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Abstract
The uses of random matrix models have spread in many domains of mathematics, physics
and computer sciences. As a consequence, the theory of large random matrices has grown
into a diverse and mature field during the last forty years, yielding answers to increasingly
sophisticated questions. In these proceedings, we discuss the applications of large devia-
tions techniques in random matrix theory.
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1. Introduction
Large random matrices appear in a wide variety of domains. They were first intro-

duced in statistics in the work of Wishart [183] to analyze a large array of noisy data, a point
of view that turns out to be particularly relevant and useful nowadays in principal component
analysis and statistical learning. Goldstine and Von Neumann considered random matrices
to model the inevitable errors made in measurements [180]. Wigner [182] and Dyson [78] later
conjectured that the statistics of their eigenvalues model very well those of high energy lev-
els in heavy nuclei. Even more surprisingly, Montgomery [154] showed that random matrices
are intimately related to the zeroes of Riemann Zeta function, a conjecture which nowadays
provides a great intuition for many mathematical results, see e.g [5, 135]. Random matrices
also play a central role in operator algebra theory since Voiculescu [175, 177] proved that
they are asymptotically free. Random matrices are moreover intimately related to integrable
systems to which they furnish key examples. The computation of the joint law of the eigen-
values of invariant matrices goes back to Weyl [181] and Cartan [54]. They showed that this
distribution is characterized by a density proportional to a power of the Vandermonde deter-
minant of the eigenvalues. As a consequence, the eigenvalues of random matrices furnish
an example of strongly interacting particles system, in connection with many other models
such as Coulomb gases or random tilings. For all these reasons, the study of Large Random
Matrices (LRM) has grown into a diverse and mature field during the last forty years, yield-
ing answers to increasingly sophisticated questions. The most basic questions often involve
the distribution of the eigenvalues as the size of the matrix goes to infinity. Such a question
was first tackled in the breakthrough paper of Wigner [182] who showed that the distribution
of the spectrum of a self-adjoint matrix with independent entries (modulo the symmetry
constraint) is described by the semi-circle law when the dimension goes to infinity. This
article discusses how to estimate the probability that the spectrum follows a different dis-
tribution in large dimensions. More generally, we will investigate the probability of rare
events, that is of large deviations, in the context of random matrices. In this introduction, we
will first outline some of the main results of random matrix theory for the famous Gaussian
ensembles, placing the questions on large deviations in the wider context of this theory. We
will then motivate the study of large deviations for large random matrices. An important
aspect of random matrix theory lies in its connection with the so-called Beta-ensembles and
we will sketch a few applications of large deviations for Beta-ensembles beyond random
matrix theory. This introduction is short and therefore unfortunately bypasses many beauti-
ful aspects of large random matrix theory: we refer the interested reader to the introductory
books [2,3,12,94,95,153,156] for more.

1.1. Introduction to Random Matrix Theory
1.1.1. The Gaussian ensembles
The most famous model of random matrices is given by the Gaussian ensembles,

the Gaussian Orthogonal Ensemble (GOE) and the Gaussian Unitary ensemble (GUE). We
say that Gn follows the law of the GUE (resp. the GOE) if it is a n × n self-adjoint matrix
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with independent centered complex (resp. real) Gaussian entries above the diagonal with
independent real and imaginary parts with variance 1/2n (resp. with variance 1/n), the
entries on the diagonal being centered real Gaussians with variance 1/n (resp. 2/n). Their
distribution is given by

(1.1) dPnβ(G
n) =

1
Znβ

e−
βn
4 Tr((Gn)2)dGn

where β = 1 for the GOE and β = 2 for the GUE. The measure dGn denotes the Lebesgue
measure over the corresponding set of matrices (symmetric if β = 1, Hermitian if β = 2),
which is simply the product of the Lebesgue measure on the entries dGn =

∏
i≤ j dGn

ij if
β = 1 and dGn =

∏
i≤ j d<(Gn

ij)
∏

i< j d=(Gn
ij) if β = 2. The constant Znβ is the normal-

izing constant such that Pnβ is a probability measure. These ensembles have a remarkable
property: their distribution is invariant under conjugation Gn → UGnU∗ by unitary (resp.
orthogonal) matrices if β = 2 (resp. β = 1). Because of this invariance, the eigenvectors of
Gn are uniformly distributed on the sphere and hence delocalized in the sense that their
entries are typically of order of the inverse of the square root of the dimension. Moreover,
a change of variables shows that the eigenvalues of Gn, ®λ = (λ1, · · · , λn), λ1 ≥ λ2 · · · ≥ λn,
are distributed according to:

(1.2) dPn
β (
®λ) =

1
Zn
β

∆( ®λ)βe−
βn
4

∑n
i=1(λi )

2 ∏
dλi ,

where ∆( ®λ) =
∏

i< j |λi − λj | is the modulus of the Vandermonde determinant. There exists
a third Gaussian ensemble, the Gaussian Symplectic Ensemble (GSE), with quaternionic
entries and which is invariant under conjugation by symplectic matrices. Its eigenvalues
are distributed according to Pn

4 . However, we shall not highlight this case in the sequel.
The Gaussian ensembles are also called the GβE’s with β = 1, 2, 4 for the GOE, GUE and
GSE respectively. Remarkably, for any β > 0, Pn

β was shown [76] to describe the law of
the eigenvalues of the n × n self-adjoint tri-diagonal matrix

√
βn−1Xn

β where the diagonal
entries {Xn

β (i, i), 1 ≤ i ≤ n} are independent centered Gaussian variables with variance 2,
independent from the off-diagonal entries {Xn

β (i, i + 1),1 ≤ i ≤ n− 1} which are independent
and such that Xn

β (i, i + 1) is a chi distributed variable with β(n − i) degrees of freedom
for i ∈ {1, . . . , n − 1}. Thanks to formula (1.2), the Gaussian ensembles were studied in
detail. We next review a few classical results involving these random matrices. We will
see in the core of the text that some of these results generalize to other random matrices,
for instance, the Wigner matrices which are similar to the Gaussian ensembles but with
entries that are not necessarily Gaussian, namely symmetric or Hermitian matrices with
independent centered entries and with variance 1/n.

1.1.2. Typical events
The celebrated law of large numbers states that the sum of independent identically

distributed variables, once properly renormalized, converges almost surely towards its mean.
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More precisely, if x = (x1, . . . , xn, . . .) is a sequence of independent real random variables
with the same distribution µ such that

∫
|x |dµ(x) is finite, the empirical mean

(1.3) mn(x) :=
1
n

n∑
i=1

xi

converges almost surely towards the mean when n goes to infinity:

lim
n→∞

mn(x) =
∫

xdµ(x) a.s.

Historically the first, and particularly simple, application of this theorem applied to coins
tossing. The distribution of one toss can be modeled by the Bernoulli law µ = µp = pδ1 +

(1 − p)δ0 if the coin has probability p to show heads, which is represented by the value
{1}. The law of large numbers shows that if one flips a coin many times independently, one
should see heads approximately a proportion p of the times. There are many proofs of the
law of large numbers, and in simple cases like coins tossing, it follows from counting the
number of ways to see a given number of heads out of n flips.

The emergence of an almost sure deterministic phenomenon from many indepen-
dent random events is a usual feature in probability theory or statistical mechanics. In the
latter, many random particles collaborate to give a deterministic macroscopic behavior. In
RandomMatrix Theory (RMT), Wigner [182] showed that the distribution of the eigenvalues
of Gaussian ensembles converges almost surely towards a deterministic limit given by the
semi-circle law, see Figure 1.

-2 +2

Figure 1 The semi-circle law and the asymptotic distribution of the spectrum

Theorem 1.1. [182] Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the GβE for β = 1, 2 or 4.
Then, for any a < b,

(1.4) lim
n→∞

1
n

#{i : λi ∈ [a, b]} = σ([a, b]) almost surely,

where σ is the semi-circle law:

(1.5) σ(dx) =
1

2π

√
4 − x21 |x | ≤2dx.
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Equation (1.4) can be seen as the almost sure weak convergence of the empirical
measure µ̂n = 1

n

∑n
i=1 δλi of the eigenvalues in the sense that it is equivalent to the conver-

gence, for any bounded continuous function f , of:

(1.6) lim
n→∞

1
n

n∑
i=1

f (λi) =
∫

f (x)dσ(x) a.s.

This result was proved by Wigner for matrices Xn with independent centered entries (mod-
ulo the symmetry constraint) with variance 1/n and finite moments and not only for Gaus-
sian entries. However, the proof of Wigner’s theorem is much less obvious than that of the
classical law of large numbers because the spectrum is a complicated function of the entries
of the matrix. The key point of Wigner was to observe that moments of the empirical mea-
sure of the eigenvalues are more explicit functions of the entries than indicator functions
since, for any integer number k,

(1.7)
1
n

n∑
i=1

λki =
1
n

Tr((Gn)k) =
1
n

n∑
i1,...,ik=1

Gn
i1i2
· · ·Gn

ik i1
.

The expectation and variance of the RHS of (1.7) can be estimated, yielding by Borel-
Cantelli’s lemma the almost sure convergence of traces of moments. Moreover, by the
Weierstrass approximation theorem, the almost sure convergence of the moments (1.7)
implies (1.6) and then (1.4) because the semi-circle law is compactly supported and has
no atoms.

We are also interested in more detailed convergence of the spectrum, for instance,
convergence of the largest eigenvalue λ1. [92] shows that it sticks to the bulk in the sense that
the largest eigenvalue converges almost surely towards 2, the boundary of the support of the
semi-circle law (strictly speaking, [92] assumes that the entries are bounded, but the proof
easily generalizes to sub-Gaussian entries, see e.g [3]). This is analogous to the statement
from classical probability theory that the supremum of independent variables with law µ

converges almost surely towards the upper boundary of the support of µ, except that this is
infinite if the variables are unbounded like the Gaussians.

1.1.3. Fluctuations
The probability to make a small error in the law of large numbers is specified by

the well-known central limit theorem. It asserts that errors are of the order of the square
root of the dimension and fluctuations are Gaussian. More precisely, coming back to the
example of the empirical mean (1.3) of independent variables, it states that, if

∫
|x |2dµ(x)

is finite and we set σ(µ) = (
∫

x2dµ(x) − (
∫

xdµ(x))2)1/2,
√

n
(
mn(x) −

∫
xdµ(x)

)
converges

in distribution towards a centered Gaussian variable with variance σ(µ), so that for every
real number t:

lim
n→∞
P

(
√

n
(
mn(x) −

∫
xdµ(x)

)
≤ tσ(µ)

)
=

∫ t

−∞

e−
x2
2

dx
√

2π
In the context of random matrices, the fluctuations of the eigenvalues are much smaller
and are depicted in Figure 2. The fluctuations of the empirical measure were first studied
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in [134, 137]. We describe below the result obtained by Johansson [130] in the case of the
Gaussian ensembles. He showed that for every sufficiently smooth test function f

(1.8)
n∑
i=1

f (λi) − n
∫

f (x)dσ(x)

converges in distribution towards a Gaussian variable. This Gaussian variable is not centered
in general when β , 2, but both its mean and variance are explicit. The original proof [130]

relies on the explicit joint law of the eigenvalues (1.2) and is far from obvious because of
the strong correlations between the eigenvalues due to the Vandermonde determinant. This
result was generalized to the case of Wigner matrices by using moments estimates [4, 146]

resulting in the universality of the fluctuations within the class of entries with four first
moments equal to the Gaussian ones.

-2   +2

Gaussian Fluctuations of the empirical 
measure of order 1/N (Johansson 97)

Fluctuations of the largest eigenvalue of order
N -2/3 following Tracy Widom distribution 95

Figure 2 Fluctuations of the spectrum. Courtesy of D. Coulette

Remarkably, the fluctuations are of order one over the dimension (since the conver-
gence of (1.8) holds without any normalization): this indicates that the eigenvalues fluctuate
much less than independent variables. This phenomenon was quantified by the so-called
local law [85,86] which asserts that the convergence in Wigner’s theorem (1.4) can be refined
into a quantitative estimate to showing that the number of eigenvalues in a set [a, b] ⊂ (−2,2)
such that b − a � 1/n is still of the order of nσ([a, b]). This can often be improved to get
the rigidity property [84], namely that the eigenvalues in the bulk stay at a distance of order
n−1+o(1) from their deterministic limit.

Fluctuations are not always described by the Gaussian distribution: for instance,
the maximum of independent variables with fast decaying tails follows a limiting Gumbel
distribution. In a breakthrough paper [170], the largest eigenvalue of Gaussian ensembles was
shown to fluctuate on the scale n−2/3 and the fluctuations to be distributed according to the
Tracy-Widom laws. The fluctuations of the eigenvalues inside the bulk are also known and
are in the scale n−1 (see [151] for β = 1, 2). These remarkable results were derived thanks to
the explicit joint distribution of the eigenvalues (1.2). In particular, the case where β = 2 was
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analyzed thanks to the fact that the density is the square of a determinant, allowing for the use
of orthogonal polynomials and integrable systems theory. In a series of major contributions,
these results were shown to hold for Wigner matrices with entries with finite second and
fourth moments respectively[87, 88, 168]. The proofs of these results are sophisticated and
build on comparison with the Gaussian case.

1.1.4. Rare events
The interest in estimating the probability of rare events goes back to Boltzmann,

Gibbs and Shannon who defined the entropy as the logarithm of the volume of config-
urations (or micro-states) achieving a given macro-state. Going back to the coin tossing
example, with a probability p to show heads, a macro-state was defined as the set of con-
figurations such that n tosses give approximately ρn heads, namely the event that mn(x) is
approximately equal to ρ for independent equi-distributed xi with law µp . The volume, or
probability, of such a macro-state is easily seen to be given by

(1.9) lim
δ↓0

lim
n→∞

1
n

lnP (x : |mn(x) − ρ| ≤ δ) = −Sp(ρ) = −ρ ln(ρ/p) − (1 − ρ) ln(
1 − ρ
1 − p

) ,

where −Sp(ρ) is the entropy of ρ. This result can be inferred from counting the configura-
tions and using Stirling’s formula. Large deviations theory is the art of estimating such rare
events in a general framework [72, 73, 77, 174] by proving Large Deviation Principles (LDP)
that we now define. We will hereafter consider a sequence of probability measures (µn)n≥0

on a Polish space E . In this article, we will mainly consider the case where E is the real
line or the set of probability measures on the real line equipped with its weak topology. Let
(an)n∈N be a sequence of non-negative real numbers going to infinity as n goes to infinity.
We say that (µn)n≥0 satisfies a LDP with speed an and good rate function I, denoted in short
LDP(an, I) if and only if

• I : E → R+ has compact level sets {x ∈ E : I(x) ≤ M} for every M ∈ R+,

• For each Borel measurable set B ⊂ E ,

(1.10) − inf
B̊

I ≤ lim inf
n→∞

1
an

ln µn (B) ≤ lim sup
n→∞

1
an

ln µn (B) ≤ − inf
B̄

I .

Taking B to be a small ball B = B(ρ, δ) for some ρ ∈ E and δ > 0 as small as wished (but
independent of n) shows that the LDP allows to estimate the probability of small balls:

µn (B(ρ, δ)) ' e−an I (ρ)

in the sense that for any ρ ∈ E ,

(1.11) lim
δ↓0

lim inf
n→∞

1
an

ln µn (B(ρ, δ)) = lim
δ↓0

lim sup
n→∞

1
an

ln µn (B(ρ, δ)) = −I(ρ) .

Such an estimate is called a weak large deviation principle. By a covering argument, (1.11)
can be shown to be equivalent to the LDP if E is compact or if µn satisfies a property called
exponential tightness [72, (1.2.17)]. An important consequence of the LDP(an, I) is that if the
rate function I vanishes at a single point x∗ ∈ E , then, µn converges weakly towards a Dirac
mass at this point.
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The two most well-known results from the large deviations theory are Cramèr’s and
Sanov’s theorems. Cramèr’s theorem [72] asserts that the distribution of the empirical mean
mn(x) satisfies a LDP with speed n when the (xi)i≥0 are independent equi-distributed real
valued random variables with distribution µ with a finite Laplace transform in a vicinity of
the origin, see (1.9) in the case µ = µp . Sanov’s theorem shows that the law of the empirical
measure 1

n

∑n
i=1 δxi satisfies as well a LDP(n,H(.|µ)), so that for any probability measure ν

(1.12) P

(
d

(
1
n

n∑
i=1

δxi , ν

)
< δ

)
' e−nH(ν |µ)

if d is the distance on the set P(R) of probability measures on the real line defined by

d(µ, ν) = sup
‖ f ‖L ≤1

|

∫
f (x)dµ(x) −

∫
f (x)dν(x)|

where ‖ f ‖L = supx,y |x − y |−1 | f (x) − f (y)| + supx | f (x)| . Here, H(ν |µ) is the relative
entropy: it is infinite unless ν is absolutely continuous with respect to µ and then equals∫

ln dν
dµ dν. The proofs of such theorems are more sophisticated than in the coin tossing

example since they cannot rely on direct combinatorial arguments. They often rather follow
from clever changes of measures (also called tilts) that reveal how the distributions should
be changed to make a given rare event typical. These arguments are very much based on
the independence of the variables (xi)i≥0. Large deviation theory was mainly developed to
tackle the distribution of sums of independent random variables, or of ”weakly” dependent
variables such as Markov chains, or probability measures obtained either by a push forward
or a nice density from the latter, see the work of Cramèr, Varadhan and many others [72,73,81].
This classical theory does not apply to large random matrices in general. Indeed, even if the
random matrices are chosen with independent entries, the spectrum or the eigenvectors are
complicated functions of these entries. We can take the example of the trace of a power of
a matrix, see (1.7): as soon as the power k is higher or equal to 3, it cannot be written as
a sum of independent entries and understanding the large deviations of such functionals for
Wigner matrices is still open in general, see [8, 9] for entries with sharp sub-Gaussian tails
or without Gaussian tails. The case of the Gaussian ensembles is simpler because of the
explicit law of the eigenvalues (1.2). Even if the classical large deviations theory does not
apply to the distribution of the eigenvalues (1.2) because of the strong interaction due to the
Vandermonde determinant term in its density, LDPs were derived in this case to estimate the
probability that the empirical measure of the eigenvalues or the largest eigenvalue deviates
from their typical behavior, see Figure 3.

Theorem 1.2. Let λ1 ≥ λ2 · · · ≥ λn be distributed according to (1.2) for some β > 0. Then

• [25] For µ ∈ P(R), set

E(µ) =
1
2

∫ ∫ (
x2

4
+

y2

4
− ln |x − y |

)
dµ(x)dµ(y)

and E(µ) = E − inf E . Then E is a good rate function. The distribution of
the empirical measure of the eigenvalues µ̂n = 1

n

∑n
i=1 δλi under Pn

β satisfies
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Figure 3 Large deviations of the spectrum with exponentially small probability. Courtesy of D.
Coulette

a LDP(βn2, E), that is for every closed set F

lim sup
n→∞

1
βn2 ln Pn

β (µ̂n ∈ F) ≤ − inf
F
E,

whereas for any open set O

lim sup
n→∞

1
βn2 ln Pn

β (µ̂n ∈ O) ≥ − inf
O
E .

• [23, Theorem 6.2] Let IGOE(x) = 1
2

∫ x

2

√
y2 − 4 dy for x ≥ 2 and IGOE(x) = +∞ for

x < 2. Then the distribution of λ1 satisfies a LDP(βn, IGOE).

Notice that the speed of the LDP for the empirical measure is n2, in contrast with
the speed n in Sanov’s theorem, showing again that the eigenvalues of Gaussian ensembles
are much less random than independent variables. Moreover, it can be seen that E vanishes
only at the semi-circle law, implying Theorem 1.1 (see section 2.1 for more detail). Sim-
ilarly, IGOE vanishes at 2 only, ensuring the convergence of the largest eigenvalue towards
2. The proof of this theorem relies on Laplace’s principle. Indeed, the distribution of the
empirical measure of the eigenvalues and of the largest eigenvalue can be seen to have
approximately the density e−βn

2E(µ̂n)/Zn and e−βnIGOE(λ1)/zn where Zn, zn are appropriate
normalizing constants. The theorem would follow by the Laplace principle if E and IGOE

were continuous. The main point is to make the above approximations precise and to show
that, even though E is not continuous (because the logarithm is not bounded), the result is
still valid.

One of the main goals of this article is to discuss how to generalize this theorem. For
instance, how can it be extended to generalWigner matrices? In this case, no explicit formula
for the law of the eigenvalues such as (1.2) is known. On the other hand, the LDP a priori
depends on the whole distribution of the entries as in the case of Sanov’s theorem, contrarily
to fluctuations which often depend mainly on a finite number of moments. Such universal
classes are not expected in large deviations theory. Even conjecturing the rate functions for
such LDPs is not clear. LDPs were also obtained for other invariant models such as Wishart
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or unitary matrices [125] or non-Hermitian Gaussian matrices [28], but the distribution of
their eigenvalues all enjoy a rather explicit form. LDPs for Gaussian random matrices with
independent centered entries but variance different from those of the Gaussian ensembles
are also still open, see [105] for large deviation upper bounds. We will see that other invariant
matrix models, such as models involving several matrices, remain very challenging as well.

Large deviations theory is key to study laws of dependent variables such as Boltzmann-
Gibbs distributions in statistical mechanics. They are probability measures of the form

(1.13) dµnβ(x) =
1

Zn
β

e−βnEn(x)dµ0
n(x)

where En is a function from the space of states (for instance Rn) into R, often called the
energy or the Hamiltonian, β is a real parameter proportional to the inverse of the tempera-
ture, µ0

n(x) is some reference probability measure and Zn
β is the so-called partition function,

namely the constant which turns µnβ into a probability measure. The properties of such mea-
sures when the dimension n goes to infinity are better understood when the distribution of
En(x) under µ0

n(x) satisfies a LDP(n, I). The typical values of the energy can then be inferred
from the fact that for every y ∈ R

µnβ (x : |En(x) − y | < δ) '
1

Zn
β

e−βny−nI (y)+nO(δ)

from which it is clear that En(x) concentrates in a neighborhood of the minimizers of Iβ(y)=
βy + I(y) with large probability when n goes to infinity. Varadhan’s integral Lemma [72,

Theorem 4.3.1] states more precisely that the distribution of En under µnβ satisfies a LDP(n, Iβ −
inf Iβ). This type of analysis often holds for the so-called mean field interacting systems
that are distributions such that all variables interact in the same way, for instance, where
the energy En(x) is a function of the empirical mean mn or of the empirical measure. A
celebrated example is the Curie-Weiss model where En is a quadratic polynomial in the
empirical mean mn and dµ0

n =
∏n

i=1 dµp . The LDP for this model can be proven as above,
as well as the convergence of the empirical mean towards the minimizers of the rate function.
It can be shown that this minimizer is unique, equals zero for small enough β, but takes a
non zero value after some critical βc . This provides a simple example of phase transition
known as spontaneous magnetization. Such applications are also important in RMT when
studying matrix models, see section 1.2.4.

We present in the rest of this introduction a few additional motivations for the study
of large deviations for large random matrices, as well as extensions to related fields. We will
then review the main results of this emerging field, focusing first on large deviations for the
spectrum of one randommatrix, and then on multi-matrix models where non-commutativity
raises new challenges. Along the way, we highlight a few open problems.

1.2. Motivations
In this section, we discuss a few additional motivations to establish large deviation

principles in random matrix theory.
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1.2.1. Bernoulli matrices
Matrices with entries equal to zero or one can be interpreted as the adjacency matrix

of random graphs where the entry at (i j) is equal to one iff there is an edge between the ver-
tices i and j. In particular, Random matrices with independent Bernoulli entries are the
adjacency matrix of Erdös-Rényi graphs. The spectrum of the adjacency matrix of a graph
is intimately related to the graph’s geometric properties, such as being an expander. More-
over, traces of moments count particular subgraphs, for instance, the trace of the adjacency
matrix to the third power counts the number of triangles in the graph. Understanding how a
random graph looks like when a rare event happens is a natural question [59]. As we will see,
studying the large deviations for the spectrum of matrices with non Gaussian entries such as
Bernoulli’s is far more difficult, basically because the law of the eigenvalues is not given by
an explicit distribution as in (1.2). In particular one needs to understand more precisely the
best scheme to perform a given large deviation event.

1.2.2. The BBP transition
The largest eigenvalue is often used to test whether an array of data contains infor-

mation, just by comparing it with the largest eigenvalue of an array taken at random. Even
though such applications involve usually non symmetric matrices and their singular val-
ues, the famous Wishart matrices in RMT [183], we stick to Wigner matrices in this article
for consistency. The renowned BBP transition [14] asserts that the largest eigenvalue of a
random matrix perturbed by a finite rank signal pops out of the bulk at a critical value of
the intensity of the signal (more precisely of its largest eigenvalue), above which the weak
recovery of the signal u from the observation of the perturbed signal is possible [30]. The
large deviations for the largest eigenvalue have then been used in statistics to assert the risk
of statistical tests [34]. In the related problem of estimating a low rank tensor in Gaussian
noise [27] requires large deviations for the largest eigenvalue of a rank one perturbation of a
Gaussian matrix, which were derived in [111,147].

1.2.3. The complexity of random functions
The interest in optimizing random functions grew in the last ten years from its

relevance to deep learning, building on its importance in spin glass theory. However, random
functions in high dimensions are complex in the sense that they have many local minima and
finding their global minima may be a complicated task, in fact, an NP-hard problem. In the
last ten years, the study of the complexity of random functions grew into a field on its
own, for instance, allowing to estimate the expectation of the number of local minima of
a random function with a given index and level. Such estimates are based on Kac-Rice
formula. Because the Hessian of a random function can be seen as arandom matrix, the
large deviations for the latter are crucial to getting such estimates [6,22,24,27,60,96,167].
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1.2.4. Random matrices and the enumeration of maps
The relation between random matrices and the enumeration of maps goes back to

[79,123,169] where it was proved that if Gn follows the GUE, then for every integer number k

E[
1
n

Tr((Gn)2k)] =
∑
g≥0

1
n2g Mg(k)

where Mg(k) is the number of ways to glue the sides of a 2k-polygon in pairs such that the
resulting surface has genus g. The counting is made after labeling the sides clockwise, or
equivalently after drawing the polygon on an orientable surface with a distinguished root
side. Maps are the same only if all the matchings occur between sides with the same labels.

Figure 4 Gluing of 4 triangles and 1 square. Corners of the same color belong to the same vertex of
the map in the final surface. Courtesy of G. Miermont

This relation between maps and random matrices extends to several polygons, see
Figure 4, if one considers the distribution

(1.14) dPnV,2(X
n) =

1
Zn
V,2

e−nTr(V (Xn))dPn2 (X
n)

for some potential V . Here, V(Xn) is defined as the matrix with the same eigenvectors than
Xn and eigenvalues given by the image by V of the eigenvalues of Xn. The measure Pn2
denotes the law of the GUE (1.1) and the constant Zn

V,2 is the normalizing constant so that
Pn
V,2 is a probability measure. We will assume that V is a polynomial, V(x) = −

∑p
i=3 ti xi ,

with p even and tp < 0 so that (1.14) makes sense. It was shown [79,169] that

(1.15) Fn
V,2 =

1
n2 lnZnV,2 =

∑
g≥0

1
n2g

∞∑
k1, · · · ,kp=0

∏
1≤i≤p

tkii
ki!

Mg((ki, i)1≤i≤p) ,

where Mg((ki, i)1≤i≤p) denotes the number of ways to glue pairwise the sides of ki polygons
with i sides, 1 ≤ i ≤ p, and get a connected two dimensional surface of genus g. The counting
is done with labeled sides. Equivalently, we can think of a polygon with i sides as a vertex
with i half-edges drawn on an orientable surface. Mg((ki, i)1≤i≤p) then counts the number of
maps, that is the number of connected graphs drawn on a surface, built by matching the half-
edges of ki vertices with i half-edges, 1 ≤ i ≤ p. Half-edges are labeled. The genus of the
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map is the genus of the surface in which the graph can be properly embedded, which is such
that the faces, obtained by cutting the surface along the edges of the map, are homeomorphic
to disks. It can be computed from the fact that the Euler characteristic 2 − 2g is equal to the
number of vertices minus the number of edges plus the number of faces.

Observe also that making a small change V→V + δx` in (1.14), and identifying the
linear term in δ, shows that

(1.16)
∫

1
n

Tr((Xn)`)dPnV,2(X
n) =

∑
g≥0

1
n2g

∞∑
k1,...,kp=0

∏ tkii
ki!

Mg((ki, i)1≤i≤p, (1, `)) ,

where (1, `) means that the maps contain an additional polygon with ` sides, also called
external face. A priori, (1.15) and (1.16) are equalities of formal series. They are obtained by
expanding all the terms depending on V and using Wick formula (or equivalently Feynman
diagrams) to compute the resulting Gaussian expectations. These equalities can be turned
into an asymptotic expansion up to errors of order n−2k for any integer number k as soon
as the parameters ti, 1 ≤ i ≤ p, are small enough, p is even and with tp > 0 [83]. Therefore,
computing the large n limit of the free energy Fn

V,2 or the limit of the empirical measure
of the spectral measure of the eigenvalues allow to effectively enumerate planar maps. This
route was followed in [79] where random triangulations and quadrangulations were studied,
corresponding to cubic and quartic polynomials. Note that, in the first case, p is odd and
Zn
V,2 a priori infinite but the above relations can be generalized by restricting the integration

to matrices with spectral radius bounded by a large enough constant. Such computations can
be done more generally by using large deviations theory [106,113].

1.2.5. Beta-ensembles
A change of variables shows that the eigenvalues ®λ = (λ1, · · · , λn) of Xn following

Pn
V,2 of (1.14) are distributed according to the distribution Pn

1
2 x

2+V,β
where

(1.17) dPn
V,β(
®λ) =

1
Zn
V,β

∆( ®λ)βe−
βn
2

∑n
i=1 V (λi )

∏
dλi ,

and β = 2. The case β = 1 corresponds to symmetric matrices and β = 4 to quaternionic
entries. We only considered the case β = 2 in the previous section because the combinatorial
interpretation of the other cases is less clear in general, see e.g. [55,104,141] for β = 1. In fact,
Pn
V,β makes sense for any β > 0 and is called a Beta-ensemble. Equation (1.17) furnishes

a classical example of particles in strong interaction belonging to the family of Coulomb
gases in dimension 1, see e.g. [28, 161] for higher dimensions. Large deviations are useful in
analyzing the limiting distribution of the particles.

Equation (1.17) also provides another route to estimate the asymptotics of the free
energy Fn

V,2 or of the empirical measure of the matrix models (1.14) and hence study the
enumeration of maps, as proposed in [79] to complement Tutte’s combinatorial approach
[172].
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1.2.6. Multi-matrix models and the enumeration of maps
Equation (1.15) generalizes to colored maps for matrix models of the form

(1.18) dPnV,2(X
n
1, . . . ,X

n
d) =

1
Zn
V,2

e−nTr(V (Xn
1 ,...,X

n
d
))− n

2 Tr(
∑
(Xn

i )
2)dXn

1 · · · dXn
d

where V is a self-adjoint polynomial going to infinity fast enough. If V(a1, . . . , ad) =

−
∑p

i=1 tjqj(a1, . . . , ad) with monomials qj , then [79,169] show that

(1.19)
1
n2 logZnV,2 =

∑
g≥0

1
n2g

∞∑
k1...kp=0

∏
1≤i≤p

(ti)ki

ki!
Mg((ki, qi)1≤i≤p)

where Mg((ki, qi)1≤i≤p) counts maps with genus g built over ki colored polygons of type
qi . A colored polygon of type q = ai1 · · · aik is a polygon drawn on an orientable surface so
that its first side has color i1 ∈ {1, . . . ,m} (the root), second has color i2 until the last one
has color ik . Maps are constructed by matching sides with the same color and counting is
done with labeled sides. Note that a colored polygon is in bijection with a rooted vertex with
ordered colored half-edges and maps are then obtained by matching half-edges of the same
color. Even though this equality holds a priori at the level of formal power series, it can be
turned into an asymptotic expansion [113]. This equality allows to represent many physical
models in terms of random matrices, such as the Ising model or the Potts model on random
maps [45, 89]. Multi-matrix integrals turn out to be much more difficult to estimate than one
matrix integrals, basically because non-commutativity kicks in. This fact is not surprising
given the complicated combinatorial questions that they eventually represent. We will see in
section 3 that the case of the so-called AB interaction is better understood than the general
case discussed in section 4.

Ising model on the lattice                Ising model on random graphs

1.2.7. Multi-matrix models and Voiculescu’s entropy
One of the most challenging goals in studying large deviations for random matrices

was provided by Voiculescu [176, 178] in the nineties when he defined notions of entropy in
the context of free probability. Free probability is a probability theory where random vari-
ables do not commute and the notion of independence is replaced by freeness. A central
point in free probability theory is that Gaussian random matrices are free variables in the
limit where their size goes to infinity [175]. Free probability is intimately related to von Neu-
mann algebras and Voiculescu’s hope was to define an invariant for von Neumann algebras
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to classify them. His ideas were inspired by Minkowski content and entropy in classical
probability theory. Voiculescu micro-states entropy can be seen as a generalization of Shan-
non’s entropy as it measures the volume of matrices which approximate in a weak sense a
given set of non-commutative random variables. In the case of a single variable, the non-
commutative entropy is roughly speaking given by the rate function of the large deviation
principle for the law of the empirical measure of the eigenvalues of Gaussian ensembles
in Theorem 1.2 [178]. Understanding better Voiculescu’s entropies would have groundbreak-
ing applications in von Neumann algebras theory. Moreover, random matrices can serve to
construct interesting non-commutative laws, see e.g [110]. We discuss these issues in section
4.

1.3. Extensions
Beta-ensembles and random matrices are connected with many other fields, of

which we describe briefly a few below, see e.g [2,94] for more.

1.3.1. Beta-ensembles and quantum physics
Beta-ensembles and Coulomb gases arise in many domains of physics, including

condensed matter physics, statistical physics or quantum mechanics, we refer to [161] for
a survey including higher dimension generalization. Variants of Beta-ensembles involving
hyperbolic Vandermonde determinants appear in quantum integrable models solvable by
the quantum separation of variables method, such as the Toda chain [136] or the lattice Sinh-
Gordon model [144]. Such integrals then correspond to normalizations of the n-particles
wave functions and, more generally, to matrix elements of local operators. Some of their
large-n properties were investigated in [42]. Furthermore, integrals similar to Beta-ensembles
but having more general interactions with the same singularity arise in the form factor
expansions of Wightman functions in massive integrable quantum field theories in 1+1
dimension[164]. The large deviation techniques discussed in this article allow to estimate
such integrals.

1.3.2. Random tilings

Beta-ensembles extend to the discrete case. They then model the distribution of hor-
izontal lozenge tiles in a lozenge tiling taken at random. Indeed, consider discrete ensembles
given for a weight function w by:

(1.20) Pn
w(
®̀) =

1
Zωn

∏
i< j

|`j − `i |
2
∏
i

w (`i, n)

The coordinates `1, . . . , `n are discrete and such that `i+1 − `i ∈ N
∗. This probability measure

arises in the setting of lozenge tilings of domains such as the hexagon. In fact, considering
an hexagon with sides of size A, B,C, along the vertical line at distance t of the vertical side
of size A (see Figure 5), the distribution of horizontal lozenges corresponds to a potential of
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B C

t

Figure 5 Tiling of the hexagon. Courtesy of L. Petrov and V. Gorin

the form

(1.21) w(`, n) =
[
(A + B + C + 1 − t − `)t−B (`)t−C

]
,

where (a)k = a(a + 1) · · · (a + k − 1) is the Pochhammer symbol, and n is the total number
of horizontal lozenges. Large deviations can be used to describe the limiting surface of the
tiling when n goes to infinity, for instance, recovering the limiting well-known arctic circle,
see e.g [61,162] for large deviations of the whole surface. The measure in (1.20) corresponds
to β = 2 ensembles, but can be generalized to all β > 0, see [40].

1.3.3. Zeroes of Random polynomials
The distribution of zeroes of random polynomials also follows a kind of Beta-

ensembles distribution: this connection was used in [185] to study large deviations for the
distribution of such zeroes. In the same direction, [102] studies the topology of a random
real hypersurface in a given smooth real projective manifold by estimating the mean of their
Betti numbers thanks to large deviation principles. Such questions are closely related to the
study of the complexity of random functions discussed in section 1.2.3.

1.3.4. Longest increasing subsequence and discrete polynuclear growth
Beta-ensembles also describe the distribution of the discrete polynuclear growth

and the length of the longest increasing subsequence of a permutation taken at random, a
relation which allowed to study precisely the fluctuations and the large deviations of these
models. It was shown in [131] that the distribution of the length of the longest increasing
subsequence of a permutation of n elements taken uniformly at random is closely related
with Beta-ensembles. This formed the basis for the evaluation of the fluctuations of the
longest increasing subsequence in [15]. In [132], the distribution of the discrete polynuclear
growth given by

G(M, N) = max
π

∑
(i, j)∈π

w(i, j),
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where π is a up-right path from (0, 1) to (M, N), was shown to be intimately related with
a discrete Beta-ensemble when the w are independent equi-distributed geometric variables.
These connections with random matrices allowed to study large deviations [17,18,74,133,160].

1.3.5. Sum rules
[97,98] found out that equating large deviations rate functions in random matrix the-

ory was also fruitful in getting a deep understanding of the sum rules of Killip and Simon
[138], also called GEM relations in spectral theory. The latter states highly non trivial equal-
ities between different functionals on the space of measures. [97, 98] interpreted both sides
of the equalities as rate functions for the large deviations for the spectral measure given by
µ̂ne ( f ) = 〈e, f (Gn)e〉 for a deterministic unit vector e (and a GOE/GUE matrix Gn). Indeed,
one can take two different routes to compute the probability of deviations of this spectral
measure: either by relating it to the spectrum of Gn or to the recursion relations of the asso-
ciated orthogonal polynomials. Equating the resulting rate functions allows to recover the
sum rules of [138] and prove new sum rules. Even the fact that both sides of these equalities
are finite at the same time is surprising, see [48] for a pedagogical introduction.

1.3.6. Gibbs ensembles for Toda lattice
Recently, the interest in tri-diagonal matrices was revived by Spohn [165, 166] who

related them with the Toda lattice. The latter is described by the evolution of n particles with
position qj and momentum pj satisfying

∂tqj = pj, ∂tpj = e−rj − e−rj−1

where rj = qj − qj−1 and the periodic boundary conditions qj+n = qj + cn. We consider the
Lax matrix Ln which is the self-adjoint tri-diagonal matrix with entries pj on the diagonal
and Ln( j, j + 1)= Ln( j + 1, j)= e−rj /2 with periodic boundary condition. It is easy to see that
for any function V , Tr(V(Ln)) and

∑
rj are left invariant under the dynamics so that natural

invariant measures, called generalized Gibbs measures for the Toda Lattice, are given by

(1.22) dTnV,P(p, r) =
1
Zn,TV,P

exp{−Tr(V(Ln))}

n∏
i=1

e−Pri dridpi

where Zn,TV,P is the partition function of the Toda Gibbs measure:

(1.23) Zn,TV,P =

∫
exp{−Tr(V(Ln))}

n∏
i=1

e−Pri dridpi .

The goal is then to characterize the limiting spectrum of the Lax matrix under TnV,P . Spohn
related this problem with the Beta-ensembles, hence allowing to describe rather explicitly
the equilibrium measure of this model. When V(x) = x2, we see that Ln is a tri-diagonal
matrix with standard independent Gaussian variables on the diagonal and independent chi
distributed variables with a fixed degree on the off-diagonal, allowing comparisons with the
Beta-ensembles thanks to [76]. This also led to LDPs [113] and convergence for a wider set
of potentials V .
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2. One matrix models
In this section, we discuss the main large deviations results encompassing only one

matrix. We start with the invariant ensembles and more generally Beta-ensembles. We then
discuss Wigner matrices.

2.1. Beta-ensembles
The Beta-ensembles are defined in (1.17). As in the Gaussian case of Theorem 1.2,

they are amenable to a large deviation analysis and we have the following more general
statement.

Theorem 2.1. [25] Let V be a continuous function going to infinity at infinity faster than
ln |x |. For a probability measure µ on R set

EV (µ) =
1
2

∫ ∫
(V(x) + V(y) − ln |x − y |) dµ(x)dµ(y)

and EV (µ) = EV (µ) − inf EV . Then EV is a good rate function and the distribution of the
empirical measure of the eigenvalues under Pn

V,β satisfies a LDP with rate function EV and
speed βn2. In particular the free energy 1

βn2 ln Zn
V,β converges towards − inf EV .

This theorem implies the almost sure convergence of the empirical measure of the
eigenvalues as EV vanishes at a unique probability measure µV . Indeed, EV is strictly convex
on the space of probability measures [158] because it is equal to the sum of a linear functional
µ→

∫
Vdµ and a strictly convex function since for any probability measures µ, µ′ on the

real line

−

∫
ln |x − y |d(µ − µ′)(x)d(µ − µ′)(y) =

∫ ∞

0

1
t

����∫ eitxd(µ − µ′)(x)
����2 dt ≥ 0 f .

This ensures the uniqueness of the minimizers of EV and hence the following corollary.

Corollary 2.2. [25, 158] Let V be a continuous function going to infinity at infinity faster
than ln |x |. Then, µ̂n converges almost surely towards a distribution µV which is the unique
probability measure µ such that there exists a constant C such that for every x ∈ R,

Veff(x) := V(x) −
∫

ln |x − y |dµ(y) − C ≥ 0,

with equality µ almost surely.

It is easy to see that Veff goes to infinity under our assumptions and hence µV

has compact support. The case when the potential satisfies a weaker growth assumption is
different [122]. A LDP can also be proven for the extreme eigenvalues in the sense that the
probability that some eigenvalue goes away from the support of the equilibrium measure
decays exponentially fast ifVeff is positive there [3,23,39,41]. It was shown [91] that, conversely,
if the effective potential is not strictly positive outside of the support of the limiting measure,
eigenvalues may deviate towards the points where it vanishes.
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Theorem 2.3. Let S be the support of µV . Assume that Veff is positive outside S and V is
C2. Then, for any closed set F in Sc

lim sup
n→∞

1
βn

ln Pn
V,β(∃i ∈ {1, n} : λi ∈ F) ≤ − inf

F
Veff ,

whereas for any open set O ⊂ Sc

lim inf
n→∞

1
βn

ln Pn
V,β(∃i ∈ {1, n} : λi ∈ O) ≥ − inf

O
Veff .

An important question, both in physics and for the applications to map enumera-
tions, is to understand the phase transitions for these models. It can be seen that this often
occurs when the support of the equilibrium measure changes (or its density vanishes).

Remark. Theorem 2.1 can be extended to the case where β goes to zero with n [101]. If βn
goes to a finite constant P > 0, the speed of the LDP is n and the rate function contains a
new entropy term coming from Sanov’s theorem.

But what can we say about the large deviations for the traces of moments ? Because
polynomials are unbounded functions, this is not implied by Theorem 2.1. In fact, such large
deviations are mainly due to the deviations of the extreme eigenvalues [97,98] and their speed
depends on the moment. The following result was obtained in [9].

Theorem 2.4. Let V(x) = c |x |α + v(x) where α ≥ 2, c > 0, v is convex and v(x)/|x |α goes
to zero at infinity. Then, for any β > 0, any p > α, the law of n−1 ∑n

i=1 |λi |
p under Pn

V,β

satisfies a LDP(n1+ αp , Ip,α) where Ip,α is infinite if x < µV (y
p) and otherwise is given by

Ip,α(x) =
β

2
c(x − µV (yp))α .

In section 1.3.5, we have seen that LDPs for the spectral measure, given for a deter-
ministic vector e as the probability measure µ̂en such that

µ̂en( f ) = 〈e, f (Gn)e〉 =
∑

f (λi)〈e, vi〉2

are also interesting. They depend a priori on the large deviations of the whole spectrum and
of the scalar products (〈e, vi〉2)1≤i≤n, while the empirical measure of the eigenvalues stays
close to the semi-circle law with overwhelming probability. Because Gn follows the Gaus-
sian ensembles, the distribution of the spectral measure does not depend on e. Interestingly,
the rate function depends on the "reverse relative entropy”, see [100, 145] for related works.
This yields the following result, see [99] for general Beta-ensembles.

Theorem 2.5. [97]The distribution of µ̂en satisfies a LDP(βn, J) where J(µ) is infinite
unless there exists a non-negative measure ν and countably many atoms {Ei}i∈N such that
µ = ν +

∑
i>0 αiδEi , αi > 0, and then

J(µ) = H(σ |ν) +
∑
i>0

IGOE(|Ei |)

where H(σ |ν) is the relative entropy of the semi-circle law σ with respect to ν and IGOE is
the rate function for the largest eigenvalue of the GOE, see Theorem 1.2.
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We have also seen in sections 1.2.3 and 1.2.2 that large deviations for rank one
perturbations of Gaussian matrices appear naturally in statistics. It is not hard to see that
the law of the eigenvalues of the perturbed matrix Yn = Gn + θeeT is absolutely continuous
with respect to the law of Gn and with density given by the spherical integral. The spherical
integral evaluated at a n × n self-adjoint matrix An and a real parameter θ is given by

(2.1) Inβ (A
n, θ) := Ee[e

nβ
2 θ 〈e,Ane〉] ,

where the expectation holds over the vector e which follows the uniform measure on the
sphere in Cn if β = 2 and Rn if β = 1. The spherical integral An → Inβ (A

n, θ) is an eigen-
function of the Laplacian which only depends on the eigenvalues of An. It appears as a
natural Laplace transform in RMT and, as such, plays a key role in many large deviations
questions. In particular, large deviations for the extreme eigenvalues of Yn are based on
asymptotic estimates for these integrals. We discuss spherical integrals for matrices with
higher rank in section 3.

Theorem 2.6. • [111] Let An be a sequence of n × n self-adjoint deterministic
matrices whose largest eigenvalues converge towards ρ whereas the empirical
measures of their eigenvalues converge weakly towards µA. Then, for any θ ≥ 0,
there exists a finite constant J(µA, ρ, θ) such that

(2.2) lim
n→∞

1
βn

ln Inβ (A
n, θ) = J(µA, ρ, θ) .

• [147] For any unit vector u and if Gn follows the GUE or GOE, the law of the
largest eigenvalue of Gn + θuu∗ satisfies an LDP with speed βn and rate function
x → IGOE(x) − J(σ, x, θ) − inf{IGOE − J(σ, ., θ)}.

Idea of proof 2.1. Again, the density of the eigenvalues of a rank one deformation of a
Gaussian matrix is given by the spherical integral in (2.2) so that Laplace’s principle and
(2.2) gives the result . The estimation of spherical integrals can itself use the representation
of the uniform law on the sphere by Gaussian variables [111], or in terms of Dirichlet laws
[109] or in terms of Schur functions [103]. The limit J(µA, ρ, θ) is explicit and depends on ρ
only for θ large enough.

Open Problems 2.7. Theorems 2.6 and 2.5 are restricted to invariant ensembles: general-
ize them to non invariant matrix ensembles such as random matrices with bounded entries.

In the last part of this section we outline the relation of LDPs with the local fluctu-
ations of the spectrum. As we stressed in the introduction, fluctuations and large deviations
are a priori different concepts. However, they were shown to be associated in RMT in two
different ways. First, the tails of Tracy-Widom laws were demonstrated to be intimately
related to the rate function of the largest eigenvalue [43, 71] (where the probability that the
largest eigenvalue takes a value strictly smaller than two is given by the large deviations for
the empirical measure, which then cannot converge to the semi-circle law). The fluctuations
of the eigenvalues inside the bulk could also be described by an LDP in [140]. To do so, the
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authors considered the finite configuration around E given by the non-negative measure on
R:

®Xn(E) =
n∑
i=1

δn(λi−E) .

From [173], we know that the finite configuration converges vaguely almost surely inside the
bulk when V is quadratic (see [19, 20, 46, 47] for extensions to general V). In other words, for
any integer number p and any compactly supported bounded continuous function f ,

1
2s

∫ s

−s

du
∫

f (x1, . . . , xp)d ®Xn(E + u)(x1)d ®Xn(E + u)(x2) · · · d ®Xn(E + u)(xp)

converges almost surely as n goes to infinity and s goes to zero with n slowly enough for
any E ⊂ (−2, 2). To state large deviations, [140] considers the tagged empirical field given for
Σ ⊂ R by the following probability measure on the space of non-negative measures:

Empn( ®Xn)(Σ) :=
1
|Σ |

∫
Σ

δ
E, ®Xn(E)

dE .

Empn( ®Xn)(Σ) converges vaguely almost surely towards the so-called Sine-Beta process if Σ
has size going to zero, but |Σ | is much bigger than 1/n. [140] proves the following LDP.

Theorem 2.8. [140] The distribution of Empn( ®Xn) satisfies a large deviation with speed n
for the vague topology.

The rate function is the sum of the relative entropy with respect to the Poisson law
and a complicated term coming from the Coulomb interaction. Even though it is not very
explicit, it was proved in [82] that it achieves its minimal value at a unique point for every
β > 0, hence providing another characterization of the Sine Beta process.

Open Problems 2.9. • In higher dimensions, Theorem 2.8 also holds for Coulomb
and Riesz gases [140] but the uniqueness of the minimizers of the rate function is
still unknown.

• It would be interesting to characterize as well the Airy process describing the
fluctuations at the boundary by an LDP, for which one should first understand
how to generalize the notion of tagged empirical field. It would also be interesting
to relate the large deviations for the KPZ equation [143,171] with large deviations
of the eigenvalues, see [68] for heuristics.

2.2. Wigner matrices
We recall that a Wigner matrix Xn is a n × n matrix with independent centered

entries above the diagonal with variance 1/n. Wigner’s theorem [182] and Kómlos-Füredi’s
theorem [92] apply in great generality.

Theorem 2.10. [13,142] Assume that the family ((
√

nXn
ij)

2)i≤ j is uniformly integrable. Then,
almost surely, for any a < b,

lim
n→∞

1
n

#{i : λi ∈ [a, b]} = σ([a, b])
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Moreover, if there exists ε > 0 such that

(2.3) Bε := sup
n∈N

sup
(i, j)∈{1, · · · ,n}2

E[|
√

nXn
ij |

4+ε ] < ∞,

the largest eigenvalue of Xn converges to 2 almost surely.

When the entries do not have a finite variance, for instance, have alpha-stable dis-
tribution, the limiting distribution of the spectrum differs [26, 29, 44, 184] and the extreme
eigenvalues go to infinity because of the presence of large entries in the matrix [7].

The large deviations of the spectrum of Wigner matrices is still poorly understood
in many cases, for instance, when the entries

√
nXn

ij of the matrix are bounded. In this case
we expect the large deviations for the empirical measure to have the same speed n2 than for
Gaussian matrices because of concentration results [118], but no LDP was derived. These
large deviations questions are related to a new large deviation theory called non-linear large
deviations [10,58,66,80]which allows one to analyze large deviations for functions of indepen-
dent variables whose gradient have low complexity (in a certain sense). Understanding large
deviations for Wigner matrices remain a challenge because, as we will see, large deviations
are often created both by events that have low entropy (like a few large entries in the matrix)
coupled with high entropy events (like changing a little all entries), a combination that so
far resisted a systematic approach. We start our journey in the LDPs for Wigner matrices by
the breakthrough paper [36] which tackled the case when the tail of the entries decays slower
than the Gaussian. Assume that for some α ∈ (0, 2), there exists a > 0 so that for every i, j

lim
t→∞

2−1i= j t−α lnP(|
√

nXn
ij | ≥ t) = −a

Theorem 2.11. • [36] The law of the empirical measure satisfies a LDP with speed
n1+ α2 , and rate function Eα which is infinite except at probability measures given
by the free convolution σ � ν of the semi-circle law and a probability measure ν.
It is then equal to a

∫
|x |αdν(x).

• [8] The law of the largest eigenvalue satisfies a LDP
(
n
α
2 ,C(α)

(∫
dσ(y)
·−y

)−α)
.

Above, µ � ν denotes the free convolution of µ and ν, see section 4.3.

Idea of proof 2.2. Large deviations are here created by making a few large entries of order
one to create a large eigenvalue and O(n) large entries to change the empirical measure, the
rest of the matrix behaving like a typical Wigner matrix.

The large deviations for sparse matrices are also partly understood, in particular
if one considers the eigenvalues of the adjacency matrix of Erdös-Rényi graphs where an
entry is equal to one with probability p/n, and to zero otherwise. In this case, [37] gives an
LDP for the empirical measure with speed n. Moreover the largest eigenvalues go to infinity.
When ln(1/np) � ln n and np�

√
ln n/ln ln n, [33] proves an LDP with respect to the typical

behavior.
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Open Problems 2.12. Prove LDPs for Wigner matrices with heavy tails (such as α-stable
laws). We expect the LDPs for the empirical measure to have speed n, following the concen-
tration of measures estimates of [38].

Recently, there was some progress in understanding the large deviations properties
of the largest eigenvalue of Wigner matrices with compactly supported or sub-Gaussian
entries. Surprisingly, it turns out that they are universal for the so-called sharp sub-Gaussian
entries, that is entries whose laws Pi j satisfy for every real number t

(2.4) ln
∫

etxdPi j(x) ≤
t2

2
if the entries are real (and if they are complex, we assume the real and imaginary parts
independent and the bound (2.4) holds for both real and imaginary parts). This is the case
of Rademacher entries Pi j =

1
2δ−1 +

1
2δ+1 and the uniform measure on [−

√
3,
√

3]. We tune
the variances of the entries so that they are the same as in the Gaussian ensembles. We then
have, see [108],

Theorem 2.13. Let Xn be a Wigner matrix with sharp sub-Gaussian entries. Then the law
of the largest eigenvalue satisfies a LDP with speed βn and the same rate function IGOE than
in the Gaussian case.

More generally, assume that the entries are sub-Gaussian:

A := sup
i j

sup
t∈R

2
t2 ln

∫
etxdPi j(x) ∈ [1,+∞) .

Then there is a transition in the LDP if A > 1:

Theorem 2.14. [11] Under some technical hypothesis, there exists 2 ≤ x1 ≤ x2 < ∞ and a
good rate function Iµ such that for x ∈ [2, x1] ∪ [x2,∞)

lim
δ↓0

lim inf
n→∞

1
n

lnP (|λ1 − x | ≤ δ) = lim
δ↓0

lim sup
n→∞

1
n

lnP (|λ1 − x | ≤ δ) = −βIµ(x) .

Moreover Iµ(x) ' x2

4A when x goes to infinity whereas Iµ(x) = IGOE(x) when x ≤ x1. Fur-
thermore, for A ∈ (1, 2) we can take x1 = (A − 1)1/2 + (A − 1)−1/2 > 2.

This result shows a transition where the ”heavy tails” created by a A > 1 kicks in.
It is related to the optimal way to create these large deviations: for small enough values, the
best way to create large deviations is delocalized, meaning that one better changes a bit all
the entries of the matrix, whereas for very large deviations one better changes one or o(n)
entries. This is also related to a transition between a localized or a delocalized eigenvector.
Unfortunately, the same kind of universality does not hold for the empirical measure and
we do not expect to have a universal rate function. For instance, the probability that the
empirical measure of the eigenvalues of a Wigner matrix with Rademacher entries is close
to a Dirac mass at 0 is bounded below by (1/2)n2 , the probability that all entries equal +1,
whereas the Gaussian rate function is infinite at any Dirac mass. This non-universal behavior
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persists also in examples with entries possessing a density, and thus contrasts with the large
deviations for the empirical measure of the zeroes of random polynomials [50].

Open Problems 2.15. • Prove a LDP for the empirical measure of the eigenval-
ues of a Wigner matrix with Rademacher entries, or more generally any Wigner
matrix with sub-Gaussian tails (which is not Gaussian).

• Complete the LDP for the extreme eigenvalues of Wigner matrices with sub-
Gaussian entries and understand the localisation of the eigenvectors for the
extreme eigenvalues conditionally to their large deviations.

Large deviations for traces of moments are also interesting, see [10] for LDPs of
traces of moments of Wigner matrices with sharp sub-Gaussian tails such as Rademachers.
It can also be relevant in combinatorics to consider traces of moments of random matrices
with Bernoulli entries. If one considers the matrix Bn with Bernoulli entries of mean p,
Tr((Bn)3) is the number Tn,p of triangles in the Erdös-Rényi graph. Observe that its expec-
tation is of order p3n3. In [59], it was proved that:

Theorem 2.16. Let

Ip( f ) = sup
h

{∫ 1

0

∫ 1

0
f (x, y)h(x, y)dxdy −

1
2

∫ ∫
log

(
pe2h(x,y) + (1 − p)

)
dxdy

}
and set ϕ(p, t) = inf{Ip( f ),

∫
f (x, y) f (y, v) f (v, x)dxdydv ≥ 6t}. Then for each p ∈ (0, 1)

lim
n→∞

1
n2 logP

(
Tn,p ≥ tn3

)
= −ϕ(p, t) .

Wigner matrices assume that all entries are taken at random but it is in many cases
more relevant to consider band matrices, for instance, to reflect the notion of neighbors
and geometry of the underlying space. The most common model under consideration are
matrices with independent centered entries but with non trivial variance profile (σi, j)1≤i, j≤n,
for instance, σi j = 1 |i−j | ≤WW−1 with W going to infinity with the dimension. In this setting,
the convergence of the empirical measure [163] and of the largest eigenvalue towards the
boundary of the support (when W goes to infinity fast enough with the dimension) are
also known [1, 4]. But very little is known about large deviations even when the entries are
Gaussian because the law of the eigenvalues is not explicit. There are however LDPs proved
for the largest eigenvalue for nice variance profile [126] and a large deviation upper bound
for the empirical measure [105].

Open Problems 2.17. • Obtain LDPs for the empirical measure of Wigner matri-
ces with a variance profile,

• Obtain the optimal assumptions on the profile to prove an LDP for the law of the
largest eigenvalue,

• Derive a local LDP similar to Theorem 2.8 for matrices with a variance profile.

A more tractable setting for large deviations is a band matrix with finite width W ,
independent of the dimension. Indeed, in this case, we can see that the trace of polynomials
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in the matrix is a sum of functions on the entries which only depend on 2W entries of the
matrix, hence making the use of Markov-Chains approach or the so-called 2W dependent
large deviations applicable [186]. However, even in this case the rate function is not very
explicit and the analysis of associated Boltzmann distributions quite difficult in general.
A remarkable special case is when W = 1 and the entries are chosen independent centered
Gaussian variables with variance β on the diagonal and independent chi distributed variables
with (n − i) degrees of freedom for i ∈ {1, . . . , n}. Indeed it was then shown [76] that the
eigenvalues of such a matrix follows the Beta-ensemble (1.17) and therefore large deviations
can be derived with an explicit good rate function, see section 2.1.

3. Matrix models with an external field
In this section we shall start our journey towards non-commutative matrix models

by considering n × n self-adjoint random matrices following the distribution

dPnV,Λ,β(X
n) =

1
Zn
V,Λ,β

en
β
2 Tr(XnΛ)−nTr(V (Xn))dXn ,

where Λ is a deterministic self-adjoint matrix. We can integrate either on Hermitian (β = 2)
or symmetric (β = 1) matrices. We could also consider Λ random and study two random
matrices with AB interaction such as

dPnV1,V2,β
(Xn,Yn) =

1
ZnV1,V2,β

ecnTr(XnYn)−nTr(V1(Xn))−nTr(V2(Yn))dXndYn .

The latter includes the Ising model on random graphs as it is intimately connected with their
combinatorics, see (1.19) If one takes for instance Vi(x) = 1

2 x2 + ti x4 and β = 2. Then, the
limiting free energy was computed [152] hence providing the first formula for the enumer-
ation of the Ising model on planar maps (see e.g [90] for generalizations). We refer to [49]

for numerous other motivations. Clearly, diagonalizing the matrices Xn,Yn we see that the
main new ingredient to analyze such probability measures is again a spherical integral, the
famous Harish-Chandra-Itzykson-Zuber integral given by

Iβn (An,Bn) =

∫
e
β
2 nTr(AnUnBn(Un)∗)dUn

where dUn denotes the Haar measure over the orthogonal (resp. unitary and symplectic)
group when β = 1 (resp. 2 and 4). When β = 2, this integral was shown by Harish-Chandra
[124] and then Itzykson and Zuber [127] to be equal to a determinant:

(3.1) I2
n(An,Bn) = cn

det
[
enaib j

]
1≤i, j≤n∏

i< j(ai − aj)(bi − bj)
,

where a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) are the eigenvalues of An and Bn respec-
tively. This formula allows to show that Schur functions are intimately related to spherical
integrals. Note however that Harish-Chandra-Itzykson-Zuber formula does not help to esti-
mate it asymptotically as it expresses the integral as a large signed sum of terms with
modulus going to infinity. These asymptotics were first studied in [149], and made rigorous
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in [106,119] for β = 1, 2 and finally to β = 4 in [107]. [107] also extends the result to rectangular
spherical integrals which compute the Laplace transform of the real part of Tr(AUBV) for
rectangular matrices A, B and independent unitary matrices U,V .

Theorem 3.1. Let An,Bn ∈ Rn×n (resp. An,Bn ∈ Cn×n) be self-adjoint and Un ∈O(n) (resp.
U(n)) following the Haar distribution over orthogonal group (resp. unitary group) for β = 1
(resp. β = 2). We assume that the empirical measure of the eigenvalues µ̂n

A
and µ̂nB of An

and Bn converge weakly to µA and µB respectively. We moreover assume that for C = A
or B, we have supn µ̂nC(x

2) < ∞ and Σ(µC) :=
∫

ln |x − y |dµC(x)dµC(y) > −∞. Then, the
following limit of spherical integral exists

lim
n→∞

1
n2 log In(An,Bn) =

β

2
I(µA, µB) .

It is given explicitly by

I(µA, µB) = − inf
{ρt }0≤t≤1

{∫ 1

0

∫
u2
s ρsdxds +

π2

3

∫ 1

0

∫
ρ3
sdxds

}
+ µA(x2) + µB(x2) − (Σ(µA) + Σ(µB)) + c,

(3.2)

where c is a constant. The infimum is taken over continuous measure valued processes
(ρt (x)dx)0<t<1 such that

lim
t→0

ρt (x)dx = µA, lim
t→1

ρt (x)dx = µB .(3.3)

Moreover, u is given as the weak solution of the following conservation of mass equation

∂s ρs + ∂x(ρsus) = 0.

a1
a2
a3
a4
a5
a6

an 5
an 4
an 3
an 2
an 1

an

t b1

b2
b3
b4
b5
b6

bn 5
bn 4
bn 3
bn 2
bn 1

bn

Figure 6 The Dyson Brownian motion between (a1, . . . , an) and (b1, . . . , bn). Courtesy of D.
Coulette.

Idea of proof 3.1. The proof follows from the fact that the density of the law of the matrix
Gn + An is given by the spherical integral. As a consequence, it is enough to prove a LDP
for the empirical measure of the eigenvalues of Gn + An to derive the limit of the spherical
integral. On the other hand, we can think of Gn +An as Hn

1 +An where Hn is a symmetric or
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an Hermitian Brownian motion, that is a Wigner matrix whose Gausian entries are replaced
by Brownian motions. The interest of this point of view is that the eigenvalues of Hn

t + An

follow a Dyson Brownian motion, see Figure 6: λi0 = ai and for every t ≥ 0,

(3.4) dλit =

√
2
√
βn

dW i
t +

1
n

∑
j:j,i

1
λit − λ

j
t

dt, 1 ≤ i ≤ n,

The large deviations for the empirical measure valued process of the (λit )1≤i≤n
would then be standard to derive if the drift was not singular, as (3.4) shows that the eigen-
values of the Hermitian (or symmetric)Brownian motion are simply particles in mean-field
interaction. The whole point is again to show that this singularity does not matter.

As a consequence, we find again by Laplace’s principle that the two matrix models
with AB interaction converge [106] in the following sense.

Corollary 3.2. Assume that V1 and V2 are polynomials going to +∞ at infinity. Then, the
law of the empirical measure of X or Y under PnV1,V2,β

satisfies an LDP with speed βn2.
Its rate function has a unique minimizer towards which the empirical measure converges
almost surely.

Similar statements hold for the matrix model with an external field provided the
empirical measure of the eigenvalues of Λ converges.

Open Problems 3.3. • Theorem 3.1 describes the asymptotic of the spherical inte-
gral when Bn has full rank, where Theorem 2.6 deals with the case where it has
rank one. As long as the rank does not go to infinity too fast with n it can be seen
that spherical integrals factorize [65,109]. It would be interesting to understand the
transition from this factorization phenomenon at low rank and the full rank case.

• Study the corrections to the large n limit of spherical integrals in non perturbative
situations (see [116] for the perturbative case).

• Study the LDP for Brownian motions interacting via more singular potentials
such as Riesz’s which corresponds to an interaction of the form

∑
ϕ(λi − λj) with

ϕ blowing up at the origin like x/|x |s+2 for some s > 0.

• Study the LDP for the law of the largest particle (λ1(t), t ∈ [0, 1]) with general
initial condition, hence generalizing [75].

4. Multi-matrix models
4.1. Set up
We next study the asymptotic of traces of words in several matrices. More precisely,

let (An
1, . . . ,A

n
d
) be a family of d n × n self-adjoint matrices. Their empirical distribution

generalizes the empirical measure of the eigenvalues as follows. We consider the set of
polynomials C〈X1, . . . , Xd〉 in d non -commutative variables given by the complex linear
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span of words in X1, . . . , Xd and equip it with the involution

(zXi1 Xi2 · · · Xik )
∗ = z̄Xik · · · Xi1 .

The empirical distribution of An
1, . . . ,A

n
d
is defined as the linear form on C〈X1, . . . , Xd〉 such

that, for every P ∈ C〈X1, . . . , Xd〉,

µ̂nA1,...,Ad
(P) =

1
n

Tr
(
P(An

1, · · · ,A
n
d)

)
.

We letMd be the set of linear functionals τ on the set of polynomials in d non-commutative
variables such that

τ(PP∗) ≥ 0, τ(1) = 1, τ(PQ) = τ(QP) .

Clearly µ̂n
A1,...,Ad

belongs toMd . We will say that the empirical distribution µ̂n
A1,...,Ad

con-
verges weakly as n goes to infinity towards τ iff for every P ∈ C〈X1, . . . , Xd〉

lim
n→∞

µ̂nA1,...,Ad
(P) = τ(P) .

If the empirical distribution of An
1, . . . ,A

n
d
converges weakly towards τ, for any self-adjoint

polynomial P, P = P∗, the empirical measure of the eigenvalues of the n × n self-adjoint
matrix P(An

1, . . . ,A
n
d
) converges towards τP , the probability measure on the real line such

that

(4.1)
∫

xkdτP(x) = τ(Pk), ∀k ∈ N .

τP is unique as soon as the moments do not grow too fast. Strong convergence requires
additionally that the operator norm of P(An

1, . . . ,A
n
d
) converges to the largest point in the

support of τ|P | for any polynomial P ∈ C〈X1, . . . , Xd〉:

lim
n→∞
‖P(An

1, . . . ,A
n
d)‖∞ = lim

n→∞
lim
k→∞

µ̂nA1,...,Ad
((PP∗)k)

1
2k = lim

k→∞
τ((PP∗)k)

1
2k .

We will denoteMR
d
the elements ofMd bounded by R (that is so that |τ(Xi1 · · · Xik )| ≤ Rk

for all choices of indices il ∈ {1, . . . , d}).
Another important feature of random matrices is their role in free probability, as a

toy example of matrices whose large dimension limit is free. Free probability is a theory of
non-commutative variables equipped with a notion of freeness. Freeness is a condition on
the joint distribution of non-commutative variables. We say that X1, . . . , Xd are free under τ
iff

(4.2) τ(P1(Xi1 ) · · · P`(Xi` )) = 0

as soon as τ(Pj(Xi j )) = 0 for all j and ij , ij+1, 1 ≤ j ≤ ` − 1. The latter property was
introduced by Voiculescu and named freeness, as it is related to the usual notion of free
generators of a group. He also proved the key result [175]:

Theorem 4.1. [3,175] Let (Xn
1, . . . ,X

n
d
) be n independent Wigner matrices with entries with

finite moments. Then, for any choice of i1, . . . , ik ∈ {1, . . . , d}k ,

lim
n→∞

1
n

Tr(Xn
i1
· · ·Xn

ik
) = σd(Xi1 · · · Xik ) a.s
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where σd is the law of d free semi-circular variables. It is uniquely described by the facts
that the moments of a single Xi are given by the Catalan numbers, and their joint moments
satisfy (4.2).

Voiculescu also showed that matrices Yj = UjDjU∗j with deterministic matrices Dj

and independent Haar distributed orthogonal or unitary matrices are asymptotically free in
the sense that their joint moments satisfy at the large n limit the freeness property (4.2).
Hence, matrices become asymptotically free if the position of their eigenvectors are “suffi-
ciently” independent.

In the groundbreaking article [121], it was shown that independent Gaussian matri-
ces are not only asymptotically free but strongly asymptotically free in the sense that they
converge strongly to free semicircular variables.

Theorem 4.2. Let (Xn
1, . . . ,X

n
d
) be n independent GUE matrices, then for any polynomial

P
lim
n→∞
‖P(Xn

1, . . . ,X
n
d)‖∞ = lim

k→∞
σd((PP∗)k)

1
2k a.s.

This result was generalized to the GOE and GSE [159], to Wigner matrices with
entries satisfying Poincaré inequality [53], to polynomials in GUE matrices and determinis-
tic matrices in [148], to polynomials in deterministic matrices and Haar distributed unitary
matrices in [64]. These results are based on the linearization trick that allows to compare the
spectrum of a polynomial in matrices with the spectrum of a larger matrix obtained by sums
of tensor products of the original matrices. The main drawback of this approach is that the
estimates for this convergence are far from optimal: to remedy this point, an interpolation
trick was introduced [16,63].

4.2. Large deviations and Voiculescu’s entropies
Free entropy was defined by Voiculescu as a generalization of classical entropy to

the non-commutative context. There are several definitions of free entropy; we shall concen-
trate on two of them. The first is the so-called micro-states entropy that measures a volume
of matrices with empirical distribution approximating a given law. The second, called the
micro-states-free entropy, is defined via a non-commutative version of Fisher information.
The classical analog of these definitions is, on one hand, the definition of the entropy of a
measure µ as the volume of points whose empirical distribution approximates µ, and, on
the other hand, the well-known entropy −

∫
dµ
dx log dµ

dx dx. In this classical setting, Sanov’s
theorem shows that these two entropies are equal. The free analog statement is still open but
we shall give in this section bounds to compare the micro-states and the micro-states-free
entropies [35,51].
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Definition 4.3. Let R ∈ R+ and τ ∈ MR
d
. For ε > 0 and k, N ∈ N, we define the micro-state

as the following subset of the setH d
n of d n × n Hermitian matrices:

Γn(τ; ε, k, R) = {An
1, · · · ,A

n
d ∈ H

d
n : max

1≤i≤d
‖An

i ‖∞ ≤ R,

| µ̂nA1, · · · ,Ad
(Xi1 · · · Xip ) − τ(Xi1 · · · Xip )| ≤ ε

for all ij ∈ {1, . . . , d}, j ∈ {1, . . . , p}, p ≤ k}

We then define the micro-states entropy of τ by

(4.3) χ(τ) = lim sup
ε→0,L→∞

k→∞

lim sup
n→∞

1
n2 log(Pn2 )

⊗d (Γn(τ; ε, k, L)) .

Remark 4.4. • The classical analogue is Sanov’s theorem (1.12) which computes
the volume of small balls for the weak topology. Besides non-commutativity, it dif-
fers from the above definition by using bounded continuous test functions, instead
of polynomials, and so do not need the cutoff ∩i{‖An

i ‖∞ ≤ R}.

• It was shown that non-commutative laws with finite entropy have nice properties.
For instance, if P is a self-adjoint non-commutative polynomial, the law τP of
P(a1, . . . , ad) as defined in (4.1) has no atoms [56].

We denote by ∂i the non-commutative derivative given on monomials by

∂i(Xi1 · · · Xik ) =
∑
j:i j=i

Xi1 · · · Xi j−1 ⊗ Xi j+1 · · · Xik

and Di = m ◦ ∂i the cyclic derivative, where m(P ⊗ Q) = QP. Let us now introduce the
micro-states-free entropy. Its definition is based on the notion of free Fisher information
which is given, for a tracial state τ, by

Φ
∗(τ) = 2

d∑
i=1

sup
P∈C〈X1,...,Xd 〉

{τ ⊗ τ(∂iP) −
1
2
τ(P2)} .

Then, we define the micro-states-free entropy χ∗ by

χ∗(τ) = −
1
2

∫ 1

0
Φ
∗(τ

tX+
√
t(1−t)S)dt

with S = (S1, . . . , Sd) a d-dimensional free semicircular vector, free from X = (X1, . . . , Xd)

with law τ. An equivalent definition of χ∗ is given by optimizing the entropy of the distribu-
tion of the non-commutative law (µ̂H1

s,...,Hd
s
, s ∈ [01]) of independent Hermitian Brownian

motions (H1, . . . ,Hd). We let (τt )t∈[0,1] be a continuous process with values inMR
d
. Then

we define the dynamical entropy Ξ : C([0, 1],MR
d
)→[0,∞] to be infinite if τ0 is not the

distribution of d operators equal to 0 and to be otherwise given by

Ξ(τ.) = sup
F
{τ1(F1) − τ0(F0) −

∫ 1

0
[τs(∂sFs) +

1
2

d∑
i=1

τs ⊗ τs(∂iDiFs)]ds

−
1
2

d∑
i=1

∫ 1

0
τs(|DiFs |

2)ds}
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where the supremum is taken over smooth non-commutative self-adjoint test functions F.
Ξ is the candidate rate function for the large deviation of s→µ̂H1

s,...,Hd
s
, generalizing to the

non-commutative setting the large deviations of Theorem 3.1. It is easily seen by Riesz’s
theorem that the supremum over F is achieved at K such that

∑d
i=1

∫ 1
0 τs(|DiK |2)ds is finite

and such that for every F
(4.4)

τ1(F1) − τ0(F0) −

∫ 1

0
τs(∂sFs) −

1
2

∫ 1

0

d∑
i=1

τs ⊗ τs(∂iDiFs)ds =
d∑
i=1

∫ 1

0
τs(DiFs .DiKs)ds.

The entropy is infinite if such a K does not exist. Then taking τ0 = δ0, χ∗(µ)= infτ1=µ{Ξ(τ.)}.
We define as well χ∗∗ in the same way but by taking the infimum only over processes such
that the associated field K is smooth (the entropy is −∞ if there is no such process ending
near τ). Then [35,51,52] proved that

Theorem 4.5. For every τ ∈ MR
d
,

χ∗∗(τ) ≤ χ(τ) ≤ χ∗(τ).

Open Problems 4.6. • Show that the limsup in the definition (4.3) of χ can be
replaced by a liminf. The two bounds above still hold if we perform this change.

• Prove that χ = χ∗ at least on χ <∞. In [69,128], it was proven that χ(τV )= χ∗(τV )
when τV is the equilibrium measure of matrix models with convex potentials, see
section 4.4.

• Prove that χ∗∗ = χ∗ in general. This is already true if µ is close to some τ1

obtained as the value at time 1 of a process satisfying (4.4) with K smooth.
In particular, τ1 can be smoothly constructed from the increments of an Her-
mitian Brownian motions by a smooth differential equation. In a breakthrough
series of papers, it was recently shown that there exists tracial states that can-
not be approximated by a sequence of non-commutative empirical distribution of
d matrices [129]. Hence, we see that the question of estimating non-commutative
laws by differential equations is far from trivial, in particular because the weak
closure of the set of non-commutative empirical distributions of d matrices is not
very well understood.

• Prove a LDP for the operator norm of polynomials in independent GUE matrices,
in the line of the topological entropy introduced by Voiculescu [179].

4.3. Free convolution
A long standing question posed by Weyl was to describe the spectrum of the sum

of two Hermitian matrices. A complete description was conjectured by Horn, and proved by
Knutson and Tao [139]. But what should be the spectrum of the sum of two matrices taken
at random? This question was tackled [31,32] when the two matrices are asymptotically free.
It was characterized by an analog of the Fourier transform, the so-called R-transform. It is
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defined as follows: Let Gµ be the Stieltjes transform of a probability measure µ given for
complex number z by

Gµ(z) =
∫

1
z − x

dµ(x) .

Then Gµ is invertible in a neighborhood of infinity, with inverse Kµ equivalent to 1/z in a
neighborhood of the origin. The R-transform Rµ is given in a neighborhood of the origin by

Rµ(z) = Kµ(z) −
1
z
.

It is not hard to see that Rµ defines uniquely µ as it defines uniquely Gµ.

Theorem 4.7. [31, 32, 157] If the empirical measures µ̂nX1
and µ̂nX2

of Xn
1 and Xn

2 converge
respectively towards µ1 and µ2, and X1 and X2 are asymptotically free, then the empirical
measure µ̂nX1+X2

of the eigenvalues of Xn
1 + Xn

2 converges weakly in L1 towards the unique
probability measure µ1 � µ2 defined by

Rµ1�µ2 (z) = Rµ1 (z) + Rµ2 (z) .

The above result holds in particular for Xn
1 + UnXn

2 (U
n)∗ if Xn

1,X
n
2 are two deter-

ministic Hermitian matrices whose spectral measures converge, independent of U which
follows the Haar measure on the unitary or orthogonal group. Theorem 4.7 was shown then
to be a direct consequence of the asymptotics of spherical integrals [111]. But what can
we say about the large deviations of the empirical measure and the largest eigenvalue of
X1 + UnX2(Un)∗ ? The description of the spectrum of the sum of two self-adjoint matrices
is complicated and depicted by Horn’s problem [139]. Understanding which of these pos-
sible spectrum has a finite entropy is a natural question which was attacked in [67, 187] by
noticing that the Fourier transform of the density of the spectrum can be written in terms
of Harish-Chandra-Itzykson-Zuber integrals. Unfortunately, this formula so far has resisted
asymptotic analysis as they require complex matrices and hence oscillatory integrals. We
now have however a quite complete series of results on the large deviations for the sum of
two random Hermitian matrices.

Theorem 4.8. Let Xn
1, X

n
2 be two Hermitian matrices whose empirical measures of the

eigenvalues µ̂nX1
and µ̂nX2

of Xn
1 and Xn

2 converge respectively towards µ1 and µ2. Let Un

follow the Haar measure on the orthogonal or unitary group.

• [112] Assume that the largest eigenvalues of Xn
1 and Xn

2 stick to the bulk. Then the
largest eigenvalue of Xn

1 + UnXn
2 (U

n)∗ satisfies an LDP in the scale βn.

• [21] The law of N−1 ∑N
i=1 δ(UnXn

1 (U
n)∗)ii satisfies an LDP in the scale βn2 and good

rate function ID(µ) = supν{ 1
2

∫ 1
0 Tν(x)Tµ(x) − I(ν, µ1)} where Tµ is the inverse of

Fµ(x) = µ((−∞, x]).

• [21] The law of µ̂nX1+UX2U∗
satisfies a weak large deviation estimate (1.11) in the

scale βn2 and good rate function IX1+X2 (µ) = supν{I(µ, ν) − I(ν, µ1) − I(ν, µ2)}

at any µ so that argmax(IX1+X2 (µ)) , argmax(IX1+X2 (µ′)) for all µ′ , µ.

33 Rare Events in RMT



• [155] Assume that for j = 1 and 2, the eigenvalues (λ j
i )1≤i≤n of Xn

j are such that
λ
j
i = fj( in ) with strictly increasing functions fj . Then the law of µ̂nX1+UX2U∗

satis-
fies a weak large deviation principle in the scale βn2 .

It would be interesting to understand how the two last results relate. The first 3
results above were obtained by tilting the laws by spherical integrals, and using their limit
I(., .) from Theorem 3.1, the last is derived by using large deviations on an interesting object
called random hives, closer to [139].

4.4. Multi-matrix models
Recall the definition (1.18) of the multi-matrix model, which can be extended to

β = 1:

(4.5) dPnV,β(X
n
1, . . . ,X

n
d) =

1
ZnV,β

e−βnTr(V (Xn
1 ,...,X

n
d
))−

βn
4 Tr(

∑
(Xn

i )
2)dXn

1 · · · dXn
d

V is a self-adjoint polynomial that decomposes as V = −
∑

tiqi with words (or monomials)
qi in d non-commutative letters. We assume either that V is bounded from below uniformly
or we restrict the integration over ∩{‖Xn

i ‖ ≤ M} for some M > 2.

Theorem 4.9. [113,150] Let β = 1 or 2. For all g ∈ N, there exists εg > 0 such that for every
|ε | ≤ εg, every monomial q,∫

µ̂nX1,...,Xd
(q)dPnεV,β(X

n
1, . . .,X

n
d)=

g∑̀
=0

1
n`

∑
k1...kp

∏ (εti)ki

ki!
Mβ
`
((ki,qi)1≤i≤p, (1,q))+ o(

1
ng
) .

Moreover, for every monomial q, µ̂nX1,...,Xd
(q) converges almost surely towards

τεV (q) =
∑

k1...kp ∈N

∏ (εti)ki

ki!
M2

0 ((ki, qi)1≤i≤p, (1, q)) .

Note that when β = 1, the expansion is in 1/n rather than 1/n2. The first order
expansion is the same: M1

0 ((ki, qi)1≤i≤p, (1, q)) = M2
0 ((ki, qi)1≤i≤p, (1, q)), but the higher

orders differ. M1
` ((ki, qi)1≤i≤p, (1, q)) can also be seen to enumerate certain maps, but in

locally orientable surfaces, see e.g [104,141].
The proof of this theorem follows by showing that µ̂nX1,...,Xd

(q) is tight and its
moments satisfy the so-called Dyson-Schwinger equations as a consequence of integration
by parts. Showing the uniqueness of the solutions to the limiting Dyson-Schwinger equa-
tion gives the result for g = 0. A more detailed study of the solution of Dyson-Schwinger
equations allows to obtain the higher orders corrections [114,150].

Remark 4.10. • Theorem 4.9 was extended to the case where one integrates over
the Haar measure on the unitary or orthogonal groups [62,116] and to SO(n) lattice
gauge theory [57].

• τεV extends by linearity to polynomials. It is a priori unclear that τV is a non-
commutative law, in particular that τεV (PP∗) ≥ 0 for all polynomial P. This is
part of the result.
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• The non-commutative distribution τεV has finite entropy, and hence the spec-
tral distribution of polynomials has no atoms by [56]. Much more was proved
in [120]: there exists non commutative functions given by absolutely converging
series such that τεV is the push-forward of τ0 = σ

d by these functions (and vice-
versa). This implies that the C∗ and von Neumann algebras associated with τεV
by the so-called GNS construction are isomorphic to those of d free semi-circular
variables.

• The central limit theorem for the empirical distribution can be proven by analyz-
ing the asymptotic of more general moments of the empirical distribution [114],
allowing to derive the next order expansion of the free energy related to maps
with higher genus. The fact that the eigenvalues fluctuate locally like independent
GUE was proven in [93] by constructing approximate transport maps.

It should be expected that the convergence in Theorem 4.9 (which amounts to take
g = 0) holds for large ε, at least till a certain phase transition. In the one-matrix case this
phase transition is usually related to the point where the support of the equilibrium mea-
sure splits, which is the case for instance when the potential has several wells that become
deeper when the parameters vary. This, in particular, does not happen when V is convex.
The same is true for several matrices. Of course, for potentials in several matrices the notion
of convexity itself needs to be clarified, see [69,70,117,128]. The most handy one, in the sense
that it is easier to check, relies on matrices and simply state that, in any dimension n, the
map Xn

1, · · · ,X
n
d
→TrV(Xn

1, · · · ,X
n
d
) is a convex function of the entries of the self-adjoint

matrices (Xn
1, · · · ,X

n
d
).

Theorem 4.11. [69, 128] Assume that the non-commutative function V(X1, . . . , Xd) + (1 −
δ)β

∑
X2
i is convex for some δ > 0. Then the empirical distribution µ̂nX1,...,Xd

converges Pn
V,2

-almost surely towards τV . Moreover, χ∗(τV ) = χ(τV ) is the limit of the classical entropy of
Pn
V,2.

This result uses again the dynamics of the Hermitian Brownian motions and the fact
that they converge uniformly to their invariant measures Pn

V,2 thanks to convexity. In this case
it is also seen that χ∗(τV ) = χ∗∗(τV ). Unfortunately, except for multi-matrix models whose
interaction is related to spherical integrals, even the convergence of the matrix models is
unknown in general (such a convergence will result in the possibility of changing the lim sup
by a lim inf in the definition of χ which would have important consequences). Recently, [115]
undertook the study of matrix models at ”low temperature” in the sense that the constant ε
in Theorem 4.9 is now very large. In this case, we can give sufficient conditions on the
potential V so that the matrices stay bounded in norm with high probability. The limit point
of the empirical distribution then satisfies the Dyson-Schwinger equations. Unfortunately,
the uniqueness of the solutions to these equations is in general not true and convergence
is unclear. We can however study more in detail special situations when the case ε = ∞ is
simple. We detail below a few results that hold under PnV,β for T small enough.
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• Assume V = 1
T V0 +W where V0 is uniformly strictly convex. Let (αi)1≤i≤d be the

unique minimizer ofV0 inRd . Then, the matrices will concentrate near (αi I)1≤i≤d
when n goes to infinity and then T to zero. Moreover, the empirical distribution
µ̂nX1,...,Xd

converges almost surely towards a non-commutative law which can be
obtained as a smooth push-forward of d free semi-circular variables.

• Assume V(X1, . . . , Xd) =
1
T V1(X1) + V1(X1)W(X1, . . . , Xd) with V1 non negative

and vanishing at (αi)1≤ j≤m. Then, the spectrum of X1 will asymptotically belong
to a neighborhood of the minimizers of V1. Moreover, the empirical distribution
µ̂X1,...,Xd

converges almost surely towards a non-commutative law which can be
obtained as a smooth push-forward of free semi-circular variables and a projec-
tion.

• If V(X1, X2) = −
1
T [X1, X2]

2 +W1(X1) +W2(X2), then the matrices will asymptoti-
cally commute and their respective spectrum will converge towards the minimiz-
ers of W1 and W2 with non trivial masses.

The last result is interesting because we see that the matrices asymptotically commute but
are not a multiple of the identity in general. Indeed the case where we have 3 matrices and
the strong interaction presents two commutators [X1, X2]

2 + [X1, X3]
2, it is easy to see by

an entropy argument that X1 will be forced to be a multiple of the identity, regardless of
the rest of the potential of order one. It was therefore tempting to think that all such limit
laws would asymptotically commute because they are trivial, which is not the case. This is
only the beginning of the journey towards the understanding of multi-matrix models at low
temperature and large dimension.

Acknowledgments
I thank G. Ben Arous, C. Bordenave, G. Borot, C. Garban, J. Huang, K. Kozlowski, G.
Miermont and O. Zeitouni for their numerous comments on a preliminary version of these
proceedings.

Funding
This work was partially supported by ERC Project LDRAM: ERC-2019-ADG Project
884584.

References
[1] O. H. Ajanki, L. Erdős, and T. Krüger, Universality for general Wigner-type

matrices. Probab. Theory Related Fields 169 (2017), no. 3-4, 667–727
[2] G. Akemann, J. Baik, and P. Di Francesco, The Oxford handbook of random

matrix theory. Oxford: Oxford University Press, 2015

36 A. Guionnet



[3] G. W. Anderson, A. Guionnet, and O. Zeitouni, An introduction to random
matrices. Cambridge Studies in Advanced Mathematics 118, Cambridge Uni-
versity Press, Cambridge, 2010

[4] G. W. Anderson and O. Zeitouni, A CLT for a band matrix model. Probab.
Theory Rel. Fields 134 (2005), 283–338

[5] L.-P. Arguin, D. Belius, P. Bourgade, M. Radziwill, and K. Soundararajan, Max-
imum of the Riemann zeta function on a short interval of the critical line. Comm.
Pure Appl. Math. 72 (2019), no. 3, 500–535

[6] A. Auffinger and G. Ben Arous, Complexity of random smooth functions on the
high-dimensional sphere. Ann. Probab. 41 (2013), no. 6, 4214–4247

[7] A. Auffinger, G. Ben Arous, and S. Péché, Poisson convergence for the largest
eigenvalues of heavy tailed random matrices. Ann. Inst. Henri Poincaré Probab.
Stat. 45 (2009), no. 3, 589–610

[8] F. Augeri, Large deviations principle for the largest eigenvalue of Wigner matrices
without Gaussian tails. Electron. J. Probab. 21 (2016), Paper No. 32, 49

[9] F. Augeri, On the large deviations of traces of random matrices. Ann. Inst. H.
Poincaré, Probab. Stat. 54 (2018), no. 4, 2239–2285

[10] F. Augeri, Nonlinear large deviation bounds with applications to Wigner matrices
and sparse Erdös-Rényi graphs. Ann. Probab. 48 (2020), no. 5, 2404–2448

[11] F. Augeri, A. Guionnet, and J. Husson, Large deviations for the largest eigenvalue
of sub-Gaussian matrices. Comm. Math. Phys. 383 (2021), no. 2, 997–1050

[12] Z. Bai and J. W. Silverstein, Spectral analysis of large dimensional random
matrices. Second edn., Springer Series in Statistics, Springer, New York, 2010

[13] Z. D. Bai, Methodologies in spectral analysis of large-dimensional random
matrices, a review. Stat. Sinica 9 (1999), 611–677

[14] J. Baik, G. Ben Arous, and S. Péché, Phase transition of the largest eigenvalue
for nonnull complex sample covariance matrices. Ann. Probab. 33 (2005), no. 5,
1643–1697

[15] J. Baik, P. Deift, and K. Johansson, On the distribution of the length of the longest
increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (1999),
1119–1178

[16] A. Bandeira, M. Boedihardjo, and R. van Handel, Matrix concentration inequali-
ties and free probability, 2021, arXiv 2108.06312

[17] R. Basu and S. Ganguly, Connecting eigenvalue rigidity with polymer geom-
etry: Diffusive transversal fluctuations under large deviation. arXiv preprint
arXiv:1902.09510 (2019)

[18] R. Basu, S. Ganguly, and A. Sly, Delocalization of polymers in lower tail large
deviation. Communications in Mathematical Physics 370 (2019), no. 3, 781–806

[19] F. Bekerman, Transport maps for β-matrix models in the multi-cut regime.
Random Matrices Theory Appl. 7 (2018), no. 1, 1750013, 36

[20] F. Bekerman, A. Figalli, and A. Guionnet, Transport maps for β-matrix models
and universality. Comm. Math. Phys. 338 (2015), no. 2, 589–619

37 Rare Events in RMT



[21] S. Belinschi, A. Guionnet, and J. Huang, Large deviation principles via spherical
integrals, 2020, arXiv 2004.07117

[22] G. Ben Arous, P. Bourgade, and B. McKenna, Exponential growth of random
determinants beyond invariance. arXiv:2105.05000 (2020)

[23] G. Ben Arous, A. Dembo, and A. Guionnet, Aging of spherical spin glasses.
Probab. Theory Related Fields 120 (2001), no. 1, 1–67

[24] G. Ben Arous, Y. V. Fyodorov, and B. A. Khoruzhenko, Counting equilibria
of large complex systems by instability index. Proc. Natl. Acad. Sci. USA 118
(2021), no. 34, Paper No. e2023719118, 8

[25] G. Ben Arous and A. Guionnet, Large deviations for Wigner’s law and Voiculescu’s
non-commutative entropy. Probab. Theory Related Fields 108 (1997), no. 4, 517–
542

[26] G. Ben Arous and A. Guionnet, The spectrum of heavy tailed random matrices.
Comm. Math. Phys. 278 (2008), no. 3, 715–751

[27] G. Ben Arous, S. Mei, A. Montanari, and M. Nica, The landscape of the spiked
tensor model. Communications on Pure and Applied Mathematics (2019), 2282–
2330

[28] G. Ben Arous and O. Zeitouni, Large deviations from the circular law. ESAIM
Probab. Statist. 2 (1998), 123–134

[29] F. Benaych-Georges, A. Guionnet, and C. Male, Central limit theorems for linear
statistics of heavy tailed random matrices. Comm. Math. Phys. 329 (2014), no. 2,
641–686

[30] F. Benaych-Georges and R. R. Nadakuditi, The eigenvalues and eigenvectors of
finite, low rank perturbations of large random matrices. Adv. Math. 227 (2011),
no. 1, 494–521

[31] H. Bercovici and D. V. ’, Free convolution of measures with unbounded support.
Indiana Univ. Math. J. 42 (1993), 733–773

[32] H. Bercovici and D. Voiculescu, Lévy-Hinčin type theorems for multiplicative and
additive free convolution. Pacific J. Math. 153 (1992), 217–248

[33] B. B. Bhattacharya, S. Bhattacharya, and S. Ganguly, Spectral edge in sparse
random graphs: Upper and lower tail large deviations. Ann. Probab. 49 (2021),
no. 4, –

[34] P. Bianchi, M. Debbah, M. Maida, and J. Najim, Performance of statistical tests
for single-source detection using random matrix theory. IEEE Trans. Inform.
Theory 57 (2011), no. 4, 2400–2419

[35] P. Biane, M. Capitaine, and A. Guionnet, Large deviation bounds for matrix
Brownian motion. Invent. Math. 152 (2003), no. 2, 433–459

[36] C. Bordenave and P. Caputo, A large deviation principle for Wigner matrices
without Gaussian tails. Ann. Probab. 42 (2014), no. 6, 2454–2496

[37] C. Bordenave and P. Caputo, Large deviations of empirical neighborhood distribu-
tion in sparse random graphs. Probab. Theory Related Fields 163 (2015), no. 1-2,
149–222

38 A. Guionnet



[38] C. Bordenave, P. Caputo, and D. Chafaï, Spectrum of non-Hermitian heavy tailed
random matrices. Communications in Mathematical Physics 307 (2011), no. 2,
513–560

[39] C. Bordenave and A. Guionnet, Localization and delocalization of eigenvectors
for heavy-tailed random matrices. Probab. Theory Related Fields 157 (2013), no.
3-4, 885–953

[40] A. Borodin, V. Gorin, and A. Guionnet, Gaussian asymptotics of discrete β-
ensembles. Publications mathématiques de l’IHÉS (2016), 1–78

[41] G. Borot, A. Guionnet, and K. K. Kozlowski, Large-N asymptotic expansion
for mean field models with Coulomb gas interaction. Int. Math. Res. Not. IMRN
(2015), no. 20, 10451–10524

[42] G. Borot, A. Guionnet, and K. K. Kozlowski, Asymptotic expansion of a parti-
tion function related to the sinh-model. Mathematical Physics Studies, Springer,
[Cham], 2016

[43] G. Borot and C. Nadal, Right tail asymptotic expansion of Tracy-Widom beta
laws. Random Matrices Theory Appl. 1 (2012), no. 3, 1250006, 23

[44] J.-P. Bouchaud and P. Cizeau, Theory of Lévy matrices. Phys. Rev. E 3 (1994),
1810–1822

[45] D. V. Boulatov and V. A. Kazakov, The Ising model on a random planar lattice:
the structure of the phase transition and the exact critical exponents. Phys. Lett. B
186 (1987), no. 3-4, 379–384

[46] P. Bourgade, L. Erdös, and H.-T. Yau, Edge universality of beta ensembles.
Comm. Math. Phys. 332 (2014), no. 1, 261–353

[47] P. Bourgade, L. Erdös, and H.-T. Yau, Universality of general β-ensembles. Duke
Math. J. 163 (2014), no. 6, 1127–1190

[48] J. Breuer, B. Simon, and O. Zeitouni, Large deviations and the Lukic conjecture.
Duke Math. J. 167 (2018), no. 15, 2857–2902

[49] E. Brézin and S. Hikami, Universal singularity at the closure of a gap in a random
matrix theory. Phys. Rev. E (3) 57 (1998), 4140–4149

[50] R. Butez and O. Zeitouni, Universal large deviations for Kac polynomials. Elec-
tron. Commun. Probab. 22 (2017), 10

[51] T. Cabanal-Duvillard and A. Guionnet, Large deviations upper bounds for the
laws of matrix-valued processes and non-communicative entropies. Annals
Probab. 29 (2001), 1205–1261

[52] T. Cabanal-Duvillard and A. Guionnet, Discussions around Voiculescu’s free
entropies. Adv. Math. 174 (2003), no. 2, 167–226

[53] M. Capitaine and C. Donati-Martin, Strong asymptotic freeness for Wigner and
Wishart matrices. Indiana Univ. Math. J. 56 (2007), no. 2, 767–803

[54] E. Cartan, Sur la détermination d’un système orthogonal complet dans un espace
de Riemann symétrique clos. Rend. Circ. Mat. Palermo 53 (1929), 217–252
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