LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF
SUB-GAUSSIAN MATRICES

FANNY AUGERI, ALICE GUIONNET, AND JONATHAN HUSSON

Abstract: We establish large deviations estimates for the largest eigenvalue of Wigner
matrices with sub-Gaussian entries. Under technical assumptions, we show that the large
deviation behavior of the largest eigenvalue is universal for small deviations, in the sense
that the speed and the rate function are the same as in the case of the GOE. In contrast,
in the regime of very large deviations, we obtain a non-universal rate function and we
prove that the associated eigenvector is localized given the large deviation event, thus
establishing the existence of a transition between two different large deviation mechanisms.

1. INTRODUCTION

In a breakthrough paper [25], Wigner showed that the empirical distribution of the
eigenvalues of a Wigner matrix converges to the semi-circle law provided the off-diagonal
entries have a finite second moment. Following the pioneering work of Kémlos and Fiiredi
[17], it was proved in [3] that assuming the Wigner matrix has centered entries, the largest
eigenvalue converges to the right edge of the support of the semi-circle law if and only if
the fourth moment of the off-diagonal entries is finite. But what is the probability that
the empirical measure or the largest eigenvalue have a different behavior 7 Analyzing the
probability that the largest eigenvalue of a random matrix takes an unexpected value is
a challenging question, with many applications in statistics [16], mobile communications
systems [16], [12] or the energy landscape of disordered systems [§, [5]. This turns out to
be a much more challenging question than to analyze the typical behavior which could be
only answered so far for very specific models. It was first solved in the case of Gaussian
ensembles, such as the Gaussian Unitary Ensemble (GUE) and Gaussian Orthogonal
Ensemble (GOE), where the joint law of the eigenvalues is explicit. In these cases, large
deviations principles were derived for the empirical distribution of the eigenvalues and
the largest eigenvalue in [7] and [6] merely by Laplace’s method, up to taking care of
the singularity of the interaction. The question was revived in a breakthrough paper by
Bordenave and Caputo [13] who considered Wigner matrices with entries with tails heavier
than in the Gaussian case. They proved a large deviations principle for the law of the
empirical measure by a completely different argument based on the fact that deviations
are created by a relatively small number of large entries. These large deviations have a
smaller speed than in the Gaussian case. This phenomenon was shown to hold as well for
the largest eigenvalue by one of the authors [2].
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Yet, the case of sub-Gaussian entries remained open and the general mechanism which
creates large deviations mysterious. Last year, two of the authors showed in [I8] that
if the Laplace transform of the entries is pointwise bounded from above by the one of
the GUE or GOE, then a large deviations principle holds with the same rate function
as in the Gaussian case. This special case of entries, which was said to have sharp sub-
Gaussian tails, includes Rademacher variables and uniform variables. Yet, many entries
with sub-Gaussian tails are not sharp, as for instance sparse entries which are obtained
by multiplying a Gaussian variable with an independent Bernoulli random variable. In
this article, we investigate this general setting. We derive large deviations estimates for
the largest eigenvalue of Wigner matrices with sub-Gaussian entries. In particular, we
show that the rate function of this large deviations estimates is different from the one of
the GOE.

This article is restricted to matrices with entries which are centered and covariance
of order of the inverse of the dimension. Non centered models, such as the adjacency
matrix of Erdos-Rényi matrices, may have different deviations properties as the mean
of the entries can be seen as a rank one deformation of the later. The large deviation
behavior of the extreme eigenvalues of Erdds-Rényi graphs has attracted some attention
recently. Inside the regime where the average degree goes to infinity, that is np > 1
where n is the number of vertices and p is the edge-probability, Cook and Dembo [I4]
have computed the tail distribution of the operator norm for p > n~'/2, and proved that
it is governed by a certain mean-field variational problem. Very recently, the joint large
deviations of the extreme eigenvalues were established in [I] for the “localized” regime
where 1 < np < /logn. The case were np is of order one is still open and might be
studied by our techniques.

We will consider hereafter a N x N symmetric random matrix X with independent
entries (X;);<; above the diagonal so that \/NXZ-J» has law u for all i < j and \/N/2X};
has law p for all 4. In particular, the variance profile is the same as the one of the GOE.
We assume that p is centered and has a variance equal to 1. For a real number z, let

U(r) = 5 log / etdu(t).

¥ is a continuous function on the real line such that (0) = 1/2. Assume that p is
sub-Gaussian so that

A
5 = supy(x) < foo. (1)
zeR
The case where A = 1 is the case of sharp sub-Gaussian tails studied in [18]. We investi-
gate here the case where A > 1 and we show the following result.

Theorem 1.1. Denote by \x, the largest eigenvalue of Xn. Under some technical as-
sumptions, there exist a good rate function I, : R — [0, +o0c] and a set O, C R such that
(—00,2] U [z, +00) C O, for some x,, € (2,+00) and such that for any x € O,

1 1
hmhmmfﬁlog]}”(\)\XN —z| <6) = hmhmsupﬁlog]P’(])\XN —z| <90) =—1,(x).

6—0 N—+o0 0=0 N—too
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The rate function I, is infinite on (—00,2) and satisfies
Loy
@), 12
If A e (1,2), then 2,vVA—-14+1/vVA—-1] C O, and 1, coincides on this interval with
the rate function of the GOE, that is,

1 x
I,(x) = 5/ VY2 —A4dy =: lgop(x). (2)
2
Moreover, for all x > 2, I,(x) < Igop(z).

The technical assumptions include the case where ¢ is increasing (which holds in the
case of sparse Gaussian entries) and the case where the maximum of ¢ is achieved on
R at a unique point in a neighborhood of which it is strictly concave. In the later case,
I,,(z) only depends on A for x large enough.

The method introduced in [18] is based on a tilt of the measure by spherical integrals
and therefore the estimation of the annealed spherical integrals (given by the average of
spherical integrals over the entries of the matrix Xy ). In the case of sharp sub-Gaussian
entries, the annealed spherical integrals are easy to estimate because they concentrate
on delocalized vectors. In the general case we deal with in this article, estimating the
annealed spherical integral becomes much more complicated and interesting because it
can concentrate on localized vectors, at least in a regime corresponding to sufficiently large
deviations. This new phenomenon comes with a “phase” transition at least when A < 2,
since then for small deviations the annealed spherical integral concentrates on delocalized
vectors whereas for large deviations it concentrates on more localized vectors. This fact
is reflected in the eigenvector of the largest eigenvalue when the later is conditioned to be
large, see section[7] We show that it is delocalized for sharp sub-Gaussian entries, whereas
otherwise it localizes for large enough deviations. The existence of such a transition makes
it difficult to compute large deviations on the whole real line, but in fact our formulas
may just be wrong then. For instance, our formulas would predict a convex rate function,
which may not always be the case.

1.1. Assumptions. We now describe more precisely our assumptions.

Assumption 1.1. Let p € P(R) be a symmetric probability measure with unit variance.
We denote by L its log-Laplace transform,

Vr €R, L(x) = log/e”du(t),
and ¥(x) = L(z)/z*. We assume that p is sub-Gaussian in the sense that

A
— =sup¥(x) < o0,
2 zeR

and we define B > 0 by

B

— = lim ().

2 |x|—+o0
We assume moreover that L(,/-) is a Lipschitz function and that pi does not have sharp
sub-Gaussian tails, meaning that A > 1.



4 FANNY AUGERI, ALICE GUIONNET, AND JONATHAN HUSSON

We describe below a few examples of probability measures ¢ which satisfy the above
assumptions. In each of these cases, the fact that L(,/?) is Lipschitz is clear and left to
the reader.

Example 1.2. e (Combination of Gaussian and Rademacher laws). Let

_1 .2
287

e
a
V2rB

where a, b, B are non negative real numbers such that a € (0,1) and aB+(1—a)b* =
1. Then, for all v € R,

L,(z) =log (aeg‘”2 +(1—a) cosh(bx)) :

If B> 1 and b€ (0,1) we see that our conditions are fulfilled and A = B.

e (Sparse Gaussian case). Let p be the law of (T' with ¢ a Bernoulli variable of
parameter p € (0,1) and I' a centered Gaussian variable with variance 1/p. For
any r € R,

u(dz) = do+ (1= ) (644 0.0)

L,(z) =log (pe%) +1-— p)
so that A= B =1,
e (Combination of Rademacher laws). Let

bS]

po= Z (0, +0-3,)

with oy > 0, B; € Rand p € N so that Y. oy = 1,>. ;82 = 1. Since p is
compactly supported B = 0. The fact that p does not have sharp sub-Gaussian
tails means that there exist some t and A > 1 such that

Zozzcosh pit) > e %.

The latter is equivalent to

’la; & Ay Biy2 A gy Biy2
Z —e24 (e =) 472 (3 > >1.
o 2
i .
This inequality holds as soon as czeza > 2 for somei € {1,...,p} by taking t = %.
This can be fulfilled if B; is large enough while a;3? < 1. We also see with this

family of examples that A can be taken arbitrarily large even if B = 0 (take e.g
p=2 A=pt="1a =28)" M4 57 = (2= 67) L aa=1— ).

Let Hy be the set of real symmetric matrices of size N. We denote for any A € Hy
by A4 its largest eigenvalue, ||A|| is spectral radius and by fi4 the empirical distribution
of its eigenvalues, that is

1 N
fia = N;%,
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where Aq,..., Ay are the eigenvalues of A. We make the following assumption of concen-
tration of the empirical distribution of the eigenvalues at the scale V.

Assumption 1.2. The empirical distribution of the eigenvalues fix, concentrates at the
scale N :
lim sup ilog]P) (d(fixy,0) > N™") = —o0, (3)
N—+o0 N
for some k > 0, where d is a distance compatible with the weak topology and o is the
semi-circle law, defined by

1
O'(dill') = 2— V4 — 33'2]1|r|<2d£€.
T <

Remark 1.3. (1) From [18, Lemmas 1.8, 1.11], we know that Assumption[1.9 s ful-
filled if v is either compactly supported, or if u satisfies a logarithmic Sobolev
inequality in the sense that there exists ¢ > 0 so that for any smooth function
f:R =R, such that [ f*du =1,

[ s stan < [ 19513

(2) If u is a symmetric sub-Gaussian probability measure on R with log-concave tails
in the sense that t — p(|z| > t) is a log-concave function, then the Wigner matrix
Xy satisfies Assumption[1.3. In particular, if B is a Wigner matriz with Bernoulli
entries with parameter p and I is a GOE matriz, then the sparse Gaussian matric
Bol/\/p, where o is the Hadamard product, satisfies Assumption . We refer
the reader to section of the appendizx for more details.

Let us remark that when p is sub-Gaussian, , the spectral radius of Xy is exponen-
tially tight [I8, Lemma 5.1] and that this fact remains true under any tilted measure

69N<6,XN6>

pled) —
EX(QGN(e,XNe)>

where e € S¥~1 and # > 0. More precisely, we can make the following remark.

Remark 1.4. If holds, then for any 6 > 0,

dP(X), (4)

1
i Hmeup sup 7 1og PO (L]l 2 K) = —oo.
1.2. Statement of the results and scheme of the proof. Asin [I§], our approach to
derive large deviations estimates is based on a tilting of the law of the Wigner matrix Xy
by spherical integrals. Let us recall the definition of spherical integrals. For any 6 > 0,
we define

[N(XNa (9) — Ee[€9N<€’XN€>]

SN=1 with radius one. The asymptotics of

where e is uniformly sampled on the sphere
1
In(Xn,0) = N log In(Xn, 0)

were studied in [I9] where the following result was proved.
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Theorem 1.5. [19, Theorem 6] Let (En)nen be a sequence of N x N real symmetric
matrices such that:

o The sequence of empirical measures fig, converges weakly to a compactly supported
measure [i.

o There is a real number \g such that the sequence of the largest eigenvalues g,
converges to \g.

e supy ||En|| < +o0.

For any 6 >0,
lim JN(EN,Q) = J(/L, )\E,H)

N—+o0

The limit J is defined as follows. For a compactly supported probability measure
i € P(R) we define its Stieltjes transform G, by

Vz ¢ supp(p), Gu(z) := / !

rRZ—t

dp(?),

where supp(y) is the support of p. Let 7, denote the right edge of the support of y. Then
G, is a bijection from (r,, +00) to (0, G,(r,)) where

Gu(ry) = g{p Gu(?).

Let K, be the inverse of G, on (0,G,(r,)) and let
Vz € (0,Gu(ry)), Ru(z) = K,(z) —1/z,

be the R-transform of p as defined by Voiculescu in [24]. Then, the limit of spherical
integrals is defined for any ¢ > 0 and = > r,, by,

1
J(:ua Z, 9) = 0”(#’7*1" 0) - 5 /log (1 + 20U(M7$a (9) - ng)dﬂ(y),

with
R,(20) if 0 <20 < G,(x)
) := g o
v, ,0) {x — L it 20> G, (x).

20
In the case of the semi-circle law, we have
1
Go(x) = 5(:1: — Va2 —4), R,(z) ==z.

We denote by J(x,0) as a short-hand for J(o,x,0). In the next lemma we compute
explicitly J(x,#), whose proof is left to the reader.

Lemma 1.6. Let 0 > 0 and x > 2. For 0 < %Gg(x),
J(x,0) = 6°.
Whereas for 0 > G, (x),

1

J(x,0) =0z — % - §log 20 — %/log(m —y)do(y).
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To derive large deviations estimates using a tilt by spherical integrals, it is central to
obtain the asymptotics of the annealed spherical integral Fy(6) defined as,

Fn(0) = %logEXNEe[eXp(NH(e,XNe>)] .

In the following lemma, we obtain the limit of F)y as the solution of a certain variational

problem. We denote by F(0) and F () its upper and lower limits:
F(0) = limsup Fy(6),

N—+o0
F(0) = %Igfg Fn ().
For any measurable subset I C R, we denote by M(I) and P(I) respectively the set of

measures and the set of probability measures supported on I.

Proposition 1.7. Assume Xy satisfies Assumptions and[1.9

F(e) = lim sup sup lim sup ‘/—-;iv g, (67 K)7
6—0,K—+oo ajtagtaz=l N-—s+oco 1,02,03
SK—0 ;>0
—_— : . . N

E<0) N a1+§;1£3=1 51}({Iflfl~grfoo lzlvn;l)ilif ‘Fa17a2,a3 (5’ K) .

a;> SK—0
f£7a27a3(5, K) is the function given by:

Ffii@@ﬂs (67 K) = 62 (05% + 20[10[2 + Bag)

l
1 205t 1 20t;t;
+ su su {— L( ”>+— L( ”)
zielzggl sieI3,Ii)§k N z_: Z: v N 2N z_: v N

|03 2= Nag|<6N |3, 82— Nag|<oN =1 =1 b=l

+ 5 {g/L<2%>dV1(ZE) - H(Vl)} - %bg(?ﬂ) - %}’

fz2du1 (z)=aq
where I} = {z : |z| < V2NV, I = {x : V2NV < |z| < KY2NYAY I3 = {x -
K'Y2NV4 < |z| < v/Nas}, and

H(v) = /log %dy(:c),

if v is absolutely continuous with respect to the Lebesgue measure, whereas H(v) is infinite
otherwise.

Remark 1.8. Note that F' and F are convex by Holder inequality. Since the entries of
Xy are sub-Gaussian, F(0) < A0*. In particular F and F are finite convex functions
and therefore are continuous on R, .

The above proposition gives quite an intricate definition for the limit of the annealed
spherical integrals. Yet, for small enough 6 it can be computed explicitly.

1
Lemma 1.9. For any 0 < 37—,

F(0) = F(6) = 62



8 FANNY AUGERI, ALICE GUIONNET, AND JONATHAN HUSSON

Note that for large 6 this formula is not valid anymore when A > 1 since F grows like
Af? at infinity (see the proof of Proposition [1.11]).

Proof. Using the bound L(z) < Az?/2 for any > 0 and the notation of Proposition ,
we have

_ 1
F(6) < sup {02 (oﬁ + 20109 + Baj + 2Aazas + Aaj + 2Aa1a3) + 3 log oq} .
ai1+oaz+az=1

Here we used the fact that

inf{H (1) : /:Uzdyl =y, € P(Lh)} > inf{H (1) : /xde/l =aq,1n € P(R)},

.172
where the infimum in the RHS is achieved at vi(dr) = (2ma;)~/?e 2a1dz and hence
equals —1/2(1 + log(2may)).
As A>1and B < A, we deduce the upper bound,

2( 2 2y, 1
F(9) < sup}{@ (0 4+ 24Aa(1 — ) + A(1 — ) )+§loga}

a€l0,1
1
= sup {92 (A—(A—-1)a*) + - log a} .
a€(0,1] 2

Hence for all # > 0, (and as we could have seen directly from the uniform upper bound
L(0) < 467)

F(0) < A6?. (5)
We see that if 20/ A — 1 <1 then the function

1
a P(A-(A-1)?) + §loga,

is increasing on [0, 1]. Thus the supremum is achieved at a = 1, and F(8) < 2. Moreover,

taking ay = 1,a9 = a3 = 0, and v; the standard Gaussian restricted to I, vi(dx) =
.1:2

1ye”2dx/Z, we find that

F(0) > 6. (6)

Thus, if 20v/A —1 < 1, we get that F(0) = F(0) = 6°.

~—

O

Although the limit of the annealed spherical integrals may not be explicit for all 8, we
can still use it to obtain large deviations upper bounds as we describe now in the following
theorem.

Theorem 1.10. Under Assumptions and[1.9, the law of the largest eigenvalue Ax,
satisfies a large deviation upper bound with good rate function I which is infinite on
(—00,2) and otherwise given by:

Vy > 2, I(y) = sup{J(y.0) — F(0)}. (7)

0>0

Moreover, 1(y) < Iqor(y) for all y > 2.



LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF SUB-GAUSSIAN MATRICES 9

Proof. From Remark [[.4] we know that the law of the largest eigenvalue is exponentially
tight at the scale N. Therefore, it is sufficient to prove a weak large deviations upper
bound by [15, Lemma 1.2.18]. Let § > 0. We have,

]P)()\XN <2- 5) < ]P)([LXN(f) = 0)7

where f is a smooth compactly supported function with support in (2 — 9,2). Since
supp(o) = [—2,2], we deduce that,

PAxy <2—=9) <P(d(fixy,0) > ¢),

for some € > 0. As the empirical distribution of the eigenvalues concentrates at the scale
N according to , we conclude that

) 1
Nl_l)I}rloo N logP(A\x, <2 —0) = —o0.

Let now z > 2 and § > 0. Recall from @ that F(0) > 62 for any 6 > 0. Therefore,
I(z) < sup{J(z,0) — 6°}.
0>0

From [I8, Section 4.1], we know that
sup{J(z,0) — 0>} = Icor(x),
6>0

where Igop is the rate function of the largest eigenvalue of a GOE matrix. Therefore we
have proved that

I(z) < Igop(x),Yx > 2.

In particular 7(2) = 0 since Igog(2) = 0. Therefore we only need to estimate small ball
probabilities around z # 2. As fix, concentrates at the scale N by Assumption and
|| X || is exponentially tight at the scale N by Remark [1.4]it is enough to show that for
any K >0,

1 _
lim sup lim sup — log P(Xy € V&) < —I(z),
6—0 N—+oo N ’

where V% = {Y € Hy : |A\y — 2| < 6,d(fiy,0) < N7%,[[Y]| < K}, for some £ > 0. Let
0 > 0. From [22 Proposition 2.1], we know that the spherical integral is continuous, more
precisely, for N large enough and any Xy € V({;,

|JN<XN7 0) - J(ZL‘, 0)| < 9(6)7
for some function g(d) going to 0 as § — 0. Therefore,

1 K[N(XN,G)
XNEV&Z IN(XNa 9)

Taking the limsup as N — 0 and § — 0 at the logarithmic scale, we deduce

P(Xy € Vi) = IE( ) < B[y (Xy, 0)]c-N7@0+No(o)

1 —
lim sup lim sup i log P(Xy € Vis) < F(6) — J(x,0).

6—0 N—+o0

Opimizing over 6 > 0, we get the claim. 0
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Proposition 1.11. Under Assumption the rate function I defined in Thgorem
is lower semi-continuous, and growing at infinity like */4A. In particular, I is a good
rate function.

Proof. I is lower semi-continuous as a supremum of continuous functions (recall here that
J(0,.) is continuous by Lemma and F is continuous by Remark . It remains to
show that its level sets are compact, for which it is sufficient to prove that I goes to
infinity at infinity. Let x > 2. Let C' > 0 be a constant to be chosen later such that
Cx > 1/2. We have by taking § = C'z and using , that

I(z) > J(z,Cx) — F(Cx)
> Cz? — % — %log(QCx) — %logx — AC?2*. (8)

Taking C' = 1/2A, and assuming that x > A, we obtain that

_ x2

I(x) > Vi o(z?). 9)
To get the converse bound, we show that as @ goes to infinity, F' goes to infinity like A6
We distinguish two cases. First, we consider the case A = B. Using Proposition [1.7], we

get the lower bound for # > 1,
1 1
> 2 - — ] - =
F(6) > A6 <1 82> 1 log 6,

by taking as = 0, a3 = 1 — 072, oy = 072 and v, the Gaussian law restricted to I; with
variance «y. In the case A > B, we define m, such that ¢(m,) = A/2. Taking a3 = 0,

/ . .
ar=1—02 a3 =02t = ‘/TT\;%I 4, = L%ﬁj , and v the Gaussian law restricted

to I; with variance «y, we obtain,

2(_ 1y _1
F(0) > Af (1 02) Jlogé. (10)

It follows that for any € > 0, there exists M < oo such that for § > M,
F(9) > (1—2) A2,

Therefore

I(r) < max {sup{J(x, 0) — (1 —e)A0*}, sup{J(x,0) — F(Q)}} .

0>M o<M
But from Lemma [1.6] one can see that the second term in the above right-hand side is
bounded by Mz + C where C'is a numerical constant. Besides, using the same argument
as in , we get

2
x
sup{J(z,0) — (1 —e)AF*} > ———— — o(z?).
02]\8{ (,6) = ( ) T 4(l—-g)A (z7)
Hence, for x large enough,

I(z) < sup{J(z,0) — (1 —e)Ab?}.

0>M
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But, for x large enough and 6 > 1/2, J(0,z) < 6z. Thus,
2

up{J(2,0) = (1= 2)46%) < suplfr = (1= 2)48%) = g~y

which ends the proof.
OJ

Proposition 1.12. For any 6 > 0, J(.,0) is a convex function. Therefore, I is also
convez.

Proof. Let z,y > 2 and t € (0,1). Let Ey be a sequence of diagonal matrices such that
||En|| < 2 and such that fig, converges weakly to o. Let E% and E¥ be such that
(E]:(\:[)z,z = (E;{,)m = (EN)i,i for any 1€ {]., .. ,N - 1}, and
(Ex)vy =2 (EX)nn =Y.
We have Agz =z and Agy =y. Then, Hy =tE + (1 — t) £}, is such that its empirical
distribution of eigenvalues converges to o, and Ay, = tz+(1—t)y. By Holder’s inequality
we have,
IOg ]N(HNa 0) S thg IN(EN, 0) + (1 — t) IOg IN<DN, 9)
Taking the limit as N — +oo, we get,
J(tz+ (1 —t)y,0) <tJ(z,0)+ (1 —1t)J(y,0).

Therefore, J(0,.) is convex and [ is convex as a supremum of convex functions. O

To derive the large deviation lower bound, we denote by C, the set of # € R* such that

F(6) = F(6) = F(0).

By Lemma C, is not empty. We observe also that by continuity of both £’ and F (see
Remark |1.8), C, is closed. Let

Ve >2, I(z) = sélcp{(](xﬁ) — F(0)}.

Theorem 1.13. For any x > 2, denote by

0, ={0>0:1(z)=J(z,0) — F(0)},
where I is defined in . Let x > 2 such that there exists § € ©, N C, and 0 ¢ ©, for
any y # x. Then, I(x) = I(z) and

R |
limlim inf = log P ([Axy — [ < 0) = ~I(x).

We apply this general theorem in two cases. We first investigate the case where the
function 1 is increasing, case for which we can check that our hypotheses on the sets O,
holds for x large enough. This includes the case where p is the sparse Gaussian law, see

Example [I.2]

Proposition 1.14. Suppose that Assumptions and hold. If 4 is increasing on
R, then C, = R*. Moreover, there exists x, > 2 such that for any v > x,, the large
deviation lower bound holds with rate function I.
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We then consider the case where p is such that B < A. This includes any compactly
supported measure p since then B = 0. We prove in this case the following result.

Proposition 1.15. Suppose that Assumptions[I.1] and[1.9 hold. If p is such that B < A
and such that the maximum of ¢ is attained on R for a unique m, such that " (m,) < 0,
then there exists a positive finite real number 6y such that [0y, +0o[C C,. Therefore, there
exists a finite constant x,, such that for x > x,, the large deviation lower bound holds with

rate function I. Furthermore, on the interval [z,,+00) the rate function I depends only
on A.

In the case where A is sufficiently small, we can show without any additional assumption
that the large deviation lower bound holds in a vicinity of 2 and the rate function I is
equal to the one of the GOE. This contrasts with Proposition [I.11] which shows that the
rate function I goes to infinity like 22/4A at infinity and therefore depends on A. In other
words the “heavy tails” only kicks in above a certain threshold.

Proposition 1.16. Assume A < 2. The large deviation lower bound holds with rate
function I on [2,1/\/A—1++/A—1]. Moreover, I coincides on this interval with the
rate function in the GOE case Igog, defined in . As a consequence, for all x €

2,1/VA=T1+VA=1),

}Sgréljlvrggg%bgp(\km —z|<9) = bim lin sup % log P (|Axy — z < 0) = —lcop(x).
Organization of the paper. In the next section [2, we detail our approach to prove
large deviations lower bounds. Since Proposition is crucial to all our results, we prove
it in the next section [3] Then, we will apply these results to prove the large deviations
lower bounds close to the bulk in section[d], that is, we give a proof of Proposition [I.16] To
prove the large deviations lower bounds for large x, we consider first the case of increasing
1 in section [fl and then the case of B < A in section [6] Indeed, the variational formulas
for the limiting annealed spherical integrals differ in these two cases, as B = A in the first
case whereas B < A in the second.

2. A GENERAL LARGE DEVIATION LOWER BOUND

We first prove Theorem [I.13] and will then give more practical descriptions of the sets
O, in order to apply it.

Proof of Theorem[1.13. By assumption, there exists § € ©, N C, such that 6 ¢ ©, for
y # x. In particular, it entails that I(x) = I(x). Introducing the spherical integral with
parameter 6 > 0, we have

In(Xn,0)
1] (XN,9)>7

where V% ={Y € "y : [A\y — 2| < 6,d(fiy,0) < N%,||Xy|| < K} for some K > 0 and
k> 0. Using the continuity of the spherical integral (see [22], Proposition 2.1]), we get

E(]IXNGVL;I; In(Xy,0)) oNE(0)=NJ(2,0)~Ng(6)—o(N) (11)
Eln(Xn,0) ’

P(dxy —2l <0) =
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where g is a function such that ¢g(0) — 0 as § — 0. We claim that

a1 E(]IXNevéfglN(XNa 0)) .-

Notee N 8T Ely(Xw,0.) =
To this end we will use our large deviation upper bound. Since fix, concentrates at scales
faster than N by Assumption , and by Remark , || Xn|| and fix, are exponentially
tight uniformly under any tilted measures P9 as defined in , and therefore under
the measure tilted by spherical integrals. Hence, it suffices to prove that for all y # z, for
0 small enough, and K large enough,

. | E[lyyevy In(Xn, 0)]
1m sup — 1o, -
N PN T Ely(Xn, 0)

By assumption, there exists § € ©, NC, such that § ¢ ©, for y # x. We introduce a new
spherical integral with argument 6" and use again the continuity of Jy to show that:

< 0.

E[lxyevs In(Xn, 0)] B E[ﬂxNevég%IN(XN,e)]
Ely(Xy,0) B Ely(Xy,6)
< e—NJ(yﬂ’)—NE(9)+NJ(y,0)+N5(6)]E[1X cyK IN(XN 0/)]
< NevE )

< e—NJ(yﬂ’)—NE(G)-#—NJ(yﬂ)—&-Nf(G’)+Ns(6)

where £(9) — 0 as § — 0. We can conclude that

y L E[lxyev In(Xn, 0)]
1m sup — 10 :
N—>+o<l? N8 Eln(Xn,0)

§—0

—sup{J(y, ') - F(0)}+ J(y.0) — F(9)

= —1(y) + J(y.0) — £(0) (12)
By assumption, § ¢ ©,, and 8 € C, so that F(f) = F(0). Hence,
~I(y) + J(y.0) = F(6) <0
and the conclusion follows from ([12). Therefore, coming back to (11), we obtain since
0, € ©, and I(z) = I(x),

o1
%%i]:gﬁlogpﬂ)\XN —z[ <6) = — ().

O

In a first step, we identify a subset defined in terms of the subdifferential sets of F' at
the points of non-differentiability where the large deviation lower bound holds. Let D be
the set of & > 0 such that I is differentiable at 6.

Lemma 2.1. The lower bound holds for any x > 2 such that I(z) = I(z) > 0 and

v¢B= | (% + aﬁ(e)), (13)

0eDe

where OF (0) denotes the subdifferential of F at 6.
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Note that since F is a convex function, its subdifferentials are well defined. Moreover,
by Lemmam De C [2\/%, +00).

Proof. Let x > 2 such that I(z) = I(r) >0and x ¢ E. Since F() > 6 for any 0 > 0 by
(6) and F is continuous by Remark we deduce from Lemmall.6that 6 — J(z,0)—F(0)
is continuous and goes to —oo as ¢ goes to +oo. Since C, is closed, the supremum

sup {J(0,2) — F(0)} (14)

is achigved at some 0 € C,. We will show that 0 € D.
As I(z) # 0 we must have § > 1G,(z). Indeed, F(#) > 6 and J(z,0) = 6° for
o< %Ga(x) by Lemma so that

sup {J(z,0) — F(0)} = 0.
HS%GU(JC)

Since I(x) = I(x), we deduce by Fermat’s rule that € is a critical point of J(z,.) — F and
therefore satisfies the condition:
oJ — 1 —
0€ —(z,0) —0F(0) =x— — —0F(0).
€ 5o (2.0) ~ OF(6) =& — 5, — OF(6)
Since x ¢ E, we deduce that F' is differentiable at 6.

According to Theorem [1.13] to prove that the lower bound holds at x, it suffices to
show that 6 ¢ ©, for any y # . Let us proceed by contradiction and assume that there
exists y > 2, y # x, such that § € ©,. As F is differentiable at 6, it should be a critical
point of both J(y,.) — F and J(x,.) — F. Therefore, we should have

0 0
2 Iy, 0) = = J(z,0).
5g° W:0) = 557(x,0)
If G,(y) < 26, then we obtain by Lemma [1.6]and the fact that G, (z) < 26 that x = y. If

G,(y) > 26, then we have

1
= — 9.
Y

On the other hand, 20 < G,(y) < 1 and therefore we get the unique solution 26 = G, (x).
As we assumed that 26 > G,(z), we get a contradiction and conclude that 6 ¢ ©, for any
y # x such that G,(y) > 260, which completes the proof. O

We are now ready to prove the following result:

Proposition 2.2. Assume that there exists 6y > 0 such that [0y, +00) C C,, and such that
F' is differentiable on (0, +00). There exists x, € [2,+00) such that for any x > z,,

I(z) = I(x) and the large deviation lower bound holds for any x > x, with rate function
I(z).

Proof. On one hand, B
sup{J(6,7) — F(0)} < bz + C, (15)
<00
where C' is some positive constant. Since I(z) > 2% /4A — o(2?) by (9), we deduce that
there exists z,, € [2,400) such that for z > z,,, I(z) > 0 and together with that the
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supremum of J(.,z) — F is achieved in [y, +00), and therefore in C,, by our assumption.
By definition of C,, we deduce that for any « > z,,, I(z) = I(z) > 0. In view of Lemma
2.1} it remains to show that F, defined in , is a bounded set. From our assumption
that F is differentiable on (y, +00) and Lemma , we deduce that

1

pol )
2WA—1 "
We observe that since 0 < F(6) < A#?, we have for any ¢ € 9F(6),
€O < F(20) — F(0) < 4A0%,

and thus ¢ < 4A6. Therefore, the set E defined in Lemma [2.1] is bounded, which ends
the proof.
UJ

3. ASYMPTOTICS OF THE ANNEALED SPHERICAL INTEGRAL

In this section we prove Proposition [I.7] Taking the expectation first with respect to
Xy, the annealed spherical integral is given by

Fr(0) = %logEXNEe[exp(N9<e,XNe))]

1
= 5 log E. exp (f(e)),

where

ZL 2\/_96163 +ZL \/_06)

In a first step, we will prove the following Varlatlonal representation of the upper and
lower limits of Fi(0).

Lemma 3.1. Let Xy be a Wigner matriz satisfying Assumptions[1.1] and[1.3. Then for
any 6 > 0, B
F(0) <liminf Fx(0) < limsup Fy(0) < F(0)

N—+o0 N—+oo
with
F(f) = limsup sup limsupFY_ . (6, K),
§—0,K—+o00 c=ci+cotcy N—+4o00
§K—0 c; >0
F(9) = liminf liminf £~ 0, K
E@0)= Sw - diminf Climinf Fe, e; (0, K),
;>0 6K —0
where
62 1
Cl eres(0, ) = sup sup { (c1 + 2¢169 + Bc3) — 5(02 + 03)

s;>VeRNYA  es<e, N=1/4<VeR
\2327C3N|<6N |Et2 Neg|<SN

—Z <2931> ZRZL(%XZM sup {@(y,s)—H(ym}},

veP(Iy)
f z2dv(z)=cq
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and
29 z
(v, s) Z/ o dv(z),
with I, = [—VedNY* \/eSNYY). Here, we have set ~ to be the standard Gaussian law
and

H(vl) = [ tog F@avta).

Hereafter, os(1) is a function which goes to zero as § goes to zero (or infinity depending
on the context). ex(0) denotes a function which goes to zero as § goes to zero or infinity
while K is fixed. O(9) is a function such that there exists a finite constant C' such that
the modulus of O(9) is bounded by C'9. These functions may change from line to line.

Proof. We use the representation of the law of the vector e uniformly distributed on the
sphere as a renormalized Gaussian vector g/||g||2 where g is a standard Gaussian vector
in RV, to write

Ecexp (f(e)) = E [exp(X(9))]
where g = (¢g1,...,gn) and
ORI (2\/_ezglglfgz> >oL (\/_ezgjlg )

To study the large deviation of ¥(g), we split the entries of g into three possible regime: the
regime where g; < N'/*, an intermediate regime where ¢; ~ N'/* and finally g; > N4
Fix some K > 1,5 > 0 such that 0 < 26 < K~!. Let ¢1,c9,¢5 > 0 and ¢ = ¢; + ¢3 + c3.
We assume that 0 < K~! < ¢; < ¢ < K. Define I, I, I5 as

L = [0, \/_N4]
I, = (VedNi VeKN1]
I; = (VeKN#,\/N(c+36)].
Let for i = 1,2,3, Ji = {j : |g;| € Li} and & = 3., g7/N. In a first step, we will fix

the empirical variances ¢ and compute the asymptotics of

c1 c2,C3 (9 5) [exp(E(g»]lA ]

€1,:¢2,€3
where

61 ca,es m {|C Ci| < 5}

1<i<3

zc(g)=z (e\i@J Z (fe\/gZ_C)

Using the fact the L(,/7) is Llpschltz, we prove in the next lemma that on the event
A5

C1,C2,C37

Let

Y.(g) is a good approximation of (g).
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Lemma 3.2. On the event A°

C1,C2,C37

2(9) — Se(g) = Nogx(1), as 6K — 0. (16)

Moreover

3vVN 3\/_

|J5] < N | JoU J3| < ——

Proof. Note that since u is symmetric, L(x) = L(|z|) and since we assumed L(,/-) Lips-
chitz, for any z,y € R, |L(x) — L(y)| < L|z* — y?| for some finite constant L. Therefore,

S (Ve - (2 ) | < 5 Y g :

AN | 2N | N2 2
1<i£j<N 1 97 (& +¢&' +¢3) c

)
<ONLOP(c+eY + e +¢é) )— < O'NLO*K,

where C, C" are numerical constants and we used K~ ! < ¢ < K, and 25 < K~!. We get a
similar estimate for the diagonal terms. The estimates on |.J5] and |.J5| are straightforward

consequences of Tchebychev’s inequality.
O

We next fix the set of indices Ji, J3, J3. Using the invariance under permutation of the
distribution of g, we can write

N\ /N —k
cl c2,c3 (9 5) Z (k‘) < l )Fcl?,lcz,c:s’

0<k<3vVN6s
0<I<3VNK
where
FE e = E|exp(Culo) 1, , o]
and

Tu={Jl={l.. kL o={k+1,. . k+1}, s ={k+1+1,... N}}

As the number of all the possible configurations of J, and J3 are sub-exponential in N by
Lemma , that is, for any k < 3v/N/K and | < 3v/N/6,

s () (7 P et

we are reduced to compute F Ckl 162 o for fixed k,l. More precisely, we have the following
result.

Lemma 3.3.

log F, (0,0) = max log F¥! +O(glog]\f>.

c1,C2,C;
k<3VN/K 1,62,63
1<3VN/5

cl c2,c3

To simplify the notations, we denote for any a,b € {1,2, 3},

1 xy.
RN, 3, = L (20—
vx7y E ) 7b<x7 y) 2N Z < \/NC) bl

1€Jq,j€p
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if a # b, and

Vr,y € RY, Za,a(%y)Z% > L(%\/Zﬁjc) N Z <\/_9\/Z_ylc>

i#jeda i€Jy

where now J3 ={1,... k}, o ={k+1,....k+1}, s, ={k+1+1,... N}
Next, we single out the interaction terms which involves the quadratic behavior of L at
0 or at 4+o0.

Lemma 3.4. On the event A°

c1,c2,C37
92
Y11(9,9) +2X12(9,9) + X33(9,9) = C—Q(Cf + 2¢100 + B3) 4 0sx (1) + 0 (1),

as 0K — 0 and K — +o0.
Proof. Observe that for i € Jy, j € J1 U Ja, |9ig;] < VNKdc. Since L(z) ~¢ 22/2, we get,

2(O0) el e
21 1(g g) + 221 g(g g) =40 2 + 20 2 + OéK(1>7 (17)

as 0K — 0. On the event A%

0 encyr We have |(&)Y)? — ¢f| = O(dc) for any 7 € {1,2,3}. But
¢ > K=, therefore

7

Y1,1(9,9) +2%12(9,9) = 92 1 292@ + 0sx (1).

For i,j € Js, |gig;] > KV eN. Since L(z) ~4o %xz, we deduce similarly that

55(g,9) = (§+0K (1)) s 2 (Zgz> _3922—§+0K(1), (18)

2 N22
i€Js

as K — +o00, which gives the claim.

From the Lemmas and E we have on the event A°

c1,C2,C37
92
%(9) =3 (¢} +2c102 + Bej) + X15(9, 9) + 2525(9, 9) + X22(9, 9) + 05k (1) + 0k (1). (19)

We now show that the deviations of the variables g;,7 € JyUJ3 do not lead to any entropic
terms, which yields the following lemma.

Lemma 3.5. Let k,l € N such that k+1 < N. Define

Sereres(0) = max max  logE( exp { N(Zya(g,5)+282(L, )+ Tt 1) g, ).

t;€15,i<l s;€13,i<k
I3 t2—coN|<SN |30 s2—cgN|<SN

where

-Agl = {(gi)i]ik:—&-l—l—l S IN b=l Z gz Ncﬂ < N5}. (2())

i=k+I+1
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Then,

\/Nlo ) )
5 B UNK

< log E( exp{ N(S13(9,9) + 2559, 9) + 2200, 9)) } L, .. em.)

N
Serenea(8/2) = S(e2 + es)—os()N + O

N co 4 ¢3) + 0s(1 )N+O<ﬂlog(1/5)).

S 501,02763<5) - 2 ( 52

Proof. Integrating on g;,¢ < k + [, we find

E(exp {N(El 3(9,9) +2223(9, 9) + X22(g, 9))}]1 AL CQC3OII€,Z>

kel
- DA _
N AR EDE RIS L 11 do:
X max max E(exp {N(Elyg(g, ) + 2%93(t, s) + g a(t, t))}]lAgl>,
tel, s€lg

|30 t2—caN|<EN |32, 52 —c3N|<ON

But, using the fact that ¢ < K, we get

k+l k41
/1{12’“{ 92— (cates)|<26}€ R H dgi = 6_;(1_6)(02+63_26)N/ s H dg;
N [ i —=
i=1

< (QW)%e*%(CHCsH( (0)+O(8K))N 5,%_
By Lemma we have k + 1 = O(\/N/(S).Therefore’

log E((exp { N(T13(9,9) + 252(9,9) + T22(9.9) Jag, i, )

< —g(@ +¢3)+O(0)N + O(OK)N + O(@ 1og(1/5)>

+ max max 10gE<exp {N(Em(g, s) +2¥53(t, s) + Xao(t, t))}]lAil)-

t;€lp,i<l s;€I3,i<k
2 2
|Ziti —coN|<SN |37, s —cgN|<6N

To get the converse bound, we take t € I}, s € I¥, optimizing the above maximum where
J is replaced by /2. We next localize the integral on the set Bs where |g;—s;| < §/8V NK,
1<i<k, |g;—ti| <6/4, k+1<i<k+I One can check that Bs x A% C Aﬁl eves Tk g
and because L o /" is Lipschitz, we have on this event

13139, 8) +2593(t, 8) + Saa(t, t) — (Z13(g,9) + 2523(g, 9) + Sa2(g, 9))| < CH4,
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where C' is some positive constant. Hence

E(exp{N(Em,(g g) +2%23(g,9) + X22(g, 9))}1 A8 C2CSﬂZk,z>

: _ 1,2
>W H /ge ]l|g s1\<5/8ﬁe 39 dg H / ]l|g7tj‘§5/4€ 39 dg
3

2 1<i<k 1<i<i v 9€l2

xe*CNGQ‘SIE(exp {N(zm(g, s) 4+ 2353(t, s) + Loalt, t))}]lA§1> ’

6_];](02-‘-83)4‘0(5)]\[(8 QiNK>k(4\j%>lE<eXp {N(ELs(g, S) 4+ 2853(t, s) + Xoalt, t))}]lAﬁl)

which completes the proof of Lemma [3.4/as k +1 = O(v/N/§) and K~* > 6.

A%

O
Hence, we are left to estimate
AY =E[exp (NS13(g,)) Lag ],

where s € I} satisfies | Y., s? — Neg| < 6N and A? is defined in (20). Let gy =
|JL > ey 0g:- We can write
1] i€Jy “9i

Y13(9,8) = 1|Z/ (203:81) diin ().

The first difficulty in estimating AY lies in the fact that the function

. Z (29:1531)

is not bounded so that Varadhan’s lemma (see [I5, Theorem 4.3.1]) cannot be applied
directly. The second issue is that we need a large deviation estimate which is uniform in
the choice of s € I such that | 325, s — Ne¢g| < ON. In the next lemma, we prove a
uniform large dev1at10n estimate of the type of Varadhan’s lemma. The proof is postponed
to the appendix [8.2]

Lemma 3.6. Let f : R — R such that f(0) = 0 and f(,/7) is a L-Lipschitz function.

Let My, mpy be sequences such that My = o(m) and my ~ N. Let gi,...,9m, be
independent Gaussian random variables conditioned to belong to [—My, My]. Let § €
(0,1) and ¢ > 0 such that K~ <c < K and 26 < K~'. Then,

1 ZI v f A
ot B oy - o / / (%W@ ~HEh) ||

f z2dv=c

S €L,K(N) + €L<5K),

where e,k (N) (resp. er(z)) goes to zero as N — +oo (resp. as x — 0), while L, K are
fixed.
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Let s € I} such that | >, s? — Neg| < N. We consider the function

Iy xHi (2«91’31 )

Using the fact that § < ¢, one can observe that f(,/) is 86?L-Lipschitz. Using the
previous lemma with My = N4, we deduce that for any ¢; > K1,

roed = s (3 [ (2 ivta) ~ O} < onl) ol 1)

f z2dv(z)=cy

where ex(N) — 0 as N — +oo. Putting together (19), Lemma [3.5/and (21]), we obtain

1
108 E ((exp(S(9)) L gz ) = U (01, 02,08) < 5.0 (N) + 055 (1) + 01 (1) + 05(1),

and similarly for the lower bound where where \If,(f z) (¢1, o, c3) is replaced by \Ifffl/ 2) (c1,co,¢3);
with e (N) — 0 as N — +oo, whereas ¢ and K are fixed,

1
\Ijgl)@l, c2,¢3) = Q(c1, 2, 03) — 5(02 + 03)

+ max max {22,3(75, s) +Xgo(t,t) +  sup  {®(v,s) — H(V\%)}},
t;€lp,i<1 s;,€13,i<k veP(Iy)
|34 t2—coNI<SN |3, s2—cgN|<SN [ 22dvy (z)=c1
with

2 Bz? 2
Qz,y,2) = 92%(;_-1-965:,2) © , and P.(v,s) Z/ 95&82 dv(z). (22)

By Lemma [3.3] we obtain

1
108 F oy (0.0) = max W(er.e0,03) < e (N) + oase(1) + ox(1) +05(1). - (23)
1<3VN/s

and similarly for the lower bound, where \I/,(”)(cl, 9, c3) is replaced by \I/l(fl/ 2) (c1,c9,c3). To

prove the lower bound of Lemma we can first write

liminf Fy(#) > lim inf N log F, (0,20).

N—+o0 N—+o0
Using , we deduce

liminf Fiy(#) > lim inf o) — 05xc(1) — 0xc(1) — 05(1).
lim inf Fiy(¢) = lim inf max W (c1, 2, ¢5) — 05 (1) — 0xc(1) — 05(1)
1<3VN/s

01 c2,c3

To complete the proof of the lower bound, one can observe that

Soa(t,t) = NZ ( >+0N()
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uniformly in ¢; € I such that |, — ¢ N| < dN. Indeed, the diagonal terms are
negligible in this case since

1 t!
N 2 N _c\/_NZtQ_gK

tieJa i€

To complete the proof of the upper bound, we will use the exponential tightness of ||g||?
and of ||g||;?. More precisely, we claim that

Jm lim sup —IP’(||9||2 > KN, ||gl[}, < K7'N) = —c0. (24)

O N—+o0

Indeed, it is clear by Chernoft’s inequality that for N large enough
P(|lg|* > KN) < CemNE,

where C'is a positive numerical constant. Whereas, using Lemma and a union bound,

N—m
_ N B
Pl <5< Y ()R ¢ <K0W)
m<3vN/s i=1
By Chernoff’s inequality, we have for any m < N,
N—m
B(Y g < KN < e mninh,
i=1
1

where A*(z) = £ — 1 — +log(2z) for any x > 0. Since A*(K ') = +o00 as K — 400 and

for any m < 2v/N /9, the binomial (m) is negligible in the exponential scale, we deduce
the claim ([24)).
Using that L(z) < Ax?/2 for any x € R, we have

Y(g) < AG*N.
From the exponential tightness , we deduce that for K large enough
Eexp(E(9)1 L g2k 403, <x-1y < 1 (25)
Let £k = {+|l9l|* > K, +|g|[3, < K~'}. We have

0 < limsup Fy(f) < max (hmsup—logE( =(9) ]ng) hmsup—logE( 291 e )>
N—+o00 N—+o0 N N

Since we took K so that (25)) holds and Fy(f) > 0 as Xy is centered, we deduce that
lim sup Fy(0) < limsup — logE( Ne,). (26)
N—+o0 N—+oc0 N

Let now Cs be a d-net for the /*°-norm of the set
{(61,62,03) € Ri e+t c3 < K, cL > Kﬁl}.
As |Cs| = O(K /&) is independent of N, we have

1
limsup Fy(0) < max limsup — log F| 6,0).

c1 ca, 05(
N—+o00 (c1,¢2,c3)€C5 N—+o00
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From (23), we deduce

limsup Fy(f) < max limsup max \Il,(cl)(cl, C2,¢3) + 05k (1) 4+ 0x (1) + 05(1).
N—+oo c= 61+62+63 N—o4o0o k<3VN/K
e >K—1 1<3VN/§
Taking now the limit as 6 — 0 and K — 400 such that K — 0, we obtain the upper
bound of Lemma [3.11 O

We are now ready to prove Proposition [I.7] Building on Lemma 3.1 we show that we
can optimize on the total norm ¢ in order to simplify the variational problem.

Proof of Proposition . We use the notation of Lemma . Observe that Fy,, .. (6, K) =
—oo for any co, c3 > 0. Therefore, we may assume that ¢ = ¢; + ¢ + ¢c3 > 0. We make the
following changes of variables. For i = 1,2,3, we set a; = %, and if h. : 2 — x//c, and
v € P(R), we set vy = h.#v to be the push-forward of v by h,, defined for any bounded

continuous function f to satisfy
/ F(x)dn(z) = / f(%)du(:v). (27)
For any v € P(I;) such that [ 2?dv(z) = ¢, we have [ 2?dv;(z) = oy and

H(v|y)=H(v)+ 101 + 110g(27r) and H(v) = /log d—dz/( )= H(n)+ %log c. (28)

2 2 dx
We obtain
F(9) = limsup  sup suplimsup F) , .. (6, K),
Sﬁg}i(:dkoo a1+22;rg¢3 1 ¢>0 N—+oo

and similarly for £(0), where

1 1
]:é\i azase(0: ) = Sup Sup {92 (04% + 20100 + Ba%) —zc+ s loge
s;€l3 t;€ly 2 2

| > s2-Nag|<Ns |3 t2—Nag|<Ns

+—= Z (29$t> 2$VZL<£\/%>+ Sop {q)l(yl’s)_H(”l)}}_%k’g(%)’

v1 €P(he(l1))
f z2dvy (z)=ay

Note that h.(I;) = [-VON'Y* /6N is independent of ¢. Optimizing over ¢, and see
that the maximum is achieved at ¢ = 1 for N large enough.
OJ

4. THE LARGE DEVIATIONS CLOSE TO THE BULK

We prove in this section Proposition [1.16, By Theorem the large deviation lower
bound holds at every x > 2 such that I(z) = I(x) # 0 so that there exists § € ©,
which does not belong to any ©, for y # x. In the following lemma, we prove that if
F(0) = F(#) = 6% on a interval (0,b) with b > 1/2, then the large deviation lower bound
holds in a neighborhood of 2 and the rate function I is equal to the one of the GOE.



24 FANNY AUGERI, ALICE GUIONNET, AND JONATHAN HUSSON

Lemma 4.1. If for 0 € (0,5), for some e € (0,1), F(8) = F(0) = 62, then for any
T € 2,6+ 1),

I(x) = I(z) = Igor(z).
As a consequence, _f(x) > 0 for any x > 2. Moreover, for x € [2,¢ + %) the optimizer in

I is taken at 6, = 1/2G(x) and 6, ¢ ©, for all y € [2,+00)\{z}.
Proof. As F(#) > 62 for any 6 > 0, we have that
sup {J(0,2) —0*} < I(z) < I(z) <sup{J(0,z)—6*}.

0€[0,1/2¢) >0
But if z € [2,e + 1),
Icop(z) = sup {J(G,:v) — 92}

6>0
is achieved at § = 1/2G(z) € (0,1/2¢) since G7'(¢) = e+1/e. Therefore, if z € [2,2e+5-),
then we obtain
I(z) = I(z) = Igog(z).
The consequences are obvious as G is invertible on [2, +00).
O

The result of Proposition then follows from Lemma [4.I] and Lemma We now
study the convergence of the annealed spherical integrals for large values of @, for which
we need to make additional assumptions on .

5. CASE WHERE 1 IS AN INCREASING FUNCTION

In this section we make the additional assumption that v is non-decreasing. This
assumption is in particular satisfied in the sparse Gaussian case below.

Example 5.1 (Sparse Gaussian distribution). Let p be the law of £I" where € is a Bernoulli
variable of parameter p € (0,1) and ' is a standard Gaussian random variable. In that
case we have for any v € R,

log[(1 —p) +pexp(=®/2p)]  [* t
Ylx) = 22 B /0 (1 = p) exp(—(at)?/2p) +Pdt

is increasing in x as the integral of increasing functions on RY.

5.1. Simplification of the variational problem. We prove in this section that when
1 is increasing on R*, C, = R* and we can simplify the limit F'(#) as follows.

Proposition 5.2. For any 0 > 0, F(0) = F(0) = F(0) where

1 1
F(0) = sup  sup {92a2+302(1—a)2—|—/ L(20v1 — am)du(:v)—H(l/)——10g(27r)——}
a€l0,1]  veP®) 2 2
fachu(a:):oz
Proof. With the notation of Proposition we need to bound, for any 6, K > 0, and
o1 + oy + a3 = 1, the quantity F2 . . (6, K). Since ¢ is non-decreasing on R* and

symmetric, we have for any s € I§ such that | >, s? — agN| < N0, that for any i €
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{1,...,k}, i < \/(as + 0)N so that for any z € R, 1(20s.2/V'N) < (20+/(as + 0)x)

Thus,

Z/ 293 o dl/1 492 Z / 2«93 x dl/l(x)
< /L(QQ\/ma:)dVl(x) = /L(QQ\/Q_gx)dm(IE) + 05(1)

where we finally use that Lo /. is Lipschitz. On the other hand, since L(x) < Bz?/2 for
any x > 0,

Ik
%;;L<2\0/SIN%> 2N Z (29tt ) §028<a§+2a3@2)+0(§(1>'

Therefore, we have the upper bound,

F(O) <  sup sup {92 (af 4+ 20102) + 6°B(as + a)?
aitaztaz=1 ; 5;67?(11;%)
x vi(z)=a1

1 1
+ /L(20\/Q{3$)dl/1($) — H(1n) — 5 log(27) — 5}
We can further simplify this optimization problem by showing that the assumption on
the monotonicity of ¢ entails that we can take as = 0 in the above RHS. Indeed, note
that ¢(0) = 1/2. Therefore, ¢ is bounded below by 1/2 everywhere. Hence, we deduce
that

20% g + /L(QQ\/(X_gl’)dyl (z) = 20%a1a + 402a3/a:2¢(20\/a—3x)dyl(x)
< 40%*(ap + a3) /wa(QG\/ag + azz)dvy ().

Thus, with the change of variables a3 + as—a3, we conclude that

— 1 1
F(0) < sup sup {92(1% + 60*Baj + /L(QH\/a_gx)dyl(x) — H(n) — 5 log(2m) — —}.

ar1tasz=1 v1 €P(R) 2
f z2dvy (z)=ay

To prove that F'(0) is bounded from below by the same quantity, we fix ay, e, a3 such
that @y + as + a3 = 1, = 0, and v € P(R) such that [z%dv(z) = ay. We take in
the definition of fé\i omos(K,0), k=1, 8 = +vazN, and v, = h,\#ﬁy(. N 1), with the
notations of (27). We take A such that [ 2?dvi(z) = ay, which goes to 1 as N goes to
infinity. We have

1 1

F s (K, 0) = 0%(af + Ba3) + /L(29\/0z3x)d1/1(x) — H(1y) — 5 log(27) — 3
We deduce by monotone convergence and the fact that L(,/) is Lipschitz that
1 1
F(0) > 6°(ai + Bas) + /L(29\/a3x)dl/(x) —H(v)— 5 log(27) — 3
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We next compute the supremum over v in the definition of F' in Proposition [5.2 To
this end, we denote by G : [B/2,+00) = RU {+0o0} the function given by

Ve € [B/2, +00), G(C) = log / exp(L(z) — (22)da (29)
Lemma 5.3. Let
| = _gggl/z G'(¢) € (0, +o0]. (30)

For any C € (0,1), there ezists a unique ¢ € (B/2,400) solution to the equation
&) = —C,
It is denoted by (c. For C > 1, we set (¢ = B/2. Then,

BC
sup [/L(x)du(x) — H(V)] = sup [T + / (L(x) - —Jf2>dy<l’> — H(v)
veP(R) veP(R)
fodu(x)zC f:c2du(:c)§0

= Ce + G(¢o)
Note that if [ is finite, then so is G(B/2) since G is a convex function.

Proof. Define the function

Vv € P(R), B(v) = H(v) + / (52~ Lw))du().

We first show that

g, Bw= ol B (31
fz2du(z):0 f:c2du(z)§C

Clearly the RHS is bounded above by the LHS. To prove the equality, we therefore need
to show that for any v € P(R) such that [a?dv(z) < C, there exists v, such that
[ 2?*dv.(z) = C, and

limy, =v, and lim E(v.) > E(v).

e—0 e—0

We set v, = (1 — €)v + &7, where 7. is a Gaussian measure of variance 1 and mean m.,

given, if D = [ 2%dv(x) by
—(1—-¢)D

With this choice of m., one can check that [ z?dv.(
weakly to v as e goes to zero. As [ z?dv.(z) < C, and
goes to infinity, we deduce that

lim <§x2—L(x))dug(a:): / <§x2—L(x)>dy(x). (32)

e—0t

z) = C. Moreover, v, converges
(Ba? — L(x))/2? goes to zero as x

Besides, as H is lower semi-continuous,

liminf H(v.) > H(v).

e—0t

We conclude together with that, lim._,o+ F(v.) > E(v), which ends the proof of the
claim . Observe that E is a lower semi-continuous function for the weak topology
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since H is lower semi-continuous and x — Bz?/2 — L(x) is non-negative and continuous.
Moreover, the set

{vePR): /x2dy(a;) < C},

is a compact set. Thus, the supremum of E over the set above is achieved. We will
identify the maximizer. For any ¢ € [B/2,+00) such that G({) < +oo, we let v be the
probability measure given by

exp(L(x) — ¢z?)

Tex(Lly) — C)dy ™"

dl/g =

We will show that

nf E() = B(vg). (3)

[ 22dv(z)<C
Let u be a probability measure such that H(u) < +oo and [ 2?du(x) < C. As H(p) <
400, we can write,
w= (14 ¢)dv,,

where ¢ is some measurable function such that ¢ > —1 v -a.s. and [ @dv, = 0. We
have

B(w = Blre) + [ (547 - L)) eladvee (0

d
+ /(1 + ) log(1 + ¢)dve., + /log %gpdycc.

By convexity of x +— xlogx, we know that

Jar s+ pane = 1+ [ v )tog(1 + [ pive,) <o

Therefore, using again that [ pdy., = 0 to cancel the contribution from the partition
function of v, we get

B~ Blre) = [ (G- 1)+ 1o ) oo 0

X

- (3 -¢) [eline@) = (5 - o) ( [ aute) - [Pive.@).

If C <1, then [a?dy,(x) = C. Since (¢ < B/2 and [ z*du(z) < C so that the RHS is
non negative. If C'> [, then (¢ = B/2, and we also get E(u) > E(v¢,). This shows that
V¢, achieves the infimum in , and ends the proof of Lemma . O

5.2. Differentiability of the limit of the annealed spherical integral. This section
is devoted to the proof of the following proposition.

Proposition 5.4. F is continuously differentiable on (1/v/B — 1,+00) except possibly at
the point 6y such that
0o = inf {0 : F(0) > 6°}.
Moreover, for any 0 < 1/2v/B —1,
F(0) = 6% (34)
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The second part of the claim of the above proposition is due to Proposition
and the fact that A = B. From now on, we assume that 6?(B — 1) > 1 and wish to prove
the first part of Proposition [5.4 We define for any a € [0,1], and v € P(R),

Hyla,v) = 620> + 0°B(1 — a)® + / LROVT = az)dv(z) — H(v) - %log(?w) - % (35)

By Proposition [5.2 we have

F(e) = sup Hg(Oé,l/), (36>
(a,v)ES
where S = {(a,v) € [0,1] x P(R fxzdu = a}. We first show that we can can
restrict the parameter o to the set [ 21U {1}, as described in the following lemma.

Lemma 5.5. If 0*(B — 1) > 1, then
F(0) = max( sup Hpy(a, V),62>.

(a,v)ES

1
asly

Proof. Up to replace v by ho#v, where h, : x — x/\/«,
sup H@(O[,V) sup {HQ(OZ V) H(V)}v
(a,v)es a€(0,1]
f:thu 1
where for any a € (0, 1], and v € P(R),

Hyla,v) = 620> + 0°B(1 — a)® + %loga + /L(QG\/(l ~ a)aw)du(z) — %log(27r) _ %

We claim that for any v € P(R) such that [ zdv(z) =1,
1 .
< .
aénu%{u Hy(o, v) < max (H@(Q ),Hg(l, V)) (37)

Indeed, first notice that since ¢ is increasing, for all « € [0, 1] we have,
/L(20\/ (1 —a)az)dv(z) = 46%a(l —a) /x2w(29\/a(1 —a)x)dv(z)

< 46%a(l1 — ) /I21/J<9I>dl/($).
Denote by m = 2 [ 2®¢(0z)dv(x) € [1, B]. For any a € (0, 1],

~ 1 1 1
Hy(a,v) < 0*a® +0*°B(1 — a)* + 3 log a + 20%a(1 — a)m — 3 log(2m) — 5 = Jom(a).
We find that
1 9 9 1
fom(3) == B)+ 1. ff(e) =202(B+1—-2m) - .
Since fy,, is increasing and fy, (0) = —oo, we deduce that f, is either decreasing

or decreasing and then increasing. Since fj,,(1/2) < 0, we conclude that fo,, is either
decreasing or decreasing and then increasing on [1/2,1]. Therefore,

In[aXl]fgm( o) = max (f@m( ) f9m( ))7
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which yields the claim since fo,m(a) = Hy(ov,v) at the two points @ = 1/2 and 1. To
conclude the proof we observe that since Hy(1,v) = 6* for any v € P(R), we have

N 1 1
sup {Hp(1,v) — H(v)} = 6* + = + ~log(2r) — inf H(v) =0
Jz2dv(z)=1 2 2 [ @2dv(z)=1
OJ
Due to Lemma , we can further simplify the optimization problem defining F'(f) in
by optimizing on v € P(R) such that [ zdv(z) = «, given a € (0,1).
Corollary 5.6. Let R be the function
R:C € (0,4+00) — Clc + G(Ce),

where (¢ is defined as in Lemma . Denote for any o € (0,1),

1 1 1
Ky(a) = 0*(a® + B(1 — a)?) + R(46*a(1 — a)) — 5 log(1 — a) — log(20) — 3 log(27) — 3
and Ky(1) = 6%. Then, for any 0 > 1//B —1,

F(0) = sup Ky(a).

a€(0,1]

Proof. When a < 1, we make the following change of variables which consists in replacing

v by its pushforward by = — 20v/1 — ax. Using (28], we find that
Hv) = / log %du — H(n) - %log(l ~ o) — log(26)
T

and [ 2?dv(z) = 4a(1 — «)#?. Thus,

F(#) = max (92, sup Ky(a, 1/)), (38)

(a,v)eS’

where S" = {(a,v) € (0,1) x P(R) : [2%dv(z) = 4a(1 —)6?}, and for any a € (0,1),v €
P(R),
Ko(a,v) = 0*(a® + B(1 —a)?) + /L(x)dl/(a:) —H(v) — %log(l —a) — log(260) — %log(Zﬁe).

By Lemma we obtain for any a € (0,1),
sup Ky(a,v) = 0*(a” + B(1 — a)?) + 46°a(1 — a)Cap + G (Can)
J 2?dv(z)=4a(1—a)b?
1

1 1
b log(1 — o) — log(20) — 5 log(27) — 3

where (o9 = Cap2a(1—a)- Hence, if we set, for o € (0, 1),

Kofa) = 8%(a” + B(1 — 0)?) + R{A6a(1 — a)) ~ 1 log(1 — a) ~log(26) — 1 loa(2m) — 1.
we deduce from that
F(f) = max (92, sup Ke(&)). (39)

a€(0,1)
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To study the supremum of Ky, we will need the following result on the limit of R at 0,
which will allow us to compute the limit of Ky at 1.

Lemma 5.7. When C — 07,
1 1
R(C) = SR log(2mC') + o(1).
Proof. For C' < [, we have
G'(¢e) = —C. (40)
Since G'(C') goes to zero when C' goes to infinity, and G’ is invertible as G”(x) > 0 on
(—00,1), we find that
élino (o = +o0.
From the inequalities, L(z)/2z? € [0, B/2], we deduce that by of G we have the bounds
1

1
§log§ <GQ) < §log§j

no |ty

which implies that
1 m
G(() ~ioo = log —.
() ~+ B 0g ¢
On the other hand, inserting the bound L(z)/x? € [0, B/2] and in the numerator
and the denominator of the derivative, we obtain

(=51 _
¢ 20

(41)

~G'(¢) <

We deduce, since (¢ — +o0 as C' — 0, that
1 1
G =——+ 0<—>.
(Ge) 2c Cc

Therefore, we get from the definition of (¢ that (¢ is equivalent to % when C' goes
to zero. Using , we can conclude that

1 1 1 1
R(C) = = +o(1) + = log — = = + = log(2rC) + o(1).
2 2 1 o(L) 2 2
2C 2C
[
From Lemma 5.7, we deduce that
lim Ky(a) = 62, (42)

a—1

so that we can continuously extend Ky to 1. Therefore, gives
F(0) = sup Ky(a).

a€(0,1]
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We now study Kj and show that it is continuously differentiable on (0, 1). This amounts
to prove that R is continuously differentiable on (0,1). On (0,1), it is clear that R
is continuously differentiable due to the implicit function theorem. Indeed, (¢ is by
definition the unique solution of the equation

G'(Q) =-C,

and G is strictly convex. On (l,+00), R(C') = BC/2 + G(B/2) is an affine function,
therefore it is sufficient to prove that

B
lim R’ = —. 4
cl—>zf (©) 2 (43)

This is a consequence of the fact that for any C < [,

R(C) = CIc + (o + 0¢cG'(Cc) = (e,
which gives (43). We deduce that Kj is continuously differentiable on (0,1) and

Va € (0,1), Kj(a)=20*(a+ B(a—1)) +46°Ce(1 — 2a) + ST —a)
—«
From Lemmal5.7], we know that Kj goes to —oo when « goes to zero so that the supremum
of Ky on (0, 1] is achieved either at 1 or on (0, 1). From Lemma 5.5} we find for 62(B—1) >
L,
F(9) = max (Kp(1), sup Ko(c)).
aS%

Let us assume that the maximum of Kj is achieved on (0,1). We deduce that the maxi-
mum of Ky is achieved on (0, %] at a critical point since Kj is differentiable. The critical
points a of Ky satisfy the equation,

20%(a + B(a — 1)) + 46°C (1 — 2a) + =0, (44)

2(1 — «)
As 0*(B — 1) > 1, 1/2 does not satisfy the above equation so that the critical points of
Ky are the ao # 1/2, such that
2 1
20 (Oé + B(a — 1)) + 20—a) ': gp(a) (45)
40%(2a — 1) ' '

Ca,& =
We find that

[l L

Pla) <0 ifa <3,
with P(a) = 46*(B—1)a?—460*(B—1)a+1. As (.9 > B/2, we obtain that the maximum
of Kp is achieved at a € (0,1/2) such that P(a) < 0. The roots of P are
1+ /1-[?(B-1)!

- 5 ‘

Thus, the maximum of K, is achieved on [a_,1/2]. We will show that Kj is strictly
concave on (0,1). Note that,

40%a(l —a) > 1 <= a € [B_, B4],

90(04)2§<:>{P(a)20 if a >

(46)

ot
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with

1+v1—-10-2

B = —

For any o € (8_,1), we must have (. = B/2 and therefore

Ky(a) = 0*(a* + B(1 — a)?) + 2B0a(l — a) + G(g) ! log(1 — «) + Cy,

2
where Cy is some constant depending on . Thus, for a € (5_, %),

Kj(a) =20*(1 — B) + 5 <20*(1-B)+2<0.

2(1-a)?
For any a € (0, 5_), we have
Ko(a) = 0*(0® + B(1 — a)?) + 46°a(1 — a)Cap + G(Carp)
— %log(l —a) + Cy,

where (¢ is such that
G'(Cup) = —46%a(1 — a).

As @G is strictly convex, we deduce by the implicit function theorem that o € (0, ) — Cap
is differentiable, and we have

aozgoz,@G”(ga,@) = _4‘92<1 - 20[)
We deduce that 0., 9 < 0, for any a € (0, 5_). Therefore, for a € (0, 5_), we obtain

1

K"(a) = 20*(B + 1) — 86> 462 1—-2 S
0 (Oz) ( + ) 8 Coc,@ + aacoc,@( a) + 2(1 _ Oz)2

Using that (,9 > B/2 and that 0,(, 0 < 0 for a € (0, 5_), we find that

Va € (0,5.), Kj(a) <20*(B+1) —40*B + -,20°(1— B) +2 <0.

1
2(1-a)?

Thus, K} is decreasing on (0, ) and ((_, %) Since K} is continuous, we deduce that K

is decreasing on (0, 3) and Kj is strictly concave on (0,31). Therefore, the maximum is

achieved at the unique critical point of Ky on (0, %) which we denote by ay. We distinguish
two cases.

15 case: | < %. We then have f_ < a_ < oy < (. We know that on one hand

P(a_) =0, so that ¢(a_) = £. On the other hand (,_y = B/2 since a_ € [3_, 8+]. We
deduce by that o_ is a critical point of Ky which lies in (0, %) Therefore ag = ar_.
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2"dcasel> . We have, a_ < f_ < B4 < ay. Note that 0 < a_ <%<a+§1
Since p(a) # B/2 for any «a € [B_, f4]¢, we deduce that ay € [a_, f_), and in particular
K}/(cg) < 0. We deduce by the implicit function theorem that 6 — ag is C', and therefore
0 — Ky(ap) is continuously differentiable on (1/v/B — 1, +00).

In conclusion, we have shown that for any 0*(B —1) > 1,if | < 5

F(f) = max (92 Kp(a)),
where «_ is defined in , whereas if [ > = B T
F(f) = max ((92, Kg(ozg)),

where ay is the unique solution in (0, 3_) such that G'(C.¢) = —460%a(1 — «).
To conclude that F' is continuously differentiable on (1/4/B — 1,+00) except at most
at one point, we show that there exists 6, such that

VO < 6y, F(0) =62, and V0 > 0y, F(0) > 62

Since F(0) > 62 for any 6 > 0, it suffices to prove that 6 — F(0) — 6 is non-decreasing.
Recall that
F#)= lim Fn(0),

N—+o0
where
Fn (9):N10gE exp(ZL\/ Noe?) —|—X<:L 2\/_966])>
i<j
and e is uniformly sampled on S¥~!. Therefore,

FN(Q)—sz%logEeexp<Z2N82( (\/_96 ——>e +Z4N€2< 2\/_9(22@) >62€2>

)

As 1) is increasing and (0) = 1/2, 6§ — Fy(0) — 6? is non-decreasing, and therefore
0 — F() — 07 is non-decreasing as well.

For the sake of completeness, we show the following Proposition which indicates that
it is unlikely we could prove the large deviation principle for all values of x by following
our strategy because F'is in general not differentiable everywhere.

Proposition 5.8. Assume 0y = inf{6 € R* : F(0) > 6°} > 1/v/B —1. Then, F is not
differentiable at 6.

Proof. Let 6 > 6,. Lemma shows that with Hy defined in (35]) , we have
F(#) = max Hy(a,v).

J a2dv(z) <o
a<i
Since 0y > 1/4/B — 1, we know from the proof of Propositionthat there exists ag < 1/2
and vy € P(R) such that
Hy, (v, v0) = F(6y).
Define g(8) = Hy(a, 1) for any 8 > 6. Let F' denote the right derivative of F. We
have as F' > g and F(6y) = g(6y),

F'(60) = ' (60)-



34 FANNY AUGERI, ALICE GUIONNET, AND JONATHAN HUSSON
We find
g (00) = 200(a? + B(1 — ap)?) + 21 — / zL'(200v/1 — apx)dvg ().
Since v is increasing, xL/(x) > 2L(x), and L(x) > 2?/2 for any z > 0. Therefore,
xL/(x) > 2? and we deduce
g/(eo) Z 290(04(2) + B(l — OéQ)Q) + 4900(()(1 — Oé())
> 20y + 205(1 — a)*(B — 1).

This shows that ¢'(6y) > 26, and therefore F', (0) > 26,. It yields that F' is not differen-
tiable at 6.
U

5.3. Proof of Proposition [1.14} By Proposition [5.4 we know that F is differentiable
on (1//B —1,4+00) except possibly at 6y. Using Proposition we deduce that there
exists x, finite such that the lower large deviation lower bound holds with rate function
I(z) = I(z) for any x > z,,.

6. THE CASE B < A

We consider in this section the case where the following assumption holds.

Assumption 6.1. B exists and is strictly smaller than A. Moreover, we assume that
achieves its mazimum A at a unique point m, such that ¥"(m,) < 0.

The first condition includes in particular the case where the law of the entries have a
compact support (since in this case B = 0) and we believe the second condition is true
quite generically, as we check in the following example.

Example 6.1. Let
D 1 x
o= 5(5—1/ﬁ + 61/ yp) + (1 = p)do, Y(z) = 2 log(p(cosh(ﬁ) -1)+1).

Then, forp < 1/3, u satisfies Assumption (but for p > 1/3 p has a sharp sub-Gaussian
tail). Indeed, we have

Vo >0, ¢'(x) = le(;:) — Qng), Y ()

We claim that h : x — xL'(x) — 2L(x) is increasing and then decreasing on R,.. Indeed,
Ve >0, B(z) = aL"(x) — L'(x), h'(x) = 2L (z),

_ L'(z) 4L(z) N 6L(x).

2 3 4

and we have,

T / /P sinh (\/iﬁ)
L(z) = log (pcosh (ﬁ) +1-p), L'(z) = . (\/Lﬁ) r—
L' (z) = pr (= p)cosh (%) L®)(z) = % ~ 2P L) cosh (*/%) sinh (i)

(pcosh (\/%3) +1—p)?’ (p cosh (\/iﬁ) +1—p)3 NG
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We have, for p > p, =1/3

E= o < i1 -0

Therefore, L) is negative and therefore h' is decreasing. Since h'(0) = 0, we deduce
that h' is negative and 1) is decreasing. If p > p., we have that h" is positive and then
negative. Therefore, h' is increasing on [0,xo] and then decreasing on [xq,+00), with

_ 912
Ty = /pcosh 1(1p(21’:p1)’ ). But,

! _ : / -
R'(0) =0, xgrfooh () = 7

as L'(x) ~joo 1/\/p and L"(x) ~ico 2(1 — 1/p)e~"/VP. Therefore, there exists m, >
xo such that h' is positive on (0,m,) and negative on (m.,+00). We deduce that v is
increasing on (0,m,) and decreasing on (m,, +00) so that ¢ achieves its unique mazimum
at m,. Moreover, ¥"(m,) < 0. Indeed, otherwise we have

Y'(m,) =0,¢"(m,) =0 < m,L'(m,) = 2L(m,), m2L"(m,) = 4m,L'(m,) — 6L(m,)

< L'(m,) = m,L"(m.), m,L'(m,) = 2L(m,).

This implies that h'(m.) = 0 which contradicts m, > o (and L'® # 0 on [vg,m,]. As
M. > g, we have that h'(m.) < 0 and therefore " (m.) < 0.

F(0) and F(0) defined in Proposition [1.7, we will show that for § large enough we can
give an explicit formula as stated in the following proposition.

Studying the variational problem aris from the limit of the annealed spherical integral

Proposition 6.2. There exists 0 > 1/\/A — 1 such that for any 0 > 6y, F(0) = F(0) =
F(6) where

F(0) = sup V(a),

a€(0,1]
with
1
Va >0, V(a) = 0*(A—1)a* + 6> + 3 log(1 — a).

More explicitly,

F(Q):%(A—1)<1+\/1_m>2+92+%log<1—\/1—m>—%log2.

Given the above proposition is true, the result of Proposition [L.15]immediately follows
from Proposition [2.2]

We prove this proposition by first showing that £(6) > F(0) for all § and then that,
for large 0, F(6) < F(6).
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6.1. Proof of the lower bound. Recall that by Proposition [I.7, we have the following
formulation of the limit £(0).

F()= sup liminf limsup 7Y . ..(0,K),
ajtagtag=1 6%(05,;((:04»0 N—+o0 Y
a; >0
where
F a0, K) = 6*(af + 2010 + Baj)
k !
1 20s;t; 1 20t;t;
: (S 5 1)
gr o W2 v 2 M
|32 2= Nag|<6N |3, s2—Nag|<sN i=1 j=1 iy=1
k
20s;x 1 1
+ su { /L( z)dyx—Hz/ }——lo 277——},
s {7 )i - o} - G ostem) - 5
fzzdl/l(z):al =
Our goal is to show that we can take i3 = 0 and in the supremum defining 7 ., . (9, K)

we can take all the ¢;’s equal. In fact we first prove the lower bound:

Lemma 6.3. For any 6 > 0,
F6) > sup V(a),

a€(0,1]

where V' is defined in Proposition 6.3
Proof. Indeed, if we take a3 = 0 and t; = NY4, /%=1 < j < |, ap € [lm, /20N —

0, lm*/29\/N + 4], ag = 1 — a, 11 to be the Gaussian law restricted to I; with variance
a1, then we get the lower bound

1
FN o0, K) > 0%(a? + 200 + 02 A) + 5 loga; =V (as).

a1,a2,0

Hence, to derive the lower bound it is enough to remark that we can achieve any possible
value of oy in [0, 1] as some large N limit of {ym, /20 N for some sequence of integer
numbers [y, which is obvious. O

6.2. Proof of the upper bound. The rest of this section is devoted to prove that
the previous lower bound is sharp when 6 is large enough. To this end, recall that by
Proposition , we have the following formulation of the limit F'(6).

F@)= sup limsup limsupFY . .. (6,K).
ajtagtag=1l §—0,K—+c0 N—+4o00 e
;>0 SK—0

We first reformulate the supremum in F2 . . (6, K) by denoting for ¢ € I} so that
|Zt12—N0z2| S(SN,

1 N1/4

2 is a positive measure on Sy = {z : V246 < |z| < V2K0} whose total mass belongs to
11— a%, 1+ O%] We also denote by S5 = {2 : VK < |z| < NY/*/az}. Then it is not hard
to see that for any 6 > 0,

F(0) < F(0

~—

, (47)
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where F'(6) is defined by

F#)= sup limsup limsup sup sup Qal oz (05 1, 8, o)
a1+a2;gs 1 5Hgéfﬁ>+w N—+o00 pgeP(S2) s€S3
« —0

if
gcjv\;,o&,a:g (67 K, s, H?) = 0? (OZ% + 201009 + BO&%)

+ 46 agag/w \/_saz Ydps(x) —1—202 /¢ xy)dps(z)dus(y)
+  sup {462a3/ ¢<29$x>dul( ) — H(yl)} - §log(27r) - 1

v EP(y) 2
I z2dvy (z)=aq

Indeed, the upper bound proceeds in two steps: first we take the supremum over all
measures fiz on Sy with mass in [1 — 0%7 1+ a%], and then restrict ourselves to probability
measures as d goes to zero (since v is bounded). Then, we observe that for any uy € P(Ss),

v € P(I,), and s € S§ such that | Y, s? — azvV/N| < 6vV/N,

Z /w\/_sxdug Z /xw%sx dv(x)

Eag/w(@sx)duz( ) + / @D(?\fiﬁ)dm(z)—l—oa(l),

where s is a maximizer of the function

s € S3— g /w(@sx)dug(x) + /3727?(?\?52)61%(1‘),

which ends the proof of the claim . We will see that under our assumptions that
B < A and that the maximum of ¢ is uniquely achieved at m, such that ¢"(m,) < 0, the
upper bound F'(6) is sharp when 6 is large.

The starting point of our analysis of the variational problem defining F'(6) in the regime

where 0 is large is the fact that F() and £(0) behave like A9%. More precisely, we know
from that there exists 6y > 0 (depending on A) such that for all 8 > 6,

F(6) > F(6) > A6” — klog¥, (48)

for some constant k > 0.
As a consequence, we can localize the suprema over (aq, as, a3) and ps in the definitions
of F(#) in some subset of the constraint set, denoted by S, and defined as follow,

S = {(g,,ug) € [0,1]3 X P(SQ) T+ Qg+ g = 1}.

Lemma 6.4. There exists a constant 6y > 0 depending on A such that for any 6 > 0,
the suprema defining F'(0) can be restricted to the set Ag x By C S defined by,
C+/log 6 C'log 6 < C'y/log 6

QEAGﬁOQZl_T)alS 92 , 3 > 0 )
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and

Clogt

7B (49)

A
e € By = [ (5 = vlaw))dus(o)dnaly) <
where C' is a some positive constant depending also on A.

Proof. From we deduce that we can restrict the suprema in the definitions of £'(0)
to the parameters a, s, vy, po with aq + o + a3 =1, s € Ss, [ 2?dui(x) = a; such that,

(A—=1)(af +2010) + (A — B)aj + 4042043/ (g — 1/1(26’8y)>d,u2(y)

+ 203 / (é - @b(%xy))duz(y)duz(w) + 4o / yz(é - ¢(298y))dvl (v)

+ 91 (H(1n) +log v2r) < %;Oge
But y X 1 ,
4oz3/y2<§ — ¢(203y)>dul(y) 7 (H(Vl) + log \/_) > 5 04_1 > ().
Therefore,
2 A
(A —1)(af + 2a100) + (A — B)az + 4a2a3/ (— - w(293y))du2(y)

A 2k 1og 6
w203 [ (5 = vlaw))dia(w)dpa(o) < 225

Since each term is non-negative, they are all bounded by 2k log#/6?. Note that this
already yields with C' = 4x/ min{(A — B), A — 1},
2<Clog9 2<C'log9 C’logG‘

M= WS T s

(50)

The two first estimates imply since s =1 — a3 — ag,
vC'logb
R

We can finally plug back this estimate into the last inequality of to improve the
estimate on «; as announced. O

ay>1—2

Next, note that because v is bounded continuous, the function g,;Vl s (0, K, 5,.) we
are optimizing over po, is bounded continuous in po and therefore it achieves its maximal
value. We denote by py such an optimizer. In the next lemma, we prove that the
optimizers of G . ,.(6,K,s,.) are concentrated around ,/m, if ¢ takes its maximum

value at m, only.

Lemma 6.5. Assume that ¢ achieves its mazimum value at m, only and that it is strictly
concave in an open neighborhood of this point. Let iy be an optimizer of G~ (0, K,s,.).
There exists €9 > 0 such that for any s € By,

1,002,003

C/log¥

VO<5<507 M2(|$_\/m*|25>§ 0 )
3

where C' is a positive constant depending on 1.
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Proof. Let ps € By. By Lemma [6.4 we have,
A C'log
(5 = vtew))dnatopdnsto) < SE 61)

Since 1) is strictly concave in a neighborhood of m,, and m, is its unique maximizer, we
deduce that there exists 1y > 0 such that for all 0 < n < n,,

Vie = m| € il 5~ v(@) 2 ufe

for some constant ¢ > 0. As 1 is analytic, it admits a finite number of local maxima.
Therefore, we can find ny > 0 such that for all 0 < n < ng,
A
Vo —m.| = vn, 5 —(x) = /e,
Since é — 1) is non-negative, we deduce from that
C"log
ng* -

where C’ > 1 is a constant depending on . But for ¢ small enough, we have

p2([0, v/mi—e])? < ps? (zy < mo—v/mye) and po([v/ma+e, +oo))2 < pS? (zy > maty/me)

from which the result follows by a union bound. O

Vi <o, 15” (lzy —ma| > /i) <

Using Lemma [6.5 we will show that the optimization problem over ps is asymptotically
solved by 0 sy, with an error which vanishes when K, and therefore the lower boundary
point of S5, goes to +oo.

Lemma 6.6. There exists 0y depending on v such that for any 0 > 6y, a € Ay and

s € Ss,

sup {200 [ 0(VEsa)dia(a) + oz [ olenduatoidintn} = 52+ 52 + o)
Proof. Letting ¢ (z) = ¢(x) — %, it is equivalent to show that:

sup {20y [G(V2Bse)dya(a) + 0 [ Fog)dpa(a)inty)} - )

Let us fix 6 > 6y where 6, is given by Lemma Observe that since 1) is bounded
continuous,

Z € P(Sy) — 20 /E(@sx)du(x) + /@(wy)du(x)du(y)

achieves its maximum value in the closed set By. Let us be an optimizer, and therefore a
critical point of this function. Writing that Z(us) > Z(us + ev) for all signed measures v
on Sy such that py 4 v is a probability measure for small €, we deduce that there exists
a constant C' > 0 such that,

Vi € Sy, asth(V20sz) + o /E(:cy)dm(y) <C, (52)
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with equality po-almost surely. Using Lemma [6.5] we get for any € small enough,

[ nduaty) = (v + (o) D)) daty) + O,

[/ e,/ +e] €
Where we notice that our O(y/log8/0¢) is a function that does not depend on §, K or
N. As L is the log-Laplace transform of a sub-Gaussian distribution, we have that
x +— |L'(x)/z| is bounded. In particular, |¢'| is bounded and thus v is Lipschitz. There-
fore, for any © < M,

_ _ V1og @
[ Sanduaty) = D) + O(=hr + ).
Again, O(eM—i— —Vleofe> does not depend on §, K or N. We choose ¢ = §~ /2 and M = §'/4

so that the two error term above goes to zero when 6 goes to oo, so that we have for any
x >0,

/ Day)dpaly) = D(v/mv) + op(L). (53)

In particular,
si(V2s2) + | Tay)dualy) = D) + on(1)

Taking x = \/m, in , we get
A-B
Lo, (54

since s > K and 1 — ay < O(—Vl‘;gé)). The term 0y(1) above do not depend on K, 4§ or N.
We claim that there exists 6y such that for any 6 > 6,

([0, v/ /2]) = 0.
Indeed, if z < \/m, /2, we have by and the fact that as goes to 1 as 6 goes to infinity,

s(V2s0) + ay [ Blog)du(y) < sup B(mat) + on(1),
t< e /2
with sup,< /2 ¥(y/myt) < (A — B)/2 since the maximum of 1 is uniquely achieved at
m,. From and the fact that equality in holds ps-a.s, we deduce that for 6 large
enough (and not depending on 0, K or N) [0, /m./2] Nsupp(uz) = 0. Therefore,

20,3 / O (V2057)dps(z) + o / Blay)dy(x)dpsly) < BB

C>

5 T2 s (y)
y2 K5

= w + OK(l).

Thus,

o {205 [G(VBse)ia(o) + o [Tendatant)} < B2 +oc)

Hn2€By 2

The reverse inequality is achieved by taking us = d sy, which completes the proof. [
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We deduce that taking 6 to 0 and K to +o0o, we can simplify the expression of A(@).
Proposition 6.7. There exists 0y depending on ¢ such that for any 6 > 6y, F(6) < F(G),
where

F(@) = sup F(q,s,v),
(a,8,v)ES’
with
Fla,s,v) =0°(ai + 20100) + 07Acj + 0°B(aj + 2a302)
1 1
+ 492a3/9c2w(20$\/a3:v)du(x) —H(v) - 5 log(27) — 7
and

S = {(g,s,u) €[0,1)* x [0,1] x P(R) : a3 + ap + a3 = 1,/x2dy(x) = 041}.

Proof. By Lemmas [6.4] and [6.6] we know that
F(0) = sup limsup limsup FY (0, K),

1,002,003
a€Ay 6—0,K—+00 N—+o00
SK—0

where

. 260
T2 ey (0,5C) =sup  sup {492a3 / x%( Sf”)dul(x) - H(yl)}
Y SES3 / UIEP((I)l) Nz
§ J;Qdul T)=aq

1 1
+ 92 (a% —+ 2@1052) -+ ACY% + B(Oé% + 2@20(3) — 5 10g(27’(') — 5,
Ss = [K, N'/,/a3]. Using the change of variable s — sN~!/4 we have the upper bound,
F()< sup Fla,s,v).

(a,s,v)€S’

We finally prove that the supremum is taken at az = 0.
Proposition 6.8. There exists 0y depending on A such that for any 0 > 0y,
sup F(a,s,v)= sup F((a1,a9,0),5,v).

(a,s,v)eS’ (a1,02,0,8,0)€S’

Proof. We claim that for any ((aq, ag, a3),s,v) € 8’ such that ay > we have

A-1
2A-B—1’
F((ar, az,a3),8,v) < sup F((ou, s + az,0),v). (55)

veP(R)

Note that

1
sup F((aq, a9 + as,0),v) = 02 (o + 2009 + 201 003) + 02 Ao + 043)2 + 5 log a.
veP(R)
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Now, for any ((aq, g, a3),s,v) € §', using the fact that ¢(x) < A/2 for any = € R, we
have

1
Fl(ag, ag,a3),s,v) < 0*(ag + 2a100) + 02 Aas + 20> Aayas + 02 B(a3 + 2a0a3) + 3 log a;.

Therefore, it suffices to prove that for as sufficiently near 1:
(A — B)(2apa3 + a3) > 2(A — 1)z
This is true if
2(A — 1)0&1 S (A — B)(Ofg + 2042).

A sufficient condition for the inequality to be true is that (A — 1)(1 — az) < (A — B)ag,
which ends the proof of the claim . By Lemma we know that for 6 > 6,

sup Fla,s,v) = sup Fla,s,v).
(a,s,v)eS’ (a,s,v)es’
ap,a3<C/log6/6

Hence, for 6 such that

Vl1og 6 S A-1
§ ~2A-B-1

we obtain (57)). O]
We can now conclude from the last two Propositions [6.7] and [6.8], that for 6 > 6,

F(Q) S sup f(ah Qg, 07 S, V) = Ssup V(Oé)
((a1,a2,0),s,0)ES «€(0,1)

1-2C

where we optimized over v (at the centered Gaussian law with covariance o). This
completes the proof of the proof of Proposition [6.2 with Lemma [6.3]

7. DELOCALIZATION AND LOCALIZATION OF THE EIGENVECTOR OF THE LARGEST
EIGENVALUE

In this section we consider a unit eigenvector uy, associated to the largest eigenvalue
of Xy, conditioned to deviate towards a large value. We assume hereafter that p is
compactly supported, allowing us to use the sub-Gaussian concentration property of the
titled measure P9 as defined in ().

We first show when Xy has sharp sub-Gaussian tails, uy, stays close to the set of
delocalized vectors. Then, we show that in the case where pu is not sharp sub-Gaussian,
ux, is close to a set of localized vectors in the sense that it contains about v/N entries of
order N~'/4, the other being much smaller. It should be possible to consider as well the
case where 1 is increasing, and we then expect that the eigenvector would localize over
one entry. However, this would require more effort to obtain the required exponential
estimates and we postpone this research to further investigations.

We denote by dy the Euclidean distance in RY: for a subset A of RY and u € RV we
set

dy(u, A) = inf{|lu —vl||s : v € A}.
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Proposition 7.1. Assume that p has sharp sub-Gaussian tail and is compactly supported.
Let € > 0 and define the set of delocalized vectors D, by:

D.:={eecSV1:Vie{l,...,N}, |e;] <eNY4}.
There exists a function n(z) that goes to zero when x goes to +oo such that
limlim lim P (dy(ux,, B:) < n(az)“)\XN — x| <6) =1.

e—=00—0 N—oo

For any symmetric matrix X, we denote by ux a unit eigenvector associated to the
largest eigenvalue. For any x € (0, 1), we set:

Ay = {sup [{uxy,e)] <1—=x}.

e€D,

Let > 2 and 6, > 1/2 such that z = 26, + 1/260,. We know from [I8, Section 5] that
under the measure Py, n defined by,

dPP =————"dP(X
SN By (0, Xy) (X,
for 0,y > 0, N, M large enough, if V(;Ag ={[Axy — 2| < 0,d(fixy,0) < NV ||Xn|| < M}
1
P () 2 3 (56)

By we know that

P(|Axy — | < 8) 2 e M= F 0ot (V).
Similarly, we have

HD(‘/(S{\;I mAx) < e~ N(J(0z,2)=F(0z)—05(1 )]pem (A ﬂ‘/;”)
Using and assumption we find f(M) — 400 when M — 400 so that

P (Ay||Axy — 2] < 6) < 2Py, (A, N V) + e V0D,
Using the lower bound log Elx (X, 0,) > N6? — o(N), we deduce

P (A || Axy — 2] <3) <267 N%E [Ex[1 (agprye’ N A] e mMIAD T (57)

Let # € (0,1) and define the set D., = {e € S"': 3, ~efell 5., e;|>e2/4 > K}. Since we

assumed that Xy has sharp sub-Gaussian tails, we have that r. = mfyzgz 14(V(0)=1(y)) >
0. Therefore, for any e € D, 4,

ZLV N0, e? +ZL 2V Nb,eie;) — NO? < —0°r.kN.

Z<]
We deduce that
,agNE []leeD”EX[ Naz<e,XNe>H < efegrgnN' (58)
On the other hand, observe that for e € D¢

£,k

N

2
2 2.2
<Z eilleﬂZeN*%/?) = Z €6 L Nlewey e/ S -

i=1 ij=1
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Therefore if we let €; = sgn(e;) min{|e;|,eN~1/4/2}, we have that

(e, Xe) — (¢, Xe)| < 2| X[V
Thus, we can write

Nez(e,XNe>]] < 6261M\/ENE6[]1 0 (é,Xé)]]'

NO.
Ee []leEDg,KEX []lAXmV(;‘ge eene  Ex 1 {ANVMALE

But for e € D¢
EX[eNOI(é,Xa] < 69§N||é||§ < eGEN’
which implies that
Eel[lecpe, Ex[1 4, qype™?= XN < eCPMVE—EINE, [ e pe PO (A, )] (59)

where
N6, (¢, Xé)

e
E x [eN0=(e.Xe)]
We can conclude from , and that

P (AXH)\XN - 'CE‘ S 5) S 262N91M\/EE6[]leeDg,n]P)(é’gz)(AX)]

+ 2€—N97207‘g/-i + G_Nf(M).

PEda) — dP(X). (60)

Hence, it is sufficient to complete the proof of Proposition [7.1] to prove the following:

Lemma 7.2. There exists a numerical constant C' > 0 and a positive function h, such
that for k small enough, N large enough, x > Ce? and any e € D¢

€K7
IP’(E’QI)(AX) < e~ NhX),

Proof. We can proceed as in [I8] section 5.1] and observe that under P®%) X is sym-
metric and has independent entries with distribution

®dpifi¢j9x/ﬁéiéj(xi')

1<j
where P} is the law of 2/v/N under e?*du(x)/ [ e¥du(y). Using the fact that & =
O(eN~Y%), we see that we can write Xy = W + Mgy, where Mgy, = Ezg,)[Xn] =
20,e€” + 1y, with ||[ry| = O(e?). We denote W = W + ry. Provided that Ay, > A, a
unit eigenvector u of Xy associated to Ax, satisfies the equation:
(W B )‘XN)ilé

(W 4 20,660 u = Axyu = (W — Ay )u = 20, (u, €)é = u = —— —.
(W = Axy)~tell2

Therefore
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Lemma 7.3. For N large enough, and for any e € D¢, ., 6 > Ce?, and K > C for some
constant C' > 0,

PO (W] > K) < eV, PO (g, —a] > 0) <@ (61)
where ¢ s a positive function increasing to infinity. Furthermore, for any x > Ce?,
PO ([fuxy, &) < 1—x) < e "N,
where h is a positive function.

Proof. The first statement follows from Remark [I.4, The second claim is the consequence
of Talagrand’s concentration inequality for convex Lipschitz functions (see [21], Corollary
4.10]) and the fact that E(¢%)\x = 2+ 0(e?). Indeed, note that W is a centered random
symmetric matrix with independent entries above the diagonal with variance close to 1/N.
It is known as the BBP transition, (see [4], [9] for example), that Ay g zor converges to
z, almost surely and in expectation. Since ||ry|| = O(g?), we deduce that for N large
enough, B9\ y = 2 + O(?).

Let now x > 2, K > 1 and 0 € (0,1) such that z — 6 > 2K. We have on the event
V ={||[W|| £ K, [\xy — z| < 6}, we have

A~

(€, (x —W)le)?
(e, (x — W)~%e)
and C' is a numerical constant. Moreover, one can check that on the event V,

C'K
‘/UN_ll S 9
T

|<uXN7é>|2 - UN{ < 05, where UN =

)

where C’ > 0 is a numerical constant. Therefore, for y < CK/z + C'0,
P(é,ez) (H<UXN7 é>’2 . 1‘ > X> < [[»(é,egg)(m/c)7
which gives the claim by an appropriate choice of K and 4. 0

To conclude the proof of Lemma , note that for e € D, , we have ¢/||e[| € D, . 7=
For k small enough, e/||e|| € D. and we have:

PEOI(A4,) < PO ([fux,, B - 1] > ),
which, using Lemma [7.3] ends the proof. O

We next consider what happens when p is compactly supported and is not sharp sub-
Gaussian. We shall prove that in this case, at least when we condition by deviations of
the largest eigenvalue close to x large, the associated eigenvector becomes close to the set

LoCyy rye = {e e SV |1, -(e)| € [(r1 — e)m, (ry + 5)\/N], Vi I, .(e), |e] < eN_i},

1
N”1]ei
VT2

where for any e € SN, I, .(e) = {i : €[l—e1+4¢l}.
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Proposition 7.4. Assume that p is compactly supported and v achieves its mazimum at
a unique point m, where it is strictly concave. For any x > x,, let v, = 20, /m,, where

x=1/20,+ F'(0,).

limlim lim P(da(ux,, Locy, 1/u,) < c(@)||Axy — 2| <6) =1,

e—=+095—0 N—oo

where ¢ is a function going to 0 as x goes to +0oo.

Proof. As in (50)) we can replace the conditioning by the tilt by spherical integrals of pa-
rameter 6 = 6, large. We then can use Lemmas [6.4]and [6.5] to see that up to exponentially
small probability we can restrict the integration over a ¢ neighborhood of

B Cylogt < C'log 6

0
QQZ]‘ 92 ) al— 92 )

(1/3:0,

_ L 2 _ 1 l 2
and pip = 0y . Here, o = 32 ymeer, € and p2 = 5 X" /weier, € 0vaani/ae, - Indeed,

this is a simple consequence of the estimate of Lemma which implies that we can
restrict ourselves to the space Ay x By when we estimate the annealed free energy up to
exponentially small errors. Note then that s is compactly supported and the rate function
is smooth in ps so that we can cover the integration over o by finitely many balls: this
implies that we can restrict ourselves to a neighborhood of the minimizer pus = ¢,,, and
az = 0. Note that this implies that with exponentially large probability, the uniform
vector in the annealed spherical integral belongs to Loc,, ,, . with ro = m. /20,1179 = o,
hence r; = 20ay/m.. Since ay goes to one as 6 (hence x) goes to infinity, we retrieve the
fact that r1ry goes to one. Hence, as in the delocalized case we can write for every x > xg
that for every event F

)

PE||Axy — 2| < 0] = exp((0() + o(k) + 0(0))N)Ee[L 1 0c,, . .

where for e € Loc,, ,, ., we denoted e the vector such that all the entries which are close
to r,N~1/* are equal to this value and all the others are smaller than e N~'/4. Again, note
that under P9 we have

Xy =W+ Mgy

where Mzp = EC)[Xy] = 20(ee’ — €1él) + Ly + Ry. Ry is a matrix with negli-
gible spectral radius, e; is the restriction of e to the entries of order \/EN*I/4 and
Ly = (L'(fei(i)e1(f)):;- We may assume without loss of generality that they are the first
= rl\/ﬁ indices and then Ly is a [ X [ matrix with constant entry m/ V/N where

E[xe%rgx]

Eiw] = L'(20ry) = L'(m.).

m =

Ly has rank one, with non-zero eigenvalue equal to v = mry = 20L'(m,)as/m, and

corresponding eigenvector v = —=¢;. Recalling that m, is a critical point of 1, we find

Va2
that

L'(m.) 2L(m,)  L'(m,)
2 5 7
m? ms3 My

= 277Z)(m*) =4,



LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF SUB-GAUSSIAN MATRICES 47

so that v = 20 Aay. Note that e = /asv + /1 — apw with w a unit vector orthogonal to
v. We then have up to a small error

My =20((1 — ax)ww” + /as(1 — ag)(vw” +wol)) + 20 Aagve”

We see that as = goes to infinity, as goes to one and the largest eigenvalue of Mz goes
to 20A. More generally, the largest eigenvalue of Mgy is given by

No=0 <(A + 1Dag + \/(A +1)2a2 — 4(A — 1)az(1 — a2)>
and eigenvector v converging to v when 6 goes to infinity. Then, by the BBP transition
[4, [10] the largest eigenvalue of X is given by K, (\3) with K, (x) = z+z~'. We therefore
conclude that the optimal coefficients 6, ay must satisfy z = K,()\j). At the same time,
denoting by v¢ the second eigenvector of M, g, we find [10]:

Meg = Ao (v])" + Xgvy (v3)" + on (1)
where \{ < A and v{,v§ are orthogonal unit vectors. Denoting ux, the eigenvector
associated to the largest eigenvalue Ay, of Xy which is close to z, we deduce [10] that

Uxy = C (A?<U?7 u) (/\XN - W)_1U? + )‘g <Ugv U’XN><)\XN - W)_1Ug>
where C' is the constant such that u is a unit vector. In expectation, the isotropic law
shows that (v9, (Ax, — W) 1vf) goes to zero. Hence, again by concentration of measure
arguments we see that up to events with exponentially small probability
Go(z)
u, v9) 2 = — =2 o(1

’<a 2>’ G;(l’)_F ()
Notice that the right hand side goes to one as x goes to infinity. Since when z goes to
infinity, 0, goes to infinity, ay, v§ goes to v which is the renormalized vector with VN
non vanishing entries, and r = 26ay/m, the conclusion follows.

0

8. APPENDIX

8.1. Concentration for Wigner matrices with sub-Gaussian log-concave entries.
In this section we show that Assumption do not require to have compact support or
log-Sobolev inequality as assumed in [I§]. This hypothesis for instance would not include
sparse Gaussian variables, whereas the following proposition handles this case.

Proposition 8.1. [20, [I] Let p be a symmetric probability measure on R which has log-
concave tails in the sense that t — p(x : |z| > t) is concave, and which is sub-Gaussian
in the sense that holds. Let Xy be a symmetric random matriz of size N such that
(Xi,)i<j are independent random variables. Assume \/NXZ-J- and \/N/2X;; have law
i for any i # j. There exists a numerical constant k > 0 such that for any convex
1-Lipschitz function f : R — R, and t > 0,

]P’(|%Trf(XN) - %ETrf(XN)} > t) < 2e” AN (62)
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Moreover, for any t > 0,

P(|Axy — Edxy| > t) < 2e7 5N, (63)
One can take k = 1/83% with B = 1680e.

From these concentration inequalities, one can deduce as in the Appendix of [I8] that a
Wigner matrix with entries having sub-Gaussian and log-concave laws satisfy Assumptions
L2

Corollary 8.2. Assume p satisfies the assumptions of Proposition and has variance
1. Then the matriz Xy satisfies Assumptions[1.3

We now prove Proposition It will be a direct consequence of Klein’s lemma (see [I,
Lemma 4.4.12]) and the following concentration of convex Lipschitz functions under u".

Proposition 8.3. Let i be a symmetric probability measure on R which has log-concave
tails in the sense that t — p(x : |x| > t) is concave, and which is sub-Gaussian in the
sense that holds. For any lower-bounded convex 1-Lipschitz function f : R — R such
that [ fdu™ =0 and any t > 0,
— t2
pt (x| fa)] > t) < 2”74,
where B is numerical constant. One can take § = 1680e.

Proof. By [23, Corollary 2.2], we know that there exists a numerical constant 3 such that
w" satisfies a convex infimum convolution inequality with cost function A*(./3), where A*
is the Legendre transfom of A defined by,

V0 € R", A(6) = log / £0) gy ().

Moreover, J can be taken to be 1680e. More precisely, for any convex lower-bounded

function f: R — R,
(/efDA*(./ﬁ)d“n> (/e_fdu”> <1, (64)

where [J denotes the infimum convolution operator, defined by

JON(/B)(@) = inf {f(y)+ A" (Y=) )

yeR? 6

Since p is sub-Gaussian in the sense of , for any x € R",

1
A() > ol

where || || denotes the Euclidean norm in R™. Therefore,

FON(/B)(@) = inf {F0) + 55lly = oI}

yeR™
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Assume f is L-Lipschitz for some L > 0. Reproducing the arguments of [21], section 1.9,
p19] we have for any © € R",

* . 1 2
FANC/B)(a) = f(w)+ inf { = Llly = all + 3l =l
> f(r) ~ G PAL
Thus, by we deduce that

(o) fra) <o

Assume now that f is 1-Lipschitz and [ fdu™ = 0. Using Jensen’s inequality, we get for
any A > 0,

/e,\fdun < 6%[32,4,\2.
Using Chernoff inequality we deduce that for any t > 0,

2
W flz) 2 1) < e v
Using the symmetry in between f and —f, we complete the proof. ([l

8.2. A Uniform Varadhan’s lemma. We prove a quantitative version of Varadhan’s
lemma which is of independent interest.

Lemma 8.4. Let f : R — R such that f(0) = 0 and f(,/7) is L-Lipschitz for some L > 0.

Let My, my be sequences such that My = o(v/N) and my = (14+0(1))N. Let g1, ..., Gmy
be independent Gaussian random variables conditioned to belong to [—My, My]|. Let 6 €
(0,1) and ¢ > 0 such that K' < ¢ < K and 20 < K~'. Then,

1 =y (%) / z

log Bexi=t T\VE) 1 comy ~ s { ( )dyx_ ”H

N %8 Sy a-enjzoy = sup [z dvie) = Hvp)
fm2dl/:c

<erLr(N)+erL(6K),
where e, k(N) = +00 as N — +oo and e (x) — 0 as x — 0.
Let e = 1/N and [y be the smallest integer such that (1 + &)~ <. Define
I, =[-(1+e)" (1+e)™], and By, = {i:g; € I,}.
For any k > —ly, we set
Li={zeR:(1+e)" ' <|z|<(1+¢)}and By = {i: g, € I} (66)

Let puy = |Bi|/my. Let ky be the smallest integer such that (1 + e)* > My. Since
gi € [~My, My] for all i, we obtain that for any k > ko, By = 0.

Lemma 8.5. Let §,e = - € [0,1] and N/my < 2. On the event {| Y7y g?—cN| < 6N},

%N%f(%) - i ukf((lj_f)k)‘ < 30(c+ 1)CLKce.

i= =—
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Proof. As f(,/-) is L-Lipschitz, we have

PONICARD W CES IR o M CA RN Cvas|

k=—lop loZEBk
L &
<= > 4 )*(1 = (1+0)7) + Zpg (L)~
k=—lo+1

Using the fact that (1 +¢)~ < e, we deduce

ko

()~ 3 mt (C) < 5 52wt

k=—Ilo k=—lo+1

But, on the other hand, on the event {| > g? — ¢N| < 6N},

ko my

1 N
> w4t < —N "2 < ——(c+4) <2(c+ 1)
k=—lo+1 MN My

Thus, we conclude that
my ko

|mLNZf(jE) -y ukf<(1:;§)k>} < 3iL<2(1+e) (c+1)+1).

k=—lo

O

Let [ ={—ly,...,ko} and Ly = {y eRL: YowerYe =1, VE € I, myy, € N}. We know
from [I5, Lemma 2.1.6], that for any y € Ly,

(mN + 1)—ne—mNH(y|'7A{N) < P(Mk =y, Vk € I) < e—mNH(y|’YMN)7 (67)
where I, = [(1 + &))" (1 +¢)*], n = |[I| = Iy + ko + 1, and with 7 the standard Gaussian
law

7(Ik)

with TMy (k) =

H(ylyy) = > v log —=

kel >7 Y([~My, MN])
Let = (px)rer and denote
ko
Acyo, ={y€Ln:c—6+Cie < Z (1+e)yp <c+ 6+ Cye}
k=——1lo

Then, by the previous lemma we see that there exists a finite constant C' = O(K L) such
that if we denote A, = A_,c ¢, for N large enough,

{ueA}c{\%gf—chgéN}c{ueA+}.

i=1
We used here the fact that the g; belong to [—-My, My| and that (1), is a partition of
this set. By (/67 @ we get the upper bound,

Tyea, < Z mNZk__lOykf(

yeEAL

Ee™Y Zk__lou f( ) _mNH(y|’YMN)’ (68)
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whereas for the lower bound,

(1+o)®

EemNzk__loukf( Ve )]l ped. > (my+1)" Z emNZk——’Oykf(
yeA_

Let y € A, and define v € P(R) by dz/(x) = p(z)dy(x), where

Z ]l:velk

k=—lo

) e~mNnHWly) | (69)

With this notation, we have
H(ylvuy) = H(v|y) —logy([-My, My]).

With the same argument as in Lemma [8.5 we also have for y € A,

| Z kf( (1+e) )—/f(%)du(xﬂ §Ce,|/x2du(x)—c|§5+05 (70)

k=—lo

where C only depends on c¢. From and Lemma 7 we deduce that

m

1 S f N x
Nlog]Ee =1 ( )]llsz 2—cN|<6N < T VEP([ékl/fl?VvﬂfN] {/f<%)dV(l’)—H(1/‘”y)}+O(€)
|fcv2du(z)7s\§5+c~€

To complete the proof of the upper bound, we show the following result.

Lemma 8.6. Let K,L,6 > 0 such that § < 2K~ ' and € = <. There exists a function
sp.x depending on K and L such that for any function f : R — R such that f(0) = 0 and
f(\/?) is L-Lipschitz, and any K~ < ¢ < K,

s A [1(Z)avte) 1)
veP([— My, My]
\szdu(z) c|<6+Ce

=

= VGP(EIIJ}II?V,MN] {/f<%>dl/<x> B H(l/h/)} + 3L<<5 —+ E)K),
J #2dv(z)=c

where sp(x) — 0 as x — 0.

Proof. Let v € P([—Mpy, My]) such that | [ z*dv(z) — ¢| < 4. Let 0 = hy#v with the
notations of .With the same arguments that below (27)), we easily see that

1. L
H(vly) < H(vy) + 56 + 50K,

which ends the proof.
O

For the lower bound, fix v a probability measure on [—My, My]| such that v < ~v. We
set € = ey such that M%/myeny — 0, and we define I, and By as in . Define, for
ke{-ly+1,... ko},

1

Y = m—NLmNV(Ik)J,
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and y_;, =1 — ZIZOZ_IO 41 Yk We claim that for N large enough and independent of v,

/:v2dy(:v) =c=ycA.

Indeed, one can check that on one hand

ko

/:L’Zdy(ac) (1+8 MJQV < Z yp(1+¢)? (1+€)2/x2dy(x)—|—€2.

k=—lo

We obtain from ([69)),

)k

F) emm g (1)

ok
log Be™ 2y et (25 pea_ = (my+1)7" e Til gt (¢
In the next lemma we compare H(y|var, ) and H(v|y).

Lemma 8.7.
H(y|vay) < H(vly) +on(1).

Proof. By definition we have,

H(ylyay) = Z i l0g 75 - log ([~ Mav, My]). (72)
k=—lo
Let f(z) = xlogx for x > 0 and f(0) = 0. We claim that
VO <z <y, flx) < fly)+(y— =) (73)

Indeed, either z > e~! and f(z) < f(y) since f is increasing on [e™!,+00). Or z < e™!
and by convexity,

f(@) < fly) + fl(z)(x —y).

Since | f'(z)| < 1 we get the claim. Note that we have for any k > —l,

! ko + 1
I/(]k) - m—N <Y < V(Ik), and l/(]_lo) <y < V(I—lo) + OmN 0.

Thus we deduce from that

ko

ko + lo
H(y|vay) < v(Iy) 10g + ———— + (L)) ———— +on(1)
) k;() k—zl+1 my ’ Fy([*lo)mN
ko
I/(Ik) 2(/{?0 + lo)
< v(Iy)lo + + on(1).
kz_lo ( k) gV(—’k) my N( )

We have kg = O(log(My)/en) and Iy = O(log(1/en)/en). Since M%/myen — 0, we get

ko
Hlhan) < 3 wli)log 5 + 220040,
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Since f : z — xlogx is convex, we complete the proof by using Jensen’s inequality which
yields

> V(Ik)log% = V(Ik)f(ﬁ/ —log —d’v

k=—lo k=—lo i d

Moreover, we can compare [ f(x//c)dv(z) and Y, ypf((1+2)%//c).

Lemma 8.8.

(= )dv(x) - Z wd (L) < ey,
Ve & Ve

where e, k(N) — 0 as N — +o0.

Proof. As f(,/-) is L-Lipschitz, we have on one hand using the same argument as in the
proof of Lemma (8.5,

‘/f(%)du(x)— i V(Ik)f<(1 j;;)k)‘ < 3—?(/x2du(a:)+1>.

k=—lo

Therefore,

Ve

where e, x(N) — 0 as N — +o00. On the other hand, as |v(I) — yx| < 1/my for any
k> —loand |v(1 ) —y—i,| < (ko+lo)/mn, we get since f(0) = 0 and f(,/) is L-Lipschitz

‘/f(%)du(x) - kzo V(Ik)f((1+8)k)‘ <erkx(N), (74)

ko

1 L L(ko +1
Z‘yk—ujk <( +5)>’ < Z (14 )% + (ko + O)(l—l—a)_%,
Ve cmpy P cmy
kL (M%
< SN (ko +1 )
= CmN<€N+<0+ 0)5N
As M3 /my — 0 and kg = O(log(My)/en) and ly = O(log(1/en)/en), we deduce that
(’Cfn—J:Vl")gN = on(1). Combining the above estimate with , we get the claim. O

Coming back to , using the results of Lemmas and , we deduce

Ee™ Zz(i,lo ka(“T[E) )]lue.A > (my +1)7" "N JF(Z)dv(z)—mngr, J(N)e*mN(H(l/h/)#*ON(l)),

which gives at the logarithmic scale,

%ngemN Tt “’“f((p\rfg) )ﬂueAf > %(/f(%)du(x) — H(V|7)> — ek (N),

We conclude by optimizing over the choice of v € P([—My, My]), such that [ z?dv = c.
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