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Abstract. In this paper, we consider the addition of two matrices in generic
position, namely A + UBU∗, where U is drawn under the Haar measure on the
unitary or the orthogonal group. We show that, under mild conditions on the
empirical spectral measures of the deterministic matrices A and B, the law of
the largest eigenvalue satisfies a large deviation principle, in the scale N, with
an explicit rate function involving the limit of spherical integrals. We cover in
particular the case when A and B have no outliers.

1. Introduction

Understanding the spectrum of the sum A+B of two Hermitian matrices knowing
the spectra of A and B respectively is a classical and difficult problem. Since the
pioneering works of Voiculescu [1991], we know that free probability provides efficient
tools to describe, at least asymptotically, the spectrum of the sum of two large
Hermitian matrices in generic position from one another. More precisely, if AN
and BN are two deterministic N × N Hermitian matrices and UN is a unitary
random matrix distributed according to the Haar measure, then, in the large N
limit, AN and UNBNU

∗
N are asymptotically free and the spectral distribution of

HN := AN +UNBNU
∗
N is given by the free convolution of the spectral distributions

of AN and BN . This global law, that is the convergence of the spectral distribution of
HN at macroscopic scale, has been studied in details by Speicher [1993], Pastur and
Vasilchuk [2000] among others. The local law, that is the comparison of the spectral
distribution of HN with the free additive convolution of the spectral distributions of
AN and BN below the macroscopic scale was then investigated by Kargin [2012] and
Bao et al. [2017]. In this paper, we will be interested in the behavior of the largest
eigenvalue of HN . As a corollary of the results of Collins and Male [2014] on strong
asymptotic freeness, we know that if AN and BN have no outliers, then the largest
eigenvalue of HN converges to the right edge of the support of the free convolution
of the spectral distributions of AN and BN . In this work, we investigate the large
deviations of this extreme eigenvalue.

In the framework of random matrix theory, there are very few large deviation re-
sults known about the spectrum, basically because the eigenvalues are complicated
functions of the entries. A notable exception is given by the Gaussian invariant
ensembles for which the joint law of the eigenvalues can be explicitly written as a
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Coulomb gas. Based on this explicit formula, large deviation principles for the em-
pirical spectral distribution at global scale have been established by Ben Arous and
Guionnet [1997] and for the largest eigenvalue by Ben Arous et al. [2001]. Another
special case is given by the sum of a deterministic matrix and a Gaussian invariant
ensemble. Then, the spectrum can be constructed as the realization at time one of
a Hermitian (or symmetric) Brownian motion starting from a given deterministic
matrix. This point of view was used by Guionnet and Zeitouni [2002] to study the
large deviations of the empirical measure, and the large deviations for the process of
the largest eigenvalue starting from the origin were derived by ?. One of the applica-
tions of the present paper is to provide the large deviation for the largest eigenvalue
of this sum by using another approach based on spherical integrals. Beyond these
cases where specific tools are available, it was observed by Bordenave and Caputo
[2014] that deviations of the spectrum of Wigner matrices for which the distribu-
tion of the entries has a tail which is heavier than Gaussian are naturally created
by large entries. This key remark allowed to obtain the large deviations for the
empirical measure in [Bordenave and Caputo, 2014] (see also [Groux, 2017] for the
counterpart for covariance matrices) and for the largest eigenvalue in [Augeri, 2016b].
Large deviations for the spectrum of Wigner matrices with sub-gaussian entries is
still completely open as far as the empirical measure is concerned. One can mention
the deviations results of Augeri [2016a] for the moments of the empirical spectral
distribution in several models. Concerning the deviations of the largest eigenvalue,
beyond the works [Ben Arous et al., 2001, ?, Augeri, 2016b] already cited above,
the following models have been so far studied : Gaussian ensembles plus a rank one
perturbation by Maïda [2007], very thin covariance matrices by Fey et al. [2008], fi-
nite rank perturbations of deterministic matrices or unitarily invariant ensembles by
Benaych-Georges et al. [2012]. In a companion paper, Guionnet and Husson [2018]
have established a large deviation principle for the largest eigenvalue of Wigner ma-
trices with entries having sharp sub-Gaussian tails, such as Rademacher matrices.
They show that the speed and the rate function of this large deviation principle are
the same as in the Gaussian case.
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J. Husson and F. Augeri with whom one of the author is working on a companion
project on Wigner matrices. We also thank Benjamin McKenna for pointing out a
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with O. Zeitouni and N. Cook.

2. Statement of the results

Let (AN )N≥1 and (BN )N≥1 be two sequences of deterministic real diagonal ma-
trices, with AN and BN of size N × N. We denote by λ

(AN )
1 ≥ . . . ≥ λ

(AN )
N and

λ
(BN )
1 ≥ . . . ≥ λ(BN )

N their respective eigenvalues in non increasing order, by

‖AN‖ := max(|λ(AN )
1 |, |λ(AN )

N |) and ‖BN‖ := max(|λ(BN )
1 |, |λ(BN )

N |)
their respective spectral radius. We define by

µ̂AN := 1
N

N∑
j=1

δ
λ

(AN )
j

and µ̂BN := 1
N

N∑
j=1

δ
λ

(BN )
j
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their respective empirical spectral distributions.
For β = 1 or 2, we denote by mβ

N the Haar measure on the orthogonal group ON
if β = 1 and on the unitary group UN if β = 2. For any N ×N unitary matrix U , we
denote by HN (U) := AN + UBNU

∗ and by λNmax the largest eigenvalue of HN (U).
The goal of the present work is to establish a large deviation principle for the law of
λNmax under the Haar measure mβ

N . This large deviation principle holds under mild
assumptions that we now detail.

Assumption 1.

(Hbulk) The sequences of empirical spectral distributions (µ̂AN )N≥1 and (µ̂BN )N≥1
converge weakly as N grows to infinity respectively to µa and µb, compactly
supported on R. Moreover, supN≥1(‖AN‖+ ‖BN‖) <∞.

(Hedge) The largest eigenvalues λ(AN )
1 and λ(BN )

1 converge as N grows to infinity to
ρa and ρb respectively.

A key argument of the proof will be a tilt of the measure by a rank one spherical
integral. The rank one spherical integral is defined as follows: for any θ ≥ 0 and
MN an Hermitian matrix of size N,

IβN (θ,MN ) :=
∫

eNθ(UMNU
∗)11mβ

N (dU) and JβN (θ,MN ) := 1
N

log IβN (θ,MN ).

The rate function of our large deviation principle will crucially involve the limit
Jβµ (θ, ρ) of JβN (θ,HN ) as N grows to infinity, which we now describe. For µ a
compactly supported probability measure on R, we denote by r(µ) the right edge of
the support of µ and by Gµ the Stieltjes transform of µ given for λ > r(µ) by

Gµ(λ) :=
∫ 1
λ− y

µ(dy).

It is decreasing on the interval (r(µ),∞). By taking the limit as λ decreases to
r(µ), one can also define Gµ(r(µ)) ∈ R+ ∪ ∞. As Gµ is bijective from (r(µ),∞) to
(0, Gµ(r(µ))), one can define its inverse on the latter interval, that we denote by Kµ.
Then, for any z ∈ (0, Gµ(r(µ))), we define

Rµ(z) := Kµ(z)− 1
z
.

The function Rµ is called the R-transform of µ. One can check that Rµ is increasing
and that limz→0Rµ(z) =

∫
λµ(dλ), so that Rµ is bijective from (0, Gµ(r(µ))) to(∫

λµ(dλ), r(µ)− 1
Gµ(r(µ))

)
. We denote by Qµ its inverse on this interval. We can

now define, for β = 1 or 2, θ ≥ 0, µ a compactly supported probability measure and
ρ ≥ r(µ):

Jβµ (θ, ρ) :=

 β
2
∫ 2θ
β

0 Rµ(u)du, if 0 ≤ 2θ
β ≤ Gµ(ρ),

θρ− β
2 log θ − β

2
∫

log(ρ− y)µ(dy) + β
2

(
log β

2 − 1
)
, if 2θ

β > Gµ(ρ).

The convergence of JβN (θ,MN ) towards Jβµ (θ, ρ), obtained by the authors in
[Guionnet and Maïda, 2005], will be stated precisely in Lemma 10. At this point,
we want to emphasize that, for θ large enough, the limit depends not only on the
limiting spectral distribution µ but also of the limit ρ of the largest eigenvalue ofMN



4 ALICE GUIONNET AND MYLÈNE MAÏDA

: this observation is crucial in our use of the spherical integral to produce an inter-
esting tilt. If µ1 and µ2 are two probability measures compactly supported on R, we
denote by µ1�µ2 the free convolution of µ1 and µ2. It is uniquely determined as the
unique probability measure with R-transform equal to the sum of the R-transforms
of µ1 and µ2 (see [Voiculescu, 1991]). For any θ ≥ 0 and x ≥ r(µa � µb), we denote
by

Iβ(θ, x) := Jβµa�µb(θ, x)− Jβµa(θ, ρa)− J
β
µb

(θ, ρb),
and

Iβ(x) :=
{

supθ≥0 I
β(θ, x), if x ≥ r(µa � µb),

+∞, otherwise. (2.1)

It is easy to check the following:

Lemma 1. Let µa, µb, ρa and ρb be given as in Assumption 1. For β = 1 or 2, the
function Iβ is a good rate function, that is for any α ∈ R, the level set {Iβ ≤ α} is
a compact subset of R. Moreover, for any x > ρa + ρb, I

β(x) = +∞.

The proof will be given at the beginning of Section 4. We can now state the main
results of this paper. The first result is the following large deviation upper bound:

Proposition 2. Under Assumption 1, for β = 1 or 2, for any x ∈ R such that
Gµa�µb(x) ≤ min (Gµa(ρa), Gµb(ρb)) , (2.2)

we have
lim
δ↓0

lim sup
N→+∞

1
N

logmβ
N

(
λNmax ∈ [x− δ, x+ δ]

)
≤ −Iβ(x).

We will then derive the following large deviation lower bound:

Proposition 3. Under Assumption 1, for β = 1 or 2, for any x ∈ R such that
Gµa�µb(x) ≤ min (Gµa(ρa), Gµb(ρb)) , (2.3)

we have
lim
δ↓0

lim inf
N→+∞

1
N

logmβ
N

(
λNmax ∈ [x− δ, x+ δ]

)
≥ −Iβ(x).

This leads to the following important corollary:

Theorem 4. Under Assumption 1 and if moreover,
Gµa�µb(r(µa � µb)) ≤ min (Gµa(ρa), Gµb(ρb)) , (NoOut)

then, for β = 1 or 2, the law of λNmax under mβ
N satisfies a large deviation principle

in the scale N with good rate function Iβ. More precisely, for any F closed Borel
subset of R,

lim sup
N→+∞

1
N

logmβ
N

(
λNmax ∈ F

)
≤ − inf

F
Iβ,

and for any O open Borel subset of R,

lim inf
N→+∞

1
N

logmβ
N

(
λNmax ∈ 0

)
≥ − inf

O
Iβ.

A few remarks have to be made on the condition (NoOut). Under assumptions that
are slightly stronger then Assumption (Hbulk), ? established that, whenever (NoOut)
is satisfied, AN +UBNU

∗ has no outlier, that is, its largest eigenvalue converges to
r(µa � µb). Another related remark is that, if AN and BN have no outliers, namely
ρa = r(µa) and ρb = r(µb), then the condition (NoOut) is automatically satisfied.
This will be stated in Lemma 13 and leads to the following corollary
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Corollary 5. Under the assumption (Hbulk), if AN and BN have no outliers, then
for β = 1 or 2, the law of λNmax under mβ

N satisfies a large deviation principle in the
scale N with good rate function Iβ.

From there, one can recover partly Theorem 3.2. in [Maïda, 2007].

Remark 6. If we choose AN to be a rank one deterministic matrix with eigenvalue
ρa > 0 and UBNU∗ to be a random matrix from the Gaussian Unitary (or Orthogo-
nal) Ensemble, one can study the largest eigenvalue of AN +UBNU∗ by conditioning
on the deviations of the largest eigenvalue of UBNU∗,. These large deviations were
obtained in ? and we denote by Jβ its rate function. If ρa ≤

√
β
2 , we know that the

deformed model has no outliers and one can apply Corollary 5. For any x ≥
√

2β, the
rate function of the deformed model is given by Kβ(x) := inf√2β≤y≤x(Jβ(y)+Iβ(x)),
where Iβ corresponds to µa = δ0, µb = σβ and ρb = y. Standard computations allow
to identify the rate function as the funtion Kβ

ρa in [Maïda, 2007].

To get a taste of what happens in the case with outliers, we also consider in
Appendix A the following model: let (U (1)

1 , . . . , U
(p)
1 ) be independent random vectors

uniformly distributed on the unit sphere (in RN if β = 1 and CN if β = 2) and
γ1, . . . , γp be nonnegative real numbers. We consider the following deformed model :

XN := AN + UBNU
∗ +

p∑
i=1

γiU
(i)
1 (U (i)

1 )∗. (2.4)

We show in Theorem 18 that we still have a large deviation principle, for which the
rate function will depend on the γi’s. The rest of the paper will be organized as
follows: in the next section, we will first prove a more general result than Proposition
2, that holds not only for mβ

N but also for a whole family of tilted measures. This
will be helpful in the proof of Proposition 3, that will be developed in Section 5.
Before getting there, we will study in Section 4 some properties of the rate function
Iβ. The last section will be devoted to the proof of Theorem 4 and Corollary 5, with
Lemma 13 as prerequisite. At the end of the paper, in Appendix A, we will study
the deviations of the largest eigenvalue of XN for the deformed model (2.4).

3. Large deviation upper bound for tilted measures

For θ ≥ 0, β = 1 or 2, we define a tilted measure on ON if β = 1 and UN if β = 2
as follows

mβ,θ
N (dU) := IβN (θ,AN + UBNU

∗)
IβN (θ,AN )IβN (θ,BN )

mβ
N (dU).

It is easy to check thatmβ,θ
N is a probability measure: indeed, for any U, we have that

IβN (θ,AN + UBNU
∗) ≥ 0 and E

mβN
(IβN (θ,AN + UBNU

∗)) = IβN (θ,AN )IβN (θ,BN ).
For these tilted measures, we have the following weak large deviation upper bound :

Proposition 7. Under Assumption 1, for β = 1 or 2, for any θ ≥ 0, for any
x < r(µa � µb),

lim
δ↓0

lim sup
N→+∞

1
N

logmβ,θ
N

(
λNmax ∈ [x− δ, x+ δ]

)
= −∞, (3.1)

and for any x ≥ r(µa � µb) such that
Gµa�µb(x) ≤ min (Gµa(ρa), Gµb(ρb)) , (3.2)
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we have,

lim
δ↓0

lim sup
N→+∞

1
N

logmβ,θ
N

(
λNmax ∈ [x− δ, x+ δ]

)
≤ −

[
Iβ(x)− Iβ(θ, x)

]
. (3.3)

Remark 8. Applying this proposition with θ = 0 gives Proposition 2.

As we will see in Section 5, establishing an upper bound for any θ ≥ 0 will be
useful in the proof of Proposition 3. To prove Proposition 7, and in particular its first
statement, we will need to check that, under mβ,θ

N the empirical spectral distribution

µ̂N := 1
N

N∑
j=1

δ
λ

(HN (U))
j

of HN (U) = AN + UBNU
∗ concentrates around the deterministic probability mea-

sure given by its expectation νβN = E
mβN

µ̂N much faster than e−N . More precisely,
we equip the set P(R) of probability measures on R with the bounded Lipschitz
distance d: for any Lipschitz function f : R → R, we define ‖f‖∞ := supx∈R |f(x)|
and ‖f‖Lip := supx6=y

|f(x)−f(y)|
|x−y| , then for any µ and ν in P(R),

d(µ, ν) := sup
‖f‖∞≤1
‖f‖Lip≤1

(∫
fdµ−

∫
fdν

)
.

We then have the following concentration result:

Lemma 9. Under Assumption (Hbulk), for β = 1 or 2 and any θ ≥ 0,

lim sup
N→∞

1
N

logmβ,θ
N

(
d(µ̂N ,EmβN µ̂N ) > N−1/4

)
= −∞.

Proof. Let β = 1 or 2 and θ ≥ 0 be fixed. Observe that for any Hermitian matrix
MN bounded by K in operator norm we have

e−θKN ≤ IβN (θ,AN ) ≤ eθKN .

As a consequence, for any Borel subset A of ON if β = 1 and UN if β = 2, we have:

mβ,θ
N (A) = 1

IβN (θ,AN )IβN (θ,BN )

∫
A
IβN (θ,AN + UBNU

∗)mβ
N (dU)

≤ e2NθK mβ
N (A),

with K := supN≥1(‖AN‖ + ‖BN‖), which is assumed to be finite. Therefore it is
enough to prove Lemma 9 for θ = 0, that is

lim sup
N→∞

1
N

logmβ
N

(
d(µ̂N ,EmβN µ̂N ) > N−1/4

)
= −∞.

For β = 2, Theorem 3.8 in [Meckes and Meckes, 2013] states that there exist c, C > 0
such that

m2
N

(
d(µ̂N ,Em2

N
µ̂N ) > N−1/4

)
≤ Ce−cN3/2

, (3.4)

from which the lemma follows. A careful reading of [Meckes and Meckes, 2013] shows
that the exact same result as (3.4) also holds for β = 1. �

Before proving Proposition 7, we will recall some results about the convergence
and the continuity of spherical integrals.
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Lemma 10 (Proposition 2.1 in [Maïda, 2007] and Theorem 6 in [Guionnet and
Maïda, 2005]). For any θ ≥ 0, there exists a continuous function gθ with gθ(0) = 0
such that for any δ > 0, if the sequences (GN )N≥1 and (G′N )N≥1 are such that
supN (‖GN‖ + ‖G′N‖) < ∞, and for N large enough, d(µ̂GN , µ̂G′N ) ≤ N−1/4 and
|λ1(GN )− λ1(G′N )| ≤ δ, then,∣∣∣∣ 1

N
log IβN (θ,GN )− 1

N
log IβN (θ,G′N )

∣∣∣∣ ≤ gθ(δ).
If morever, µ̂GN converges weakly, as N goes to infinity to µ and λ1(GN ) converges
to ρ, then

1
N

log IβN (θ,GN ) −−−−→
N→∞

Jµ(θ, ρ).

We can now prove Proposition 7. In the sequel, we will denote by νβN := E
mβN

µ̂N .

Proof of Proposition 7. The first claim (3.1) is a direct consequence of the previous
lemma. Indeed, let x < r(µa � µb) and δ0 := r(µa�µb)−x

2 . Then, for any δ ≤ δ0, there
exists ε(δ) > 0,

{λNmax ∈ [x− δ, x+ δ]} ⊂ {d(µ̂N , µa � µb) > ε(δ)}. (3.5)

Using Corollary 5.4.11 for β = 2 and Exercise 5.4.18 for β = 1 in [Anderson et al.,
2010], we know that νβN converges weakly to µa � µb as N goes to infinity. As the
distance d metrizes the weak convergence, for N large enough,

{λNmax ∈ [x− δ, x+ δ]} ⊂ {d(µ̂N , νβN ) > ε(δ)/2}

so that, by Lemma 9, for any δ ≤ δ0,

lim sup
N→∞

1
N

logmβ,θ
N

(
λNmax ∈ [x− δ, x+ δ]

)
= −∞.

We now prove (3.3). Let δ > 0 and x ≥ r(µa�µb) be fixed and define the following
event:

ExN,δ :=
{
λNmax ∈ [x− δ, x+ δ],d(µ̂N , νβN ) ≤ N−1/4

}
. (3.6)

Then we have,

mβ,θ
N

(
λNmax ∈ [x− δ, x+ δ]

)
≤ mβ,θ

N (ExN,δ) +mβ,θ
N (d(µ̂N , νβN ) > N−1/4).

By Lemma 9, it is therefore enough to show that

lim
δ↓0

lim sup
N→∞

1
N

logmβ,θ
N

(
ExN,δ

)
≤ −

[
Iβ(x)− Iβ(θ, x)

]
.

To lighten a bit the notations we write A,B and H for AN , BN and HN = AN +
UBNU

∗ respectively. For any θ, θ′ ≥ 0, we have

mβ,θ
N (ExN,δ) = 1

IβN (θ,A)IβN (θ,B)
E
mβN

(
1Ex

N,δ
IβN (θ,H)I

β
N (θ′, H)
IβN (θ′, H)

)

≤
E
mβN

(IβN (θ′, H))

IβN (θ,A)IβN (θ,B)
sup

U∈Ex
N,δ

IβN (θ,A+ UBU∗)
IβN (θ′, A+ UBU∗)

= IβN (θ′, A)IβN (θ′, B)
IβN (θ,A)IβN (θ,B)

sup
U∈Ex

N,δ

IβN (θ,A+ UBU∗)
IβN (θ′, A+ UBU∗)
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We now have to estimate supU∈Ex
N,δ

IβN (θ,A+UBU∗) and infU∈Ex
N,δ

IβN (θ′, A+UBU∗)
respectively. We detail the first term, the second being similar. According to ? (see
also Section 4.1.2 in [?]), if x ≥ r(µa�µb) satisfiesGµa�µb(x) ≤ min (Gµa(ρa), Gµb(ρb)) ,
then mβ

N almost surely, lim supN→∞ λNmax ≤ x and therefore lim supN→∞ r(vβN ) ≤ x.
It is therefore possible to build a sequence (GN )N≥1 of deterministic matrices such
that supN≥1 ‖GN‖ <∞ and for any N ≥ 1, λ(GN )

1 converges to x and d(µ̂GN , ν
β
N ) ≤

N−1/4. With the notations of Lemma 10, for N large enough and for any U ∈ ExN,δ,∣∣∣∣ 1
N

log IβN (θ,A+ UBU∗)− 1
N

log IβN (θ,GN )
∣∣∣∣ ≤ gθ(δ).

Therefore,

lim sup
N→∞

1
N

logmβ,θ
N (ExN,δ) ≤ lim

N→∞
(JβN (θ′, A) + JβN (θ′, B)− JβN (θ,A)− JβN (θ,B))

+ lim
N→∞

(JβN (θ,GN )− JβN (θ′, GN )) + gθ(δ) + gθ′(δ),

≤ −(Iβ(θ′, x)− Iβ(θ, x)) + gθ(δ) + gθ′(δ),
where at the last line, we have used the second part of Lemma 10. Letting δ going
to zero and then optimizing over θ′ ≥ 0, we get the required upper bound. �

4. Properties of the rate function Iβ

We now check the properties of the rate function Iβ defined in (2.1).

Proof of Lemma 1. An ingredient for the proof is the following: for any compactly
supported µ, for any θ ≥ 0 and ρ ≥ r(µ) such that θ ≤ Gµ(ρ), we have

ρ− 1
θ
≤ Rµ(θ) ≤ ρ− 1

Gµ(ρ) . (4.1)

Indeed, as Kµ is a decreasing function, we have Rµ(θ) = Kµ(θ) − 1
θ ≥ ρ − 1

θ . On
the other hand, the limit of Rµ(θ) as θ grows to Gµ(ρ) is ρ − 1

Gµ(ρ) . As Rµ is
nondecreasing, we get the upper bound. Moreover, it is easy to check that, for any
x ≥ 0, there exist C,C ′ ∈ R (depending on µ and x but not on θ) such that, for θ
large enough, we have

θx− β

2 log θ + C ≤ Jβµ (θ, x) ≤ θx+ C ′,

so that, for any x ≥ 0, there exists c, c′ ∈ R such that, for θ large enough,

θ(x− ρa − ρb)−
β

2 log θ + c ≤ Iβ(θ, x) ≤ θ(x− ρa − ρb) + β log θ + c′.

If x > ρa + ρb, letting θ grow to infinity, we obtain that Iβ(x) = +∞.
If θ ≥ 0 is small enough,

Iβ(θ, x) = β

2

∫ 2θ
β

0
(Rµa�µb(u)−Rµa(u)−Rµb(u))du = 0,

by the properties of the R-transform. The function Iβ is therefore nonnegative.
If we denote by g the lower semi-continuous function which is equal to −∞ on
[r(µa � µb),+∞) and +∞ outside, then Iβ = sup(g, supθ Iβ(θ, ·)) is lower semi-
continuous as a supremum of lower semi-continuous functions. As it is infinite
outside the interval [r(µa � µb), ρa + ρb], it is a good rate function. �
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We will now turn to the proof of the lower bound of our large deviation principle,
stated in Proposition 3. To complete its proof, we will need to further study the
properties of the function Iβ. First, let us remark that the cases when µa is a Dirac
mass at ρa (or µb is a Dirac mass at ρb) are not very interesting. In this case, the
free convolution µa � µb is just a shift of µb by ρa (or respectively of µa by ρb) and
λNmax converges with probability one to ρa + ρb. Hence, the large deviations have an
infinite rate function in the scale N except at ρa + ρb where it vanishes.

Consequently, in the sequel, one can assume without loss of generality that

Assumption 2. µa is not a Dirac mass at ρa and µb is not a Dirac mass at ρb.

We have the following:

Lemma 11. Under Assumptions 1 and 2, for any r(µa � µb) ≤ x < ρa + ρb such
that

Gµa�µb(x) ≤ min(Gµa(ρa), Gµb(ρb)),
then, for β = 1 or 2, there exists a unique θ ≥ 0 such that

Iβ(θ, x) = sup
θ′≥0

Iβ(θ′, x).

We denote by θβx := argmaxθ≥0I
β(θ, x). For any r(µa � µb) ≤ y ≤ ρa + ρb such that

x 6= y,

sup
θ≥0

Iβ(θ, y) > Iβ(θβx , y).

Proof of Lemma 11. Let r(µa � µb) ≤ x < ρa + ρb such that

Gµa�µb(x) ≤ min(Gµa(ρa), Gµb(ρb)).

The first remark is that if Gµa(ρa) and Gµb(ρb) are infinite, then r(µa � µb) =
ρa + ρb and there is nothing to check since [r(µa � µb), ρa + ρb[ is empty. Indeed, if
Gµa(ρa) = Gµb(ρb) =∞, we see by the inequalities (4.1), that

lim
x→∞

Rµa(x) = ρa and lim
x→∞

Rµb(x) = ρb,

so that
lim
x→∞

Kµa�µb(x) = ρa + ρb and lim
x→ρa+ρb

Gµa�µb(x) =∞,

leading to r(µa � µb) ≥ ρa + ρb. By symmetry of the problem, without loss of
generality, one can now assume that Gµa(ρa) ≤ Gµb(ρb) and Gµa(ρa) <∞.

With the function Iβ defined in (2.1), if we denote by Iβx the function θ 7→ Iβ(θ, x),
then there exist some constants C1, C2 and C3 (that may depend on µa, ρa, µb, ρb
and x but not on θ) such that

Iβx (θ) =



0, if 0 ≤ 2θ
β ≤ Gµa�µb(x),

θx− β
2 log θ − β

2
∫ 2θ
β

0 (Rµa +Rµb)(u)du+ C1, if Gµa�µb(x) ≤ 2θ
β ≤ Gµa(ρa),

θ(x− ρa)− β
2
∫ 2θ
β

0 Rµb(u)du+ C2, if Gµa(ρa) ≤ 2θ
β ≤ Gµb(ρb),

θ(x− ρa − ρb) + β
2 log θ + C3, if 2θ

β ≥ Gµb(ρb),

where the last line does not occur if Gµb(ρb) = ∞. In the computation, we have
used the well known fact that Rµa�µb = Rµa +Rµb when the three functions are well



10 ALICE GUIONNET AND MYLÈNE MAÏDA

defined. Therefore, one can check that the function Iβx is continuously differentiable
and its derivative is given by:

(Iβx )′(θ) =



0, if 0 ≤ 2θ
β ≤ Gµa�µb(x),

x−Kµa�µb

(
2θ
β

)
, if Gµa�µb(x) ≤ 2θ

β ≤ Gµa(ρa),
x− ρa −Rµb

(
2θ
β

)
, if Gµa(ρa) ≤ 2θ

β ≤ Gµb(ρb),
x− ρa − ρb + β

2θ , if 2θ
β ≥ Gµb(ρb).

We now set αx := 1
ρa+ρb−x . We claim that

αx ≥ Gµa(ρa).

Indeed, Kµb is well defined on the interval (0, Gµb(ρb)), so that Kµb(Gµa(ρa)) and
therefore Kµa�µb(Gµa(ρa)) are well defined. As Kµa�µb is a decreasing function and

Gµa�µb(x) ≤ Gµa(ρa),

we have

x ≥ Kµa�µb(Gµa(ρa)) = Kµa(Gµa(ρa)) +Kµb(Gµa(ρa))−
1

Gµa(ρa)
As Kµb is also a decreasing function, this yields:

x ≥ Kµa(Gµa(ρa)) +Kµb(Gµb(ρb))−
1

Gµa(ρa)
= ρa + ρb −

1
Gµa(ρa)

,

which is equivalent to αx ≥ Gµa(ρa). There are therefore two cases to consider and
we claim that:
Case 1: If Gµa(ρa) ≤ αx < Gµb(ρb), then Iβx reaches its maximum at

θβx := β

2Qµb(x− ρa),

where Qµb is the inverse of Rµb as defined in Section 2;
Case 2: If αx ≥ Gµb(ρb), then Iβx reaches its maximum at θβx := β

2αx.

Let us now prove this claim. On the interval
[
0, β2Gµa(ρa)

]
, the function (Iβx )′

is nondecreasing and it vanishes at zero, it is therefore nonnegative so that Iβx is
nondecreasing on this interval. We have

(Iβx )′
(
β

2Gµa(ρa)
)
≥ 0 and (Iβx )′

(
β

2Gµb(ρb)
)

= − 1
αx

+ 1
Gµb(ρb)

.

Moreover, as Rµb is an increasing function, (Iβx )′ is decreasing on the interval[
β
2Gµa(ρa),

β
2Gµb(ρb)

]
. We now distinguish the two cases.

In Case 1, (Iβx )′
(
β
2Gµb(ρb)

)
< 0, and therefore there exists

θβx ∈
[
β

2Gµa(ρa),
β

2Gµb(ρb)
)

such that Iβx is increasing on
[
β
2Gµa(ρa), θ

β
x

]
and then decreasing. One can check

that the point where (Iβx )′ cancels is given by β
2Qµb(x − ρa). Moreover, (Iβx )′ is

decreasing on
[
β
2Gµb(ρb),∞

)
and negative at β

2Gµb(ρb) so it remains negative and
Iβx is decreasing on this interval. The first claim holds true.
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In Case 2, (Iβx )′
(
β
2Gµb(ρb)

)
≥ 0, and therefore Iβx is increasing on the inter-

val
[
β
2Gµa(ρa),

β
2Gµb(ρb)

]
. But (Iβx )′ is nonnegative at β

2Gµb(ρb), decreasing on[
β
2Gµb(ρb),∞

)
and converges to x− ρa − ρb < 0 as θ grows to ∞. Therefore, there

exists θβx ∈
(
β
2Gµb(ρb),∞

)
such that Iβx is increasing on

(
β
2Gµb(ρb), θ

β
x

]
and then

decreasing. One can check that the point where (Iβx )′ cancels is given by β
2αx and

the second claim holds true. This concludes the proof of the uniqueness of θ.
Moreover, looking carefully at the definition of θβx in Case 1 and Case 2, one can

see that it is an increasing function of x. Indeed, it is increasing on the intervals
{x ∈ R/αx ≥ Gµb(ρb)} and {x ∈ R/Gµa(ρa) ≤ αx < Gµb(ρb)} respectively and it
is continuous at x = Gµb(ρb). As a consequence, for x 6= y such that r(µa � µb) ≤
x, y < ρa + ρb, θ

β
x 6= θβy and therefore supθ≥0 I

β(θ, y) > Iβ(θβx , y).
We now have to deal with the case when y = ρa + ρb, that is to show that:

sup
θ≥0

Iβ(θ, ρa + ρb) > Iβ(θβx , ρa + ρb). (4.2)

If Gµb(ρb) is finite, for θ > β
2Gµb(ρb),

Iβ(θ, ρa + ρb) = β

2 log θ + C3

and therefore the supremum is infinite and (4.2) holds. Assume now that Gµb(ρb) =
∞. As µb 6= δρb , then, there exists α ∈ (0, 1] and M finite such that, for any x ≥ ρb,

Gµb(x) ≤ 1− α
x− ρb

+M.

From there, we get that, for any u > Gµa(ρa) ∨ 2M
α ,

u ≤ 1− α
Kµb(u)− ρb

+M so that Rµb(u) ≤ ρb + 1− α
(1− α

2 )u −
1
u
≤ ρb −

α

2u.

Therefore, there exist c, c′ ∈ R, such that for any θ ≥ Gµa(ρa) ∨ 2M
α ,

Iβ(θ, ρa + ρb) ≥ θρb −
β

2

∫ 2θ
β

2M
α

(
ρb −

α

2u

)
du+ c = βα

4 log θ + c′

so that, letting θ grow to infinity, we get again that Iβ(ρa+ρb) =∞ and (4.2) holds.
This concludes the proof of Lemma 11. �

5. Large deviation lower bound

The goal of this section is to show Proposition 3. A classical strategy to get a
large deviation lower bound is to tilt the measure in such a way that the rare event
{λNmax ∈ [x−δ, x+δ]} becomes typical under the tilted measure. We now check that
it is possible to make such a tilt1:

Lemma 12. Under Assumptions 1 , for any x ∈ [r(µa � µb), ρa + ρb) such that
Gµa�µb(x) ≤ min(Gµa(ρa), Gµb(ρb)),

for β = 1 or 2, we have

lim
δ↓0

lim inf
N→∞

1
N

logmβ,θβx
N

(
ExN,δ

)
≥ 0,

1As for Lemma 11, we want to mention that Lemma 12 holds without Assumption 2, that we
add to simplify the proof.
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where ExN,δ was defined in (3.6) and θβx in Lemma 11.

Proof of Lemma 12. Let β = 1 or 2. The first remark is that, almost surely, |λNmax| ≤
K, where we recall that K := supN≥1(‖AN‖+ ‖BN‖).
Let r(µa � µb) ≤ x < ρa + ρb be fixed. If we denote by

Lβx(y) :=
{

supθ≥0 I
β(θ, y)− Iβ(θβx , y), if r(µa � µb) ≤ y ≤ ρa + ρb,

∞, otherwise,

we know from Proposition 7 that, for any y ∈ R,

lim
δ↓0

lim sup
N→∞

1
N

logmβ,θβx
N

(
λNmax ∈ [y − δ, y + δ]

)
≤ −Lβx(y). (5.1)

Let δ > 0 be fixed. We denote by Fδ the compact set [−K,K]\]x− δ, x+ δ[. For any
η > 0, y ∈ Fδ, we also denote by

Lδx,η(y) := min
(
Lβx(y)− η, 1

η

)
.

From (5.1), for any y ∈ Fδ, there exists γy,η such that

lim sup
N→∞

1
N

logmβ,θβx
N

(
λNmax ∈ [y − γy,η, y + γy,η]

)
≤ −Lδx,η(y).

As Fδ is a compact set, one can extract from the family ([y − γy,η, y + γy,η])y∈Fδ a
finite covering Fδ = ∪ri=1[yi − γyi,η, yi + γyi,η]. From there, we get that

lim sup
N→∞

1
N

logmβ,θβx
N

(
λNmax ∈ F

)
≤ max

1≤i≤r
−Lβx,η(yi) ≤ − inf

y∈F
Lβx,η(y).

Letting η going to zero, we deduce that

lim sup
N→∞

1
N

logmβ,θβx
N

(
λNmax ∈ F

)
≤ − inf

y∈Fδ
Lβx(y).

By Lemma 11, we know that Lβx is nonnegative and vanishes only at x, so that,
infy∈Fδ Lδx(y) > 0. Therefore, we deduce that, for N large enough,

mβ,θβx
N

(
λNmax ∈ [x− δ, x+ δ]

)
≥ 3

4 .

But, in virtue of Lemma 9, for N large enough, we also have

mβ,θβx
N

(
d(µ̂N , νβN ) ≤ N−1/4

)
≥ 3

4
so that

mβ,θβx
N

(
ExN,δ

)
≥ 1

2 ,

and Lemma 12 follows. �

From there, one can easily get the large deviation lower bound.

Proof of Proposition 3. As mentioned in Section 4, without loss of generality, one
can assume Assumption 2. Let β = 1 or 2 and x ∈ R be fixed. If x > ρa + ρb or
x < r(µa � µb), Lemma 1 gives that Iβ(x) =∞, so that the lower bound obviously
holds. Moreover, as we have seen at the end of the proof of Lemma 11, as µb is
not a Dirac mass at ρb, then Iβ(ρa + ρb) = ∞ and the lower bound also holds for
x = ρa + ρb.



LDP FOR THE LARGEST EIGENVALUE OF THE SUM OF RANDOM MATRICES 13

Let us now assume that r(µa�µb) ≤ x < ρa + ρb and let θβx be the corresponding
shift defined in Lemma 11. Then, with ExN,δ defined in (3.6) and recalling that
A = AN , B = BN and H = A+ UBU∗, we have:

mβ
N (λNmax ∈ [x− δ, x+ δ]) ≥ mβ

N (ExN,δ) = E
mβN

(
1Ex

N,δ

IβN (θβx , H)
IβN (θβx , H)

)

≥ inf
U∈Ex

N,δ

1
IβN (θβx , A+ UBU∗)

×IβN (θβx , A)IβN (θβx , B)mβ,θβx
N (ExN,δ)

so that, using again Lemma 10, we get:

lim inf
N→∞

1
N

logmβ
N

(
λNmax ∈ [x− δ, x+ δ]

)
≥ −Iβ(θβx , x)− g

θβx
(δ)

+ lim inf
N→∞

1
N

logmβ,θβx
N

(
ExN,δ

)
.

Letting δ going to zero and using Lemma 12, we get that

lim
δ↓0

lim inf
N→∞

1
N
mβ
N (λNmax ∈ [x− δ, x+ δ]) ≥ −Iβ(θβx , x) ≥ −Iβ(x).

This concludes the proof.
�

6. Proof of the main theorem and its corollary

Proof of Theorem 4. Assume that Assumption 1 and the condition (NoOut) are sat-
isfied. Without loss of generality, one can add Assumption 2. As already stated
in the proof of Lemma 12, almost surely, |λNmax| ≤ K, where we recall that K :=
supN≥1(‖AN‖+ ‖BN‖).
In particular,

lim sup
N→∞

1
N

logmβ
N

(
λNmax ∈ [−K,K]c

)
= −∞.

Using e.g. Theorem D.4(a) and Corollary D.6 in [Anderson et al., 2010], it is
enough to show that, for any x ∈ R,

lim
δ↓0

lim sup
N→∞

1
N

logmβ
N

(
λNmax ∈ [x− δ, x+ δ]

)
= lim

δ↓0
lim inf
N→∞

1
N

logmβ
N

(
λNmax ∈ [x− δ, x+ δ]

)
= −Iβ(x).

The upper bound is nothing but Proposition 2, obtained from Proposition 7 for
θ = 0 and the lower bound is given by Proposition 3. �

We now prove Corollary 5. Our goal is to show that if AN and BN have no outliers,
then the condition (NoOut) is automatically satisfied. Indeed, if AN and BN have
no outliers, it means that their respective largest eigenvalues converge to the edge
of the support of the limiting measure, that is to say ρa = r(µa) and ρb = r(µb).
Therefore, Corollary 5 is a direct consequence of the following lemma:

Lemma 13. For any probability measures µ and ν compactly supported on R, we
have

Gµ�ν(r(µ� ν)) ≤ min(Gµ(r(µ)), Gν(r(ν))).
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Proof. If one of the measures µ or ν is a single point mass, the additive free con-
volution is just a translation and we have equality. We now assume that none of
them is a single point mass. In general, we know (see e.g. [Belinschi, 2008]) that
there exists a function ω, called the subordination function, which is analytic on
C+ := {z ∈ C, Im z > 0} such that, for all z ∈ C+,

Gµ�ν(z) = Gµ(ω(z)).
This gives immediately that for any z ∈ C+,

ImGµ�ν(z) = −Imω(z).
∫ dµ(t)
|t− ω(z)|2 . (6.1)

By [Belinschi, 2006, Theorem 2.3], as µ or ν are not a single point mass, Gµ�ν can
be continuously extended to C+ ∪ R with values in C := C ∪ {∞}. Moreover, as µ
and ν are compactly supported, by [Belinschi, 2008, Theorem 3.3(3)], ω can also be
continuously extended to C+∪R. Let u be a real number in the interval (r(µ�ν),∞).
Then limv↓0

∫ dµ(t)
|t−ω(u+iv)|2 > 0 and limv↓0 ImGµ�ν(u+iv) = ImGµ�ν(u) = 0, so that,

using (6.1), we get Imω(u) = limv↓0 ImGµ�ν(u + iv) = 0. Therefore, ω restricted
to the interval (r(µ� ν),∞) takes values in R ∪ {∞}. Moreover, as ω is continuous
and ω(z) goes to ∞ as z goes to ∞, we get that ω((r(µ � ν),∞)) is an interval of
the form (a,∞).

We now want to show by contradiction that a ≥ r(µ). Let us assume that a < r(µ).
For any y > 0, we have

−
∫ r(µ)

a
ImGµ(x+ iy)dx =

∫ r(µ)

a
dµ(t)

(
arctan

(
r(µ)− t

y

)
− arctan

(
a− t
y

))
.

As y decreases to zero, the right hand-side goes to π
2 (µ([a, r(µ))+µ((a, r(µ)]) > 0.

On the other hand, for any x ∈ (a, r(µ)) ⊂ ω((r(µ � ν),∞)), there exists x′ >
r(µ� ν), such that x = ω(x′) and ω is holomorphic from a neighborhood of x′ to a
neighborhood of x. As

lim
x̃→x

ImGµ(x̃) = lim
x̃′→x′

ImGµ(ω(x̃′)) = ImGµ�ν(x′) = 0,

by dominated convergence, we get that the left hand-side goes to zero, as y decreases
to zero. This leads to a contradiction and we deduce that ω((r(µ � ν),∞)) ⊂
(r(µ),∞), so that

ω(r(µ� ν)) ≥ r(µ).
As Gµ is decreasing on (r(µ),∞), this gives

Gµ�ν(r(µ� ν)) = Gµ(ω(r(µ� ν))) ≤ Gµ(r(µ)) .
As µ and ν play symmetric roles, this concludes the proof of Lemma 13. �

Appendix A. Study of the deformed model (2.4)

A.1. Large deviations for the smallest eigenvalue of HN . In order to study
the deviations of the largest eigenvalue of the deformed model below its expected
value, we will need a counterpart of Theorem 4 for the smallest eigenvalue of HN .We
first state the counterpart of the condition (NoOut). For any compactly supported
probability measure µ, we denote by l(µ) the left edge of the support of µ. One can
extend the definitions of Gµ,Kµ, Rµ and Qµ given in Section 2: for any λ < l(µ),
Gµ(λ) :=

∫ 1
λ−yµ(dy); Gµ is decreasing from (−∞, l(µ)) into (Gµ(l(µ)), 0) so we de-

note again by Kµ its inverse. For any z ∈ (Gµ(l(µ)), 0) we set Rµ(z) := Kµ(z)− 1
z ,
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which is increasing with inverse Qµ. We then introduce the following assumption:

(NoDown) The smallest eigenvalues λ(AN )
N and λ(BN )

N converge as N grows to infinity
to `a and `b respectively and Gµa�µb(l(µa � µb)) ≥ max (Gµa(`a), Gµb(`b)) .

As in Lemma 13, one can check that this condition is satisfied if AN and BN have
no outliers, this time in the sense that `a = l(µa) and `b = l(µb). We now extend
the definition of the rate function Iβ introduced in (2.1). For β = 1 or 2, θ ≤ 0, µ a
compactly supported probability measure and ` ≤ l(µ), we define:

Jβµ (θ, `) :=

 β
2
∫ 2θ
β

0 Rµ(u)du, if Gµ(`) ≤ 2θ
β ≤ 0,

θ`− β
2 log(−θ)− β

2
∫

log(y − `)µ(dy) + β
2

(
log β

2 − 1
)
, if 2θ

β < Gµ(`).

For any θ ≤ 0 and x ≤ l(µa � µb), we denote by

Iβ(θ, x) := Jβµa�µb(θ, x)− Jβµa(θ, `a)− J
β
µb

(θ, `b),
and

Iβmin(x) :=
{

supθ≤0 I
β(θ, x), if x ≤ l(µa � µb),

∞, otherwise. (A.1)

Applying Theorem 4 to −AN and −BN , one can get a large deviation principle
for the smallest eigenvalue λNmin of HN :

Corollary 14. Under the assumptions (Hbulk) and (NoDown), for β = 1 or 2, the
law of λNmin under mβ

N satisfies a large deviation principle in the scale N with good
rate function Iβmin.

A.2. Asymptotic independence of the deviations of λNmin and λNmax. Before
going to the study of the deformed model itself, we will need the following proposi-
tion:

Proposition 15. Let (MN )N≥1 be a sequence of deterministic matrices such that
M := supN≥1 ‖MN‖ < ∞, and, as N goes to infinity, λ(MN )

1 and λ(MN )
N converges

respectively to ρ and ` and µ̂MN
converges weakly to µ. Let e1 and e2 be two random

vectors uniformly distributed on the unit sphere of RN if β = 1 (respectively of CN
if β = 2), orthogonal to each other. Let θ ≥ 0 and θ′ ≤ 0 be fixed. Then

lim
N→∞

1
N

log
E
(
eNθ〈e1,MNe1〉+Nθ′〈e2,MNe2〉

)
IN (θ,MN )IN (θ′,MN ) = 0. (A.2)

In other words, when θ and θ′ are of opposite sign, the rank two spherical integral
asymptotically factorizes in the scale eN . As an immediate corollary, we find that
the large deviations of λmin and λmax are asymptotically independent.

Corollary 16. Under the assumptions (Hbulk), (NoDown) and (NoOut), for β = 1
or 2, the law of (λNmin, λ

N
max) under mβ

N satisfies a large deviation principle in the
scale N and with good rate function Iβmin(x) + Iβ(y).

Proof. The proof is to tilt the measure by the two-dimensional spherical integral of
Proposition 15 which implies that for θ > 0, θ′ < 0
mN (|λNmin−x|+|λNmax−y| ≤ δ)

≤ e−N(Jβ
µA�µB

(θ′,x)+Jβ
µA�µB

(θ,y)+o(1))EU [Ee
(
eNθ〈e1,(A+UBU∗)e1〉+Nθ′〈e2,(A+UBU∗)e2〉

)
]
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Now, since the law of (e1, e2) and (Ue1, Ue2) are independent and equidistributed,
we deduce the upper bound as before. The proof of the lower bound is the same since
for any (x, y) we find a unique couple (θ′x, θy) which optimizes the rate function. �

Moreover, it is easy to deduce the following corollary, which is the extension of
Proposition 2 to θ < 0:

Corollary 17. Under Assumption 1, for β = 1 or 2, for any θ < 0, for any x <
r(µa � µb),

lim
δ↓0

lim sup
N→+∞

1
N

logmβ,θ
N

(
λNmax ∈ [x− δ, x+ δ]

)
= −∞, (A.3)

and for any x ≥ r(µa � µb),

lim
δ↓0

lim sup
N→+∞

1
N

logmβ,θ
N

(
λNmax ∈ [x− δ, x+ δ]

)
≤ −Iβ(x). (A.4)

With Proposition 15 in hand, the proof of Corollary 17 follows the same lines
as the proof of Proposition 2. We do not detail it and go directly to the proof
of Proposition 15. Note that this kind of factorization property has been already
shown for θ and θ′ not too far from zero, we refer the reader to [Guionnet and Maïda,
2005][Theorem 7] or [?]. Our goal here is to extend this result to any pair of (θ, θ′)
of opposite sign.

Proof of Proposition 15. For the sake of simplicity, we will stick to the case β = 1.
Let g and g′ be two independent standard Gaussian vectors in RN . If we denote by
‖ · ‖2 the Euclidean norm and set

e1 := g

‖g‖2
, h := g′ − 〈g, g

′〉
‖g‖22

g and e2 := h

‖h‖2
,

then it is well know that (e1, e2) are two random vectors uniform on the unit
sphere in RN , orthogonal to each other. Moreover, (e1, e2) is independent from
(‖g‖2, ‖g′‖2, 〈g, g′〉). Indeed, one can use the following system of coordinates : r :=
‖g‖2, γ1, . . . , γN−1 are the polar coordinates of g, r′ := ‖g′‖2, η is the angle between
g and g′ and γ′1, . . . , γ

′
N−2 are the angles needed to spot g′ on the cone of angle η

around g. One can check that the Gaussian measure decomposes as a product mea-
sure in these coordinates, (‖g‖2, ‖g′‖2, 〈g, g′〉) is a function of r, r′, η whereas (e1, e2)
is a function of the γ’s and γ′s. In particular, for any ε, if we let

AεN := {|〈g, g′〉| ≤ ε‖g‖2‖g′‖2},
then AεN is independent of (e1, e2). Moreover, on AεN , we have ‖h‖22 ≥ ‖g′‖22(1− ε2)
so that, for ε < 1/2,∣∣∣∣θ〈e1,MNe1〉+ θ′〈e2,MNe2〉 − θ

1
‖g‖2

〈g,MNg〉 − θ′
1
‖g′‖2

〈g′,MNg
′〉
∣∣∣∣ ≤ 4Mε,

and

E
(
eNθ〈e1,MNe1〉+Nθ′〈e2,MNe2〉

)
= 1

P(AεN )E
(
1AεN eNθ〈e1,MNe1〉+Nθ′〈e2,MNe2〉

)
≤ e4NMε

P(AεN )IN (θ,MN )IN (θ′,MN ).

Because of the law of large numbers, for any ε > 0, P(AεN ) converges to 1 as N goes
to infinity. Hence, letting N go to infinity and then ε going to zero, we get the upper
bound in (A.2).
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We now prove the lower bound. If O is an orthogonal matrix, the law of (Oe1, Oe2)
is the same as the law of (e1, e2) so that we can assume without loss of generality
that MN is real diagonal, with eigenvalues that we denote by λN1 ≥ λN2 ≥ . . . ≥ λNN .
We refer the reader to Proposition 16 and Lemmas 18 to 21 in [Guionnet and Maïda,
2005], in particular the proof of Lemma 19. We recall that T is the rate function for

the large deviations of
∑N

i=1 λ
N
i g

2
i∑N

i=1 g
2
i

. Let α∗1 be such that

θα∗1 − T (α∗1) = sup
α

(θα− T (α)).

As θ ≥ 0, one can check that αmin ≤ α∗1 ≤ ρ. If α∗1 ∈ [αmin, αmax], we set x1 := 0,
whereas if α∗1 ∈ (αmax, ρ), we set x1 := (λmax−α∗1)((λmax−α∗1)Hmax− 1). Similarly,
let α∗2 be such that

θ′α∗2 − T (α∗2) = sup
α

(θ′α− T (α)).

As θ′ < 0, one can check that ` ≤ α∗2 ≤ αmax. If α∗2 ∈ [αmin, αmax], we set x2 := 0,
whereas if α∗2 ∈ (`, αmin), we set x2 := (λmin − α∗1)((λmin − α∗1)Hmin − 1). We now
define, for any δ > 0,

Bδ
α∗1,x1,α∗2,x2 :=

{ ∣∣∣∣∣(λN1 − α∗1)g
2
1
N

+ x1

∣∣∣∣∣ ≤ δ,
∣∣∣∣∣ 1
N

N∑
i=2

(λNi − α∗1)g2
i − x1

∣∣∣∣∣ ≤ δ,∣∣∣∣∣(λNN − α∗2)(g′N )2

N
+ x2

∣∣∣∣∣ ≤ δ,
∣∣∣∣∣ 1
N

N−1∑
i=1

(λNi − α∗2)(g′i)2 − x2

∣∣∣∣∣ ≤ δ
}
,

C :=
{
∀i ≥ 2, g2

i ≤ N1/4, ∀i ≤ N − 1, (g′i)2 ≤ N1/4
}
,

Eδ :=
{
‖g‖2 ≥

√
δN, ‖g′‖2 ≥

√
δN
}

We have

E
(
eNθ〈e1,MNe1〉+Nθ′〈e2,MNe2〉

)
≥ E

(
1AεN∩Bδx1,x2,y1,y2∩C∩Eδ

eNθ〈e1,MNe1〉+Nθ′〈e2,MNe2〉
)

≥ E
(

1AεN∩Bδx1,x2,y1,y2∩C∩Eδ
eθ

1
‖g‖2
〈g,MNg〉−θ′ 1

‖g′‖2
〈g′,MNg

′〉
)

e−4NMε

≥ P(AεN ∩Bδ
x1,x2,y1,y2 ∩ C ∩ Eδ)e

−4NMεeNθα∗1+Nθ′α∗2−2N(θ+θ′)
√
δ (A.5)

Now, if σ1, . . . , σN are N independent Rademacher random variables, independent
of g and g′, then 〈g, g′〉 and

∑N
i=1 σigig

′
i have the same law. Therefore, since the sets

Bδ
x1,x2,y1,y2 , C and Eδ are independent of the sign of the gi’s,

P(AεN |Bδ
x1,x2,y1,y2∩C∩Eδ) = P(P(|

N∑
i=1

σigig
′
i| ≤ ε‖g‖2‖g′‖2|(g, g′))|Bδ

x1,x2,y1,y2∩C∩Eδ)

where the second expectation holds on the σ’s only. Using the concentration proper-
ties of the Rademacher random variables (or the Azuma Hoeffding inequality), one
gets that

P
(∣∣∣∣∣

N∑
i=1

σigig
′
i

∣∣∣∣∣ ≥ ε‖g‖2‖g′‖2∣∣∣(g, g′)
)
≤ e
−

ε2‖g‖22‖g
′‖22∑N

i=1 g
2
i

(g′
i
)2
.

On Bδ
x1,x2,y1,y2 ∩C ∩Eδ, the right hand side is bounded above by e−4

√
Nε2δ, so that

we can conclude that, for any ε, δ > 0, P(AεN |Bδ
x1,x2,y1,y2 ∩C ∩Eδ) converges to one

as N goes to infinity.
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Furthermore, we have that
P(Bδ

x1,x2,y1,y2 ∩ C ∩ Eδ) ≥ P(Bδ
x1,x2,y1,y2 ∩ C)− P(Ecδ). (A.6)

Since it is well known that

lim inf
N→∞

1
N

logP(Ecδ) ≤ −2(
√
δ − 1− log(

√
δ))

where the above right hand side goes to −∞ as δ goes to zero, we only need to
estimate the first term in the right hand side of (A.6) for small enough δ.Now

P(Bδ
x1,x2,y1,y2 ∩ C) ≥ P(Bδ

x1,x2,y1,y2 |C)P(C),
where the last term goes to one as N goes to infinity. The last thing to check is that

lim
δ↓0

lim inf
N→∞

1
N

logP(Bδ
x1,x2,y1,y2 |C) ≥ −T (α∗1)− T (α∗2).

Indeed, going back to the proofs of Lemmas 18 and 19 in [Guionnet and Maïda,
2005] (see also [?]), one can check that if α∗1 ∈ [αmin, αmax],

lim
δ↓0

lim inf
N→∞

1
N

logP
( ∣∣∣∣∣ 1

N

N∑
i=2

(λNi − α∗1)g2
i

∣∣∣∣∣ ≤ δ|C
)
≥ −Lα∗1(0).

The proof is the same except that in the computation of the log-Laplace the integral
with go from −N1/4 to N1/4 instead of running on R and this will not change the
limit. Similarly, if α∗1 > αmax,

lim
δ↓0

lim inf
N→∞

1
N

logP
( ∣∣∣∣∣(λN1 − α∗1)g

2
1
N

+ x1

∣∣∣∣∣ ≤ δ
)
≥ − x1

2(λmax − α∗1) ,

and

lim
δ↓0

lim inf
N→∞

1
N

logP
( ∣∣∣∣∣ 1

N

N∑
i=2

(λNi − α∗1)g2
i − x1

∣∣∣∣∣ ≤ δ|C
)
≥ −Lα∗1(x1).

Putting everything together in (A.5), taking the limit as N then δ and ε go to zero,
we get the factorization property. �

A.3. Large deviations for the largest eigenvalue in the deformed model.
For the sake of simplicity, when treating the deformed model, we will stick to the
case β = 1. For any x > r(µa�µb), we denote by µx the measure defined as follows:
for any bounded measurable function f,∫

f(λ)µx(dλ) =
∫
f

( 1
x− λ

)
µa � µb(dλ).

In particular, for any x > r(µa � µb),
∫
λµx(dλ) = Gµa�µb(x).

For any x > ρ ≥ r(µa � µb) and ` ≤ l(µa � µb) we define

αx,+(ρ) :=


Gµa�µb (ρ)

1+(x−ρ)Gµa�µb (ρ) , if Gµa�µb(ρ) <∞,
∞, otherwise.

and

αx,−(`) :=


Gµa�µb (`)

1+(x−`)Gµa�µb (`) , if Gµa�µb(`) > −∞,
−∞, otherwise.

For α ∈
(

1
x−` ,

1
x−ρ

)
and κ /∈

(
1
x−` ,

1
x−ρ

)
, we set

hα,x(κ) := 1
2

∫
log

(
κ− λ
κ− α

)
µx(dλ).
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and we also extend it to

hα,x

( 1
x− ρ

)
:= lim

y↓ρ
hα,x

( 1
x− y

)
and hα,x

( 1
x− `

)
:= lim

y↑`
hα,x

( 1
x− y

)
We set, for x > ρ ≥ r(µa � µb) and ` ≤ l(µa � µb),

T+
x,ρ(α) :=


hα,x(Kµx(Qµx(α))), if α ∈ [Gµa�µb(x), αx,+(ρ)],
hα,x

(
1

x−ρ

)
, if α ∈

(
αx,+(ρ), 1

x−ρ

)
,

∞, if α > 1
x−ρ .

(A.7)

and

T−x,`(α) :=


hα,x(Kµx(Qµx(α))), if α ∈ [αx,−(`), Gµa�µb(x)],
hα,x

(
1
x−`

)
, if α ∈

(
1
x−` , αx,−(`)

)
∞, if α < 1

x−` .

(A.8)

The quantities above can easily be extended to the case x = ρ > r(µa � µb) (only
the first line of (A.7) will be relevant). For x = ρ = r(µa � µb), we set

T+
x,x(α) := 0 if α ≥ Gµa�µb(x)

and
T−x,`(α) :=∞ if α < Gµa�µb(x)

For γ := (γ1, . . . , γp) a p-uplet of nonnegative real numbers, we now define,

L(0)
γ (y) := I1(y), if y ≥ r(µa � µb)

and, for any 1 ≤ i ≤ p,

L(i)
γ (x) :=


inf

y≤l(µa�µb)

{
T−x,y

(
1
γi

)
+ I1

min(y)
}
, if r(µa � µb) ≤ x < Kµa�µb

(
1
γi

)
,

inf
r(µa�µb)≤y≤x

{
T+
x,y

(
1
γi

)
+ L

(i−1)
γ (y)

}
, if x ≥ Kµa�µb

(
1
γi

)
,

∞, if x < r(µa � µb),
with the convention that

Kµa�µb

( 1
γi

)
= r(µa � µb) if Gµa�µb(r(µa � µb)) ≤

1
γi

Note that this rate function should not depend on the ordering of the γi’s, which
is far from obvious on the formula above.

We can now state our main result. We recall that (U (1)
1 , . . . , U

(p)
1 ) are independent

random vectors uniformly distributed on the unit sphere. To simplify the notations,
they can be viewed as respective first column vectors of p independent matrices
distributed according to m1

N .

Theorem 18. Under the assumptions (Hbulk), (NoOut) and (NoDown), for any
p ∈ N∗ and any γ ∈ (R+)p, the law of the largest eigenvalue λ̃Nmax of the matrix XN :=
AN + UBNU

∗ +
∑p
i=1 γiU

(i)
1 (U (i)

1 )∗, defined in (2.4), under (m1
N )⊗(p+1) satisfies a

large deviation principle in the scale N with good rate function L(p)
γ .

Before proving Theorem 18, we need to state a variant of Proposition 16 in [Guion-
net and Maïda, 2005]. We denote by P the standard Gaussian measure on R and
we assume that (g1, . . . , gN ) follows the law P⊗N . For any N -tuple of real numbers

λ := (λ1, . . . , λN ) and x /∈ {λ1, . . . , λN}, we denote by vN,λ(x) :=
∑N

i=1
1

x−λi
g2
i∑N

i=1 g
2
i

.
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Proposition 19. Let (λNi )N∈N∗,1≤i≤N be a triangular array of real numbers such
that 1

N

∑N
i=1 δλNi

converges to µa � µb as N grows to ∞. We denote by λN :=
(λN1 , . . . , λNN ). Let x be a real number such that, for N large enough, x > maxNi=1 λ

N
i .

Assume that maxNi=1 λ
N
i converges, as N grows to ∞, to ρ ≥ r(µa � µb). Then, for

any α ∈ R such that α ≥ Gµa�µb(x), we have

lim
δ↓0

lim sup
N→∞

1
N

logP⊗N
(
vN,λN (x) ∈ [α− δ, α+ δ]

)
= lim

δ↓0
lim inf
N→∞

1
N

logP⊗N
(
vN,λN (x) ∈ [α− δ, α+ δ]

)
= −T+

x,ρ (α) . (A.9)

Assume that minNi=1 λ
N
i converges, as N grows to ∞, to ` ≤ l(µa � µb). Then, for

any α ∈ R such that α < Gµa�µb(x), we have

lim
δ↓0

lim sup
N→∞

1
N

logP⊗N
(
vN,λN (x) ∈ [α− δ, α+ δ]

)
= lim

δ↓0
lim inf
N→∞

1
N

logP⊗N
(
vN,λN (x) ∈ [α− δ, α+ δ]

)
= −T−x,` (α) . (A.10)

We will not give a full proof of Proposition 19. This follows from an adaptation
of Lemma 18 and Proposition 16 in [Guionnet and Maïda, 2005]. In Lemma 18 in
particular, one can check that the deviations above the mean (which is Gµa�µb(x) in
the present case) may involve not only the limiting empirical distribution but also
the limit as N grows to ∞ of the largest particle (denoted by maxNi=1 γi there and
equal to 1

x−maxNi=1 λ
N
i

in the present case, whereas the deviations below the mean
may depend on the limiting smallest particle, equal to 1

minNi=1 λ
N
i −x

here.

The rest of this section is devoted to the proof of Theorem 18 in the case p = 1.
For p > 1, the proof is very similar, except that instead of conditioning by the
deviations of the extreme eigenvalues of HN , we will condition on the deviations of
extreme eigenvalues of the model at step p− 1.

Proof of Theorem 18 in the case p = 1. We recall that we stick to the case β = 1.
Let γ1 > 0 be fixed. As in the proof of Theorem 4, the exponential tightness is
straightforward : for any N ≥ 1,

|λ̃Nmax| ≤ K + γ1.

Again, using e.g. Theorem D.4(a) and Corollary D.6 in [Anderson et al., 2010],
it is enough to show that, for any x ∈ R,

lim
δ↓0

lim sup
N→∞

1
N

log(m1
N )⊗2

(
λ̃Nmax ∈ [x− δ, x+ δ]

)
= lim

δ↓0
lim inf
N→∞

1
N

log(m1
N )⊗2

(
λ̃Nmax ∈ [x− δ, x+ δ]

)
= −L(1)

γ (x).

For any z which does not belong to the spectrum of HN , one can write

det(zIN −XN ) = det(zIN −HN )γ1

( 1
γ1
− (U (1)

1 )∗(zIN −HN )−1U
(1)
1

)
.

Therefore, z is an eigenvalue of XN which is not an eigenvalue of HN if and only if

(U (1)
1 )∗(zIN −HN )−1U

(1)
1 = 1

γ1
.
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The Haar measure is invariant by unitary conjugation, so that if HN = UNDNU
∗
N ,

then (U (1)
1 )∗(zIN −HN )−1U

(1)
1 and (U (1)

1 )∗(zIN −DN )−1U
(1)
1 have the same law and

one can assume in the sequel that HN is diagonal. Moreover, as U (1)
1 is a column

vector of a matrix distributed according to the Haar measure, the equation now
reads

vN (z) :=
N∑
i=1

1
z − λ(HN )

i

g2
i

N∑
i=1

g2
i

= 1
γ1
,

with (g1, . . . , gN ) having distribution P⊗N .
For any (λ1, . . . , λN ) and (v1, . . . , vN ) sush that

∑N
i=1 v

2
i = 1 fixed, we define on

(maxNi=1 λi,∞), the function

fλ,v : z 7→
N∑
i=1

1
z − λi

v2
i .

This function is decreasing and continuous on (maxNi=1 λi,∞), uniformly on (v1, . . . , vN )
such that

∑N
i=1 v

2
i = 1. Therefore, there exists a function ελ going to zero at zero,

such that for z ∈ (maxNi=1 λi,∞), fλ(z) = 1
γ1

if and only if, for any δ > 0 small
enough, for any x ∈ [z−δ, z+δ], fλ(x) ∈

[
1
γ1
− ελ(δ), 1

γ1
+ ελ(δ)

]
. Let x > r(µa�µb)

be fixed. Let y such that r(µa � µb) ≤ y < x and set η0 := x−y
4 . For any η < η0,

similarly to the definition of EyN,η in (3.6), we introduce

ẼyN,η :=
{
λNmax ∈ [y − η, y],d(µ̂N , νβN ) ≤ N−1/4

}
The analysis will be the same, except possibly for y = r(µa � µb). we have that for
any U ∈ EyN,η, λNmax = λ

(HN )
1 ∈ [y, y + η]. Therefore, if we denote by

ṽN (x, y) := 1
x− y

g2
1

N∑
i=1

g2
i

+
N∑
i=2

1
x− λ(HN )

i

g2
i

N∑
i=1

g2
i

then

|ṽN (x, y)− vN (x)| ≤ |y − λ(HN )
1 |

(x− y)(x− λ(HN )
1 )

≤ η

η2
0
.

Therefore, for any η < η0, there exists a continuous function εη going to zero at zero
such that, for any δ ≤ η and N large enough,

(m1
N )⊗2

({
λ̃Nmax ∈ [x− δ, x+ δ]

}
∩ ẼyN,η

)
= P⊗N ⊗m1

N

({
ṽN (x, y) ∈

[ 1
γ1
− ε(δ), 1

γ1
+ ε(δ)

]}
∩ ẼyN,η

)
= P⊗N ⊗m1

N

(
ṽN (x, y) ∈

[ 1
γ1
− ε(δ), 1

γ1
+ ε(δ)

]
|ẼyN,η

)
m1
N (ẼyN,η) (A.11)

The probability measure on the right handside is P⊗N ⊗ m1
N because ṽN (x, y)

can be seen as a function of U of law m1
N and of (g1, . . . , gN ) of law P⊗N .

If we assume that η, δ < |x−y|
4 and for all i ∈ N∗, λi ≤ y + η, one can choose ελ

uniformly in (λ1, . . . , λN ). Now, let U ∈ ẼyN,η be chosen. We denote by λN1 := y
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and for any 2 ≤ i ≤ N, λNi := λ
(HN )
i . Then 1

N

∑N
i=1 δλNi

converges to µa � µb and
maxNi=1 λ

N
i = y. By Proposition 19, if Gµa�µb(x) ≤ 1

γ1
, we have

lim
δ↓0

lim inf
N→∞

1
N

logP⊗N
(
ṽN (x) ∈

[ 1
γ1
− εη(δ),

1
γ1

+ εη(δ)
]
|ẼyN,η

)
= −T+

x,y

( 1
γi

)
,

so that

lim
δ↓0

lim inf
N→∞

1
N

log(m1
N )⊗2(λ̃Nmax ∈ [x−δ, x+δ]) ≥ −T+

x,y

( 1
γ1

)
+ lim
N→∞

1
N

logm1
N (ẼyN,η).

Taking the limit of the right hand-side as η goes to zero, we get using Theorem 4
that

lim
δ↓0

lim
N→∞

1
N

log(m1
N )⊗2(λ̃Nmax ∈ [x− δ, x+ δ]) ≥ −T+

x,y

( 1
γ1

)
− I1(y) ≥ −L(1)

γ (x),

where the last inequality was obtained by optimizing on y.
Assume now that r := r(µa�µb) < x < Kµa�µb

(
1
γ1

)
. Similarly to (3.6), we define,

for y ≤ l(µa � µb)

Ey,−N,η :=
{
λNmin ∈ [y, y + η], λNmax ∈ [r − η, r + η],d(µ̂N , ν1

N ) ≤ N−1/4
}
,

and

vN,−(x) :=
N−1∑
i=1

1
x− λ(HN )

i

g2
i

N∑
i=1

g2
i

+ 1
x− y

g2
N

N∑
i=1

g2
i

.

For η small enough and δ ≤ η, we can then write as above

(m1
N )⊗2(λ̃Nmax ∈ [x− δ, x+ δ]) ≥ (m1

N )⊗2(λ̃Nmax ∈ [x− δ, x+ δ] ∩ Ey,−N,η)

= P⊗n ⊗m1
N

(
vN,−(x) ∈

[ 1
γ1
− εη(δ),

1
γ1

+ εη(δ)
]
∩ Ey,−N,η

)
= P⊗n ⊗m1

N

(
vN,−(x) ∈

[ 1
γ1
− εη(δ),

1
γ1

+ εη(δ)
]
|Ey,−N,η

)
m1
N (Ey,−N,η). (A.12)

In this case, by Proposition 19,

lim
δ↓0

lim inf
N→∞

1
N

logP⊗N
(
vN,−(x) ∈

[ 1
γ1
− εη(δ),

1
γ1

+ εη(δ)
]
|Ey,−N,η

)
= −T−x,y

( 1
γ1

)
,

so that

lim
δ↓0

lim inf
N→∞

1
N

log(m1
N )⊗2(λ̃Nmax ∈ [x−δ, x+δ]) = −T−x,y

( 1
γ1

)
+lim inf

N→∞

1
N

logm1
N (Ey,−N,η).

(A.13)
The last step to prove the lower bound in this case is to check

lim
η↓0

lim inf
N→∞

1
N

logm1
N (Ey,−N,η) ≥ −I

1
min(y). (A.14)

Then, taking the limit as η goes to zero in (A.13) and optimizing in y gives the
required lower bound.

We now prove (A.14). Similarly to Lemma 11 and 12 (by symmetry between the
smallest and largest eigenvalue), one can show that there exists a unique θy ≤ 0
such that, for any η > 0 and N large enough,

m
1,θy
N

(
λNmin ∈ [y − η, y + η],d(µ̂N , ν1

N ) ≤ N−1/4
)
≥ 2

3 .
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Applying Corollary 17, as θy ≤ 0, we have that, for any η > 0 and N large enough,

m
1,θy
N (λNmax ∈ [r − η, r + η]) ≥ 2

3 , (A.15)

so that, for any η > 0 and N large enough,

m
1,θy
N (Ey,−N,η) ≥

1
3 .

With this ingredient, the proof of (A.14) goes as in the proof of Proposition 3:

m1
N (Ey,−N,η) = Em1

N

(
1Ey,−N,η

I1
N (θy, H)
I1
N (θy, H)

)

≥ inf
U∈Ey,−N,η

1
I1
N (θy, A+ UBU∗)

I1
N (θy, A)I1

N (θy, B)m1,θy
N (Ey,−N,η),

so that, using again Lemma 10, we get:

lim
η↓0

lim inf
N→∞

1
N

logm1
N

(
Ey,−N,η

)
≥ −I1

min(θy, y)− lim
η↓0

gθy(η) = −I1
min(y).

The strategy to get the upper bound is similar : we know that, for N ≥ 1,
λNmax ∈ [−K,K] and λNmin ∈ [−K,K]. For any δ > 0, there exists p ∈ N∗ and
ρ1, . . . , ρp such that

[−K,K] ⊂ ∪pi=1[ρi − δ, ρi + δ].
Assume that Gµa�µb(x) ≤ 1

γ1
.

(m1
N )⊗2(λ̃Nmax ∈ [x− δ, x+ δ]) ≤ (m1

N )⊗2(λ̃Nmax ∈ [x− δ, x+ δ] ∩ {d(µ̂N , ν1
N ) ≤ N−1/4})

+m1
N (d(µ̂N , ν1

N ) > N−1/4)

≤
p∑
i=1

(m1
N )⊗2(λ̃Nmax ∈ [x− δ, x+ δ] ∩ EρiN,δ)

+m1
N (d(µ̂N , ν1

N ) > N−1/4).

We then use Lemma 9 to get rid of the last term and apply the same strategy as
before, combining the relation (A.12) and Proposition 19 for the main term.

Assume now that Gµa�µb(x) > 1
γ1
. We apply the very same strategy with Eρi,−N,δ

instead of EρiN,δ and the bound (A.14).
�
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