LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF
THE SUM OF TWO RANDOM MATRICES

ALICE GUIONNET AND MYLENE MAIDA

ABSTRACT. In this paper, we consider the addition of two matrices in generic
position, namely A + UBU™, where U is drawn under the Haar measure on the
unitary or the orthogonal group. We show that, under mild conditions on the
empirical spectral measures of the deterministic matrices A and B, the law of
the largest eigenvalue satisfies a large deviation principle, in the scale N, with
an explicit rate function involving the limit of spherical integrals. We cover in
particular the case when A and B have no outliers.

1. INTRODUCTION

Understanding the spectrum of the sum A+ B of two Hermitian matrices knowing
the spectra of A and B respectively is a classical and difficult problem. Since the
pioneering works of Voiculescu [1991], we know that free probability provides efficient
tools to describe, at least asymptotically, the spectrum of the sum of two large
Hermitian matrices in generic position from one another. More precisely, if Ay
and By are two deterministic N x N Hermitian matrices and Uy is a unitary
random matrix distributed according to the Haar measure, then, in the large N
limit, Ay and UnBnUjR, are asymptotically free and the spectral distribution of
Hy := Ay +UnBNUy is given by the free convolution of the spectral distributions
of Ay and By . This global law, that is the convergence of the spectral distribution of
Hy at macroscopic scale, has been studied in details by Speicher [1993], Pastur and
Vasilchuk [2000] among others. The local law, that is the comparison of the spectral
distribution of Hy with the free additive convolution of the spectral distributions of
Apn and By below the macroscopic scale was then investigated by Kargin [2012] and
Bao et al. [2017]. In this paper, we will be interested in the behavior of the largest
eigenvalue of Hy. As a corollary of the results of Collins and Male [2014] on strong
asymptotic freeness, we know that if Ay and By have no outliers, then the largest
eigenvalue of Hy converges to the right edge of the support of the free convolution
of the spectral distributions of Ay and By. In this work, we investigate the large
deviations of this extreme eigenvalue.

In the framework of random matrix theory, there are very few large deviation re-
sults known about the spectrum, basically because the eigenvalues are complicated
functions of the entries. A notable exception is given by the Gaussian invariant
ensembles for which the joint law of the eigenvalues can be explicitly written as a
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Coulomb gas. Based on this explicit formula, large deviation principles for the em-
pirical spectral distribution at global scale have been established by Ben Arous and
Guionnet [1997] and for the largest eigenvalue by Ben Arous et al. [2001]. Another
special case is given by the sum of a deterministic matrix and a Gaussian invariant
ensemble. Then, the spectrum can be constructed as the realization at time one of
a Hermitian (or symmetric) Brownian motion starting from a given deterministic
matrix. This point of view was used by Guionnet and Zeitouni [2002] to study the
large deviations of the empirical measure, and the large deviations for the process of
the largest eigenvalue starting from the origin were derived by ?. One of the applica-
tions of the present paper is to provide the large deviation for the largest eigenvalue
of this sum by using another approach based on spherical integrals. Beyond these
cases where specific tools are available, it was observed by Bordenave and Caputo
[2014] that deviations of the spectrum of Wigner matrices for which the distribu-
tion of the entries has a tail which is heavier than Gaussian are naturally created
by large entries. This key remark allowed to obtain the large deviations for the
empirical measure in [Bordenave and Caputo, 2014] (see also [Groux, 2017] for the
counterpart for covariance matrices) and for the largest eigenvalue in [Augeri, 2016b].
Large deviations for the spectrum of Wigner matrices with sub-gaussian entries is
still completely open as far as the empirical measure is concerned. One can mention
the deviations results of Augeri [2016a] for the moments of the empirical spectral
distribution in several models. Concerning the deviations of the largest eigenvalue,
beyond the works [Ben Arous et al., 2001, ?, Augeri, 2016b] already cited above,
the following models have been so far studied : Gaussian ensembles plus a rank one
perturbation by Maida [2007], very thin covariance matrices by Fey et al. [2008], fi-
nite rank perturbations of deterministic matrices or unitarily invariant ensembles by
Benaych-Georges et al. [2012]. In a companion paper, Guionnet and Husson [2018]
have established a large deviation principle for the largest eigenvalue of Wigner ma-
trices with entries having sharp sub-Gaussian tails, such as Rademacher matrices.
They show that the speed and the rate function of this large deviation principle are
the same as in the Gaussian case.
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2. STATEMENT OF THE RESULTS

Let (An)n>1 and (By)n>1 be two sequences of deterministic real diagonal ma-
trices, with Ay and By of size N x N. We denote by )\gAN) > > A%‘N) and

)\gBN V> > A%BN ) their respective eigenvalues in non increasing order, by
A A B B
NI = max(IA] IAR1) and By := max(IA7] AG)

their respective spectral radius. We define by

1 Y 1Y
ﬂAN = N Zl(;)\g_AN) and ﬂBN = N Zl(;)\E.BN)
J= J=L0
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their respective empirical spectral distributions.

For g =1 or 2, we denote by m’]@\, the Haar measure on the orthogonal group Oy
if 3 =1 and on the unitary group Uy if 5 = 2. For any N x N unitary matrix U, we
denote by Hy(U) := Ay + UBNU* and by A\, the largest eigenvalue of Hy (U).
The goal of the present work is to establish a large deviation principle for the law of
AN . under the Haar measure m?\, This large deviation principle holds under mild
assumptions that we now detail.

Assumption 1.

(Hpuik) The sequences of empirical spectral distributions (fiay)n>1 and (fipy)N>1
converge weakly as N grows to infinity respectively to pq and py, compactly
supported on R. Moreover, supy1([[An|| + [[Bn|) < oo.

(Hedge) The largest eigenvalues /\gAN) and /\gBN) converge as N grows to infinity to
pPa and py respectively.

A key argument of the proof will be a tilt of the measure by a rank one spherical
integral. The rank one spherical integral is defined as follows: for any # > 0 and
My an Hermitian matrix of size IV,

* 1
5.0, My) ::/eN9<UMNU MmUY and 50, My) = - log I§ (6, M),

The rate function of our large deviation principle will crucially involve the limit
JE (0,p) of Jf,(@,H ~) as N grows to infinity, which we now describe. For u a
compactly supported probability measure on R, we denote by r(u) the right edge of
the support of i and by G, the Stieltjes transform of p given for A > r(u) by

Gu(A) == /Al_yu(dy).

It is decreasing on the interval (r(u),oc). By taking the limit as A decreases to
r(u), one can also define G, (r(1)) € Ry U oo. As G, is bijective from (r(u), 00) to
(0,G(r())), one can define its inverse on the latter interval, that we denote by K.
Then, for any z € (0,G,(r(1))), we define

1

R,(2) == K,(z) — g
The function R, is called the R-transform of x. One can check that R, is increasing
and that lim, .o R,(z) = [Au(dX), so that R, is bijective from (0,G,(r(p))) to
(f Ap(dA), r(p) — m> . We denote by @, its inverse on this interval. We can

now define, for § =1 or 2, 8§ > 0, u a compactly supported probability measure and
p = r(p):

20
JB(0. o) = gfoﬁ Ry(u)du, if 0 < % < Gulp),
w(0.p) 5 5 _ -0
bp— 5log6 — § [log(p — y)u(dy) + 5 (log § — 1), if % > Gu(p).

The convergence of J]@(G,MN) towards Jﬁ (0,p), obtained by the authors in
[Guionnet and Maida, 2005], will be stated precisely in Lemma 10. At this point,
we want to emphasize that, for 6 large enough, the limit depends not only on the
limiting spectral distribution p but also of the limit p of the largest eigenvalue of My
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: this observation is crucial in our use of the spherical integral to produce an inter-
esting tilt. If u1 and pe are two probability measures compactly supported on R, we
denote by w1 H o the free convolution of pg and po. It is uniquely determined as the
unique probability measure with R-transform equal to the sum of the R-transforms
of p11 and s (see [Voiculescu, 1991]). For any 6 > 0 and x > r(uq B up), we denote
by

190, 2) = T}y ., (0.2) = J2 (0, pa) — T3 (0. pb),
" “0,) (10 8 1)

By . SuPpsoI7(0, ), if x> r(pe B ),

Fa): { +00, otherwise. (2.1)

It is easy to check the following:

Lemma 1. Let pg, 1y, pa and py be given as in Assumption 1. For B =1 or 2, the
function I? is a good rate function, that is for any a € R, the level set {I? < a} is
a compact subset of R. Moreover, for any x > pg + pp, Iﬂ(x) = +400.

The proof will be given at the beginning of Section 4. We can now state the main
results of this paper. The first result is the following large deviation upper bound:

Proposition 2. Under Assumption 1, for =1 or 2, for any x € R such that

GaBp, (7) < min (G, (pa); Gy () 5 (2:2)
we have ;
TR B (\N _ _JB
lélﬁ)lljlvriilg I log m/y ()\max €lx—d,z +6]) < —I7(x).

We will then derive the following large deviation lower bound:

Proposition 3. Under Assumption 1, for =1 or 2, for any x € R such that

GNaEHMb (m) < min (GMa (pa)7 Gub (Pb)) ) (2'3)
we have

T | B (\N B
lgﬁ)l}\lfrg_li_régﬁlogm]v ()\maX €[z — 6,m+5]) > —1"(z).

This leads to the following important corollary:

Theorem 4. Under Assumption 1 and if moreover,
G oy, (r(1a B pp)) < min (G, (pa); G, (1)) 5 (NoOut)

then, for 8 =1 or 2, the law of )\I]Xax under mfi, satisfies a large deviation principle
in the scale N with good rate function I®. More precisely, for any F closed Borel
subset of R,
1

li —logm% (AN, € F) < —inf 7

i sup ogmN( max € ) < —inf 17,
and for any O open Borel subset of R,

| N .

%ﬁfgﬁlogmﬁ, (Amax € O) > —néf[ﬁ.

A few remarks have to be made on the condition (NoOut). Under assumptions that
are slightly stronger then Assumption (Hpyk), 7 established that, whenever (NoOut)
is satisfied, Ay + UBxU™ has no outlier, that is, its largest eigenvalue converges to
r(uq B pp). Another related remark is that, if Ay and By have no outliers, namely
pa = r(pa) and pp = r(up), then the condition (NoOut) is automatically satisfied.
This will be stated in Lemma 13 and leads to the following corollary
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Corollary 5. Under the assumption (Hypuy), if Any and By have no outliers, then
for B =1 or2, the law of AN, under mfi, satisfies a large deviation principle in the

scale N with good rate function IP.
From there, one can recover partly Theorem 3.2. in [Maida, 2007].

Remark 6. If we choose Ay to be a rank one deterministic matrix with eigenvalue
pa >0 and UBNU* to be a random matriz from the Gaussian Unitary (or Orthogo-
nal) Ensemble, one can study the largest eigenvalue of Ay +UBNU* by conditioning
on the deviations of the largest eigenvalue of UBNU*,. These large deviations were

obtained in ? and we denote by J? its rate function. If pg < g, we know that the

deformed model has no outliers and one can apply Corollary 5. For any x > /20, the

rate function of the deformed model is given by KB (x) := inf\/fﬂ<y<x(<]ﬁ (y)+1°(x)),

where IP corresponds to pg = 0g, pp = og and p, = y. Standard computations allow
to identify the rate function as the funtion Kgﬂ in [Maida, 2007].

To get a taste of what happens in the case with outliers, we also consider in

Appendix A the following model: let (U 1(1), e l(p )) be independent random vectors
uniformly distributed on the unit sphere (in RY if 3 = 1 and CV if § = 2) and
Y1, - - - ,7Yp be nonnegative real numbers. We consider the following deformed model :

P
Xy = Ax + UBNU* + 35U (U9, (2.4)
i=1
We show in Theorem 18 that we still have a large deviation principle, for which the
rate function will depend on the ~;’s. The rest of the paper will be organized as
follows: in the next section, we will first prove a more general result than Proposition
2, that holds not only for m]BV but also for a whole family of tilted measures. This
will be helpful in the proof of Proposition 3, that will be developed in Section 5.
Before getting there, we will study in Section 4 some properties of the rate function
IP. The last section will be devoted to the proof of Theorem 4 and Corollary 5, with
Lemma 13 as prerequisite. At the end of the paper, in Appendix A, we will study
the deviations of the largest eigenvalue of Xy for the deformed model (2.4).

3. LARGE DEVIATION UPPER BOUND FOR TILTED MEASURES

For 8 > 0, 8 =1 or 2, we define a tilted measure on Oy if =1 and Uy if § =2
as follows

m’]BV’H(dU) = I%(H’AN +BUBNU*)

IN(97 AN)IN(Hv BN)

It is easy to check that mJB\;‘9 is a probability measure: indeed, for any U, we have that
15.(6, Ay + UBNU*) > 0 and E,s (I%.(0, Ay + UBNU*)) = I%(0, An)I5 (0, By).
For these tilted measures, we have the following weak large deviation upper bound :

my (dU).

Proposition 7. Under Assumption 1, for 8 = 1 or 2, for any 0 > 0, for any
x < 7(pa B ),

- 1 B0 (\N
lim1 —1 TlA -0 o) =— 3.1
(Sligjl\friiligN ogm/y ( max € [T — 0,2+ ]) 00, (3.1)

and for any x > r(uq B pp) such that
Guap, (€) < min (Gu, (pa), Gy, (03)) , (32)
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we have,

lim lim sup N log mﬁe ()\N €lx—0,z+ 5]) < — {Iﬁ(x) - 1’8(9,16)] . (3.3)

510 N0 max
Remark 8. Applying this proposition with 6 = 0 gives Proposition 2.
As we will see in Section 5, establishing an upper bound for any 8 > 0 will be

useful in the proof of Proposition 3. To prove Proposition 7, and in particular its first
statement, we will need to check that, under mﬂ »” the empirical spectral distribution

| N
== 8y
AN
N &

of Hy(U) = Ay + UBNU* concentrates around the deterministic probability mea-
sure given by its expectation 1/]5\[ = E s fiy much faster than e~ N. More precisely,
N

we equip the set P(R) of probability measures on R with the bounded Lipschitz

distance d: for any Lipschitz function f : R — R, we define || f||oc := sup,eg | f(2)]

and || f|Lip := Sup,, %, then for any p and v in P(R),

)= ||f?|1:op<1 </ fu = /fdy)

||f||Llp§1

We then have the following concentration result:

Lemma 9. Under Assumption (Hypuy), for 5 =1 or 2 and any 6 > 0,

1
hmsupﬁlogmﬁ’ (d(ﬂN,Em%ﬂN) > N1/4> = —00.

N—oo

Proof. Let B =1 or 2 and # > 0 be fixed. Observe that for any Hermitian matrix
My bounded by K in operator norm we have

e N < T30, An) < PN

As a consequence, for any Borel subset A of Oy if 8 =1 and Uy if 8 = 2, we have:

1
8,0 B Y, B8
mx (A) = /I 0, Ay + UBNU")m/y,(dU
N ( ) If\,(e, AN)I]BV(Q, BN) A N( N N ) N( )

Y

with K := supy>1(|[An| + [[Bn]||), which is assumed to be finite. Therefore it is
enough to prove Lemma 9 for § = 0, that is

1
limsup — logm’s, (d(in,E_sJ N—1/4):—.
fm sup OgmN< (B, By finy) > 00
For g = 2, Theorem 3.8 in [Meckes and Meckes, 2013] states that there exist ¢, C > 0
such that

miy (A(n, B fin) > N7Y1) < GV, (3.4)

from which the lemma follows. A careful reading of [Meckes and Meckes, 2013] shows
that the exact same result as (3.4) also holds for g = 1. O

Before proving Proposition 7, we will recall some results about the convergence
and the continuity of spherical integrals.
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Lemma 10 (Proposition 2.1 in [Maida, 2007] and Theorem 6 in [Guionnet and
Maida, 2005]). For any 6 > 0, there exists a continuous function gy with go(0) =0
such that for any 6 > 0, if the sequences (Gn)n>1 and (G'y)n>1 are such that
supy ([|Gnll + |Gy [) < oo, and for N large enough, d(ficy,fay,) < N-Y* and
(M (GN) = Ai(Gy)| < 6, then,

1 1
5 108 I (0, G) — 5 log I (0. G | < g9 ().

If morever, fig, converges weakly, as N goes to infinity to p and \(Gn) converges
to p, then

1
—log I¥ .
N og N(97 GN) m Ju(ga ,0)
We can now prove Proposition 7. In the sequel, we will denote by 1/]/3, =E sQnN.
N

Proof of Proposition 7. The first claim (3.1) is a direct consequence of the previous
lemma. Indeed, let z < r(uq, B pp) and oo := %. Then, for any & < dg, there

exists £(6) > 0,
{)‘max [(B - 67 T+ 6]} C {d(ﬂN7 Ha &) Mb) > 5(5)} (35)
Using Corollary 5.4.11 for § = 2 and Exercise 5.4.18 for 5 = 1 in [Anderson et al.,

2010], we know that 1/]5\, converges weakly to pg H pp as N goes to infinity. As the
distance d metrizes the weak convergence, for N large enough,

Moy € [z — 8,2+ 6]}  {d(pn, vy) > 2(6)/2}
so that, by Lemma 9, for any § < do,

hmsupﬁlog mﬁe ()\r]r\iax [x — 6,z + 5]) = —00.

N—o00

We now prove (3.3). Let § > 0 and 2 > r(u,Hpup) be fixed and define the following
event:

Roo = {Max € [0 = 6,2+ 8], d(jw, v}) < NH4L (3.6)
Then we have,
mi (ax € [#= 6,2+ 6]) <R’ (Exg) +mi’ (A, v3) > N7/,
By Lemma 9, it is therefore enough to show that

h&lhjx\;f;lopﬁlogmﬁe< ) < - [IB( ) — IB(H,:C)} .

To lighten a bit the notations we write A, B and H for Ay, By and Hy = Ay +
UBpNU* respectively. For any 6,60 > 0, we have

B pr
8.0 e 1 3 IO, H)
mP(EZ ) = E lea IR(0, H)- D222
v (Eve) = 75 20, A)I5(0,B) ™% ( Es Tt )IJ@(@’,H)
E,: (In(0/,H)) 150, A+ UBU)

150, A)I5.(0, B) UGE” 15.(0', A+ UBU¥)
IO IO B) 130, A+ UBUY)
va(e, A)IX(0, B) UeEs,, In(8', A+ UBU*)
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We now have to estimate suppcgs. IN (0, A+UBU™) and infyegs, IN(H’ A+UBU¥)

respectively. We detail the first term the second being similar. Accordlng to 7 (see

also Section 4.1.21in [?]), if z > r(,uaEB,ub) satisfies G, my, () < min (G, (Pa), G, (Pb)) 5

then m]BV almost surely, lim supy_, o, A, < z and therefore lim supy_, r(v]’é\),) <z

It is therefore possible to build a sequence (Gn)n>1 of deterministic matrices such

that supy >, |Gn|| < oo and for any N > 1, )\ch)

N-1/4

converges to z and d(fig V]BV) <
. With the notations of Lemma 10, for N large enough and for any U € EY 5,

1 1
7 log 15(0, A+ UBU*) — ~ log I%.(0, G )| < ga(0).
Therefore,

1
lim sup N logmﬁe( ) < hm (JN(Q' A) + Jﬁ,(@',B) - J]%(@,A) - Jﬁ,(@, B))

N—oo

+ Jim (Jx(0,Gw) = TN (0. GN)) + 96(6) + 9 (),
< =10 w) = 17(0,)) + 96(0) + 90 (9),

where at the last line, we have used the second part of Lemma 10. Letting § going
to zero and then optimizing over 6’ > 0, we get the required upper bound. |

4. PROPERTIES OF THE RATE FUNCTION [
We now check the properties of the rate function I° defined in (2.1).

Proof of Lemma 1. An ingredient for the proof is the following: for any compactly
supported p, for any > 0 and p > r(u) such that 6§ < G, (p), we have

1 1
p——-<R,0)<p— . 4.1
o == G0 -y
Indeed, as K, is a decreasing function, we have R, (0) = K,(0) — é > p—3.0n

the other hand, the limit of R,(f) as 6 grows to G,(p) is p — M( 7 As Ru is

nondecreasing, we get the upper bound. Moreover, it is easy to check that, for any
x > 0, there exist C,C" € R (depending on y and x but not on 6) such that, for 0
large enough, we have

Ox — §10g9+0 < JP(0,2) <0z +C',
so that, for any x > 0, there exists ¢, ¢ € R such that, for 6 large enough,
0(x — pa — po) — glogﬁ—i-cé 1°(0,z) < 0(x — po — py) + Blogh + ¢

If > pg + pp, letting 6 grow to infinity, we obtain that I?(z) = +oo.
If 6 > 0 is small enough,

0.0) =2 [ (R 0) = By 00 By w0) =0

by the properties of the R-transform. The function I? is therefore nonnegative.
If we denote by g the lower semi-continuous function which is equal to —oo on
[r(1a B pp), +00) and +oo outside, then I? = sup(g,sup, I°(0,-)) is lower semi-
continuous as a supremum of lower semi-continuous functions. As it is infinite
outside the interval [r(uq B ), pa + pp), it is a good rate function. O
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We will now turn to the proof of the lower bound of our large deviation principle,
stated in Proposition 3. To complete its proof, we will need to further study the
properties of the function I?. First, let us remark that the cases when p, is a Dirac
mass at pg (or up is a Dirac mass at pp) are not very interesting. In this case, the
free convolution p, B pp is just a shift of py by p, (or respectively of p, by pp) and
AN . converges with probability one to p, + pp. Hence, the large deviations have an
infinite rate function in the scale N except at p, + pp where it vanishes.

Consequently, in the sequel, one can assume without loss of generality that

Assumption 2. p, is not a Dirac mass at p, and pp is not a Dirac mass at py.
We have the following:

Lemma 11. Under Assumptions 1 and 2, for any r(ue 8 up) < x < pq + pp such
that

G#aEE,ub (I’) S min<G#a (pa)7 G/Jb (pb))a
then, for 8 =1 or 2, there exists a unique 0 > 0 such that

150, ) = sup I°(¢, x).
0'>0

We denote by 65 := argmaxezofﬁ(e, x). For any r(pue B up) <y < pa + py such that

T 7Y,
sup 17(0,y) > 17(67, y).
0>0
Proof of Lemma 11. Let r(puq B ) < o < pg + pp such that

Gpsafipu, (2) < min(G i, (pa) Gy (05))-

The first remark is that if G, (pa) and G, (pp) are infinite, then r(p, B pp) =
pa + pp and there is nothing to check since [r(uq B pp), po + po[ is empty. Indeed, if
Glo(pa) = G, (pp) = 00, we see by the inequalities (4.1), that

Jim Ry (@)= o and i (o) =

so that

xlglolo Ky, mu, () = pa+pp and x—}[i)ir—ll-pb GuaEEub (7) = oo,

leading to r(uq B pp) > pa + pp. By symmetry of the problem, without loss of
generality, one can now assume that G, (pa) < Gy, (pp) and G, (pa) < 0.

With the function I* defined in (2.1), if we denote by I? the function 6 +— I°(0, z),
then there exist some constants C1,Cy and C3 (that may depend on g, pa, i, Pb
and x but not on 6) such that

0, 0 if 0 <2 < Gy (o),
260
19(0) = Oz — Zlogh — gwfoﬂ (R + Ry (w)du + C1, i Gpumy, (2) < 2 < G, (pa),
0(x — pa) — gfoﬁ Ry, (u)du + Cy, if Gp,(pa) < 2;70 < Gy (1),
0(z — pa — py) + 5 1log 0 + Cs, if 22> G, (o),

where the last line does not occur if G, (py) = oco. In the computation, we have
used the well known fact that R, m,, = R, + R, when the three functions are well
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defined. Therefore, one can check that the function I? is continuously differentiable
and its derivative is given by:

0, if 0 < % < Ghuop, (),

(Iﬂ)l<9) _ T = Kﬂaaaﬂb (2/8) if GNaBHMb( ) < 59 < G ( )
v L = Pa — (273) lf Gﬂa(pa) S % S Gﬂb(pb)a
RIS S T vl
We now set ay, := m We claim that

ay > Gy, (Pa)-

Indeed, K, is well defined on the interval (0,G,(pp)), so that K, (G, (pa)) and
therefore K, mu, (G, (pa)) are well defined. As K, m,, is a decreasing function and

G/—LaEE/—Lb (z) < Gua (Pa)

we have
1
T 2 Kpuomu, (Gua(pa) = Kuo (G (pa)) + Ky (G (pa)) — G (pa)
Ha Pa)
As K, is also a decreasing function, this yields:
1 1

x> Ky, (Gua (pa)) + Kub(Gub (pv)) —

7~ =Pat P A
Gpo(pa) Gua(pa)

which is equivalent to oy > G, (pa). There are therefore two cases to consider and
we claim that:

Case 1: If G, (pa) < ay < Gy, (pb), then IP reaches its maximum at

# 0

where @, is the inverse of R, as defined in Section 2;
Case 2: If oy > G, (pp), then Iﬁ reaches its maximum at 65 = gam

Let us now prove this claim. On the interval [O, 5Gu, (pa)} , the function (I7)

is nondecreasing and it vanishes at zero, it is therefore nonnegative so that I? is
nondecreasing on this interval. We have
1 1

(LY (o)) 20 s (1) (5Gum) =+ g

Moreover, as R, is an increasing function, (I2) is decreasing on the interval

{EGM (Pa), gGub(pb)} We now distinguish the two cases.
In Case 1, (I2) (ﬁGub (pb)) < 0, and therefore there exists

07 € [gGya (Pa), gGub(pb))

such that I? is increasing on {gGua (pa), 05} and then decreasing. One can check
that the point where (I2)' cancels is given by gQ#b (z — pa). Moreover, (I5)
decreasing on [gGub (b)), oo) and negative at gGub (pp) so it remains negative and

I7 is decreasing on this interval. The first claim holds true.
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In Case 2, (IP) (gG#b(pb)) > 0, and therefore I? is increasing on the inter-
val [gGua(pa),gGub(pb)}. But (I?)" is nonnegative at gGub(pb), decreasing on
{gG% (Pb)s oo) and converges to z — pg — pp < 0 as 6 grows to oo. Therefore, there

exists 07 € (gGub(pb),oo> such that I? is increasing on (gGﬂb (pb),%g} and then

decreasing. One can check that the point where (I2)’ cancels is given by gam and

the second claim holds true. This concludes the proof of the uniqueness of 6.
Moreover, looking carefully at the definition of #? in Case 1 and Case 2, one can
see that it is an increasing function of x. Indeed, it is increasing on the intervals
{z € R/ay > Gu,(pp)} and {z € R/G,(pa) < oz < Gp,(pp)} respectively and it
is continuous at x = Gy, (ps). As a consequence, for x # y such that r(uq B ) <
T,y < pa+ pp, 02 # 05 and therefore supgsq I°(0,y) > I5(62,y).
We now have to deal with the case when y = p, + pp, that is to show that:

sup 1%, pa + pv) > 1°(05, pa + po)- (4.2)
If G, (ps) is finite, for 6 > ngb(pb)7

%00, pa + p) = glog9+03

and therefore the supremum is infinite and (4.2) holds. Assume now that G, (ps) =
00. As pip # 0p,, then, there exists o € (0,1] and M finite such that, for any x > py,

11—«
G < M.
Mb(x)_:c—pb—i_
From there, we get that, for any v > G, (pa) V %,
11—« 1 -« 1 @
u<———+4+M sothat R, (u)<p+—————<pp— —.
Ro(0) — 10 e T T T

Therefore, there exist ¢, ¢ € R, such that for any 6 > G, (pa) V %,

20
8 B, _ Pa /
17(0, pa + pv) = Opp 2/%w (Pb 2u>du+0— 1 logf+c

so that, letting @ grow to infinity, we get again that I?(p, +p) = oo and (4.2) holds.
This concludes the proof of Lemma 11. O

5. LARGE DEVIATION LOWER BOUND

The goal of this section is to show Proposition 3. A classical strategy to get a
large deviation lower bound is to tilt the measure in such a way that the rare event
{AN.. € [x—8,2+ 6]} becomes typical under the tilted measure. We now check that

max
it is possible to make such a tilt':

Lemma 12. Under Assumptions 1 , for any x € [r(pq B pp), pa + pb) such that
Guaﬁﬂub (z) < min(Gua (Pa)s Gub (pv))
for B =1 or 2, we have

1 3
. .. 3,05 T
ixg lhn nf 5 log my ( Nﬁ) 20,

1As for Lemma 11, we want to mention that Lemma 12 holds without Assumption 2, that we
add to simplify the proof.
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where EY; 5 was defined in (3.6) and 02 in Lemma 11.

Proof of Lemma 12. Let § = 1 or 2. The first remark is that, almost surely, |A
K, where we recall that K := supy~;([|[An| + | Bn)-
Let r(uq B pup) <z < pg + pp be fixed. If we denote by

LE(y) = { SUPoz0 1°(0,y) = I°(65, ), if r(ka B ) <y < pa + pi,
z ) 00, otherwise,

max| <

we know from Proposition 7 that, for any y € R,
1
lim lim sup — logm (Aﬁax ly—0,y+ 5]) < —LB(y). (5.1)
00 N—oo N

Let § > 0 be fixed. We denote by Fj the compact set [— K, K]\|z — 0,z + §[. For any
n > 0,y € Fs, we also denote by

. 1
L3, ,(y) := min (Lf(y) -, n> :
From (5.1), for any y € Fs, there exists 7y, such that
1
timsup - logm% (M € [y =y + 7)) < Ly (1),
N—o0

As Fj is a compact set, one can extract from the family ([y — Yy, ¥ + Yy,n))yer; 2
finite covering F5 = Ui_1[¥i — Vyin» Yi + Vyin]- From there, we get that

N .
lim sup N log mfy (Amax F) < max —L7,(y) < = inf L7, ().
Letting 1 going to zero, we deduce that

li 71 M e F)<—inf LP
1]rvrljgopNogm (maxé ) Jnf Lz (y)-

By Lemma 11, we know that L? is nonnegative and vanishes only at x, so that,
inf,cp L2(y) > 0. Therefore, we deduce that, for N large enough,
3
(Aﬁax [ — 5,:):—1—(5]) > —.

But, in virtue of Lemma 9, for N large enough, we also have
795 7y - 3
my (d(HN,V}%) <N 1/4) >
so that
07 1
m]ﬁV ( N 5) > 57
and Lemma 12 follows. O

From there, one can easily get the large deviation lower bound.

Proof of Proposition 3. As mentioned in Section 4, without loss of generality, one
can assume Assumption 2. Let 8 =1 or 2 and = € R be fixed. If z > p, + pp or
x < r(uq B up), Lemma 1 gives that 1°(z) = oo, so that the lower bound obviously
holds. Moreover, as we have seen at the end of the proof of Lemma 11, as uy is
not a Dirac mass at py, then I°(p + py) = oo and the lower bound also holds for

T = Pg + Pb-
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Let us now assume that r(j, B ) < 2 < pg + pp and let 82 be the corresponding
shift defined in Lemma 11. Then, with EY s defined in (3.6) and recalling that
A=AyN,B=Byand H= A+ UBU*, we have:

miy (Aax € [ = 8,2+ 8]) = mY(ER5) = E, 0 (1%
. 1
> inf Y
UEER s I (0, A+ UBU*)
8
Iy (08, A)IN (02, Bym3™ (E% )

1568, H)
21503, H)

V

so that, using again Lemma 10, we get:

o1 B (\N 8108
lﬂloréfﬁlogmj\, ()\ E[m—é,x—i—(ﬂ) > I (033,33)—995(5)

max
3 3 1 705
+ lﬂlgof N logmfv ( ?\25) .
Letting § going to zero and using Lemma 12, we get that

T |
15{81}5215? Nm?\,(/\ﬁax €lx—6x+0])>-I°0% ) > -1°x).

This concludes the proof.

6. PROOF OF THE MAIN THEOREM AND ITS COROLLARY

Proof of Theorem J. Assume that Assumption 1 and the condition (NoOut) are sat-
isfied. Without loss of generality, one can add Assumption 2. As already stated
in the proof of Lemma 12, almost surely, |AY. | < K, where we recall that K :=
supy>1 ([[An | + ([ Bwl))-
In particular,

limsupllogm]ﬁv (Aﬁax € [-K, K]C) = —00.

N—o0 N

Using e.g. Theorem D.4(a) and Corollary D.6 in [Anderson et al., 2010], it is

enough to show that, for any x € R,

1
lim lim sup N log m’]@\, (AN €lz—0,z+ 5])

510 Noseo max

T ¢
= l(slﬂ)l 1}\Ifri>1cl)10f N logm]ﬁV ()\r]r\iax €lx—0d,x+ 5]) = —1%(z).

The upper bound is nothing but Proposition 2, obtained from Proposition 7 for
0 = 0 and the lower bound is given by Proposition 3. U

We now prove Corollary 5. Our goal is to show that if Ay and By have no outliers,
then the condition (NoOut) is automatically satisfied. Indeed, if Ay and By have
no outliers, it means that their respective largest eigenvalues converge to the edge
of the support of the limiting measure, that is to say p, = r(ue) and pp = r(up).
Therefore, Corollary 5 is a direct consequence of the following lemma:

Lemma 13. For any probability measures u and v compactly supported on R, we
have

G (r(p B v)) < min(G(r(p)), Gy (r(v)))-
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Proof. If one of the measures p or v is a single point mass, the additive free con-
volution is just a translation and we have equality. We now assume that none of
them is a single point mass. In general, we know (see e.g. [Belinschi, 2008]) that
there exists a function w, called the subordination function, which is analytic on
C* :={z € C,IJmz > 0} such that, for all z € C*,

GuBEh/(Z) = Gu(w(z))'
This gives immediately that for any z € C*,
dp(t)
|t —w(z)]?
By [Belinschi, 2006, Theorem 2.3], as ;1 or v are not a single point mass, G,m, can
be continuously extended to CT UR with values in C := C U {co}. Moreover, as j

and v are compactly supported, by [Belinschi, 2008, Theorem 3.3(3)], w can also be
continuously extended to C*UR. Let u be a real number in the interval (r(uHBv), 00).

ImGumy(2) = —Imw(z). (6.1)

Then lim, o [ % > 0 and lim, o Im G @, (u+iv) = Im G @, (u) = 0, so that,
using (6.1), we get IJmw(u) = lim, o Im Gum, (u + iv) = 0. Therefore, w restricted
to the interval (r(u B v), 00) takes values in R U {oo}. Moreover, as w is continuous
and w(z) goes to 0o as z goes to 0o, we get that w((r(pu B v),00)) is an interval of
the form (a, 00).

We now want to show by contradiction that a > r(u). Let us assume that a < r(u).
For any y > 0, we have

_ /ar(u) ImGy(x+iy)de = /ar(u) dp(t) (arctan ((,u;) — arctan (T)) .

As y decreases to zero, the right hand-side goes to 5 (u([a, r(p)) + p((a, r(u)]) > 0.
On the other hand, for any = € (a,r(n)) C w((r(n B v),00)), there exists =/ >
r(u B v), such that x = w(z’) and w is holomorphic from a neighborhood of z’ to a
neighborhood of z. As
lim Jm G, (%) = lim ImG,(w(Z')) = Im G m,(2') =0,

T/ —x’

T—x

by dominated convergence, we get that the left hand-side goes to zero, as y decreases
to zero. This leads to a contradiction and we deduce that w((r(p B v),0)) C
(r(p),00), so that

w(r(p B ) > r(p).
As G, is decreasing on (r(u),00), this gives

Gtz (r(0 B v)) = Gl (r(u B v)) < Gulr().

As p and v play symmetric roles, this concludes the proof of Lemma 13. g

APPENDIX A. STUDY OF THE DEFORMED MODEL (2.4)

A.1. Large deviations for the smallest eigenvalue of Hy. In order to study
the deviations of the largest eigenvalue of the deformed model below its expected
value, we will need a counterpart of Theorem 4 for the smallest eigenvalue of Hy. We
first state the counterpart of the condition (NoOut). For any compactly supported
probability measure u, we denote by I(u) the left edge of the support of p. One can
extend the definitions of G, K, R, and @, given in Section 2: for any A < I(u),
Gu(\) = [ /\L_y,u(dy); G, is decreasing from (—o0,1(x)) into (G, (I(1)),0) so we de-
note again by K, its inverse. For any z € (G,(I(1)),0) we set R, (z) := K,(z) — 1

z?
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which is increasing with inverse ),,. We then introduce the following assumption:

(NoDown) The smallest eigenvalues A%N) and )\E\J,SN) converge as N grows to infinity
to Lg and ly, respectively and G, mp, (e B 1p)) > max (G, (a), G, (6)) -

As in Lemma 13, one can check that this condition is satisfied if Ay and By have
no outliers, this time in the sense that ¢, = I(,) and £, = (). We now extend
the definition of the rate function I introduced in (2.1). For f =1or 2,0 <0, u a
compactly supported probability measure and ¢ < I(u), we define:

20
J20,0) := { gfoﬁ Ry, (u)du, if Gu(f) < %9
. 00— 5log(~0) — § [log(y — Op(dy) + 5 (log§ — 1), if % < G,(0).
For any 6 <0 and = < I(u, B p1p), we denote by
1%(0,2) = J0 o (0,2) — TP (0,0,) — TS (0,6),

HaHpp
e (0,) o=
8 [ supg<o I7(0, ), itz < (pe B ),
Lonin (@) 1= { 00, otherwise. (A1)

Applying Theorem 4 to —Ax and —Bpy, one can get a large deviation principle

for the smallest eigenvalue A\Y, of Hy :
Corollary 14. Under the assumptions (Hypuy) and (NoDown), for f =1 or 2, the
law of )\ﬁin under m]ﬂv satisfies a large deviation principle in the scale N with good

rate function Ifﬂn.

A.2. Asymptotic independence of the deviations of A\, and \Y . Before

going to the study of the deformed model itself, we will need the following proposi-
tion:

Proposition 15. Let (My)n>1 be a sequence of deterministic matrices such that
M := supy>y [|[My|| < oo, and, as N goes to infinity, )\SMN) and )\S\],V[N) converges
respectively to p and £ and fipr, converges weakly to p. Let e; and ey be two random
vectors uniformly distributed on the unit sphere of RN if B =1 (respectively of CN
if B =2), orthogonal to each other. Let @ >0 and ¢’ <0 be fized. Then

E (eN0(61,MN61>+N9/<62,MN62>>
In(0, My)IN(9', M)

In other words, when # and 6’ are of opposite sign, the rank two spherical integral
asymptotically factorizes in the scale e/V. As an immediate corollary, we find that
the large deviations of A\pin and Apnax are asymptotically independent.

Corollary 16. Under the assumptions (Hyux), (NoDown) and (NoOut), for f =1
or 2, the law of (AN: ;AN ) under m]ﬂv satisfies a large deviation principle in the
scale N and with good rate function I7. (z) + I°(y).

li 11
— 10
Nl—I>Ic1>oN &

= 0. (A.2)

Proof. The proof is to tilt the measure by the two-dimensional spherical integral of
Proposition 15 which implies that for 8 > 0,6’ < 0

M (Ao =]+ Afax—yl < 8)

_ B ’ B
<e N(J“AEE“B ® ’x)+JﬂAE#B e

(9,y)+o(1))EU[E (eN9<el,(A+UBU*)el)—i—NG’(eg,(A—i—UBU*)ez))]
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Now, since the law of (e, e2) and (Ue, Uez) are independent and equidistributed,
we deduce the upper bound as before. The proof of the lower bound is the same since
for any (x,y) we find a unique couple (6., 6,) which optimizes the rate function. [

Moreover, it is easy to deduce the following corollary, which is the extension of
Proposition 2 to 6 < 0:

Corollary 17. Under Assumption 1, for 8 =1 or 2, for any 0 < 0, for any z <

T‘(Ma BE‘ )ub)a
- 1 B0 (\N _
ldlfol lzlvn_litig 7 log m/y ()\max €z —d,x+ 5]) = —00, (A.3)
and for any x > r(pa B pp),
1 9
lim li —logma? (AN - < —IP(x). A4
ira lim sup - log miy (Amax €z 57x+5]) < -I"(z) (A.4)

With Proposition 15 in hand, the proof of Corollary 17 follows the same lines
as the proof of Proposition 2. We do not detail it and go directly to the proof
of Proposition 15. Note that this kind of factorization property has been already
shown for € and 6’ not too far from zero, we refer the reader to [Guionnet and Maida,
2005][Theorem 7] or [?]. Our goal here is to extend this result to any pair of (6,0")
of opposite sign.

Proof of Proposition 15. For the sake of simplicity, we will stick to the case § = 1.
Let g and ¢’ be two independent standard Gaussian vectors in RY. If we denote by
| - |2 the Euclidean norm and set

g , {9,9) h
ej:=—— h:=¢g — ——5gand ey ;== ——,
lgll2 lgll3 [ A]2

then it is well know that (e;,e2) are two random vectors uniform on the unit
sphere in RY, orthogonal to each other. Moreover, (e,es) is independent from
(llgll2, 19|25 (g, ¢’))- Indeed, one can use the following system of coordinates : r :=
llgll2, 71, - - -, ¥N—1 are the polar coordinates of g, ' := ||¢||2, 1 is the angle between
g and g, and 7{,...,vy_o are the angles needed to spot ¢’ on the cone of angle n
around g. One can check that the Gaussian measure decomposes as a product mea-
sure in these coordinates, (||gl2, [|¢’ll2, (g, ¢’)) is a function of r,r’,n whereas (e1, e2)
is a function of the 7’s and 7's. In particular, for any ¢, if we let

v = {l{g, 9 < ellgllallgll2},

then A% is independent of (eg,e2). Moreover, on A%, we have ||h[]3 > [|¢'||3(1 — 2)
so that, for e < 1/2,

1

‘9(61, Mpyer) + 0' (e, Myes) — 9H91H2<g, Myg) — 6 7 (¢, Mng')| < 4Me,
and
E (eN9<el,MNe1)+N0’<eQ,MN62)) _ 1 E (1A5 eN9(61,MNel)—i-NG’(eg,MNeg))
P(AY) N
AN Me /
< IP’(T;—‘V)IN(Q’MN)IN(Q , Mny).

Because of the law of large numbers, for any € > 0, P(A%;) converges to 1 as N goes
to infinity. Hence, letting N go to infinity and then ¢ going to zero, we get the upper
bound in (A.2).
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We now prove the lower bound. If O is an orthogonal matrix, the law of (Oej, Oes)
is the same as the law of (e1,ez) so that we can assume without loss of generality
that My is real diagonal, with eigenvalues that we denote by AY > A\ > ... > /\%.
We refer the reader to Proposition 16 and Lemmas 18 to 21 in [Guionnet and Maida,
2005], in particular the proof of Lemma 19. We recall that 7" is the rate function for

N
the large deviations of ZZ“Q’ Let aj be such that
i=1 g

Oa] — T(a7) = sup(fa — T(«)).
As 6 > 0, one can check that apmin < af < p. If af € [Omin, Omax], We set x1 := 0,
whereas if o] € (amax, p), we set 1 1= (Amax — @7 ) ((Amax — &) Hmax — 1). Similarly,
let a5 be such that

0l —T(a3) =sup(@’a — T()).

As 0’ < 0, one can check that £ < ab < amax. If @b € [min, Qmax], We set x2 := 0,
whereas if a3 € (¢, amin), we set 2 := (Amin — &) ((Amin — &) Hpin — 1). We now
define, for any 0 > 0,

N
Bl vz = { ‘()\{V - )i} + x| <6, ]1[22 —aj)g; —x1| <9,
i
N-1
‘(/\N )(QJ,J\V,)2 5 | § L O - a3)(e) ~a <5},
C = {w >2,2 < NYA Vi< N—1,(g)2 < N1/4}
Es = {llg|* > VoN, ||¢||* > VoN'}
We have
E (eNG(el,MN61>+N9/(62,MN62>) >E (1AE nBE L, y2mcmEéeN9<81,MN€1>+N9/<62,MN€2>>
> E <1AE NBE . AOnEse 9W<97MN9> " <QI7MN9/>) o—4NMe
> P(A% N le ennn N C N Es) o—4NMe Nba;+N0'a3—2N(0+0')Vs (A.5)
Now, if 01,...,0n5 are N independent Rademacher random variables, independent

of g and ¢/, then (g, ¢') and Y, 0;;¢; have the same law. Therefore, since the sets

Bgl,xz,z,u 42> C and Ej are independent of the sign of the g;’s,
( ’B.Z‘l xr2,Y1, ygmcmE(S) ‘ Za—lglgl’ < €HgH2||g H2’(g g ))’Bz’l,xg,yl yzmcmE(S)
=1

where the second expectation holds on the ¢’s only. Using the concentration proper-
ties of the Rademacher random variables (or the Azuma Hoeffding inequality), one

gets that
N
]P) <

Z o z-g@-gé
i=1
N C' N Ey, the right hand side is bounded above by e*4‘/ﬁs25, so that
N C N Es) converges to one

2
= lgli3llg’1I3

N
> sug|2||g'||z\<g,g'>> <e D6,

On B?

1,22,Y1,Y2
we can conclude that, for any ¢, > 0, P(A3 \B

as N goes to infinity.

x1,22,Y1,Y2
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Furthermore, we have that
P(BS NCNEs) >P(B .44 NC) — P(ES). (A.6)

T1,22,Y1,Y2

Since it is well known that
1
lim inf — log P(E$) < —2(Vd — 1 — log(V/3))
N—ooo N

where the above right hand side goes to —oo as § goes to zero, we only need to
estimate the first term in the right hand side of (A.6) for small enough §.Now

P(B? Nne) > P(BS |C)P(C),

x1,22,Y1,Y2 z1,22,Y1,Y2
where the last term goes to one as N goes to infinity. The last thing to check is that
R | 5
161&1 1}\1{1;1({13 N log P(B3, 15 41.4,|C) = =T(a]) — T'(a3).

Indeed, going back to the proofs of Lemmas 18 and 19 in [Guionnet and Maida,
2005] (see also [?]), one can check that if af € [min, ¥max],

N

1 *
N Z(Aiv - 041)91‘2

1
lim lim inf — log P
N i=2

6l0 N—oo

<5K§:>—L@an

The proof is the same except that in the computation of the log-Laplace the integral
with go from —NY4 to N1/ instead of running on R and this will not change the
limit. Similarly, if ] > omax,

1 92 r1

limlim inf — log P |(AY —a})%: ) I —

HER AR R <|<A1 Dy tn —5> SRTow—sL
and

1 1 ) .
lgﬁ)ll}\%goleogP< N ;(Az —o1)g; — x| < 5|C> > =L (x1).

Putting everything together in (A.5), taking the limit as N then § and € go to zero,
we get the factorization property. O

A.3. Large deviations for the largest eigenvalue in the deformed model.
For the sake of simplicity, when treating the deformed model, we will stick to the
case § = 1. For any x > r(u, B up), we denote by p, the measure defined as follows:
for any bounded measurable function f,

/f(A)ux(dA) = /f (;A) fia B pp(dN).

In particular, for any « > r(ue B ), [ Apa(dX) = Gy, ().
For any = > p > r(u, B8 pp) and € < (g B up) we define

ot (p) 1=

Gp,a Bu (P) .
s Grum(e) <
o0, otherwise.

and

MaEEMb(

G oy, (0) .
Oy _(6) = 1+(1'—M£)Hé“b £)? if GMaEEMb (E) > —00,
’ —09, otherwise.

ForaE(%,L>andm§é<l 1),\weset

z—4) T—p

o) i= 5 108 (522 ) ().
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and we also extend it to

hw( L )::nmhm( L ) and hm(l) ::nmhm(l)
T\ —p ywo T \x—yY T\ -4 gt T\ —y

We set, for @ > p > r(ug B up) and € < |(uq B ),
hoo(Kp, (Qu, (a))), if a € [Gp,mp, (2), 2z +(p)],

Tgp(a) =1 hag (%_p) , ifae (ozx7+(p), ) (A7)
00, if a > %
z—p
and
ha,x(Kuz (Q,U«z (@), ifae [O‘a:,f(g)a G,U«aEEH«b (z)],
T;’e(a) =1 hag (ﬁ) , ifae (ﬁ,axy_(fn (A.8)

0, ifoz<ﬁ.

The quantities above can easily be extended to the case © = p > r(uq B up) (only
the first line of (A.7) will be relevant). For z = p = r(uq B 1), we set

Tfo(a) =0 if o> Gpump,(2)
and
T, (a) =00 if a <Gpumu(2)
For «:= (71,...,7p) a p-uplet of nonnegative real numbers, we now define,
LO(y) = I'(y), ify > r(pa B )
and, for any 1 < i < p,

: yél(iurifﬂﬂub) {T:’;’y <$) + Iflnin(y)} ’ if r(pg B ) < 2 < Ky, (%) ,
L)(z) == o [T, (2) + LW}, e > K, (1),
ooj o if 2 < r(pe B ),

with the convention that

1 : 1
Kﬂaaa#b ('Y) = r(#a H Mb) if G,uaEE,ub(r(,UJa & Nb)) < ;

1

Note that this rate function should not depend on the ordering of the ~;’s, which
is far from obvious on the formula above.

We can now state our main result. We recall that (U 1(1), ey Ul(p )) are independent
random vectors uniformly distributed on the unit sphere. To simplify the notations,
they can be viewed as respective first column vectors of p independent matrices
distributed according to m}.

Theorem 18. Under the assumptions (Hpux), (NoOut) and (NoDown), for any
p € N* and any v € (R4)P, the law of the largest eigenvalue \Y, . of the matriz Xy =
AN +UBNU*+ 3P %-Ulz)(Ul(Z))*, defined in (2.4), under (mh)®P+Y) satisfies a

large deviation principle in the scale N with good rate function L(yp).

Before proving Theorem 18, we need to state a variant of Proposition 16 in [Guion-
net and Maida, 2005]. We denote by P the standard Gaussian measure on R and

we assume that (g1, ..., gn) follows the law P®V. For any N-tuple of real numbers
N 1 2
A= (AM,..., ) and z ¢ {\1,..., \n}, we denote by vy \(x) = M

Zi:l 97
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Proposition 19. Let (A?T)NGN*,ISiSN be a triangular array of real numbers such

that %Ef\; O\~ converges to p, B py as N grows to co. We denote by AV =

()\]1\7, el /\%) Let x be a real number such that, for N large enough, x > maxij\i1 /\fv.
Assume that maxij\il /\fv converges, as N grows to oo, to p > r(ug B up). Then, for
any a € R such that o > G, @y, (x), we have

- 1 &N
16%1 llll\lnj;lop N log P (’UN,AN (x) € [ — 0, + 5])

1
T .. L QN _ _ 7t
= l(slf(()l lﬂloréf N log P (UN’)\N () € [a— 0, + 5]) T, , (). (A9)
Assume that min®Y | AN converges, as N grows to oo, to £ < (g B up). Then, for
any a € R such that o < G @y, (x), we have

- 1
lgin lim sup N log POV (’UN)\N () € [a—0,a+ 6])

N—oo

1
= léifg I%ioréf N log P®N (UN’)\N () € [a—0,a+ 5]) =-T,,(a). (A.10)

We will not give a full proof of Proposition 19. This follows from an adaptation
of Lemma 18 and Proposition 16 in [Guionnet and Maida, 2005]. In Lemma 18 in
particular, one can check that the deviations above the mean (which is G, m,, () in
the present case) may involve not only the limiting empirical distribution but also
the limit as N grows to oo of the largest particle (denoted by max® , v; there and

equal to m in the present case, whereas the deviations below the mean
1

i=1""
may depend on the limiting smallest particle, equal to NN here.
i=1""

The rest of this section is devoted to the proof of Theorem 18 in the case p = 1.
For p > 1, the proof is very similar, except that instead of conditioning by the
deviations of the extreme eigenvalues of Hpy, we will condition on the deviations of

extreme eigenvalues of the model at step p — 1.

Proof of Theorem 18 in the case p = 1. We recall that we stick to the case g = 1.
Let 71 > 0 be fixed. As in the proof of Theorem 4, the exponential tightness is
straightforward : for any N > 1,

—

’)‘ﬁax| < K+71‘

Again, using e.g. Theorem D.4(a) and Corollary D.6 in [Anderson et al., 2010],
it is enough to show that, for any = € R,

1 —
lim lim sup N log(mk)®? ()\N €lz—d,x+ 5])

310 N—oo max

R | 1\®2 (AN 1
= lim lim inf N log(my)® ()\N €lx—d,x+ 5]) = —LS ().

510 N—soo max

For any z which does not belong to the spectrum of Hp, one can write

1
det(2In — Xn) = det(zInx — Hy)m (71 — (UMY (2Iy — HN)_1U1(1)> .

Therefore, z is an eigenvalue of X which is not an eigenvalue of Hy if and only if

1
O (I — Hy)'U = -
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The Haar measure is invariant by unitary conjugation, so that if Hy = UnDnU}y;,
then (Ul(l))*(zIN - HN)_IUI(I) and (Ul(l))*(zIN - DN)_IUI(U have the same law and
one can assume in the sequel that Hpy is diagonal. Moreover, as Ul(l) is a column

vector of a matrix distributed according to the Haar measure, the equation now
reads

on(z) =) N o

i1 Z— A\

with (g1, ...,gn) having distribution P&V,
For any (\1,...,An) and (vy,...,vy) sush that 3N, 02 = 1 fixed, we define on
(maxY ; \i, 00), the function

N
2
T2 V5.
f)\,’l} Z,:Z:lz—)\iz

This function is decreasing and continuous on (max_; \;, 00), uniformly on (vq, ..., vy)

such that Zfil v? = 1. Therefore, there exists a function € going to zero at zero,
such that for z € (max¥, \;,00), fr(z) = 7—11 if and only if, for any ¢ > 0 small
enough, for any z € [z—0, z+0], fa(z) € [7% —ex(9), 7% +ex(0 } .Let & > r(pqBup)
be fixed. Let y such that r(pq B ) < y < x and set ny := *%. For any < no,
similarly to the definition of E]y\,’77 in (3.6), we introduce

EX, = {)‘gax e ly —n,yl, d(in, vy) < N*1/4}

The analysis will be the same, except possibly for y = r(u, B pp). we have that for
any U € EY ., AN = )\gHN) € [y, y + n]. Therefore, if we denote by

max

2 N 2
. 91 1 9;
UN(xay) = N o
T —y £ . \(HN) N
Yo SO
1= 1=
then )
H
__ N
lon (@, y) —on(z)| < by =M <

H
(= y)(@ = A") 70
Therefore, for any 7 < 79, there exists a continuous function €, going to zero at zero
such that, for any § < n and N large enough,

——~—

()2 ({Miux € [2 = 6,2+ ]} NEX,,)

= PV g mly ({o¥ @) € [ —e0). —+<(9)| | nER, )

~ 1 1
= PN @ m} (vN(x,y) € [ —¢e(6), — +¢(0)
ga! !

X, ) mh(ER,) (A1)

The probability measure on the right handside is P®N @ m}; because N (x,y)
can be seen as a function of U of law m}; and of (g1,...,gn) of law PEN.

If we assume that 7,0 < ‘%%yl and for all 7 € N*, \; < y + 7, one can choose ¢

uniformly in (A1,...,Ax). Now, let U € E‘}J\m7 be chosen. We denote by A\ = y
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‘ H
and for any 2 < i < N, AN := )\Z( ¥) Then % Z£i1 (5)\£v converges to g B pup and

max.y ; AN = y. By Proposition 19, if G,,m,, (z) < '711’ we have

1 1 1 — 1
lim lim inf — 1 P®N(~ [— 5), — 5} EY >_—T+ ()
i lim inf - log on(x) € o en( ),% +e5(8)| [En, zy\5, )

so that

R | N 1 . 1 —
lim lim inf - log(m})** (A € lr—0,2-+0]) > ~T, <m>+1v1féo v losmiv(Ef,)-

Taking the limit of the right hand-side as n goes to zero, we get using Theorem 4
that
1

S 1\®2 N + 1 1
15118 J\;gnoo N log(mN) (Amax € [l’ - 57 T+ 5]) > _Tx,y I -1 (y) > _L'(y )(.f),
where the last inequality was obtained by optimizing on y.

Assume now that r := r(uBu) <z < K, my, (%) . Similarly to (3.6), we define,
for y < I(pa B )

El]/\}’; = {Agm € [y’y_’_n]’)\ﬁax € [I’ - n’r+n]ad(ﬂN7V]1V) < N_1/4}a

and
N-1 1

2 2
— 9i 1 9N
on—(2) =) NG + —
K3

; _ ) N x—y
i=1 T > g2 > g
=1 i=1

For n small enough and § <1, we can then write as above

— —_—

(mp) P (Max € [& = 8,2 +0]) > (my) P (Max € [z = 6,2+ 8] NEY,)

max
1

1 _
— pen g m}v (UM(JU) c { —en(6), — + sn(é)} N E}(,n>
Y1 24! ’

1 1 _ _
— PP g ml (vm_(az) c L — () - + sn(a)} yEJvan> mh(BY). (A12)
1 1 b K
In this case, by Proposition 19,

1 1 1 1
lim lim inf — 1 P®N( _ {— 5), — 5] E?ﬁ‘) =T ()
61%1 }\r[n_glo N og UN, (x) € " 577( )771 +577( ) | N,y z,y " ’

so that
1 ™ 1 1
lim lim inf - log(my)**(\Yax € [20,2+0]) = —T, <>+hm inf = log miy (Y.

max z,y

010 N—oo Y1 N—o0
(A.13)
The last step to prove the lower bound in this case is to check
T | _
lim lim inf = logmy (EY) > ~Lnin (9): (A.14)

Then, taking the limit as n goes to zero in (A.13) and optimizing in y gives the
required lower bound.

We now prove (A.14). Similarly to Lemma 11 and 12 (by symmetry between the
smallest and largest eigenvalue), one can show that there exists a unique 6, < 0
such that, for any n > 0 and N large enough,

1,0 N _ 2
my” (Al € [y = ny + ] d(n, vk) < NTVT) = 2
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Applying Corollary 17, as 6, < 0, we have that, for any n > 0 and N large enough,

1,0 2
mNy()\r]XaX € [r_777r+77]) > g, (A15)
so that, for any n > 0 and N large enough,
1,0, cy,— 1
With this ingredient, the proof of (A.14) goes as in the proof of Proposition 3:
_ I%(0,, H)
1 Y, — N\YYy>
" EN) = B (lE’f’v’m I}v<«9y,H>>
. 1 1,0 _
> inf I]l\/(9y7A)I]1\7<6y7B)mNy(E?]/\},n)a

 UeEY, IN(6y, A+ UBU¥)
so that, using again Lemma 10, we get:

AT | 1 — 1 . 1
lim L inf 7 log myy (EX) = ~Lhn(6y.) — Li go, (1) = = Linin (9)-

The strategy to get the upper bound is similar : we know that, for N > 1,
AN € [-K,K] and A\, € [~K,K]. For any 6 > 0, there exists p € N* and
p1,--.,pp such that

[—K, K] C Ule[pi —0,p; + (5]
Assume that G, @y, (z) < ,y%

(M) (MYax € [2 = 6,2 + ) < (my)** Ny € [& = 8,2 + 6] N {d (v, vi) < N4
+mi(d(an, vy) > N7V

p —
< > )P € 7= 6,4+ 0] N E )

+my(d(an,vy) > N4,
We then use Lemma 9 to get rid of the last term and apply the same strategy as
before, combining the relation (A.12) and Proposition 19 for the main term.

Assume now that G, m@,, () > % We apply the very same strategy with Ef\}:g

instead of ER ; and the bound (A.14).
g
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