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1 Introduction

Statistical mechanics is devoted to the study of the thermodynamical properties of physical systems.

Classical litterature on this topic often concerns their static or equilibrium properties. However, most

systems in nature are not in equilibrium (see [25] for a discussion on this subject) and such a study

can at best be a good approximation to reality. Even more, equilibrium can be completely irrelevant

for some systems which can only be observed out of equilibrium. One can distinguish at least two

classes of such systems. The �rst describes systems which are naturally out of equilibrium because

they are submitted to a gradient of temperature, of potential etc... The second concerns systems

which relax to equilibrium so slowly that the equilibrium will never be reached during the experiment

or the simulation. For instance, glasses, jelly, toothpaste are example of media which, even though

they seem in our everyday life much alike solids in equilibrium, still evolve on very long time scales.

These systems are called glasses ; they appear when some parameter (such as temperature, pressure,

etc) is changed in such a way that their relaxation time to equilibrium diverges. Such systems are

very diverse and we shall later be more speci�cally interested in spin glasses. A canonical example of

spin glasses is a metal with dilute magnetic impurities, which were shown to exhibit a rather peculiar

behaviour by De Nobel and Chantenier. Such a medium can be modelled by a system of particles in

random interaction or with a random external �eld (the randomness coming from the randomness of

the distribution of the impurities in a given sample). These models are called disordered and we shall

detail them later in this survey. There are many other materials that exhibit a glass phase ; let us

quote some physic litterature on the glass phase of supraconductors [30], granular materials [8, 9] etc

One of the relevant properties which has been investigated recently for out of equilibrium dynamics

is aging. A system is said to age if the older it gets, the longer it will take to forget its past. The

age of the system is the time spent since the system reached its glass phase, which is often obtained
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by freezing it below the critical temperature. The experiment exhibiting aging is usually as follows.

One considers a medium at time t = 0 at high temperature and freeze it at a temperature below

the critical temperature T

c

. One then measures a parameter q(t

w

; t

w

+ t) where t

w

is the age of the

system (i.e the time spent since the system was frozen in its glass phase) and t+ t

w

the measurement

time. The parameter q(s; t) is often the covariance E(X

t

X

s

) � E(X

t

)E(X

s

) of the observable X or

the probability P (X

t

= X

s

). Then, a system is said to age when q(t

w

; t

w

+ h(t

w

)) converges to a non

zero constant as t

w

goes to in�nity, for some non trivial increasing function h. One usually observes

the following. At large temperature, the system quickly equilibrates and the order parameter should

rapidly become stationary ; q(s; t) � q(s � t) for t; s reasonably large. At lower temperature, one

observes usually data as represented in �gure 1 ; the experimental covariances are not functions of

t � t

w

only, but also depends on the age t

w

of the system, and are therefore a more complicated

function of t and t

w

that one can investigate.
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For instance, it was observed in [27] that the covariance becomes approximately a function of

2



� = (1� �)

�1

(t

1��

� t

1��

w

) with � = 0; 87, as shown in �gure 2.
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Figure 2: Experimental covariance in the insulating spin glass CdCr
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at low temperature

[26, 27].

Let us notice that the �gures above are already taken in such a time scale that they do not show

what happens for short times t. A more detailed study usually shows that at least two phenomena

are going on ; on a short scale, when t� t

w

goes to in�nity while t

w

stays small enough, the system

reaches a state where q is approximately given by a constant q

EA

(whose value is represented by the

initial at part in the covariance diagrams above) and stays in this state quite a long time so that the

systems seems to be in equilibrium and the dynamics looks stationary. However, on a longer scale,

the system will undergo dramatic changes which will drive the parameter q to zero. The existence of

di�erent time scales related to slower and quicker processes is also a description of aging.
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The mathematical understanding of aging has been undertaken only very recently and is still very

limited. For the time being, aging phenomenon could be analysed for very few disordered models.

The two main phenomenologies that have been isolated as a source of aging can be illustrated by two

toys models: the so-called Bouchaud's trap model and the spherical Sherrington-Kirkpatrick model.

Since these two models were introduced to understand the dynamics for the Sherrington-Kirkpatrick

model of spin glass, we shall �rst describe this model. It is given by the quadratic Hamiltonian

H

J

(x) =

X

1�i<j�N

J

ij

x

i

x

j

where x = (x

i

; 1 � i � N ) represent the particles or spins, which belong to a set M . M can be either

discrete, for instance M = f�1;+1g in the Ising model, or continuous, for instance M = IR or M is

a compact Riemaniann manifold such as a sphere in IR

d

. The J

ij

's are centered independent random

variables with variance N

�1

, often assumed to be Gaussian for simplicity. If � is a probability measure

on M , a Gibbs (or equilibrium) measure for the Sherrington-Kirkpatrick model at temperature T =

�

�1

is given by

�

N

(dx) =

1

Z

N

e

�H

J

(x)

N

Y

i=1

d�(x

i

) with Z

N

=

Z

e

�H

J

(x)

N

Y

i=1

d�(x

i

):

In the case M = IR, the associated Langevin dynamics (see section 2) were considered by Sompoliski

and A. Zippelius (see [32, 29] and then by G. Ben Arous and myself [7, 21]). It is proved that the

empirical measure N

�1

P

N

i=1

�

x

i

[0;T ]

on path space converges as N goes to in�nity for every time T > 0.

Its limit is not Markovian (eventhough at �nite N , its law is Markovian, it losts this property at the

limit by self-averaging, the average of Markov laws being not necessarily Markovian) and given by

a nonlinear equation. This limiting law is so complicated that the behaviour of its covariance could

not be analysed so far, neither in the mathematics or in the physics litterature. A similar work was

achieved by M. Grunwald for Ising spins and standard Glauber dynamics [20]. However, it is expected

that the Langevin dynamics for Sherrington-Kirkpatrick dynamics ages and actually with in�nitely

many time scales.

Since this already simple model of spin glass was already to di�cult to analyse, toys models were

introduced to try to understand why aging could appear. Their study allowed to point out two major

situations to generate aging.

(a) The �rst is a at energy space; the particle system has a single ground state characterized by

the lowest possible energy E

0

, but there are many other states with energy E

n

which is very close

to E

0

, more precisely E

n

� E

0

is of the order of N

�1

if N is the number of particles. Then, the

dynamics will be likely to visit all these states in a �nite time (independent of N ) before �nding the

ground state. This process will create a long time memory of the history and aging. Hence, aging

is here caused by the atness of the bottom of attracting valley in the energy landscape, and the

consequent di�culty for the system to �nd its most favorable state within this valley. It will in fact
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�nd it typically in a time depending on the age of the system, time after which it will begin to forget

its past.

This phenomenon describes the spherical Sherrington-Kirkpatrick model, but should also describe

the spherical p-spins model of Sherrington-Kirkpatrick. It is believed also that it should explain aging

of the dynamics of the original Sherrington-Kirkpatrick model.

(b) The trap model; in this case, the evolution of the particle system is represented by a Markov

process in a random energy landscape. The process will spend most time into deep valleys of lowest

energy where it will be "trapped" and its evolution will be mostly driven by the seek of deeper valleys.

The time spent in these valleys is random and aging will appear when the mean time spent in these

valleys diverges.

This model was originally introduced by Bouchaud to understand aging in the Random Energy

Model (REM) introduced by Derrida as a simpli�cation of the Sherrington-Kirkpatrick model of spin

glass. It was shown by G. Ben Arous, A. Bovier and V. Gayrard [2, 3] that this picture is indeed

relevant. It also describes aging in the Sina�� model [17].

Note that in both cases, the main point is that the system has in�nitely many favorable states

which it can reach in �nite time; this can be opposed to usual stationnary systems where ground

states are separated by an energy barrier which diverges with the size of the system, forbidding the

in�nite system to visit several of them in a �nite time.

2 Spherical model of spin glass

If U : IR!IR is some potential going to in�nity fast enough at in�nity, the Langevin dynamics at

temperature T = �

�1

for the Sherrington-Kirkpatrick model are de�ned by the stochastic di�erential

system

dx

i

t

= �

�

2

@

x

iH

N

J

(x

t

)dt� U

0

(x

i

t

) + dB

i

t

with prescribed initial data. Here, (B

i

; 1 � i � N ) are i.i.d Brownian motions.

One way to simplify considerably this system is to consider instead a smooth spherical constraint

dx

i

t

= �

�

2

@

x

i
H

N

J

(x

t

)dt+ U

0

(

1

N

N

X

j=1

(x

j

t

)

2

)x

i

t

+ dB

i

t

(2.1)

with a function U on IR

+

such that

lim sup

x!1

U (x)

x

= +1

in order to insure the almost sure boundedness of the empirical covariance under the dynamics (2.1).

A hard spherical constraint was considered in [14] where a similar study was undertaken.
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The great simpli�cation o�ered by the spherical model is that the empirical covariance

K

N

(s; t) =

1

N

N

X

i=1

x

i

s

x

i

t

; (2.2)

satis�es, at the large N limit, an autonomous equation. Indeed, one computes

K

N

(t; s) =

1

N

tr

�

(e

�

R

t

0

V

N

(u)du

x

0

+

Z

t

0

e

�

R

t

v

V

N

(u)du

dB

v

)(e

�

R

s

0

V

N

(u)du

x

0

+

Z

s

0

e

�

R

s

v

V

N

(u)du

dB

v

)

�

with V

N

(u) the N � N matrix given by V

N

(u) := U

0

(K

N

(u; u))I� �J if J is the symmetric matrix

with entries fJ

ij

; 1 � i � j � Ng above the diagonal. From this formula, it is easily seen that the

long time behaviour of the covariance will be driven by the largest eigenvalues of the matrix J. The

eigenvalues �

1

� �

2

� � � � � �

N

of the Wigner matrix J are well known ; �

1

converges almost surely

towards 2, but the di�erence of the next eigenvalues with �

1

are of order N

�1

so that

lim

N!1

1

N

N

X

i=1

�

�

i

= � a.s.

with � the semi-circle law �(dx) = C

p

4� x

2

dx, which is absolutely continuous w.r.t Lebesgue

measure, in particular in the neighborhood of 2. From this asymptotic, one deduces that if the

(x

i

0

; 1 � i � N ) are independent equidistributed variables with law �

0

(which corresponds to an in-

�nite temperature initial condition), K

N

converges almost surely towards K, solution of the renewal

equation

K(t; s) = R

�

(t)R

�

(s)L(�(t + s))

Z

x

2

d�

0

(x) +

Z

s

0

R

�

(t)R

�

(s)

R

�

(v)

2

L(�(t + s� 2v))dv (2.3)

with, for � > 0 and t � 0,

L(�) =

Z

e

��

d�(�)

R

�

(t) = e

�

R

t

0

U

0

(K(s;s))ds

One can analyze this equation when

U (x) =

c

2

x

2

for some c > 0. We �nd that for the solution of (2.3), if we let

�

c

=

c

2�

�

Z

1

�

�

� �

d�(�): (2.4)

and assume that

�(�

�

� � � �) '

�!0

b

1

�

q

(2.5)

for some q > 1 and b

1

> 0 (and hence �

c

<1), then, the unique solution K to (2.3) satis�es
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1) For � < �

c

, there exists �

�

> 0 and c

�

2 IR

+

so that for all t; s 2 IR

+

,

jK(t; s)j � c

�

e

��

�

jt�sj

: (2.6)

2) For � = �

c

, q 6= 2, t� s� 1, we have the polynomial decay

K(t; s) �

(

(t� s)

1�q

for t=s bounded

s

1� 

q

=2

t

q� 

q

=2

otherwise ;

(2.7)

where  

q

= max(2� q; 0).

3) When � > �

c

we get that

K(t; s) � (s=t)

q=2

; (2.8)

so K(t; s)! 0 if and only if t=s!1.

Note that in the case where � is the semi-circle appearing in the asymptotics of the spectral

measure of J, q =

3

2

. Hence, we see that aging appears for � > �

c

when the particles are initially

independent. When starting from the top eigenvector, this phenomenon disappears (the system stays

in the basin of attraction of the top eigenvector) ; in fact, for any �xed � > �

c

, regardless of the way

in which t� s and s approach in�nity,

K(t; s) � (

2�

2

c

�

�

�

Z

1

�

�

� �

d�(�))=(2�) > 0

There is thus no aging regime for this initial condition, which underlines the fact that aging phe-

nomenon is very dependent on the initial conditions.

Note here that two factors were crucial to prove aging ; the atness of the energy landscape near

the ground state but also the fact that the interaction between the particles results with a nonlinear

equation for the covariance (indeed, without this nonlinearity, it could be checked that the covariance

would be asymptotically stationnary [22]). In fact, the randomness of the matrix J is not necessary,

provided its eigenvalues distribution (which could be deterministic) is su�ciently at next to the

maximum eigenvalue.

On a technical point of view, it was crucial that the covariance C satis�es an autonomous equation.

It was pointed out by L. Cugliandolo and J. Kurchan [15] that an autonomous system of equations

could be obtained for the covariance and the so-called response function for p spherical models, leading

to an analysis of aging phenomenon for these systems. In particular, they believe that in some cases,

these models lead to more than two di�erent time scales. I recently derived rigorously with G. Ben

Arous and A. Dembo the same system of equations, but we have not yet achieved its long time analysis.

3 Bouchaud's trap model; an energy trap model

Bouchaud's random walk is a simple model of a random walk trapped by random wells. It was

proposed as an approximation of the evolution of a more complex system in an energy lanscape with

favorable valleys, located at sites given by a discrete set V , and with energies fE

x

; x 2 V g.
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Let G = (V;B) be a graph described by its set of vertices V and its bonds B. Two vertices are

said to be neighbours if they are related by a bond.

Bouchaud's simplest random walkX is a Markov process who jumps from a site x to its neighbours

y : (x; y) 2 B with a rate

w

x;y

= e

��E

x

and w

x;y

= 0 if (x; y) are not neighbours. The fE

x

; x 2 V g are independent random variables with

exponential law ;

P (E

x

> t) = e

�t

; 8t > 0:

Let P

E

denote the quenched law of the Markov chain X (i.e given a realization of the energies

E = fE

x

; x 2 V g) and P its annealed law (i.e is the average over the randomness of the energies of

the P

E

's ; P =< P

E

>).

The natural order parameters to consider here are either the two times probability

R

E

(t

w

; t

w

+ t) = P

E

(X(t

w

) = X(t

w

+ t))

or its annealed version

R(t

w

; t

w

+ t) = P (X(t

w

) = X(t

w

+ t));

or can be the probability that the process did not jump between time t

w

and time t

w

+ t ;

�

E

(t

w

; t

w

+ t) = P

E

(X(t

w

) = X(t

w

+ s); s < t); �(t

w

; t

w

+ t) = P (X(t

w

) = X(t

w

+ s); s < t):

Aging for such a model was �rst studied in the mathematic litterature by Fontes, Isopi and Newman

[18] in the case where V = ZZ. They proved that, when � > 1,

lim

t

w

!1

R(t

w

; (1 + �)t

w

) = f(�)

with a well-de�ned function f , showing an aging regime in the scale of the age of the system. On the

other hand, it was shown (see [4]) that � satis�es

lim

t

w

!1

�(t

w

; t

w

+ �t



w

) = q(�)

with a well de�ned function q and  = (1 + �)

�1

.

Combining these two results shows that the process will be able to quit a deep trap in a time of

order t



w

but will not �nd a deeper trap before a time of order t

w

.

4 Sina�� model

Bouchaud's trap model on ZZ describes also the long time behaviour of Sina�� 's random walk in random

environment ; it is described as follows. Let p = (p

i

; i 2 ZZ) 2 [0; 1]

ZZ

be independent equidistributed

variables with law �. Sinai's Markov chain X

p

is then given by

P

�

X

p

n+1

= i + 1jX

p

n

= i

�

= 1� P

�

X

p

n+1

= i � 1jX

p

n

= i

�

= p

i

; P (X

p

0

= 0) = 1:
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Let �

i

:=

1�p

i

p

i

and assume that IE[log�

0

] =

R

log(x

�1

� 1)d�(x) is well de�ned. It is well known

that if IE[log�

0

] 6= 0, the Markov chain is transient and will go to in�nity when time goes to in�nity.

When IE[log�

0

] = 0, Sina�� [31] proved that the Markov chain X

p

, correctly renormalized, converges

almost surely towards the deepest valley designed by the random environment that it could visit.

More precisely, if we let

W

n

(t) =

1

log n

b(logn)

2

tc

X

i=0

log�

i

� (sign t);

W

n

will converge towards a Brownian motionW on IR. Then, the random walk X

p

, once divided by

(logn)

2

, will converge towards the nearest point to the origin which corresponds to a well of depth

greater or equal to one designed by W as shown in �gure 3.

a  b

0,87

1,23

Position of ${X_n\over (\log n)^2}$

Figure 3: If x

a

> 1, then (logn)

�2

X

p

(n) converges to a, if x

a

< 1; x

b

> 1, it converges towards b etc.

The aging phenomenon will then also occur since when time is going on, the random walk will

have found better and better attractors and will therefore like to stay longer there ; it was indeed

shown (see [28, 19, 17]) that for any h > 1,

lim

�!0

lim

n!1

P

�

jX

n

h �X

n

j

(logn)

2

< �

�

=

1

h

2

�

5

3

�

2

3

e

�(h�1)

�

(4.1)
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5 Bouchaud's trap model on a complete graph

Generalisation of Bouchaud's model can be found in [4, 5], where jump rates depending not only on

the site where the walk stands but also from the energy of the site where it wants to jump, higher

dimension models are considered as well.

Bouchaud's random walk on a complete graph is also of interest since it is related with Derrida's

random energy model. If G is the complete graph onM points, we denote �

M

(t

w

; t

w

+t) the annealed

probability that the walk stays in a given well during time t, then it was shown (see [10, 2, 3]) that

�

M

converges as M goes to in�nity. Moreover, its limit � satis�es

lim

t

w

!1

�(t

w

; t

w

+ �t

w

) = H(�)

with

H(�) = (�cosec(�=�))

�1

Z

1

�

(1 + x)

�1

x

��

dx:

6 Aging for the Random Energy Model

Let us �nally describe the Random Energy Model (REM) introduced by Derrida ; noticing that for

any given x, the Hamiltonian H

J

(x) for the Sherrington-Kirkpatrick model is a centered Gaussian

variable and thinking that the x are Ising spins taking values +1 or �1, Derrida considered the Gibbs

measure on f�1;+1g

N

given, for � 2 f�1;+1g

N

, by

�

�;N

(�) =

1

Z

�;N

e

�

p

NE

�

with Z

�;N

=

X

�2f�1;+1g

N

e

�

p

NE

�

:

Here, fE

�

; � 2 f�1;+1g

N

g are independent centered Gaussian variables with variance one, the in-

dependence hypothesis resulting with a great simpli�cation with respect to the original Sherrington-

Kirkpatrick model. A standard Glauber dynamic for this model is given by the transition kernel p(�; �)

on f�1;+1g

N

which is null if � and � di�er at more than one site, given by N

�1

e

��

p

NE

+

�

if � and �

only di�er by a spin-ip, and 1� e

��

p

NE

+

�

if � = �. Then, it was shown in [2, 3] that the motion of

these dynamics when seen only on the deepest traps created by the energies fE

�

; � 2 f�1;+1g

N

g will

be described by Bouchaud's random walk on a complete graph of large number of vertices. In fact, with

a well chosen threshold u

N

(E) �

p

2N log(2) +

E

p

2N log(2)

and a natural scaling c

N;E

� e

�

p

Nu

N

(E)

,

they proved that

lim

t

w

!1

lim

E!�1

lim

N!1

P

�

j

�

N

(c

N;E

t

w

; c

N;E

(t

w

+ t))

H(tt

�1

w

)

� 1j > �

�

= 0

for any � > 0.
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