (XY XY ) = � (X

2

)� (Y

2

) > 0 whereas if they are free � (XY XY ) = 0.
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Examples 3:

a) In the case of a discrete group considered in Example 1.c) with 2-free generators g

1

; g

2

(in the usual

sense that for any polynomials such that P

j

i

(g

j

) 6= e, P

1

1

(g

1

)P

2

1

(g

2

)P

1

2

(g

1

) � � � 6= e), (�(g

1

); �(g

2

)) are also

free in the sense that the law prescribed by �

g

1

;g

2

(�(g)) = 1

g=e

for any element g of the group generated by

g

1

and g

2

satis�es (1.2).

b) Voiculescu [18] : Take X

N

1

; X

N

2

2 H

N

to be a sequence of uniformly bounded matrices with spectral

distribution converging as N go to in�nity toward �

1

and �

2

respectively. Then, if U follows Haar measure

on U (N ),

lim

N!1

tr(P (X

N

1

; UX

N

2

U

�

)) = lim

N!1

�̂

N

X

N

1

;UX

N

2

U

�

(P ) = �

�

1

;�

2

(P ) 8P

�

�

1

;�

2

2 M

2

is the distribution of two free variables with marginal distribution given by �

1

and �

2

.

If X

N

2

is distributed according to the Gaussian law (GUE) (that is a Gaussian Wigner matrix)

�

N

(dX) =

1

Z

N

1

X2H

N

e

�

N

2

2

tr(X

2

)

dX;

then for any unitary matrix U ,

�

N

(dX) = �

N

(UdXU

�

):

Hence, since by Wigner [27], �̂

N

X

N

2

converges towards the semi-circular law

�(dx) = (2�)

�1

p

4� x

2

dx;

�̂

N

X

N

1

;X

N

2

) �

�

1

;�

.

1.4 Some notions borrowed from classical probability

The role played by Gaussian laws with respect to independence is played by semi-circular laws when

freeness is considered. Indeed, if (X

1

; � � � ; X

n

; � � � ) are free centered variables (� (X

i

) = 0) with covariance

one (� (X

2

i

) = 1), n

�

1

2

P

n

i=1

X

i

converges in distribution to a semi-circular distribution (c.f. [18]).

Classical SettingWhen the (X

1

; � � � ; X

n

; � � � ) are independent centered variables with covariance one, the

well known central limit theorem asserts that n

�

1

2

P

n

i=1

X

i

converges in distribution to a standard Gaussian

variable.

One can de�ne a free Brownian motion (S

t

; t � 0) as a process starting from the origin and such that

for all t � s, (t�s)

�

1

2

(S

t

�S

s

) is free from �(S

u

; u � s) and with semi-circular distribution. Free stochastic

di�erential (Itô's) calculus can be constructed (c.f [2]). Namely, if K

:

is a function of non-commutative

variables such that for t 2 R, K

t

depends only on the algebra �(X

u

; u � t) generated by (X

u

; u � t) and is

uniformly Lipschitz with respect to the operator norm, then there exists a unique solution to the di�erential

operator valued equations given by

dX

t

= dS

t

+K

t

(X)dt; (1.3)

as can be seen by using a standard Picard iteration argument.
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2 The isomorphism problem

The fundamental observation (which belongs to free probability folklore) is that the law of the variables

X

1

; � � � ; X

m

determines the von Neumann algebra they generate. More precisely,

Lemma 2.1 If X

1

; � � � ; X

m

(resp. Y

1

; � � � ; Y

m

) are non-commutative variables with law �

X

and �

Y

,

�

X

= �

Y

)W

�

(X

1

; � � � ; X

m

) ' W

�

(Y

1

; � � � ; Y

m

)

where A ' B means that the two algebras are isomorphic.

The proof of this lemma is recalled in appendix 5.2.

Now, W

�

(X

1

; � � � ; X

m

) ' W

�

(Y

1

; � � � ; Y

n

) i� there exists F

1

(X); � � � ; F

n

(X) (resp. G

1

(Y ); � � � ; G

m

(Y ))

in W

�

(X

1

; � � � ; X

m

)

n

(resp. in W

�

(Y

1

; � � � ; Y

n

)

m

) and unitary operators U : L

2

(W

�

(X

1

; � � � ; X

m

)) !

L

2

(W

�

(Y

1

; � � � ; Y

n

)) (resp. V : L

2

(W

�

(Y

1

; � � � ; Y

n

)) ! L

2

(W

�

(X

1

; � � � ; X

m

))) so that Y

i

= UF

i

(X)U

�

for 1 � i � n (resp. X

i

= V G

i

(Y )V

�

for 1 � i � m). Hence, let us say that �

X

is equivalent to �

Y

,

which we denote by �

X

� �

Y

, i� �

X

and �

Y

are the pushforward of each other, that is that there exists

F 2W

�

(X

1

; � � � ; X

m

)

n

; G 2W

�

(Y

1

; � � � ; Y

n

)

m

such that

�

Y

(P ) = F

#

�

X

(P ) = �

X

(P � F ) �

X

(P ) = G

#

�

Y

(P ) = �

Y

(P �G) 8P:

Then, Lemma 2.1 shows that

W

�

(X

1

; � � � ; X

m

) 'W

�

(Y

1

; � � � ; Y

m

), �

X

� �

Y

: (2.1)

The isomorphism problem : Let �

m

be the law of m free semi-circular variables S

1

; ::; S

m

. By (2.1),

L(F

m

) ' W

�

(S

1

; :; S

m

). The isomorphism problem can therefore be recast into

W

�

(S

1

; :; S

m

) 'W

�

(S

1

; :; S

n

), �

m

� �

n

) m = n?

Classical setting :it is well known that a probability measure on R

m

is equivalent to a probability measure

on R

n

provided they have no atoms.

3 Entropy approach

Voiculescu [20] introduced a quantity � : M

m

! [0;m], analogue to Minkowski dimension, such that for

all m 2 N

�(�

m

) = m:

It is currently warmly discussed whether � is an invariant of the von Neumann algebra, that is whether for

all � 2M

m

, � � �

m

implies �(�

m

) = �(�). If this is the case, then one has proved that

L(F

m

) 6' L(F

n

) if m 6= n:

To de�ne �, Voiculescu [20] built an Entropy theory based on microstates free entropy � which we now

de�ne.
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Let � 2M

m

and de�ne a micro-state �

R

(�; �; k) by

�

R

(�; �; k) = fA

1

; � � � ; A

m

2 H

N

: jtr(A

i

1

� � �A

i

p

)� � (X

i

1

� � �X

i

p

)j < �

8 p � k; 8 1 � i

j

� m; jjA

j

jj

1

� R 8 1 � j � mg:

Then we set

�(� ) := lim

�#0

k"1;R"1

lim sup

N!1

1

N

2

log�


m

N

(�

R

(�; �; k)):

The original de�nition of Voiculescu uses the Lebesgue measure instead of the Gaussian measure but it is

not hard to see (c.f [7]) that these two de�nitions are equivalent up to a Gaussian term 2

�1

P

�(X

2

i

).

The classical analogue to � is Boltzmann-Shannon entropy :

S(�) = lim

�#0

k"1;R"1

lim sup

N!1

1

N

log e�


m

N

(�

R

(�; �; k))

where e�

N

is the law of diagonal matrices with i.i.d standard Gaussian entries. In fact, for diagonal matrices

� (X

i

1

� � �X

i

p

) =<

1

N

N

X

i=1

�

X

1

ii

;��� ;X

m

ii

; x

i

1

� � �x

i

p

>

so that �

R

(�; �; k) is a small neighborhood of the empirical measure of the entries. Moreover, when the

random variables are bounded, it is well known that the weak-* topology generated by polynomial functions

is equivalent to the topology generated by bounded continuous functions and hence we arrive to the more

common de�nition of Boltzmann-Shannon entropy

S(�) = lim

�#0

lim sup

N!1

1

N

log e�


m

N

 

d(

1

N

N

X

i=1

�

X

1

ii

;��� ;X

m

ii

; �) < �

!

where d is a distance compatible with respect to the weak-topology such as Dudley's distance

d(�; �) = sup

�

�

�

�

�

Z

fd� �

Z

fd�

�

�

�

�

; jf(x)j and

�

�

�

�

f(x) � f(y)

x� y

�

�

�

�

� 1; 8x 6= y

�

:

By Sanov's theorem (c.f [9], theorem 6.2.10), if 
 is the standard Gaussian law 
(dx) = (2�)

�1

e

�

1

2

x

2

dx,

S(�) := lim

�#0

lim sup

N!1

1

N

log e�


m

N

 

d(

1

N

N

X

i=1

�

X

1

ii

;��� ;X

m

ii

; �) < �

!

= lim

�#0

lim inf

N!1

1

N

log e�


m

N

 

d(

1

N

N

X

i=1

�

X

1

ii

;��� ;X

m

ii

; �) < �

!

= S

�

(�)

where

S

�

(�) :=

(

�1 if � 6� 



m

�

R

log

d�

d



m

d� otherwise.
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The natural question is to seek for a generalization of Sanov's theorem in the non-commutative setting,

that is to show that in the de�nition of � one can replace the lim sup by a lim inf and then to �nd a formula

for this limit which does not depend on the description via micro-states.

When m = 1, Voiculescu showed that indeed one can replace in the de�nition of � the lim sup by a

lim inf and also that for all � 2 P(R)

�(�) = �

�

(�) :=

Z

log jx� yjd�(x)d�(y) �

1

2

Z

x

2

d�(x) +

3

4

:

When m � 2, Biane, Capitaine and myself [3] proved by using large deviations techniques that, for all

� 2 M

m

,

�

��

(� ) � �(� ) � �

�

(� ):

�

�

had been previously de�ned by Voiculescu [22] by means of Free Fisher Information and called non-

microstates free entropy since it does not depend on the micro-state and random matrices de�nition. It is

the analogue of the relative entropy S

�

. The question whether one can replace the lim sup by a lim inf is

still wide open since as we shall see the equality between �

�

and �

��

is still unclear and actually related to

very deep questions such as Connes's.

�

�

(� ) and �

��

(� ) can be seen as the cost to construct � from free semi-circular increments :

�

�

(� ) := � inf

�

1

2

Z

1

0

�(jK

t

(X)j

2

)dt

�

(3.1)

where the in�mumis taken over all � which are laws of continuous non-commutativeprocesses (X

1

t

; � � � ; X

m

t

)

t2[0;1]

which start at null operators (X

1

0

; � � � ; X

m

0

) = (0; � � � ; 0) and end at time one at operators (X

1

1

; � � � ; X

m

1

)

with law � and which satis�es in a weak sense

dX

i

t

= dS

i

t

+K

i

t

(X)dt; 1 � i � m (3.2)

where K

t

belongs to the von Neumann algebra generated by (X

u

; u � t) and S is a m-dimensional free

Brownian motion (i.e (S

1

; � � � ; S

m

) are m free Brownian motions). More precisely, assume to simplify

that K

t

is uniformly bounded so that the solution to (3.2) is uniformly bounded (note here that S

t

is

uniformly bounded since the semi-circular law is compactly supported). Let for s 2 [0; 1],

e

�

s

be the law of

(X

u^s

+S

u�s_0

; u 2 [0; 1]). Then (3.2) is satis�ed in a weak sense i� for all t 2 [0; 1], all polynomial functions

P = Q(X

t

1

; � � � ; X

t

n

) on cylinders

e

�

t

(P )� �(P ) =

Z

t

0

�

�

e

�

s

(r

s

P jB

s

)K

s

�

ds (3.3)

where � is the law of a free Brownian motion and

e

�

s

(:jB

s

) denotes the orthogonal projection in L

2

(�) on

the �-algebra B

s

= �(X

i

u

; 1 � i � m;u � s). r

s

is the Malliavin operator

r

l

s

(x

i

1

t

1

: : :x

i

n

t

n

) =

n

X

p=1

1

i

p

=l

x

i

p+1

t

p+1

: : : x

i

n

t

n

x

i

1

t

1

: : :x

i

p�1

t

p�1

1

[0;t

p

]

(s)

It was shown in [3] that for nice K

:

, (3.3) is a strong solution of (3.2).
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�

��

is de�ned similarly but the in�mum is restricted to processes for which the drift K is su�ciently

smooth. It was shown in [3] that the in�mum in the de�nition (3.1) of �

�

is taken at the distribution

of a free Brownian bridge (tX + (1 � t)

R

t

0

(1 � u)

�1

dS

u

; t 2 [0; 1]), where X = (X

1

; � � � ; X

m

) has law �

and S = (S

1

; � � � ; S

m

) is a m-dimensional free Brownian motion, free with X. Plugging this fact into the

de�nition (3.1) of �

�

yields the initial de�nition of Voiculescu.

Classical setting : it can be seen that S

�

can be de�ned similarly by replacing (S

t

; t � 0) by a standard

Brownian motion.

The so-called uni�cation problem (c.f Voiculescu [26]) is to prove that the lim sup can be replaced by a

lim inf in the de�nition of � and �(� ) = �

�

(� ) at least for � such that �(� ) > �1.

It seems that this problem is related with a better understanding of analysis of non-commutative functions

and related to Connes's question. In fact, to show that �

��

(� ) = �

�

(� ) = �(� ), we would like to show that

processes with smooth �elds are dense, i.e that for any law of non-commutative processes �, there exists a

sequence (�

�

) associated with a smooth �eld K

�

by (3.2) such that

lim

�!0

�

�

= �

and

lim

�!0

Z

1

0

�

�

(jK

�

t

(X)j

2

)dt =

Z

1

0

�(jK

t

(X)j

2

)dt:

But because K

�

is smooth, dX

�

t

= dS

t

+K

�

t

(X

�

)dt as a unique solutionX

�

t

= F

�

t

(S

s

; s � t) with a smooth

function F

�

as can be checked again by Picard argument.

Moreover, if H

N

is an m-N -dimensional Hermitian Brownian (that is a N � N Hermitian matrix with

Brownian motion entries) the asymptotic freeness of independent Wigner's matrices together with Wigner's

convergence [27] imply that

�̂

N

H

N

t

;t�0

) �

S

t

;t�0

:

Consequently, since F

�

are smooth,

�

�

= lim

N!1

�̂

N

A

N

1

;��� ;A

N

m

with A

N

t

= F

�

t

(H

N

s

; s � t) 2 H

m

N

; t 2 [0; 1]:

Thus, �

�

can be approximated by non-commutative distribution of �nite matrices and hence �.

When m = 1, such a program was realized by taking for �

�

the law obtained by convoluting � by small

Cauchy laws (c.f Zeitouni and myself [14]) but the generalization of this strategy to m � 2 fails on crucial

analytic questions which are not yet understood in the non-commutative context.

The entropy dimension was de�ned by Voiculescu [20] for � = �

X

1

;��� ;X

m

2 M

m

, if S

1

; � � � ; S

m

are free

semicircular variables, free with X, by

�(� ) = m + lim sup

�#0

�(�

X

1

+�S

1

;��� ;X

m

+�S

m

)

j log �j

:

It satis�es the following property

Property 3.1 (a) �(�

X

1

;��� ;X

m

) =

P

m

i=1

�(�

X

i

) if X

1

; � � �X

m

are free (c.f. [20]).

(b) �(� ) > �1 implies �(� ) = m (c.f. [20]).
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(c) If m = 1, � 2 P(R), Voiculescu [20] proved that

�(�) = 1�

X

t2R

�(ftg)

2

:

(d) By [3],

�

��

(� ) � �(� ) � �

�

(� )

where �

�

and �

��

are de�ned as � but with �

�

(resp. �

��

) instead of �.

Note that by (c), we see that when m = 1, � counts the number of atoms which existence is crucial in

isomorphism questions in the commutative setting.

Recent work of Connes, Shlyakhtenko [8] tried to de�ne another invariant for von Neumann algebras.

They generalized the notion of L

2

-homology and L

2

-Betti numbers for a tracial von Neumann alge-

bra, motivated by the measure-equivalence invariance of the group theoretical L

2

-Betti numbers proved by

Gaboriau [11]. They de�ne an L

2

-Betti number �.

They can show it is related to �

�

, and thus to � by [3], by

�(� ) � �

�

(� ) � �(� ):

Mineyev, Shlyakhtenko [15] proved that in the case of a �nitely generated group

�

�

(� ) = �

1

(G)� �

0

(G) + 1

with the group L

2

Betti-numbers �.

Yet the question of the invariance of �; �

�

;� is still open.

Another attempt was done by Haagerup et al. to try to prove that � is NOT an invariant.

A good candidate for a counterexample was a priori the so-called DT operator T which is obtained as

the limit of upper triangular matrices with i.i.d Gaussian variables above the diagonal.

The idea is that the circular operator, limit of square matrices with i.i.d Gaussian entries is such that

C = T +

e

T

�

where T;

e

T are free. It is known to generate a two dimensional free group factor and �(C) = 2.

Thus, since T is generated with half as much random variables, it could be hoped that �(T ) < 2. On the

other hand, it was shown by Dykema and Haagerup [10] that T is isomorphic to L(F

2

) so that invariance

of � would be disproved if �(T ) was strictly smaller than 2.

However, it was recently shown by Aagaard [1] that

�

�

(T ) = 2

so that DT operators do not provide a counterexample for �

�

, nor for � if one beleives the uni�cation problem

to hold true.

4 Conclusion

Free probability allows to express in probability terms many problems from non-commutative algebras, and

hence gives to probabilists a chance to use their skill in this topic. However, open questions are often in

10



the end analytic questions: Connes question and � = �

�

problem could be settled if we would understand

better the regularizing properties of free convolution. The important use of Gaussian random matrices

in this domain also connects it with combinatorics and physics, since tracial states which satisfy Connes

approximating property can be seen as limit of matrix models, which have been used in these last domains

to enumerate maps (see the review [28]).

5 Appendix

5.1 About the GNS construction

This construction can be summarized as follows (c.f [16],[17]). Consider the bilinear form on C hX

1

; : : :X

m

i

2

given by

< P;Q >

�

= �(PQ

�

):

We then construct a Hilbert space (H

�

; < :; : >

�

) as follows. We consider the left ideal

L

�

= fF 2 L

2

(�) : jjF jj

�

= 0g

and the quotient space h

�

:= C hX

1

; : : :X

m

i=L

�

. We let �

�

be the inclusion map from C hX

1

; : : :X

m

i into

h

�

. < :; : >

�

determines a pre-Hilbert structure on h

�

and therefore the completion H

�

of h

�

by the

norm jj:jj

�

=< :; : >

1

2

�

is a Hilbert space. The non-commutative polynomials C hX

1

; : : :X

m

i act by left

multiplication on H

�

. In fact, if we denote for P;Q 2 C hX

1

; : : :X

m

i �

�

(P )�

�

(Q) = �

�

(PQ), then �

�

(P )

extends uniquely as a bounded linear operator on H

�

since

jj�

�

(P )(�

�

(Q)jj

2

�

= �(PQQ

�

P ) � jjQQ

�

jj

1

�(PP

�

) = jjQQ

�

jj

1

jj�

�

(P )jj

2

�

:

Moreover, one checks that �

�

(C hX

1

; : : :X

m

i) is an involutive algebra equipped with the operator norm

jjj�

�

(P )jjj = sup

Q2H

�

jj�

�

(Q)jj

�1

�

jj�

�

(PQ)jj

�

:

The involution is simply given by

(X

i

1

� � �X

i

n

)

�

= X

i

n

� � �X

i

1

:

We denote A

�

the von Neumann obtained by completing �

�

(C hX

1

; : : :X

m

i) by the weak topology on H

�

.

A

�

is equipped with the tracial state

�

�

(�

�

(P )) =< �

�

(P )�

�

(I); �

�

(I) >

�

= �(P ):

We then easily check that (A

�

; �

�

) verify (1.1). In the sense that A

�

� B(H

�

) where H

�

is roughly speaking

the space of square integrable functions, we can think of A

�

as the set of bounded measurable functions

L

1

(�).

5.2 Proof of Lemma 2.1

This fact can be deduced from proposition 3.3.7 of [16] and the previous proof of GNS construction when

one notices that (�

�

;H

�

) can be seen to be a cyclic representation of C hX

1

; : : :X

m

i (c.f [16], section 3.3).
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Let us however summarize it. The proof uses uniqueness of GNS representations. It can be recast in the

general framework of two non-commutative probability space (M; �

M

) and (N; �

N

) ; if �

M

= �

N

then we

want to show that N ' M . Indeed, if we regard M � B(H

�

M

) and N � B(H

�

M

) as acting via the GNS

representation then one de�nes a unitary operator

U : H

�

M

! H

�

N

; U (�

�

M

(P (X

1

; : : : ; X

n

))) = �

�

N

(P (Y

1

; : : : ; Y

n

));

for every polynomial P . The fact that �

M

(P (X

1

; : : : ; X

n

)) = �

N

(P (Y

1

; : : : ; Y

n

)) ensures that U is well

de�ned and isometric on a dense subspace of H

�

M

and maps this dense subspace onto a dense subspace of

H

�

N

. Hence we may extend it (uniquely) to a unitary U : H

�

M

! H

�

N

. Finally, one checks that UX

i

U

�

= Y

i

and therefore UMU

�

= N .
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