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Abstract: We establish large deviations estimates for the largest eigenvalue of Wigner
matrices with sub-Gaussian entries. Under technical assumptions, we show that the large
deviation behavior of the largest eigenvalue is universal for small deviations, in the sense
that the speed and the rate function are the same as in the case of the GOE. In contrast,
in the regime of very large deviations, we obtain a non-universal rate function and we
prove that the associated eigenvector is localized given the large deviation event, thus
establishing the existence of a transition between two different large deviation mechanisms.

1. Introduction

In a breakthrough paper [25], Wigner showed that the empirical distribution of the
eigenvalues of a Wigner matrix converges to the semi-circle law provided the off-diagonal
entries have a finite second moment. Following the pioneering work of Kómlos and Fűredi
[17], it was proved in [3] that assuming the Wigner matrix has centered entries, the largest
eigenvalue converges to the right edge of the support of the semi-circle law if and only if
the fourth moment of the off-diagonal entries is finite. But what is the probability that
the empirical measure or the largest eigenvalue have a different behavior ? Analyzing the
probability that the largest eigenvalue of a random matrix takes an unexpected value is
a challenging question, with many applications in statistics [16], mobile communications
systems [16, 12] or the energy landscape of disordered systems [8, 5]. This turns out to
be a much more challenging question than to analyze the typical behavior which could be
only answered so far for very specific models. It was first solved in the case of Gaussian
ensembles, such as the Gaussian Unitary Ensemble (GUE) and Gaussian Orthogonal
Ensemble (GOE), where the joint law of the eigenvalues is explicit. In these cases, large
deviations principles were derived for the empirical distribution of the eigenvalues and
the largest eigenvalue in [7] and [6] merely by Laplace’s method, up to taking care of
the singularity of the interaction. The question was revived in a breakthrough paper by
Bordenave and Caputo [13] who considered Wigner matrices with entries with tails heavier
than in the Gaussian case. They proved a large deviations principle for the law of the
empirical measure by a completely different argument based on the fact that deviations
are created by a relatively small number of large entries. These large deviations have a
smaller speed than in the Gaussian case. This phenomenon was shown to hold as well for
the largest eigenvalue by one of the authors [2].
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Yet, the case of sub-Gaussian entries remained open and the general mechanism which
creates large deviations mysterious. Last year, two of the authors showed in [18] that
if the Laplace transform of the entries is pointwise bounded from above by the one of
the GUE or GOE, then a large deviations principle holds with the same rate function
as in the Gaussian case. This special case of entries, which was said to have sharp sub-
Gaussian tails, includes Rademacher variables and uniform variables. Yet, many entries
with sub-Gaussian tails are not sharp, as for instance sparse entries which are obtained
by multiplying a Gaussian variable with an independent Bernoulli random variable. In
this article, we investigate this general setting. We derive large deviations estimates for
the largest eigenvalue of Wigner matrices with sub-Gaussian entries. In particular, we
show that the rate function of this large deviations estimates is different from the one of
the GOE.

This article is restricted to matrices with entries which are centered and covariance
of order of the inverse of the dimension. Non centered models, such as the adjacency
matrix of Erdős-Rényi matrices, may have different deviations properties as the mean
of the entries can be seen as a rank one deformation of the later. The large deviation
behavior of the extreme eigenvalues of Erdős-Rényi graphs has attracted some attention
recently. Inside the regime where the average degree goes to infinity, that is np � 1
where n is the number of vertices and p is the edge-probability, Cook and Dembo [14]
have computed the tail distribution of the operator norm for p� n−1/2, and proved that
it is governed by a certain mean-field variational problem. Very recently, the joint large
deviations of the extreme eigenvalues were established in [11] for the “localized” regime
where 1 � np �

√
log n. The case were np is of order one is still open and might be

studied by our techniques.
We will consider hereafter a N × N symmetric random matrix XN with independent

entries (Xij)i≤j above the diagonal so that
√
NXij has law µ for all i < j and

√
N/2Xii

has law µ for all i. In particular, the variance profile is the same as the one of the GOE.
We assume that µ is centered and has a variance equal to 1. For a real number x, let

ψ(x) = 1
x2 log

∫
extdµ(t) .

ψ is a continuous function on the real line such that ψ(0) = 1/2. Assume that µ is
sub-Gaussian so that

A

2 := sup
x∈R

ψ(x) < +∞. (1)

The case where A = 1 is the case of sharp sub-Gaussian tails studied in [18]. We investi-
gate here the case where A > 1 and we show the following result.

Theorem 1.1. Denote by λXN the largest eigenvalue of XN . Under some technical as-
sumptions, there exist a good rate function Iµ : R→ [0,+∞] and a set Oµ ⊂ R such that
(−∞, 2] ∪ [xµ,+∞) ⊂ Oµ for some xµ ∈ (2,+∞) and such that for any x ∈ Oµ,

lim
δ→0

lim inf
N→+∞

1
N

logP (|λXN − x| ≤ δ) = lim
δ→0

lim sup
N→+∞

1
N

logP (|λXN − x| ≤ δ) = −Iµ(x).
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The rate function Iµ is infinite on (−∞, 2) and satisfies

Iµ(x) ∼
x→+∞

1
4Ax

2.

If A ∈ (1, 2), then [2,
√
A− 1 + 1/

√
A− 1] ⊂ Oµ and Iµ coincides on this interval with

the rate function of the GOE, that is,

Iµ(x) = 1
2

∫ x

2

√
y2 − 4dy =: IGOE(x). (2)

Moreover, for all x ≥ 2, Iµ(x) ≤ IGOE(x).
The technical assumptions include the case where ψ is increasing (which holds in the

case of sparse Gaussian entries) and the case where the maximum of ψ is achieved on
R at a unique point in a neighborhood of which it is strictly concave. In the later case,
Iµ(x) only depends on A for x large enough.

The method introduced in [18] is based on a tilt of the measure by spherical integrals
and therefore the estimation of the annealed spherical integrals (given by the average of
spherical integrals over the entries of the matrix XN). In the case of sharp sub-Gaussian
entries, the annealed spherical integrals are easy to estimate because they concentrate
on delocalized vectors. In the general case we deal with in this article, estimating the
annealed spherical integral becomes much more complicated and interesting because it
can concentrate on localized vectors, at least in a regime corresponding to sufficiently large
deviations. This new phenomenon comes with a “phase” transition at least when A < 2,
since then for small deviations the annealed spherical integral concentrates on delocalized
vectors whereas for large deviations it concentrates on more localized vectors. This fact
is reflected in the eigenvector of the largest eigenvalue when the later is conditioned to be
large, see section 7. We show that it is delocalized for sharp sub-Gaussian entries, whereas
otherwise it localizes for large enough deviations. The existence of such a transition makes
it difficult to compute large deviations on the whole real line, but in fact our formulas
may just be wrong then. For instance, our formulas would predict a convex rate function,
which may not always be the case.

1.1. Assumptions. We now describe more precisely our assumptions.
Assumption 1.1. Let µ ∈ P(R) be a symmetric probability measure with unit variance.
We denote by L its log-Laplace transform,

∀x ∈ R, L(x) = log
∫
extdµ(t),

and ψ(x) = L(x)/x2. We assume that µ is sub-Gaussian in the sense that
A

2 := sup
x∈R

ψ(x) < +∞,

and we define B ≥ 0 by
B

2 := lim
|x|→+∞

ψ(x).

We assume moreover that L(√.) is a Lipschitz function and that µ does not have sharp
sub-Gaussian tails, meaning that A > 1.
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We describe below a few examples of probability measures µ which satisfy the above
assumptions. In each of these cases, the fact that L(√.) is Lipschitz is clear and left to
the reader.

Example 1.2. • (Combination of Gaussian and Rademacher laws). Let

µ(dx) = a
e−

1
2B x

2

√
2πB

dx+ (1− a)1
2(δ−b + δ+b)

where a, b, B are non negative real numbers such that a ∈ (0, 1) and aB+(1−a)b2 =
1. Then, for all x ∈ R,

Lµ(x) = log
(
ae

B
2 x

2 + (1− a) cosh(bx)
)
.

If B > 1 and b ∈ (0, 1) we see that our conditions are fulfilled and A = B.
• (Sparse Gaussian case). Let µ be the law of ζΓ with ζ a Bernoulli variable of
parameter p ∈ (0, 1) and Γ a centered Gaussian variable with variance 1/p. For
any x ∈ R,

Lµ(x) = log
(
pe

x2
2p + 1− p

)
so that A = B = 1

p
.

• (Combination of Rademacher laws). Let

µ =
p∑
i=1

αi
2 (δβi + δ−βi)

with αi ≥ 0 , βi ∈ R and p ∈ N so that
∑
αi = 1,

∑
αiβ

2
i = 1. Since µ is

compactly supported B = 0. The fact that µ does not have sharp sub-Gaussian
tails means that there exist some t and A > 1 such that

p∑
i=1

αi cosh(βit) ≥ eA
t2
2 .

The latter is equivalent to
p∑
i=1

αi
2 e

β2
i

2A

(
e−

A
2 (t−βi

A
)2 + e−

A
2 (t+βi

A
)2
)
≥ 1 .

This inequality holds as soon as αie
β2
i

2A ≥ 2 for some i ∈ {1, . . . , p} by taking t = βi
A
.

This can be fulfilled if βi is large enough while αiβ2
i < 1. We also see with this

family of examples that A can be taken arbitrarily large even if B = 0 (take e.g
p = 2, A = β1, t = 1, α1 = (2β2

1)−1, eβ1/2 ≥ 4β2
1 , β

2
2 = (2− β−2

1 )−1, α2 = 1− α1).

Let HN be the set of real symmetric matrices of size N . We denote for any A ∈ HN

by λA its largest eigenvalue, ||A|| is spectral radius and by µ̂A the empirical distribution
of its eigenvalues, that is

µ̂A = 1
N

N∑
i=1

δλi ,
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where λ1, . . . , λN are the eigenvalues of A. We make the following assumption of concen-
tration of the empirical distribution of the eigenvalues at the scale N .

Assumption 1.2. The empirical distribution of the eigenvalues µ̂XN concentrates at the
scale N :

lim sup
N→+∞

1
N

logP
(
d(µ̂XN , σ) > N−κ

)
= −∞, (3)

for some κ > 0, where d is a distance compatible with the weak topology and σ is the
semi-circle law, defined by

σ(dx) = 1
2π
√

4− x21|x|≤2dx.

Remark 1.3. (1) From [18, Lemmas 1.8, 1.11], we know that Assumption 1.2 is ful-
filled if µ is either compactly supported, or if µ satisfies a logarithmic Sobolev
inequality in the sense that there exists c > 0 so that for any smooth function
f : R→ R, such that

∫
f 2dµ = 1,∫
f 2 log f 2dµ ≤ c

∫
‖∇f‖2

2dµ .

(2) If µ is a symmetric sub-Gaussian probability measure on R with log-concave tails
in the sense that t 7→ µ(|x| ≥ t) is a log-concave function, then the Wigner matrix
XN satisfies Assumption 1.2. In particular, if B is a Wigner matrix with Bernoulli
entries with parameter p and Γ is a GOE matrix, then the sparse Gaussian matrix
B ◦ Γ/√p, where ◦ is the Hadamard product, satisfies Assumption 1.2. We refer
the reader to section 8.1 of the appendix for more details.

Let us remark that when µ is sub-Gaussian, (1), the spectral radius of XN is exponen-
tially tight [18, Lemma 5.1] and that this fact remains true under any tilted measure

P(e,θ) = eθN〈e,XNe〉

EX(eθN〈e,XNe〉)dP(X), (4)

where e ∈ SN−1 and θ ≥ 0. More precisely, we can make the following remark.

Remark 1.4. If (1) holds, then for any θ ≥ 0,

lim
K→+∞

lim sup
N→+∞

sup
e∈SN−1

1
N

logP(e,θ)(||XN || ≥ K
)

= −∞.

1.2. Statement of the results and scheme of the proof. As in [18], our approach to
derive large deviations estimates is based on a tilting of the law of the Wigner matrix XN

by spherical integrals. Let us recall the definition of spherical integrals. For any θ ≥ 0,
we define

IN(XN , θ) = Ee[eθN〈e,XNe〉]
where e is uniformly sampled on the sphere SN−1 with radius one. The asymptotics of

JN(XN , θ) = 1
N

log IN(XN , θ)

were studied in [19] where the following result was proved.
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Theorem 1.5. [19, Theorem 6] Let (EN)N∈N be a sequence of N × N real symmetric
matrices such that:

• The sequence of empirical measures µ̂EN converges weakly to a compactly supported
measure µ.
• There is a real number λE such that the sequence of the largest eigenvalues λEN
converges to λE.
• supN ||EN || < +∞.

For any θ ≥ 0,
lim

N→+∞
JN(EN , θ) = J(µ, λE, θ)

The limit J is defined as follows. For a compactly supported probability measure
µ ∈ P(R) we define its Stieltjes transform Gµ by

∀z /∈ supp(µ), Gµ(z) :=
∫
R

1
z − t

dµ(t),

where supp(µ) is the support of µ. Let rµ denote the right edge of the support of µ. Then
Gµ is a bijection from (rµ,+∞) to

(
0, Gµ(rµ)

)
where

Gµ(rµ) = lim
t↓rµ

Gµ(t).

Let Kµ be the inverse of Gµ on (0, Gµ(rµ)) and let

∀z ∈ (0, Gµ(rµ)), Rµ(z) := Kµ(z)− 1/z,

be the R-transform of µ as defined by Voiculescu in [24]. Then, the limit of spherical
integrals is defined for any θ ≥ 0 and x ≥ rµ by,

J(µ, x, θ) := θv(µ, x, θ)− 1
2

∫
log
(
1 + 2θv(µ, x, θ)− 2θy

)
dµ(y),

with

v(µ, x, θ) :=
{
Rµ(2θ) if 0 ≤ 2θ ≤ Gµ(x),
x− 1

2θ if 2θ > Gµ(x).
In the case of the semi-circle law, we have

Gσ(x) = 1
2(x−

√
x2 − 4), Rσ(x) = x.

We denote by J(x, θ) as a short-hand for J(σ, x, θ). In the next lemma we compute
explicitly J(x, θ), whose proof is left to the reader.

Lemma 1.6. Let θ ≥ 0 and x ≥ 2. For θ ≤ 1
2Gσ(x),

J(x, θ) = θ2.

Whereas for θ ≥ 1
2Gσ(x),

J(x, θ) = θx− 1
2 −

1
2 log 2θ − 1

2

∫
log(x− y)dσ(y).
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To derive large deviations estimates using a tilt by spherical integrals, it is central to
obtain the asymptotics of the annealed spherical integral FN(θ) defined as,

FN(θ) = 1
N

logEXNEe[exp(Nθ〈e,XNe〉)] .

In the following lemma, we obtain the limit of FN as the solution of a certain variational
problem. We denote by F (θ) and F (θ) its upper and lower limits:

F (θ) = lim sup
N→+∞

FN(θ),

F (θ) = lim inf
N→+∞

FN(θ).

For any measurable subset I ⊂ R, we denote by M(I) and P(I) respectively the set of
measures and the set of probability measures supported on I.

Proposition 1.7. Assume XN satisfies Assumptions 1.1 and 1.2.
F (θ) = lim sup

δ→0,K→+∞
δK→0

sup
α1+α2+α3=1

αi≥0

lim sup
N→+∞

FNα1,α2,α3(δ,K),

F (θ) = sup
α1+α2+α3=1

αi≥0

lim inf
δ→0,K→+∞

δK→0

lim sup
N→+∞

FNα1,α2,α3(δ,K) .

FNα1,α2,α3(δ,K) is the function given by:

FNα1,α2,α3(δ,K) = θ2(α2
1 + 2α1α2 +Bα2

3
)

+ sup
ti∈I2,i≤l

|
∑
i t

2
i
−Nα2|≤δN

sup
si∈I3,i≤k

|
∑
i s

2
i
−Nα3|≤δN

{ 1
N

k∑
i=1

l∑
j=1

L
(2θsitj√

N

)
+ 1

2N

l∑
i,j=1

L
(2θtitj√

N

)

+ sup
ν1∈P(I1)∫
x2dν1(x)=α1

{ k∑
i=1

∫
L
(2θsix√

N

)
dν1(x)−H(ν1)

}
− 1

2 log(2π)− 1
2

}
,

where I1 = {x : |x| ≤ δ1/2N1/4}, I2 = {x : δ1/2N1/4 < |x| ≤ K1/2N1/4}, I3 = {x :
K1/2N1/4 < |x| ≤

√
Nα3}, and

H(ν) =
∫

log dν
dx
dν(x),

if ν is absolutely continuous with respect to the Lebesgue measure, whereas H(ν) is infinite
otherwise.

Remark 1.8. Note that F and F are convex by Hölder inequality. Since the entries of
XN are sub-Gaussian, F (θ) ≤ Aθ2. In particular F and F are finite convex functions
and therefore are continuous on R+.

The above proposition gives quite an intricate definition for the limit of the annealed
spherical integrals. Yet, for small enough θ it can be computed explicitly.

Lemma 1.9. For any θ ≤ 1
2
√
A−1 ,

F (θ) = F (θ) = θ2.
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Note that for large θ this formula is not valid anymore when A > 1 since F grows like
Aθ2 at infinity (see the proof of Proposition 1.11).

Proof. Using the bound L(x) ≤ Ax2/2 for any x ≥ 0 and the notation of Proposition 1.7,
we have

F (θ) ≤ sup
α1+α2+α3=1

{
θ2(α2

1 + 2α1α2 +Bα2
3 + 2Aα3α2 + Aα2

2 + 2Aα1α3
)

+ 1
2 logα1

}
.

Here we used the fact that

inf{H(ν1) :
∫
x2dν1 = α1, ν1 ∈ P(I1)} ≥ inf{H(ν1) :

∫
x2dν1 = α1, ν1 ∈ P(R)},

where the infimum in the RHS is achieved at ν1(dx) = (2πα1)−1/2e
− x2

2α1 dx and hence
equals −1/2(1 + log(2πα1)).

As A ≥ 1 and B ≤ A, we deduce the upper bound,

F (θ) ≤ sup
α∈[0,1]

{
θ2(α2 + 2Aα(1− α) + A(1− α)2)+ 1

2 logα
}

= sup
α∈[0,1]

{
θ2(A− (A− 1)α2)+ 1

2 logα
}
.

Hence for all θ ≥ 0, (and as we could have seen directly from the uniform upper bound
L(θ) ≤ A

2 θ
2)

F (θ) ≤ Aθ2 . (5)
We see that if 2θ

√
A− 1 ≤ 1 then the function

α 7→ θ2(A− (A− 1)α2)+ 1
2 logα,

is increasing on [0, 1]. Thus the supremum is achieved at α = 1, and F (θ) ≤ θ2. Moreover,
taking α1 = 1, α2 = α3 = 0, and ν1 the standard Gaussian restricted to I1, ν1(dx) =
1I1e

−x
2

2 dx/Z, we find that
F (θ) ≥ θ2. (6)

Thus, if 2θ
√
A− 1 ≤ 1, we get that F (θ) = F (θ) = θ2.

�

Although the limit of the annealed spherical integrals may not be explicit for all θ, we
can still use it to obtain large deviations upper bounds as we describe now in the following
theorem.

Theorem 1.10. Under Assumptions 1.1 and 1.2, the law of the largest eigenvalue λXN
satisfies a large deviation upper bound with good rate function Ī which is infinite on
(−∞, 2) and otherwise given by:

∀y ≥ 2, Ī(y) = sup
θ≥0
{J(y, θ)− F (θ)} . (7)

Moreover, Ī(y) ≤ IGOE(y) for all y ≥ 2.
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Proof. From Remark 1.4, we know that the law of the largest eigenvalue is exponentially
tight at the scale N . Therefore, it is sufficient to prove a weak large deviations upper
bound by [15, Lemma 1.2.18]. Let δ > 0. We have,

P(λXN < 2− δ) ≤ P(µ̂XN (f) = 0),

where f is a smooth compactly supported function with support in (2 − δ, 2). Since
supp(σ) = [−2, 2], we deduce that,

P(λXN < 2− δ) ≤ P(d(µ̂XN , σ) > ε),

for some ε > 0. As the empirical distribution of the eigenvalues concentrates at the scale
N according to (3), we conclude that

lim
N→+∞

1
N

logP(λXN < 2− δ) = −∞.

Let now x ≥ 2 and δ > 0. Recall from (6) that F (θ) ≥ θ2 for any θ ≥ 0. Therefore,

Ī(x) ≤ sup
θ≥0
{J(x, θ)− θ2}.

From [18, Section 4.1], we know that

sup
θ≥0
{J(x, θ)− θ2} = IGOE(x),

where IGOE is the rate function of the largest eigenvalue of a GOE matrix. Therefore we
have proved that

Ī(x) ≤ IGOE(x),∀x ≥ 2 .
In particular Ī(2) = 0 since IGOE(2) = 0. Therefore we only need to estimate small ball
probabilities around x 6= 2. As µ̂XN concentrates at the scale N by Assumption 1.2, and
||XN || is exponentially tight at the scale N by Remark 1.4 it is enough to show that for
any K > 0,

lim sup
δ→0

lim sup
N→+∞

1
N

logP(XN ∈ V K
δ,x) ≤ −Ī(x),

where V K
δ,x = {Y ∈ HN : |λY − x| < δ, d(µ̂Y , σ) < N−κ, ||Y || ≤ K}, for some κ > 0. Let

θ ≥ 0. From [22, Proposition 2.1], we know that the spherical integral is continuous, more
precisely, for N large enough and any XN ∈ V K

δ,x,

|JN(XN , θ)− J(x, θ)| < g(δ),

for some function g(δ) going to 0 as δ → 0. Therefore,

P(XN ∈ V K
δ,x) = E

(
1XN∈V Kδ,x

IN(XN , θ)
IN(XN , θ)

)
≤ E[IN(XN , θ)]e−NJ(x,θ)+Ng(δ).

Taking the limsup as N → 0 and δ → 0 at the logarithmic scale, we deduce

lim sup
δ→0

lim sup
N→+∞

1
N

logP(XN ∈ V K
δ,x) ≤ F (θ)− J(x, θ).

Opimizing over θ ≥ 0, we get the claim. �
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Proposition 1.11. Under Assumption 1.1, the rate function Ī defined in Theorem 1.10
is lower semi-continuous, and growing at infinity like x2/4A. In particular, Ī is a good
rate function.

Proof. Ī is lower semi-continuous as a supremum of continuous functions (recall here that
J(θ, .) is continuous by Lemma 1.6 and F is continuous by Remark 1.6). It remains to
show that its level sets are compact, for which it is sufficient to prove that Ī goes to
infinity at infinity. Let x > 2. Let C > 0 be a constant to be chosen later such that
Cx ≥ 1/2. We have by taking θ = Cx and using (5), that

Ī(x) ≥ J(x,Cx)− F (Cx)

≥ Cx2 − 1
2 −

1
2 log(2Cx)− 1

2 log x− AC2x2. (8)

Taking C = 1/2A, and assuming that x > A, we obtain that

Ī(x) ≥ x2

4A − o(x
2). (9)

To get the converse bound, we show that as θ goes to infinity, F goes to infinity like Aθ2.
We distinguish two cases. First, we consider the case A = B. Using Proposition 1.7, we
get the lower bound for θ ≥ 1,

F (θ) ≥ Aθ2
(

1− 1
θ2

)
− 1

4 log θ,

by taking α2 = 0, α3 = 1 − θ−2, α1 = θ−2 and ν1 the Gaussian law restricted to I1 with
variance α1. In the case A > B, we define m∗ such that ψ(m∗) = A/2. Taking α3 = 0,
α2 = 1− θ−2, α1 = θ−2, ti =

√
m∗N1/4
√

2θ , l = b2θα2
√
N

m∗
c , and ν1 the Gaussian law restricted

to I1 with variance α1, we obtain,

F (θ) ≥ Aθ2
(

1− 1
θ2

)
− 1

4 log θ. (10)

It follows that for any ε > 0, there exists M <∞ such that for θ ≥M ,
F (θ) ≥ (1− ε)Aθ2.

Therefore

Ī(x) ≤ max
{

sup
θ≥M
{J(x, θ)− (1− ε)Aθ2}, sup

θ≤M
{J(x, θ)− F (θ)}

}
.

But from Lemma 1.6 one can see that the second term in the above right-hand side is
bounded by Mx+C where C is a numerical constant. Besides, using the same argument
as in (8), we get

sup
θ≥M
{J(x, θ)− (1− ε)Aθ2} ≥ x2

4(1− ε)A − o(x
2).

Hence, for x large enough,
Ī(x) ≤ sup

θ≥M
{J(x, θ)− (1− ε)Aθ2}.
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But, for x large enough and θ ≥ 1/2, J(θ, x) ≤ θx. Thus,

sup
θ≥M
{J(x, θ)− (1− ε)Aθ2} ≤ sup

θ≥0
{θx− (1− ε)Aθ2} = x2

4(1− ε)A,

which ends the proof.
�

Proposition 1.12. For any θ ≥ 0, J(., θ) is a convex function. Therefore, Ī is also
convex.

Proof. Let x, y ≥ 2 and t ∈ (0, 1). Let EN be a sequence of diagonal matrices such that
||EN || ≤ 2 and such that µ̂EN converges weakly to σ. Let Ex

N and Ey
N be such that

(Ex
N)i,i = (Ey

N)i,i = (EN)i,i for any i ∈ {1, . . . , N − 1}, and
(Ex

N)N,N = x (Ey
N)N,N = y.

We have λExN = x and λEyN = y. Then, HN = tEx
N + (1− t)Ey

N is such that its empirical
distribution of eigenvalues converges to σ, and λHN = tx+(1−t)y. By Hölder’s inequality
we have,

log IN(HN , θ) ≤ t log IN(EN , θ) + (1− t) log IN(DN , θ).
Taking the limit as N → +∞, we get,

J(tx+ (1− t)y, θ) ≤ tJ(x, θ) + (1− t)J(y, θ).
Therefore, J(θ, .) is convex and I is convex as a supremum of convex functions. �

To derive the large deviation lower bound, we denote by Cµ the set of θ ∈ R+ such that
F (θ) = F (θ) =: F (θ) .

By Lemma 1.9, Cµ is not empty. We observe also that by continuity of both F and F (see
Remark 1.8), Cµ is closed. Let

∀x ≥ 2, I(x) = sup
θ∈Cµ
{J(x, θ)− F (θ)}.

Theorem 1.13. For any x ≥ 2, denote by
Θx = {θ ≥ 0 : Ī(x) = J(x, θ)− F (θ)},

where Ī is defined in (7). Let x ≥ 2 such that there exists θ ∈ Θx ∩ Cµ and θ /∈ Θy for
any y 6= x. Then, I(x) = Ī(x) and

lim
δ→0

lim inf
N→+∞

1
N

logP (|λXN − x| ≤ δ) ≥ −I(x).

We apply this general theorem in two cases. We first investigate the case where the
function ψ is increasing, case for which we can check that our hypotheses on the sets Θx

holds for x large enough. This includes the case where µ is the sparse Gaussian law, see
Example 1.2.

Proposition 1.14. Suppose that Assumptions 1.1 and 1.2 hold. If ψ is increasing on
R+, then Cµ = R+. Moreover, there exists xµ ≥ 2 such that for any x ≥ xµ, the large
deviation lower bound holds with rate function I.
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We then consider the case where µ is such that B < A. This includes any compactly
supported measure µ since then B = 0. We prove in this case the following result.

Proposition 1.15. Suppose that Assumptions 1.1 and 1.2 hold. If µ is such that B < A
and such that the maximum of ψ is attained on R+ for a unique m∗ such that ψ′′(m∗) < 0,
then there exists a positive finite real number θ0 such that [θ0,+∞[⊂ Cµ. Therefore, there
exists a finite constant xµ such that for x ≥ xµ, the large deviation lower bound holds with
rate function I. Furthermore, on the interval [xµ,+∞) the rate function I depends only
on A.

In the case where A is sufficiently small, we can show without any additional assumption
that the large deviation lower bound holds in a vicinity of 2 and the rate function I is
equal to the one of the GOE. This contrasts with Proposition 1.11 which shows that the
rate function Ī goes to infinity like x2/4A at infinity and therefore depends on A. In other
words the “heavy tails” only kicks in above a certain threshold.

Proposition 1.16. Assume A < 2. The large deviation lower bound holds with rate
function Ī on [2, 1/

√
A− 1 +

√
A− 1]. Moreover, Ī coincides on this interval with the

rate function in the GOE case IGOE, defined in (2). As a consequence, for all x ∈
[2, 1/

√
A− 1 +

√
A− 1],

lim
δ→0

lim inf
N→+∞

1
N

logP (|λXN − x| ≤ δ) = lim
δ→0

lim sup
N→+∞

1
N

logP (|λXN − x| ≤ δ) = −IGOE(x).

Organization of the paper. In the next section 2, we detail our approach to prove
large deviations lower bounds. Since Proposition 1.7 is crucial to all our results, we prove
it in the next section 3. Then, we will apply these results to prove the large deviations
lower bounds close to the bulk in section 4, that is, we give a proof of Proposition 1.16. To
prove the large deviations lower bounds for large x, we consider first the case of increasing
ψ in section 5 and then the case of B < A in section 6. Indeed, the variational formulas
for the limiting annealed spherical integrals differ in these two cases, as B = A in the first
case whereas B < A in the second.

2. A general large deviation lower bound

We first prove Theorem 1.13 and will then give more practical descriptions of the sets
Θx in order to apply it.
Proof of Theorem 1.13. By assumption, there exists θ ∈ Θx ∩ Cµ such that θ /∈ Θy for
y 6= x. In particular, it entails that I(x) = Ī(x). Introducing the spherical integral with
parameter θ ≥ 0, we have

P (|λXN − x| ≤ δ) ≥ E
(
1XN∈V Kδ,x

IN(XN , θ)
IN(XN , θ)

)
,

where V K
δ,x = {Y ∈ HN : |λY − x| ≤ δ, d(µ̂Y , σ) < N−κ, ||XN || ≤ K} for some K > 0 and

κ > 0. Using the continuity of the spherical integral (see [22, Proposition 2.1]), we get

P (|λXN − x| ≤ δ) ≥
E
(
1XN∈V Kδ,x

IN(XN , θ))
EIN(XN , θ)

eNF (θ)−NJ(x,θ)−Ng(δ)−o(N), (11)
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where g is a function such that g(δ)→ 0 as δ → 0. We claim that

lim inf
N→+∞

1
N

log
E
(
1XN∈V Kδ,x

IN(XN , θx))
EIN(XN , θx)

≥ 0.

To this end we will use our large deviation upper bound. Since µ̂XN concentrates at scales
faster than N by Assumption 1.2, and by Remark 1.4, ||XN || and µ̂XN are exponentially
tight uniformly under any tilted measures P(e,θ), as defined in (4), and therefore under
the measure tilted by spherical integrals. Hence, it suffices to prove that for all y 6= x, for
δ small enough, and K large enough,

lim sup
N

1
N

log
E[1XN∈V Kδ,yIN(XN , θ)]

EIN(XN , θ)
< 0.

By assumption, there exists θ ∈ Θx ∩ Cµ such that θ /∈ Θy for y 6= x. We introduce a new
spherical integral with argument θ′ and use again the continuity of JN to show that:

E[1XN∈V Kδ,yIN(XN , θ)]
EIN(XN , θ)

=
E[1XN∈V Kδ,y

IN (XN ,θ′)
IN (XN ,θ′)IN(XN , θ)]

EIN(XN , θ)
≤ e−NJ(y,θ′)−NF (θ)+NJ(y,θ)+Nε(δ)E[1XN∈V Kδ,yIN(XN , θ

′)]

≤ e−NJ(y,θ′)−NF (θ)+NJ(y,θ)+NF (θ′)+Nε(δ),

where ε(δ)→ 0 as δ → 0. We can conclude that

lim sup
N→+∞
δ→0

1
N

log
E[1XN∈V Kδ,yIN(XN , θ)]

EIN(XN , θ)
≤ − sup

θ′
{J(y, θ′)− F (θ′)}+ J(y, θ)− F (θ)

= −I(y) + J(y, θ)− F (θ) (12)
By assumption, θ /∈ Θy, and θ ∈ Cµ so that F (θ) = F (θ). Hence,

−I(y) + J(y, θ)− F (θ) < 0
and the conclusion follows from (12). Therefore, coming back to (11), we obtain since
θx ∈ Θx and I(x) = Ī(x),

lim inf
N→+∞

1
N

logP (|λXN − x| ≤ δ) ≥ −I(x).

�

In a first step, we identify a subset defined in terms of the subdifferential sets of F at
the points of non-differentiability where the large deviation lower bound holds. Let D be
the set of θ ≥ 0 such that F is differentiable at θ.

Lemma 2.1. The lower bound holds for any x > 2 such that I(x) = Ī(x) > 0 and

x /∈ E :=
⋃
θ∈Dc

( 1
2θ + ∂F (θ)

)
, (13)

where ∂F (θ) denotes the subdifferential of F at θ.
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Note that since F is a convex function, its subdifferentials are well defined. Moreover,
by Lemma 1.9, Dc ⊂ [ 1

2
√
A−1 ,+∞).

Proof. Let x > 2 such that I(x) = Ī(x) > 0 and x /∈ E. Since F (θ) ≥ θ2 for any θ ≥ 0 by
(6) and F is continuous by Remark 1.8, we deduce from Lemma 1.6 that θ 7→ J(x, θ)−F (θ)
is continuous and goes to −∞ as θ goes to +∞. Since Cµ is closed, the supremum

sup
θ∈Cµ

{
J(θ, x)− F (θ)

}
(14)

is achieved at some θ ∈ Cµ. We will show that θ ∈ D.
As Ī(x) 6= 0 we must have θ > 1

2Gσ(x). Indeed, F (θ) ≥ θ2 and J(x, θ) = θ2 for
θ ≤ 1

2Gσ(x) by Lemma 1.6 so that

sup
θ≤ 1

2Gσ(x)
{J(x, θ)− F (θ)} = 0.

Since Ī(x) = I(x), we deduce by Fermat’s rule that θ is a critical point of J(x, .)−F and
therefore satisfies the condition:

0 ∈ ∂J
∂θ

(x, θ)− ∂F (θ) = x− 1
2θ − ∂F (θ) .

Since x /∈ E, we deduce that F is differentiable at θ.
According to Theorem 1.13, to prove that the lower bound holds at x, it suffices to

show that θ /∈ Θy for any y 6= x. Let us proceed by contradiction and assume that there
exists y ≥ 2, y 6= x, such that θ ∈ Θy. As F is differentiable at θ, it should be a critical
point of both J(y, .)− F and J(x, .)− F . Therefore, we should have

∂

∂θ
J(y, θ) = ∂

∂θ
J(x, θ).

If Gσ(y) < 2θ, then we obtain by Lemma 1.6 and the fact that Gσ(x) < 2θ that x = y. If
Gσ(y) ≥ 2θ, then we have

x− 1
2θ = 2θ.

On the other hand, 2θ ≤ Gσ(y) ≤ 1 and therefore we get the unique solution 2θ = Gσ(x).
As we assumed that 2θ > Gσ(x), we get a contradiction and conclude that θ /∈ Θy for any
y 6= x such that Gσ(y) ≥ 2θ, which completes the proof. �

We are now ready to prove the following result:

Proposition 2.2. Assume that there exists θ0 > 0 such that [θ0,+∞) ⊂ Cµ and such that
F is differentiable on (θ0,+∞). There exists xµ ∈ [2,+∞) such that for any x ≥ xµ,
I(x) = Ī(x) and the large deviation lower bound holds for any x ≥ xµ with rate function
I(x).

Proof. On one hand,
sup
θ≤θ0

{J(θ, x)− F (θ)} ≤ θ0x+ C, (15)

where C is some positive constant. Since Ī(x) ≥ x2/4A − o(x2) by (9), we deduce that
there exists xµ ∈ [2,+∞) such that for x ≥ xµ, Ī(x) > 0 and together with (15) that the
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supremum of J(., x)− F is achieved in [θ0,+∞), and therefore in Cµ by our assumption.
By definition of Cµ, we deduce that for any x ≥ xµ, Ī(x) = I(x) > 0. In view of Lemma
2.1, it remains to show that E, defined in (13), is a bounded set. From our assumption
that F is differentiable on (θ0,+∞) and Lemma 1.9, we deduce that

Dc ⊂
[ 1

2
√
A− 1

, θ0

]
.

We observe that since 0 ≤ F (θ) ≤ Aθ2, we have for any ζ ∈ ∂F (θ),
ζθ ≤ F (2θ)− F (θ) ≤ 4Aθ2,

and thus ζ ≤ 4Aθ. Therefore, the set E defined in Lemma 2.1 is bounded, which ends
the proof.

�

3. Asymptotics of the annealed spherical integral

In this section we prove Proposition 1.7. Taking the expectation first with respect to
XN , the annealed spherical integral is given by

FN(θ) = 1
N

logEXNEe[exp(Nθ〈e,XNe〉)]

= 1
N

logEe exp
(
f(e)

)
,

where

f(e) =
∑
i<j

L
(
2
√
Nθeiej

)
+

N∑
i=1

L(
√

2Nθe2
i

)
.

In a first step, we will prove the following variational representation of the upper and
lower limits of FN(θ).

Lemma 3.1. Let XN be a Wigner matrix satisfying Assumptions 1.1 and 1.2. Then for
any θ > 0,

F (θ) ≤ lim inf
N→+∞

FN(θ) ≤ lim sup
N→+∞

FN(θ) ≤ F (θ)

with
F (θ) = lim sup

δ→0,K→+∞
δK→0

sup
c=c1+c2+c3

ci≥0

lim sup
N→+∞

FN
c1,c2,c3(δ,K),

F (θ) = sup
c=c1+c2+c3

ci≥0

lim inf
δ→0,K→+∞

δK→0

lim inf
N→+∞

FN
c1,c2,c3(δ,K),

where

FN
c1,c2,c3(δ,K) = sup

si≥
√
cKN1/4

|
∑
s2
i
−c3N|≤δN

sup
√
cδ≤tiN−1/4≤

√
cK

|
∑
t2
i
−Nc2|≤δN

{θ2

c2

(
c2

1 + 2c1c2 +Bc2
3
)
− 1

2
(
c2 + c3

)
+ 1
N

∑
i,j

L
(2θsitj√

Nc

)
+ 1

2N
∑
i,j

L
(2θtitj√

Nc

)
+ sup

ν∈P(I1)∫
x2dν(x)=c1

{
Φ(ν, s)−H(ν|γ)

}}
,
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and
Φ(ν, s) =

∑
i

∫
L
(2θxsi√

Nc

)
dν(x),

with I1 = [−
√
cδN1/4,

√
cδN1/4]. Here, we have set γ to be the standard Gaussian law

and
H(ν|γ) =

∫
log dν

dγ
(x)dν(x) .

Hereafter, oδ(1) is a function which goes to zero as δ goes to zero (or infinity depending
on the context). εK(δ) denotes a function which goes to zero as δ goes to zero or infinity
while K is fixed. O(δ) is a function such that there exists a finite constant C such that
the modulus of O(δ) is bounded by Cδ. These functions may change from line to line.

Proof. We use the representation of the law of the vector e uniformly distributed on the
sphere as a renormalized Gaussian vector g/‖g‖2 where g is a standard Gaussian vector
in RN , to write

Ee exp
(
f(e)

)
= E [exp(Σ(g))] ,

where g = (g1, . . . , gN) and

Σ(g) =
∑
i<j

L
(

2
√
Nθ

gigj∑N
i=1 g

2
i

)
+
∑
i

L
(√

2Nθ g2
i∑N

i=1 g
2
i

)
.

To study the large deviation of Σ(g), we split the entries of g into three possible regime: the
regime where gi � N1/4, an intermediate regime where gi ' N1/4 and finally gi � N1/4.
Fix some K ≥ 1, δ > 0 such that 0 < 2δ < K−1. Let c1, c2, c3 > 0 and c = c1 + c2 + c3.
We assume that 0 < K−1 ≤ c1 ≤ c ≤ K. Define I1, I2, I3 as

I1 = [0,
√
cδN

1
4 ]

I2 = (
√
cδN

1
4 ,
√
cKN

1
4 ]

I3 = (
√
cKN

1
4 ,
√
N(c+ 3δ)].

Let for i = 1, 2, 3, Ji = {j : |gj| ∈ Ii} and ĉNi =
∑

j∈Ji g
2
j/N . In a first step, we will fix

the empirical variances ĉNi and compute the asymptotics of

FN
c1,c2,c3(θ, δ) = E[exp(Σ(g))1Aδc1,c2,c3

].

where
Aδc1,c2,c3 :=

⋂
1≤i≤3

{|ĉNi − ci| ≤ δ}.

Let

Σc(g) =
∑
i<j

L
(

2θ gigj√
Nc

)
+
∑
i

L
(√

2θ g2
i√
Nc

)
.

Using the fact the L(√.) is Lipschitz, we prove in the next lemma that on the event
Aδc1,c2,c3 , Σc(g) is a good approximation of Σ(g).
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Lemma 3.2. On the event Aδc1,c2,c3,
Σ(g)− Σc(g) = NoδK(1), as δK → 0. (16)

Moreover

|J3| ≤
3
√
N

K
, |J2 ∪ J3| ≤

3
√
N

δ
.

Proof. Note that since µ is symmetric, L(x) = L(|x|) and since we assumed L(√.) Lips-
chitz, for any x, y ∈ R, |L(x)− L(y)| ≤ L|x2 − y2| for some finite constant L. Therefore,∑
1≤i 6=j≤N

∣∣L(2
√
Nθ

gigj∑N
i=1 g

2
i

)− L
(

2θ gigj√
Nc

)∣∣ ≤ 4Lθ2

N

∑
i,j

g2
i g

2
j

∣∣∣∣ 1
(ĉN1 + ĉN2 + ĉN3 )2 −

1
c2

∣∣∣∣
≤ CNLθ2(c+ ĉN1 + ĉN2 + ĉN3 ) δ

c2 ≤ C ′NLθ2δK,

where C,C ′ are numerical constants and we used K−1 < c < K, and 2δ < K−1. We get a
similar estimate for the diagonal terms. The estimates on |J3| and |J2| are straightforward
consequences of Tchebychev’s inequality.

�

We next fix the set of indices J1, J2, J3. Using the invariance under permutation of the
distribution of g, we can write

FN
c1,c2,c3(θ, δ) =

∑
0≤k≤3

√
Nδ

0≤l≤3
√
NK

(
N

k

)(
N − k
l

)
F k,l
c1,c2,c3 ,

where
F k,l
c1,c2,c3 = E

[
exp(Σc(g))1Aδc1,c2,c3∩Ik,l

]
and

Ik,l =
{
J3 = {1, . . . , k}, J2 = {k + 1, . . . , k + l}, J1 = {k + l + 1, . . . , N}

}
.

As the number of all the possible configurations of J2 and J3 are sub-exponential in N by
Lemma 3.2, that is, for any k ≤ 3

√
N/K and l ≤ 3

√
N/δ,

max
((N

k

)
,

(
N − k
l

))
= eO(

√
N
δ

logN),

we are reduced to compute F k,l
c1,c2,c3 for fixed k, l. More precisely, we have the following

result.

Lemma 3.3.

logFN
c1,c2,c3(θ, δ) = max

k≤3
√
N/K

l≤3
√
N/δ

logF k,l
c1,c2,c3 +O

(√N
δ

logN
)
.

To simplify the notations, we denote for any a, b ∈ {1, 2, 3},

∀x, y ∈ RN , Σa,b(x, y) = 1
2N

∑
i∈Ja,j∈Jb

L

(
2θ xiyj√

Nc

)
,
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if a 6= b, and

∀x, y ∈ RN , Σa,a(x, y) = 1
2N

∑
i 6=j∈Ja

L

(
2θ xiyj√

Nc

)
+ 1
N

∑
i∈Ja

L
(√

2θ xiyi√
Nc

)
,

where now J3 = {1, . . . , k}, J2 = {k + 1, . . . , k + l}, J1 = {k + l + 1, . . . , N}.
Next, we single out the interaction terms which involves the quadratic behavior of L at

0 or at +∞.

Lemma 3.4. On the event Aδc1,c2,c3,

Σ1,1(g, g) + 2Σ1,2(g, g) + Σ3,3(g, g) = θ2

c2

(
c2

1 + 2c1c2 +Bc2
3
)

+ oδK(1) + oK(1),

as δK → 0 and K → +∞.

Proof. Observe that for i ∈ J1, j ∈ J1 ∪ J2, |gigj| ≤
√
NKδc. Since L(x) ∼0 x

2/2, we get,

Σ1,1(g, g) + 2Σ1,2(g, g) = θ2 (ĉN1 )2

c2 + 2θ2 ĉ
N
1 ĉ

N
2

c2 + oδK(1), (17)

as δK → 0. On the event Aδc1,c2,c3 , we have |(ĉNi )2− c2
i | = O(δc) for any i ∈ {1, 2, 3}. But

c ≥ K−1, therefore

Σ1,1(g, g) + 2Σ1,2(g, g) = θ2 c
2
1
c2 + 2θ2 c1c2

c2 + oδK(1).

For i, j ∈ J3, |gigj| ≥ K
√
cN . Since L(x) ∼+∞

B
2 x

2, we deduce similarly that

Σ3,3(g, g) =
(B

2 + oK(1)
) 2θ2

N2c2

(∑
i∈J3

g2
i

)2
= Bθ2 c

2
3
c2 + oK(1), (18)

as K → +∞, which gives the claim.
�

From the Lemmas 3.2 and 3.4, we have on the event Aδc1,c2,c3 ,

Σ(g) = θ2

c2

(
c2

1 + 2c1c2 +Bc2
3
)

+ Σ1,3(g, g) + 2Σ2,3(g, g) + Σ2,2(g, g) + oδK(1) + oK(1). (19)

We now show that the deviations of the variables gi, i ∈ J2∪J3 do not lead to any entropic
terms, which yields the following lemma.

Lemma 3.5. Let k, l ∈ N such that k + l ≤ N . Define

Sc1,c2,c3(δ) = max
ti∈I2,i≤l

|
∑
i t

2
i
−c2N|≤δN

max
si∈I3,i≤k

|
∑
i s

2
i
−c3N|≤δN

logE
(

exp
{
N(Σ1,3(g, s)+2Σ2,3(t, s)+Σ2,2(t, t))

}
1Aδc1

)
,

where

Aδc1 =
{

(gi)Ni=k+l+1 ∈ IN−k−l1 : |
N∑

i=k+l+1

g2
i −Nc1| ≤ Nδ

}
. (20)
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Then,

Sc1,c2,c3(δ/2)− N

2 (c2 + c3)−oδ(1)N +O
(√N

δ
log δ√

NK

)
≤ logE

(
exp
{
N(Σ1,3(g, g) + 2Σ2,3(g, g) + Σ2,2(g, g))

}
1Aδc1,c2c3∩Ik,l

)
≤ Sc1,c2,c3(δ)− N

2 (c2 + c3) + oδ(1)N +O
(√N
δ2 log(1/δ)

)
.

Proof. Integrating on gi, i ≤ k + l, we find

E
(

exp
{
N(Σ1,3(g, g) + 2Σ2,3(g, g) + Σ2,2(g, g))

}
1Aδc1,c2c3∩Ik,l

)
≤ 1

(2π) k+l
2

∫
1{| 1

N

∑k+l
i=1 g

2
i−(c2+c3)|≤2δ}e

− 1
2
∑k+l
i=1 g

2
i

k+l∏
i=1

dgi

× max
t∈Il2

|
∑
i t

2
i
−c2N|≤δN

max
s∈Ik3

|
∑
i s

2
i
−c3N|≤δN

E
(

exp
{
N(Σ1,3(g, s) + 2Σ2,3(t, s) + Σ2,2(t, t))

}
1Aδc1

)
,

But, using the fact that c ≤ K, we get

∫
1{| 1

N

∑k+l
i=1 g

2
i−(c2+c3)|≤2δ}e

− 1
2
∑k+l
i=1 g

2
i

k+l∏
i=1

dgi ≤ e−
1
2 (1−δ)(c2+c3−2δ)N

∫
e−

δ
2
∑k+l
i=1 g

2
i

k+l∏
i=1

dgi

≤ (2π) k+l
2 e−

N
2 (c2+c3)+(O(δ)+O(δK))Nδ−

k+l
2 .

By Lemma 3.2 we have k + l = O(
√
N/δ).Therefore,

logE
(

exp
{
N(Σ1,3(g, g) + 2Σ2,3(g, g) + Σ2,2(g, g))

}
1Aδc1,c2,c3∩Ik,l

)
≤ −N2 (c2 + c3) +O(δ)N +O(δK)N +O

(√N
δ

log(1/δ)
)

+ max
ti∈I2,i≤l

|
∑
i t

2
i
−c2N|≤δN

max
si∈I3,i≤k

|
∑
i s

2
i
−c3N|≤δN

logE
(

exp
{
N(Σ1,3(g, s) + 2Σ2,3(t, s) + Σ2,2(t, t))

}
1Aδc1

)
.

To get the converse bound, we take t ∈ I l2, s ∈ Ik3 , optimizing the above maximum where
δ is replaced by δ/2. We next localize the integral on the set Bδ where |gi−si| ≤ δ/8

√
NK,

1 ≤ i ≤ k, |gi− ti| ≤ δ/4, k+ 1 ≤ i ≤ k+ l. One can check that Bδ×Aδc1 ⊂ A
δ
c1,c2c3 ∩Ik,l,

and because L ◦ √. is Lipschitz, we have on this event

|Σ1,3(g, s) + 2Σ2,3(t, s) + Σ2,2(t, t)− (Σ1,3(g, g) + 2Σ2,3(g, g) + Σ2,2(g, g))| ≤ Cθ2δ,
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where C is some positive constant. Hence

E
(

exp
{
N(Σ1,3(g, g) + 2Σ2,3(g, g) + Σ2,2(g, g))

}
1Aδc1,c2c3∩Ik,l

)
≥ 1

(2π) k+l
2

∏
1≤i≤k

∫
g∈I3

1|g−si|≤δ/8
√
NKe

− 1
2g

2
dg
∏

1≤i≤l

∫
g∈I2

1|g−tj |≤δ/4e
− 1

2g
2
dg

×e−CNθ2δE
(

exp
{
N(Σ1,3(g, s) + 2Σ2,3(t, s) + Σ2,2(t, t))

}
1Aδc1

)
,

≥ e−
N
2 (c2+c3)+O(δ)N

( δ

8
√

2πNK

)k( δ

4
√

2π

)l
E
(

exp
{
N(Σ1,3(g, s) + 2Σ2,3(t, s) + Σ2,2(t, t))

}
1Aδc1

)
which completes the proof of Lemma 3.4 as k + l = O(

√
N/δ) and K−1 ≥ δ.

�

Hence, we are left to estimate

ΛN
1 = E

[
exp

(
NΣ1,3(g, s)

)
1Aδc1

]
,

where s ∈ Ik3 satisfies |
∑

i s
2
i − Nc3| ≤ δN and Aδc1 is defined in (20). Let µ̂N =

1
|J1|
∑

i∈J1
δgi . We can write

Σ1,3(g, s) = |J1|
N

k∑
i=1

∫
L

(
2θxsi√
Nc

)
dµ̂N(x).

The first difficulty in estimating ΛN
1 lies in the fact that the function

x 7→
k∑
i=1

L
(2θxsi√

Nc

)
,

is not bounded so that Varadhan’s lemma (see [15, Theorem 4.3.1]) cannot be applied
directly. The second issue is that we need a large deviation estimate which is uniform in
the choice of s ∈ Ik3 such that |

∑k
i=1 s

2
i − Nc3| ≤ δN . In the next lemma, we prove a

uniform large deviation estimate of the type of Varadhan’s lemma. The proof is postponed
to the appendix 8.2.

Lemma 3.6. Let f : R → R such that f(0) = 0 and f(√.) is a L-Lipschitz function.
Let MN ,mN be sequences such that MN = o(

√
N) and mN ∼ N . Let g1, . . . , gmN be

independent Gaussian random variables conditioned to belong to [−MN ,MN ]. Let δ ∈
(0, 1) and c > 0 such that K−1 < c < K and 2δ < K−1. Then,∣∣∣ 1

N
logEe

∑mN
i=1 f

(
gi√
c

)
1|

∑mN
i=1 g

2
i−cN |≤δN

− sup
ν∈P([−MN,MN ])∫

x2dν=c

{∫
f
( x√

c

)
dν(x)−H(ν|γ)

}∣∣∣
≤ εL,K(N) + εL(δK),

where εL,K(N) (resp. εL(x)) goes to zero as N → +∞ (resp. as x → 0), while L,K are
fixed.
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Let s ∈ I l3 such that |
∑

i s
2
i −Nc3| ≤ δN . We consider the function

f : x 7→
k∑
i=1

L
(2θxsi

√
c1√

Nc

)
.

Using the fact that δ ≤ c, one can observe that f(√.) is 8θ2L-Lipschitz. Using the
previous lemma with MN = δN1/4, we deduce that for any c1 ≥ K−1,∣∣∣ 1

N
log ΛN

1 − sup
ν∈P(I1)∫
x2dν(x)=c1

{ k∑
i=1

∫
L
(2θxsi√

Nc

)
dν(x)−H(ν|γ)

}∣∣∣ ≤ εK(N) + oδK(1), (21)

where εK(N)→ 0 as N → +∞. Putting together (19), Lemma 3.5 and (21), we obtain
1
N

logE
(

exp(Σ(g))1Ac1,c2,c3∩Ik,l

)
−Ψ(δ)

k,l (c1, c2, c3) ≤ εδ,K(N) + oδK(1) + oK(1) + oδ(1),

and similarly for the lower bound where where Ψ(δ)
k,l (c1, c2, c3) is replaced by Ψ(δ/2)

k,l (c1, c2, c3);
with εK(N)→ 0 as N → +∞, whereas δ and K are fixed,

Ψ(δ)
k,l (c1, c2, c3) = Q(c1, c2, c3)− 1

2
(
c2 + c3

)
+ max

ti∈I2,i≤l
|
∑
i t

2
i
−c2N|≤δN

max
si∈I3,i≤k

|
∑
i s

2
i
−c3N|≤δN

{
Σ2,3(t, s) + Σ2,2(t, t) + sup

ν∈P(I1)∫
x2dν1(x)=c1

{Φ(ν, s)−H(ν|γ1)}
}
,

with

Q(x, y, z) = θ2x
2 + 2xy +Bz2

(x+ y + z)2 , and Φc(ν, s) =
k∑
i=1

∫
L
(2θxsi√

Nc

)
dν(x). (22)

By Lemma 3.3, we obtain
1
N

logFN
c1,c2,c3(θ, δ)− max

k≤3
√
N/K

l≤3
√
N/δ

Ψ(δ)
k,l (c1, c2, c3) ≤ εδ,K(N) + oδK(1) + oK(1) + oδ(1), (23)

and similarly for the lower bound, where Ψ(δ)
k,l (c1, c2, c3) is replaced by Ψ(δ/2)

k,l (c1, c2, c3). To
prove the lower bound of Lemma 3.1, we can first write

lim inf
N→+∞

FN(θ) ≥ lim inf
N→+∞

1
N

logFN
c1,c2,c3(θ, 2δ).

Using (23), we deduce

lim inf
N→+∞

FN(θ) ≥ lim inf
N→+∞

max
k≤3
√
N/K

l≤3
√
N/δ

Ψ(δ)
k,l (c1, c2, c3)− oδK(1)− oK(1)− oδ(1).

To complete the proof of the lower bound, one can observe that

Σ2,2(t, t) = 1
N

∑
i,j

L
(

2θ titj√
Nc

)
+ oN(1),
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uniformly in ti ∈ I2 such that |
∑

i t
2
i − c2N | ≤ δN . Indeed, the diagonal terms are

negligible in this case since
1
N

∑
ti∈J2

t4i
Nc2 ≤

K

c
√
N

1
N

∑
i∈J2

t2i = εK(N).

To complete the proof of the upper bound, we will use the exponential tightness of ||g||2
and of ||g||−2

J1
. More precisely, we claim that

lim
K→+∞

lim sup
N→+∞

1
N
P(||g||2 ≥ KN, ||g||2J1 ≤ K−1N) = −∞. (24)

Indeed, it is clear by Chernoff’s inequality that for N large enough
P(||g||2 ≥ KN) ≤ Ce−CNK ,

where C is a positive numerical constant. Whereas, using Lemma 3.2 and a union bound,

P(||g||2J1 ≤ K−1N) ≤
∑

m≤3
√
N/δ

(
N

m

)
P
(N−m∑

i=1

g2
i ≤ K−1N

)
.

By Chernoff’s inequality, we have for any m ≤ N ,

P
(N−m∑

i=1

g2
i ≤ K−1N

)
≤ e−(N−m)Λ∗(K−1),

where Λ∗(x) = x
2 −

1
4 −

1
2 log(2x) for any x > 0. Since Λ∗(K−1)→ +∞ as K → +∞ and

for any m ≤ 2
√
N/δ, the binomial

(
N
m

)
is negligible in the exponential scale, we deduce

the claim (24).
Using that L(x) ≤ Ax2/2 for any x ∈ R, we have

Σ(g) ≤ Aθ2N.

From the exponential tightness (24), we deduce that for K large enough
E exp(Σ(g))1{ 1

N
||g||2≥K, 1

N
||g||2J1

≤K−1} ≤ 1. (25)

Let EK = { 1
N
||g||2 ≥ K, 1

N
||g||2J1

≤ K−1}. We have

0 ≤ lim sup
N→+∞

FN(θ) ≤ max
(

lim sup
N→+∞

1
N

logE
(
eΣ(g)1EK

)
, lim sup
N→+∞

1
N

logE
(
eΣ(g)1EcK

))
Since we took K so that (25) holds and FN(θ) ≥ 0 as XN is centered, we deduce that

lim sup
N→+∞

FN(θ) ≤ lim sup
N→+∞

1
N

logE
(
eΣ(g)1EK

)
. (26)

Let now Cδ be a δ-net for the `∞-norm of the set
{(c1, c2, c3) ∈ R3

+ : c1 + c2 + c3 ≤ K, c1 ≥ K−1}.
As |Cδ| = O(K/δ3) is independent of N , we have

lim sup
N→+∞

FN(θ) ≤ max
(c1,c2,c3)∈Cδ

lim sup
N→+∞

1
N

logFN
c1,c2,c3(θ, δ).
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From (23), we deduce

lim sup
N→+∞

FN(θ) ≤ max
c=c1+c2+c3
c1≥K−1

lim sup
N→+∞

max
k≤3
√
N/K

l≤3
√
N/δ

Ψ(δ)
k,l (c1, c2, c3) + oδK(1) + oK(1) + oδ(1).

Taking now the limit as δ → 0 and K → +∞ such that δK → 0, we obtain the upper
bound of Lemma 3.1. �

We are now ready to prove Proposition 1.7. Building on Lemma 3.1, we show that we
can optimize on the total norm c in order to simplify the variational problem.

Proof of Proposition 1.7 . We use the notation of Lemma 3.1. Observe that FN
0,c2,c3(δ,K) =

−∞ for any c2, c3 ≥ 0. Therefore, we may assume that c = c1 + c2 + c3 > 0. We make the
following changes of variables. For i = 1, 2, 3, we set αi = ci

c
, and if hc : x 7→ x/

√
c, and

ν ∈ P(R), we set ν1 = hc#ν to be the push-forward of ν by hc, defined for any bounded
continuous function f to satisfy∫

f(x)dν1(x) =
∫
f
( x√

c

)
dν(x). (27)

For any ν ∈ P(I1) such that
∫
x2dν(x) = c1, we have

∫
x2dν1(x) = α1 and

H(ν|γ) = H(ν) + 1
2c1 + 1

2 log(2π) and H(ν) =
∫

log dν
dx
dν(x) = H(ν1) + 1

2 log c. (28)

We obtain
F (θ) = lim sup

δ→0,K→+∞
δK→0

sup
α1+α2+α3=1

αi≥0

sup
c≥0

lim sup
N→+∞

FNα1,α2,α3,c(δ,K),

and similarly for F (θ), where

FNα1,α2,α3,c(δ,K) = sup
si∈I3

|
∑
s2
i
−Nα3|≤Nδ

sup
ti∈I2

|
∑
t2
i
−Nα2|≤Nδ

{
θ2(α2

1 + 2α1α2 +Bα2
3
)
− 1

2c+ 1
2 log c

+ 1
N

∑
i,j

L
(2θsitj√

N

)
+ 1

2N
∑
i,j

L
(2θtitj√

N

)
+ sup

ν1∈P(hc(I1))∫
x2dν1(x)=α1

{
Φ1(ν1, s)−H(ν1)

}}
− 1

2 log(2π),

Note that hc(I1) = [−
√
δN1/4,

√
δN1/4] is independent of c. Optimizing over c, and see

that the maximum is achieved at c = 1 for N large enough.
�

4. The large deviations close to the bulk

We prove in this section Proposition 1.16. By Theorem 1.13, the large deviation lower
bound holds at every x > 2 such that I(x) = Ī(x) 6= 0 so that there exists θ ∈ Θx

which does not belong to any Θy for y 6= x. In the following lemma, we prove that if
F (θ) = F (θ) = θ2 on a interval (0, b) with b > 1/2, then the large deviation lower bound
holds in a neighborhood of 2 and the rate function I is equal to the one of the GOE.
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Lemma 4.1. If for θ ∈
(
0, 1

2ε

)
, for some ε ∈ (0, 1), F (θ) = F (θ) = θ2, then for any

x ∈ [2, ε+ 1
ε
),

Ī(x) = I(x) = IGOE(x).
As a consequence, Ī(x) > 0 for any x > 2. Moreover, for x ∈ [2, ε + 1

ε
) the optimizer in

I is taken at θx = 1/2G(x) and θx /∈ Θy for all y ∈ [2,+∞)\{x}.

Proof. As F (θ) ≥ θ2 for any θ ≥ 0, we have that
sup

θ∈[0,1/2ε)

{
J(θ, x)− θ2} ≤ I(x) ≤ Ī(x) ≤ sup

θ≥0

{
J(θ, x)− θ2}.

But if x ∈ [2, ε+ 1
ε
),

IGOE(x) = sup
θ≥0

{
J(θ, x)− θ2}

is achieved at θ = 1/2G(x) ∈ (0, 1/2ε) sinceG−1(ε) = ε+1/ε. Therefore, if x ∈ [2, 2ε+ 1
2ε),

then we obtain
I(x) = Ī(x) = IGOE(x).

The consequences are obvious as G is invertible on [2,+∞).
�

The result of Proposition 1.16 then follows from Lemma 4.1 and Lemma 1.9. We now
study the convergence of the annealed spherical integrals for large values of θ, for which
we need to make additional assumptions on µ.

5. Case where ψ is an increasing function

In this section we make the additional assumption that ψ is non-decreasing. This
assumption is in particular satisfied in the sparse Gaussian case below.

Example 5.1 (Sparse Gaussian distribution). Let µ be the law of ξΓ where ξ is a Bernoulli
variable of parameter p ∈ (0, 1) and Γ is a standard Gaussian random variable. In that
case we have for any x ∈ R,

ψ(x) = log[(1− p) + p exp(x2/2p)]
x2 =

∫ 1

0

t

(1− p) exp(−(xt)2/2p) + p
dt

is increasing in x as the integral of increasing functions on R+.

5.1. Simplification of the variational problem. We prove in this section that when
ψ is increasing on R+, Cµ = R+ and we can simplify the limit F (θ) as follows.

Proposition 5.2. For any θ ≥ 0, F (θ) = F (θ) = F (θ) where

F (θ) = sup
α∈[0,1]

sup
ν∈P(R)∫
x2dν(x)=α

{
θ2α2+Bθ2(1−α)2+

∫
L(2θ

√
1− αx)dν(x)−H(ν)−1

2 log(2π)−1
2

}
Proof. With the notation of Proposition 1.7, we need to bound, for any δ,K > 0, and
α1 + α2 + α3 = 1, the quantity FNα1,α2,α3(δ,K). Since ψ is non-decreasing on R+ and
symmetric, we have for any s ∈ Ik3 such that |

∑
i s

2
i − α3N | ≤ Nδ, that for any i ∈
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{1, . . . , k}, si ≤
√

(α3 + δ)N so that for any x ∈ R, ψ(2θsix/
√
N) ≤ ψ(2θ

√
(α3 + δ)x).

Thus,
k∑
i=1

∫
L
(2θsix√

N

)
dν1(x) = 4θ2

N

k∑
i=1

s2
i

∫
x2ψ

(2θsix√
N

)
dν1(x)

≤
∫
L
(

2θ
√
α3 + δx

)
dν1(x) =

∫
L
(

2θ√α3x
)
dν1(x) + oδ(1)

where we finally use that L ◦√. is Lipschitz. On the other hand, since L(x) ≤ Bx2/2 for
any x ≥ 0,

1
N

l∑
j=1

k∑
i=1

L
(2θsitj√

N

)
+ 1

2N

l∑
i,j=1

L
(2θtitj√

N

)
≤ θ2B(α2

2 + 2α3α2) + oδ(1).

Therefore, we have the upper bound,

F (θ) ≤ sup
α1+α2+α3=1

sup
ν1∈P(R)∫
x2dν1(x)=α1

{
θ2(α2

1 + 2α1α2
)

+ θ2B(α3 + α2)2

+
∫
L(2θ√α3x)dν1(x)−H(ν1)− 1

2 log(2π)− 1
2

}
.

We can further simplify this optimization problem by showing that the assumption on
the monotonicity of ψ entails that we can take α2 = 0 in the above RHS. Indeed, note
that ψ(0) = 1/2. Therefore, ψ is bounded below by 1/2 everywhere. Hence, we deduce
that

2θ2α1α2 +
∫
L(2θ√α3x)dν1(x) = 2θ2α1α2 + 4θ2α3

∫
x2ψ(2θ√α3x)dν1(x)

≤ 4θ2(α2 + α3)
∫
x2ψ(2θ

√
α2 + α3x)dν1(x).

Thus, with the change of variables α3 + α2→α3, we conclude that

F (θ) ≤ sup
α1+α3=1

sup
ν1∈P(R)∫
x2dν1(x)=α1

{
θ2α2

1 + θ2Bα2
3 +

∫
L(2θ√α3x)dν1(x)−H(ν1)− 1

2 log(2π)− 1
2

}
.

To prove that F (θ) is bounded from below by the same quantity, we fix α1, α2, α3 such
that α1 + α2 + α3 = 1, α2 = 0, and ν ∈ P(R) such that

∫
x2dν(x) = α1. We take in

the definition of FNα1,α2,α3(K, δ), k = 1, s =
√
α3N , and ν1 = hλ# 1

ν(I1)ν(. ∩ I1), with the
notations of (27). We take λ such that

∫
x2dν1(x) = α1, which goes to 1 as N goes to

infinity. We have

FNα1,α2,α3(K, δ) ≥ θ2(α2
1 +Bα2

3
)

+
∫
L(2θ√α3x)dν1(x)−H(ν1)− 1

2 log(2π)− 1
2 .

We deduce by monotone convergence and the fact that L(√.) is Lipschitz that

F (θ) ≥ θ2(α2
1 +Bα3

)
+
∫
L(2θ√α3x)dν(x)−H(ν)− 1

2 log(2π)− 1
2 .

�



26 FANNY AUGERI, ALICE GUIONNET, AND JONATHAN HUSSON

We next compute the supremum over ν in the definition of F in Proposition 5.2. To
this end, we denote by G : [B/2,+∞)→ R ∪ {+∞} the function given by

∀ζ ∈ [B/2,+∞), G(ζ) = log
∫

exp(L(x)− ζx2)dx . (29)

Lemma 5.3. Let
l = − lim

ζ→B/2
G′(ζ) ∈ (0,+∞]. (30)

For any C ∈ (0, l), there exists a unique ζ ∈ (B/2,+∞) solution to the equation
G′(ζ) = −C .

It is denoted by ζC. For C ≥ l, we set ζC = B/2. Then,

sup
ν∈P(R)∫
x2dν(x)=C

[ ∫
L(x)dν(x)−H(ν)

]
= sup

ν∈P(R)∫
x2dν(x)≤C

[BC
2 +

∫ (
L(x)− B

2 x
2
)
dν(x)−H(ν)

]
= CζC +G(ζC)

Note that if l is finite, then so is G(B/2) since G is a convex function.
Proof. Define the function

∀ν ∈ P(R), E(ν) = H(ν) +
∫ (B

2 x
2 − L(x)

)
dν(x).

We first show that
inf

ν∈P(R)∫
x2dν(x)=C

E(ν) = inf
ν∈P(R)∫
x2dν(x)≤C

E(ν). (31)

Clearly the RHS is bounded above by the LHS. To prove the equality, we therefore need
to show that for any ν ∈ P(R) such that

∫
x2dν(x) ≤ C, there exists νε such that∫

x2dνε(x) = C, and
lim
ε→0

νε = ν, and lim
ε→0

E(νε) ≥ E(ν).

We set νε = (1 − ε)ν + εγε where γε is a Gaussian measure of variance 1 and mean mε,
given, if D =

∫
x2dν(x) by

mε =
√
C − (1− ε)D

ε
− 1 .

With this choice of mε, one can check that
∫
x2dνε(x) = C. Moreover, νε converges

weakly to ν as ε goes to zero. As
∫
x2dνε(x) ≤ C, and (B2 x

2−L(x))/x2 goes to zero as x
goes to infinity, we deduce that

lim
ε→0+

∫ (B
2 x

2 − L(x)
)
dνε(x) =

∫ (B
2 x

2 − L(x)
)
dν(x). (32)

Besides, as H is lower semi-continuous,
lim inf
ε→0+

H(νε) ≥ H(ν).

We conclude together with (32) that, limε→0+ E(νε) ≥ E(ν), which ends the proof of the
claim (31). Observe that E is a lower semi-continuous function for the weak topology
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since H is lower semi-continuous and x 7→ Bx2/2− L(x) is non-negative and continuous.
Moreover, the set {

ν ∈ P(R) :
∫
x2dν(x) ≤ C

}
,

is a compact set. Thus, the supremum of E over the set above is achieved. We will
identify the maximizer. For any ζ ∈ [B/2,+∞) such that G(ζ) < +∞, we let νζ be the
probability measure given by

dνζ = exp(L(x)− ζx2)∫
exp(L(y)− ζy2)dydx.

We will show that
inf

ν∈P(R)∫
x2dν(x)≤C

E(ν) = E(νζC ). (33)

Let µ be a probability measure such that H(µ) < +∞ and
∫
x2dµ(x) ≤ C. As H(µ) <

+∞, we can write,
µ = (1 + ϕ)dνζC ,

where ϕ is some measurable function such that ϕ ≥ −1 νζC -a.s. and
∫
ϕdνζC = 0. We

have

E(µ) = E(νζC ) +
∫ (B

2 x
2 − L(x)

)
ϕ(x)dνζC (x)

+
∫

(1 + ϕ) log(1 + ϕ)dνζC +
∫

log dνζC
dx

ϕdνζC .

By convexity of x 7→ x log x, we know that∫
(1 + ϕ) log(1 + ϕ)dνζC ≥ (1 +

∫
ϕdνζC ) log(1 +

∫
ϕdνζC ) = 0.

Therefore, using again that
∫
ϕdνζC = 0 to cancel the contribution from the partition

function of νζC , we get

E(µ)− E(νζC ) ≥
∫ (

B

2 x
2 − L(x) + log dνζC

dx

)
ϕ(x)dνζC (x)

=
(B

2 − ζC
)∫

x2ϕ(x)dνζC (x) =
(B

2 − ζC
)(∫

x2dµ(x)−
∫
x2dνζC (x)

)
.

If C < l, then
∫
x2dνζC (x) = C. Since ζC ≤ B/2 and

∫
x2dµ(x) ≤ C so that the RHS is

non negative. If C ≥ l, then ζC = B/2, and we also get E(µ) ≥ E(νζC ). This shows that
νζC achieves the infimum in (33), and ends the proof of Lemma 5.3. �

5.2. Differentiability of the limit of the annealed spherical integral. This section
is devoted to the proof of the following proposition.
Proposition 5.4. F is continuously differentiable on (1/

√
B − 1,+∞) except possibly at

the point θ0 such that
θ0 = inf

{
θ : F (θ) > θ2}.

Moreover, for any θ ≤ 1/2
√
B − 1,

F (θ) = θ2. (34)
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The second part of the claim of the above proposition (34) is due to Proposition 1.9
and the fact that A = B. From now on, we assume that θ2(B− 1) > 1 and wish to prove
the first part of Proposition 5.4. We define for any α ∈ [0, 1], and ν ∈ P(R),

Hθ(α, ν) = θ2α2 + θ2B(1− α)2 +
∫
L(2θ

√
1− αx)dν(x)−H(ν)− 1

2 log(2π)− 1
2 . (35)

By Proposition 5.2, we have
F (θ) = sup

(α,ν)∈S
Hθ(α, ν), (36)

where S = {(α, ν) ∈ [0, 1] × P(R) :
∫
x2dν(x) = α}. We first show that we can can

restrict the parameter α to the set [0, 1
2 ] ∪ {1}, as described in the following lemma.

Lemma 5.5. If θ2(B − 1) ≥ 1, then

F (θ) = max
(

sup
(α,ν)∈S
α≤ 1

2

Hθ(α, ν), θ2
)
.

Proof. Up to replace ν by hα#ν, where hα : x 7→ x/
√
α,

sup
(α,ν)∈S

Hθ(α, ν) = sup
α∈(0,1]∫
x2dν=1

{H̃θ(α, ν)−H(ν)},

where for any α ∈ (0, 1], and ν ∈ P(R),

H̃θ(α, ν) = θ2α2 + θ2B(1− α)2 + 1
2 logα +

∫
L(2θ

√
(1− α)αx)dν(x)− 1

2 log(2π)− 1
2 .

We claim that for any ν ∈ P(R) such that
∫
x2dν(x) = 1,

max
α∈[1/2,1]

H̃θ(α, ν) ≤ max
(
H̃θ

(1
2 , ν
)
, H̃θ(1, ν)

)
. (37)

Indeed, first notice that since ψ is increasing, for all α ∈ [0, 1] we have,∫
L(2θ

√
(1− α)αx)dν(x) = 4θ2α(1− α)

∫
x2ψ(2θ

√
α(1− α)x)dν(x)

≤ 4θ2α(1− α)
∫
x2ψ(θx)dν(x) .

Denote by m = 2
∫
x2ψ(θx)dν(x) ∈ [1, B]. For any α ∈ (0, 1],

H̃θ(α, ν) ≤ θ2α2 + θ2B(1− α)2 + 1
2 logα + 2θ2α(1− α)m− 1

2 log(2π)− 1
2 =: fθ,m(α) .

We find that

f ′θ,m

(1
2

)
= θ2(1−B) + 1, f ′′θ,m(α) = 2θ2(B + 1− 2m)− 1

2α2 .

Since f ′′θ,m is increasing and f ′′θ,m(0) = −∞, we deduce that f ′θ,m is either decreasing
or decreasing and then increasing. Since f ′θ,m(1/2) ≤ 0, we conclude that fθ,m is either
decreasing or decreasing and then increasing on [1/2, 1]. Therefore,

max
α∈[ 1

2 ,1]
fθ,m(α) = max

(
fθ,m

(1
2

)
, fθ,m(1)

)
,
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which yields the claim (37) since fθ,m(α) = H̃θ(α, ν) at the two points α = 1/2 and 1. To
conclude the proof we observe that since H̃θ(1, ν) = θ2 for any ν ∈ P(R), we have

sup∫
x2dν(x)=1

{H̃θ(1, ν)−H(ν)} = θ2 + 1
2 + 1

2 log(2π)− inf∫
x2dν(x)=1

H(ν) = θ2.

�

Due to Lemma 5.3, we can further simplify the optimization problem defining F (θ) in
(36) by optimizing on ν ∈ P(R) such that

∫
x2dν(x) = α, given α ∈ (0, 1).

Corollary 5.6. Let R be the function
R : C ∈ (0,+∞) 7→ CζC +G(ζC),

where ζC is defined as in Lemma 5.3. Denote for any α ∈ (0, 1),

Kθ(α) = θ2(α2 +B(1− α)2) +R(4θ2α(1− α))− 1
2 log(1− α)− log(2θ)− 1

2 log(2π)− 1
2 ,

and Kθ(1) = θ2. Then, for any θ ≥ 1/
√
B − 1,

F (θ) = sup
α∈(0,1]

Kθ(α) .

Proof. When α < 1, we make the following change of variables which consists in replacing
ν by its pushforward by x 7→ 2θ

√
1− αx. Using (28), we find that

H(ν) =
∫

log dν
dx
dν = H(ν1)− 1

2 log(1− α)− log(2θ)

and
∫
x2dν(x) = 4α(1− α)θ2. Thus,

F (θ) = max
(
θ2, sup

(α,ν)∈S′
Kθ(α, ν)

)
, (38)

where S ′ =
{

(α, ν) ∈ (0, 1)×P(R) :
∫
x2dν(x) = 4α(1−α)θ2}, and for any α ∈ (0, 1), ν ∈

P(R),

Kθ(α, ν) = θ2(α2 +B(1− α)2) +
∫
L(x)dν(x)−H(ν)− 1

2 log(1− α)− log(2θ)− 1
2 log(2πe).

By Lemma 5.3, we obtain for any α ∈ (0, 1),
sup∫

x2dν(x)=4α(1−α)θ2
Kθ(α, ν) = θ2(α2 +B(1− α)2) + 4θ2α(1− α)ζα,θ +G(ζα,θ)

− 1
2 log(1− α)− log(2θ)− 1

2 log(2π)− 1
2 ,

where ζα,θ = ζ4θ2α(1−α). Hence, if we set, for α ∈ (0, 1),

Kθ(α) = θ2(α2 +B(1− α)2) +R(4θ2α(1− α))− 1
2 log(1− α)− log(2θ)− 1

2 log(2π)− 1
2 ,

we deduce from (38) that

F (θ) = max
(
θ2, sup

α∈(0,1)
Kθ(α)

)
. (39)
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To study the supremum of Kθ, we will need the following result on the limit of R at 0,
which will allow us to compute the limit of Kθ at 1.

Lemma 5.7. When C → 0+,

R(C) = 1
2 + 1

2 log(2πC) + o(1).

Proof. For C < l, we have
G′(ζC) = −C. (40)

Since G′(C) goes to zero when C goes to infinity, and G′ is invertible as G′′(x) > 0 on
(−∞, l), we find that

lim
C→0

ζC = +∞.

From the inequalities, L(x)/x2 ∈ [0, B/2], we deduce that by (29) of G we have the bounds
1
2 log π

ζ
≤ G(ζ) ≤ 1

2 log π

ζ − B
2
,

which implies that

G(ζ) ∼+∞
1
2 log π

ζ
. (41)

On the other hand, inserting the bound L(x)/x2 ∈ [0, B/2] and (41) in the numerator
and the denominator of the derivative, we obtain√

ζ − B
2

ζ

1
2ζ ≤ −G

′(ζ) ≤
√

ζ

ζ − B
2

1
2(ζ − B

2 )
.

We deduce, since ζC → +∞ as C → 0, that

G′(ζC) = − 1
2ζC

+ o
( 1
ζC

)
.

Therefore, we get from the definition of ζC (40) that ζC is equivalent to 1
2C when C goes

to zero. Using (41), we can conclude that

R(C) = 1
2 + o(1) + 1

2 log π

1
2C + o

(
1

2C

) = 1
2 + 1

2 log(2πC) + o(1).

�

From Lemma 5.7, we deduce that

lim
α→1

Kθ(α) = θ2, (42)

so that we can continuously extend Kθ to 1. Therefore, (38) gives

F (θ) = sup
α∈(0,1]

Kθ(α).

�
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We now studyKθ and show that it is continuously differentiable on (0, 1). This amounts
to prove that R is continuously differentiable on (0, 1). On (0, l), it is clear that R
is continuously differentiable due to the implicit function theorem. Indeed, ζC is by
definition the unique solution of the equation

G′(ζ) = −C,
and G is strictly convex. On (l,+∞), R(C) = BC/2 + G(B/2) is an affine function,
therefore it is sufficient to prove that

lim
C→l−

R′(C) = B

2 . (43)

This is a consequence of the fact that for any C < l,
R′(C) = C∂ζC + ζC + ∂ζCG

′(ζC) = ζC ,

which gives (43). We deduce that Kθ is continuously differentiable on (0, 1) and

∀α ∈ (0, 1), K ′θ(α) = 2θ2(α +B(α− 1)) + 4θ2ζα,θ(1− 2α) + 1
2(1− α) .

From Lemma 5.7, we know thatKθ goes to −∞ when α goes to zero so that the supremum
ofKθ on (0, 1] is achieved either at 1 or on (0, 1). From Lemma 5.5, we find for θ2(B−1) ≥
1,

F (θ) = max
(
Kθ(1), sup

α≤ 1
2

Kθ(α)
)
.

Let us assume that the maximum of Kθ is achieved on (0, 1). We deduce that the maxi-
mum of Kθ is achieved on (0, 1

2 ] at a critical point since Kθ is differentiable. The critical
points α of Kθ satisfy the equation,

2θ2(α +B(α− 1)) + 4θ2ζα,θ(1− 2α) + 1
2(1− α) = 0, (44)

As θ2(B − 1) > 1, 1/2 does not satisfy the above equation so that the critical points of
Kθ are the α 6= 1/2, such that

ζα,θ =
2θ2(α +B(α− 1)) + 1

2(1−α)

4θ2(2α− 1) := ϕ(α). (45)

We find that

ϕ(α) ≥ B

2 ⇐⇒
{
P (α) ≥ 0 if α ≥ 1

2
P (α) ≤ 0 if α ≤ 1

2 ,

with P (α) = 4θ2(B−1)α2−4θ2(B−1)α+1. As ζα,θ ≥ B/2, we obtain that the maximum
of Kθ is achieved at α ∈ (0, 1/2) such that P (α) ≤ 0. The roots of P are

α± = 1±
√

1− [θ2(B − 1)]−1

2 . (46)

Thus, the maximum of Kθ is achieved on [α−, 1/2]. We will show that Kθ is strictly
concave on (0, 1

2). Note that,

4θ2α(1− α) ≥ l⇐⇒ α ∈ [β−, β+],
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with

β± = 1±
√

1− lθ−2

2 .

For any α ∈ (β−, 1
2), we must have ζα,θ = B/2 and therefore

Kθ(α) = θ2(α2 +B(1− α)2) + 2Bθ2α(1− α) +G
(B

2

)
− 1

2 log(1− α) + Cθ,

where Cθ is some constant depending on θ. Thus, for α ∈ (β−, 1
2),

K ′′θ (α) = 2θ2(1−B) + 1
2(1− α)2 < 2θ2(1−B) + 2 < 0.

For any α ∈ (0, β−), we have

Kθ(α) = θ2(α2 +B(1− α)2) + 4θ2α(1− α)ζα,θ +G(ζα,θ)

− 1
2 log(1− α) + Cθ,

where ζα,θ is such that

G′(ζα,θ) = −4θ2α(1− α).

AsG is strictly convex, we deduce by the implicit function theorem that α ∈ (0, β−) 7→ ζα,θ
is differentiable, and we have

∂αζα,θG
′′(ζα,θ) = −4θ2(1− 2α).

We deduce that ∂αζα,θ < 0, for any α ∈ (0, β−). Therefore, for α ∈ (0, β−), we obtain

K ′′θ (α) = 2θ2(B + 1)− 8θ2ζα,θ + 4θ2∂αζα,θ(1− 2α) + 1
2(1− α)2 .

Using that ζα,θ > B/2 and that ∂αζα,θ < 0 for α ∈ (0, β−), we find that

∀α ∈ (0, β−), K ′′θ (α) ≤ 2θ2(B + 1)− 4θ2B + 1
2(1− α)2 , 2θ

2(1−B) + 2 ≤ 0.

Thus, K ′θ is decreasing on (0, β−) and (β−, 1
2). Since K ′θ is continuous, we deduce that K ′θ

is decreasing on (0, 1
2) and Kθ is strictly concave on (0, 1

2). Therefore, the maximum is
achieved at the unique critical point ofKθ on (0, 1

2) which we denote by αθ. We distinguish
two cases.

1st case: l ≤ 1
B−1 . We then have β− ≤ α− ≤ α+ ≤ β+. We know that on one hand

P (α−) = 0, so that ϕ(α−) = B
2 . On the other hand ζα−,θ = B/2 since α− ∈ [β−, β+]. We

deduce by (45) that α− is a critical point of Kθ which lies in (0, 1
2). Therefore αθ = α−.
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2nd case: l > 1
B−1 . We have, α− < β− < β+ < α+. Note that 0 ≤ α− < 1

2 < α+ ≤ 1.
Since ϕ(α) 6= B/2 for any α ∈ [β−, β+]c, we deduce that αθ ∈ [α−, β−), and in particular
K ′′θ (αθ) < 0. We deduce by the implicit function theorem that θ 7→ αθ is C1, and therefore
θ 7→ Kθ(αθ) is continuously differentiable on (1/

√
B − 1,+∞).

In conclusion, we have shown that for any θ2(B − 1) ≥ 1, if l ≤ 1
B−1 ,

F (θ) = max
(
θ2, Kθ(α−)

)
,

where α− is defined in (46), whereas if l ≥ 1
B−1 ,

F (θ) = max
(
θ2, Kθ(αθ)

)
,

where αθ is the unique solution in (0, β−) such that G′(ζα,θ) = −4θ2α(1− α).
To conclude that F is continuously differentiable on (1/

√
B − 1,+∞) except at most

at one point, we show that there exists θ0 such that
∀θ ≤ θ0, F (θ) = θ2, and ∀θ > θ0, F (θ) > θ2.

Since F (θ) ≥ θ2 for any θ ≥ 0, it suffices to prove that θ 7→ F (θ)− θ2 is non-decreasing.
Recall that

F (θ) = lim
N→+∞

FN(θ),

where
FN(θ) = 1

N
logEe exp

(∑
i

L
(√

2Nθe2
i

)
+
∑
i<j

L
(
2
√
Nθeiej

))
,

and e is uniformly sampled on SN−1. Therefore,

FN(θ)−θ2 = 1
N

logEe exp
(∑

i

2Nθ2
(
ψ
(√

2Nθe2
i

)
−1

2

)
e4
i+
∑
i<j

4Nθ2
(
ψ
(
2
√
Nθeiej

)
−1

2

)
e2
i e

2
j

)
.

As ψ is increasing and ψ(0) = 1/2, θ 7→ FN(θ) − θ2 is non-decreasing, and therefore
θ 7→ F (θ)− θ2 is non-decreasing as well.

For the sake of completeness, we show the following Proposition which indicates that
it is unlikely we could prove the large deviation principle for all values of x by following
our strategy because F is in general not differentiable everywhere.

Proposition 5.8. Assume θ0 = inf{θ ∈ R+ : F (θ) > θ2} > 1/
√
B − 1. Then, F is not

differentiable at θ0.

Proof. Let θ > θ0. Lemma 5.5 shows that with Hθ defined in (35) , we have
F (θ) = max∫

x2dν(x)≤α
α≤ 1

2

Hθ(α, ν).

Since θ0 ≥ 1/
√
B − 1, we know from the proof of Proposition 5.4 that there exists α0 ≤ 1/2

and ν0 ∈ P(R) such that
Hθ0(α0, ν0) = F (θ0).

Define g(θ) = Hθ(α0, ν0) for any θ ≥ θ0. Let F ′+ denote the right derivative of F . We
have as F ≥ g and F (θ0) = g(θ0),

F ′+(θ0) ≥ g′(θ0).
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We find

g′(θ0) = 2θ0(α2
0 +B(1− α0)2) + 2

√
1− α0

∫
xL′(2θ0

√
1− α0x)dν0(x).

Since ψ is increasing, xL′(x) ≥ 2L(x), and L(x) ≥ x2/2 for any x ≥ 0. Therefore,
xL′(x) ≥ x2 and we deduce

g′(θ0) ≥ 2θ0(α2
0 +B(1− α0)2) + 4θ0α0(1− α0)

≥ 2θ0 + 2θ0(1− α)2(B − 1).
This shows that g′(θ0) > 2θ0 and therefore F ′+(θ) > 2θ0. It yields that F is not differen-
tiable at θ0.

�

5.3. Proof of Proposition 1.14. By Proposition 5.4, we know that F is differentiable
on (1/

√
B − 1,+∞) except possibly at θ0. Using Proposition 2.2 we deduce that there

exists xµ finite such that the lower large deviation lower bound holds with rate function
I(x) = I(x) for any x ≥ xµ.

6. The case B < A

We consider in this section the case where the following assumption holds.

Assumption 6.1. B exists and is strictly smaller than A. Moreover, we assume that ψ
achieves its maximum A at a unique point m∗ such that ψ′′(m∗) < 0.

The first condition includes in particular the case where the law of the entries have a
compact support (since in this case B = 0) and we believe the second condition is true
quite generically, as we check in the following example.

Example 6.1. Let

µ = p

2(δ−1/√p + δ1/√p) + (1− p)δ0, ψ(x) = 1
x2 log(p(cosh( x

√
p

)− 1) + 1) .

Then, for p < 1/3, µ satisfies Assumption 6.1 (but for p > 1/3 µ has a sharp sub-Gaussian
tail). Indeed, we have

∀x ≥ 0, ψ′(x) = L′(x)
x2 − 2L(x)

x3 , ψ′′(x) = L′′(x)
x2 − 4L′(x)

x3 + 6L(x)
x4 .

We claim that h : x 7→ xL′(x)− 2L(x) is increasing and then decreasing on R+. Indeed,
∀x ≥ 0, h′(x) = xL′′(x)− L′(x), h′′(x) = xL(3)(x),

and we have,

L(x) = log
(
p cosh

( x
√
p

)
+ 1− p

)
, L′(x) =

√
p sinh

(
x√
p

)
p cosh

(
x√
p

)
+ 1− p

.

L′′(x) =
p+ (1− p) cosh

(
x√
p

)
(p cosh

(
x√
p

)
+ 1− p)2 , L

(3)(x) =
(1−p)2
√
p
− 2p√p−√p(1− p) cosh

(
x√
p

)
(p cosh

(
x√
p

)
+ 1− p)3 sinh

( x
√
p

)
.
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We have, for p > p∗ = 1/3

(1− p)2
√
p
− 2p√p < √p(1− p).

Therefore, L(3) is negative and therefore h′ is decreasing. Since h′(0) = 0, we deduce
that h′ is negative and ψ is decreasing. If p > p∗, we have that h′′ is positive and then
negative. Therefore, h′ is increasing on [0, x0] and then decreasing on [x0,+∞), with
x0 = √p cosh−1(1−2p−p2

p(1−p) ). But,

h′(0) = 0, lim
x→+∞

h′(x) = − 1
√
p
,

as L′(x) ∼+∞ 1/√p and L′′(x) ∼+∞ 2(1 − 1/p)e−x/
√
p. Therefore, there exists m∗ >

x0 such that h′ is positive on (0,m∗) and negative on (m∗,+∞). We deduce that ψ is
increasing on (0,m∗) and decreasing on (m∗,+∞) so that ψ achieves its unique maximum
at m∗. Moreover, ψ′′(m∗) < 0. Indeed, otherwise we have

ψ′(m∗) = 0, ψ′′(m∗) = 0⇐⇒ m∗L
′(m∗) = 2L(m∗), m2

∗L
′′(m∗) = 4m∗L′(m∗)− 6L(m∗)

⇐⇒ L′(m∗) = m∗L
′′(m∗), m∗L′(m∗) = 2L(m∗).

This implies that h′(m∗) = 0 which contradicts m∗ > x0 (and L(3) 6= 0 on [x0,m∗]. As
m∗ > x0, we have that h′(m∗) < 0 and therefore ψ′′(m∗) < 0.

Studying the variational problem arising from the limit of the annealed spherical integral
F (θ) and F (θ) defined in Proposition 1.7, we will show that for θ large enough we can
give an explicit formula as stated in the following proposition.

Proposition 6.2. There exists θ0 > 1/
√
A− 1 such that for any θ ≥ θ0, F (θ) = F (θ) =

F (θ) where
F (θ) = sup

α∈(0,1]
V (α),

with

∀α > 0, V (α) = θ2(A− 1)α2 + θ2 + 1
2 log(1− α).

More explicitly,

F (θ) = θ2

4 (A− 1)
(

1 +
√

1− 1
θ2(A− 1)

)2
+ θ2 + 1

2 log
(

1−
√

1− 1
θ2(A− 1)

)
− 1

2 log 2.

Given the above proposition is true, the result of Proposition 1.15 immediately follows
from Proposition 2.2.

We prove this proposition by first showing that F (θ) ≥ F (θ) for all θ and then that,
for large θ, F (θ) ≤ F (θ).
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6.1. Proof of the lower bound. Recall that by Proposition 1.7, we have the following
formulation of the limit F (θ).

F (θ) = sup
α1+α2+α3=1

αi≥0

lim inf
δ→0,K→+∞

δK→0

lim sup
N→+∞

FNα1,α2,α3(δ,K) ,

where
FNα1,α2,α3(δ,K) = θ2(α2

1 + 2α1α2 +Bα2
3
)

+ sup
ti∈I2,i≤l

|
∑
i t

2
i
−Nα2|≤δN

sup
si∈I3,i≤k

|
∑
i s

2
i
−Nα3|≤δN

{ 1
N

k∑
i=1

l∑
j=1

L
(2θsitj√

N

)
+ 1

2N

l∑
i,j=1

L
(2θtitj√

N

)

+ sup
ν1∈P(I1)∫
x2dν1(x)=α1

{ k∑
i=1

∫
L
(2θsix√

N

)
dν1(x)−H(ν1)

}
− 1

2 log(2π)− 1
2

}
,

Our goal is to show that we can take α3 = 0 and in the supremum defining FNα1,α2,α3(δ,K)
we can take all the ti’s equal. In fact we first prove the lower bound:
Lemma 6.3. For any θ ≥ 0,

F (θ) ≥ sup
α∈(0,1]

V (α),

where V is defined in Proposition 6.2.
Proof. Indeed, if we take α3 = 0 and tj = N1/4√m∗

2θ , 1 ≤ j ≤ l, α2 ∈ [lm∗/2θ
√
N −

δ, lm∗/2θ
√
N + δ], α1 = 1− α2, ν1 to be the Gaussian law restricted to I1 with variance

α1, then we get the lower bound

FNα1,α2,0(δ,K) ≥ θ2(α2
1 + 2α1α2 + α2

2A) + 1
2 logα1 = V (α2) .

Hence, to derive the lower bound it is enough to remark that we can achieve any possible
value of α2 in [0, 1] as some large N limit of lNm∗/2θ

√
N for some sequence of integer

numbers lN , which is obvious. �

6.2. Proof of the upper bound. The rest of this section is devoted to prove that
the previous lower bound is sharp when θ is large enough. To this end, recall that by
Proposition 1.7, we have the following formulation of the limit F (θ).

F (θ) = sup
α1+α2+α3=1

αi≥0

lim sup
δ→0,K→+∞

δK→0

lim sup
N→+∞

FNα1,α2,α3(δ,K) .

We first reformulate the supremum in FNα1,α2,α3(δ,K) by denoting for t ∈ I l2 so that
|
∑
t2i −Nα2| ≤ δN ,

µ2 = 1
α2N

l∑
i=1

t2i δ
√

2θti
N1/4

.

µ2 is a positive measure on S2 = {x :
√

2δθ ≤ |x| ≤
√

2Kθ} whose total mass belongs to
[1− δ

α2
, 1 + δ

α2
]. We also denote by S3 = {x :

√
K ≤ |x| ≤ N1/4√α3}. Then it is not hard

to see that for any θ ≥ 0,
F (θ) ≤ F̂ (θ), (47)
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where F̂ (θ) is defined by

F̂ (θ) = sup
α1+α2+α3=1

αi≥0

lim sup
δ→0,K→+∞

δK→0

lim sup
N→+∞

sup
µ2∈P(S2)

sup
s∈S3

GNα1,α2,α3(δ,K, s, µ2)

if

GNα1,α2,α3(δ,K, s, µ2) = θ2(α2
1 + 2α1α2 +Bα2

3
)

+ 4θ2α3α2

∫
ψ
(√

2θsx)dµ2(x) + 2θ2α2
2

∫
ψ(xy)dµ2(x)dµ2(y)

+ sup
ν1∈P(I1)∫
x2dν1(x)=α1

{
4θ2α3

∫
x2ψ

(2θsx
N

1
4

)
dν1(x)−H(ν1)

}
− 1

2 log(2π)− 1
2 .

Indeed, the upper bound proceeds in two steps: first we take the supremum over all
measures µ2 on S2 with mass in [1− δ

α2
, 1 + δ

α2
], and then restrict ourselves to probability

measures as δ goes to zero (since ψ is bounded). Then, we observe that for any µ2 ∈ P(S2),
ν1 ∈ P(I1), and s ∈ Sk3 such that |

∑
i s

2
i − α3

√
N | ≤ δ

√
N ,

α2√
N

k∑
i=1

s2
i

∫
ψ
(√

2θsix)dµ2(x) + 1√
N

k∑
i=1

s2
i

∫
x2ψ

(2θsix
N

1
4

)
dν1(x)

≤ α3

∫
ψ
(√

2θsx)dµ2(x) +
∫
x2ψ

(2θsx
N1/4

)
dν1(x) + oδ(1),

where s is a maximizer of the function

s ∈ S3 7→ α2

∫
ψ
(√

2θsx)dµ2(x) +
∫
x2ψ

(2θsx
N1/4

)
dν1(x),

which ends the proof of the claim (47). We will see that under our assumptions that
B < A and that the maximum of ψ is uniquely achieved at m∗ such that ψ′′(m∗) < 0, the
upper bound F̂ (θ) is sharp when θ is large.

The starting point of our analysis of the variational problem defining F̂ (θ) in the regime
where θ is large is the fact that F (θ) and F̂ (θ) behave like Aθ2. More precisely, we know
from (10) that there exists θ0 > 0 (depending on A) such that for all θ ≥ θ0,

F̂ (θ) ≥ F (θ) ≥ Aθ2 − κ log θ, (48)

for some constant κ > 0.
As a consequence, we can localize the suprema over (α1, α2, α3) and µ2 in the definitions

of F̂ (θ) in some subset of the constraint set, denoted by S, and defined as follow,

S =
{

(α, µ2) ∈ [0, 1]3 × P(S2) : α1 + α2 + α3 = 1
}
.

Lemma 6.4. There exists a constant θ0 > 0 depending on A such that for any θ ≥ θ0,
the suprema defining F̂ (θ) can be restricted to the set Aθ × Bθ ⊂ S defined by,

α ∈ Aθ ⇐⇒ α2 ≥ 1− C
√

log θ
θ

, α1 ≤
C log θ
θ2 , α3 ≤

C
√

log θ
θ

,
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and
µ2 ∈ Bθ ⇐⇒

∫ (A
2 − ψ(xy)

)
dµ2(x)dµ2(y) ≤ C log θ

θ2 . (49)

where C is a some positive constant depending also on A.

Proof. From (48) we deduce that we can restrict the suprema in the definitions of F̂ (θ)
to the parameters α, s, ν1, µ2 with α1 + α2 + α3 = 1, s ∈ S3,

∫
x2dµ1(x) = α1 such that,

(A− 1)(α2
1 + 2α1α2) + (A−B)α2

3 + 4α2α3

∫ (A
2 − ψ(2θsy)

)
dµ2(y)

+ 2α2
2

∫ (A
2 − ψ(2θxy)

)
dµ2(y)dµ2(x) + 4α3

∫
y2
(A

2 − ψ(2θsy)
)
dν1(y)

+ 1
θ2

(
H(ν1) + log

√
2π
)
≤ 2κ log θ

θ2 .

But
4α3

∫
y2
(A

2 − ψ(2θsy)
)
dν1(y) + 1

θ2

(
H(ν1) + log

√
2π
)
≥ 1

2 log 1
α1
≥ 0.

Therefore,

(A− 1)(α2
1 + 2α1α2) + (A−B)α2

3 + 4α2α3

∫
y2
(A

2 − ψ(2θsy)
)
dµ2(y)

+ 2α2
2

∫ (A
2 − ψ(xy)

)
dµ2(y)dµ2(x) ≤ 2κ log θ

θ2 .

Since each term is non-negative, they are all bounded by 2κ log θ/θ2. Note that this
already yields with C = 4κ/min{(A−B), A− 1},

α2
1 ≤

C log θ
θ2 , α2

3 ≤
C log θ
θ2 , α1α2 ≤

C log θ
θ2 . (50)

The two first estimates imply since α2 = 1− α1 − α3,

α2 ≥ 1− 2
√
C log θ
θ

.

We can finally plug back this estimate into the last inequality of (50) to improve the
estimate on α1 as announced. �

Next, note that because ψ is bounded continuous, the function GNα1,α2,α3(δ,K, s, .) we
are optimizing over µ2, is bounded continuous in µ2 and therefore it achieves its maximal
value. We denote by µ2 such an optimizer. In the next lemma, we prove that the
optimizers of GNα1,α2,α3(δ,K, s, .) are concentrated around √m∗ if ψ takes its maximum
value at m∗ only.

Lemma 6.5. Assume that ψ achieves its maximum value at m∗ only and that it is strictly
concave in an open neighborhood of this point. Let µ2 be an optimizer of GNα1,α2,α3(δ,K, s, .).
There exists ε0 > 0 such that for any µ2 ∈ Bθ,

∀0 < ε < ε0, µ2
(
|x−

√
m∗| ≥ ε

)
≤ C
√

log θ
θε

,

where C is a positive constant depending on ψ.
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Proof. Let µ2 ∈ Bθ. By Lemma 6.4 we have,∫ (A
2 − ψ(xy)

)
dµ2(x)dµ2(y) ≤ C log θ

θ2 . (51)

Since ψ is strictly concave in a neighborhood of m∗, and m∗ is its unique maximizer, we
deduce that there exists η0 > 0 such that for all 0 < η < η0,

∀|x−m∗| ∈ [√η,√η0], A

2 − ψ(x) ≥ η/c,

for some constant c > 0. As ψ is analytic, it admits a finite number of local maxima.
Therefore, we can find η0 > 0 such that for all 0 < η < η0,

∀|x−m∗| ≥
√
η,

A

2 − ψ(x) ≥ η/c,

Since A
2 − ψ is non-negative, we deduce from (51) that

∀η < η0, µ
⊗2
2
(
|xy −m∗| ≥

√
η
)
≤ C ′ log θ

ηθ2 ,

where C ′ ≥ 1 is a constant depending on ψ. But for ε small enough, we have

µ2([0,√m∗−ε])2 ≤ µ⊗2
2
(
xy ≤ m∗−

√
m∗ε

)
and µ2

(
[√m∗+ε,+∞)

)2 ≤ µ⊗2
2
(
xy ≥ m∗+

√
m∗ε

)
from which the result follows by a union bound. �

Using Lemma 6.5, we will show that the optimization problem over µ2 is asymptotically
solved by δ√m∗ , with an error which vanishes when K, and therefore the lower boundary
point of S3, goes to +∞.

Lemma 6.6. There exists θ0 depending on ψ such that for any θ ≥ θ0, α ∈ Aθ and
s ∈ S3,

sup
µ2∈Bθ

{
2α3

∫
ψ
(√

2θsx)dµ2(x) + α2

∫
ψ(xy)dµ2(x)dµ2(y)

}
= Aα2

2 + Bα3

2 + oK(1).

Proof. Letting ψ(x) = ψ(x)− B
2 , it is equivalent to show that:

sup
µ2∈Bθ

{
2α3

∫
ψ
(√

2θsx)dµ2(x) + α2

∫
ψ(xy)dµ2(x)dµ2(y)

}
= (A−B)α2

2 + oK(1).

Let us fix θ ≥ θ0 where θ0 is given by Lemma 6.4. Observe that since ψ is bounded
continuous,

Z : µ ∈ P(S2) 7→ 2α3

∫
ψ
(√

2θsx)dµ(x) + α2

∫
ψ(xy)dµ(x)dµ(y)

achieves its maximum value in the closed set Bθ. Let µ2 be an optimizer, and therefore a
critical point of this function. Writing that Z(µ2) ≥ Z(µ2 + εν) for all signed measures ν
on S2 such that µ2 + εν is a probability measure for small ε, we deduce that there exists
a constant C > 0 such that,

∀x ∈ S2, α3ψ(
√

2θsx) + α2

∫
ψ(xy)dµ2(y) ≤ C, (52)
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with equality µ2-almost surely. Using Lemma 6.5, we get for any ε small enough,∫
ψ(xy)dµ2(y) = ψ(√m∗x) +

∫
[√m∗−ε,

√
m∗+ε]

(
ψ(xy)− ψ(√m∗x)

)
dµ2(y) +O

(√log θ
θε

)
.

Where we notice that our O(
√

log θ/θε) is a function that does not depend on δ,K or
N . As L is the log-Laplace transform of a sub-Gaussian distribution, we have that
x 7→ |L′(x)/x| is bounded. In particular, |ψ′| is bounded and thus ψ is Lipschitz. There-
fore, for any x ≤M ,∫

ψ(xy)dµ2(y) = ψ(√m∗x) +O
(
εM +

√
log θ
θε

)
.

Again, O
(
εM+

√
log θ
θε

)
does not depend on δ,K or N . We choose ε = θ−1/2 andM = θ1/4

so that the two error term above goes to zero when θ goes to ∞, so that we have for any
x ≥ 0, ∫

ψ(xy)dµ2(y) = ψ(√m∗x) + oθ(1). (53)

In particular,

α3ψ(
√

2θsx) + α2

∫
ψ(xy)dµ2(y) = ψ(√m∗x) + oθ(1).

Taking x = √m∗ in (52), we get

C ≥ A−B
2 − oθ(1), (54)

since s ≥ K and 1− α2 ≤ O(
√

log θ
θ

). The term oθ(1) above do not depend on K, δ or N .
We claim that there exists θ0 such that for any θ ≥ θ0,

µ2([0,√m∗/2]) = 0.
Indeed, if x ≤ √m∗/2, we have by (53) and the fact that α2 goes to 1 as θ goes to infinity,

α3ψ(
√

2θsx) + α2

∫
ψ(xy)dµ(y) ≤ sup

t≤√m∗/2
ψ(√m∗t) + oθ(1),

with supt≤√m∗/2 ψ(√m∗t) < (A − B)/2 since the maximum of ψ is uniquely achieved at
m∗. From (54) and the fact that equality in (52) holds µ2-a.s, we deduce that for θ large
enough (and not depending on δ,K or N) [0,√m∗/2] ∩ supp(µ2) = ∅. Therefore,

2α3

∫
ψ
(√

2θsx)dµ2(x) + α2

∫
ψ(xy)dµ2(x)dµ2(y) ≤ (A−B)α2

2 + 2 sup
y≥K

√
m∗θ
2

ψ(y)

= (A−B)α2

2 + oK(1).

Thus,

sup
µ2∈Bθ

{
2α3

∫
ψ
(√

2θsx)dµ2(x) + α2

∫
ψ(xy)dµ2(x)dµ2(y)

}
≤ (A−B)α2

2 + oK(1).

The reverse inequality is achieved by taking µ2 = δ√m∗ , which completes the proof. �
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We deduce that taking δ to 0 and K to +∞, we can simplify the expression of F̂ (θ).

Proposition 6.7. There exists θ0 depending on ψ such that for any θ ≥ θ0, F (θ) ≤ F̂ (θ),
where

F̂ (θ) = sup
(α,s,ν)∈S′

F(α, s, ν),

with

F(α, s, ν) = θ2(α2
1 + 2α1α2

)
+ θ2Aα2

2 + θ2B(α2
3 + 2α3α2)

+ 4θ2α3

∫
x2ψ(2θs√α3x)dν(x)−H(ν)− 1

2 log(2π)− 1
2 ,

and

S ′ =
{

(α, s, ν) ∈ [0, 1]3 × [0, 1]× P(R) : α1 + α2 + α3 = 1,
∫
x2dν(x) = α1

}
.

Proof. By Lemmas 6.4 and 6.6, we know that

F̂ (θ) = sup
α∈Aθ

lim sup
δ→0,K→+∞

δK→0

lim sup
N→+∞

F̂Nα1,α2,α3(δ,K),

where

F̂Nα1,α2,α3(δ,K) = sup
s∈S3

sup
ν1∈P(I1)∫
x2dν1(x)=α1

{
4θ2α3

∫
x2ψ

(2θsx
N

1
4

)
dν1(x)−H(ν1)

}
+ θ2(α2

1 + 2α1α2
)

+ Aα2
2 +B(α2

3 + 2α2α3)− 1
2 log(2π)− 1

2 ,

S3 = [K,N1/4√α3]. Using the change of variable s 7→ sN−1/4 we have the upper bound,

F̂ (θ) ≤ sup
(α,s,ν)∈S′

F(α, s, ν).

�

We finally prove that the supremum is taken at α3 = 0.

Proposition 6.8. There exists θ0 depending on A such that for any θ ≥ θ0,

sup
(α,s,ν)∈S′

F(α, s, ν) = sup
(α1,α2,0,s,ν)∈S′

F((α1, α2, 0), s, ν).

Proof. We claim that for any ((α1, α2, α3), s, ν) ∈ S ′ such that α2 ≥ A−1
2A−B−1 , we have

F((α1, α2, α3), s, ν) ≤ sup
ν∈P(R)

F((α1, α2 + α3, 0), ν). (55)

Note that

sup
ν∈P(R)

F((α1, α2 + α3, 0), ν) = θ2(α1 + 2α1α2 + 2α1α3) + θ2A(α2 + α3)2 + 1
2 logα1.
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Now, for any ((α1, α2, α3), s, ν) ∈ S ′, using the fact that ψ(x) ≤ A/2 for any x ∈ R, we
have

F((α1, α2, α3), s, ν) ≤ θ2(α1 + 2α1α2) + θ2Aα2
2 + 2θ2Aα1α3 + θ2B(α2

3 + 2α2α3) + 1
2 logα1.

Therefore, it suffices to prove that for α2 sufficiently near 1:

(A−B)(2α2α3 + α2
3) ≥ 2(A− 1)α1α3

This is true if
2(A− 1)α1 ≤ (A−B)(α3 + 2α2).

A sufficient condition for the inequality to be true is that (A− 1)(1− α2) ≤ (A− B)α2,
which ends the proof of the claim (55). By Lemma 6.4, we know that for θ ≥ θ0,

sup
(α,s,ν)∈S′

F(α, s, ν) = sup
(α,s,ν)∈S′

α1,α3≤C
√

log θ/θ

F(α, s, ν).

Hence, for θ such that

1− 2C
√

log θ
θ
≥ A− 1

2A−B − 1 ,

we obtain (55). �

We can now conclude from the last two Propositions 6.7 and 6.8, that for θ ≥ θ0

F (θ) ≤ sup
((α1,α2,0),s,ν)∈S

F(α1, α2, 0, s, ν) = sup
α∈[0,1)

V (α)

where we optimized over ν (at the centered Gaussian law with covariance α1). This
completes the proof of the proof of Proposition 6.2 with Lemma 6.3.

7. Delocalization and localization of the eigenvector of the largest
eigenvalue

In this section we consider a unit eigenvector uXN associated to the largest eigenvalue
of XN , conditioned to deviate towards a large value. We assume hereafter that µ is
compactly supported, allowing us to use the sub-Gaussian concentration property of the
titled measure P(e,θ), as defined in (4).

We first show when XN has sharp sub-Gaussian tails, uXN stays close to the set of
delocalized vectors. Then, we show that in the case where µ is not sharp sub-Gaussian,
uXN is close to a set of localized vectors in the sense that it contains about

√
N entries of

order N−1/4, the other being much smaller. It should be possible to consider as well the
case where ψ is increasing, and we then expect that the eigenvector would localize over
one entry. However, this would require more effort to obtain the required exponential
estimates and we postpone this research to further investigations.

We denote by d2 the Euclidean distance in RN : for a subset A of RN and u ∈ RN we
set

d2(u,A) = inf{‖u− v‖2 : v ∈ A} .
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Proposition 7.1. Assume that µ has sharp sub-Gaussian tail and is compactly supported.
Let ε > 0 and define the set of delocalized vectors Dε by:

Dε := {e ∈ SN−1 : ∀i ∈ {1, . . . , N}, |ei| ≤ εN1/4}.
There exists a function η(x) that goes to zero when x goes to +∞ such that

lim
ε→0

lim
δ→0

lim
N→∞

P
(
d2(uXN , Bε) ≤ η(x)

∣∣|λXN − x| ≤ δ
)

= 1 .

For any symmetric matrix X, we denote by uX a unit eigenvector associated to the
largest eigenvalue. For any χ ∈ (0, 1), we set:

Aχ = { sup
e∈Dε
|〈uXN , e〉| ≤ 1− χ} .

Let x > 2 and θx ≥ 1/2 such that x = 2θx + 1/2θx. We know from [18, Section 5] that
under the measure Pθx,N defined by,

dPθx,N = IN(θx, XN)
EIN(θx, XN)dP(X),

for δ, γ > 0, N,M large enough, if V M
δ,x = {|λXN − x| < δ, d(µ̂XN , σ) < N−γ, ||XN || ≤M}

Pθx,N(V M
δ,x ) ≥ 1

2 . (56)

By (11) we know that
P
(
|λXN − x| ≤ δ

)
≥ e−N(J(θx,x)−F (θx)+oδ(1))Pθx,N(V M

δ,x ).
Similarly, we have

P
(
V M
δ,x ∩ Aχ

)
≤ e−N(J(θx,x)−F (θx)−oδ(1))Pθx,N(Aχ ∩ V M

δ,x ).
Using (56) and assumption 1.2 we find f(M)→ +∞ when M → +∞ so that

P
(
Aχ
∣∣|λXN − x| ≤ δ

)
≤ 2Pθx,N

(
Aχ ∩ V M

δ,x

)
+ e−Nf(M).

Using the lower bound logEIN(XN , θx) ≥ Nθ2
x − o(N), we deduce

P
(
Aχ
∣∣|λXN − x| ≤ δ

)
≤ 2e−Nθ2

xEe[EX [1{Aχ∩VMδ,x}e
Nθx〈e,XNe〉]] + e−Nf(M), (57)

Let κ ∈ (0, 1) and define the set Dε,κ = {e ∈ Sn−1 :
∑

i,j e
2
i e

2
j1
√
N |eiej |>ε2/4 > κ}. Since we

assumed that XN has sharp sub-Gaussian tails, we have that rε = infy≥ε2/4(ψ(0)−ψ(y)) >
0. Therefore, for any e ∈ Dε,κ,

N∑
i=1

L(
√

2Nθxe2
i ) +

∑
i<j

L(2
√
Nθxeiej)−Nθ2

x ≤ −θ2
xrεκN.

We deduce that
e−θ

2
xNEe[1e∈Dε,κEX [eNθx〈e,XNe〉]] ≤ e−θ

2
xrεκN . (58)

On the other hand, observe that for e ∈ Dc
ε,κ,( N∑

i=1

e2
i 1|ei|≥εN− 1

4 /2

)2
≤

N∑
i,j=1

e2
i e

2
j1√N |eiej |>ε2/4 ≤ κ .
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Therefore if we let ēi = sgn(ei) min{|ei|, εN−1/4/2}, we have that

|〈e,Xe〉 − 〈ē, Xē〉| ≤ 2‖X‖
√
κ .

Thus, we can write

Ee[1e∈Dcε,κEX [1Aχ∩VMδ,xe
Nθx〈e,XNe〉]] ≤ e2θxM

√
κNEe[1e∈Dcε,κEX [1{Aχ∩VMδ,x}e

Nθx〈ē,Xē〉]].

But for e ∈ Dc
ε,κ,

EX [eNθx〈ē,Xē〉] ≤ eθ
2
xN‖ē‖2

2 ≤ eθ
2
xN ,

which implies that

Ee[1e∈Dcε,κEX [1Aχ∩VMδ,xe
Nθx〈e,XNe〉] ≤ e(2M

√
κ−θ2

x)NEe[1e∈Dcε,κP
(ē,θx)(Aχ)] (59)

where

P(ē,θx) = eNθx〈ē,Xē〉

EX [eNθx〈ē,Xē〉]dP(X). (60)

We can conclude from (57), (58) and (59) that

P
(
Aχ
∣∣|λXN − x| ≤ δ

)
≤ 2e2NθxM

√
κEe[1e∈Dcε,κP

(ē,θx)(Aχ)]

+ 2e−Nθ2
xrεκ + e−Nf(M).

Hence, it is sufficient to complete the proof of Proposition 7.1 to prove the following:

Lemma 7.2. There exists a numerical constant C > 0 and a positive function h, such
that for κ small enough, N large enough, χ ≥ Cε2 and any e ∈ Dc

ε,κ,

P(ē,θx)(Aχ) ≤ e−Nh(χ).

Proof. We can proceed as in [18, section 5.1] and observe that under P(ē,θx), XN is sym-
metric and has independent entries with distribution⊗

i≤j

dP
2i6=jθ

√
Nēiēj

N (Xij)

where P γ
N is the law of x/

√
N under eγxdµ(x)/

∫
eγydµ(y). Using the fact that ēi =

O(εN−1/4), we see that we can write XN = W + Mē,θx where Mē,θx = E(ē,θx)[XN ] =
2θxēēT + rN , with ‖rN‖ = O(ε2). We denote Ŵ = W + rN . Provided that λXN > λŴ , a
unit eigenvector u of XN associated to λXN satisfies the equation:

(Ŵ + 2θxēēT )u = λXNu⇒ (Ŵ − λXN )u = 2θx〈u, ē〉ē⇒ u = (Ŵ − λXN )−1ē

‖(Ŵ − λXN )−1ē‖2
.

Therefore

|〈u, ē〉|2 = 〈ē, (λXN − Ŵ )−1ē〉2

〈ē, (λXN − Ŵ )−2ē〉
.
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Lemma 7.3. For N large enough, and for any e ∈ Dc
ε,κ, δ > Cε2, and K ≥ C for some

constant C > 0,

P(ē,θx)(||Ŵ || > K
)
≤ e−c(K)N , P(ē,θx)(|λXN − x| ≥ δ

)
≤ e−c(δ)N , (61)

where c is a positive function increasing to infinity. Furthermore, for any χ ≥ Cε2,

P(ē,θx)
(
|〈uXN , ē〉|2 ≤ 1− χ

)
≤ e−h(χ)N ,

where h is a positive function.

Proof. The first statement follows from Remark 1.4. The second claim is the consequence
of Talagrand’s concentration inequality for convex Lipschitz functions (see [21, Corollary
4.10]) and the fact that E(ē,θx)λXN = x+O(ε2). Indeed, note thatW is a centered random
symmetric matrix with independent entries above the diagonal with variance close to 1/N .
It is known as the BBP transition, (see [4], [9] for example), that λW+2θxēēT converges to
x, almost surely and in expectation. Since ||rN || = O(ε2), we deduce that for N large
enough, E(ē,θx)λXN = x+O(ε2).

Let now x > 2, K ≥ 1 and δ ∈ (0, 1) such that x − δ > 2K. We have on the event
V = {||Ŵ || ≤ K, |λXN − x| ≤ δ}, we have∣∣∣|〈uXN , ē〉|2 − vN ∣∣ ≤ Cδ, where vN = 〈ē, (x− Ŵ )−1ē〉2

〈ē, (x− Ŵ )−2ē〉
,

and C is a numerical constant. Moreover, one can check that on the event V ,

|vN − 1| ≤ C ′K

x
,

where C ′ > 0 is a numerical constant. Therefore, for χ ≤ CK/x+ C ′δ,

P(ē,θx)
(∣∣|〈uXN , ē〉|2 − 1

∣∣ > χ
)
≤ P(ē,θx)(W c),

which gives the claim by an appropriate choice of K and δ. �

To conclude the proof of Lemma 7.2, note that for e ∈ Dε,κ, we have ē/||ē|| ∈ Dε/2
√

1−κ.
For κ small enough, ē/||ē|| ∈ Dε and we have:

P(ē,θx)(Aχ) ≤ P(ē,θx)
(
|〈uXN , ē〉|2 − 1

∣∣ > χ
)
,

which, using Lemma 7.3, ends the proof. �

We next consider what happens when µ is compactly supported and is not sharp sub-
Gaussian. We shall prove that in this case, at least when we condition by deviations of
the largest eigenvalue close to x large, the associated eigenvector becomes close to the set

Locr1,r2,ε =
{
e ∈ SN−1 : |Ir2,ε(e)| ∈ [(r1 − ε)

√
N, (r1 + ε)

√
N ], ∀i /∈ Ir2,ε(e), |ei| ≤ εN−

1
4

}
,

where for any e ∈ SN−1, Ir2,ε(e) =
{
i : N−

1
4 |ei|√
r2
∈ [1− ε, 1 + ε]

}
.
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Proposition 7.4. Assume that µ is compactly supported and ψ achieves its maximum at
a unique point m∗ where it is strictly concave. For any x ≥ xµ, let vx = 2θx/m∗, where
x = 1/2θx + F ′(θx).

lim
ε→0

lim
δ→0

lim
N→∞

P
(
d2(uXN ,Locvx,1/vx,ε) ≤ c(x)

∣∣|λXN − x| ≤ δ
)

= 1 ,

where c is a function going to 0 as x goes to +∞.

Proof. As in (50) we can replace the conditioning by the tilt by spherical integrals of pa-
rameter θ = θx large. We then can use Lemmas 6.4 and 6.5 to see that up to exponentially
small probability we can restrict the integration over a δ neighborhood of

αθ2 ≥ 1− C
√

log θ
θ2 , αθ1 ≤

C log θ
θ2 , α3 = 0,

and µ2 = δ√m∗ . Here, αj =
∑

i:
√
Nei∈Ij e

2
i and µ2 = 1

α2N

∑l√
Nei∈I2

e2
i δ
√

2θN1/4ei
. Indeed,

this is a simple consequence of the estimate of Lemma 6.4 which implies that we can
restrict ourselves to the space Aθ × Bθ when we estimate the annealed free energy up to
exponentially small errors. Note then that µ2 is compactly supported and the rate function
is smooth in µ2 so that we can cover the integration over µ2 by finitely many balls: this
implies that we can restrict ourselves to a neighborhood of the minimizer µ2 = δm∗ and
α3 = 0. Note that this implies that with exponentially large probability, the uniform
vector in the annealed spherical integral belongs to Locr1,r2,ε with r2 = m∗/2θ, r1r2 = α2,
hence r1 = 2θα2/m∗. Since α2 goes to one as θ (hence x) goes to infinity, we retrieve the
fact that r1r2 goes to one. Hence, as in the delocalized case we can write for every x ≥ x0
that for every event E

P[E||λXN − x| ≤ δ] = exp((o(ε) + o(κ) + o(δ))N)Ee[1e∈Locr1,r2,ε
P(ē,θ)[E]]

where for e ∈ Locr1,r2,ε, we denoted ē the vector such that all the entries which are close
to r2N

−1/4 are equal to this value and all the others are smaller than εN−1/4. Again, note
that under P(ē,θ), we have

XN = W +Mē,θ

where Mē,θ = E(ē,θ)[XN ] = 2θ(ēēT − ē1ē
T
1 ) + LN + RN . RN is a matrix with negli-

gible spectral radius, ē1 is the restriction of ē to the entries of order √r2N
−1/4 and

LN = (L′(θē1(i)ē1(j))i,j. We may assume without loss of generality that they are the first
l = r1

√
N indices and then LN is a l × l matrix with constant entry m̃/

√
N where

m̃ = E[xe2θr2x]
E[e2θr2x] = L′(2θr2) = L′(m∗) .

LN has rank one, with non-zero eigenvalue equal to γ = m̃r1 = 2θL′(m∗)α2/m∗ and
corresponding eigenvector v = 1√

α2
ē1. Recalling that m∗ is a critical point of ψ, we find

that
L′(m∗)
m2
∗

= 2L(m∗)
m3
∗
⇒ L′(m∗)

m∗
= 2ψ(m∗) = A ,
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so that γ = 2θAα2. Note that ē = √α2v +
√

1− α2w with w a unit vector orthogonal to
v. We then have up to a small error

Mē,θ = 2θ((1− α2)wwT +
√
α2(1− α2)(vwT + wvT )) + 2θAα2vv

T

We see that as x goes to infinity, α2 goes to one and the largest eigenvalue of Mē,θ goes
to 2θA. More generally, the largest eigenvalue of Mē,θ is given by

λθ2 = θ

(
(A+ 1)α2 +

√
(A+ 1)2α2

2 − 4(A− 1)α2(1− α2)
)

and eigenvector vθ2 converging to v when θ goes to infinity. Then, by the BBP transition
[4, 10] the largest eigenvalue of XN is given by Kσ(λθ2) with Kσ(x) = x+x−1. We therefore
conclude that the optimal coefficients θ, α2 must satisfy x = Kσ(λθ2). At the same time,
denoting by vθ1 the second eigenvector of Me,θ, we find [10]:

Me,θ = λθ1v
θ
1(vθ1)T + λθ2v

θ
2(vθ2)T + oN(1)

where λθ1 < λθ2 and vθ1, v
θ
2 are orthogonal unit vectors. Denoting uXN the eigenvector

associated to the largest eigenvalue λXN of XN which is close to x, we deduce [10] that

uXN = C
(
λθ1〈vθ1, u〉(λXN −W )−1vθ1 + λθ2〈vθ2, uXN 〉(λXN −W )−1vθ2

)
where C is the constant such that u is a unit vector. In expectation, the isotropic law
shows that 〈vθ2, (λXN −W )−1vθ1〉 goes to zero. Hence, again by concentration of measure
arguments we see that up to events with exponentially small probability

|〈u, vθ2〉|2 = −G
2
σ(x)

G′σ(x) + o(1)

Notice that the right hand side goes to one as x goes to infinity. Since when x goes to
infinity, θx goes to infinity, α2, vθ2 goes to v which is the renormalized vector with r1

√
N

non vanishing entries, and r1 = 2θα2/m∗ the conclusion follows.
�

8. Appendix

8.1. Concentration for Wigner matrices with sub-Gaussian log-concave entries.
In this section we show that Assumption 1.2 do not require to have compact support or
log-Sobolev inequality as assumed in [18]. This hypothesis for instance would not include
sparse Gaussian variables, whereas the following proposition handles this case.

Proposition 8.1. [20, 1] Let µ be a symmetric probability measure on R which has log-
concave tails in the sense that t 7→ µ(x : |x| ≥ t) is concave, and which is sub-Gaussian
in the sense that (1) holds. Let XN be a symmetric random matrix of size N such that
(Xi,j)i≤j are independent random variables. Assume

√
NXi,j and

√
N/2Xi,i have law

µ for any i 6= j. There exists a numerical constant κ > 0 such that for any convex
1-Lipschitz function f : R→ R, and t ≥ 0,

P
(∣∣ 1
n

Trf(XN)− 1
n
ETrf(XN)

∣∣ > t
)
≤ 2e− κ

A
N2t2 . (62)
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Moreover, for any t > 0,

P
(
|λXN − EλXN | > t

)
≤ 2e− κ

A
Nt2 . (63)

One can take κ = 1/8β2 with β = 1680e.

From these concentration inequalities, one can deduce as in the Appendix of [18] that a
Wigner matrix with entries having sub-Gaussian and log-concave laws satisfy Assumptions
1.2.

Corollary 8.2. Assume µ satisfies the assumptions of Proposition 8.1 and has variance
1. Then the matrix XN satisfies Assumptions 1.2.

We now prove Proposition 8.1. It will be a direct consequence of Klein’s lemma (see [1,
Lemma 4.4.12]) and the following concentration of convex Lipschitz functions under µn.

Proposition 8.3. Let µ be a symmetric probability measure on R which has log-concave
tails in the sense that t 7→ µ(x : |x| ≥ t) is concave, and which is sub-Gaussian in the
sense that (1) holds. For any lower-bounded convex 1-Lipschitz function f : R→ R such
that

∫
fdµn = 0 and any t > 0,

µn
(
x : |f(x)| > t

)
≤ 2e−

t2
4β2A ,

where β is numerical constant. One can take β = 1680e.

Proof. By [23, Corollary 2.2], we know that there exists a numerical constant β such that
µn satisfies a convex infimum convolution inequality with cost function Λ∗(./β), where Λ∗
is the Legendre transfom of Λ defined by,

∀θ ∈ Rn, Λ(θ) = log
∫
e〈θ,x〉dµn(x).

Moreover, β can be taken to be 1680e. More precisely, for any convex lower-bounded
function f : R→ R, (∫

ef�Λ∗(./β)dµn
)(∫

e−fdµn
)
≤ 1, (64)

where � denotes the infimum convolution operator, defined by

f�Λ∗(./β)(x) = inf
y∈Rn

{
f(y) + Λ∗

(y − x
β

)}
.

Since µ is sub-Gaussian in the sense of (1), for any x ∈ Rn,

Λ∗(x) ≥ 1
2A ||x||

2,

where || || denotes the Euclidean norm in Rn. Therefore,

f�Λ∗(./β)(x) ≥ inf
y∈Rn

{
f(y) + 1

2β2A
||y − x||2

}
.
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Assume f is L-Lipschitz for some L > 0. Reproducing the arguments of [21, section 1.9,
p19] we have for any x ∈ Rn,

f�Λ∗(./β)(x) ≥ f(x) + inf
y∈Rn

{
− L||y − x||+ 1

2β2A
||y − x||2

}
≥ f(x)− 1

2β
2AL2.

Thus, by (64) we deduce that(∫
efdµn

)(∫
e−fdµn

)
≤ e

1
2β

2AL2
. (65)

Assume now that f is 1-Lipschitz and
∫
fdµn = 0. Using Jensen’s inequality, we get for

any λ > 0, ∫
eλfdµn ≤ e

1
2β

2Aλ2
.

Using Chernoff inequality we deduce that for any t > 0,

µn
(
x : f(x) ≥ t

)
≤ e

− t2
4β2A .

Using the symmetry in (65) between f and −f , we complete the proof. �

8.2. A Uniform Varadhan’s lemma. We prove a quantitative version of Varadhan’s
lemma which is of independent interest.

Lemma 8.4. Let f : R→ R such that f(0) = 0 and f(√.) is L-Lipschitz for some L > 0.
Let MN ,mN be sequences such that MN = o(

√
N) and mN = (1+o(1))N . Let g1, . . . , gmN

be independent Gaussian random variables conditioned to belong to [−MN ,MN ]. Let δ ∈
(0, 1) and c > 0 such that K−1 < c < K and 2δ < K−1. Then,∣∣∣ 1

N
logEe

∑mN
i=1 f

(
gi√
c

)
1|

∑mN
i=1 g

2
i−cN |≤δN

− sup
ν∈P([−MN,MN ])∫

x2dν=c

{∫
f
( x√

c

)
dν(x)−H(ν|γ)

}∣∣∣
≤ εL,K(N) + εL(δK),

where εL,K(N)→ +∞ as N → +∞ and εL(x)→ 0 as x→ 0.

Let ε = 1/N and l0 be the smallest integer such that (1 + ε)−l0 ≤ ε. Define
Il0 = [−(1 + ε)−l0 , (1 + ε)−l0 ], and Bl0 = {i : gi ∈ Il0}.

For any k > −l0, we set
Ik = {x ∈ R : (1 + ε)k−1 ≤ |x| ≤ (1 + ε)k} and Bk =

{
i : gi ∈ Ik

}
. (66)

Let µk = |Bk|/mN . Let k0 be the smallest integer such that (1 + ε)k0 ≥ MN . Since
gi ∈ [−MN ,MN ] for all i, we obtain that for any k > k0, Bk = ∅.

Lemma 8.5. Let δ, ε = 1
N
∈ [0, 1] and N/mN ≤ 2. On the event

{
|
∑mN

i=1 g
2
i −cN | ≤ δN

}
,∣∣∣ 1

mN

mN∑
i=1

f
( gi√

c

)
−

k0∑
k=−l0

µkf
((1 + ε)k√

c

)∣∣∣ ≤ 30(c+ 1)CLKε .
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Proof. As f(√.) is L-Lipschitz, we have∣∣ 1
mN

mN∑
i=1

f
( gi√

c

)
−

k0∑
k=−l0

µkf
((1 + ε)k√

c

)∣∣ ≤ 1
mN

k0∑
k=−l0

∑
i∈Bk

∣∣∣f( gi√
c

)
− f

((1 + ε)k√
c

)∣∣∣
≤ L

c

k0∑
k=−l0+1

µk(1 + ε)2k(1− (1 + ε)−2)+ L

c
µ−l0(1 + ε)−2l0 .

Using the fact that (1 + ε)−l0 ≤ ε, we deduce∣∣ 1
mN

mN∑
i=1

f
( gi√

c

)
−

k0∑
k=−l0

µkf
((1 + ε)k√

c

)∣∣ ≤ 3εL
c

( k0∑
k=−l0+1

µk(1 + ε)2k + 1
)
.

But, on the other hand, on the event
{
|
∑mN

i=1 g
2
i − cN | ≤ δN

}
,

k0∑
k=−l0+1

µk(1 + ε)2(k−1) ≤ 1
mN

mN∑
i=1

g2
i ≤

N

mN

(c+ δ) ≤ 2(c+ 1).

Thus, we conclude that∣∣ 1
mN

mN∑
i=1

f
( gi√

c

)
−

k0∑
k=−l0

µkf
((1 + ε)k√

c

)∣∣ ≤ 3εL
c

(
2(1 + ε)2(c+ 1

)
+ 1
)
.

�

Let I = {−l0, . . . , k0} and LN =
{
y ∈ RI

+ :
∑

k∈I yk = 1, ∀k ∈ I,mNyk ∈ N
}
.We know

from [15, Lemma 2.1.6], that for any y ∈ LN ,
(mN + 1)−ne−mNH(y|γMN ) ≤ P(µk = yk, ∀k ∈ I) ≤ e−mNH(y|γMN ), (67)

where Ik = [(1 + ε)k−1, (1 + ε)k], n = |I| = l0 + k0 + 1, and with γ the standard Gaussian
law

H(y|γMN
) =

∑
k∈I

yk log yk
γMN

(k) , with γMN
(k) = γ(Ik)

γ([−MN ,MN ]) .

Let µ = (µk)k∈I and denote

AC1,C2 =
{
y ∈ LN : c− δ + C1ε ≤

k0∑
k=−l0

(1 + ε)2kyk ≤ c+ δ + C2ε
}

Then, by the previous lemma we see that there exists a finite constant C = O(KL) such
that if we denote Aη = A−ηC,ηC , for N large enough,{

µ ∈ A−
}
⊂
{
|
mN∑
i=1

g2
i − cN | ≤ δN

}
⊂
{
µ ∈ A+

}
.

We used here the fact that the gi belong to [−MN ,MN ] and that (Ik)k is a partition of
this set. By (67), we get the upper bound,

EemN
∑k0
k=−l0

µkf
(

(1+ε)k√
c

)
1µ∈A+ ≤

∑
y∈A+

e
mN

∑k0
k=−l0

ykf
(

(1+ε)k√
c

)
e−mNH(y|γMN ), (68)
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whereas for the lower bound,

EemN
∑k0
k=−l0

µkf
(

(1+ε)k√
c

)
1µ∈A− ≥ (mN + 1)−n

∑
y∈A−

e
mN

∑k0
k=−l0

ykf
(

(1+ε)k√
c

)
e−mNH(y|γMN ). (69)

Let y ∈ A+ and define ν ∈ P(R) by dν(x) = ϕ(x)dγ(x), where

ϕ(x) =
k0∑

k=−l0

1x∈Ik
yk

γ(Ik)
.

With this notation, we have
H(y|γMN

) = H(ν|γ)− log γ([−MN ,MN ]).
With the same argument as in Lemma 8.5, we also have for y ∈ A+,∣∣ k0∑

k=−l0

ykf
((1 + ε)k√

c

)
−
∫
f
( x√

c

)
dν(x)

∣∣ ≤ Cε, |
∫
x2dν(x)− c| ≤ δ + Cε (70)

where C only depends on c. From (68) and Lemma 8.5, we deduce that
1
N

logEe
∑mN
i=1 f

(
gi√
c

)
1|

∑mN
i=1 g

2
i−cN |≤δN

≤ mN

N
sup

ν∈P([−MN,MN ]
|
∫
x2dν(x)−c|≤δ+Cε

{∫
f
( x√

c

)
dν(x)−H(ν|γ)

}
+O(ε)

To complete the proof of the upper bound, we show the following result.

Lemma 8.6. Let K,L, δ > 0 such that δ < 2K−1 and ε = 1
N
. There exists a function

sL,K depending on K and L such that for any function f : R→ R such that f(0) = 0 and
f(√.) is L-Lipschitz, and any K−1 < c < K,

sup
ν∈P([−MN,MN ]
|
∫
x2dν(x)−c|≤δ+Cε

{∫
f
( x√

c

)
dν(x)−H(ν|γ)

}
≤ sup

ν∈P([−MN,MN ]∫
x2dν(x)=c

{∫
f
( x√

c

)
dν(x)−H(ν|γ)

}
+ sL((δ + ε)K),

where sL(x)→ 0 as x→ 0.

Proof. Let ν ∈ P([−MN ,MN ]) such that |
∫
x2dν(x) − c| ≤ δ. Let ν̃ = hλ#ν with the

notations of (27).With the same arguments that below (27), we easily see that

H(ν̃|γ) ≤ H(ν|γ) + 1
2δ + L

2 δK,

which ends the proof.
�

For the lower bound, fix ν a probability measure on [−MN ,MN ] such that ν � γ. We
set ε = εN such that M2

N/mNεN → 0, and we define Ik and Bk as in (66). Define, for
k ∈ {−l0 + 1, . . . , k0},

yk = 1
mN

bmNν(Ik)c,
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and y−l0 = 1−
∑k0

k=−l0+1 yk. We claim that for N large enough and independent of ν,∫
x2dν(x) = c =⇒ y ∈ A−.

Indeed, one can check that on one hand∫
x2dν(x)− (1 + ε)2M2

N

mNε
≤

k0∑
k=−l0

yk(1 + ε)2k ≤ (1 + ε)2
∫
x2dν(x) + ε2 .

We obtain from (69),

logEemN
∑k0
k=−l0

µkf
(

(1+ε)k√
c

)
1µ∈A− ≥ (mN + 1)−nemN

∑k0
k=−l0

ykf
(

(1+ε)k√
c

)
e−mNH(y|γMN ). (71)

In the next lemma we compare H(y|γMN
) and H(ν|γ).

Lemma 8.7.
H(y|γMN

) ≤ H(ν|γ) + oN(1).

Proof. By definition we have,

H(y|γMN
) =

k0∑
k=−l0

yk log yk
γ(Ik)

+ log γ([−MN ,MN ]). (72)

Let f(x) = x log x for x > 0 and f(0) = 0. We claim that

∀0 ≤ x < y, f(x) ≤ f(y) + (y − x). (73)

Indeed, either x > e−1 and f(x) ≤ f(y) since f is increasing on [e−1,+∞). Or x < e−1

and by convexity,
f(x) ≤ f(y) + f ′(x)(x− y).

Since |f ′(x)| ≤ 1 we get the claim. Note that we have for any k > −l0,

ν(Ik)−
1
mN

< yk ≤ ν(Ik), and ν(I−l0) ≤ y−l0 < ν(I−l0) + k0 + l0
mN

.

Thus we deduce from (73) that

H(y|γMN
) ≤

k0∑
k=−l0

ν(Ik) log ν(Ik)
γ(Ik)

+
k0∑

k=−l0+1

γ(Ik)
1

γ(Ik)mN

+ γ(Il0) k0 + l0
γ(I−l0)mN

+ oN(1)

≤
k0∑

k=−l0

ν(Ik) log ν(Ik)
γ(Ik)

+ 2(k0 + l0)
mN

+ oN(1).

We have k0 = O(log(MN)/εN) and l0 = O(log(1/εN)/εN). Since M2
N/mNεN → 0, we get

H(y|γMN
) ≤

k0∑
k=−l0

ν(Ik) log ν(Ik)
γ(Ik)

+ 2(k0 + l0)
mN

+ oN(1).
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Since f : x 7→ x log x is convex, we complete the proof by using Jensen’s inequality which
yields

k0∑
k=−l0

ν(Ik) log ν(Ik)
γ(Ik)

=
k0∑

k=−l0

γ(Ik)f
( 1
γ(Ik)

∫
Ik

dν

dγ
dγ
)
≤

k0∑
k=−l0

∫
Ik

dν

dγ
log dν

dγ
dγ.

�

Moreover, we can compare
∫
f(x/

√
c)dν(x) and

∑
k=−l0 ykf((1 + ε)k/

√
c).

Lemma 8.8. ∣∣∣ ∫ f
( x√

c

)
dν(x)−

k0∑
k=−l0

ykf
((1 + ε)k√

c

)∣∣∣ ≤ εL,K(N),

where εL,K(N)→ 0 as N → +∞.

Proof. As f(√.) is L-Lipschitz, we have on one hand using the same argument as in the
proof of Lemma 8.5,∣∣∣ ∫ f

( x√
c

)
dν(x)−

k0∑
k=−l0

ν(Ik)f
((1 + ε)k√

c

)∣∣∣ ≤ 3Lε
c

(∫
x2dν(x) + 1

)
.

Therefore, ∣∣∣ ∫ f
( x√

c

)
dν(x)−

k0∑
k=−l0

ν(Ik)f
((1 + ε)k√

c

)∣∣∣ ≤ εL,K(N), (74)

where εL,K(N) → 0 as N → +∞. On the other hand, as |ν(Ik) − yk| ≤ 1/mN for any
k > −l0 and |ν(I−l0)−y−l0| ≤ (k0+l0)/mN , we get since f(0) = 0 and f(√.) is L-Lipschitz

k0∑
k=−l0

∣∣∣(yk − ν(Ik))f
((1 + ε)k√

c

)∣∣∣ ≤ L

cmN

k0∑
k=−l0+1

(1 + ε)2k + L(k0 + l0)
cmN

(1 + ε)−2l0 ,

≤ κL

cmN

(M2
N

εN
+ (k0 + l0)ε2

N

)
As M2

N/mN → 0 and k0 = O(log(MN)/εN) and l0 = O(log(1/εN)/εN), we deduce that
(k0+l0)
mN

εN = oN(1). Combining the above estimate with (70), we get the claim. �

Coming back to (71), using the results of Lemmas 8.7 and 8.8, we deduce

EemN
∑k0
k=−l0

µkf
(

(1+ε)k√
c

)
1µ∈A− ≥ (mN + 1)−nemN

∫
f( x√

c
)dν(x)−mNgL,δ(N)

e−mN (H(ν|γ)+oN (1)),

which gives at the logarithmic scale,
1
N

logEemN
∑k0
k=−l0

µkf
(

(1+ε)k√
c

)
1µ∈A− ≥

mN

N

(∫
f
( x√

c

)
dν(x)−H(ν|γ)

)
− εL,K(N),

We conclude by optimizing over the choice of ν ∈ P([−MN ,MN ]), such that
∫
x2dν = c.
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