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Abstract : We obtain large deviation upper bounds and central limit theorems
for non commutative functionnals of large Gaussian Wigner matrices and deter-
ministic diagonal matrices with converging spectral measure. As a consequence,
we derive such type of results for Gaussian band matrices and generalized sample
covariance matrices.

1. Introduction

During the last decade, the understanding of the asymptotic behaviour of large
random matrices has considerably improved since the pioneer works of Wigner
[Wig], Arnold [Arn], Wachter [Wac] , Wishart [Wis] and Pastur and Marchenko
[P,M]. These papers were mainly motivated by Quantum Physics and proved con-
vergence of the spectral measure of these matrices as their size goes to infinity under
diverse assumptions on the distribution of their entries ; Wigner [Wig] studied a
random N × N Hermitian matrix with i.i.d. complex (or real) entries (except for
the symmetry constraint), Wishart [Wis] (see also Wachter [Wac])introduced the
N ×N Hermitian matrix XNX∗

N with XN a N ×M matrix with i.i.d. complex (or
real) entries, Pastur and Marchenko considered band matrices where the entries are
non zero only on some band surrounding the origin and generalized sample covari-
ance matrices of the form XNRX∗

N with XN as above and a M ×M deterministic
matrix R with converging spectral distribution (see [Sh],[K,K,P,S] and [BE] ). We
send the reader to [Bai] and [K,K,P,S] for reviews on the subject.

The fluctuations of the spectral measure around its limit for Wigner’s matrix
with Gaussian entries were first obtained by K. Johansson [Joh] (see also [C-D] ).
The fluctuations of the spectral measure around its expectation were studied un-
der much more general assumptions over the entries and for most of the models
described above (see [So], [B-M,K],[K,K,P] and references therein ). However, such
statements are weaker than the result obtained by K. Johansson [Joh] for the Gauss-
ian orthogonal ensemble. In this paper, we shall generalize K. Johansson’s type of
result to band matrices with Gaussian entries and for polynomial test functions.

Large deviations for the law of the spectral measure of Wigner’s matrix with
Gaussian entries were obtained in [BA,G] and for related models in [BA,Z] and
[H,P]. There is actually no clue how to extend these results to non Gaussian entries.
In [G,Z], the authors obtained concentration’s inequalities for the spectral measure
of the above matrices under various hypotheses on the distribution of the entries.
However, even though this paper provides concentration on the right scale, there
is no hope to deduce complementary lower bounds. Here, we shall obtain large
deviation upper bounds for the deviations of the spectral measure of Gaussian
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band matrices, which we hope optimal. Note at this point that the joint law of
the eigenvalues of Gaussian band matrices is a priori complicated, being given
by a N × N Jacobian which does not lead to simple formulae since the law of
Gaussian band matrices are not invariant under the action of a group such as the
unitary (or orthogonal)group on the contrary of Wigner’s matrices. In particular,
the techniques of [BA,G] are useless here. In the direction of interests encountered
in free probability, deviations of the non-commutative law of a couple of independent
Gaussian Wigner’s matrices were studied in [C-D,G] using a functionnal approach
based on stochastic calculus. We shall follow a similar approach in this work.

This result will in turn provide a large deviation upper bound for the spectral
measure of generalized Gaussian sample covariance matrices.

However, the goal of this paper is not only to consider functions of the spectral
measure of large random matrices but more general non-commutative functionnals
involving large random matrices and an algebra of deterministic diagonal matrices.
Such functionnals were already introduced in [Sh] where the author obtained law
of large numbers type of statements for the normalized trace of these functionnals
thanks to free probability technics (more precisely the notion of freeness with amal-
gamation ). As a consequence, D. Shlyakhtenko deduced the convergence of the
spectral measure for Gaussian band matrices. The strategy followed in this paper
is intimately related to the ideas of [Sh] but we shall push forward the analysis to
obtain large deviation upper bounds and central limit theorems. In particular, we
define a good rate function governing the large deviations of these non-commutative
functionnals and a self adjoint positive definite operator defining the covariance of
the central limit theorem. Large deviation for non-commutative variables were al-
ready obtained in [C-D,G] and a central limit theorem in [C-D] for independent
Gaussian Wigner’s matrices. The main difference here is that we consider a sin-
gle random matrix and a deterministic algebra of diagonal matrices. Some of our
statements could be interpreted in terms of free probability. However, we shall not
discuss this aspect in details here.

The paper is organized as follows ; we begin with the introduction of our no-
tations and results. We then introduce Itô’s calculus for band matrices which is
the key to all our proofs. In section 4, we state and prove a large deviation up-
per bound. Studying the minimizer of our rate function, we deduce a law of large
numbers theorem in section 5. It is supplemented in section 6 by a Central limit
Theorem. We also describe in the next section how these results can be interpreted
in terms of inhomogeneous sample covariance matrices.

2. Notations and statement of the results

Hereafter, MN will denote the set of N ×N matrices with complex entries. HN

will be the subset of MN of Hermitian matrices. We set M = ∪N∈INMN and
H = ∪N∈INHN . tr will denote the natural extension of the trace to M given,
for any A ∈ MN , N ∈ IN , by tr(A) =

∑N
i=1Aii and trN the normalized trace

trN (A) = N−1tr(A) for A ∈ MN , N ∈ IN . We shall consider, for N ∈ IN , the
random matrix in HN

(XN )ij = (HN)ijψN (i, j)
1
2
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where HN is a Hermitian matrix with complex Gaussian entries with covariance
N−1 and ψN is a non negative symmetric function on {1, .., N}2 which can be
decomposed as

ψN (x, y) =

∫

σN
τ (x)σN

τ (y)dp(τ)

with a measure p on a Polish space (Ω,Σ) with finite mass, and bounded functions
(σN
τ , τ ∈ Ω) on {1, .., N} such that τ → σN

τ (x) is measurable for the sigma-algebra
Σ for any x ∈ {1, .., N}. We can assume without loss of generality that the total
mass of p is one to simplify the notations. We shall assume that, if ∆N

τ denotes the
N ×N matrix with diagonal elements (σN

τ (i), 1 ≤ i ≤ N),

(H0)for any (τ1, .., τn) ∈ Ωn, n ∈ IN , the joint distribution (in the non-commutative
sense)of (∆τ1 , ..,∆τn) converges, i.e there exists a probability measure mτ1,..,τn on
R so that for every bounded continuous function f on R,

lim
N→∞

1

N

N
∑

i=1

f

⎛

⎝

n
∏

j=1

σN
τj (i)

⎞

⎠ =

∫

f(x)dmτ1,..,τn(x). (2.1)

Further, we suppose that

T ≡ sup
τ∈Ω

sup
N∈IN

sup
x∈{1,..,N}

|σN
τ (x)| < ∞.

It is convenient to consider, in order to use the powerful tool of stochastic dif-
ferential calculus, XN as the value at time one of the HN -valued process

(XN (t))ij = (HN(t))ijψN (i, j)
1
2

where HN(t) is the Hermitian Brownian motion which is described on the space
HN of Hermitian matrices of dimension N as the Markov process (HN(t))t∈R+ with
values in HN and independent complex Brownian motions entries so that

E[Hi,j
N (t)Hk,l

N (s)] =
t ∧ s

N
δliδ

j
k

More precisely, we can construct the entries
{

Hi,j
N (t), t ≥ 0, (i, j) ∈ {1, .., N}

}

via

independent real valued Brownian motions (βi,j ,β′
k,l)

1≤k<l≤N
1≤i≤j≤N by

Hk,l
N =

1√
2N

(

βk,l + iβ′
k,l

)

if k < l

=
1√
2N

(

βl,k − iβ′
l,k

)

if k > l

=
1√
N
βl,l if k = l.

To take into account the inhomogeneity of the covariance of XN , we shall, fol-
lowing D. Shlyakhtenko [Sh], consider jointly the matrix-valued process (XN (t), t ∈
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[0, 1]) and diagonal matrices. To this end, let us introduce a set D of sequences ∆ of
uniformly bounded converging diagonal matrices ∆N of HN (hence with real entries
) that is sequences ∆ = (∆N )N∈IN so that, if (λN1 , ..,λNN ) denotes the eigenvalues
of ∆N ,

sup
N∈IN

sup
i∈{1,..,N}

|λNi | < ∞ (2.2)

and 1
N

∑N
i=1 δλN

i
converges as N tends to infinity for the weak topology, i.e there

exists a probability measure m∆ on R so that for any bounded continuous function
f ,

lim
N→∞

1

N

N
∑

i=1

f(λNi ) =

∫

f(x)dm∆(x). (2.3)

In the sequel, we write in short

m(∆) =

∫

xdm∆(x), ∀∆ ∈ D.

We shall consider a subalgebraD, that is stable by product and sum, of D containing
the real vector space generated by the identity and the null matrices as well as the
sequences

Dψ = {∆τ = (∆N
τ =

(

δi=jσ
N
τ (i)

)

1≤i,j≤N
)N∈IN , τ ∈ Ω}.

We endow D with the norm given, for any ∆, ∆̃ ∈ D by

|∆ − ∆̃|∞ = sup
N∈IN

sup
i∈{1,..,N}

|∆N
i − ∆̃N

i |

and assume that D is separable for this norm.

Examples (2.4). a) The first example one should keep in mind is when

σN
τ (i) = στ (

i

N
)

with στ ∈ Cb([0, 1],R) for τ ∈ Ω. In the sequel, we shall denote ∆(φ) ∈ Dc the
sequence

∆(φ) ≡
(

(∆N (φ))ij = δi=jφ(
i

N
)

)

N∈IN

for φ ∈ Cb([0, 1],R). One can choose D to be the set

Dc ≡ {∆ : ∃φ ∈ Cb([0, 1],R); ∆ = ∆(φ)} .

Dc is clearly an algebra and is separable for | |∞ since Cb([0, 1],R) is separable for
the uniform norm. (2.3) is fulfilled since, for any f ∈ Cb(R), for any φ ∈ Cb([0, 1],R)

lim
N→∞

trN (f(∆N(φ))) = lim
N→∞

1

N

N
∑

i=1

f

(

φ(
i

N
)

)

=

∫ 1

0
f(φ(x))dx =

∫

f(x)dm∆(φ)(x)
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with m∆(φ) = 1[0,1]dx ◦ φ−1.

b) However, the general scheme proposed above may be useful to include the case
where, for instance,

σN
τ (i) = στ (

i

N
) + 1

0≤ i
N ≤MN

N
σ̃τ (

i

N
)

for some integer number MN and bounded continuous functions στ and σ̃τ . We
assume

lim
N→∞

MN

N
= α.

Choosing for instance D to be

Dd =

{

∆ : ∃φ, φ̃ ∈ Cb([0, 1],R); (∆N )ij = δi=j(φ(
i

N
) + 1

0≤ i
N ≤MN

N
φ̃(

i

N
)), N ∈ IN

}

,

Dd can be seen to be a separable algebra for | |∞. (2.3) is also easily checked. This
second example will appear naturally when we shall consider generalized Wishart’s
matrices.

We shall see also an element ∆ of D as a function from H into H by setting for
any X ∈ HN , N ∈ IN , ∆(X) = ∆N .

In [Sh], the author considered the random variables

{

trN
(

P (XN (1),∆N
1 , ..,∆N

n )
)

, ∆1, ..,∆n ∈ D, n ∈ IN
}

for non-commutative polynomial functions P of n + 1 variables, and proved their
convergence as N goes to infinity. Because the associated topology inherited for
instance on the spectral measure of XN is not the weak topology, we shall, as in
[C-D,G], consider other test functions than polynomials. Such test functions shall
belong to the set E(C) of functions on H so that for any N ∈ IN , F ∈ E(C) maps
HN into MN . E(R) will be the subset of Hermitian matrix-valued functions of
E(C). Note that if f is a real function, we can define the function F on H so that,
if X ∈ H, X = U∗DU for a diagonal matrix D and a unitary matrix U ,

F (X) = U∗f(D)U, f(D)ij = δi=jf(Dii).

It is straightforward that F belongs to E(R). In particular, for any z ∈ C\R,
X → (z − X)−1 is an element of E(C). We shall be particularly interested in the
following by the complex vector space FC(X,D) ⊂ E(C) generated by

{F : H → M;F (X) =
n
∏

i=1

1

zi − αiX
∆i(X),

(zi)1≤i≤n ∈ (C\R)n,αi ∈ {0, 1},∆i ∈ D, n ∈ IN}.

Note that FC(X,D) is an algebra since D is. Further, it contains 0 and 1 since
D does. FR(X,D) shall be the real vector space of the Hermitian matrices valued
functions of FC(X,D).

We shall prove the following law of large numbers
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Theorem (2.5). For any F ∈ FC(X,D), any t ∈ [0, 1], trN (F (XN (t))) converges
almost surely as N goes to infinity. Its limit, denoted µ∗

t (F ), is described in section
5.

In particular, if ψN is as in examples (2.4) and taking functions of FC(X,D)
which are products of one Stieljes functions and one diagonal matrix, we find that,
if ψ is the function on [0, 1]2 given by

ψ(x, y) = lim
N→∞

ψN ([Nx], [Ny]),

Corollary (2.6). For any t ∈ [0, 1], any z in C\R, any φ ∈ Cb([0, 1],R),

N−1
N
∑

i=1

φ(
i

N
)[(z −XN (t))−1]ii

converges almost surely towards t−
1
2

∫ 1
0 φ(x)k(x, t

− 1
2 z)dx where, if K is the operator

in L2([0, 1]) with kernel ψ, k is the unique analytic solution of

k(x, z) = (z −K(k(., z))(x))−1

so that zk(x, z) goes to one as |z| goes to infinity for any x ∈ [0, 1].

See Lemma (5.10) for details.

Further, by density of FC(X,D) in the set of non-commutative polynomial func-
tions and controls of the normalized trace of moments of XN (t), we shall see that
theorem (2.5) implies that

Corollary (2.7) . For any t ∈ [0, 1], any ∆1,∆2..,∆n ∈ D, any non-commutative
polynomial function P of n + 1 variables, trN(P (XN (t),∆N

1 , ..,∆n)) converges al-
most surely towards a well defined limit denoted µ∗

t (P ).

Hence, we find again the results of [Sh] and [P,M]. This last result is precised
in section 6 by a central limit theorem which validity requires the following extra
hypotheses that

(H1)For any ∆ ∈ D,
N
(

trN (∆N )−m(∆)
)

converges as N goes to infinity towards a constant c(∆).

Note that as D must contain Dψ, this last assumption also applies to (∆τ , τ ∈ Ω).
We shall also impose

(H2)For any ∆1, ..,∆n ∈ D, any m ∈ IN , any non-commutative polynomial func-
tion P of n+m variables,

sup
τ1,..,τm∈Ω

sup
N∈IN

N
∣

∣trN (P (∆N
τ1 , ..,∆

N
τm ,∆N

1 , ..,∆N
n )−m(P (∆τ , ..,∆τm ,∆1, ..,∆n))

∣

∣ < ∞.

Then, we will show the
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Theorem (2.8). Under (H1) and (H2), for any t ∈ [0, 1], any n ∈ IN ; any
∆1, ..,∆n ∈ D, any non-commutative polynomial function P of n + 1 variables
N
(

trN (P (XN (t),∆N
1 , ..,∆N

n ))− µ∗
t (P )

)

converges in law as N goes to infinity to-
wards a (eventually not centered ) Gaussian law.

We send the reader to section 6 for the definition of the mean and the covariance
of the above Gaussian law. Let us give the following

Examples (2.9). We consider again the examples given in (2.4).

a) In the first example, we consider the case where

σN
τ (i) = στ (

i

N
).

To obtain a central limit theorem, we shall assume that στ belongs to C1
b ([0, 1],R)

for τ ∈ Ω and that, if || ||u is the uniform norm on Cb([0, 1],R)

sup
τ∈Ω

||σ′
τ ||u < ∞. (2.10)

One can then choose D to be the set

D′
c =

{

∆(φ), φ ∈ C1
b ([0, 1],R)

}

.

D′
c is clearly an algebra. Further, (H1) is fulfilled since for any φ ∈ C1

b ([0, 1]),

lim
N→∞

N

(

1

N

N
∑

i=1

φ(
i

N
)−

∫ 1

0
φ(x)dx

)

=
1

2
(φ(1) − φ(0)).

Also, for (H2), note that for any τ1, .., τm ∈ Ω, any ∆1, ..,∆n ∈ D, any non-
commutative polynomial function P of n+m variables, P (∆N

τ1 , ..,∆
N
τm ,∆N

1 , ..,∆N
n ) =

∆N (φ) for some φ ∈ C1
b ([0, 1]) and that

N |trN (∆N (φ)) −
∫ 1

0
φ(x)dx| ≤ ||φ′||u.

The fact that this bound does not depend on the choice of τ1, .., τm ∈ Ω is easily
derived from (2.10).

b) In the case where

σN
τ (i) = στ (

i

N
) + 1

0≤ i
N ≤MN

N
σ̃τ (

i

N
)

for some number MN and continuously differentiable functions στ and σ̃τ , (H1)
and (H2) can also be fulfilled provided

MN − αN
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converges towards a constant c(α) and

sup
τ∈Ω

||σ′
τ ||u < ∞, and sup

τ∈Ω
||σ̃′

τ ||u < ∞.

Note that if MN is an integer number, the first assumption should only be valid
along subsequences in general. We then choose D to be

D′
d =

{

D : ∃φ, φ̃ ∈ C1
b ([0, 1]); (∆

N )ij = δi=j(φ(
i

N
) + 1

0≤ i
N ≤MN

N
φ̃(

i

N
)), N ∈ IN

}

,

To state our large deviation upper bound result, we have to be more precise
about the involved topologies and space of measures.

M is furnished with the operator norm ; if < , >N denote the Euclidean
scalar product in CN , < u, v >N=

∑N
i=1 ūivi, and || ||N its associated norm, we

define the operator norm | |∞ given, for any A ∈ MN , N ∈ IN , by

|A|∞ = sup
||u||N=1

< u, |A|u >N= sup
||u||N=1

< u,AA∗u >
1
2
N .

Recall that | |∞ is a norm which satisfies the product property

|AB|∞ ≤ |A|∞|B|∞.

M is furnished with the involution ∗, extension of the usual involution on each
MN , N ∈ IN . Also, there is a partial order on H so that A ≤ B for A,B ∈ HN ,
N ∈ IN , iff < u,Au >N≤< u,Bu >N for all u ∈ CN .

We can endow E(C) with the topology inherited from the norm given for any
F ∈ E(C), by

∥F∥∞ = sup
N≥1

sup {|F (A)|∞ : A ∈ HN} .

It is not hard to check (see [C-D,G], Lemma 4.26)that, with (2.2),

Lemma (2.11). Any F ∈ FC(X,D) has finite || ||∞ norm.

We let FC(X,D) (resp. FR(X,D) ) be the closure of FC(X,D) (resp. FR(X,D))
by the || ||∞ norm. FC(X,D) (resp. FR(X,D) ) is a complex (resp. real)Banach
space. Further, they are separable. In fact, since D was assumed separable (note
that the norm defined on D agrees with || ||∞ ) is a separable set, FC(X,D) is
separable for || ||∞ with a basis given, for instance, by the set of functions of the
form

F (X) =
n
∏

j=1

1

i+ αj − α′
jX

∆j(X),X ∈ H,∆j ∈ BD,αj ,α
′
j ∈ Q, n ∈ IN (2.12)
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if BD is a basis of D.

We can now define the set of non-commutative probability measures ; let FC(X,D)′

be the algebraic dual of FC(X,D), that is the space of linear complex valued forms
on FC(X,D). LetM be the subset of FC(X,D)′ with real valued restriction to
FR(X,D). M is isomorphic to FR(X,D)′ since for any µ ∈M, we can write, with
∗ the natural involution defined by

F ∗(X) = (F (X))∗ ∀X ∈ H,

µ(F ) = µ

(

F + F ∗

2

)

+ iµ

(

F − F ∗

2i

)

where (F +F ∗) and (F −F ∗)/i ∈ FR(X,D). We furnish M with the weak topology
induced by FR(X,D), denoted FR(X,D)-topology.

We shall now introduce the analogue of the set of probability measures (that is
the notions of boundedness, positivness and mass 1).

For any positive real number a, we denote byMa the subset ofM of linear forms
µ such that

∀F ∈ FC(X,D), |µ(F )| ≤ a∥F∥∞ (2.13)

Further, let us consider the following partial order on E(R) ; If (F,G) ∈ E(R),
F ≤ G iff

∀X ∈ H, G(X) ≥ F (X).

We shall say that a linear form µ ∈M is positive iff

∀F ∈ FR(X,D) F ≥ 0 =⇒ µ(F ) ≥ 0.

µ will be said to be tracial if

∀F,G ∈ FC(X,D) µ(GF ) = µ(FG).

LetM+
a be the subset ofMa of positive tracial linear forms. We can define the

notion of total mass for any linear form µ ofM+
a by

mµ = sup
{

µ(F ), F ∈ FR(X,D), ∥F∥∞ ≤ 1
}

= µ(1)

The analogue of the commutative set of probability measures will be the subset

M=
1 ofM+

1 of linear form with total mass mµ exactly equal to one.

By a standard diagonalization procedure, it is not hard to check as in the com-
mutative setting that M=

1 is compact for the FR(X,D)- topology since FR(X,D)
is separable. The FR(X,D)- topology is compatible on M=

1 with the distance

d̄(µ, ν) = |||µ− ν||| ≡
∑

p∈IN

1

2p
|µ(Fp)− ν(Fp)|.

where (Fp)p∈IN is a basis of uniformly bounded functions of FR(X,D) as described
in (2.12).
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Hence,M=
1 is a compact metric space, thus Polish.

Let µ̂(N)
t be given by

µ̂(N)
t (F ) = trN (F (XN (t))) ∀F ∈ FR(X,D), ∀t ∈ [0, 1].

Then, considering (µ̂(N)
t , 0 ≤ t ≤ 1) as a continuousM=

1 -valued process and endow-
ing the set C([0, 1],M=

1 ) of such processes with the uniform topology on the time
variable and the FR(X,D)- topology on M=

1 , we shall prove that

Theorem (2.14). The law of (µ̂(N)
t , 0 ≤ t ≤ 1) satisfies a large deviation upper

bound in the scale N2 with good rate function S described in theorem (4.1).

We discuss in section 4 after theorem (4.1) the large deviation upper bound

obtained by contraction from theorem (2.14) for the law µ̂(N)
1 and its relation with

the non-commutative entropy introduced by D. Shlyakthenko.

Let us make a few remarks about the corollaries of Theorem (2.14) in terms
of standard large deviation principle. Since we discussed this point in details in
[C-D,G], we shall here be rather sketchy. To this end, we recall the links ofM=

1

with standard spaces of probability measures. It is based on the following remark
of [C-D,G] (see property 4.32 and Lemma 4.26 ) that

Property (2.15).

Let F ∈ FR(X,D).

1) For any f ∈ Cb(R), f ◦ F belongs to FR(X,D).

2) The linear functionnal µF on Cb(R) given by

µF (f) = µ(f ◦ F )

is a compactly supported probability measure on R for any µ ∈M=
1 . Further, the

map µ → µF fromM=
1 , furnished with the FR(X,D)- topology, into P(R), furnished

with the weak topology, is continuous.

As a consequence, the contraction principle and Theorem (2.14) imply

Corollary (2.16). Let F ∈ FR(X,D). Then, the spectral measure process of
(F (XN (t)), t ∈ [0, 1]) satisfies a large deviation upper bound for the weak topol-
ogy in the scale N2 with good rate function SF given for any ν ∈ C([0, 1],P(R))
by

SF (ν) = inf{S(µ); (µF )t = νt ∀t ∈ [0, 1]}.

Note that at this point, we do not obtain a large deviation upper bound for the
spectral process of XN itself since F (X) = X does not belong to FR(X,D). To
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get such a result, we shall prove in addition a tightness criterium which requires
the next observations. As in [C-D,G], we can define a probability measure µX on
R so that for any f ∈ Cb(R), µX(f) = µ(f(X)). In particular, µX is countably
additive and the monotone convergence theorem holds [1.26, [R] ]. Hence, we can
set µ(X2) = µX(x2). Let, for A ∈ R+, K=

1 (A) be the closed subset ofM=
1

K=
1 (A) ≡

{

µ ∈M=
1 , µX(x2) ≤ A

}

and
K=

1 (∞) ≡
⋃

A∈IN

K=
1 (A) =

{

µ ∈M=
1 , µX(x2) < ∞

}

.

In Theorem (4.1), µ̂(N) is considered as an element of C([0, 1],K=
1 (∞)) and we see

that all the µ̂(N)
t belong to K1(A) with probability as large as we wish on the

exponential scale provided A is large enough (but finite ). Also, the processes with
entropy S smaller than someM are shown to have covariance uniformly bounded by
some constant depending on M . This is enough to see that the FR(X,D)-topology
will be equivalent in our setting with the topology obtained by duality of the set

FR(X,D) ≡ {F ∈ E(R);∃(Fn)n∈IN ∈ FR(X,D)IN , |F − Fn|(X) ≤
1

n
(X2 + 1)}

where |F (X)| =
√

F (X)2. FR(X,D) contains the canonical process X (approxi-
mate X by X(z + (1/n)X)−1 ∈ FR(X,D) for some z ∈ C\R as close as needed of
1 ). Using the following extension of Lemma (2.15)

Lemma (2.17). Let F ∈ FR(X,D) and µ ∈ K=
1 (A) for some A ∈ R+. Then, we

can define
µF (f) = lim

n→∞
µFn(f) , f ∈ C1

b (R) (2.18)

µF is a probability measure on R. Moreover, the map µ → µF is continuous from
K=

1 (A) into P(R) for any A ∈ R+. Finally, µ → µ(F ) is continuous from K=
1 (A)

into R for any A ∈ R+.

The proof is the same as that of property 4.33 in [C-D,G].

As a consequence, using Theorem (4.1) and standard exponential approximations
described in [D,Z], section 4.2.2 (see the proof of corollary 4.4 of [C-D, G] for details
) we obtain

Corollary (2.19). The conclusions of Corollary (2.16) are valid for any F ∈
FR(X,D).

To complete this introduction, we wish to summarize two applications. First, let
us consider the band matrix given by the model studied in this paper with

ψN (i, j) = ψ(
i

N
,
j

N
) =

∫

στ (
i

N
)στ (

j

N
)dp(τ)
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for bounded continuous functions στ . As quoted in Examples (2.4), we can choose
D = Dc. With such a choice, the law of large number statements (2.5), (2.6) as well
as the large deviation upper bounds results (2.14), (2.16) and (2.19) apply. For the
central limit theorem, under the hypothesis of Examples (2.9), we can take D = D′

c

and conclude.

We can also apply our results to the generalized Gaussian Wishart’s matrices
given by

WN = Y NTN (Y N )∗

with Y N aN×MN complex Gaussian matrix with independent entries of covariance
1
N and TN a MN ×MN diagonal matrix with non negative eigenvalues. As in [G,Z],
we observe that WN is related to band matrices as follows. If XN is given by

XN =

(

0 Y N (TN )
1
2

(TN )
1
2 (Y N )∗ 0

)

, (2.20)

the spectrum of (XN )2 is given by the spectrum of WN with multiplicity two up
to some null eigenvalues since

(XN )2 =

(

Y NTN(Y N )∗ 0
0 (TN )

1
2 (Y N )∗Y N (TN )

1
2

)

.

Further, XN has the law of
(

ψN (i, j)
1
2HN+MN (1)ij

)

1≤i,j≤N+MN

with, if t1, .., tMN

denote the eigenvalues of TN ,

ψN (i, j) ≡ 1N+1≤i≤N+MN11≤j≤N ti + 1N+1≤j≤N+MN11≤i≤N tj .

We assume for simplification that ti = t( i
N+MN

) for some bounded continuous non
negative function t. Note that ψN can be written

ψN (i, j) =

∫

σN
τ (i)σN

τ (j)dp(τ) (2.21)

with p(τ) = δτ=1 − δτ=2 − δτ=3 and

σN
1 (i) = 1 i

N+MN
≥ N+1

N+MN

(t(
i

N +MN
)− 1) + 1

σN
2 (i) = 1 i

N+MN
≥ N+1

N+MN

t(
i

N +MN
)

σN
3 (i) = 1− 1 i

N+MN
≥ N+1

N+MN

Hence, following the example (b) given in (2.4), if N+1
N+MN

converges as N goes to
infinity towards a constant α and if we choose D to be Dd described in Examples
(2.4).b), the results (2.5), (2.6), (2.14), (2.16) and (2.19) apply to XN . We note
ST the rate function governing the large deviation of the spectral measure process
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µ̂(N)
. in the scale (N +MN )2 coming from Theorem (2.16) with the above specific

choice of function ψN . To deduce the same results for WN , observe that

∆N
3 (XN )2∆N

3 =

(

WN 0
0 0

)

with the property that for any F ∈ FC(X,D),

G(X) = F (∆3X
2∆3) ∈ FC(X,D). (2.22)

This last property can be deduced from the observation that for any z ∈ C\R,

(z −∆3X
2∆3)

−1 = ∆3(z
1
2 + iX)−1(z

1
2 − iX)−1∆3 + (I −∆3)z

−1

with any choice of the square root z
1
2 of z. Hence, if µT (resp. µ)is defined by

µT (F ) = µ(F (∆3X
2∆3)), µ(F ) = µ(F (X))

for F ∈ FC(X,D),the map µ → µT in M=
1 furnished with the FR(X,D)-topology

is continuous. We can hence deduce from the contraction principle and theorem
(2.14) the following result. Consider WN = Y NTN (Y N ) with Y N a N × MN

matrix with i.i.d complex Gaussian entries and TN a diagonal matrix with entries
(t( 1

N+MN
), ..., t(1)) for a continuous function t. We set

µ̂(N)
T = trN (F (WN )).

Corollary (2.23). Assume that MN/N converges towards a positive constant α.

Then, the law of µ̂(N)
T satisfies a large deviation upper bound in the scale (N+MN )2

for the FR(X,D)-topology. If ST is the rate function of Theorem (4.1) with the
specific choice p(τ) = δτ=1 − δτ=2 − δτ=3 and, for x ∈ [0, 1],

σ1(x) = 1x≥ 1
1+α

(t(x)− 1) + 1

σ2(x) = 1x≥ 1
1+α

t(x)

σ3(x) = 1− 1x≥ 1
1+α

,

the good rate function governing the large deviations upper bounds of µ̂(N)
T is given

by

IT (µ) = inf{ST (ν) ;

ν1(F (∆3X
2∆3)) = µ(F ) + ν0((I −∆3)F (0)(I −∆3)) ∀F ∈ FR(X,D)}.

The central limit Theorem for XN and WN can also be deduced from Theorem
(2.8) under the hypothesis that N + 1 − α(N + MN ) converges as underlined in
Examples (2.9), which requires considering subsequences in general. This hypoth-
esis is needed to insure the convergence of the expectation of N(trN − µ∗

1)P but
would not be required if we would consider the fluctuations of the spectral measure
around its mean. We will not detail these results here.

The central ingredient to prove the previous theorems is an Itô’s formula for

(µ̂(N)
t , t ∈ [0, 1]). We shall prove it in the next section.
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3. Itô’s calculus

To present the stochastic differential calculus for the process XN , we need first
to define a few differential operators. Most of them can be already encountered in
[C-D,G] where the reader can find a more detailed introduction.

3.1 Differential Operators

Let us first recall the definition of the non-commutative derivation. It is the
linear map DX from FC(X,D) into E(C)⊗ E(C) so that for any F,G ∈ FC(X,D),

lim
ϵ→0

ϵ−1 (F (X + ϵG(X)) − F (X)) = DXF ♯G(X)

with the notation (A ⊗ B)♯C = ACB and where ⊗ denotes the standard tensor
product. DX can be equivalently described by the the non commutative Leibnitz
rule and its action on basic functionnals. The non commutative Leibnitz rule says
that for every F,G ∈ FC(X,D), any A ∈ H,

DX(FG)(A) = DX(F )(A) × 1⊗G(A) + F (A)⊗ 1×DX(G)(A).

Here × denotes the multiplication in the tensor product space so that for any
N ∈ IN , any A,B,C,D ∈ MN , A⊗B×C⊗D = AC⊗BD. Then, DX is uniquely
defined if we set for any A ∈ H, any z ∈ C\R, any α ∈ R,

DX(
1

z − αX
)(A) = α

1

z − αA
⊗

1

z − αA

and for any ∆ ∈ D,
DX(∆)(A) = 0.

Note that
DX (FC(X,D)) ⊂ FC(X,D)⊗ FC(X,D). (3.1)

We can thus define a second order operator D2
X from FC(X,D) ⊗ FC(X,D) into

FC(X,D)⊗ FC(X,D) ⊗ FC(X,D) by

D2
X ≡

1

2
(DX ⊗ 1 + 1⊗DX) ◦DX .

Let, for τ ∈ Ω, Mτ be the map from MN ⊗MN ⊗MN into MN ⊗MN for any
N ∈ IN so that for any A,B,C ∈ MN ,

Mτ (A⊗B ⊗ C) ≡ ∆N
τ B ⊗A∆N

τ C

for any N ∈ IN . We set for X ∈ H,

(LτF )(X) ≡ Mτ

(

D2
XF (X)

)

(3.2)

and

(LF )(X) =

∫

(LτF )(X)dp(τ) (3.3).
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It is also natural to define the derivation DX from FC(X,D) into E(C) so that
for any trace µ ∈ M=

1 , any F,G ∈ FC(X,D),

lim
ϵ→0

ϵ−1µ (F (X + ϵG(X)) − F (X)) = µ(DXF ×G(X)).

It was already noticed in [C-D,G] that if m is the map from MN ⊗MN into MN

for all N ∈ IN , so that m(A⊗B) = BA,

DX = m ◦DX .

Also, in view of (3.1) ans since FC(X,D) is an algebra,

DX (FC(X,D)) ⊂ FC(X,D). (3.4)

We also set D∗ to be the linear operator on FC(X,D) so that

D∗(F )(X) = (DF (X))∗ ∀X ∈ H.

Finally, if we let mτ : MN → MN for all N ∈ IN be the left hand side multiplica-
tion by ∆τ , that is for any A ∈ HN , N ∈ IN ,

mτ (A) ≡ ∆N
τ A,

we set

Lτ ≡
1

2
mτ ⊗mτ ◦DX ◦DX .

Then, we define the operator from FC(X,D) into FC(X,D)⊗ FC(X,D)

L =

∫

Lτdp(τ)

that is that for every test function F ∈ FC(X,D), any A ∈ H,

LF (A) =

∫

(LτF )(A)dp(τ).

3.2 Itô’s formula

Let C1([0, 1], FR(X,D)) be the set of time-continuously differentiable functions
with values in FR(X,D) and time derivative in FR(X,D). We next show the

Lemma (3.5).

(1) Itô’s formula for the matrix-valued process XN : for every F ∈ C1([0, 1], FC(X,D)),
any t ∈ [0, 1],

Ft(XN (t)) = F0(XN (0)) +

∫ t

0
trN ⊗ Id (L(Fs)(XN (s))) ds
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+

∫ t

0
∂sFs(XN (s))ds+

∫ t

0
DXF (XN (s))♯dXN (s). (3.6)

(2) Itô’s formula for the measure-valued process : for every F ∈ C1([0, 1], FR(X,D)),
any t ∈ [0, 1],

Q(N)
F (t) = trNFt(XN (t))− trNF0(XN (0))−

∫ t

0
trN [∂sFs(XN (s))]ds

−
∫ t

0
(trN ⊗ trN )[LFs(XN (s))]ds

is a real-valued martingale with bracket

< Q(N)
F >t=

1

N2

∫ t

0

∫

trN [mτ (DXFs(XN (s)))mτ (D∗
XFs(XN (s)))]ds.

Proof. The proof follows multi-dimensional Itô’s formula. Indeed, considering Ft(XN )
as a function of the entries of HN , note that for any i, j ∈ {1, .., N}, and with
(XN )ij = hijψN (i, j)

1
2 ,

∂hijFt(XN ) = DXFt(XN )♯(∂hijXN ),

and for any k, l ∈ {1, .., N},

∂hkl∂hijFt(XN ) = DX ⊗ 1 ◦DXFt(XN )♯
(

∂hklXN , ∂hijXN

)

+ 1⊗DX ◦DXFt(XN )♯
(

∂hijXN , ∂hklXN

)

where we have noted A⊗B ⊗ C♯(D,E) = ADBEC. Also, remark that

(∂hijXN )kl = δij=klψN (i, j)
1
2 . (3.7)

Now, recall that multi-dimensional Itô’s calculus yields, since< (HN )kl, (HN )ij >t=
N−1δkl=jit,

dFt(XN (t)) = ∂tFt(XN (t))dt+
N
∑

i,j=1

∂hijFt(XN (t))(dXN (t))ij

+
1

2N

N
∑

i,j=1

ψN (i, j)∂hji∂hijFt(XN (t))dt (3.8)

where above the action of the operator is to be understood entries by entries, e.g
for any k, l ∈ {1, .., N},

⎛

⎝

N
∑

i,j=1

ψN (i, j)∂hji∂hijFt(X)

⎞

⎠

kl

=
N
∑

i,j=1

ψN (i, j)∂hji∂hij (Ft(X))kl .



16

But, according to (3.7), for any k, l,m, n, o, p ∈ {1, .., N}, if we denote (A ⊗ B ⊗
C)klmnop = AklBmnCop,

(

1
2N

∑N
i,j=1 ψN (i, j)∂hji∂hijFt(X)

)

kl

= 1
N

∑N
i,j=1 ψN (i, j)

(

D2
XF
)

kijjil

=
∫

(

1
N

∑N
i,j=1 σ

N
τ (i)σN

τ (j)
(

D2
XF
)

kijjil

)

dp(τ)

=
∫

(trN ⊗ Id(LτF (X)))kl dp(τ)

(3.9)

giving the first part of the lemma.

For the second part, we need only to take the trace on both sides of (3.6) to
obtain

dtrNFt(XN (t)) = trN (∂tFt(XN (t)))dt +
N
∑

i,j=1

trN (DXF (XN (t))♯dXN (t))

+

∫

trN ⊗ trN (LτF (XN (t))) dp(τ)dt. (3.10)

The first term in (3.8) gives the martingale term

trN (DXFt(XN (t))♯dXN (t)) = trN (DXFt(XN (t))dXN (t)).

For the second, note that

trN ⊗ trN (LτF (X)) = trN ⊗ trN (LτF (X)) . (3.11)

Indeed, denoting (F 1
i , F

2
i ) the family of functions in FC(X,D) so that

DXF =
∑

i

F 1
i ⊗ F 2

i

we find that

D2
XF =

1

2

∑

i

∑

j

(

(F 1
i )

1
j ⊗ (F 1

i )
2
j ⊗ F 2

i + F 1
i ⊗ (F 2

i )
1
j ⊗ (F 2

i )
2
j

)

so that

Mτ (D
2
XF ) =

1

2

∑

i

∑

j

(

∆τ (F
1
i )

2
j ⊗ (F 1

i )
1
j∆τF

2
i +∆τ (F

2
i )

1
j ⊗ F 1

i ∆τ (F
2
i )

2
j

)

.

On the other hand,

LτF =
1

2
mτ ⊗mτ ◦DX(

∑

i

F 2
i F

1
i )

=
1

2

∑

i

∑

j

(

∆τ (F
1
i )

2
j ⊗∆τF

2
i (F

1
i )

1
j +∆τ (F

2
i )

1
j ⊗∆τ (F

2
i )

2
jF

1
i

)
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so that taking the trace having the property

trN (∆τ (F
2
i )

2
jF

1
i ) = trN (F 1

i ∆τ (F
2
i )

2
j )

gives (3.11).

Hence,

Q(N)
F (t) = trN(DXFt(XN (t))dXN (t))

is a martingale. Its bracket is easily computed by

< (dXN )ij , (dXN )kl >t= δij=lkN
−1ψN (i, j)dt.

The fact that the martingale is real valued is clear since, as Ft ∈ FR(X,D),

trN (Ft) = trN (F ∗
t ) = trN (Ft)

since trN is invariant by transposition.

!

4. Large deviation upper bound

We shall prove a large deviation upper bound for non-commutative functionnals
of the process of (XN (t))t∈[0,1] in this section. The rate function for these deviations
is defined as follows. First, we define the empty state δ0 to be the element of K=

1 (∞)
so that for any F ∈ FR(X,D), F (X) =

∏n
i=1

1
zi−αiX

∆i,

δ0(F ) = m(F (0))

where∆i ∈ D, 1 ≤ i ≤ n andm(F (0)) is defined by (2.3) since F (0) =
∏n

i=1 z
−1
i ∆i ∈

D by construction. We let Cs([0, 1],K=
1 (∞)) be the subset of C([0, 1],K=

1 (∞)) of
continuous K=

1 (∞)-valued processes µ so that µ0 = δ0 and for any ∆ ∈ D, any
t ∈ [0, 1],

µt(∆) = δ0(∆).

Then, S is defined by

S(µ) =

⎧

⎨

⎩

+∞ if µ ̸∈ Cs([0, 1],K=
1 (∞))

sup
0≤s≤t≤1

Ss,t(µ) otherwise,

with, if for F,G ∈ C1([0, 1],FR(X,D)), we define for any times 0 ≤ s ≤ t ≤ 1, any
µ ∈ C([0, 1],K=

1 (∞)),

Ss,t(F, µ) = µt(Ft)− µs(Fs)−
∫ t

s
µu(∂uFu)du−

∫ t

s
µu(LFu)du,

≪ F,G ≫s,t
µ =

∫ t

s

∫

µu (mτ (DXFu)mτ (D∗
XGu)) dp(τ),
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Ss,t(µ) = sup
F∈C1([0,1],FR(X,D))

(

Ss,t(F, µ)−
1

2
≪ F,F ≫s,t

µ

)

.

Let us denote µ̂(N)
t the linear map on FC(X,D) so that for any F ∈ FC(X,D),

any t ∈ [0, 1],

µ̂(N)
t (F ) = trN (F (XN (t))).

We infer that µ̂(N) belongs to C([0, 1],K1
=(∞)).

We shall prove in this section that

Theorem (4.1). µ̂(N) ∈ C([0, 1],K1
=(∞)) satisfies a large deviation upper bound

in the scale N2 with good rate function S , that is

1) S is a non negative function which has compact level sets for the FR(X,D)-
topology. Further, for any M > 0, there exists a A > 0 so that

EM = {S ≤ M} ⊂ C([0, 1],K=
1 (A)).

2)

lim sup
A→∞

lim sup
N→∞

1

N2
log P(µ̂(N) ∈ C([0, 1],K=

1 (A))
c) = −∞.

3) For any closed subset F of C([0, 1],M1
=),

lim sup
N→∞

1

N2
log P

(

µ̂(N) ∈ F
)

≤ − inf
F

S.

In particular, since the application µ ∈ C([0, 1],M1
=) → µ1 ∈M1

= is continuous,
we deduce from the contraction principle that

Corollary (4.2). µ̂(N)
1 satisfies a large deviation upper bound in the scale N2 with

good rate function given for µ ∈M1
= by

S1(µ) = inf{S(ν); ν ∈ C([0, 1],M1
=) : ν1 = µ}

It is natural that the above infimum should be achieved at the limit process µb

obtained by conditionning the entries at time 1. It satisfies the differential equation

∂tµ
b
t(F ) = −µb

t ⊗ µb
t(LF ) + µb

t(
X

t
DXF ).

µb
t can also be constructed as the law of tA +Xt(1−t) where (Xs, s ∈ [0, 1]) is the

limit of (XN (s), s ∈ [0, 1]) and A has law µ1 and is free from (XN (s), s ∈ [0, 1]).
We then deduce an upper bound for S1 given by

S1(µ) ≤ S(µb) ≤
∫ 1

0
u−1J(µ̃b

u)du
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with J the Fisher’s information

J(µ) = sup
F∈FR(X,D)

{2µ ⊗ µ(LF )− µ(XDXF )−
1

2
µ(||DXF ||2)}

and µ̃b
u the image of µb

u by the homothety of ratio u− 1
2 . By a translation on the

function F , we find

J(µ) = sup
F∈FR(X,D)

{µ⊗µ(

∫

dp(τ)mτ⊗mτDX ◦DXF )−
1

2
µ(||DXF ||2)}+

1

2
µ(X2)−1.

Thus, J(µ) is finite iff µ(X2) < ∞ and, by Riesz’s theorem, if there exists H ∈

DX(FR(X,D))
L2(µ)

so that for all F ∈ DX(FR(X,D))

µ⊗ µ(

∫

dp(τ)∆τ ⊗∆τ ×DXF ) = µ(FH),

and then

J(µ) =
1

2
µ(H2) +

1

2
µ(X2)− 1.

Thus, the natural Fisher entropy is here given in terms of the image by the adjoint
of DX of

∫

dp(τ)∆τ ⊗ ∆τ (compare with Wigner’s matrices where one takes the
image of 1⊗ 1 by the same adjoint (see [Vo3])). This Fisher’s entropy is related to
that defined by D. Shlyakhtenko [Sh2] ; they are equal when D∗

X(
∫

dp(τ)∆τ ⊗∆τ )

belongs to the gradient space DX(FR(X,D))
L2(µ)

.

The proof of this theorem follows the usual scheme ; we first study the rate
function S and prove that it is a good rate function. We then show that µ̂(N) is
exponentially tight and provide then a weak large deviation upper bound.

4.1 Study of the rate function

Lemma (4.3). S is a non negative function which has compact level sets for the
FR(X,D)-topology. Further, for any M > 0, there exists a A > 0 so that

EM = {S ≤ M} ⊂ C([0, 1],K=
1 (A)). (4.4)

Proof. First note that S is non negative since, for µ with S(µ) < ∞, we have

S(µ) = sup
0≤s≤t≤1

sup
F∈C1([0,1],FR(X,D))

(

Ss,t(F, µ)−
1

2
≪ F,F ≫s,t

µ

)

= sup
0≤s≤t≤1

sup
F∈C1([0,1],FR(X,D))

sup
λ∈R

(

λSs,t(F, µ)−
λ2

2
≪ F,F ≫s,t

µ

)

=
1

2
sup

0≤s≤t≤1
sup

F∈C1([0,1],FR(X,D))

(Ss,t(F, µ))
2

≪ F,F ≫s,t
µ
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is non negative as Ss,t(F, µ),≪ F,F ≫s,t
µ ∈ R × R+. Further, for any F ∈

C1([0, 1], FR(X,D)), µ → Ss,t(F, µ) is continuous by the stability properties of
(3.1)-(3.4). For the same reason, µ →≪ F,F ≫s,t

µ is continuous and hence S0,1,
as a supremum of continuous functions, is lower semi-continuous that is has closed

level sets. SinceM=
1 is compact, the precompact subsets of C1([0, 1],M1

=) can be in-
cluded, following [D,G], lemma 5.4, in compact sets of the form K =

⋂

n∈IN K′
n with

K′
n = {ν ∈ C([0, 1],M=

1 )/ the function (u → νu(Fn)) belongs to K ′
n} if (K ′

n)n∈IN a
sequence of compact subsets of Cb([0, 1],R) and (Fn)n∈IN a basis of FR(X,D). In
view of Arzéla-Ascoli theorem, the compact subsets K ′ of C([0, 1],R) are such that
there exists a finite constant C > 0, a family ϵn of positive real numbers ϵn, ϵn → 0
as n goes to infinity, a family of positive real numbers δn such that

K ′ = {f ∈ Cb([0, 1],R), ||f ||u ≤ C, sup
|t−s|≤δn

|f(t)− f(s)| ≤ ϵn, ∀n ∈ IN}.

Hence, to prove that the level sets EM can be included into some K, we need to
show that for every F ∈ FR(X,D), and every m > 0, there exists δMm (F ) so that

∀ν ∈ EM sup
|t−s|≤δMm (F )

|νt(F )− νs(F )| ≤
1

m

Since by definition we have

∀F ∈ FR(X,D), ∀ν ∈ EM

Ss,t(ν, F )2 ≤ 2S0,1(ν) ≪ F,F ≫s,t
ν ≤ 2M ≪ F,F ≫s,t

ν

we deduce

|νt(F )− νs(F )| ≤
∣

∣

∣

∣

∫ t

s
νu ⊗ νu(LF )du

∣

∣

∣

∣

+
√

2M ≪ F,F ≫s,t
ν

By definition of FR(X,D), (3.1)-(3.4) and Lemma (2.11), all the functions appearing
in the above right hand side are uniformly bounded for || ||∞ so that we conclude
that there exists a finite constant ∆M (F ) so that

|νt(F )− νs(F )| ≤ ∆M (F )(
√

|t− s|+ |t− s|)

Finally, to prove (4.4), we take

F (X) =
X2

1 + ϵX2
=

X

i+
√
ϵX

X

−i+
√
ϵX

∈ FR(X,D)

and compute DXF (X) = 2X(1 + ϵX2)−2 and

LF (X,X) =
∫

∆τ ⊗ (∆τ (1 + ϵX2)−2)dp(τ)
+
∫

∆τX ⊗∆τ ×DX(1 + ϵX2)−2dp(τ)
(4.5)

with X ⊗ 1DX(1 + ϵX2)−2 given by

ϵ
∑

n=0,1;p=1,2

((1 + ϵX2)−pXn)⊗ ((1 + ϵX2)−3+pX1−n) (4.6)
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easily checked to be the sum of tensor product of bounded operators with norm
bounded above independently of ϵ.

Hence, there exists a finite constant C so that if µ ∈ EM , for all t ∈ [0, 1],

µt(F ) ≤ M + C +

∫ t

0
µs((∆τ

2X

(1 + ϵX2)2
)2)ds

It is not hard to verify that by the trace and positivness properties of µs, Cauchy-
Schwartz’s inequality type statements are valid and that ∀F,G ∈ FR(X,D), F ≥
0,

µs(GF ) ≤ ∥G∥∞µs(F ).

Hence, we compute

µs((∆τ
2X

(1 + ϵX2)2
)2) ≤ 4||∆τ ||2∞µs((

X

(1 + ϵX2)2
)2) ≤ 4||∆τ ||2∞µs(F )

so that we conclude, since the operator norm of ∆τ is uniformly bounded by T by
assumption (H0), that

µt(F ) ≤ (C +M) + 4T 2

∫ t

0
µs(F )ds

and hence by Gronwall’s lemma

sup
t∈[0,1]

µt(F ) ≤ (C +M)e4T
2

.

We can now let ϵ ↓ 0 and conclude that supt∈[0,1] µ(X
2
t ) ≤ (T 2 + M)e4T

2

which
proves the second point of the lemma. !

4.2 Exponential Tightness

Note first that µ̂(N) belongs to C([0, 1],K=
1 (∞)) almost surely. Further

Lemma (4.7). There exists compact subsets KL, L ∈ IN , of C([0, 1],M=
1 ) so that

lim sup
N→∞

1

N2
log P

(

µ̂(N) ∈ Kc
L

)

≤ −L.

The proof follows the description of the precompact sets C([0, 1],K=
1 (∞)) given

in the last part and is given in details in [C-D,G] in a slightly different context. We
shall not detail it here.

Also
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Lemma (4.8).

lim sup
A→∞

lim sup
N→∞

1

N2
logP

(

µ̂(N) ∈ C([0, 1],KA)
c
)

= −∞.

Proof. This amounts to prove that

lim sup
A→∞

lim sup
N→∞

1

N2
logP

(

sup
t∈[0,1]

µ̂(N)
t (X2) ≥ A

)

= −∞

But

sup
t∈[0,1]

µ̂(N)
t (X2) = sup

t∈[0,1]

1

N

N
∑

i,j=1

ψN (i, j)|HN (t)i,j |2

≤
1

N2

N
∑

i,j=1

ψN (i, j) sup
t∈[0,1]

((βi,j
t )2 + (β̃i,j

t )2)

Since ψN is uniformly bounded and supt∈[0,1](β
i,j
t )2 has the same law that (βi,j

1 )2,
we find an α > 0 and a finite constant Cα so that

P[eαN
2 supt∈[0,1] µ̂

(N)
t (X2)] ≤ CN2

α

which, thanks to Chebyshev’s inequality, allows us to conclude.

!

4.3 Weak large deviation upper bound

In view of Lemma (4.7), we can get a large deviation upper bound by means of
a weak large deviation upper bound which is an easy consequence of

Lemma (4.9).

lim sup
δ↓0

lim sup
N→∞

1

N2
logP

(

D(ν, µ̂(N)) < δ
)

≤ −S(ν) (4.10)

for any ν ∈ C([0, 1],M=
1 ).

Proof. Note that, at time 0,

µ̂(N)
0 (F ) = trN (F (0))

converges, as F (0) ∈ D, towards m(F (0)) by (H0). Thus, for any η > 0, for N

large enough d(µ̂(N)
0 , δ0) ≤ δ. Hence, with µ̂(N)

t (F ) = µ̂(N)
0 (F ) for any F ∈ D, we

deduce that

lim sup
δ↓0

lim sup
N→∞

1

N2
lnP(µ̂(N) ∈ Bδ(ν)) = −∞
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if ν ̸∈ Cs([0, 1],K=
1 ). Therefore, we shall assume hereafter that ν ∈ Cs([0, 1],K=

1 ).
We shall follow the ideas developed in [K,O,V]. To this end, we define a family of

positives super-martingales {ζ(N)
F , F ∈ C1([0, 1], FR(X,D))}, equal to 1 at t = 0,

thanks to lemma (3.5) :

ζ(N)
F (t) = exp

(

N2Q(N)
F (t)−

N4

2
⟨Q(N)

F ⟩t
)

= exp
(

N2(S0,t(µ̂(N), F )−
1

2
≪ F,F ≫0,t

µ̂(N))
)

Let ν ∈ C([0, 1],P(R)) and F ∈ C([0, 1], FR(X,D)); then for any 0 ≤ s ≤ t ≤ 1, if

ζ(N)
F (t, s) = ζ(N)

F (t)ζ(N)
F (s)−1,

P
(

µ̂(N) ∈ B(ν, δ)
)

= E
[

1µ̂(N)∈B(ν,δ)
ζ(N)
F (t, s)

ζ(N)
F (t, s)

]

≤ sup
ν′∈B(ν,δ)

exp
(

−N2
(

Ss,t(ν′, F )−
1

2
≪ F,F ≫s,t

ν′
)

)

= exp
(

−N2 inf
ν′∈B(ν,δ)

(

Ss,t(ν′, F )−
1

2
≪ F,F ≫s,t

ν′
)

)

where we have used E[ζ(N)
F (t, s)] ≡ 1. Notice that if F belongs to C1([0, 1], FR(X,D)),

the function ν′ → S0,1(ν′, F )− 1
2 ≪ F,F ≫0,1

ν′ is continuous. Thus, for any function
F ∈ C1([0, 1], FR(X,D))

lim sup
δ↓0

lim sup
N→∞

1

N2
lnP(µ̂(N) ∈ B(ν, δ)) ≤ −(S0,1(ν, F )−

1

2
≪ F,F ≫0,1

ν )

We conclude by taking the supremum over F that

lim sup
δ↓0

lim sup
N→∞

1

N2
lnP(µ̂(N) ∈ B(ν, δ))

≤ − sup
F∈C1([0,1],FR(X,D))

(S0,1(ν, F )−
1

2
≪ F,F ≫0,1

ν )

!

5 Law of large numbers

According to the large deviation upper bound of the previous section, we know
that µ̂(N), as an element of C([0, 1],M=

1 ), concentrates almost surely towards the
minimizers of S. In this section, we prove that S admits a unique minimizer and
study it. We then deduce a law of large numbers theorem for bounded test functions
which we strenghten in a second time to include polynomial functions.
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5.1 Study of the minimizers of S

Since S is a good rate function, it achieves its minimum value, which is zero. Its
minimizers are hence characterized as the µ ∈ Cs([0, 1],K=

1 (∞)) satisfying

S0,1(µ, F ) = 0 (5.1)

for all test functions F . We shall prove that

Lemma (5.2). (5.1) admits a unique solution µ∗ ∈ Cs([0, 1],K1
=(∞)).

To prove lemma (5.2), we first show that the minimizers have finite moments
and provide bounds for them ;

Lemma (5.3). There exists a finite constant C so that if µ minimizes S,

sup
t∈[0,1]

µt(X
2n) ≤ n!Cn, ∀n ∈ IN.

In particular, as a standard probability measure, µt(X2n) is defined by its mo-
ments.

Proof. Set, for ϵ > 0, F (X) = X2

1+ϵX2 . Following (4.5), we have

DXFn(X) = 2nFn−1 X

(1 + ϵX2)2

and

DX◦DXFn(X) = 4n
n−2
∑

k=0

F k(X)
X

(1 + ϵX2)
⊗

1

(1 + ϵX2)
Fn−2−k(X)

X

(1 + ϵX2)2

+
n−1
∑

k=0

F k(X)⊗ 1×DX ◦DXF (X) × 1⊗ Fn−1−k(X). (5.4)

Noticing that

||∆τ ||∞ ≤ T,
2
√
ϵX

1 + ϵX2
≤ 1 ∀ ϵ ∈ R+, ∀X ∈ H,

and recalling from (4.6) that DX ◦DXF is uniformly bounded in the tensor product
space, we find a finite constant C so that for any µ ∈M=

1 ,

µ⊗ µ (LFn) ≤ Cn
n−2
∑

k=0

µ
(

F k+1 + F k
)

µ
(

Fn−k−1 + Fn−k−2
)

.

Hence, if µ satisfies (5.1), and mn(t) ≡ supϵ∈[0,1] supk≤n µt(F k), we have

mn(t) ≤ (4n2C)

∫ t

0
mn−1(s)

2ds,
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so that with mn = supt∈[0,1] mn(t),

mn ≤ (4n2C)m2
n−1 ≤

n
∏

p=1

(4p2C)2
n−p

.

Hence, µ(X2n) = limϵ↓0 µ[(
X2

1+ϵX2 )n] exists and is finite for all n. We can therefore
extend (5.1) by talking F to be polynomial. We then get the easier formula

∂tµt(
n
∏

i=1

∆iX)

=
n
∑

k=1

n−k−1
∑

l=0

∫

dp(τ)µt(∆τ

k+l
∏

i=k+1

∆iX∆k+l+1)µt(∆τ

n
∏

i=k+l+2

∆iX
k−1
∏

i=1

∆iX∆k)

+
n
∑

k=1

k−1
∑

l=1

∫

dp(τ)µt(∆τ

n
∏

i=k+1

∆iX
l
∏

i=1

∆iX∆l)µt(∆τ

k−1
∏

i=l+1

∆iX∆k)

for any (∆1, ..,∆n) ∈ D. By induction over n, we deduce that µt(
∏n

i=1 ∆iX) = 0
if n is odd for every ∆i ∈ D. Taking ∆i = 1, we get if n is even,

∂tµt(X
n) ≤ T 2n

n−2/2
∑

k=0

µt(X
2k)µt(X

n−2k−2). (5.5)

Let

un(t) =
1

n!
µt(X

2n).

Then, (5.5) implies

∂tun(t) ≤ T 2
n−1
∑

k=0

(Ck
n−1)

−1uk(t)un−1−k(t). (5.6)

with Ck
n = (n!/k!(n − k)!). Observe that c = supn∈IN

∑n−1
k=0(C

k
n−1)

−1 < ∞ so that
by induction we see that there exists C < ∞ (C ≤ cT 2 ) such that

sup
t∈[0,1]

un(t) ≤ Cn

which finishes the proof of the Lemma. !

We are now in position to prove Lemma (5.2) :

Proof of Lemma (5.2). Finally, the moments of µt are uniquely determined since,
if µ, ν are two solutions,

∆k(t) = sup
n≤k

sup
∆∈D,||∆||∞≤1

|νt(
n
∏

i=1

∆iX)− µt(
n
∏

i=1

∆iX)|,
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we have by the above equation

∆k(t) ≤ 2k2
√
k!CkT 2

∫ t

0
∆k−1(s)ds ≤ 2k2

√
k!CkT 2

∫ t

0
∆k(s)ds

which, by Gronwall’s lemma implies ∆k(t) = 0. In view of lemma (5.3), this is
enough to guarantee directly that for any ξ1, .., ξn ∈ C, z1, .., zi ∈ C

µt

(

n
∏

i=1

∆ie
ξi(X−zi)

)

is uniquely defined (check that the expansion indeed converges ) and then by inte-
gration over the ξk’s when ℑ(zk) ̸= 0 (with sgn(ℑ(zk))ξk ∈ (−∞, 0] ),

µt

(

n
∏

i=1

∆i
1

zi −X

)

are uniquely determined, insuring the uniqueness of µt as an element of M=
1 for

any t ∈ [0, 1].

!

Let us notice that (µ∗
t , t ∈ [0, 1]) satisfies a scaling property

Lemma (5.7). For any t ∈ [0, 1], if for F ∈ FC(X,D), F t(X) = F (
√
tX),

µ∗
t (F ) = µ∗

1(F
t). (5.8)

Proof. Indeed, L, as a second order differential operator on X, satisfies for any
F ∈ FC(X,D),

LF t(X) = t(LF )(
√
tX). (5.9)

Hence, since µ∗
t is uniquely characterized by (5.1), we have for any t ∈ [0, 1],

λ ∈ (0, t−1], for any function F ∈ FC(X,D)

µ∗
λt(F ) = δ0(F ) +

∫ λt

0
µ∗
s ⊗ µ∗

s(LF )ds

= δ0(F ) +

∫ t

0
µ∗
λs ⊗ µ∗

λs(λLF )ds

= δ0(F ) +

∫ t

0
µ∗
λs ⊗ µ∗

λs((LFλ)(
√
λ
−1

X))ds

Thus, (µλt , t ∈ [0, 1]) given by

µλt (F ) = µ∗
λt(F (

√
λ
−1

X)), F ∈ FC(X,D)

satisfies

µλt (F ) = δ0(F ) +

∫ t

0
µλs ⊗ µλs (LF )ds.
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Since we have seen in the previous section that this equation characterized µ∗, we
deduce that µλt = µ∗

t for t ∈ [0, 1]. Taking λ = t−1
0 for t0 ∈ [0, 1], we deduce

µ1(F (
√
t0

−1
X)) = µt0(F ) or equivalently (5.8).

!

In the setting of examples (2.4).a) or b) we can more precisely identify the limit
law of the spectral measure of (XN (t), t ∈ [0, 1]). In fact, let

ψ(x, y) = lim
N→∞

ψN ([Nx], [Ny])

and denote K the operator in L2([0, 1]) with kernel ψ. Then

Lemma (5.10). Let k : [0, 1] × C\R → C be the unique analytic solution of the
non linear equation

k(x, z) = (z −K(k(., z))(x))−1

so that zk(x, z) goes to one as |z| goes to infinity for any x ∈ [0, 1]. Then, for any
φ ∈ Cb([0, 1],R), any t ∈ [0, 1],

µ∗
t (∆(φ)(z −X)−1) =

1√
t

∫ 1

0
φ(x)k(x,

z√
t
)dx.

This result is analoguous to that found in [Sh] and [C,G].

Proof. Note first that by (5.1),

∂tµ
∗
t (∆(φ)(z −X)−1) = −

1

2
∂z

∫

dp(τ)µ∗
t (∆(φστ )(z −X)−1)µ∗

t (∆(στ )(z −X)−1).

(5.11)
Further, according to lemma (5.7),

µ∗
t (∆(φ)(z −X)−1) = µ∗

1(∆(φ)(z −
√
tX)−1) =

√
t
−1

µ∗
1(∆(φ)(

√
t
−1

z −X)−1)
(5.12)

so that we get by derivation over t ∈ [0, 1],

∂tµ
∗
t (∆(φ)(z−X)−1) = −

1

2t
µ∗
t (∆(φ)(z−X)−1)−

z

2t
3
2

∂zµ
∗
t (∆(φ)(z−X)−1). (5.13)

(5.11) and (5.13) result with

∂z
(

zµ∗
t (∆(φ)(z −X)−1)

)

= t∂z

(
∫

dp(τ)µ∗
t (∆(φστ )(z −X)−1)µ∗

t (∆(στ )(z −X)−1)

)

.

Noting that lim|z|→∞ zµ∗
t (∆(φ)(z −X)−1) = δ0(∆(φ)), we get by integration over

z,

zµ∗
t (∆(φ)(z−X)−1) = δ0(∆(φ))+t

∫

dp(τ)µ∗
t (∆(φστ )(z−X)−1)µ∗

t (∆(στ )(z−X)−1).

(5.14)
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Now, observe that for any t ∈ [0, 1] and z ∈ C\R, φ → µ∗
t (∆(φ)(z − X)−1) is a

linear bounded map on L2([0, 1]) since, by Cauchy-Schwartz’s inequality

|µ∗
t (∆(φ)(z −X)−1)| ≤ |ℑ(z)|−1δ0(∆(φ)2)

1
2 = |ℑ(z)|−1|φ|L2([0,1]).

Hence, Riesz’s theorem shows that there exists kt(., z) ∈ L2([0, 1]) such that for any
φ ∈ L∞([0, 1])

µ∗
t (∆(φ)(z −X)−1) =

∫ 1

0
φ(x)kt(x, z)dx. (5.15)

We deduce from (5.12) that for almost all x ∈ [0, 1],

kt(x, z) =
√
t
−1

k1(x,
√
t
−1

z) (5.16)

and from (5.14) that for any φ ∈ L2([0, 1]),

∫ 1

0
dxφ(x) (zk1(x, z) − k1(x, z)K(k1(., z))(x)) dx =

∫ 1

0
φ(x)dx

so that for almost all x ∈ [0, 1],

k1(x, z) = (z −K(k(., z))(x)k(x, z))−1 . (5.17)

(5.15) and (5.17) give lemma (5.10).

!

5.2 Law of large numbers

As a direct consequence of lemma (5.2),

Lemma (5.18). For any F ∈ FC(X,D), (trN (F (XN (t))))t∈[0,1] converges almost
surely towards (µ∗

t (F ))t∈[0,1].

We can also improve the law of large numbers stated in lemma (5.18) by enlarging
the set of test functions. Indeed, denoting PC(X,D) the set of non-commutative
polynomial functions of X and elements of D, we have

Lemma (5.19). For any polynomial function P of PC(X,D), (µ̂(N)
t (P ))t∈[0,1] con-

verges in L∞−(P) = ∩q∈INLq(P) towards (µ∗
t (P ))t∈[0,1]. In other words, for any

q ∈ IN ,

lim
N→∞

sup
t∈[0,1]

E[|µ̂(N)
t (P )− µ∗

t (P )|q ] = 0.

Proof. We can of course restrict ourselves to

P (X) =
n
∏

i=1

X∆i(X)
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for (∆i)1≤i≤n ∈ D since the ∆i’s can be identically equal to identity. Set, for ϵ > 0,

Pϵ(X) = (i)n
n
∏

i=1

X

i+ ϵX
∆i(X) ∈ FC(X,D).

Then, for any t ∈ [0, 1],

|trN (Pϵ(XN (t)))− trN (P (XN (t)))| ≤ ϵn
n
∏

i=1

||∆i||∞trN [XN (t)2n]
1
2 . (5.20)

Note that

E[trN [XN (t)2n]] =
1

N

∑

γ;|γ|=2n

E[
∏

bi∈γ

XN
bi (t)] (5.21)

with γ a set of connected bonds b = (i, j) in {1, .., N}2 of length 2n so that bi+1 ≃ bi
if

b ≃ b′ ↔ b = (i, j), b′ = (j, k), i, j, k ∈ {1, .., N}3

and b2n ≃ b1. In the right hand side of (5.21), only the contours γ so that if
b = (i, j) ∈ γ, b∗ = (j, i) ∈ γ with equal degree contribute, so that

E[trN [XN (t)2n]] =
1

N

∑

γ;|γ|=2n

E[
∏

b,b∗∈γ

XN
b (t)XN

b∗ (t)] (5.22)

But, with b = (i, j),

XN
b (t)XN

b∗ (t) = ψN (i, j)HN
b (t)HN

b∗(t)

so that, since HN
b (t)HN

b∗ (t) ≥ 0 for any b ∈ {1, .., N}, we deduce from (5.21) that

E[trN [XN (t)2n]] ≤ TnE[trN [HN (t)2n]] (5.23)

It is well known (see for instance [S,S], Theorem 2 ) that for any n ∈ IN ,

sup
N∈IN

sup
t∈[0,1]

E[trN [HN (t)2n]] < ∞

so that (5.22) results with, for any n ∈ IN ,

sup
N∈IN

sup
t∈[0,1]

E[trN [XN (t)2n]] < ∞. (5.24)

With (5.20), we find, for any q ∈ IN , a finite constant C(P, q) so that

sup
N∈IN

sup
t∈[0,1]

E[|trN (Pϵ(XN (t)))− trN (P (XN (t)))|q ] ≤ C(P, q)ϵq . (5.25)

Recalling by the previous proof that

lim
ϵ↓0

sup
t∈[0,1]

|µ∗
t (Pϵ)− µ∗

t (P )| = 0

and by Lemma (5.18) for any ϵ > 0 (since Pϵ is uniformly bounded so that domi-
nated convergence theorem applies )

lim
N→∞

E[ sup
t∈[0,1]

|trN (Pϵ(XN (t)))− µ∗
t (Pϵ(XN (t)))|q ] = 0

we deduce from (5.25) that for any q ∈ IN ,

lim
N→∞

sup
t∈[0,1]

E[|trN (P (XN (t))) − µ∗
t (P (XN (t)))|q ] = 0.

!
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6. Central limit theorem

In this section, we shall assume that D satisfies additionnally the hypotheses
(H1) and (H2) of section 2. The goal of this section is to study the fluctuations

of µ̂(N)
t (P ) for t ∈ [0, 1] and P ∈ PC(X,D). This is equivalent, by the scaling

property to study the fluctuations of {µ̂(N)
1 (P ), P ∈ PC(X,D)}. This result is

slightly less powerful than what T. Cabanal Duvillard proved in [C-D] for the
fluctuations of non-commutative functionnals of independent Gaussian Wigner’s
matrices who obtained fluctuations on path space. However, to our point of view,
the exhibited covariance functions are simpler here and the generalization to path
space result somehow not so much motivated.

To describe the mean and the covariance of the limiting Gaussian variables, we
shall introduce the following operators on PC(X,D).

We first let X.∂X be the differential operator in PC(X,D) given by

X.∂XP = DXP ♯X = ∂tP (tX)|t=1.

As a counter part, we let I be given by

I(P )(X) =

∫ 1

0
P (

√
uX)du.

We define second order operators by

LM = (µ∗
1 ◦ I ⊗ I + I ⊗ µ∗

1 ◦ I) ◦ L

and
Ξ = X.∂X − 2µ∗

1 ⊗ I ◦ L.

Let PR(X,D) be the subset of PC(X,D) of Hermitian valued polynomial func-
tions. We recall that according to lemma (5.3), any P ∈ PR(X,D) belongs to
L2(µ∗

1).

We shall prove that

Theorem (6.1).

(1) I +Ξ as an operator from PR(X,D) into PR(X,D) is symmetric and invert-
ible. Further, (I + Ξ)−1 is a non negative operator from PR(X,D) into PR(X,D),
e.g. for any P ∈ PR(X,D),

< P, (I + Ξ)−1P >L2(µ∗
1)
≥ 0.

Further, if we set (A⊗B)t = B ⊗A and for Q ∈ PR(X,D), DQt(X) = (DQ(X))t

for all X ∈ H, we have the more explicit formula for all P,Q ∈ PR(X,D),

µ∗
1 (PΞQ) =

∫

µ∗
1 ◦mτ ⊗ µ∗

1 ◦mτ

(

DQ× (DP )t
)

dp(τ).
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(2) If (H1) and (H2) are verified, for any P ∈ PR(X,D), N
(

µ̂(N)
1 (P )− µ∗

1(P )
)

converges in law towards a Gaussian variable with covariance

C(P ) =

∫

µ∗
1

(

mτ (DXP )(I + Ξ)−1mτ (DXP )
)

dp(τ)

and mean
M(P ) = c0(e

LM

P (0)).

Before going any further, let us detail the above result in the classical Wigner’s
case.

Remark (6.2). In Wigner’s case where ∆τ ≡ 1 and P is a polynomial function
of X only, note that we find the result originally due to K. Johansson [Joh] and in
this form in [C-D]. Note first that in this case c0 ≡ 0 and the asymptotic Gaussian
law is centered. In fact, in this case µ∗

1 is the semicircle law π−1
√
4− x2dx and L

can be seen as the operator from P [X] into P [X,Y ] given by

Lf(x, y) = (y − x)−1

(

f ′(y)−
f(y)− f(x)

y − x

)

.

But, if PV denotes the principal value, the Hilbert transform H(µ∗
1)(y) = PV

∫

(y−
x)−1dµ∗

1(x) is well known to be equal to H(µ∗
1)(y) = 2−1y on the support Λ∗

1 of µ∗
1.

Thus, we obtain on Λ∗
1 that

Ξ(f)(x) = xf ′(x)− 2

∫

dµ∗
1(y)(x− y)−1

(

f ′(x)−
f(y)− f(x)

y − x

)

= 2PV

∫

dµ∗
1(y)

f(x)− f(y)

(y − x)2

= −f(x)− 2PV

∫

f(y)

(x− y)2
dµ∗

1(y).

In the last line, we used PV
∫

(y − x)−2dµ∗
1(x) = −2−1 which can be obtained by

formal derivation from the definition of the Hilbert transform of the semi-circular
law. It can look at first false because it states that the integral of a non negative
quantity is negative, but one should be careful that we have to take the principal
value and actually justify these equalities by going back to the definition of principal
values.

From the second formula it is clear that Ξ is a symmetric non negative operator
in L2(µ∗

1) with

µ∗
1 (fΞg) =

∫

dµ∗
1(x)dµ

∗
1(y)

(

f(x)− f(y)

x− y

)(

g(x) − g(y)

x− y

)

giving the identification of Ξ of the theorem since Df can be seen as the symmetric
function of two variables

Df(x, y) =
f(x)− f(y)

x− y
.
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Further, from the last formula, we obtain that

(I + Ξ)(f)(x) = −2PV

∫

f(y)

(x− y)2
dµ∗

1(y)

so that if we note K the symmetric operator in L2(µ∗
1) given by

K(f) =

∫

log |x− y|−1f(y)dµ∗
1(y),

we find for x ∈ Λ∗
1,

(I + Ξ)(f)(x) = −2∂xK ((p∗1f)
′/p∗1) (x)

with µ∗
1(dx) = p∗1(x)dx. Hence, (I + Ξ) is a symmetric operator in L2(µ∗

1) and for
any continuously differentiable functions f, g,

µ∗
1(g(I + Ξ)(f)) = 2µ∗

1

(

(p∗1g)
′

p∗1
K

(

(p∗1f)
′

p∗1

))

.

In particular,

C(P ) = µ∗
1(P

′(I + Ξ)−1P ′) =
1

2
µ∗
1(PK−1P ).

The proof of theorem (6.1) follows two steps ; we first show thatN
(

µ̂(N)
1 (P )− µ∗

1(P )
)

converges in law towards a centered Gaussian variable and then identifies the co-
variance of this Gaussian law.

6.1 A central limit theorem

Since Itô’s calculus is again the basis of our approach, let us first quote that we
can extend L and L to PC(X,D) by saying that DX satisfies the non-commutative
Leibnitz rule on PC(X,D) and that for any A ∈ H

DXX(A) = 1⊗ 1, DX∆ = 0⊗ 0 ∀∆ ∈ D,

If C1([0, 1], PR(X,D)) denotes the space of time continuously differentiable polyno-
mial functions, we can extend naturally lemma (3.5) by

Lemma (6.3). For any F ∈ C1([0, 1], PR(X,D)), the statements of lemma (3.5)
are true.

Let us define, for s ∈ [0, 1], the differential operator Ls on PR(X,D) given by

Ls = (µ∗
s ⊗ 1 + 1⊗ µ∗

s)L. (6.4)

Note that Ls reduces by one the degree of any polynomial function P ∈ PR(X,D)
as a function of (X,D), and of two as a function of X. Hence, for any polynomial
function P ∈ PR(X,D), any t ∈ [0, 1], we can define

Pt(X) = e
∫ 1
t LsdsP (X) ∈ C1([0, 1], PR(X,D)) (6.5)

as the unique solution of the differential equation

∂tPt(X) = −LtPt(X), P1 = P.

We shall prove that
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Lemma (6.6). Under hypotheses (H1) and (H2), for any P ∈ PR(X,D),

N
(

µ̂(N)
1 (P )− µ∗

1(P )
)

converges in law towards a Gaussian variable with covariance

C̃(P ) =

∫ 1

0

∫

µ∗
t [mτ (DXPt)mτ (D∗

XPt)]dp(τ)dt

and mean c(P0(0)).

In the next section we shall show that C̃(P ) coincides with C(P ) defined in

theorem (6.1). Note that, by definition of LM , we already have c(eL
M
(P )(0)) =

c(P0(0)).

Proof of lemma (6.6). Let us first notice that (5.1) implies that

∂tµ
∗
t (Pt) = µ∗

t (∂tPt) + µ∗
t ⊗ µ∗

t (LPt)

= −µ∗
t ⊗ µ∗

t (LPt)

so that lemma (6.3) gives

dN(µ̂(N)
t − µ∗

t )(Pt) = N(µ̂(N)
t − µ∗

t )⊗ (µ̂(N)
t − µ∗

t )(LPt)dt+NdQ(N)
P (t) (6.7)

with (NQ(N)
P (t))t∈[0,1] a real-valued martingale with bracket

< NQ(N)
P >t=

∫ t

0

∫

trN [mτ (DXPs(XN (s)))mτ (D∗
XPs(XN (s)))]dp(τ)ds. (6.8)

To show that the first term in the r.h.s. of (6.7) goes to zero in L∞− as N goes to
infinity, we shall prove by induction that

Lemmata (6.9). For any n ∈ IN , any P1, .., Pn ∈ PC(X,D),

sup
t∈[0,1]

sup
τ1,..,τn∈Σ

sup
N∈IN

E[(N(µ̂(N)
t − µ∗

t )(
n
∏

i=1

∆τiPi))
q ] < ∞. (6.10)

Proof. Let |P | be the degree of a polynomial function P that is, if

P (X) =
M
∑

k=1

βk

(

nk
∏

i=1

∆k
iX

)

∆nk+1
i ,

for some nk ∈ IN , ∆k
i ∈ D\{0},βk ∈ R,

|P | ≡ max
k∈{1,..,M}

nk.

We let PM
C

(X,D) be the polynomial functions with degree less or equal to M . For
P ∈ P 0

C
(X,D), P ∈ D and our induction hypothesis is fulfilled under (H2). Assume
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now that (6.10) has been proved for any any choice of P1, .., Pn ∈ PC(X,D) so that
∑n

i=1 |Pi| = M for some M ∈ IN . Take P1, .., Pn ∈ PC(X,D) so that

P = Pτ =
n
∏

i=1

∆τiPi

has degree M + 1. By lemma (6.3), we find that

N(µ̂(N)
t − µ∗

t )(P ) = N(µ̂(N)
0 − µ∗

0)(P ) +

∫ t

0

(

N(µ̂(N)
s − µ∗

s)
)

⊗ µ̂(N)
s (LP )ds

+

∫ t

0
µ∗
s ⊗

(

N(µ̂(N)
s − µ∗

s)
)

(LP )ds +NQ(N)
P (t)

so that, by Jensen’s inequality, for any n ∈ 2IN ,

E[(N(µ̂(N)
t − µ∗

t )(P ))n] ≤ 4nE[(N(µ̂(N)
0 − µ∗

0)(P ))n]

+4n
∫ t

0
E[((N(µ̂(N)

s − µ∗
s)⊗ µ̂(N)

s (LP ))n]ds (6.11)

+4n
∫ t

0
E[(µ∗

s ⊗ (N(µ̂(N)
s − µ∗

s)(LP ))n]ds+ 4nE[(NQ(N)
P (t))n]

with a martingale (NQ(N)
P (u), 0 ≤ u ≤ t) with bracket

< NQ(N)
P >u=

∫ u

0

∫

trN [mτ (DXP (XN (s)))mτ (D∗
XP (XN (s)))]ds. (6.12)

Notice that since Pi(0) ∈ D for i ∈ {1, .., n}, (H2) implies that

sup
τ1,..τn∈Ω

sup
N∈IN

E[(N(µ̂(N)
0 − µ∗

0)(
n
∏

i=1

∆τiPi(0)))
n] < ∞ (6.13)

for any P1, .., Pn ∈ PR(X,D).

Moreover, observe that

(1) For any P in PM
C

(X,D), M ∈ IN , LP ∈ PM−1
C

(X,D)⊗ PM−1
C

(X,D).

(2) From (2.2) and the uniform bound hypothesis on the operator norm of
(∆τ )τ∈Ω, we find that for any P1, .., Pn ∈ PC(X,D),

sup
τ1,..,τn∈Ω

sup
t∈[0,1]

sup
N∈IN

E[µ̂(N)
t

(

Pτ
)

] < ∞. (6.14)

From these two points and our induction hypothesis (with the uniform property
with respect to the τ ’s in Ω ), we infer that
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sup
τ1,..τn∈Ω

sup
N∈IN

∫ 1

0
E[((N(µ̂(N)

s − µ∗
s)⊗ µ̂(N)

s (LPτ ))n] < ∞

as well as

sup
τ1,..τn∈Ω

sup
N∈IN

∫ 1

0
E[((N(µ̂(N)

s − µ∗
s)⊗ µ∗

s(LPτ ))n] < ∞. (6.15)

(3) The third term in (6.11) can be bounded by Burkholder-Davis-Gundy in-
equality which asserts that there exists for any n ∈ IN a finite constant cn so
that

E[ sup
0≤s≤t

(NQ(N)
P (s))n] ≤ cnE[< NQ(N)

Pτ
>

n
2
t ]

≤ cn

∫ t

0

∫

E
[

trN [mτ (DXPτ (XN (s)))mτ (D∗
XPτ (XN (s)))]

n
2
]

dp(τ)ds

where we have used in the last line (6.12). In view of remark (2) above, we deduce
that

sup
s∈[0,1]

sup
τ1,..τn∈Ω

sup
N∈IN

E
[

µ̂(N)
s [mτ (DXPτ )mτ (D∗

XPτ )]
n
2

]

< ∞

and hence
sup

τ1,..τn∈Ω
sup
N∈IN

E[ sup
0≤s≤t

(NQ(N)
Pτ

(s))n] < ∞. (6.16).

Plugging (6.13) (6.15), (6.16) into (6.11) bound E[(N(µ̂(N)
t − µ∗

t )(∆τPτ ))n] uni-
formly in t ∈ [0, 1], τ1, ..τn ∈ Ω and N ∈ IN and thus completes the proof of the
lemmata.

!

We can now finish the proof of lemma (6.6) Following (6.7), for any P ∈ P (X,D),

N(µ̂(N)
1 − µ∗

1)(P ) = N(µ̂(N)
0 − µ∗

0)(P0) +RN (P ) +NQ(N)
P (1) (6.17)

where RN (P ) is some reminder term. Indeed, observe that Ps is for any s ∈ [0, 1]
a polynomial function with degree less or equal to M + 1 and with coefficients
uniformly bounded in time according to lemma (5.3). The same observation holds
for LPs which coefficients on the monomial basis of PM

C
(X,D)⊗PM

C
(X,D) can be

uniformly bounded in time. As a consequence, lemmata (6.9) implies that for any
n ∈ 2IN ,

sup
N∈IN

NnE[|RN (P )|n] < ∞. (6.18)

In particular, RN (P ) converges almost surely towards zero by Borel-Cantelli’s
lemma. Recall now that P0(0) belongs to D so that,

lim
N→∞

N(µ̂(N)
0 − µ∗

0)(P0) = c(P0(0)). (6.19)
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Turning to the study of the last term in the r.h.s. of (6.17), recall that we have

defined (NQ(N)
P (t), t ∈ [0, 1]), as a martingal with bracket defined in (6.8). Again,

by the above remarks on the structure of Ps and lemma (5.19), we see that <

NQ(N)
P >t, for t ∈ [0, 1], converges in L∞− (and in particular in probability )

towards

C̃t(P ) =

∫ t

0

∫

µ∗
s[mτ (DXPs)mτ (D∗

XPs)]dpτds.

Note that C̃t(P ) is bounded as a consequence of lemma (5.3). This classicaly

implies that NQ(N)
P (1) converges in law towards a centered Gaussian process with

covariance C̃(P ). Indeed, taking λ ∈ R, we know that, (NQ(N)
P (t), t ∈ [0, 1])

being a local martingale, (exp{iλNQ(N)
P (t)}, t ∈ [0, 1]) is a semi-martingale and for

t ∈ [0, 1],

E[exp{iλNQ(N)
P (t)}]e

λ2

2 C̃t(P ) = 1

−
λ2

2

∫ t

0

∫

Σ
E
[

exp{iλNQ(N)
P (s)}((µ̂(N)

s − µ∗
s)[mτ (DXPs)mτ (D∗

XPs))]
]

dpτds.

By lemma (5.19), the last term in the above right hand side goes to zero as N goes
to infinity. Thus, for any λ ∈ R,

lim
N→∞

E[exp{iλNQ(N)
P (1)}] = e−

λ2

2 C̃1(P ),

that is NQ(N)
P (1) converges in law towards a centered Gaussian variable with co-

variance C̃(P ) = C̃1(P ). This result with (6.19) and (6.18) gives lemma (6.6). !

6.2 Study of the covariance

In this last section, we give a more explicit formula for the covariances driving
the previous central limit theorems. The first step of which is to study the operator
Ξ introduced in theorem (6.1).

6.2.1 Study of some operators in L2(µ∗
1)

Define the map on ∪MN ⊗MN given by (A⊗B)t = B⊗A and set (DQ)t(X) =
(DQ(X))t for all X ∈ H. Then

Lemma (6.20).

(1) For any P,Q ∈ PC(X,D),

µ∗
1 (QD ◦ (µ∗

1 ⊗ I + I ⊗ µ∗
1) ◦ L(P )) = µ∗

1 (Qµ∗
1 ⊗ I ◦ L ◦D(P )) . (6.21)

(2) For any P,Q ∈ PC(X,D), by

µ∗
1

(

P

(

µ∗
1 ⊗ I ◦ L−

1

2
X.∂X

)

Q

)

= −
1

2

∫

µ∗
1 ◦mτ ⊗µ∗

1 ◦mτ

(

DQ× (DP )t
)

dp(τ).



37

(3) Ξ = X.∂X−2µ∗
1⊗I◦L is a symmetric operator from PR(X,D) into PR(X,D).

I + Ξ : PR(X,D) → PR(X,D) is invertible. Its inverse (I + Ξ)−1 : PR(X,D) →
PR(X,D) is symmetric non negative for the scalar product < ,̇>̇L2(µ∗

1)
, e.g. for any

polynomial functions P,Q ∈ PR(X,D),

< P, (I+Ξ)−1Q >L2(µ∗
1)
=< Q, (I+Ξ)−1P >L2(µ∗

1)
, and < P, (I+Ξ)−1P >L2(µ∗

1)
≥ 0.

Proof. Unfortunately, we could not prove this lemma directly from the equation
(5.1) defining the minimum µ∗

1. Instead, we shall go back to properties of the
Hermitian Brownian motion and deduce it by taking the large N limit.

To prove the first point, let us take P ∈ PC(X,D), and consider the derivatives
of trN ⊗ trN ◦ L(P (XN )) with respect to the entries of the self adjoint matrix
XN = (xij)1≤i,j≤N with

xij = (1/
√
2N)ψN (i, j)

1
2 (hij +

√
−1h̃ij)

when i < j.

We first note that for any i, j ∈ {1, .., N}, with (∆ij)kl = δkl=ij,

∂xij tr(P (XN )) = tr(DP (XN )♯∆ij) = (DP (XN ))ji. (6.22)

Now, recall that from (3.9) and (3.11),

trN ⊗ trNL(P )(XN ) =
1

2N

N
∑

i,j=1

ψN (i, j)∂hji∂hij trN (P )(XN ) (6.23)

implying with (6.22)¸ that since ∂xij commutes with ∂hkl , for any i, j ∈ {1, .., N},
any P ∈ PC(X,D),

∂xij trN ⊗ trNL(P ) =
1

2N

N
∑

k,l=1

ψN (k, l)∂hkl∂hlk(DP )(XN )ji. (6.24)

Since LP ∈ PC(X,D)⊗ PC(X,D), (6.22) gives

∂xij trN ⊗ trNL(P ) = ((D ⊗ trN + trN ⊗D)(L(P )))ji . (6.25)

Further, by (3.11),

1

2N

N
∑

k,l=1

ψN (k, l)∂hkl∂hlk(DP )(XN )ji = (trN ⊗ I ◦ L(DP )(XN ))ji

proving with (6.24) and (6.25) that

(D ⊗ trN + trN ⊗D)(L(P ))(XN ) = trN ⊗ I ◦ L(DP )(XN ).
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As a consequence, for any Q ∈ PC(X,D), we obtain

trN [Q(XN (1))D ◦ (I ⊗ trN + trN ⊗ I)(L(P ))(XN (1))]

= trN [Q(XN (1))trN ⊗ I ◦ L(DP )(XN (1))] .

Hence, using the law of large numbers theorem (5.19), we obtain at the large N
limit Lemma (6.20).(1).

To prove the second part of the lemma, we recall first that the Ornstein-Uhlenbeck
process

dyt =
1√
2N

dβ(t)−
1

2
ytdt (6.26)

with initial distribution γN , the centered Gaussian law with covariance (2N)−1,
is stationnary. We let XOU

N be the matrix-valued process constructed as XN but

with, instead of independent Brownian motions ( 1√
2N
βi,j ,

1√
2N
β′
k,l)

1≤k<l≤N
1≤i<j≤N and

( 1√
N
βi,i)1≤i≤N , independent copies (yi,j, y′k,l)

1≤k<l≤N
1≤i<j≤N and (

√
2yi,i)1≤i≤N of the

Ornstein-Uhlenbeck process (6.26). Note that for any time t ∈ [0, 1], XOU
N (t) has the

same law that XN (1). Let LN be the infinitesimal generator of (yi,j, y′k,l)
1≤k<l≤N
1≤i≤j≤N ,

LN =
1

4N

∑

i≤j

(

(1 + 1i=j)∂y2
ij
+ 1i≠j∂(y′

ij)
2

)

−
1

2

∑

i≤j

(

yij∂yij + 1i≠jy
′
ij∂y′

ij

)

.

It is well known that LN is a symmetric operator in L2(γ⊗N2

N ) and that, for any

f, g : RN2

→ R,

γ⊗N2

N (f(−LN)(g)) =
1

4N

∑

i≤j

γ⊗N2

N

(

(1 + 1i=j)∂yijf∂yijg + 1i≠j∂y′
ij
f∂y′

ij
g
)

.

(6.27)
Now, one can check as in (3.11) that for any P ∈ PC(X,D),

LNP =

(

trN ⊗ IL−
1

2
X.∂X

)

P.

Hence, (6.27) implies that for any P,Q ∈ PC(X,D),

γ⊗N2

N

(

trN (Q(XN )

(

trN ⊗ IL−
1

2
X.∂X

)

P (XN ))

)

= γ⊗N2

N (trN (Q(XN )LNP (XN )))

= γ⊗N2

N (trN (P (XN )LNQ(XN )))

= γ⊗N2

N

(

trN (P (XN )

(

trN ⊗ IL−
1

2
X.∂X

)

Q(XN ))

)

.

Thus, applying again lemma (5.19) since XN has, under γ⊗N2

N the same law that
XN (1), we find

µ∗
1

(

Q

(

µ∗
1 ⊗ IL−

1

2
X.∂X

)

P

)

= µ∗
1

(

P

(

µ∗
1 ⊗ IL−

1

2
X.∂X

)

Q

)
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that is the symmetry of the operator
(

µ∗
1 ⊗ IL− 1

2X.∂X
)

in L2(µ∗
1). We can also

find another definition of this symmetric operator thanks again to (6.27) which
gives

γ⊗N2

N (trN (Q(XN )LNP (XN ))) =
−1

4N2

N
∑

l,k=1

∑

i≤j

γ⊗N2

N

(

∂yij (Q(XN ))lk∂yij (P (XN ))kl

+ 1i≠j∂y′
ij
(Q(XN ))lk∂y′

ij
(P (XN ))kl

)

Now observe that, if (∆ij)kl = δ(ij)=kl(ψN (i, j))
1
2 ,

∂yij (Q(XN ))lk = (DQ♯(∆ij +∆∗
ij))lk if i < j

∂yii(Q(XN ))lk = (DQ♯∆ii)lk

∂y′
ij
(Q(XN ))lk = (DQ♯(

√
−1∆ij −

√
−1∆∗

ij))lk if i < j

yielding

γ⊗N2

N (trN(Q(XN )LNP (XN )))

= −
1

2N2

N
∑

l,k=1

N
∑

i,j=1

ψN (i, j)γ⊗N2

N ((DQ♯∆ij)lk(DP ♯∆ji)kl)

= −
1

2N2

∫

γ⊗N2

N

(

trN ◦mτ ⊗ trN ◦mτ

(

DQ(XN )×DP t(XN )
))

dp(τ).

Now, we can again use lemma (5.19) to take the limit N → ∞ and conclude that

µ∗
1

(

Q

(

µ∗
1 ⊗ IL−

1

2
X.∂X

)

P

)

= −
1

2

∫

µ∗
1 ◦mτ ⊗ µ∗

1 ◦mτ (DG× (DP )∗) dp(τ)

(6.28)
which achieves the proof of the lemma.

For the last point of the lemma, let us first recall that Ξ(PC(X,D)) ⊂ PC(X,D).
Further, if P ∈ PR(X,D), (Ξ(P )(X))∗ = Ξ(P )(X) because

• X.∂XP = limϵ↓0 ϵ−1(P (1+ϵ)2 − P ) = limϵ↓0 ϵ−1(P (1+ϵ)2 − P )∗ = (X.∂XP )∗.

• Similarly, L(P ) = (L(P ))∗ if (A⊗B)∗ = B∗ ⊗A∗ from which one sees that

(µ∗
1 ⊗ I ◦ L(P )(X))∗ = µ∗

1 ⊗ I ◦ L(P )(X).

Moreover, if we define formally

(I + Ξ)−1 ≡
∑

n≥0

(−Ξ)n,

then (I +Ξ)−1 is well defined on PC(X,D) since for any P ∈ PC(X,D), for n large
enough, ΞnP ≡ 0. Further, it is not hard to check that for any P ∈ PC(X,D),

(I + Ξ)(I + Ξ)−1P = (I + Ξ)−1(I + Ξ)P = P,
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implying that I + Ξ is invertible with inverse (I + Ξ)−1 : PR(X,D) → PR(X,D).
Clearly, the symmetry of Ξ : PR(X,D) → PR(X,D) proved at point (2) implies
that (I + Ξ)−1. Finally, for any polynomial function P ∈ PR(X,D), if we let
Q = (I + Ξ)−1P ∈ PR(X,D),

< P, (I + Ξ)−1P >L2(µ∗
1)
=< (I + Ξ)Q,Q >L2(µ∗

1)
≥ 0

since by (2), < ΞQ,Q >L2(µ∗
1)
≥ 0 for any Q ∈∈ PR(X,D). The proof of the Lemma

is complete.

!

6.2.2 Identification of the covariance

Hereafter, a polynomial function Q ∈ PR(X,D) will be fixed and we shall denote

Qs(X) = e
∫ 1
s LuduQ. Set, for any s ∈ [0, 1], any τ ∈ Σ,

Λ(s, τ) = µ∗
s [mτ (DXQs)mτ (D∗

XQs)].

Note first that by lemma (5.7), for any s ∈ [0, 1], any τ ∈ Σ,

Λ(s, τ) = µ∗
1[mτ ((DXQs)(

√
sX))mτ ((D∗

XQs)(
√
sX))] (6.29)

Further, since DX is a derivation,

(DXP s)(X) =
√
s(DXP )s(X).

Thus, (6.29) reads

Λ(s, τ) =
1

s
µ∗
1[mτ ((DXQs

s))mτ ((D∗
XQs

s))]. (6.30)

Now, by definition of X.∂X ,

∂sQ
s
s(X) = (−Ls +

1

2s
X.∂X)Qs(

√
sX). (6.31)

But, since L is a second order operator, for any s ∈ [0, 1], L(P s) = s(L(P ))s, we
find

(LsP )s = s−1L1(P
s).

Thus, we deduce from (6.31) that

∂sQ
s
s(X) = s−1(−L1 +

1

2
X.∂X)(Qs

s)(X)

so that, for any s > 0,

Qs
s(X) = elog(s)(−L1+

1
2X.∂X)(Q)(X). (6.32)
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Remark that we can compute the commutator of X.∂X and DX since

DX ◦X.∂XP = lim
ϵ→0

ϵ−1DX(P (1+ϵ)2 − P )

= lim
ϵ→0

ϵ−1
(

(1 + ϵ)(DXP )(1+ϵ)
2

−DXP
)

= (X.∂X ◦DX +DX)P

Thus,

DX ◦ (−L1 +
1

2
X.∂X) = (−L̃1 +

1

2
X.∂X +

1

2
I) ◦DX (6.33)

with

L̃1 =
1

2
DX ◦ (µ1 ⊗ 1 + 1⊗ µ1)

∫

dp(τ)mτ ⊗mτDX .

Now, as an operator on PC(X,D), we observed in lemma (6.20).(1) that

Ξ = −2µ∗
1 ⊗ IL+X.∂X = −2L̃1 +X.∂X . (6.34)

Plugging (6.32), (6.33) and (6.34) in (6.30) yields, with the observation that mτ

commutes with Ξ,

Λ(s, τ) =
1

s
µ∗
1[e

1
2 log(s)(I+Ξ)mτ (DXQ)e

1
2 log(s)(I+Ξ)mτ (DXQ)]. (6.35)

Hence, we find that, since I + Ξ is symmetric definite positive,

C̃(Q) =

∫ 1

0

∫

Λ(s, τ)dp(τ)ds

=

∫ 1

0

1

s

∫

µ∗
1[e

1
2 log(s)(I+Ξ)mτ (DXQ)e

1
2 log(s)(I+Ξ)mτ (DXQ)]dp(τ)ds

=

∫ ∞

0

∫

µ∗
1[e

−u(I+Ξ)mτ (DXQ)mτ (DXQ)]dp(τ)du

=

∫

µ∗
1

(

mτ (DXQ)(I + Ξ)−1(mτ (DXQ))
)

dp(τ)

which is by definition C(Q). Here, one can check that the last line agrees with our
definition of (I + Ξ)−1 =

∑

n≥0(−Ξ)n by expending the exponential in Ξ (yielding
only a finite sum since) and integrating the polynomial function in u.
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