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ABSTRACT. In this article, we consider random Wigner matrices, that is symmetric
matrices such that the subdiagonal entries of X,, are independent, centered, and with
variance one except on the diagonal where the entries have variance two. We prove
that, under some suitable hypotheses on the laws of the entries, the law of the largest
eigenvalue satisfies a large deviation principle with the same rate function as in the
Gaussian case. The crucial assumption is that the Laplace transform of the entries must
be bounded above by the Laplace transform of a centered Gaussian variable with same
variance. This is satisfied by the Rademacher law and the uniform law on [—+/3,/3].
We extend our result to complex entries Wigner matrices and Wishart matrices.

1. INTRODUCTION

Very few large deviation principles could be proved so far in random matrix theory.
Indeed, the natural quantities of interest such as the spectrum and the eigenvectors are
complicated functions of the entries. Hence, even if one considers the simplest model of
Wigner matrices which are self-adjoint with independent identically distributed entries
above the diagonal, the probability that the empirical measure of the eigenvalues or the
largest eigenvalue deviates towards an unlikely value is very difficult to estimate. A well
known case where probabilities of large deviations can be estimated is the case where
the entries are Gaussian, centered and well chosen covariances, the so-called Gaussian
ensembles. In this case, the joint law of the eigenvalues has an explicit form, independent
of the eigenvectors, displaying a strong Coulomb gas interaction. This formula could
be used to prove a large deviations principle for the empirical measure in [10] and for
the largest eigenvalue [9] (see also [24] for further discussions of the Wishart case, and
[16]). More recently, in a breakthrough paper, C.Bordenave and P. Caputo [14] tackled
the case of matrices with heavy tails, that is Wigner matrices with entries with stretched
exponential tails, going to zero at infinity more slowly than a Gaussian tail. The driving
idea to approach this question is to show that large deviations are in this case created by a
few large entries, so that the empirical measure deviates towards the free convolution of the
semi-circle law and the limiting spectral measure of the matrix created by these few large
entries. This idea could be also used to grasp the large deviations of the largest eigenvalue
by F.Augeri [2]. Generalization to subgraphs counts and the eigenvalues of random graphs
are given in [3, 15, 12]. In the Wishart case, [17] considered the large deviations for the
largest eigenvalue of very thin Wishart matrices W = GG*, in the regime where the
matrix G is L x M with L much smaller than M. In the case of Bernoulli entries with
parameter p < 1 precise large deviations could be derived recently for the largest and
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second largest eigenvalues [?, ?]. Hence large deviations for bounded entries, or simply
entries with sub-Gaussian tails, remained mysterious in the case of Wigner matrices or
Wishart matrices with L of order M. In this article we analyze the large deviations of the
largest eigenvalue of Wigner matrices with Rademacher or uniformly distributed random
variables. More precisely our result holds for any independent identically distributed
entries with distribution with Laplace transform bounded above by the Laplace transform
of the Gaussian law with the same variance. We then prove a large deviation principle
with the same rate function than in the Gaussian case: large deviations are universal in
this class of measures. We show that this result generalizes to complex entries Wigner
matrices as well as to Wishart matrices. We are considering the case of general sub-
Gaussian entries in a companion paper with F. Augeri. We show in particular that the
rate function is different from the rate function of the Gaussian case, at least for deviations
towards very large values.

1.1. Statement of the results. We consider a family of independent real random vari-

ables (ag}j))ogigjg N, such that the variables ag}j) are distributed according to the laws 4.

We moreover assume that the ufvj are centered :

pl (@) = [ adud(z) =0
and with covariance:
ng(ﬁ) = /I2d,uf.yj(x) =1,Vi<i<j <N, ,ux.(x?) =92 VI<i<N.

We say that a probability measure p has a sharp sub-Gaussian Laplace transform iff

Vi e R, T,(t) = / exp{tz}du(z) < exp {t2u§x2)}. (1)

The terminology “sharp” comes from the fact that for ¢ small, we must have

7,00) = exp{ 24 1+ ot

Then we assume that
Assumption 1.1 (A0). We assume that the ufvj satisfy a sharp Gaussian Laplace trans-

form in the sense that

° (uﬁ;)ig have a sharp sub-Gaussian Laplace transform,

e The ,ulN] have a uniform lower bounded Laplace transform: For any 6 > 0 there
exists €(0) > 0 such that for any [t| < e(0), any 1 <i<j< N, any N € N,

(1= 8)ud(?)
2 i

Moreover, we assume that the T, N are uniformly C3 in a neighborhood of the origin: for

T~ (t) > exp{

Y

€ > 0 small enough sup <. sup”N |03 InT),w ( )| is finite.
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Observe that the uf\g have a uniform lower bounded Laplace transform as soon as they
do not depend on N and there are finitely many different of them.

Remark 1.1. We could assume a weaker upper bound on the Laplace transform for the
diagonal entries such as the existence of A finite such that

[ e dudi@) < expft + A}, V1<i<N,
see the proof of Theorem 1.17.

Example 1.2. (1) Clearly a centered Gaussian variable has a sharp sub-Gaussian
Laplace transform.
(2) The Rademacher law B = 1(6_y + 61) satisfies a sharp sub-Gaussian Laplace
transform since for all real number t
Ty(t) = cosh(t) < /%

(3) U, the uniform law on the interval [—/3,/3], satisfies a sharp sub-Gaussian
Laplace transform since we have

/[L’ZdU(l’) =1,

and
Tol) = — sinh(tv3) = °
T3 & nt+
Since for alln > 0, (25’7:1), < ﬁ, it follows that Ty (t) < eé.

(4) More generally if p is a symmetric measure on R (i.e. such as p(—A) = p(A) for
any Borel subset A of R) such that
(2n)2n—1)---(n+1)

/xzdu(x) =1, /iﬁ%dﬂ(l’) < on

then p satisfies a sharp sub-Gaussian Laplace transform.

(5) If X,Y are two independent variables with distribution p and u', two probability
measures which have a sharp sub-Gaussian Laplace transform, for any a € [0, 1],
the distribution of \/aX + /1 —aY has a sharp sub-Gaussian Laplace transform.

(6) If ,uf\; = u for all i,j, then they satisfy a uniform lower bound on the Laplace

transform. Also, if all the uf}f are symmetric, the lower bound is automatically

Vn > 2,

satisfied as the Laplace transform is lower bounded by ezt

Note that many measures do not have a sharp sub-Gaussian Laplace transform, e.g. the
sparse Gaussian law obtained by multiplying a Gaussian variable by a Bernoulli variable,
or the well chosen sum of Rademacher laws. We will also need that the empirical measure
of the eigenvalues concentrates in a stronger scale than N, see Lemma 1.11. To this end
we will also make the following classical assumptions to use standard concentration of
measure tools.

Assumption 1.2. There exists a compact set K such that the support of alluﬁfj is included

in K for alli,j € {1,..., N}and all integer number N, or all /L;Nj satisfy a log-Sobolev
inequality with the same constant ¢ independent of N. More precisely, in the later case
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and when the entries are complex, we assume that they are of the form c(x + iy) with a
complex number ¢, and independent real variables x,y which satisfy log-Sobolev inequality
with the same constant ¢ independent of N.

Remark 1.3. All the examples of Example 1.2 satisfy Assumption 1.2, except possibly
for sums of Gaussian variables and bounded entries.

We then construct for all N € N, a real Wigner matrix N x N XJ(\}) by setting :

1)
L when ¢ < 7,
1

\/}vwheni>j.

We denote )\mm(X](\})) =N < A-o- < Ay = )\maX(XJ(\})) the eigenvalues of XJ(\}). It

is well known [26] that under our hypotheses the empirical distribution of the eigenval-

ues ﬂﬁ a = % SN 85, converges weakly towards the semi-circle distribution o: for all
N

S]

S~

2

X0, 5) = {

S~

S

bounded continuous function f

Jim [ @iy (o) = [ f@)ota) = o [ feVI= P as

It is also well known that the eigenvalues stick to the bulk since we assumed the entries
have sub-Gaussian moments [18, 1] :

- oy , (1 _
A}l_r}l(l)o Amin(XN7) 2 A}l_I}I;O Amax(X§7) = 2, a.s.
Our main result is a large deviation principle from this convergence.

Theorem 1.4. Suppose Assumptions 1.1 and 1.2 hold. Then, the law of the largest
etgenvalue )\maX(X](\})) of X](\}) satisfies a large deviation principle with speed N and good
rate function I") which is infinite on (—o00,2) and otherwise given by

1
IW(p) = 2/; Va? —4dx.

In other words, for any closed subset F' of R,

: 1 :
lim sup In P (/\maX(X](\})) € F) < —1_%f v,

N—oo

whereas for any open subset O of R

1
imi (1) —inf 7
lim inf N In P ()\max(XN ) € O) > —inf IV,

N—o0
The same result holds for the opposite of the smallest eigenvalue —/\mm(X](\})).
Therefore, the large deviations principles are the same as in the case of Gaussian entries
as soon as the entries have a sharp sub-Gaussian Laplace transforms and are bounded,
for instance for Rademacher variables or uniformly distributed variables. Hereafter we
show how this result generalizes to other settings. First, this result extends to the case of

Wigner matrices with complex entries as follows. We now consider a family of independent
©)

random variables (az(?j))lgigjg N, such that the variables a;; are distributed according to
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a law ,ufvj when ¢ < j, which are centered probability measures on C (and on R if i = j).
We write az(-?j) = x;; + 1y, ; where x;; = %(af—?) and y; ; = S(az(-?j)). We suppose that for
all i € [1,N], y;; = 0. In this context, for a probability measure on C, we will consider
its Laplace transform to be the function

T,(2) = / exp{R(az)}du(a) .
We assume that
Assumption 1.3 (AOc). For alli < j

vt € C, T (1) < exp(|t*/4),

and for all i
Vi€ R, T, (t) < exp(t?/2).

We assume that for all 6 > 0 there exists () > 0 so that for all complex number t with
modulus bounded by ()

(1 —0)t?

2
T () > exp X2 0)}i <j. T () > exp )

By ju

Moreover, for € > 0 small enough supj, <, sup; ; v |07 In Ty~ (t)] is finite.
< s v

Observe that the above hypothesis implies that for all i < j, 2E[z7;] = 2E[y;,] =
E[z},] = 1 and E[z; ;5:;] = 0. Examples of distributions satisfying Assumption 1.3 are
given by taking (x; ;,y; ;) centered independent variables with law satisfying a sharp sub-
Gaussian Laplace transform. Hereafter, we extend naturally Assumption 1.2 by assuming
that the compact K is a compact subset of C or log-Sobolev inequality holds in the
complex setting.

We then construct for all N € N, X](\?) a complex Wigner matrix N x N by letting :

@

ﬁ when i < 7,

a?

7 when ¢ > 7.

Again, it is well known that the spectral measure of X ](\?) converges towards the semi-circle

distribution o and that the eigenvalues stick to the bulk [1].

Theorem 1.5. Assume that Assumptions 1.3 and 1.2 hold. Then, the law of the largest
eigenvalue )\maX(X](\?)) of X](\?) satisfies a large deviation principle with speed N and good
rate function I®) which is infinite on (—o00,2) and otherwise given by

1P (p) =21V (p) = /p Va?—4dr.
2

We finally generalize our result to the case of Wishart matrices. We let L, M be two
integers with N = L + M. Let G(LB 3\4 be an L x M matrix with independent entries

(az([j-)) 1<icr with laws p” jﬁM on the real line if 5 = 1 and on the complex plane if 5 = 2.
g <M ’

The ,uiL’ 3-M satisfy a sharp sub-Gaussian Laplace transform (with real or complex values) for
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all 4,5 € [1, L] x [1, M], and its complementary uniform lower bound (Assumption 1.1, or
Assumption 1.3), are centered and have covariance one. We set ng ), =1 G(LB 3\4(G(Lﬁ )

When M/ L converges towards «, the spectral distribution of W(’B ) converges towards the
Pastur-Marchenko law [23]: for any bounded continuous functlon f

lim [ @)t (@) = [ f@dra(@)  as.

L,M

where if @ > 1 and a, = (1 — \/a)? b, = (1 + /)2,

V(b — 2)(z — a,)

2rx

To(dx) =

]l[aa,ba]dx .

When a < 1, the limiting spectral measure has aditionnally a Dirac mass at the origin
with mass 1 — . We hereafter concentrates on the case M > L up to replace Wéﬁ ]%4 by

(G(Lﬁ 3\4)*6’26 3\4 /M. Again, the extreme eigenvalues were shown to stick to the bulk [6]. We
prove a large deviation principle from this convergence:

Theorem 1.6. Assume that the uf\; satisfy Assumption 1.2. Assume they satisfy a sharp
Gaussian Laplace transform 1.1 when 8 =1 or 1.8 when B = 2, and a uniform lower
bounded Laplace transform 1.1 when =1 or 1.8 when [ = 2. Assume that there exists
a > 1 and k > 0 so that % —a = o(N~"). Then, the law of the largest eigenvalue

)\maX(WL(’%) of WL(’% satisfies a large deviation principle with speed N and good rate
function JP) which is infinite on (—00,b,) and otherwise given by

J(ﬁ)( 1—|—a / \/ ~ ba) _aa)dy.

where B =1 in the case of real entries, and 3 = 2 in the case of complex entries.

This problem can be recasted in terms of Hermitian models with independent entries
in the sense that if we consider the N x N matrix

(GLm) 0

the spectrum of the N x N matrix Xj(vwﬁ ) is given by L eigenvalues y/ %)\, L eigenvalues
— %/\, where A are the eigenvalues of W,—Eﬁ 13/[, and M — L vanishing eigenvalues. Hence,

the largest eigenvalue of W(ﬁ ) is the square of the largest eigenvalue of X](\}”B ) multiplied

by N/L. X](\;UB ) is, like X ]/f, a Hermitian matrix which is linear in the random entries,
but it has more structure with its zero entries. It is therefore equivalent to show a large

deviation principle for the largest eigenvalue of X](\;UB ) Wwith speed N and rate function

109 (z) = JO((1 + a)z?).



LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF RADEMACHER MATRICES 7

This amounts to consider a Wigner matrix with some entries set to zero. We denote aijﬁ )

the entries of \/NX](\;UB):

a(jvjvﬁ) — 0, ifi,j<Lorij>L+1,
agf;’f” = o, i>L+1,j<L,
aly? = @, jEL+Li<N.

Again, we denote by 2 ; the law of the i jth entry of this matrix. Hereafter, we denote

by o, the limiting spectral distribution of X\ N )

/f@;)d%( 1+a </f F Ydma(z +/f ﬂ)dwa(x)> + Z;if(()).

Therefore, we shall prove Theorem 1.6 by showing that

given for any test function f by

Theorem 1.7. Assume that the uf\; satisfy Assumption 1.2. Assume they satisfy a sharp
Gaussian Laplace transform 1.1 when B =1 or 1.3 when = 2, and a uniform lower
bounded Laplace transform 1.1 when 3 =1 or 1.8 when [ = 2. Assume that there exists
a > 1and k > 0 so that % —a = o(N™"). Then, the law of the largest eigenvalue
/\maX(X(wB) of X](\;UB) satisfies a large deviation principle with speed N and good rate
function 1) which, is infinite on (—o00,by), if ba = /(1 + @)~ 1bs and otherwise given by

I(wﬁ

1+a/ \/1—|—a 2(y?2 —1)2 — dady .
where B =1 in the case of real entries, cmd two in the case of complex entries.
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1.2. Scheme of the proof. The idea of the proof is reminiscent of Cramér’s approach
to large deviations: we appropriately tilt measures to make the desired deviations likely.
The point is to realize that it is enough to shift the measure in a random direction and
use estimates on spherical intergrals obtained by one of the author and M. Maida [19].
To be more precise, we shall follow the usual scheme to prove first exponential tightness:
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(6

Lemma 1.8. For 8 = 1,2, wi,wy, assume that the distribution of the entries a;; satisfy

Assumption 1.1 for f = 1, wy and Assumption 1.8 for f = 2,wy. Then:

1
lim limsup Nln }P’[)\max(X(ﬁ)) > K] = —o00.

K—+00 N0
Similar results hold for )\min(X](f)).

This result is proved in Section 2. Note that in fact the proof of Lemma 1.8 requires
only sub-Gaussian tails. Therefore it is enough to prove a weak large deviation principle.

In the following we summarize the assumptions on the distribution of the entries as
follows :

Assumption 1.4. FEither the uf\; are uniformly compactly supported in the sense that
there exists a compact set K such that the support of all /Livj is included in K, or the

,ufvj satisfy a uniform log-Sobolev inequality in the sense that there exists a constant c
independent of N such that for all smooth function f

[ £ < a9 1)

More precisely, in the later case and when the entries are complex, we assume that they
are of the form c(x + iy) with a complex number ¢, and independent real variables x,y
which satisfy log-Sobolev inequality with the same constant ¢ independent of N. When
g =1,w uf\[j satisfy Assumption 1.1, when 8 = 2,ws, they satisfy Assumption 1.3. In
the case of Wishart matrices, f = wy or wy, we assume that there exists o > 0 and k > 0
so that |% —a| < N7* for N large enough.

We shall first prove that we have a weak large deviation upper bound:

Theorem 1.9. Assume that Assumption 1.4 holds. Let = 1,2,wq,ws. Then, for any
real number x,

lim sup limsup]blnIP’ (‘AmaX(X(ﬁ) x’ < 5) < —Ig(x).

§—0 N—oo

We shall then obtain the large deviation lower bound.

Theorem 1.10. Assume that Assumption 1.4 holds. Let B = 1,2, wy,ws. Then, for any
real number x,
1
hrgn_}iglf liNHLiO%f N InP (‘)\maX(X](Vﬁ)) — Z" < 5) > —Ig(x).

To prove Theorem 1.9, we first show that the rate function is infinite below the right
edge of the support of the limiting spectral distribution. To this end, we use that the
spectral measure jiy converges towards its limit which much larger probability. We denote
this limit 03: 07 = 09 = 0 is the semi-circle law and o, = 0, = 0, is the symmetrization
of Pastur-Marchenko law (2). We let d denote the Dudley distance:

[ @du(@) = [ f(@)dvia

where || ]l = sup,, W D 4 sup, |f(x)].

d(u,v) = sup
Ifllz<1

Y




LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF RADEMACHER MATRICES 9

Lemma 1.11. Assume that the ,ufvj are uniformly compactly supported or satisfy a uniform
log-Sobolev inequality, as well as, in the case wy,ws, that there exists k > 0 such that

% —a| < N7, Then, for = 1,2,wy,ws, there exists k' € (0, % A K) such that

1 /
lim su lnP(d 0N s, 08) > N_“) = —00.
N_mp N (7 x(® 5)
The proof of this lemma is given in the appendix. As a consequence, we deduce that
the extreme eigenvalues cannot deviate towards a point inside the support of the limiting
spectral measure with probability greater than e~V for any C' > 0 and therefore

Corollary 1.12. Under the assumption of Lemma 1.11, For 3 = 1,2 let x be a real
number in (—o0,2) or, for f = wy,ws, take x € (—00,b,). Then, for 6 > 0 small enough,
: 1 (8)
limsup —InP (A pax(Xx') — 2| <0) = —c0.
msup P (A (XY) — 2] < 9)
Indeed, as soon ¢ > 0 is small enough so that x 4 ¢ is smaller than 2 — ¢ for g = 1,2
(resp. b, — 6 for = wy,ws), d(fiy,05) is bounded below by some £(d) > 0 on the event
that ])\max(XJ(QB)) — x| <. Hence, Lemma 1.11 implies the Corollary.

In order to prove the weak large deviation bounds for the remaining x’s, we shall tilt
the measure by using spherical integrals:

]N(X, 9) _ Ee[eeN(e,Xen 7

where the expectation holds over e which follows the uniform measure on the sphere SV—!
with radius one. The asymptotics of

1
JN(X, 0) = N ln]N(X, 0)
were studied in [19] where it was proved that

Theorem 1.13. [19, Theorem 6]
If (En)nen is a sequence of N x N real symmetric matrices when =1 and complex
Hermitian matrices when [ = 2 such that :

e The sequence of empirical measures ﬂgN weakly converges to a compactly supported
measure i,
o There are two reals Ayin(E), Amax(E) such that impy_eo Amin(En) = Amin(E) and
thﬁ\oo )\max(EN) = )\max<E)7
and 0 > 0, then :
]\llg%o ‘]N(EN? 9) = J(,U, 0, )\maX(E)) :

The limit J is defined as follows. For a compactly supported probability measure we
define its Stieltjes transform G, by

Gu(z) ::/Rzitd,u(t).

We assume hereafter that p is supported on a compact [a,b]. Then G, is a bijection
from R\ [a, b] to |G, (a), G,(b)[\{0} where G, (a), G,(b) are taken as the (possibly infinite)
limits of G, (t) when ¢t — a~ and ¢t — b*. We denote by K|, its inverse and let R, (z) :=
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K, (z)—1/z be its R-transform as defined by Voiculescu in [25] (defined on a neighborhood
of the origin, but also on |G,(a),G,(b)[). In the sequel, for any compactly supported
probability measure p, we denote by r(u) the right edge of the support of p. In order to
define the rate function, we now introduce, for any 6 > 0, and A > r(u),

J(p, 0,X) == 0v(0, i, \) — g/log (1 + ;611(9, fy A) — ;634) du(y), (3)

with

20), if0< 2 < — L
(0, 1, \) = RM(%@), if 0<% < Hopa (11, \) 1= lim . [
AN— L if 7> Hoa (11, N).

267

1
—u(y),

We shall later use that spherical integrals are continuous. We recall here Proposition 2.1
from [22] (see [?] for an erratum) and Theorem 6.1 from [19]. We denote by || A| the

operator norm of the matrix A given by [|A|| = sup,,—1 [[Aull2 where |lul[2 = /3 [w[?.

Proposition 1.14. For every 6 > 0, every x €]0,1/2|, every M > 0, there exist a function
gr : RT — R going to 0 at 0 such that for any 6 > 0 and N large enough, with By and
By such that d(fig,, i ) < N7%, [Amax(Bn) — Amax(By)| < 6 and supy [|By|| < M,
supy || By|| < M -

|In (B, 0) — In(Bly, 0)| < g.(5).
From Theorem 1.13 and Proposition 1.14, we deduce that :

Corollary 1.15. For every 6 > 0, every k €]0,1/2], every M > 0, for any § > 0 and
i a probability measure supported in [—M, M|, if we denote by By the set of symmetric
matrices By such that d(pipy, i) < N7%, |[Amax(By) — p| < 0, and supy ||Bn|| < M, for
N large enough, we have :

limsup sup [Jn(Bn,0) = J(u,0,p)| < 29.(0)

N—oo By€EByn

where g, is the function in Proposition 1.14.

By Lemma 1.8 and Lemma 1.11, it is enough to study the probability of deviations on
the set where Jy is continuous:

Corollary 1.16. Suppose Assumption 1.2 holds. For 6 > 0, take a real number x and
set for M large (larger than x + § in particular), A% to be the set of N X N self-adjoint
matrices given by

AYS = (X P (X) — 2] < 8} A{X (@Y. 05) < N} {X 2 || < MY,

where k' is chosen as in Lemma 1.11 . Let x be a real number, § > 0 and k' as in Lemma
1.11. Then, for any L > 0, for M large enough

P ([Amax(XN)) = 2 < 6) = P (X € AY) + O(e™) .
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We are now in position to get an upper bound for P (X](f) € Ai\/ﬂ;). In fact, by the
continuity of spherical integrals of Corollary 1.15, for any 6 > 0,

E IN(XJ(VB),@)lAM
IN(XJ(\?)ae) o0
< E[Iv(XY), ) exp{-N _inf Jn(X,0)}

z,0

P(X\) e AYy) =

< E[In(XY,0)] exp{N(20,(3) — J (05,0, 7))} (4)

where we used that x — J(og, 6, x) is continuous and took N large enough. It is therefore
central to derive the asymptotics of

1
Fn(6,5) = s WE[In(X{,0)],
and we shall prove in section 3 that
Theorem 1.17. Suppose Assumption 1.4 holds. For  =1,2,wy,ws and 6§ > 0,

with F(0,3) = 6%/3 if B=1,2 and when B = w;, i = 1,2:
2 .

20
FO,w;)= sup{—z(1 —2) + ——
( ) xe[OI,)l]{ 1 ( ) 2(1 —i—a)

_ 1 1 a o
where Ca = m ln(m) —+ m In Tta-

1

In(l —z) + Inz} —iC,,

e
2(1+ )

We therefore deduce from (4), Corollaries 1.16 and 1.15 , and Theorem 1.17, by first
letting NV going to infinity, then 0 to zero and finally M to infinity, that
1
lim sup lim sup — In P (‘)\max(X](f)) - :1:" < 5) < F(0,8) — J(os,0,x).
0—0 N—o00 N
We next optimize over # to derive the upper bound:

1
limsup limsup — InP (‘)\max(X](\?)) - x’ < 5) < —sup{J(os,0,2) — F(0,8)}. (5)
N >0

§—0 N—o0

To complete the proof of Theorem 1.9, we show in section 4 that, with the notations of
Theorems 1.6,1.5, and 1.7,

Proposition 1.18. For = 1,2, wy, wo,
I3(z) = sup{J(op,0,2) — F(6,05)}.

>0
To prove the complementary lower bound, we shall prove that

Lemma 1.19. For 8 = 1,2, for any z > 2 and for 8 = w,ws for any © > ba, there
exists 0 = 6, > 0 such that for any 6 > 0 and M large enough,

]E[]l B) - gM [N(X](\f)ae)]
liminf — In Ay s

Nzoo N E[In(XY,0)]
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This lemma is proved by showing that the matrix whose law has been tilted by the
spherical integral is approximately a rank one perturbation of a Wigner matrix, from
which we can use the techniques developed to study the famous BBP transition [8]. The
conclusion of Theorem 1.10 follows since then

E[L ys o g In(XD,0,)]
Mo N R (XY, 0,) exp{—N sup Jy(X,6,)}
ElIx(X$,0,) XeAl,

exp{N(—29x(0) + F(0x, 8) — J(04,0.,x) + 0(1))}
exp{—NlIg(z) — N(o(1) + 29 }

P (XY e AM)

(AVARYS

where we finally used Theorem 1.17 and Lemma 1.19.

2. EXPONENTIAL TIGHTNESS

In this section we prove Lemma 1.8. We will use a standard net argument that we
recall for completness. We denote by SV~! the unit sphere in CV if 5 = 2 or RV if 8 = 1.
For N € N, let Ry be a 1/2-net of the sphere (i.e. a subset of the sphere S¥~! such as for
all u € SV~ there is v € Ry such that ||u — v||s < 1/2. Here the sphere is inside RY for
B =1,w; and CV for f = 2, w,. We know that we can take Ry with cardinality smaller
than 3%V, We notice that for M > 0

P X3N] > 4K] < 9*N sup P(X{)u,v) > K]. (6)
u,VERN
Indeed, if we denote, for v € S¥~1, u, to be an element of Ry such that ||u, — vy < 1/2,
1
X80 = sup [ XK 0lls < sup (IX3 )+ SIIXR)
veSNV-1 veSN-1 2
so that
X511 < 2 sup X ullz (7)
uERN
. . X(mu
Similarly, taking v = —8—, we find
XN ull2

B B
1Xul = (o, XN < G, X30) + o = a2 XN 0]l
from which we deduce that

IXPN <4 sup (X u, v)

u,VER N

and (6) follows. We next bound the probability of deviations of (X](\?)v,w by using
Tchebychev’s inequality. For 6 > 0 we indeed have
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P(XPu,v) > K] < exp{—0NEK}E[exp{NO(XPu,v)}]

exp{—0N K }E[exp {\/N (2 > %(agg)uiﬁj) +> ai,iuivi) }]

1<j %

IN

< exp{—0ONK}exp (9;{\7(22 \UiIZIUjIQ + Z |ui|2‘v,»|2)) (8)

1<j i
where we used that the entries have a sharp sub-Gaussian Laplace transform. In the case

of Wishart matrices, we bounded above some vanishing contributions by a non-negative
term. When 8 = w;, 8’ = i, otherwise 8’ = 3. We can now complete the upper bound:

P(X{u,0) > K] <

92N 2 2 2
o (O [lBlIel3 + fu, v)
ey 2

Cnfo( )

where we took 0 = 1. We conclude that :

—0NK>

P[(X\u,v) > K] < exp (N(1 — K)) .
This complete the proof of the Lemma with (6).

3. PROOF OF THEOREM 1.17

We consider in this section a random unit vector e taken uniformly on the sphere SV—!
and independent of X](Vﬁ). We define Fiy by setting, for 6 > 0 :

1
Fy(6,5) = 51 EXJ(VB)IES[eXp(NG(e,X](VB)@)]

where we take both the expectation E, over e and the expectation E, (s over XJ(\?). In this
N

section we derive the asymptotics of Fy (6, 5). F(6, ) is as in Theorem 1.17. We prove a
refinment of Theorem 1.17, which shows that under our assumption of sharp sub-Gaussian
tails, the random vector e stays delocalized under the tilted measure.

Proposition 3.1. Suppose Assumption 1.1 holds if B = 1,w; and Assumption 1.3 holds
if B =2,ws. Denote by Vg = {e € SN7' 1 Vi, |e;| < N7V4=<}. Then, for e € (0,1),

1
F,8) = lim Fy(0,3) = lim NlnEe[]leevaEXI(vB)[exp(Nﬂe,X](Vﬁ) NIE

N—+o0 N—oo

We first consider the case of Wigner matrices and then the case of Wishart matrices:
in both cases the proof shows that the above delocalization holds (i.e we can restrict
ourselves to vectors e in V) and we shall not mention it in the following statements.
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3.1. Wigner matrices. In this section we prove Theorem 1.17 in the case of Wigner
matrices, namely:

Lemma 3.2. Suppose Assumption 1.1 holds if p =1 and Assumption 1.8 holds if B = 2.
Then for any 0 > 0

92
Jim Fy(0.8) = F(0.5) = 7.
Proof. By denoting L, = InT),, we have :
E s [exp(NO{e, XPe))] = xp{VNO2> R(a o
X;f) [e p <€a N €> ] X(B) [e p{ Z z] ejel —|—ZCL ’61
1<J
= exp{ZL 266163 —i—ZL 9|el| 2VN)}

1<J
(8

where we used the independence of the (a;/)i<;. Using that the entries have a sharp sub-
Gaussian Laplace transform (using on the diagonal the weaker bound L, (t) < %tz +Alt|)

and 3" e? = 1, we deduce that:

2N0?

E o [exp(NO(e, Xie))] < Efexp{= 5= 2 leillesl? A z lei* + AVNOY e}
1<j %
< eXp(Neﬁ + AVNO) .
Hence, we have proved the following upper bound
1 6>
limsup Fiy(6, 8) <limsup sup lnEX@ lexp(NO(e, XDe))] < = . 9)
N—oo N—oo eeSN-1 N 6

We next prove the corresponding lower bound. The idea is that the expectation over the
vector e concentrates on delocalized eigenvectors with entries so that /N, e;e; is going to
zero for all 7, j. As a consequence we will be able to use the uniform lower bound on the
Laplace transform to lower bound Fy (6, 3). Let VS be as in Proposition 3.1. We have
that :

Elexp(N0(e, X{e))] > Ee[leevg [] exp{L, (2 NOeie)) }Hexp{L (VNOJe; )}

1<J
For e € Vi, 2v/Nf|e;ej| < 20N~¢ so that :
lim sup |2V Nfee;| = 0.

N—+o0 eeve

By the uniform lower bound on the Laplace transform of Assumptions 1.1 or 1.3, we
deduce that for any 0 > 0 and N large enough

Efexp(No{e, XPe))] > BL[VeeV 500 (10)
We shall use that
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Lemma 3.3. For any € € (0,1/4) we have
lim Plec Vy]=1.
N—o0 e[ N]

As a consequence, we deduce from (10) that for any 6 > 0 and NV large enough

L 0?
lim inf Fiv (6, 5) > (1 - 5)E :

Hence, together with (9), we have proved the announced limit

: 0°
Jim Fiy(0,8) = 5
which completes the proof of Lemma 3.2. Finally we prove Lemma 3.3. To this end we
use the well known representation of the vector e as a renormalized (real or complex)
Gaussian vector:

_ 9
g1l

where g = (g1, ..., gn) is a Gaussian vector of covariance matrix /. By the law of large
numbers, we have the following almost sure limit :

We also have by the union bound

1
P[3i € [1,N], |gi| > N'*7¢/2] < NP[|gs| > N"*7¢/2] < Nexp{_ZNW‘?E}

from which the result follows.
O

3.2. Wishart matrices. In this subsection we prove Theorem 1.17 in the case of Wishart
matrices, namely:

Lemma 3.4. Let § = wy or wy. Suppose Assumption 1.4 holds. Then for any 0 > 0, for
i=1,2

26> i o
lim Fy(0,w;) = F(0,w;) = sup {—zxz(1—2)+———In(x)+———In(1—2) }—iC,,
N—o0 N( ) ( ) a:e[()pl]{ ? ( ) 2(1+Oé) ( ) 2(1—1-0[) ( )}
where C, 1+a ln(Ha)—l—ﬁ In 2. Moreover, the supremum is achieved at a unique

T in |0, 1} (as it mazimizes a strictly concave function). xg . is the almost sure limit of
|eM]|2, the norm of the first L entries of e, under the tilted law

Ex[exp{0N (e, X Pe)}]
E.[Ex[exp{0N (e, X\e)}]]

dP’(e) = dP(e) .
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Proof. We have, with the same notations than in the previous case :

E wl[exp(Né?(XN e,e))] = exp{ Z Lugj(m%egl)é?))}

1<i<M1<j<L

where e = (e, e?), that is eV is the vector made of the L first entries of e and e the
vector made of the M last entries of e. Using that the ,u . have a sharp sub-Gaussian
Laplace transform and a uniform lower bounded Laplace transform, we deduce that with
Vx as in Proposition 3.1 we find that for any 6 > 0 and N large enough

E,[1yg e ENICBICE) < B o[ (6, w,)] < B[ T VIVBIPE 1)

where [|eM||2 = 1 — ||e@||? follows a Beta law with parameters (iL/2,iM/2). Hence, its
distribution is given by

BetaiM/z,iL/g(dx) = CM7LQZ'iL/2(1 — Jf)iM/2]lze[071}d$ s

with Cyr, =T'(iN/2)/T(iM/2)'(¢L/2). Therefore, Laplace method implies that

26>
— - (2
Jim I fexp{ 20 N3] )] (12)
202 1o’ 1
- P -+ - W —a2)+ ——In(x)} —iC, .
msel[tpl]{ - x( $)+2(1+a) n( x)+2(1+a) n(x)} —iC

(12) thus yields the expected upper bound. To get the lower bound in (11), observe that
conditioning by [|e™||s, eV and e follow uniform laws on spheres of appropriate radius
so that Lemma 3.3 applies. Hence, V has probability going to one under this conditionnal
measure and we can remove its indicator function in the lower bound of (11). We then
apply Laplace method under the Beta law to conclude. Finally, we see from the above
that for any set A, any d > 0

PO([leV |2 € A) < exp{—NF(8,w;) + N&} / F2(1 — )M/ eXp{ P N1 — o)}
A

from which it follows by Laplace method that the law of ||e(V)||2 satisfies a large deviation
upper bound with speed N and good rate function which is infinite outside [0, 1] and
otherwise given by

202 i

——zx(1l—x) —

- M+ a) In(l —z)—

]

In particular ||e™]|2 converges almost surely towards the unique minimizer xg, of this

strictly convex function (which vanishes there).
0J
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4. IDENTIFICATION OF THE RATE FUNCTION

To complete the proof of the large deviation upper bound of Theorem 1.9, we need to
identify the rate function, that is prove Proposition 1.18. This could a priori be done by
saying that the rate function corresponds to the one that is well known for the Gaussian
case. But for the sake of completness, we verify directly that we have the same result.

4.1. Wigner matrices. We first consider the case of Wigner matrices. Recall that we
want to prove that for § = 1,2

[3(%)25/290\/3/2—4dy:%138( (J(o,@,x)—ij) (13)

where J(u, 0, \) was defined in (3). Note that when p = o, R,(x) = z and H,ar(0, \) =
Go(A) = 3(A — VA2 — 4). To prove (13), observe first that the function

QQ
o(0,x) = J(0,0,x) — 5
2 2
vanishes when %9 < Hppaz(0, ) = G,(x), since then J(o,0,z) = gfoﬁe R, (u)du = % (see
(19, Page 4]). For %‘9 > G, (), the critical points of (., z) satisfy
20
— = (0gJ)(0,0,).
B
Computing the derivative of J shows that they are solution of
2. _,_ O
CER TS
which has a unique solution 6, > G, (x)/2 which is given by:
20 1
I 2 _4) = )
3 =3 (x+Vz ) G @)

Therefore, Ig(x) = p(0,, ). We can compute the derivative of I and since 6, is a critical
point of ¢, we find that
B B

§Ga(a:) =5Ve

ax]ﬁ(x) = (axSO)(Qx,x) - (azJ)<O7 qux) = sz - —4.

This proves the claim since I5(2) = 0.

4.2. Wishart matrices. Let us now consider Wishart matrices and compute

Ly, () = max (J(ow,0,z) — F(0,wp)) .

As in the previous proof, it is enough to compute the point 6, where (6, z) = J(0y, 0, x)—
F(0,wg) achieves its maximal value since then we can compute
s

Oplyy(7) = 0y J (0w, O0p, ) = 0, — 56’% (x).
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Note that 0, exists as ¢ is continuous in #, going to —oo at infinity. To identify 6, we
remark that when it is larger than gGaw (x), it must satisfy the equation of the critical
points of ¢ :

xzagF(Q,wg)—i-;;:: K(9).

Our goal is therefore to identify K and in fact its inverse 6, = K~'(z).

We first show that K is analytic away from the origin and equals the inverse Kaw(%e)
of the Stieljes transform for small #. Indeed, we claim that 6—F(0,wg) is analytic in a
neighborhood of |0, +00[. We recall that it is given in Lemma 3.4 by

26> ' '
F(0,w;) = sup U(f,x), U(0,x)= —a(l - )+ 5 — + mj“_a)

_ In(1 —2).
z€[0,1] [ 2(1+a) ( )

The maximiser zy, of (6, z) is solution of

15, 1 e
Oe)(@,0) = 50 (1 =20+ T " Ty

Clearly z—(0,%)(x,0) takes its zeroes away from 0, 1 and is analytic in a complex neigh-
borhood of [¢,1 — €] for any € > 0. Moreover, J¢) can only vanish in a small neighborhood
of x = 1/2 when 6 is large. But for %(#) > §, the real part of —921(6, z) is bounded below
uniformly by some ¢(¢) > 0 uniformly a complex neighborhood U, of [¢, 1 — €] provided the
imaginary part of 6 is smaller than some .5 > 0. Hence, the implicit function theorem
implies that 6—uxy,, and so F(.,wg), is analytic in a neighborhood of R(#) > § for any
0 > 0. We next show that for # small enough,

B 5
F(0,ws) = 5/ Ry, (u)du. (14)
0
F' is clearly lower bounded by this value as for any M

N | .
F(0,ws) = liminf - InE L In (X )]

Panax(X oy 2| <0
so that for %0 < Gy, (M),[19, Theorem 1.6] gives the lower bound. The upper bound is
obtained similarly by using the exponential tightness which permits to restrict oneself to
{|Amax| < M}. Therefore, we conclude that K is analytic in %(f) > § and equals

2 . B

)= Rl F) 55

K. ( o] 20

for small 6.

We want to find the inverse of K. We thus look for an analytic extension of K, . But
in fact K, satisfies an algebraic equation. Indeed, observe that

a—1
1+ a)x
where it is well known that G;_, the Stieltjes transform of the Wishart matries, is solution
of

Gy, (2) = 22G,, (14 a)z?®) +

(22)°Gr, (2)? —42(z+1—a)Gr (2) +42 —8a =0.
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We deduce that at least for small z, K, is solution of
(1+a)K,, (2)2+1—a)?*—2(K,, (2)+1—a)((1+a)rK,, (2)+1—a)+4(1+a) K, (2)*—8a = 0.

As a consequence, K is also solution of this equation for all x, by analyticity. Now, we
are looking for the inverse of K and so we deduce that 6, = K~!(z) is solution of the
equation

(;(1+a)x9x+1 —a)?=2(z+1 —a)(;(1+a)a:0w+1 —a)+4(1+a)r* —8a=0. (15)

For % < G, (), the solution is

2 20 x2+l—a—\/(x2—l—a)2—4a 1—al G
B 1+a 222 +1—|—Oz;_ 70 ()
but when % > G,,, () we have to take the other solution of the quadratic equation
2 20 x2+1—a+\/(x2—1—a)2—4a l—al
B 1+« 212 +1+a;’

As a result, we then have

B B _ Ba \/(352—1—&)2—404
a:r[w@(x) - 9:10 - G0w<$> - 14+ o 72

?

which completes the proof.

5. LARGE DEVIATION LOWER BOUNDS
Recall that we need to prove Lemma 1.19, that is find for any z > 2 (or b, for Wishart
matrices) a 6 = 6, > 0 such that for any § > 0 and M large enough,

1 EfT In(Xy,0)]

.. X](f)eAﬁ‘f&
liminf —In . @
N=oo N E[In(XN",0)]

where we recall that
AMS = {X ¢ Anax(X) — 2] < 8} N {d(pY, 08) < N¥}n{||I X|| < M}

For a vector e of the sphere SV—!

IP’S\G,’G) the probability measure defined by :

and X a random symmetric matrix, we denote by

exp(NO(Xe,e))

dP? (X) = dPy (X
v (X) Ex[exp(NO(Xe,e))] w(X)
where Py is the law of X](Vﬂ). We have
E[]IXI<§>EA%IN(X](§),9)] = EJ[P§” (AY)Ex[exp(NO(Xe, e))]]
> Eolleevg PR (AL Ex[exp(NO(Xe,e))]] (16)

where we recall that Vi = {e € S¥~! : |e;] < N~/4=¢}. The main point to prove the
lower bound will be to show that PE&"”(A%) is close to one for delocalized vectors e € Vy,
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and then proceed as before to show that V5 has probability close to one under the tilted
measure. More precisely, we will show that for € € (1, 1), we can find 6 so that for any

- 84
x > 2 (resp. x > b,) and § > 0 we can find 8, > 0 so that for M large enough,
lim inf PR (AM) =1. (17)

N—oo e€Vg

This gives the desired estimate since we then deduce from (16) that for NV large enough
so that the above is greater than 1/2

1
E[1 InXY 0] > SEclleevg By exp(NO(X (e, o))

(B) - gM
Xy GAz,é

so that the desired estimate follows from Proposition 3.1. To prove (17), the first point
is to show that

Lemma 5.1. Take € € (0, i) There exists k' > 0 and K large enough so that for any 0,

lim sup Pgi’e) ()\max(X](\?)) > K) =0.

N—o0 ecVyg

lim sup sup PS\C}’B) (d(ﬂ)]\(](g),()'ﬁ) > N“/) =0.
N

N—oo e€Vg

Proof. We hereafter fix a vector e on the sphere. The proof of the exponential tightness
is exactly the same as for Lemma 1.8. Indeed, by Jensen’s inequality, we have

Ex[exp(NO(X Ve, e))] > exp{NOEx[(XPe, e)]} =1
Moreover, by Tchebychev’s inequality, for any u,v,e € S¥~1, we have
/]l<X1(VB>u,v>ZK exp(NQ(XJ(VB)e, e))dPy < exp{—NK}EX[eXp(NH(X](\?)e, e) + N(X](Vﬁ)u, v))]
< exp{—NK}exp{N§? Z lee; + uﬁ}j|2}
i,J
< exp{—NK +46°N}

from which we deduce after taking u,v on a d-net as in Lemma 1.8 that
1
PY? (Amax(XY)) > K) < 92V exp{~ NK + 40°N}

which proves the first point. The second is a direct consequence of Lemma 1.11 and
the fact that the log density of P{¢? with respect to Py is bounded by 6N (A max (X)| +
| Amin(E)]) which is bounded by KN with overwhelming probability by the previous
point (recall that Ay, (X) satisfies the same bounds than Ay (X)).

O

Hence, the main point of the proof is to show the following lemma.

Lemma 5.2. Pick € E]%, i[ Foranyx > 2 if B =1,2 and x > by if § = wr, ws, there
exists 6, such that for every n > 0,

lim sup Pﬁi"’””)[\Amax —xz|>n=0

N—o0 eev]ﬁf
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Again, we first consider the simpler Wigner matrix case and then the case of Wishart
matrices.

5.1. Proof of Lemma 5.2 for Wigner matrices. For e € V fixed, let X" be a
matrix with law PES"’). We have :

x (N E{x(e),N} + (X(e),N _ E[X(e)vN]>
where E[X] denotes the matrix with entries given by the expectation of the entries of the
matrix X. We first show that E[X (V] is approximately a rank one matrix.

Lemma 5.3. For € €], 1|, there exists k(e) > 0 so that for e € Vg :

E[X(e)’N] = 20ee* + AN
where the spectral radius of AN is bounded by N~ uniformly on e € V.

Proof of the lemma. We can express the density of P%’” as the following product :

Py’
d]P’]j( (X) = [Texp(2"#0VNR(eicjai;) — Ly (2#10V Negey))
N i<j

where the a,; are defined as in the introduction, basically a rescaling of the entries by
multiplication by v N.

So since we took our a; ; independent (for ¢ < j), the entries XZ-(;)’N remain independent
and their mean is given in function of the Taylor expansion of L as follows :

(E[X M), , = L;‘%@\/Neeiéj) _ 20 02V NOeig;) N2 e e ?
VN g VN
ifi #j,and ifi = j
L (UNOEP) op g /Nl )N O e

(E[X N = = —€€;

VN B VN

where we used that by centering and variance one, L  (0) = 0, H essL#ZJ_Yj (0) = +1d for

7 o B
alli # j,N, Ly (0) = % for all 4, N, and where

18:,(t)] < 4 sup max{| LY (w)]}. (18)

ful<t 3N
Hence, we have
AN =5, ,(2VNbe,e;) VNG e, Pe; 2,1 < i, j < N
In order to bound the spectral radius of this remainder term, we use the following lemma
Lemma 5.4. Let A be an Hermitian matrixz and B a real symmetric matrix such that :

Then the spectral radius of A is smaller than the spectral radius of B.
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Proof. Indeed, if we take u on the sphere such that ||Aul||s = ||A]], then, by denoting A’
the matrix (|A4; ;|) and v’ the vector (|u;|), we have by the triangular inequality

1A[l = [[Aully < [[A"W || < [|Bu'l]y < |B]].
O

Therefore, if we choose C' so that C' > supy, ; 0;;(2V Nfe;e;)0? and set |e|* to be the
vector with entries (|e;]?)1<i<n, we have

AN < OVNlle(lel*)" ]
Since ||le|?(le|?)*]| = ||le?||3 = =, e} < N7%, we deduce that if we take ¢ €]1/8,1/4] we
have with k(e) = 1/2 — 4e :
JAON] = NxO
U

Remark 5.5. F. Augeri noticed that a maybe more elegant proof of this point would be
to use Latala’s theorem [21]:

E[IY]] < C sup (Ez w)
J i

Now we denote :

Y(e),N — x@N _ E[X(e),N]
The entries of X(©:N are independent, centered of variance 9,0: L~ (8616] VN)/N. Re-

call that 0.0:L,~ (0) = 1 and that the third derivative of the Laplace transform of the
entries are umformly bounded so that

0.0: Ly (Beie;VN) = 1+ 6,5(VN|eies|) = 1+ O(N )
uniformly on V5. We can then consider X©:N defined by : :

7(6)7N
TN Xij
,] *
\/aaL (9e:2;v/N)

— X©N_ S0, we have

Set YN — X

1
\/aZaZLM% (6e:2;V/N)

(y(e)N) '_X 1 —

We next show that for all 6§ > 0 :
lim sup P[||YN]| > 6] =0. (19)

N—+o0 ecVy

Indeed, we have the following lemma which is a variant of [1, Theorem 2.1.22 ] :
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Lemma 5.6. Consider for all N € N a random Hermitian matriz AN with independent
subdiagonal entries which are centered and for all k € N :
riy = max NT*2E[| AN
1,3 ’

Suppose that there exists Ng € N, C > 0 such that for N > Ny :

rév <1, r,iv < kKCF .
Then for all § > 0, P[Apax(AY) > 2+ 0] goes to zero as N goes to infinity.

The proof of this lemma is strictly identical to Theorem 2.1.22 in [1] as we only need
to estimate large moments of the matrix, which only requires upper bounds on moments
of the entries (and not equality as assumed in [1]) as soon as the entries are centered.

We apply this lemma to the matrices Y€V /§ to derive (19): note that the hypothesis

on the upper bound on moments is a clear consequence of our bounds on Laplace transform
and are uniform for e € V. Indeed, first remark that for all 4, j

E[exp(@yz(?’]v)] =T, (0 + VNege;) exp(—V Nege; — L;%(\/Neiejé))

As a consequence, for e € Vy, we have

B[(VIXM)H] _ Elexp(vFX™)] + Blexp(—VX ™)

2k! - 2
< sup Ty (t)exp(N"*)exp( sup |Li~ (t)])
te[—(1+N—2¢) 14 N-2¢] ="/ te[-N—2¢ N—2¢] b

which is uniformly bounded by Assumption 1.3. Therefore we have a found a finite
constant C' > 0 such that

sup sup E[(VNX,")2k] < C(2k)! (20)

ceVE i,j

Furthermore, by the same arguments as in (18), we get

. 1
lim sup =0

1—
N—o0 eeVy \/azagLﬂivj (Qeiéj\/ﬁ)
which readily implies that for any § > 0, for N large enough, all £ > 1,
(e),N
VNY;;
o

sup sup E[( k] < C(2k)! (21)

eeVE g

Hence, we can apply the previous lemma to deduce that
lim sup P[||Y©N /36| >3] =0
Jim,_sup P{IY /35| 2 3

Hence, since

X(e),N _ Y(e),N + 2‘566* + A(e),N + Y(e),N’
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we conclude by combining (19) and Lemma 5.3 that for € €]1/4,1/8[ and all 6 > 0

. — 20
lim sup PO (|| XN — (XN 4 Fee*)H > 6] =0 (22)

N—=00 eevg

since all estimates were clearly uniform on e € V5.

And so, to conclude we need only to identify the limit of )\max(/)z ()N +27fee*). It is given
by the well known BBP transition. We collect below the main elements of the argument
for completness. To identify this limit, we easily see as in [11] that the eigenvalues of

X @ 4 2Feee* satisfy

-~ 20 ~ 20 ~
0 = det(z — XN — Eee*) = det(z — XN) det(1 — F(z — XN "leer)
and therefore z is an eigenvalue away from the spectrum of XN iff
_y@Ny-1 - P
(e, (s = XON)Te) = 2

To take the large N limit we will use here the very powerful (and hard) results of [13]
but will follow a more pedestrian moment approach in the Wishart case for completness.
It was indeed shown in Theorem 2.15 of [13] that for all z with Sz > 0, all v € SV~1,
(v, (z — X©@N)=14)) converges almost surely towards G,(z) This convergence extends to
z > 2 first by noticing that G, is continuous when z goes to the real axis. And moreover,
for any € > 0, N large enough the operator norm of XN is bounded by 24 ¢ by Komlos-
Fiiredi’s theorem [1] so that (v, (z — X(©V)~1p) is continuous in B(0,2 + €)¢. Therefore
we conclude that the largest eigenvalue )\max(kv N 4 %Gee*), must converge towards the
solution py to

Ga(pé’) = 2’;

as soon as it is strictly greater than 2. We find a unique solution to this equation: it is
given by
20
-4+ =2

Po 3 50
Reciprocally, for any x > 2, we can find 6, = g(x + V% —4) so that x = py,. Hence, we
have proved that for any sequence of vectors e € Vy we have the desired estimate for any
n>0

lim sup PS’GI)[\AmaX —z/>n]=0

N—oo eeVs

which also entails the convergence of the supremum over Vy and thus the Lemma.

5.2. Proof of Lemma 5.2 for Wishart matrices. We next prove Lemma 5.2 for
Wishart matrices and fix e = (e, e?) € V. We decompose as in the previous proof

X(e)’N — Y(e),N + E[X(e)’N] + Y(e)?N ,

where the entries of X(©-V are centered and with covariance 1 /N and Y©N goes to zero
in norm. We then find by the same argument that
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20 0 e (6(2))*
(e),N = (e),N
E[X'7] = ; <€(2)(€(1))* 0 + A

where |AEN|| < N7%9) and e (resp. e?) is the vector made of the first L (resp. M
last) coordinates of e. Letting

@0 0 (e®))
) — (€ (e) —
SV = ( 0 e(z)) and T"9 = ((e(l))* 0

0 e(l)(e(Z))* (&)rr(e)
(em(e(l))* 0 = ST

we notice that

Therefore, we need to find z > b, such that
- 20 ~ 26 —
0 = det(z — XM - = 8EOTE) = det(z — X V() det(1 — =T (z — XM())~15()) (23)
i i

By writing RX]V o (2) = (2 = XN)=1 by blocks with XN with upper right L x M
block GN®) | we get :

RNN (Z) _ <R1,1(2> Rl,Q(Z)) _ ZRGN (5)(GN (5) (22) éNj(e)R(aN,(e))*aN,(e) (22)
XN Ry1(2) Raal(z) R gnoyeamie (2 2) (G ZR(&N,@))*@N,(&)(ZQ)

where Ry is L X L, R19 L x M, Ryy M x M, we get the simpler equation

20 ((e® Ry,(2)e™) 22(2)e®
det (I_ 0 (26(1)221:1EZ§6(1)§ g gl?g ; 2)§>> -

Therefore, we need to find z such that

2
11— £< @ Ry1(2)eM) P — —(e®, Ry a(2)e®) (e, Ry 1 (2)eV) = 0 (24)

i 12
We are going to prove that

Lemma 5.7. For any 6, > 0

lim sup sup IP’§$’9) ( sup |(eW, R171(z)e(1)) —z(1+ oz)He(l)HgGMp(a)((l +a)2?)| > 5)

N—oo eGVJf, 2>ba+te

lim sup sup PE&”( sup (€@, Rya(2)e®) — 2(1 4 a)|[e@|2Garp( /ey (1 + a)z 2)y>5>

N—oo ecVy gzzgaJrE

lim sup sup ]P’Ef;’e) ( sup |<€(2), R2,1(2)6(1)>| > 5)

N—oco e€Vy S2>bate

where G rp(a) @5 the Stieltjes transform of a Pastur Marchenko law with parameter o.
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We first derive Lemma 5.2 assuming that Lemma 5.7 holds. We have seen in Lemma
3.4 that ||eM]|, converges towards xg,, almost surely. Therefore, we arrive to the limiting
equation

i2

n 4921‘97&(1 — ‘7797&) ’

Now, we claim that ¢(0) = 0%z ,(1 —zp,) is continuous, increasing, going from 0 to +oo.
As xp, is a complicated solution of # ( solution of a degree three polynomial equation),
we use the following asymptotic characterization which easily follows from the previous
large deviation considerations, see Lemma 3.4:

460
7[)39@(1 — [Egﬂ) = 89F(6’, wz) s

(14 a)?2* Grrp) (1 + @) 2*)Grupa (1 +a)z?)

where we use that the derivatives of xg , vanishes as it is a critical point of the maximum.
We moreover notice that G(6) = F(v/6,w;) is convex in 6 (as a supremum of convex
functions). Hence,

o(6) = J000F (0, w3) = S0°G'(6").
It follows that ¢ is smooth as F' is and moreover
¢'(0) = i(0G'(0%) + 6°G"(9)) .

But since ¢ is non negative, GG’ is non negative and so ¢’ is non negative for all § > 0.
The fact that ¢ goes to infinity at infinity is clear as g, then goes to 1/2. Moreover,
for z > by, z 2Grp@ (1 + @)2%) and z — 2Grpa/q)((1 + a)z?) are positive and
decreasing, and therefore so are their product. Hence, there exist a 6, > 0 so that for
every 0 > 6, , the equation above has a unique solution on [Ea, +oo[. Moreover, if we
denote py this solution, 8 — py is a bijection from [f,, +00[ onto [by, +ool.

Proof of Lemma 5.7. The first two results could be derived from [13] but we here
provide a more pedestrian moment approach to achieve this result, a strategy that we
could have also followed in the Wigner case. We recall that G=aG L. is a L x M matrix
with centered entries with covariance one and sub-Gaussian tails, e = (e, e(?)) a unit
vector and

R171<Z) = (22 — éé*>_1, RQQ(Z) = (22 — é*é>_1, R1,2(2’> = G(Z2 — G*é)_l.

In fact G depends a priori on e but we will derive uniform bounds in e € Vy in the
following and we will work conditionnally to e. Moreover to simplify the notations we
denote GG by G.

The first two points of the Lemma are direct consequences of [13, Theorem 2.5]. It
remains to see that (e®), Ry (2)eM)) goes to 0 as N goes to infinity. Because Ry;(z) =
G(z — G*G)7! is not the resolvent of the Wishart matrix, but its multiplication by G,
we cannot apply directly [13, Theorem 2.5]. We will give an elementary proof of this
result,based on classical moment computations. Indeed, for € > 0, we have already seen
thanks to (21) and Lemma 5.6 that

im sup P(||G*G|| > b, +¢) =0.

1
N—oo eev]f]
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Moreover, on the set where {||G*G| < b, + €}, for z > b, + 2¢ we can expand

(9] (1) * Nk, (2)
<6(2),R271(2)6(1)> _ Z (e G(G G) e'?))

_ —f: <e<1>,g(G*G)ke<2>> +0<1 ( bo + € )K“)

22k+2 by + 2¢

k=0

and hence it is enough to get the convergence in probability of K moments with K >
2 Ine~ !, uniformly in e :

lim sup IP’( sup (e, G(G*G)Fe®)| > 5) =0.

N=oooeeye  \0<k<K

To this end, it is enough to prove by Tchebycjhev’s inequality that :

lim sup [E[(e, G(G*G)*e®)]| =0, (25)
N—o0 6€V€
and then
lim sup Var({(e®, G(G*G)*e?)) =0. (26)
N—o0 6€V€

We first prove (25). It is clearly true for & = 0 by centering of the entries and so we
consider k > 1. Let’s call Wy, 1 the set of words (vq, ..., vagyo) of length 2k + 1 so that
ve; € {1,..., L} and vaj41 € {1, ..., M'}. We use the following notation :

E, = ]E[a’ULU2aU27U3"'aU2k+17U2k+2] .

We have

. 1
E[(e(l),G(G G)k (2)>] EEYP Z ( )E 61()223“2.

vEW2K11

Given a word v, we can construct a bipartite graph G,, whose vertices are the {vy, vs, ... }U
{L 4+ vy, L + vy, ...} of whose edges (occasionally multiple) are the (L + vg;,v9;_1) and
(L + v, vai11). We denote V™ (v) the number of vertices in G, lying in {1,..., L}, V*(v)
the number of vertices in G, lying in {L +1,..., L+ M} and V(v) = V) (v) + V%(v) and
A(v) the number of edges of G,,. If e is an edge of G,,, we denote n,(e) the multiplicity of
this edge.

Let’s recall that here the entries a; ; of G are independent but not identically distributed,
with distribution eventually depending on e. Nevertheless their variance are 1 and their
moments are bounded uniformly i.e. for every k there exists Cy < +o00, independent of
e € V§ (see (21)) such that :

sup E[|a; ;"] < Cx.
Nyij
For every word v of length &, we can define C,, = [];< C’ 7 where l(v, j) is the number
of edge of multiplicity j in GG,,. we then have



28 ALICE GUIONNET AND JONATHAN HUSSON

By < Cy

We say that two words v, w are equivalent if there exists a bijection ¢ : {1,...,L} —
{1,..., M} and a bijection ¢ : {1,..., M} — {1, ..., M} such that vy; = ¢(ws;) and ve;41 =
(waj11). If two words v and w are equivalent then C, = C,,.

Let Tor11 be a the quotient set of words of length 2k+1 for this equivalency relationship.
We have

i} 1 2k+2
E[(eV, G(G*G)re®)] = WZ 3 S eVEeR .

=2 t€Tars1,V (v)=] vfo~t

Notice that if G, has an edge of multiplicity 1, then £, = 0 (since the a; ; are independant
and centered). So for E, to be non zero we need that A(v) < (2k +1)/2 so A(v) < k.
Since G, is connected V(v) < A(v) +1 < k+ 1. If v € Wayq, there exists N, =
(L—1). (L — VD) + 1) (M —1)... (M — V3(v) + 1) < NV®=2 equivalent words w;
provided we fix vy and wvg; 9 so we have the following bound :

. 1 k+1
E[(eV, G(G*G)*e?)] < T 3 3 C, N, 3 |egpeg;3€+2|.
J=2t€Tak4+1,V (t)=] 1<v1 <L1<vgg 1 o<M

By using the Cauchy Schwartz inequality, we have that :

> Ve < NlleMlly x [le®]]; < N,
1<i<L1<j<M
which yields
. 1 k+1 -
E[(e(l), G(G G)k€(2)>] < W Z Z 'CtNJ 2 .

J=2t€Top41,V (t)=j
The leading order term here is in N='/2 for k£ > 1 and so

lim sup |E[<€(1),G(G*G)ke(2)>]| =0.

N=00 |le||l,=1

We proceed similarly for the covariance (26):

. 1
Var((e, GG G)fe?) = o X eel)Tuued) el L

vEWa k41, WEWa 11

where T, = Eyw — EyEy and Ey = B[, 0,00y ,05 -Gy g4 1 Gt s Qg s - Qg g 1) W
extend naturally the previous definitions to couples of words. Let us now do the same
analysis than before with couples of words. Let’s take 7a,41 the quotient set for the
equivalency relationship for couples of words. Let (v, w) € 7~‘2k+1

First, if G, is not connected, since it is the union of two connected graphs G, and
G, we have that G, and G, don’t have any edges in common and so, by independence
of the entries T, ,, = 0. So we can assume that G, ,, is connected.

Then several cases arise :
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First, if v, # w; and voryo # wWak42, then if one edge of G, ,, is of multiplicity 1, then
T,w = 0. So we can assume that all edges are of multiplicity at least 2. We deduce
that A(v,w) <2k +1 and V(v,w) < 2k + 2. Let N,,, be the number of couple of words
equivalent to (v, w) provided (v, w1, Vogy2, Wary2) are fixed, we have N, ,, < N%*~2. Hence

Z (l)eg)Tvvwe%)Hzeng < N%(C’U,w —C,Cy) .
(u,t)~(v,w)
Then, if v; = wy and Voo 7# Wopyo or if v # wy and Voo = Wop 2, the same reasoning
concerning the edges holds. So, we have V(v,w) < 2k + 2 and if N,, is the number
of couple of words equivalent to (v, w) provided (vy,w, Voo, Wakto) are fixed, we have
Nyw < N%*711f we are in the case v, = wy :

> el Towe) et < NIV (Cow — CuCu).
(u,t)~(v,w)
And lastly, if v; = w; and vopi9 = wagta, we have again N, ,, < N?* and

S et T, el el < NP|[eD]1]1e@]|2(Ch — CoC)

uojero Clorga =
(u,t)~(v,w)

Hence, we conclude that

6. APPENDIX: PROOF OF LEMMA 1.11

In this section, we want to prove that if y; ; are supported inside a common compact
K or satisfy a log-Sobolev inequality with a uniformly bounded constant ¢, the empirical

measure of the eigenvalues of the matrices Xy ) X](V), Xy (w1) X](\}UQ) concentrates as stated
in Lemma 1.11. To this end, we will use two concentration results respectively from [20]
and [4].

Theorem 6.1. By [20, Theorem 1.4)] (for the compact case) and [20, Corollary 1.4 b)]
(for the logarithmic Sobolev case), we have for = 1,2,wy,wq, and for N large enough

s 7

where d is the Dudley distance.

lnp[dwxj\f)’E[“va‘”]) > Nﬁl/G] <0

We therefore only need to show that
Theorem 6.2. ([4, Theorem 4.1]) If we let for every N :

Foo(r) = '“val)(] —00,1]),

Fffl(x) = 01(] - OO,ZL‘]),

we have that
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sup | Fy (2) — E[Fy o (2)]] = O(N 4.

z€R X

In order to conclude, we need only to use Lemma 1.8 to see that F X(l)(_M ) and
N

1 — Fa)(M) decay exponentially fast in N for some fixed M so that
N

d(Elpyw] 01) < 4™ flloo + 2M| ]2 Sup [F(2) — E[Fyw ()] = o(N 7).

The same results hold in the complex case, see e.g. [7, (8.1.3)]. For Wishart matrices, we
rely on [5, Theorem w.1 and w.2]. Recall that Wy = G v (Gr)*

Theorem 6.3. ([5]) Assume that M/N € (1,7 ') for some fized € and M/N converges
towards o. Then
sup | Py, () — E[Fy, (2)]| = O(N ).

zeR

We can as well use Lemma 1.8 to conclude that 1 — E[Fyy, (M)] goes to zero like e~
for M large enough. Finally, we conclude by noticing that since

[ F@Elxg]) = 5 [FVR) + 5V, ) +

we have

[ H@)d(Elixg] - o) (@)

M —N

——£(0),

M
N
+/0 106 F (VI P (A) = E[Fuyy (\)]]dA

IflL(N"+e ™ +2MN-10),

< fllee(l55 — ol +e7)

IN
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