Rare events in Random Matrix
theory

Alice Guionnet

Abstract

The uses of random matrix models have spread in many domains of mathematics, physics
and computer sciences. As a consequence, the theory of large random matrices has grown
into a diverse and mature field during the last forty years, yielding answers to increasingly
sophisticated questions. In these proceedings, we discuss the applications of large devia-
tions techniques in random matrix theory.

INTERNATIONAL CONGRESS ©2022 International Mathematical Union
M:| rag THEMATIZIANS Published by EMS Press. DOI 10.4171/ICM2022/?
JULY 6—14 PETERSBURG Proc. Int. Cong. Math. 2022, Vol. ?, pp. 2-46



1. Introduction

Large random matrices appear in a wide variety of domains. They were first intro-
duced in statistics in the work of Wishart [183] to analyze a large array of noisy data, a point
of view that turns out to be particularly relevant and useful nowadays in principal component
analysis and statistical learning. Goldstine and Von Neumann considered random matrices
to model the inevitable errors made in measurements [180]. Wigner [182] and Dyson [78] later
conjectured that the statistics of their eigenvalues model very well those of high energy lev-
els in heavy nuclei. Even more surprisingly, Montgomery [154] showed that random matrices
are intimately related to the zeroes of Riemann Zeta function, a conjecture which nowadays
provides a great intuition for many mathematical results, see e.g [5,135]. Random matrices
also play a central role in operator algebra theory since Voiculescu [175,177] proved that
they are asymptotically free. Random matrices are moreover intimately related to integrable
systems to which they furnish key examples. The computation of the joint law of the eigen-
values of invariant matrices goes back to Weyl [181] and Cartan [54]. They showed that this
distribution is characterized by a density proportional to a power of the Vandermonde deter-
minant of the eigenvalues. As a consequence, the eigenvalues of random matrices furnish
an example of strongly interacting particles system, in connection with many other models
such as Coulomb gases or random tilings. For all these reasons, the study of Large Random
Matrices (LRM) has grown into a diverse and mature field during the last forty years, yield-
ing answers to increasingly sophisticated questions. The most basic questions often involve
the distribution of the eigenvalues as the size of the matrix goes to infinity. Such a question
was first tackled in the breakthrough paper of Wigner [182] who showed that the distribution
of the spectrum of a self-adjoint matrix with independent entries (modulo the symmetry
constraint) is described by the semi-circle law when the dimension goes to infinity. This
article discusses how to estimate the probability that the spectrum follows a different dis-
tribution in large dimensions. More generally, we will investigate the probability of rare
events, that is of large deviations, in the context of random matrices. In this introduction, we
will first outline some of the main results of random matrix theory for the famous Gaussian
ensembles, placing the questions on large deviations in the wider context of this theory. We
will then motivate the study of large deviations for large random matrices. An important
aspect of random matrix theory lies in its connection with the so-called Beta-ensembles and
we will sketch a few applications of large deviations for Beta-ensembles beyond random
matrix theory. This introduction is short and therefore unfortunately bypasses many beauti-
ful aspects of large random matrix theory: we refer the interested reader to the introductory
books [2,3,12,94,95,153,156] for more.

1.1. Introduction to Random Matrix Theory

1.1.1. The Gaussian ensembles

The most famous model of random matrices is given by the Gaussian ensembles,
the Gaussian Orthogonal Ensemble (GOE) and the Gaussian Unitary ensemble (GUE). We
say that G" follows the law of the GUE (resp. the GOE) if it is a n X n self-adjoint matrix
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with independent centered complex (resp. real) Gaussian entries above the diagonal with
independent real and imaginary parts with variance 1/2n (resp. with variance 1/n), the
entries on the diagonal being centered real Gaussians with variance 1/n (resp. 2/n). Their
distribution is given by

(1.1) dP(G") = Zflne—%"“(@")z)d(;"
B

where § = 1 for the GOE and 8 = 2 for the GUE. The measure dG" denotes the Lebesgue
measure over the corresponding set of matrices (symmetric if = 1, Hermitian if g = 2),
which is simply the product of the Lebesgue measure on the entries dG" = [[;; dGZ. if
B =1and dG" = [];; d‘R(GZ.) [Tic) dS(GZ.) if B = 2. The constant Zg is the normal-
izing constant such that ]P’g is a probability measure. These ensembles have a remarkable
property: their distribution is invariant under conjugation G" — UG"U" by unitary (resp.
orthogonal) matrices if 8 = 2 (resp. § = 1). Because of this invariance, the eigenvectors of
G" are uniformly distributed on the sphere and hence delocalized in the sense that their
entries are typically of order of the inverse of the square root of the dimension. Moreover,
a change of variables shows that the eigenvalues of G”", A= A, Ap), AL = A2+ = Ay,
are distributed according to:

I D P
(1.2) dPy(1) = ﬁA(/l)ﬁe 7 Zis () ]_[d/l,-,
B

where A(/T) = [1;<; |4 — 4;| is the modulus of the Vandermonde determinant. There exists
a third Gaussian ensemble, the Gaussian Symplectic Ensemble (GSE), with quaternionic
entries and which is invariant under conjugation by symplectic matrices. Its eigenvalues
are distributed according to Py. However, we shall not highlight this case in the sequel.
The Gaussian ensembles are also called the GBE’s with 8 = 1,2, 4 for the GOE, GUE and
GSE respectively. Remarkably, for any g > 0, Pg was shown [76] to describe the law of
the eigenvalues of the n X n self-adjoint tri-diagonal matrix \/B_n_lX/’; where the diagonal
entries {Xg(i, i), 1 <i < n} are independent centered Gaussian variables with variance 2,
independent from the off-diagonal entries {X[’;(i,i + 1), 1 <i <n—- 1} which are independent
and such that Xﬁ"(i,i + 1) is a chi distributed variable with S(n — i) degrees of freedom
fori € {1,...,n — 1}. Thanks to formula (1.2), the Gaussian ensembles were studied in
detail. We next review a few classical results involving these random matrices. We will
see in the core of the text that some of these results generalize to other random matrices,
for instance, the Wigner matrices which are similar to the Gaussian ensembles but with
entries that are not necessarily Gaussian, namely symmetric or Hermitian matrices with
independent centered entries and with variance 1/n.

1.1.2. Typical events
The celebrated law of large numbers states that the sum of independent identically

distributed variables, once properly renormalized, converges almost surely towards its mean.
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More precisely, if x = (xy,..., X,, . ..) is a sequence of independent real random variables
with the same distribution u such that / |x|du(x) is finite, the empirical mean

n

1
(1.3) ma(x) 1= Z x;

i=1
converges almost surely towards the mean when n goes to infinity:

lim m,(x) = /xdy(x) a.s.

Historically the first, and particularly simple, application of this theorem applied to coins
tossing. The distribution of one toss can be modeled by the Bernoulli law u = u, = pé; +
(1 = p)dy if the coin has probability p to show heads, which is represented by the value
{1}. The law of large numbers shows that if one flips a coin many times independently, one
should see heads approximately a proportion p of the times. There are many proofs of the
law of large numbers, and in simple cases like coins tossing, it follows from counting the
number of ways to see a given number of heads out of n flips.

The emergence of an almost sure deterministic phenomenon from many indepen-
dent random events is a usual feature in probability theory or statistical mechanics. In the
latter, many random particles collaborate to give a deterministic macroscopic behavior. In
Random Matrix Theory (RMT), Wigner [182] showed that the distribution of the eigenvalues
of Gaussian ensembles converges almost surely towards a deterministic limit given by the
semi-circle law, see Figure 1.

Figure 1 The semi-circle law and the asymptotic distribution of the spectrum

Theorem 1.1. [182] Let A > A > --- > A, be the eigenvalues of the GBE for B = 1,2 or 4.
Then, for any a < b,
1
(1.4) lim Z#{i 2 ;i € [a,bl} = o([a,b]) almost surely,
n—oo

where o is the semi-circle law:

1
(1.5) o(dx) = ﬂv4—x21|x|52dx.
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Equation (1.4) can be seen as the almost sure weak convergence of the empirical
measure [, = % 2. 04, of the eigenvalues in the sense that it is equivalent to the conver-
gence, for any bounded continuous function f, of:

n—oo

(1.6) lim rlli_if(/li) = /f(x)do-(x) a.s.

This result was proved by Wigner for matrices X" with independent centered entries (mod-
ulo the symmetry constraint) with variance 1/n and finite moments and not only for Gaus-
sian entries. However, the proof of Wigner’s theorem is much less obvious than that of the
classical law of large numbers because the spectrum is a complicated function of the entries
of the matrix. The key point of Wigner was to observe that moments of the empirical mea-
sure of the eigenvalues are more explicit functions of the entries than indicator functions
since, for any integer number k,

(1.7) —Zﬂk (G = Z Gl Gl

Lik=1
The expectation and variance of the RHS of ( 1.7) can be estimated, yielding by Borel-
Cantelli’s lemma the almost sure convergence of traces of moments. Moreover, by the
Weierstrass approximation theorem, the almost sure convergence of the moments (1.7)
implies (1.6) and then (1.4) because the semi-circle law is compactly supported and has
no atoms.

We are also interested in more detailed convergence of the spectrum, for instance,
convergence of the largest eigenvalue A;. [92] shows that it sticks to the bulk in the sense that
the largest eigenvalue converges almost surely towards 2, the boundary of the support of the
semi-circle law (strictly speaking, [92] assumes that the entries are bounded, but the proof
easily generalizes to sub-Gaussian entries, see e.g [3]). This is analogous to the statement
from classical probability theory that the supremum of independent variables with law u
converges almost surely towards the upper boundary of the support of u, except that this is
infinite if the variables are unbounded like the Gaussians.

1.1.3. Fluctuations

The probability to make a small error in the law of large numbers is specified by
the well-known central limit theorem. It asserts that errors are of the order of the square
root of the dimension and fluctuations are Gaussian. More precisely, coming back to the
example of the empirical mean (1.3) of independent variables, it states that, if [ |x|?du(x)
is finite and we set o-(u) = (f x2du(x) - (/ xdu(x))y)Y2, \n (mn(x) - f xdy(x){converges
in distribution towards a centered Gaussian variable with variance o-(u), so that for every

real number ¢:
t

,}LIEOP(VE (m(x)— i xdu(X))SttT(ﬂ))= [l y

In the context of random matrices, the fluctuations of the eigenvalues are much smaller

and are depicted in Figure 2. The fluctuations of the empirical measure were first studied
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in [134,137]. We describe below the result obtained by Johansson [130] in the case of the
Gaussian ensembles. He showed that for every sufficiently smooth test function f

(18) > s =n [ st
i=1

converges in distribution towards a Gaussian variable. This Gaussian variable is not centered
in general when 8 # 2, but both its mean and variance are explicit. The original proof [130]
relies on the explicit joint law of the eigenvalues (1.2) and is far from obvious because of
the strong correlations between the eigenvalues due to the Vandermonde determinant. This
result was generalized to the case of Wigner matrices by using moments estimates [4,146]
resulting in the universality of the fluctuations within the class of entries with four first
moments equal to the Gaussian ones.

Gaussian Fluctuations of the empirical
measure of order 1/N (Johansson 97)

/

2
FI%ations of the largest eigenvalue of order f
N-</ following Tracy Widom distribution 95

Figure 2 Fluctuations of the spectrum. Courtesy of D. Coulette

Remarkably, the fluctuations are of order one over the dimension (since the conver-
gence of (1.8) holds without any normalization): this indicates that the eigenvalues fluctuate
much less than independent variables. This phenomenon was quantified by the so-called
local law [85,86] which asserts that the convergence in Wigner’s theorem (1.4) can be refined
into a quantitative estimate to showing that the number of eigenvalues in a set [a, b] C (-2,2)
such that b — a > 1/n is still of the order of no([a, b]). This can often be improved to get
the rigidity property [84], namely that the eigenvalues in the bulk stay at a distance of order
n~1*0) from their deterministic limit.

Fluctuations are not always described by the Gaussian distribution: for instance,
the maximum of independent variables with fast decaying tails follows a limiting Gumbel
distribution. In a breakthrough paper [170], the largest eigenvalue of Gaussian ensembles was

shown to fluctuate on the scale n=2/3

and the fluctuations to be distributed according to the
Tracy-Widom laws. The fluctuations of the eigenvalues inside the bulk are also known and
are in the scale n~! (see [151] for 8 = 1,2). These remarkable results were derived thanks to

the explicit joint distribution of the eigenvalues (1.2). In particular, the case where 8 = 2 was
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analyzed thanks to the fact that the density is the square of a determinant, allowing for the use
of orthogonal polynomials and integrable systems theory. In a series of major contributions,
these results were shown to hold for Wigner matrices with entries with finite second and
fourth moments respectively[87, 88,168]. The proofs of these results are sophisticated and
build on comparison with the Gaussian case.

1.1.4. Rare events

The interest in estimating the probability of rare events goes back to Boltzmann,
Gibbs and Shannon who defined the entropy as the logarithm of the volume of config-
urations (or micro-states) achieving a given macro-state. Going back to the coin tossing
example, with a probability p to show heads, a macro-state was defined as the set of con-
figurations such that n tosses give approximately pn heads, namely the event that m,(x) is
approximately equal to p for independent equi-distributed x; with law wu,. The volume, or
probability, of such a macro-state is easily seen to be given by

(1.9) l(sl?gnlglgo % InP(x: [my(x) — p| < 6) ==Sp(p) = —pln(p/p) — (1 —p)ln(i _p),
where —S,(p) is the entropy of p. This result can be inferred from counting the configura-
tions and using Stirling’s formula. Large deviations theory is the art of estimating such rare
events in a general framework [72,73,77,174] by proving Large Deviation Principles (LDP)
that we now define. We will hereafter consider a sequence of probability measures (i, ),>0
on a Polish space E. In this article, we will mainly consider the case where E is the real
line or the set of probability measures on the real line equipped with its weak topology. Let
(an)nen be a sequence of non-negative real numbers going to infinity as n goes to infinity.
We say that (u,, ), >0 satisfies a LDP with speed a,, and good rate function 7, denoted in short
LDP(ay,, ) if and only if

« I : E — R* has compact level sets {x € E : I(x) < M} for every M € R",
* For each Borel measurable set B C E,
1 1
(1.10) —inf ] < liminf — In y, (B) < limsup — Iny, (B) < —inf I.
B n—e  dp n—oo dpn B

Taking B to be a small ball B = B(p, d) for some p € E and ¢ > 0 as small as wished (but
independent of n) shows that the LDP allows to estimate the probability of small balls:

tin (B(p, 8)) = e~n1®)

in the sense that for any p € E,
(1.11) lim lim inf L In p, (B(p, §)) = lim lim sup L In iy, (B(p, 8)) = —1(p) .

510 noe ay 510 noseo Qn
Such an estimate is called a weak large deviation principle. By a covering argument, (1.11)
can be shown to be equivalent to the LDP if E is compact or if y,, satisfies a property called
exponential tightness [72, (1.2.17)]. An important consequence of the LDP(a,,, I) is that if the
rate function / vanishes at a single point x* € E, then, u, converges weakly towards a Dirac
mass at this point.
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The two most well-known results from the large deviations theory are Cramer’s and
Sanov’s theorems. Cramer’s theorem [72] asserts that the distribution of the empirical mean
my,(x) satisfies a LDP with speed n when the (x;);>0 are independent equi-distributed real
valued random variables with distribution u with a finite Laplace transform in a vicinity of
the origin, see (1.9) in the case y = u;,. Sanov’s theorem shows that the law of the empirical

measure % | Ox, satisfies as well a LDP(n, H(.|u)), so that for any probability measure v

1 ¢ _
;Z;&C[,V) < 6) ~ ¢ MHV W)

if d is the distance on the set P(R) of probability measures on the real line defined by

A= s | / F)du(x) - / Fdv()

(1.12) Pld

where || fllL = sup,,, [x - yI7Hf(x) = £(y)] + sup, | £(x)| . Here, H(v|p) is the relative
entropy: it is infinite unless v is absolutely continuous with respect to p and then equals
/ In g—;dv. The proofs of such theorems are more sophisticated than in the coin tossing
example since they cannot rely on direct combinatorial arguments. They often rather follow
from clever changes of measures (also called tilts) that reveal how the distributions should
be changed to make a given rare event typical. These arguments are very much based on
the independence of the variables (x;);>0. Large deviation theory was mainly developed to
tackle the distribution of sums of independent random variables, or of "weakly” dependent
variables such as Markov chains, or probability measures obtained either by a push forward
or a nice density from the latter, see the work of Cramer, Varadhan and many others [72,73,81].
This classical theory does not apply to large random matrices in general. Indeed, even if the
random matrices are chosen with independent entries, the spectrum or the eigenvectors are
complicated functions of these entries. We can take the example of the trace of a power of
a matrix, see (1.7): as soon as the power k is higher or equal to 3, it cannot be written as
a sum of independent entries and understanding the large deviations of such functionals for
Wigner matrices is still open in general, see [8,9] for entries with sharp sub-Gaussian tails
or without Gaussian tails. The case of the Gaussian ensembles is simpler because of the
explicit law of the eigenvalues (1.2). Even if the classical large deviations theory does not
apply to the distribution of the eigenvalues (1.2) because of the strong interaction due to the
Vandermonde determinant term in its density, LDPs were derived in this case to estimate the
probability that the empirical measure of the eigenvalues or the largest eigenvalue deviates
from their typical behavior, see Figure 3.

Theorem 1.2. Let A; > A - -+ > A, be distributed according to (1.2) for some 3 > 0. Then

* [25] For u € P(R), set

1 2 2
E(p) = 5// (% + yj = In|x — y|| du(x)du(y)

and &) = E —inf E. Then & is a good rate function. The distribution of
the empirical measure of the eigenvalues [i,, = ,ll ", 64, under Pg satisfies
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Figure 3 Large deviations of the spectrum with exponentially small probability. Courtesy of D.
Coulette

a LDP(Bn?, &), that is for every closed set F

1
li — InP% (4, € F) < —inf
imsup 25 In p (An € F) < —inf &,
whereas for any open set O

1
limsup —
ln—m]jp ﬂn2

* [23, Theorem 6.2] Let Igog(x) = % /2x \Vy2 —4dy for x > 2 and Igog(x) = +oo for
x < 2. Then the distribution of A, satisfies a LDP(Bn, Igog).

lnP/’; (i, €0) > —igf&

Notice that the speed of the LDP for the empirical measure is n?

, in contrast with
the speed n in Sanov’s theorem, showing again that the eigenvalues of Gaussian ensembles
are much less random than independent variables. Moreover, it can be seen that & vanishes
only at the semi-circle law, implying Theorem 1.1 (see section 2.1 for more detail). Sim-
ilarly, Igog vanishes at 2 only, ensuring the convergence of the largest eigenvalue towards
2. The proof of this theorem relies on Laplace’s principle. Indeed, the distribution of the
empirical measure of the eigenvalues and of the largest eigenvalue can be seen to have
approximately the density e A" EWn) /7, and e Pnlcoe() /7 where Z,, z, are appropriate
normalizing constants. The theorem would follow by the Laplace principle if E and Igog
were continuous. The main point is to make the above approximations precise and to show
that, even though E is not continuous (because the logarithm is not bounded), the result is
still valid.

One of the main goals of this article is to discuss how to generalize this theorem. For
instance, how can it be extended to general Wigner matrices? In this case, no explicit formula
for the law of the eigenvalues such as (1.2) is known. On the other hand, the LDP a priori
depends on the whole distribution of the entries as in the case of Sanov’s theorem, contrarily
to fluctuations which often depend mainly on a finite number of moments. Such universal
classes are not expected in large deviations theory. Even conjecturing the rate functions for
such LDPs is not clear. LDPs were also obtained for other invariant models such as Wishart
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or unitary matrices [125] or non-Hermitian Gaussian matrices [28], but the distribution of
their eigenvalues all enjoy a rather explicit form. LDPs for Gaussian random matrices with
independent centered entries but variance different from those of the Gaussian ensembles
are also still open, see [105] for large deviation upper bounds. We will see that other invariant
matrix models, such as models involving several matrices, remain very challenging as well.

Large deviations theory is key to study laws of dependent variables such as Boltzmann-
Gibbs distributions in statistical mechanics. They are probability measures of the form

1 —Bn
(1.13) dpig(x) = e Py (x)

B

where E, is a function from the space of states (for instance R") into R, often called the
energy or the Hamiltonian, (3 is a real parameter proportional to the inverse of the tempera-
ture, 1 (x) is some reference probability measure and Zl’; is the so-called partition function,
namely the constant which turns /,tg into a probability measure. The properties of such mea-
sures when the dimension n goes to infinity are better understood when the distribution of
E,(x) under p0(x) satisfies a LDP(n, I). The typical values of the energy can then be inferred
from the fact that for every y € R

O 1Ea(3) = ] < ) = e Pl sn000)
B

from which it is clear that E,,(x) concentrates in a neighborhood of the minimizers of Ig(y) =
By + I(y) with large probability when n goes to infinity. Varadhan’s integral Lemma [72,
Theorem 4.3.1] states more precisely that the distribution of E,, under ,ug, satisfies a LDP(n, Ig —
inf Ig). This type of analysis often holds for the so-called mean field interacting systems
that are distributions such that all variables interact in the same way, for instance, where
the energy E, (x) is a function of the empirical mean m,, or of the empirical measure. A
celebrated example is the Curie-Weiss model where E,, is a quadratic polynomial in the
empirical mean m,, and du’ = "1 duyp. The LDP for this model can be proven as above,
as well as the convergence of the empirical mean towards the minimizers of the rate function.
It can be shown that this minimizer is unique, equals zero for small enough S, but takes a
non zero value after some critical S.. This provides a simple example of phase transition
known as spontaneous magnetization. Such applications are also important in RMT when
studying matrix models, see section 1.2.4.

We present in the rest of this introduction a few additional motivations for the study
of large deviations for large random matrices, as well as extensions to related fields. We will
then review the main results of this emerging field, focusing first on large deviations for the
spectrum of one random matrix, and then on multi-matrix models where non-commutativity
raises new challenges. Along the way, we highlight a few open problems.

1.2. Motivations

In this section, we discuss a few additional motivations to establish large deviation
principles in random matrix theory.
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1.2.1. Bernoulli matrices

Matrices with entries equal to zero or one can be interpreted as the adjacency matrix
of random graphs where the entry at (ij) is equal to one iff there is an edge between the ver-
tices i and j. In particular, Random matrices with independent Bernoulli entries are the
adjacency matrix of Erdos-Rényi graphs. The spectrum of the adjacency matrix of a graph
is intimately related to the graph’s geometric properties, such as being an expander. More-
over, traces of moments count particular subgraphs, for instance, the trace of the adjacency
matrix to the third power counts the number of triangles in the graph. Understanding how a
random graph looks like when a rare event happens is a natural question [59]. As we will see,
studying the large deviations for the spectrum of matrices with non Gaussian entries such as
Bernoulli’s is far more difficult, basically because the law of the eigenvalues is not given by
an explicit distribution as in (1.2). In particular one needs to understand more precisely the
best scheme to perform a given large deviation event.

1.2.2. The BBP transition

The largest eigenvalue is often used to test whether an array of data contains infor-
mation, just by comparing it with the largest eigenvalue of an array taken at random. Even
though such applications involve usually non symmetric matrices and their singular val-
ues, the famous Wishart matrices in RMT [183], we stick to Wigner matrices in this article
for consistency. The renowned BBP transition [14] asserts that the largest eigenvalue of a
random matrix perturbed by a finite rank signal pops out of the bulk at a critical value of
the intensity of the signal (more precisely of its largest eigenvalue), above which the weak
recovery of the signal u from the observation of the perturbed signal is possible [30]. The
large deviations for the largest eigenvalue have then been used in statistics to assert the risk
of statistical tests [34]. In the related problem of estimating a low rank tensor in Gaussian
noise [27] requires large deviations for the largest eigenvalue of a rank one perturbation of a
Gaussian matrix, which were derived in [111,147].

1.2.3. The complexity of random functions

The interest in optimizing random functions grew in the last ten years from its
relevance to deep learning, building on its importance in spin glass theory. However, random
functions in high dimensions are complex in the sense that they have many local minima and
finding their global minima may be a complicated task, in fact, an NP-hard problem. In the
last ten years, the study of the complexity of random functions grew into a field on its
own, for instance, allowing to estimate the expectation of the number of local minima of
a random function with a given index and level. Such estimates are based on Kac-Rice
formula. Because the Hessian of a random function can be seen as arandom matrix, the
large deviations for the latter are crucial to getting such estimates [6,22,24,27,60,96,167].
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1.2.4. Random matrices and the enumeration of maps

The relation between random matrices and the enumeration of maps goes back to
[79,123,169] where it was proved that if G" follows the GUE, then for every integer number k

1 n\2k 1
B[ TH(G"))] = gZO e M ()

where M, (k) is the number of ways to glue the sides of a 2k-polygon in pairs such that the
resulting surface has genus g. The counting is made after labeling the sides clockwise, or
equivalently after drawing the polygon on an orientable surface with a distinguished root
side. Maps are the same only if all the matchings occur between sides with the same labels.

Rvage:

- L( /

Figure 4 Gluing of 4 triangles and 1 square. Corners of the same color belong to the same vertex of
the map in the final surface. Courtesy of G. Miermont

This relation between maps and random matrices extends to several polygons, see
Figure 4, if one considers the distribution

1 n
(1.14) dPy, ,(X") = T eV ) g (X
V,2

for some potential V. Here, V(X") is defined as the matrix with the same eigenvectors than
X" and eigenvalues given by the image by V of the eigenvalues of X". The measure P}
denotes the law of the GUE (1.1) and the constant Z{, , is the normalizing constant so that
P@,z is a probability measure. We will assume that V is a polynomial, V(x) = — Zf=3 tixt,
with p even and #,, < 0 so that (1.14) makes sense. It was shown [79,169] that

o0 ki
1 Fy=wzy=Y o Y [ M),
g>0 ki, kp=01<i<p
where M, ((k;,i)1<i<p) denotes the number of ways to glue pairwise the sides of k; polygons
with i sides, 1 <i < p, and get a connected two dimensional surface of genus g. The counting
is done with labeled sides. Equivalently, we can think of a polygon with i sides as a vertex
with i half-edges drawn on an orientable surface. M, ((k;,i)1<i<p) then counts the number of
maps, that is the number of connected graphs drawn on a surface, built by matching the half-
edges of k; vertices with i half-edges, 1 < i < p. Half-edges are labeled. The genus of the
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map is the genus of the surface in which the graph can be properly embedded, which is such
that the faces, obtained by cutting the surface along the edges of the map, are homeomorphic
to disks. It can be computed from the fact that the Euler characteristic 2 — 2g is equal to the
number of vertices minus the number of edges plus the number of faces.

Observe also that making a small change V—V + 6x¢ in (1.14), and identifying the
linear term in 6, shows that

1 T i

L1y [ L aryx) - ;) > kzkjo [ MG i (1,00,
where (1, ) means that the maps contain an additional polygon with ¢ sides, also called
external face. A priori, (1.15) and (1.16) are equalities of formal series. They are obtained by
expanding all the terms depending on V and using Wick formula (or equivalently Feynman
diagrams) to compute the resulting Gaussian expectations. These equalities can be turned
into an asymptotic expansion up to errors of order n~2X for any integer number k as soon
as the parameters #;, 1 < i < p, are small enough, p is even and with f,, > 0 [83]. Therefore,
computing the large n limit of the free energy F€,2 or the limit of the empirical measure
of the spectral measure of the eigenvalues allow to effectively enumerate planar maps. This
route was followed in [79] where random triangulations and quadrangulations were studied,
corresponding to cubic and quartic polynomials. Note that, in the first case, p is odd and
Z(l,’z a priori infinite but the above relations can be generalized by restricting the integration
to matrices with spectral radius bounded by a large enough constant. Such computations can
be done more generally by using large deviations theory [106,113].

1.2.5. Beta-ensembles

A change of variables shows that the eigenvalues 1= (A1, -+, Ay) of X" following
P?  of (1.14) are distributed according to the distribution P where
V.2 1x2+v,p
- 1 - Bn yn
1.17 dPl (1) = — AP~ 7 Zin VA I | g, |
(1.17) b = ZoA Pe [Ta,

and B = 2. The case 8 = 1 corresponds to symmetric matrices and 8 = 4 to quaternionic
entries. We only considered the case 8 = 2 in the previous section because the combinatorial
interpretation of the other cases is less clear in general, see e.g. [55,104,141] for 8 = 1. In fact,
Py g makes sense for any S > 0 and is called a Beta-ensemble. Equation (1.17) furnishes
a classical example of particles in strong interaction belonging to the family of Coulomb
gases in dimension 1, see e.g. [28,161] for higher dimensions. Large deviations are useful in
analyzing the limiting distribution of the particles.

Equation (1.17) also provides another route to estimate the asymptotics of the free
energy F"/"z or of the empirical measure of the matrix models (1.14) and hence study the
enumeration of maps, as proposed in [79] to complement Tutte’s combinatorial approach

[172].
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1.2.6. Multi-matrix models and the enumeration of maps
Equation (1.15) generalizes to colored maps for matrix models of the form

1 n n n n
(118) dPl\q/’z(an o X:;) — ZTe_nTr(V(Xl 5o X)) = 5 Tr(E(X )Z)dX’l'l . dXZ

V.2
where V is a self-adjoint polynomial going to infinity fast enough. If V(ay,...,aq) =
- Zle tigj(ay, ..., aq) with monomials g;, then [79,169] show that

(t;)k
(1.19) logz -3+ . Z [ ’—M o (ki g1 <i<p)
g>0 n =01<i<p

where Mg ((ki, gi)1<i<p) counts maps with genus g built over k; colored polygons of type
gi. A colored polygon of type ¢ = a;, - - - a;, is a polygon drawn on an orientable surface so
that its first side has color i; € {1, ..., m} (the root), second has color i, until the last one
has color i;. Maps are constructed by matching sides with the same color and counting is
done with labeled sides. Note that a colored polygon is in bijection with a rooted vertex with
ordered colored half-edges and maps are then obtained by matching half-edges of the same
color. Even though this equality holds a priori at the level of formal power series, it can be
turned into an asymptotic expansion [113]. This equality allows to represent many physical
models in terms of random matrices, such as the Ising model or the Potts model on random
maps [45,89]. Multi-matrix integrals turn out to be much more difficult to estimate than one
matrix integrals, basically because non-commutativity kicks in. This fact is not surprising
given the complicated combinatorial questions that they eventually represent. We will see in
section 3 that the case of the so-called AB interaction is better understood than the general
case discussed in section 4.

Ising model on the lattice Ising model on random graphs

1.2.7. Multi-matrix models and Voiculescu’s entropy

One of the most challenging goals in studying large deviations for random matrices
was provided by Voiculescu [176,178] in the nineties when he defined notions of entropy in
the context of free probability. Free probability is a probability theory where random vari-
ables do not commute and the notion of independence is replaced by freeness. A central
point in free probability theory is that Gaussian random matrices are free variables in the
limit where their size goes to infinity [175]. Free probability is intimately related to von Neu-
mann algebras and Voiculescu’s hope was to define an invariant for von Neumann algebras
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to classify them. His ideas were inspired by Minkowski content and entropy in classical
probability theory. Voiculescu micro-states entropy can be seen as a generalization of Shan-
non’s entropy as it measures the volume of matrices which approximate in a weak sense a
given set of non-commutative random variables. In the case of a single variable, the non-
commutative entropy is roughly speaking given by the rate function of the large deviation
principle for the law of the empirical measure of the eigenvalues of Gaussian ensembles
in Theorem 1.2 [178]. Understanding better Voiculescu’s entropies would have groundbreak-
ing applications in von Neumann algebras theory. Moreover, random matrices can serve to
construct interesting non-commutative laws, see e.g [110]. We discuss these issues in section
4.

1.3. Extensions
Beta-ensembles and random matrices are connected with many other fields, of
which we describe briefly a few below, see e.g [2,94] for more.

1.3.1. Beta-ensembles and quantum physics

Beta-ensembles and Coulomb gases arise in many domains of physics, including
condensed matter physics, statistical physics or quantum mechanics, we refer to [161] for
a survey including higher dimension generalization. Variants of Beta-ensembles involving
hyperbolic Vandermonde determinants appear in quantum integrable models solvable by
the quantum separation of variables method, such as the Toda chain [136] or the lattice Sinh-
Gordon model [144]. Such integrals then correspond to normalizations of the n-particles
wave functions and, more generally, to matrix elements of local operators. Some of their
large-n properties were investigated in [42]. Furthermore, integrals similar to Beta-ensembles
but having more general interactions with the same singularity arise in the form factor
expansions of Wightman functions in massive integrable quantum field theories in 1+1
dimension[164]. The large deviation techniques discussed in this article allow to estimate
such integrals.

1.3.2. Random tilings
Beta-ensembles extend to the discrete case. They then model the distribution of hor-

izontal lozenge tiles in a lozenge tiling taken at random. Indeed, consider discrete ensembles
given for a weight function w by:

- 1
(1.20) Pa = o [ |16 =P [ [win
noi<y i
The coordinates {1, . . ., £, are discrete and such that {;,1 — ¢; € N*. This probability measure

arises in the setting of lozenge tilings of domains such as the hexagon. In fact, considering
an hexagon with sides of size A, B, C, along the vertical line at distance ¢ of the vertical side
of size A (see Figure 5), the distribution of horizontal lozenges corresponds to a potential of
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Figure 5 Tiling of the hexagon. Courtesy of L. Petrov and V. Gorin

the form
(1.21) wl,n)=|{(A+B+C+1-t—-0);_g ()|,

where (a)y = a(a+1)---(a+ k — 1) is the Pochhammer symbol, and # is the total number
of horizontal lozenges. Large deviations can be used to describe the limiting surface of the
tiling when n goes to infinity, for instance, recovering the limiting well-known arctic circle,
see e.g [61,162] for large deviations of the whole surface. The measure in (1.20) corresponds
to 8 = 2 ensembles, but can be generalized to all 5 > 0, see [40].

1.3.3. Zeroes of Random polynomials

The distribution of zeroes of random polynomials also follows a kind of Beta-
ensembles distribution: this connection was used in [185] to study large deviations for the
distribution of such zeroes. In the same direction, [102] studies the topology of a random
real hypersurface in a given smooth real projective manifold by estimating the mean of their
Betti numbers thanks to large deviation principles. Such questions are closely related to the
study of the complexity of random functions discussed in section 1.2.3.

1.3.4. Longest increasing subsequence and discrete polynuclear growth
Beta-ensembles also describe the distribution of the discrete polynuclear growth
and the length of the longest increasing subsequence of a permutation taken at random, a
relation which allowed to study precisely the fluctuations and the large deviations of these
models. It was shown in [131] that the distribution of the length of the longest increasing
subsequence of a permutation of n elements taken uniformly at random is closely related
with Beta-ensembles. This formed the basis for the evaluation of the fluctuations of the
longest increasing subsequence in [15]. In [132], the distribution of the discrete polynuclear
growth given by
G(M,N) = max w(i, J),
(M. N) = m: <,-,,Z)e,r (i.J)
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where 7 is a up-right path from (0, 1) to (M, N), was shown to be intimately related with
a discrete Beta-ensemble when the w are independent equi-distributed geometric variables.
These connections with random matrices allowed to study large deviations [17,18,74,133,160].

1.3.5. Sum rules

[97,98] found out that equating large deviations rate functions in random matrix the-
ory was also fruitful in getting a deep understanding of the sum rules of Killip and Simon
[138], also called GEM relations in spectral theory. The latter states highly non trivial equal-
ities between different functionals on the space of measures. [97,98] interpreted both sides
of the equalities as rate functions for the large deviations for the spectral measure given by
A2(f) = (e, f(G™)e) for a deterministic unit vector e (and a GOE/GUE matrix G"). Indeed,
one can take two different routes to compute the probability of deviations of this spectral
measure: either by relating it to the spectrum of G” or to the recursion 