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X Preface

These notes include the material from a series of nine lectures given at the
Saint-Flour probability summer school in 2006. The two other lecturers that
year were Maury Bramson and Steffen Lauritzen.

The topic of these lectures was large random matrices, and more precisely
the asymptotics of their macroscopic observables such as the empirical mea-
sure of their eigenvalues. The interest in such questions goes back to Wishart
and Wigner, in the twenties and fifties respectively. Large random matrices
have been since then intensively studied in theoretical physics, in connection
with various fields such as QCD, quantum chaos, string theory or quantum
gravity.

Since the nineties, several key mathematical results have been obtained
and the theory of large random matrices expanded in various directions, in
connection with combinatorics, operator algebra theory, number theory, al-
gebraic geometry, integrable systems etc. I felt that the time was right to
summarize some of them, namely those which connect with the asymptotics
of macroscopic observables, with a particular emphasis on their relation with
combinatorics and operator algebra theory.

I wish to thank Jean Picard for organizing the Saint-Flour school and
helping me through the preparation of these notes, an the other participants of
the school, in particular for their useful comments to improve these notes. I am
very grateful to several collaborators with whom I consulted on various points,
in particular Greg Anderson, Edouard Maurel Segala, Dima Shlyakhtenko and
Ofer Zeitouni.

Lyon, France Alice Guionnet
July 2008
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2 Notation

• Cb(R) (resp. C1
b (RN ,R)) denotes the space of bounded continuous func-

tions on R (resp. k times continuously differentiable functions from RN into
R). If f is a real-valued function on a metric space (X, d),

‖f‖∞ = sup
x∈X

|f(x)|

denotes its supremum norm, whereas we set the Lipschitz norms to be

‖f‖L = sup
x6=y

|f(x) − f(y)|
d(x, y)

+ sup
x

|f(x)|, |f |L = sup
x6=y

|f(x) − f(y)|
d(x, y)

.

For x ∈ RN , and f ∈ C1
b (RN ,R), we let

‖x‖2 =

(

N
∑

i=1

(xi)
2

)

1
2

, ‖∇f‖2 =

(

N
∑

i=1

(∂xif(x))2

)

1
2

.

• P(X) denote the set of probability measures on the metric space (X, d).
µ(f) is a shorthand for

∫

f(x)dµ(x). We shall call the weak topology on P(X)
the topology so that µ → µ(f) is continuous if f is bounded continuous on
(X, d). The moments topology refers to the continuity of µ → µ(xk) for all
k ∈ N. Even though both topologies coincide if X is compact subset of R,
they can be different in general.

• If (X, d) is a metric space, Dudley’s distance dD on P(X) (which is
compatible with the weak topology on P(X)) is given by

dD(µ, ν) := sup
‖f‖L≤1

∣

∣

∣

∣

∫

f(x)dµ(x) −
∫

f(x)dν(x)

∣

∣

∣

∣

(0.1)

•MN (C) (resp.H(1)
N , resp. H(2)

N ) denotes the set ofN×N (resp. symmetric,
resp. Hermitian) matrices with complex (resp. real, resp. complex) coefficients.
MN (C) is equipped with the trace Tr:

Tr(A) =

N
∑

i=1

Aii.

• If A is an N × N Hermitian matrix, we denote by (λk(A))1≤k≤N its
eigenvalues.

• For A an N ×N matrix, we define

‖A‖2 =





N
∑

i,j=1

|Aij |2




1
2

and ‖A‖∞ = lim
n→∞

(Tr((AA∗)n))
1
2n .

The latter norm also coincides with the spectral radius of A which we denote
by λmax(A). 1 or I will denote the identity in MN(C) and when no confusion
is possible, for any constant c, c denotes c1.
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• C〈X1, . . . , Xm〉 denotes the set of polynomials in m non-commutative in-
determinates (X1, . . . , Xm), C〈X1, . . . , Xm〉sa the subset of polynomials such
that P = P ∗ for some involution ∗ defined on C〈X1, . . . , Xm〉.

• Often, bold symbols will indicate vectors, e.g., X = (X1, . . . , Xm) or
matrices e.g., A = (Aij)1≤i,j≤N . The letters (A,B) in general refer to ran-
dom matrices, whereas (X,Y, Z), to generic (eventually non-commutative)
indeterminates.
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6 Introduction

Random matrix theory was introduced in statistics by Wishart [206] in the
thirties, and then in theoretical physics by Wigner [205]. Since then, it has
developed separately in a wide variety of mathematical fields, such as number
theory, probability, operator algebras, convex analysis etc.

Therefore, lecture notes on random matrices can only focus on special
aspects of the theory; for instance, the well-known book by Mehta [153] dis-
plays a detailed analysis of the classical matrix ensembles, and in particular
of their eigenvalues and eigenvectors, the recent book by Bai and Silverstein
[10] emphasizes the results related to sample covariance matrices, whereas
the book by Hiai and Petz [117] concentrates on the applications of random
matrices to free probability and operator algebras. The book in progress [6]
in collaboration with Anderson and Zeitouni will try to take a broader and
more elementary point of view, but still without relations to number theory
or Riemann Hilbert approach for instance. The first of these topics is reviewed
briefly in [126] and the second is described in [73].

The goal of these notes is to present several aspects of the asymptotics of
random matrix “macroscopic” quantities (RMMQ) such as

LN (Xi1 · · ·Xip) :=
1

N
Tr(AN

i1 · · ·AN
ip

)

when (ik ∈ {1, . . . ,m}, 1 ≤ k ≤ p) and (AN
p )1≤p≤m are some N ×N random

matrices whose size N goes to infinity. We will study their convergence, their
fluctuations, their concentration towards their mean and, as much as possible
in view of the states of the art, their large deviations and the asymptotics of
their Laplace transforms. We will in particular stress the relation of the lat-
est to enumeration questions. We shall focus on the case where (AN

p )1≤p≤m

are Wigner matrices, that is Hermitian matrices with independent entries, al-
though several results of these notes can be extended to other classical random
matrices such as Wishart matrices.

When m = 1, LN (Xp
1 ) is the normalized sum of the pth power of the

eigenvalues of X1, that is the pth moment of the spectral measure of X1. In
his seminal article [205], Wigner proved that E[LN (Xp

1 )] converges for any
integer number p provided the entries of

√
NA1 have all their moments finite,

are centered and have constant variance equal to one. We shall investigate
this convergence in Chapter 1. We will show that it holds almost surely and
that the hypothesis on the entries can be weakened. This result extends to
several matrices, as shown by Voiculescu [197], see Section 3.2.

One of the interesting aspects of this convergence is the relation between
the limits of the RMMQ and the enumeration of interesting graphs. Indeed,
a key observation is that the empirical moment LN (X2p

1 ) converges towards
the Catalan number Cp, the number of rooted trees with p edges, or equiv-
alently the number of non-crossing pair partitions of 2p ordered points. As
shown by Voiculescu [197], words in several matrices lead to the enumeration
of colored trees. Considering the central limit theorem for such macroscopic
quantities, we shall see also that their limiting covariances can be expressed
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in terms of numbers of certain planar graphs. It turns out that if the matrices
have complex Gaussian entries, this relation extends far beyond the first two
moments. Harer and Zagier [113] showed that the expansion of E[LN(Xp

1 )] in
terms of the dimension N can be seen as a topological expansion (i.e., as a
generating function with parameter N−2 and coefficients which count graphs
sorted by their genus). We shall see in these notes that also Laplace transforms
of RMMQ’s can be interpreted as generating functions (with parameters the
dimension and the parameters of the Laplace transform) of interesting num-
bers.

This idea goes back to Brézin, Itzykson, Parisi and Zuber [50] (see also ’t
Hooft [187]) who considered matrix integrals given by

ZN(P ) = E[eNTr(P (AN
1 ,...,AN

m))]

with a polynomial function P and independent copies AN
i of an N×N matrix

AN with complex Gaussian entries. Then, they showed that if P =
∑

tiqi with
some (complex) parameters ti and some monomials qi, logZN (P ) expands
formally (as a function of the parameters ti and the dimension N of the
matrices). The weight N−2g

∏

i(ti)
ki/ki! will have a coefficient which counts

the number of graphs with ki vertices depending on the monomial qi, for
i ≥ 0, that can be embedded properly in a surface of genus g. This relation
is based on Feynman diagrams (see a review by A. Zvonkin [211]) and we
shall describe it more precisely in Section 7.4. Matrix integrals were used
widely in physics to solve problems in connection with the enumeration of
maps [50, 42, 125, 209, 77, 76]. Part of these notes (mostly Part III) will show
that, under appropriate assumptions, such formal equalities can be proved to
hold as well asymptotically. In particular, we will see that N−2 logZN (λP )
converges for sufficiently small λ and the limit is a generating function for
graphs embedded into the sphere.

In the second part of these notes, we show how to estimate Laplace trans-
forms of traces of matrices in non-perturbative situation (that is estimate
N−2 logZN(λP ) for large λ’s). In this case, it is no longer clear whether
matrix integrals are related to the enumeration of graphs (except when P
satisfies some convexity property, in which case it was shown in [106] that
the free energy is the analytic extension of the enumeration of planar maps
found for ZN (λP ) and λ small). Thus, different tools have to be introduced
to estimate ZN (P ) in general. First we consider one-matrix integrals and de-
rive the large deviation principle for the spectral measure of Gaussian Wigner
matrices. We then introduce a dynamical point of view to extend the previous
result to shifted Gaussian Wigner matrices. The latter is applied to estimate
some two-matrix integrals (such as the Ising model on random graphs) and
Schur functions. We show in the last part of these notes how dynamics and
large deviations techniques can be used to study the more general problem of
estimating free entropy (see Chapter 18). The question of computing the free
entropy remains open.
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The outline of this book is as follows.
In the first part of these notes, we study the convergence of the RMMQ’s

and more precisely the convergence of the spectral measure of a Wigner ma-
trix. We follow Wigner’s original approach to study this question and estimate
moments. This moments method can be refined to prove a central limit the-
orem (Section 2.1) or study the largest eigenvalue of random matrices, as
proposed initially by Sinäı and Soshnikov (Section 2.2). Finally, we show that
Wigner’s theorem can be generalized to several matrices.

In the second part of these notes, we study concentration inequalities.
These inequalities have provided a very powerful tool to control the probability
of deviations of diverse random variables from their mean or their median (see
some applications in [188]). After introducing some basic notions and results
of concentration of measure theory, we specialize them to random matrices. In
particular, we deduce concentration of the spectral measure or of the largest
eigenvalue of Wigner matrices with nice entries. We also apply Brascamp–Lieb
inequalities to random matrices.

In the third part, we study Gaussian matrix integrals in a perturbative
regime. We give sufficient conditions so that they converge as the size of the
matrices goes to infinity, study the first order correction to this convergence
and relate the limits to the enumeration of graphs. The inequalities developed
in Part II are important tools for this analysis.

In the fourth part of these notes, we concentrate on the eigenvalues of
Gaussian random matrices (mainly the so-called Gaussian unitary or orthog-
onal ensembles). We remind the reader that their joint law is given as the law
of Gaussian random variables interacting via a Coulomb gas potential. This
joint law is key to many detailed analysis of the spectrum of the Gaussian
ensembles, such has the study of the spacing fluctuations in the bulk or at the
edge [153, 191], the interpretation of the limit has a determinantal process
[119, 182, 39] etc. In these notes, we will only focus again on the RMMQ
and deduce large deviation principles for the spectral measure and the largest
eigenvalue.

In the fifth part, we start addressing the question of proving large deviation
principles for the laws of RMMQ’s in a multi-matrix setting. We obtain a large
deviations principle for the law of the Hermitian Brownian motion, from which
we deduce estimates on Schur functions and Harish–Chandra–Itzykson–Zuber
integrals. We apply these results to the related enumeration questions of the
Ising model on random graphs for instance.

In the last part, we discuss the natural generalization of these questions to
a general multi-matrix setting, namely analyzing free entropy. We introduce
a free probability set-up and the notion of freeness. We then obtain bounds
on free entropy.

As a conclusion, the goal of these notes is to present an overview of the
study of macroscopic quantities of random matrices (law of large numbers,
central limit theorems etc.) with a special emphasis on large deviations ques-
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tions. I tried to give proofs as elementary and complete as possible, based on
“standard tools” of probability (concentration, large deviations, etc.) which
we shall, however, recall in some detail to help non-probabilists to understand
proofs. Some proofs are new, some are improved versions of the proofs taken
from articles and others are inspired from a book in progress with G. Ander-
son and O. Zeitouni [6]. In comparison with that book, these notes focus on
matrix models and large deviations questions, whereas [6] attempts to give a
more complete picture of random matrix theory, including local properties of
the spectrum.





Part I

Wigner matrices and moments estimates
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In this part, we follow the strategy introduced by Wigner [205] to study the
spectrum of random matrices: we estimate moments of traces of polynomials
in these random matrices. We prove in this way several key results. First,
we obtain the convergence (in expectation and almost surely) of the spectral
measure (for the moments or the weak topology) of Wigner matrices. We also
study its fluctuations around the limit. We generalize the convergence to a
multi-matrix setting by showing that the trace of words in several matrices
converges in the limit where the dimension goes to infinity. Finally, we gener-
alize the estimation of moments to the case where the exponent blows up with
the dimension N of the matrices, but more slowly than

√
N . This is enough

to bound the distance between the largest eigenvalue and its limit.





1

Wigner’s theorem

We consider in this section an N × N matrix AN =
(

AN
ij

)

1≤i,j≤N
with real

or complex entries such that
(

AN
ij

)

1≤i≤j≤N
are independent and AN is self-

adjoint; AN
ij = ĀN

ji . We assume further that

E[AN
ij ] = 0, lim

N→∞

1

N2

∑

1≤i,j≤N

|NE[|AN
ij |2] − 1| = 0.

We shall show in this chapter that the eigenvalues (λ1, . . . , λN ) of AN satisfy
the almost sure convergence

lim
N→∞

1

N

N
∑

i=1

f(λi) =

∫

f(x)dσ(x)

where f is a bounded continuous function or a polynomial function, when the
entries have finite moments. σ is the semicircle law

σ(dx) =
1

2π

√

4 − x21|x|≤2dx.

We shall first prove this convergence for polynomial functions and rely on
the fact that for all k ∈ N,

∫

xkdσ(x) is null when k is odd and given by the
Catalan number Ck/2 when k is even. We thus start this chapter by discussing
the properties and characterizations of Catalan numbers.

1.1 Catalan numbers, non-crossing partitions and Dick
paths

We will encounter first the Catalan numbers as the number of (oriented)
rooted trees. We shall define more precisely this object in the next paragraph.
Actually, Catalan numbers count many other combinatorial objects. In a first



16 1 Wigner’s theorem

part, we shall see that they also enumerate non-crossing partitions as well as
Dick paths, a fact which we shall use later. As a warm-up to matrix models,
we will also state the bijection with planar maps with one star. Then, we will
study the Catalan numbers, their generating function, and relate them to the
moments of the semicircle law.

1.1.1 Catalan numbers enumerate oriented rooted trees

Let us recall that a graph is given by a set of vertices (or nodes) V =
{i1, . . . , ik} and a set E of edges (ei)i∈I . An edge is a couple e = (ij1 , ij2)
for some j1, j2 ∈ {1, . . . , k}2. An edge e = (ip, i`) is directed if (ip, i`) and
(i`, ip) are distinct when ip 6= i`, which amounts to writing edges as directed
arrows. It is undirected otherwise. A cycle (or loop) is a collection of distinct
undirected edges ei = (vi, vi+1), 1 ≤ i ≤ p such that v1 = vp+1 for some p ≥ 1.
A graph is connected if any two vertices (v1, v2) of the graph are connected
by a path (that is that there exists a collection of edges ei = (ai, bi), 1 ≤ i ≤ n
such that v1 = a1, bi = ai+1, bn = v2).

A tree is a connected graph with no loops (or cycles).
We will say that a tree is oriented if it is drawn (or embedded) into the

plane; it then inherits the orientation of the plane. A tree is rooted if we specify
one oriented edge, called the root. Note that if each edge of an oriented tree
is seen as a double (or fat) edge, the connected path drawn from these double
edges surrounding the tree inherits the orientation of the plane (see Figure
1.1). A root on this oriented tree then specifies a starting point in this path.
This path will be intimately connected with the Dick path that we consider
next.

Fig. 1.1. Embedding rooted trees into the plane

Let us give the following well-known characterization of trees among con-
nected graphs.

Lemma 1.1. Let G = (V,E) be a connected graph with E a set of undirected
edges, and denote by |A| the number of distinct elements of a finite discrete
set A. Then,

|V | ≤ |E| + 1. (1.1)

Moreover, |V | = |E| + 1 iff G is a tree.
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Proof. (1.1) is straightforward when |V | = 1 and can be proven by induction
as follows. Assume |V | = n and consider one vertex v of V . This vertex is
contained in l ≥ 1 edges of E that we denote (e1, . . . , el). The graph G then
decomposes into (v, e1, . . . , el) and r ≤ l connected graphs (G1, . . . , Gr). We
denote Gj = (Vj , Ej) for j ∈ {1, . . . , r}. We have

|V | − 1 =

r
∑

j=1

|Vj |, |E| − l =

r
∑

j=1

|Ej |.

Applying the induction hypothesis to the connected graphs (Gj)1≤j≤r gives

|V | − 1 ≤
r
∑

i=1

(|Ej | + 1) = |E| + r − l ≤ |E|, (1.2)

which proves (1.1). In the case where |V | = |E| + 1, we claim that G is a
tree, namely does not have any loop. In fact, for the equality to hold, we
need to have equalities when performing the previous decomposition of the
graph, a decomposition which can be reproduced until all vertices have been
considered. If the graph contains a loop, the first time that the decomposition
considers a vertex v of this loop, v must be the end point of at least two dif-
ferent edges, with end points belonging to the same connected graph (because
they belong to the loop). Hence, we must have r < l so that a strict inequality
occurs in the right-hand side of (1.2). ut

Definition 1.2. We denote by Ck the number of rooted oriented trees with k
edges.

Equivalently, we shall see in the following two paragraphs that Ck is the num-
ber of Dick paths of length 2k, or the number of non-crossing pair partitions
of 2k elements, or the number of planar maps with one star of type x2k.

Exercise 1.3. Show that C2 = 2 and C3 = 5 by drawing the corresponding
graphs.

1.1.2 Bijection with Dick paths

Definition 1.4. A Dick path of length 2n is a path starting and ending at the
origin, with increments +1 or −1, and that stays above the non-negative real
axis.

We shall prove:

Property 1.5. There exists a bijection between the set of rooted oriented trees
and the set of Dick paths.
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Proof. To construct a Dick path from a rooted oriented tree, let us define a
walk on the tree (or a closed path around the tree) as follows. We regard the
oriented tree as a fat tree, which amounts to replacing each edge by a double
edge (the double edge is made of two parallel edges surrounding the original
edge, see Figure 1.1) while keeping the same set of vertices. The union of these
double edges defines a path that surrounds the tree. The walk on the tree is
defined by putting the orientation of the plane on this curve and starting from
the root as the first step of the Dick path (see Figure 1.2). To define the Dick
path, one follows the walk and counts a unit of time each time one meets a
vertex; then adds +1 to the Dick path when one meets an (non-oriented) edge
that has not yet been visited and −1 otherwise. Since to add a −1, one must
have added a +1 corresponding to the first visit of the edge, the Dick path
is non-negative and since at the end all edges are visited exactly twice, the
path constructed will come back at 0 at time 2n. This defines a bijection (see
Figure 1.2) since, given a Dick path, we can recover the rooted tree by first
gluing the couples of steps where one step up is followed by one step down
and representing each couple of glued steps by one edge;

we then obtain a path decorated with edges. Continuing this procedure
until all steps have been glued two by two provides a rooted tree.

The walk on the tree

Fig. 1.2. Bijection between trees and Dick paths

1.1.3 Bijection with non-crossing pair partitions

Let us recall the following definition:

Definition 1.6. • A partition of the set S := {1, . . . , n} is a decomposition

π = {V1, . . . , Vr}

of S into disjoint and non-empty sets Vi.
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• The set of all partitions of S is denoted by P(S), and for short by P(n) if
S := {1, . . . , n}.

• The Vi, 1 ≤ i ≤ r are called the blocks of the partition and we say that
p ∼π q if p, q belong to the same block of the partition π.

• A partition π of {1, . . . , n} is said to be crossing if there exist 1 ≤ p1 <
q1 < p2 < q2 ≤ n with

p1 ∼π p2 6∼π q1 ∼π q2.

It is non-crossing otherwise.
• A partition is a pair partition if all blocks have cardinality two.

The bijection between oriented rooted trees with n edges and non-crossing
pair-partitions of 2n elements goes as follows. On each edge of the tree we
draw an arc going from one side of the edge to the other side and that does
not cross the tree. We start from the root and draw one arc in such a way
that the part of the tree visited by the walk before arriving for the second
time at the first edge is contained in the ball with boundary given by the arc.
We then continue this procedure, drawing the arcs in such a way that they do
not cross, till no edge is left. Finally, we think of the tree as being drawn by
the folding of a cord with both ends at the root; in other words, we replace
the tree by the fat tree designed from the trajectory of the walk as shown in
Figure 1.2. Unfolding the cord while keeping the arcs gives a pair-partition.
A less colorful way to say the same thing is to label each side of the edges
starting from the root and following the orientation and to write down the
pair-partition with pairings given by the labels of the two sides of the edges.
For instance, the drawing below represents the pair-partition of {1, . . . , 24}
given by (1, 24), (2, 13), (3, 4), (5, 6), (7, 12), (8, 9), (10, 11), (14, 23), (15, 16),
(17, 22), (18, 19), (20, 21).

1

23

4

5 6 7
8
9

10
11

12

13
14
15

1617
1819 20

2122
23

24

Fig. 1.3. Drawing the partitions on the tree and unfolding the tree



20 1 Wigner’s theorem

We claim that the resulting partition is non-crossing. Indeed, if we take
two edges of a tree, say e1 = (a1, b1) and e2 = (a2, b2), let T1 be the subtree
visited, when one follows the orientation on the tree, between the time it visits
the two sides of the edge e1. Then, either e2 ∈ T1, and then a1 < a2 < b2 < b1,
or e2 6∈ T1, corresponding either to a2 < b2 < a1 < b1 or a1 < b1 < a2 < b2.
We have thus shown:

Property 1.7. To each oriented rooted tree with n edges we can associate
bijectively a non-crossing pair partition of 2n elements.

Remark 1. Observe that in the bijection, the elements of the partition are the
edges of the tree seen as double (or fat) edges, as for the definition of the walk
on the tree (see Figure 1.2).

Let us finally remark that there is an alternative way to draw non-crossing
partitions that we shall use later. Instead of drawing the points of the par-
tition on the real line, we can draw them on the circle, provided we mark,
say, the place where we put the first element and provide the circle with an
orientation corresponding to the orientation on the real line. With this mark
and orientation, we have again a bijection. The drawing of the partition then
becomes a series of arcs which can be drawn either outside of the annulus or
inside (see Figure 1.4). As a matter of fact, the circle is irrelevant here, the
only thing that matters are the points, the marked point and the orientation.
So, we can also see one such point as the end point of a half-edge, all the
half-edges intersecting in one vertex in the center of the previous circle. Thus,
we can draw our set of the k points on the real line as a vertex with k half-
edges, one marked half-edge and an orientation. We shall later call the set of
these edges, marked half-edge and orientation a star. In this picture, the pair
partition corresponds to the gluing of these half-edges two by two and the fact
that the partition is non-crossing exactly means that the edges (obtained by
the gluing of two half-edges) do not cross.

Fig. 1.4. Non-crossing partitions and stars

The last drawing in Figure 1.4 is a planar map; that is, a connected graph
that is embedded into the sphere.
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Definition 1.8. A star of type xk is a vertex with k half-edges, one marked
half-edge and an orientation. A map is a connected graph that is embedded
into a surface in such a way that the edges do not intersect and if we cut the
surface along the edges, we get a disjoint union of sets that are homeomorphic
to an open disk (these sets are called the faces of the map). A map with stars
xq1 , . . . , xqp is a graph where the half-edges of the stars xq1 , . . . , xqp have been
glued pair-wise, the orientation of each pair of edge agreeing, hence providing
to the full graph one orientation.

The genus g of the map is the genus of such a surface; it satisfies

2 − 2g = ]vertices + ]faces − ]edges.

A planar map is a map with genus zero.

For more details on maps, we refer to the review [211]. Note that once a graph
is embedded into a surface, the natural orientation of the surface induces an
orientation around each vertex of the graph (more precisely a cyclic order on
the end points of the half-edges of its vertices). This fact has its counterpart
since (cf. [211, Proposition 4.7]) an orientation around each vertex of a graph
uniquely determines its embedding into a surface. This shows that, modulo the
notion of marked points, the notion of a star is intimately related to the idea
of embedding the corresponding graph into a surface. Prescribing a marked
half-edge will be useful later to describe how we will count these graphs (the
orientation and the marked point of the stars being equivalent to a labeling
of its half-edges).

To find out the genus of a map with only one vertex of degree k, one can
also recall that the end points of the half-edges of the star represent the middle
of the edges of the fat tree. Drawing these edges and gluing them pairwise
according to the map allows one to visualize the surface on which one can
embed the map (in the figure below, the lines on the surface are now the
boundary of the polygon).

Fig. 1.5. Partitions and maps
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1.1.4 Induction relation

We next show that the Catalan numbers satisfy the following induction rela-
tion.

Property 1.9. C0 = 1 and for all k ≥ 1

Ck =

k−1
∑

l=0

Ck−l−1Cl. (1.3)

Proof. By convention, C0 will be taken to be equal to one and we consider an
oriented tree T rooted at r = (i1, i2) with k ≥ 1 edges. Starting from the root
r and following the orientation, we let t1 be the first time that we return to i1
following the walk on T . The subgraph T1 of the tree we have investigated is a
tree, with only the edge r = (i1, i2) attached to i1. We let r1 be the first edge
(according to the orientation of the plane) attached to i2. Removing the edge
r from T1, we obtain an oriented tree T ′

1 rooted at r1. We denote by l1 ≤ k−1
the number of its edges. T2 = T\T1 is an oriented rooted tree (at the first
edge attached to i1) with k− 1− l1 edges. Therefore, any oriented rooted tree
with k edges can be decomposed into an edge and two oriented rooted trees
with respectively l1 and k − l1 − 1 vertices for some l1 ∈ {0, . . . , k − 1}. This
proves (using C0 = 1) that (1.3) holds with l = l1. ut

Property (1.9) defines uniquely the Catalan numbers by induction. We can
also give the more explicit formula:

Property 1.10. For all k ≥ 0, Ck ≤ 22k and

Ck =

(

2k
k

)

k + 1
.

Proof. Note that since Ck is also the number of Dick paths with length 2k, it
is smaller than the number of walks (that is, the number of connected paths
with steps equal to +1 or −1) starting at the origin with length 2k, that is,
22k. In particular, if we define

S(z) :=

∞
∑

k=0

Ckz
k,

S(z) is absolutely convergent in |z| < 4−1. We can therefore multiply both
sides of equality (1.3) by zk and sum the resulting equalities for k ∈ N\{0}.
We arrive at

S(z) − 1 = zS(z)2.

As a consequence,

S(z) =
1 ±

√
1 − 4z

2z
.
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Since S(0) = 1, we conclude that

S(z) =
1 −

√
1 − 4z

2z
. (1.4)

We can now expand
√

1 − 4z in a Taylor series around the origin to obtain

√
1− 4z = 1 − 2z −

n
∑

k=1

(2−1)k+1(2k − 1)(2k − 3) · · · (1)

(k + 1)!
(4z)k+1 + o(zn+1)

yielding

S(z) = 1 + 2
n
∑

k=1

(2−1)k+1(2k − 1)(2k − 3) · · · (1)

(k + 1)!
(4z)k + o(zn).

Therefore, by identifying each term of the series we find

Ck = 2
4k(2−1)k+1(2k − 1)(2k − 3) · · · (1)

(k + 1)!
=

2k!

(k + 1)!k!
=

(

2k
k

)

k + 1
.

ut

1.1.5 The semicircle law and Catalan numbers

The standard semicircle law is given by

σ(dx) =
1

2π

√

4 − x21|x|≤2dx.

Property 1.11. Let mk =
∫

xkdσ(x). Then for all k ≥ 0,

m2k = Ck.

Proof. By the change of variables x = 2 sin(θ)

m2k =

∫ 2

−2

x2kσ(x)dx =
2 · 22k

π

∫ π/2

−π/2

sin2k(θ) cos2(θ)dθ

=
2 · 22k

π

∫ π/2

−π/2

sin2k(θ)dθ − (2k + 1)m2k .

Hence,

(2k + 2)m2k =
2 · 22k

π

∫ π/2

−π/2

sin2k(θ)dθ = 4(2k − 1)m2k−2 ,

from which, together with m0 = 1, one concludes that

m2k =
4(2k − 1)

(2k + 2)
m2k−2 , (1.5)

leading to the claimed assertion that m2k = Ck by Property 1.10. ut
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Corollary 1.12. For z ∈ C\R, let

Gσ(z) :=

∫

1

z − x
dσ(x)

be the Stieltjes transform of the semicircle law. Then, for z ∈ C\[−2, 2]

Gσ(z) =
1

2

(

z −
√

z2 − 4
)

.

Proof. When |z| > 2, we can write

Gσ(z) =
1

z

∫

1

1 − z−1x
dσ(x) =

1

z

∑

k≥0

z−k

∫

xkdσ(x)

=
1

z

∑

k≥0

z−2kCk =
1

z
S(z−2)

=
1

z

(

1 −
√

1 − 4z−2

2z−2

)

=
1

2

(

z −
√

z2 − 4
)

where we finally used (1.4). This equality extends to the whole domain of
analyticity of Gσ , i.e., C\[−2, 2]. ut

1.2 Wigner’s theorem

We consider an N × N matrix AN with real or complex entries such that
(

AN
ij

)

1≤i≤j≤N
are independent and AN is self-adjoint; AN

ij = ĀN
ji . We assume

that

E[AN
ij ] = 0, 1 ≤ i, j ≤ N, lim

N→∞

1

N2

∑

1≤i,j≤N

|NE[|AN
ij |2] − 1| = 0. (1.6)

In this section, we use the same notation for complex and for real entries
since both cases will be treated at once and yield the same result. The aim of
this section is to prove the convergence of the quantities N−1Tr

(

(AN )k
)

as

N goes to infinity and k is any positive integer number. Since Tr
(

(AN )k
)

=
∑N

i=1 λ
k
i if (λ1, . . . , lN ) are the eigenvalues of AN , this prove the convergence

in moments of the spectral measure of AN .

Theorem 1.13 (Wigner’s theorem). [205] Assume that (1.6) holds and
for all k ∈ N,

Bk := sup
N∈N

sup
ij∈{1,...,N}2

E[|
√
NAN

ij |k] <∞. (1.7)

Then,

lim
N→∞

1

N
Tr
(

(AN )k
)

=

{

0 if k is odd,
C k

2
otherwise,

where the convergence holds in expectation and almost surely. (Ck)k≥0 are the
Catalan numbers.
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Proof. We start the proof by showing the convergence in expectation. The
strategy is simply to expand the expectation of the trace of the matrix in terms
of the expectation of its entries. We then use some (easy) combinatorics on
trees to find out the main contributing term in this expansion. The almost sure
convergence is obtained by estimating the variance of the considered random
variables.

1. Expanding the expectation.
Setting BN =

√
NAN = (Bij)1≤i,j≤N , we have

E

[

1

N
Tr
(

(AN )k
)

]

=

N
∑

i1,...,ik=1

N− k
2−1E[Bi1i2Bi2i3 · · ·Biki1 ] (1.8)

where (Bij)1≤i,j≤N denote the entries of BN (which may eventually de-
pend on N). We denote i = (i1, . . . , ik) and set

P (i) := E[Bi1i2Bi2i3 · · ·Biki1 ].

By (1.7) and Hölder’s inequality, P (i) is bounded uniformly by Bk. Since
the random variables (Bij)1≤i≤j≤N are independent and centered, P (i)
vanishes unless for any edge (ip, ip+1), p ∈ {1, . . . , k}, there exists l 6= p
such that (ip, ip+1) = (il, il+1) or (il+1, il). Here, we used the convention
ik+1 := i1. We next show that the set of indices that contributes to the
first order in the right-hand side of (1.8) is described by trees.

2. Connected graphs and trees.
V (i) = {i1, . . . , ik} will be called the vertices. An edge is a pair (i, j) with
i, j ∈ {1, . . . , N}2. At this point, edges are directed in the sense that we
distinguish (i, j) from (j, i) when j 6= i. We denote by E(i) the collection
of the k edges (ep)

k
p=1 = (ip, ip+1)

k
p=1 with ik+1 = i1.

We consider the graph G(i) = (V (i), E(i)). G(i) is connected since there
exists an edge between any two vertices i` and i`+1, ` ∈ {1, . . . , k − 1}.
Note that G(i) may contain loops (e.g., cycles, for instance edges of type
(i, i)) and multiple undirected edges.

The skeleton G̃(i) of G(i) is the graph G̃(i) =
(

Ṽ (i), Ẽ(i)
)

where Ṽ (i) is

the set of different vertices of V (i) (without multiplicities) and Ẽ(i) is the
set of undirected edges of E(i), also taken without multiplicities.

3. Convergence in expectation.
Since we noticed that P (i) equals zero unless each edge in E(i) is repeated
at least twice, we have that

|Ẽ(i)| ≤ k

2
⇒ |Ẽ(i)| ≤

[

k

2

]

,

and so by (1.1) applied to the skeleton G̃(i) we find
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|Ṽ (i)| ≤
[

k

2

]

+ 1

where [x] is the integer part of x. Thus, since the indices are chosen in

{1, . . . , N}, there are at most N [ k
2 ]+1 indices that contribute to the sum

(1.8) and so we have
∣

∣

∣

∣

E

[

1

N
Tr
(

(AN )k
)

]∣

∣

∣

∣

≤ BkN
[ k
2 ]−k

2 .

where we used (1.7). In particular, if k is odd,

lim
N→∞

E

[

1

N
Tr
(

(AN )k
)

]

= 0.

If k is even, the only indices that will contribute to the first order asymp-
totics in the sum are those such that

|Ṽ (i)| =
k

2
+ 1,

which, by Lemma 1.1, implies that:
a) G̃(i) is a tree.
b) |Ẽ(i)| = 2−1|E(i)| = k

2 and so each edge in E(i) appears exactly twice.

Thus,G(i) appears as a fat tree where each edge of G̃(i) is repeated exactly
twice.
G(i) is rooted (a root is given by the directed edge (i1, i2)). These edges
are directed by the natural order on the indices. Because G(i) is a tree, we
see that each pair of directed edges corresponding to the same undirected
edge in Ẽ(i) is of the form {(ip, ip+1), (ip+1, ip)}. Moreover, the order on
the indices induces a cyclic order on the fat tree that uniquely prescribes
the way this fat tree can be embedded into the plane, the orientation
of the plane agreeing with the orientation on the fat tree (see Figure
1.1). Therefore, for these indices, P (i) =

∏

e∈Ẽ(i)E[|
√
NAN

e |2]. We write

G(i) ' G(j) if G(i) and G(j) corresponds to the same rooted tree (but
with eventually different values of the indices). By (1.6), for any fixed
rooted tree G,

1

N
k
2 +1

∑

i:G(i)'G

|
∏

e∈Ẽ(i)

E[|
√
NAN

e |2] − 1| ≤ kB
k
2−1
2

N2

N
∑

i,j=1

|E[|Bij |2] − 1|

goes to zero as N goes to infinity. Hence, we deduce that

lim
N→∞

E

[

1

N
Tr
(

(AN )k
)

]

= ]{rooted oriented trees with k/2 edges}.
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4. Almost sure convergence. To prove the almost sure convergence, we esti-
mate the variance and then use the Borel–Cantelli lemma. The variance
is given by

Var((AN )k) := E

[

1

N2

(

Tr
(

(AN )k
))2
]

− E

[

1

N
Tr
(

(AN )k
)

]2

=
1

N2+k

N
∑

i1, . . . , ik = 1
i′1, . . . , i

′
k = 1

[P (i, i′) − P (i)P (i′)]

with
P (i, i′) := E[Bi1i2Bi2i3 · · ·Biki1Bi′1i′2

· · ·Bi′
k
i′1

].

We denote byG(i, i′) the graph with vertices V (i, i′) = {i1, . . . , ik, i′1, . . . , i′k}
and edges E(i, i′) = {(ip, ip+1)1≤p≤k , (i

′
p, i

′
p+1)1≤p≤k}. For the indices

(i, i′) to contribute to the leading order of the sum, G(i, i′) must be con-
nected. Indeed, if E(i) ∩ E(i′) = ∅, P (i, i′) = P (i)P (i′). Moreover, as
before, each edge must appear at least twice to give a non-zero contri-
bution so that |Ẽ(i, i′)| ≤ k. Therefore, we are in the same situation as
before, and if G̃(i, i′) = (Ṽ (i, i′), Ẽ(i, i′)) denotes the skeleton of G(i, i′),
we have the relation

|Ṽ (i, i′)| ≤ |Ẽ(i, i′)| + 1 ≤ k + 1. (1.9)

This already shows that the variance is at most of order N−1 (since
P (i, i′)−P (i)P (i′) is bounded by 2B2k uniformly), but we need a slightly
better bound to prove the almost sure convergence. To improve our bound
let us show that the case where |Ṽ (i, i′)| = |Ẽ(i, i′)| + 1 = k + 1 cannot
occur. In this case, we have seen that G̃(i, i′) must be a tree since then
equality holds in (1.9). Also, |Ẽ(i, i′)| = k implies that each edge appears
with multiplicity exactly equals to 2. For any contributing set of indices
i, i′, G̃(i, i′) ∩ G(i) and G̃(i, i′) ∩ G(i′) must share at least one edge (i.e.,
one edge must appear with multiplicity one in each of this subgraph) since
otherwise P (i, i′) = P (i)P (i′). This is a contradiction. Indeed, if we equip
G̃(i, i′) with the orientation of the indices from i and the root (i1, i2), we
may define the walk on G̃(i, i′)∩G(i) as in Figure 1.2 (it is simply the path
i1 → i2 · · · → ik → i1). Since this walk comes back to i1, either it visits
each edge twice, which is impossible if G̃(i, i′) ∩ G(i) and G̃(i, i′) ∩ G(i′)
share one edge (and all edges have multiplicity two), or it has a loop,
which is also impossible since G̃(i, i′) is a tree. Therefore, we conclude
that for all contributing indices,

|Ṽ (i, i′)| ≤ k

which implies
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Var((AN )k) ≤ 2BkN
−2.

Applying Chebychev’s inequality gives for any δ > 0

P

(∣

∣

∣

∣

1

N
Tr
(

(AN )k
)

− E

[

1

N
Tr
(

(AN )k
)

]∣

∣

∣

∣

> δ

)

≤ 2Bk

δ2N2
,

and so the Borel–Cantelli lemma implies

lim
N→∞

∣

∣

∣

∣

1

N
Tr
(

(AN )k
)

− E

[

1

N
Tr
(

(AN )k
)

]∣

∣

∣

∣

= 0 a.s.

The proof of the theorem is complete.

ut
Exercise 1.14. Take for L ∈ N, AN,L the N×N self-adjoint matrix such that
AN,L

ij = (2L)−
1
2 1|i−j|≤LAij with (Aij , 1 ≤ i ≤ j ≤ N) independent centered

random variables having all moments finite and E[A2
ij ] = 1. The purpose of

this exercise is to show that for all k ∈ N,

lim
L→∞

lim
N→∞

E

[

1

N
Tr((AN,L)k)

]

= Ck/2

with Cx null if x is not integer. Hint: Show that for k ≥ 2

E

[

1

N
Tr((AN,L)k)

]

= (2L)−k/2
∑

|i2−L|≤L,

|ip+1−ip|≤L,p≥2

E[ALi2 · · ·AikL] + o(1).

Then prove that the contributing indices to the above sum correspond to the
case where G(L, i2, ·, ik) is a tree with k/2 vertices and show that being given

a tree there are approximately (2L)
k
2 possible choices of indices i2, . . . , ik.

1.3 Weak convergence of the spectral measure

Let (λi)1≤i≤N be the N (real) eigenvalues of AN and define

LAN :=
1

N

N
∑

i=1

δλi

to be the spectral measure of AN . LAN belongs to the set P(R) of probability
measures on R. We claim the following:

Theorem 1.15. Assume that (1.7) holds for all k ∈ N. Then, for any bounded
continuous function f ,

lim
N→∞

∫

f(x)dLAN (x) =

∫

f(x)dσ(x) a.s.
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Proof. . Let B > 2 and δ > 0 be fixed. By Weierstrass’ theorem, we can find
a polynomial Pδ such that

sup
|x|≤B

|f(x) − Pδ(x)| ≤ δ.

Then
∣

∣

∣

∣

∫

f(x)d(LAN (x) − σ(x))

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Pδ(x)d(LAN (x) − σ(x))

∣

∣

∣

∣

+δ +

∣

∣

∣

∣

∣

∫

|x|≥B

(f − Pδ)(x)dLAN (x)

∣

∣

∣

∣

∣

(1.10)

where we used that 1|x|≥Bdσ(x) = 0 since B > 2. By Theorem 1.13,

lim
N→∞

|
∫

Pδ(x)d(LAN (x) − σ(x))| = 0 a.s. (1.11)

Moreover, using that f is bounded, if p denotes the degree of Pδ , we can find
a finite constant C = C(δ, B) so that

|
∫

|x|≥B

(f − Pδ)(x)dLAN (x)| ≤ C

∫

|x|≥B

(1 + |x|p)dLAN (x)

≤ 2CB−p−2q

∫

x2(p+q)dLAN (x)

where we finally used Chebychev’s inequality with some q ≥ 0. Using again
Theorem 1.13, we find that

lim sup
N→∞

|
∫

|x|≥B

(f − Pδ)(x)dLAN (x)| ≤ 2CB−p−2q

∫

x2(p+q)dσ(x)

≤ CB−p−2q22(p+q+1) a.s.

We let q go to infinity to conclude, since B > 2, that

lim sup
N→∞

|
∫

|x|≥B

(f − Pδ)(x)dLAN (x)| = 0 a.s.

Finally, let δ go to zero to conclude from (1.10) and (1.11) that

lim sup
N→∞

|
∫

f(x)d(LAN (x) − σ(x))| = 0 a.s.

ut



30 1 Wigner’s theorem

1.4 Relaxation of the hypotheses over the entries
–universality

In this section, we relax the assumptions on the moments of the entries while
keeping the hypothesis that (AN

ij )1≤i≤j≤N are independent. Generalizations
of Wigner’s theorem to possibly mildly dependent entries can be found for
instance in [45].

1.4.1 Relaxation over the number of finite moments

A nice, simple, but finally optimal way to relax the assumption that the entries
of

√
NAN possess all their moments, relies on the following observation.

Lemma 1.16. Let A, B be N × N Hermitian matrices, with eigenvalues
λ1(A) ≥ λ2(A) ≥ · · · ≥ λN (A) and λ1(B) ≥ λ2(B) ≥ · · · ≥ λN (B). Then,

N
∑

i=1

|λi(A) − λi(B)|2 ≤ Tr(A−B)2 .

Proof. Since TrA2 =
∑

i(λi(A))2 and TrB2 =
∑

i(λi(B))2, the lemma
amounts to showing that

Tr(AB) ≤
N
∑

i=1

λi(A)λi(B)

for all A,B as above, or equivalently, since if A = Udiag(λ1(A), . . . , λN (A))U∗

with a unitary matrix U ,

Tr(AB) =
N
∑

i,j=1

λk(A)λj(B)|Uij |2,

that

N
∑

i=1

λi(A)λi(B) = sup
vij≥0:

P

j vij=1,
P

i vij=1

∑

i,j

λi(A)λj (B)vij . (1.12)

An elementary proof can be given (see [6]) by showing by induction over N
that the optimizing matrix v above has to be the identity matrix. Indeed, this
is true for N = 1, and one proceeds by induction: if v11 = 1 then the problem
is reduced to N − 1, while if v11 < 1, there exists a j and a k with v1j > 0
and vk1 > 0. Set v = min(v1j , vk1) > 0 and define v̄11 = v11 + v, v̄kj = vkj + v
and v̄1j = v1j − v, v̄k1 = vk1 − v, and v̄ab = vab for all other pairs ab. Then,
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∑

i,j

λi(A)λj(B)(v̄ij − vij)

= v(λ1(A)λ1(B) + λk(A)λj(B) − λk(A)λ1(B) − λ1(A)λj(B))

= v(λ1(A) − λk(A))(λ1(B) − λj(B)) ≥ 0 .

Thus, V̄ = {v̄ij} satisfies the constraints, is also a maximum, and the number
of zero elements in the first row and column of V̄ is larger by 1 at least from the
corresponding one for V . If v̄11 = 1, the conclusion follows by the induction
hypothesis, while if v̄11 < 1, one repeats this (at most 2N − 2 times since
the operation sends one entry to zero in the first column or the first line) to
conclude. ut

Corollary 1.17. Assume that the entries {
√
NAN

ij , i ≤ j} are independent
and are either equidistributed with finite variance or such that

sup
N∈N

sup
1≤i,j≤N

E[|
√
NAN

ij |4] <∞. (1.13)

Assume also that {
√
NAN

ij , i ≤ j} are centered and for all

lim
N→∞

max
1≤i≤j≤N

|E[(
√
NAN

ij )2] − 1| = 0.

Then, for any bounded continuous function f

lim
N→∞

∫

f(x)dLAN (x) =

∫

f(x)dσ(x) a.s.

Remark. When the entries are not equidistributed, the convergence in prob-
ability can be proved when (

√
NAN

ij )1≤i≤j≤N are uniformly integrable. We
strengthen here the hypotheses to have the almost sure convergence of the
law of large numbers theorem.

Proof. Fix a constant C and consider the matrix ÂN whose elements satisfy,
for i ≤ j and i = 1, . . . , N ,

ÂN
ij =

1

σN
ij (C)

(

AN
ij 1

√
N |AN

ij |≤C −E(AN
ij 1

√
N|AN

ij |≤C)
)

with

σN
ij (C)2 := E

[

(

AN
ij 1

√
N |AN

ij |≤C −E(AN
ij 1

√
N |AN

ij |≤C)
)2
]

.

ÂN satisfies the hypothesis of Theorem 1.15 for any C ∈ R+, so that

lim
N→∞

∫

f(x)dL
ÂN (x) =

∫

f(x)dσ(x) a.s. (1.14)

Assume now that f is bounded Lipschitz, with Lipschitz constant
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‖f‖L = sup
x6=y

|f(x) − f(y)|
|x− y| + sup

x
|f(x)|.

Then,

∣

∣

∣

∣

∫

f(x)dL
ÂN (x) −

∫

f(x)dLAN (x)

∣

∣

∣

∣

≤ ‖f‖L
N

N
∑

i=1

|λi(A
N ) − λi(Â

N )|

≤ ‖f‖L
(

1

N

N
∑

i=1

|λi(A
N ) − λi(Â

N )|2
)

1
2

regardless of the order on the eigenvalues. We conclude that

∣

∣

∣

∣

∫

f(x)dL
ÂN (x) −

∫

f(x)dLAN (x)

∣

∣

∣

∣

≤ ‖f‖L
(

1

N
Tr(AN − ÂN )2

)
1
2

with

(AN −ÂN )ij =
1

σN
ij (C)

(

AN
ij 1√NAN

ij≥C − E[AN
ij 1√NAN

ij≥C ]
)

+(1−σN
ij (C))ÂN

ij

(1.15)
where we used that E[AN

ij ] = 0 for all i, j. Under the assumption (1.13) or

when {
√
NAN

ij , i ≤ j} are independent and equidistributed and with finite
variance, we can use the strong law of large numbers to get that

lim sup
N→∞

1

N

N
∑

i,j=1

|(AN − ÂN )ij |2 ≤ lim sup
N→∞

max
1≤i≤j≤N

E[|
√
N(AN − ÂN )ij |2] a.s.

(1.16)
Thus, by Lemma 1.16,

lim sup
N→∞

∣

∣

∣

∣

∫

f(x)dL
ÂN (x) −

∫

f(x)dLAN (x)

∣

∣

∣

∣

≤ ‖f‖L lim sup
N→∞

max
1≤i≤j≤N

E[((AN − ÂN )ij)
2] a.s.

Letting C go to infinity shows that the above right-hand side goes to zero (by
(1.15) and since (

√
NAN

ij )i≤j is uniformly integrable under our assumptions)
and therefore

lim sup
C→∞

lim sup
N→∞

∣

∣

∣

∣

∫

f(x)dL
ÂN (x) −

∫

f(x)dLAN (x)

∣

∣

∣

∣

= 0 a.s.
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We conclude with (1.14) that for all Lipschitz functions f ,

lim
N→∞

∫

f(x)dLAN (x) =

∫

f(x)dσ(x) a.s.

Now, taking any non negative Lipschitz function that vanishes on [−2, 2] and
equals one on [−3, 3]c, we deduce that

lim
N→∞

LAN ([−3, 3]c) = 0 a.s.

Since by the Weierstrass theorem, Lipschitz functions are dense in the set
of continuous functions on the compact set [−3, 3], we can approximate any
bounded continuous function f on [−3, 3] by a sequence of Lipschitz functions
fδ up to an error δ (for the supremum norm on [−3, 3]). We choose fδ with
uniform norm bounded by that of f on the whole real line. We now conclude
that for any bounded continuous function f ,

lim sup
N→∞

∣

∣

∣

∣

∫

f(x)dLAN (x) −
∫

f(x)dσ(x)

∣

∣

∣

∣

≤ 2‖f‖∞ lim sup
N→∞

(LAN ([−3, 3]c) + σ([−3, 3]c))

+ lim sup
N→∞

∣

∣

∣

∣

∫

fδ(x)dLAN −
∫

fδ(x)dσ(x)

∣

∣

∣

∣

+ δ

= δ.

Letting δ go to zero finishes the proof. ut
Remark. Let us remark that if

√
NAN (ij) has no moments of order 2, the

theorem is no longer valid (see the heuristics of Cizeau and Bouchaud [64]
and rigorous studies in [208] and [26]). Even though under appropriate as-
sumptions the spectral measure of the matrix AN , once properly normalized,
converges, its limit is not the semicircle law but a heavy-tailed law with un-
bounded support.

1.4.2 Relaxation of the hypothesis on the centering of the entries

The last generalization concerns the hypothesis on the mean of the variables√
NAN

ij which, as we shall see, is irrelevant in the statement of Corollary 1.17.
More precisely, we shall prove the following lemma (taken from [109]).

Lemma 1.18. Let AN ,BN be N × N Hermitian matrices for N ∈ N such
that BN has rank r(N). Assume that N−1r(N) converges to zero as N goes to
infinity. Then, for any bounded continuous function f with compact support,

lim sup
N→∞

∣

∣

∣

∣

∫

f(x)dLAN+BN (x) −
∫

f(x)dLAN (x)

∣

∣

∣

∣

= 0.

If moreover (LAN , N ∈ N) is tight in P(R), equipped with its weak topology,
the above holds for any bounded continuous function.
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Proof. We first prove the statement for bounded increasing functions. To
this end, we shall first prove that for any Hermitian matrix ZN , any e ∈ CN ,
λ ∈ R, and for any bounded measurable increasing function f ,

∣

∣

∣

∣

∫

f(x)dLZN (x) −
∫

f(x)dLZN+λee∗(x)

∣

∣

∣

∣

≤ 2

N
‖f‖∞. (1.17)

We denote by λN
1 ≤ λN

2 · · · ≤ λN
N (resp. ηN

1 ≤ ηN
2 · · · ≤ ηN

N ) the eigenvalues
of ZN (resp. ZN +λee∗). By Lidskii’s theorem 19.3, the eigenvalues λi and ηi

are interlaced;

λN
1 ≤ ηN

2 ≤ λN
3 · · · ≤ λN

2[ N−1
2 ]+1

≤ ηN
2[ N

2 ]
,

ηN
1 ≤ λN

2 ≤ ηN
3 · · · ≤ ηN

2[ N−1
2 ]+1

≤ λN
2[ N

2 ]
.

Therefore, if f is an increasing function,

N
∑

i=1

f(λN
i ) ≤

N
∑

i=2

f(ηN
i ) +

1

N
‖f‖∞ ≤

N
∑

i=1

f(ηN
i ) +

2

N
‖f‖∞

but also

N
∑

i=1

f(λN
i ) = f(λN

1 ) +
N
∑

i=2

f(λN
i ) ≥ f(λN

1 ) +
N
∑

i=2

f(ηN
i−1)

= f(λN
1 ) − f(ηN

i ) +

N
∑

i=1

f(ηN
i ).

These two bounds prove (1.17).
Now, let us denote by (eN

1 , · · · , eN
r(N)) an orthonormal basis of the vector

space of eigenvectors of BN with non-zero eigenvalues so that

BN =

r(N)
∑

i=1

ηN
i e

N
i (eN

i )∗

with some real numbers (ηN
i )1≤i≤r(N). Iterating (1.17) shows that for any

bounded increasing function f ,

∣

∣

∣

∣

∫

f(x)dLAN (x) −
∫

f(x)dLAN+BN (x)

∣

∣

∣

∣

≤ 2r(N)

N
‖f‖∞. (1.18)

Therefore, for any increasing bounded continuous function, when N−1r(N)
goes to zero,

lim sup
N→∞

∣

∣

∣

∣

∫

f(x)dLAN+BN (x) −
∫

f(x)dLAN (x)

∣

∣

∣

∣

= 0. (1.19)
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Of course, the result immediately extends to decreasing functions by f → −f .
Now, note that any Lipschitz function f that vanishes outside of a compact
set K = [−k, k] can be written as the difference of two bounded continuous
functions (this is in fact true as soon as f has bounded variations) since
it is almost surely (with respect to Lebesgue measure) differentiable with
derivative bounded by |f |L and

f(x) − f(0) =

∫ x

0

f ′(x)1f ′(x)≥0dx−
∫ x

0

(−f ′(x))1f ′(x)<0dx.

Hence, (1.19) extends to the case of compactly supported Lipschitz functions,
and then to any bounded compactly supported continuous functions (by den-
sity for the supremum norm).

To remove the assumption that f is compactly supported we assume
(LAN )N∈N tight so that supN LAN ([−k, k]c) goes to zero as k goes to infinity.
Now, taking f(x) = (x − k) ∧ 1 ∨ 0 for some finite k, we deduce that

lim sup
N→∞

LAN+BN ([k + 1,∞[) ≤ lim sup
N→∞

∫

(x− k) ∧ 1 ∨ 0 dLAN+BN (x)

= lim sup
N→∞

∫

(x− k) ∧ 1 ∨ 0 dLAN (x)

≤ lim sup
N→∞

LAN ([k,∞[) ≤ εk

where εk is a sequence going to zero with k, which exists by the assumption
that (LAN , N ∈ N) is tight. We apply the same argument for LAN+BN (] −
∞,−k− 1]) with the decreasing function f(x) = (−k− x) ∧ 1∨ 0 and deduce
that

lim sup
k→∞

lim sup
N→∞

LAN+BN ([−k, k]c) = 0.

This allows us to finish the proof of the lemma for any bounded continuous
function f since we also have lim supk→∞ lim supN→∞ LAN ([−k, k]c) = 0. ut

By Corollary 1.17 and Lemma 1.18, we find the following:

Corollary 1.19. Assume that the matrix
(

E[AN
ij ]
)

1≤i,j≤N
has rank r(N) so

that N−1r(N) goes to zero as N goes to infinity, and that the variables√
N(AN

ij −E[AN
ij ]) satisfy (1.13) and have variance 1. Then, for any bounded

continuous function f ,

lim
N→∞

∫

f(x)dLAN (x) =

∫

f(x)dσ(x) a.s.

This result holds in particular if E[AN
ij ] = xN is independent of i, j ∈

{1, . . . , N}2, in that case r(N) = 1.
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Bibliographical notes. Since the convergence of the spectral measure was
proved by Wigner [205] when the entries possess moments of all orders, many
papers have improved this result. The optimal hypothesis for the convergence
of the spectral measure of Wigner matrices to the smicircle law is that the
entries have a finite second moment, since if they do not, the asymptotics
of the spectral measure described in [26] show that the renormalization of
the eigenvalues must depend on the tail of the entries and the limit is a
heavy tailed law rather than the semicircle law. More precise results have
been derived; for instance, when the entries have only a finite fourth moment,
Bai [11] proved the convergence of the spectral measure and showed that some

distance to the limit is at most of order N− 1
4 (this result was improved to

N−1 under stronger hypotheses in [96]). Bai used a method directly based on
estimations of the Cauchy–Stieljes transform of the spectral measure, rather
than on moments. The convergence of the spectral measure of diverse classical
ensembles of matrices were shown; for instance for Wishart matrices [145], for
Wigner matrices with correlated entries [45], Toeplitz matrices [53, 112], or for
non symmetric matrices (with a complex spectrum) such as Ginibre ensemble
[95, 12]. We refer the reader to [13] for more examples.



2

Wigner’s matrices; more moments estimates

In this chapter, we elaborate upon the previous computation of moments in
two directions. First we give a better estimate of the error to the previous limit
and prove a central limit theorem. Second, we consider the case were moments
are taken at powers that blow up with the dimension of the matrices; we
basically show that if this power is small compared to the square root of the
dimension, the first-order contribution is still given, in the moment expansion,
by graphs that are trees.

2.1 Central limit theorem

In the previous section, we proved Wigner’s theorem by evaluating
∫

xpdLAN (x) for p ∈ N. We shall push this computation one step further here
and prove a central limit theorem. Namely, setting

∫

xkdL̄AN (x) := E

[∫

xkdLAN (x)

]

,

we shall prove that

MN
k := N

(∫

xkdLAN (x) −
∫

xkdL̄AN (x)

)

=
N
∑

i=1

(

λk
i − E[λk

i ]
)

converges in law to a centered Gaussian variable. Since in Chapter III we shall
give a complete and detailed proof of the central limit theorem in the case
of Gaussian entries with a weak interaction, we will be rather sketchy here.
We refer to [7] for a complete and clear treatment and [6] for a simplified
exposition of the full proof of the theorem we state below. To simplify, we
assume here that AN is a Wigner matrix with

AN
ij =

Bij√
N
,
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where (Bij , 1 ≤ i ≤ j ≤ N) are independent real equidistributed random
variables. Their marginal distribution µ has all moments finite (in particular
(1.7) is satisfied) and satisfies

∫

xdµ(x) = 0 and

∫

x2dµ(x) = 1.

We shall show why the following statement holds.

Theorem 2.1. Let

σ2
k = k2[C k−1

2
]2+

k2

2
[C k

2
]2
[∫

x4dµ(x) − 1

]

+

∞
∑

r=3

2k2

r









∑

ki≥0

2
Pr

i=1
ki=k−r

r
∏

i=1

Cki









2

,

In this formula, Cx equals zero if x is not an integer and otherwise is equal
to the Catalan number.

Then, MN
k converges in moments to the centered Gaussian variable with

variance σ2
k, i.e., for all l ∈ N,

lim
N→∞

E
[

(MN
k )l
]

=
1√

2πσk

∫

xle
− x2

2σ2
k dx.

Remark. Unlike the standard central limit theorem for independent variables,
the variance here depends on µ(x4).
Outline of the proof.

• We first prove that the statement is true when l = 2. (It is clearly true for
k = 1 since AN

k is centered.) We thus want to show

σ2
k = lim

N→∞
E
[

(MN
k )2

]

. (2.1)

Below (1.9), we proved that E
[

(AN
k )2

]

is bounded, uniformly in N . Fur-
thermore, we can write

E
[

(MN
k )2

]

=
1

Nk

∑

i,i′

[P (i, i′) − P (i)P (i′)]

where the sum over i, i′ will hold on graphs G̃(i, i′) = (Ṽ (i, i′), Ẽ(i, i′)) so
that

|Ṽ (i, i′)| ≤ k, |Ẽ(i, i′)| ≤ k.

Since [P (i, i′) − P (i)P (i′)] is uniformly bounded, the only contributing
graphs to the leading order will be those such that |Ṽ (i, i′)| = k. Then,
since we always have |Ṽ (i, i′)| ≤ |Ẽ(i, i′)| + 1, we have two cases:
• |Ẽ(i, i′)| = k−1 in that case the skeleton G̃(i, i′) will again be a tree but
with one edge less than the total number possible; this means that one
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edge appears with multiplicity four and belongs to Ẽ(i) ∩ Ẽ(i′), the other
edges appearing with multiplicity 2. Hence, the graphs of Ẽ(i) and Ẽ(i′)
are both trees (so that k must be even); there are C2

k
2

such trees, and they

are glued by a common edge, to choose among k
2 edges in each of the tree.

Finally, there are two possible choices to glue the two trees according to
the orientation. Thus, there are

2

(

k

2

)2

C2
k
2

=

(

k2

2

)

C2
k
2

such graphs and then

P (i, i′) − P (i)P (i′) =

∫

x4dµ(x) − 1.

We hence obtain the contribution ( k2

2 )C2
k
2

(
∫

x4dµ(x) − 1) to the variance.

• |Ẽ(i, i′)| = k. In this case, the graph is no longer a tree and because
|Ẽ(i, i′)| − |Ṽ (i, i′)| = 1, it contains exactly one cycle. This can be seen
either by closer inspection of the arguments given after (1.1) or by using
the formula that relates the genus of a graph and its number of vertices,
faces and edges:

]vertices + ]faces − ]edges = 2 − 2g ≤ 2.

The faces are defined by following the boundary of the graph; each of these
boundaries are exactly one cycle of the graph except one (since a graph
has always one boundary) and therefore

]faces = 1 + ]cycles.

So we get, for a connected graph with skeleton (Ṽ , Ẽ),

|Ṽ | ≤ |Ẽ| + 1 − ]cycles. (2.2)

In our case, ]vertices = ]edges = k and ]cycles ≥ 1 (since the graph is
not a tree), so that the number of cycles must be exactly one. Count-
ing the number of such graphs completes the proof of the convergence of
E
[

(MN
k )2

]

to σ2
k (see [7] for more details).

• Convergence to the Gaussian law.
We next show that MN

k is asymptotically Gaussian. This amounts to prov-
ing that limN→∞ E[(MN

k )2l+1] = 0 whereas,

lim
N→∞

E[(MN
k )2l] = ]{number of pair partitions of 2l elements} × σ2l

k .

Again, we shall expand the expectation in terms of graphs and write for
l ∈ N,
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E[(MN
k )l] =

1

N
kl
2

∑

i1,...,il

P (i1, . . . , il)

with P (i1, . . . , il) given by

E

[

(

Bi11i12
· · ·Bi1ki11

− E[Bi11i12
· · ·Bi1ki11

]
)

· · ·
(

Bil
1il

2
· · ·Bil

kil
1
− E[Bil

1il
2
· · ·Bil

kil
1
]
)

]

.

We denote by G(i1, . . . , il) = (V (i1, . . . , il), E(i1, . . . , il)) the correspond-
ing graph; V (i1, . . . , il) = {ijn, 1 ≤ j ≤ l, 1 ≤ n ≤ k} and E(i1, . . . , il) =
{(ijn, ijn+1), 1 ≤ j ≤ l, 1 ≤ n ≤ k} with the convention ijl+1 = ij1.

As before, P (i1, . . . , il) equals zero unless each edge appears with mul-
tiplicity 2 at least. Also, because of the centering, it vanishes if there
exists a j ∈ {1, . . . , l} so that E(i1, . . . , il) ∩ E(ij) does not intersect
E(i1, . . . , ij−1, ij+1, . . . , il). Let us decompose G(i1, . . . , il) into its con-
nected components (G1, . . . , Gc). We claim that

|V (i1, . . . , il)| ≤ c− l +

[

l(k + 1)

2

]

. (2.3)

This type of bound is rather intuitive; if a connected component Gi con-
tains G(ij1 ), . . . , G(ijp), each gluing of the G(ijl) should create either a
cycle or an edge with multiplicity 4, the total number of vertices decreas-
ing at least by one in each gluing. Hence, |V (i1, . . . , il)| should grow linearly
with the number of connected components. The proof is given in Appendix
20.3 for completeness (see [6] or [7]). With (2.3), we conclude that the only
indices that will contribute are such that

c− l +

[

l(k + 1)

2

]

≥ kl

2

with c ≤ [ l
2 ]. This implies that

kl

2
≤
[

l

2

]

− l +

[

l(k + 1)

2

]

≤ l

2
− l +

l(k + 1)

2
=
kl

2

resulting in all inequalities being equalities. Thus, to get a first-order con-
tribution we must have l even and c = l

2 . In that case, we write (sj , rj)1≤j≤l

the pairing so that (G(isj ), G(irj ))1≤j≤l are connected for all 1 ≤ j ≤ l
(with the convention sj < rj). By independence of the entries, we have

P (i1, . . . , i2l) =
l
∏

j=1

P (isj , irj )
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and so we have proved that

N−kl
∑

i1,...,i2l

P (i1, . . . , i2l) =
∑

s1<···<sl
rj >sj



N−k
∑

i1,i2

P (i1, i2)





l

+ o(1)

= σ2l
k

∑

s1<···<sl
rj >sj

1 + o(1)

which proves the claim since

1√
2π

∫

x2le−
x2

2 dx =
∑

s1<···<sl
rj >sj

1 = (2l − 1)(2l− 3)(2l − 5) · · · 1.

This completes the proof of the moments convergence.

ut

Exercise 2.2. Show that Theorem 2.1 implies that MN
k converges weakly to

the centered Gaussian variable with variance σ2
k. Hint: control tails to approx-

imate bounded continuous functions by polynomials.

Bibliographical notes. Johansson [120] proved a rather general central limit
theorem for the spectral measure of Gaussian random matrices (and more gen-
erally for particles interacting via a Coulomb gas potential). It was generalized
to β-ensembles and Laguerre ensembles in [82] by using tri-diagonal represen-
tation of the classical ensembles [81]. The strategy of moments developed here
follows an article of Anderson and Zeitouni [7] (see a generalization in [177]).
Central limit theorems were also obtained in the case of Ginibre ensembles
(with spectral measure converging to the so-called circular law) in [169].

We shall see in Part III that this kind of theorem generalizes to the multi-
matrix setting that we shall introduce in the next chapter.

2.2 Estimates of the largest eigenvalue of Wigner
matrices

In this section, we derive estimates on the largest eigenvalue of a Wigner
matrix with real entries AN

ij = N− 1
2Bij with (Bij , 1 ≤ i ≤ j ≤ N) independent

equidistributed centered random variables with marginal distribution P . The
idea is to improve the moments estimates of the previous chapter.

We shall assume that P is a symmetric law (see the recent article [166] for
a relaxation of this hypothesis):

P (−x ∈ .) = P (x ∈ .).
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We take the normalization E[x2] = 1. Further, we assume that P has sub-
Gaussian tail, i.e., that there exists a finite constant c such that for all k ∈ N,

E[x2k] ≤ (ck)k.

We follow the article of S. Sinäı and A. Soshnikov [179] to prove the following
result:

Theorem 2.3 (S. Sinäı–A. Soshnikov [179]). For all ε > 0, all N ∈ N,
there exists a finite function o(s,N) such that
limN→∞ sup

Nε≤s≤N
1
2
−ε o(s,N) = 0 and

E[Tr((AN )2s)] =
N22s

√
πs3

(1 + o(s,N)). (2.4)

As a consequence, for all ε > 0, if we let λmax(AN ) denote the spectral radius
of AN ,

lim
N→∞

P (|λmax(A
N ) − 2| ≥ ε) = 0.

A previous result of the same nature (but under weaker hypothesis (the sym-
metry hypothesis of the distribution of the entries being removed) under which
the moments estimate (2.4) holds for a smaller range of s) was proved by
Komlós and Füredi [93]. A later result of Soshnikov [180] improves the range

of s under which (2.4) holds to s of order less than n
2
3 , a result that captures

the fluctuations of λmax(AN ). We emphasize here that the proof below heavily
depends on the assumption that the distribution of the entries is symmetric.

Proof. Let us first derive the convergence in probability from the moment
estimates. First, note that

P (λmax(A
N ) ≤ 2 − ε) ≤ P

(∫

f(x)dLAN = 0

)

for all functions f supported on ]2− ε,∞[. Taking f bounded continuous, null
on ]−∞, 2−ε] and strictly positive in [2− ε

2 , 2], we see that P (
∫

f(x)dLAN = 0)
goes to zero by Theorem 1.15. For the upper bound on λmax(AN ), we shall
use Chebychev’s inequality and the moment estimates (2.4) as follows:

P (λmax(AN ) ≥ 2 + ε) ≤ 1

(2 + ε)2s
E[λmax(AN )2s] ≤ 1

(2 + ε)2s
E[Tr((AN )2s)]

≤ N22s

(2 + ε)2s
√
πs3

(1 + o(s,N))

where the right-hand side goes to zero with N when s = N ε for some ε > 0.
To prove the moment estimates we shall again expand the moments and

count contributing paths, in particular estimate more precisely contributions
from paths that are not trees. Yet, the central point of the proof is to show
that these paths give a negligible contribution. We follow the presentation of
[179].
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1. Moments expansion. As usual, we write

E[Tr
(

(AN )2s
)

] =
1

Ns

N
∑

i0,...,i2s−1=1

E[Bi0i1 · · ·Bi2s−1,i0 ]. (2.5)

We let E denote the set of edges of the graph, i.e., the undirected collection
of couples {(ip, ip+1), p = 0, . . . , 2s− 1}. Because we assumed the law of
the Bij ’s symmetric, only indices such that each edge in E appears an
even number of times will contribute. We call a closed path the sequence
P : i0 → i1 → · · · → i2s−1 → i0. An even path is a closed path where each
edge appears with even multiplicity; they are the only contributing paths.

2. Descriptions of paths. We will say that the `th step i`−1 → i` of a path
P is marked if during the first ` steps of P , the edge {i`−1, i`} appears an
odd number of times (note here that the `th step is counted, and so a step
is marked iff the edge {i`−1, i`} appears an even number of times in the
previous step, in particular if it does not appear). The step is unmarked
otherwise. For even paths, the number of marked and unmarked edges is
equal to s. The complete set of vertices V is the collection {1, . . . , N} of
all possible values of the points (ik, 0 ≤ k ≤ 2s− 1). We say that a vertex
i ∈ V belongs to the subset Nk = Nk(P ) if the number of times we arrive
at i via marked edges equals k. Note that no vertex of the path except i0
can belong to N0. Moreover, Np = 0 for p > s (since there are at most s
edges). Note that if we let nk = ]Nk , since (N0, . . . ,Ns) is a partition of
V ,
∑s

k=0 nk = N . Moreover, (N0, . . . ,Ns) also induces a partition of the
edges and hence

s
∑

k=0

knk = s.

We say that P is of type (n0, n1, . . . , ns) if nk = ]Nk = ]Nk(P ) for all
k ∈ {0, . . . , s}. We finally say that a path is a simple even path if i0 ∈ N0

and P is of type (N − s, s, 0, . . . , 0). Observe that in a simple even path,
each edge appears only twice (since there are at most s different edges in
P and here exactly s since there are s different vertices in N1). Also, we
see that the graph corresponding to P has exactly s vertices in N1 plus
i0 ∈ N0 and so exactly s + 1 vertices. Hence, the skeleton (V, Ẽ) of the
graph drawn by P satisfies the relation |V | = |Ẽ|+ 1 and hence is a tree.
The strategy of the proof will be to show that simple even paths dominate
the expectation when s = o(

√
N).

3. Contribution of simple even paths. Considering (2.5), we see that for sim-
ple even paths, E[Bi0i1 · · ·Bi2s−1i0 ] = 1. Moreover, given a simple even
path, we have N possible choices for i0, N − 1 for the first new vertex en-
countered when following P , N−2 for the second new vertex encountered,
etc. Since we have Cs = (2s)!/s!(s+ 1)! simple even paths (see Property
1.10), we get the contribution
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CN
1 =

1

Ns
N(N − 1) · · · (N − s)

(2s)!

s!(s+ 1)!
=

22sN√
πs3

(1 + o1(s,N))

where we have used Stirling’s formula and found

o1(s,N) = − 1

N

s
∑

k=1

k +
1

s
≈ s2

2N
+

1

s
.

In the case where i0 6∈ N0 but n1 = s, n2 = 0 · · · , ns = 0, we must have
i0 ∈ N1. This means that we have one cycle and one different vertex less
in the graph of an even path. Note that if we split the vertex i0 into two
vertices as in Figure 2.1, the new vertex being attached to the marked
edge, then the old i0 belongs to N0 and the new vertex to N1 and we are
back to the case where i0 ∈ N0.

Fig. 2.1. Splitting of the graph

There are s possibilities for the position of the marked edge incoming in
i0, but we are losing N−s possibilities to choose a different vertex. Hence,
the contribution to this term is bounded by

CN
2 ≤ s

N − s
E[x4]CN

1

where the last term comes from the possibility that one edge attached to
i0 now has multiplicity 4.

4. Contribution of paths that are not simple. If a path is not as in the previous
paragraph, there must be an nk ≥ 1 for k ≥ 2. Let us count the number
of these paths.
Given n0, n1, . . . , ns, we have N !

n0!n1!···ns! ways to choose the values of the
vertices. Then, among the n0 vertices in N0, we have at most n0 ways to
choose the vertex corresponding to i0 (if i0 ∈ N0).
Being given the values of the vertices, a path is uniquely described if we
know the order of appearance of the vertices at the marked steps, the times
when the marked steps occur and the choice of end points of the unmarked
steps. The moments of time when marked steps occur can be coded by
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a Dick path by adding +1 when the step is marked and −1 otherwise.
Hence, there are Cs = (2s)!/s!(s + 1)! choices for the times of marked
steps. Once we are given this path, we have s marked steps. The marked
steps are partitioned into s sets corresponding to the Nk, 1 ≤ k ≤ s, with
cardinality nkk each. Hence, we have s!

Qs
k=1(nkk)! possibilities to assign the

sets into which the end points of the marked steps are. Finally, we have
(nkk)!/(k!)

nk ways to partition the set Nk into k copies of the same point
of Nk. So far, we have prescribed uniquely the marked steps and the set
to which they belong.

belong, are given.

first unmarked step

has to be i5.

i6

i5

i4

i3

i0

i0

i3

i4

i5

i6

i5

i1

i4

i2

i1

i0

iσ

Otherwise,

i2

i1

i2

i1

The ik’s , and the set Nl to which they

i3

i0

the vertex i6 = i1 appeared already once.

iσ = 0, 2 or 4.
(i1, iσ) was a previous step; here .

If i6 in N1, the first unmarked step

The unmarked edge can be any

of the iσ so that (iσ, i1) or

Fig. 2.2. Counting unmarked steps

To prescribe the unmarked steps, we still have an indeterminate. In fact,
let us follow the Dick path of the marked steps till the first decreasing
part corresponding to unmarked steps. Let i` be the vertex assigned to
the last step. Then, if i` appeared only once in the past path (in the edge
(i`−1, i`)), we have no choice and the next vertex in the path has to be
i`−1. This is the case in particular if i` ∈ N1. If now i` ∈ Nk for k ≥ 2,
the undirected step (ip, i`) for some ip may have occurred already at most
2k times (since it could occur either as a step (ip, i`) or a step (i`, ip),
the later happening also less than k times since it requires that a marked
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step arrived at i` before). We have thus at most 2k choices now for the
next vertex; one of the ip among the at most 2k vertices such that the
step (ip, i`) or (i`, ip) were present in the past path. Once this choice has
been made, we can proceed by induction since this choice comes with the
prescription of the set Nl in which the vertex ip belongs. Hence, since we
have knk vertices in each set, we see that we have at most

∏s
k=2(2k)

knk

choices for the end points of the unmarked steps.
Coming back to (2.5) we see that if the path is of type (n0, . . . , ns), entries
appear at most nk times with multiplicity 2k for 1 ≤ k ≤ s. Thus Hölder’s
inequality gives

E[Bi0i1 · · ·Bi2s−1i0 ] ≤
s
∏

k=1

E[x2k ]nk ≤
s
∏

k=2

(ck)knk

where we used that E[x2] = 1. This shows that the contribution of these
paths can be bounded as follows.

En0,...,ns =
∑

i0,···i2s−1:P of type(n0,...,ns)

E[Bi0i1 · · ·Bi2s−1i0 ]

≤ 1

Ns
n0

N !

n0!n1! · · ·ns!

(2s)!

s!(s+ 1)!

s!
∏s

k=1(nkk)!
s
∏

k=1

(nkk)!

(k!)nk

s
∏

k=2

(2k)knk

s
∏

k=2

(ck)knk

≤ n0
N(N − 1) · · · (n0 + 1)

Ns

(2s)!

s!(s+ 1)!

1

n1! · · ·ns!

s!
∏s

k=1(ke
−1)nkk

s
∏

k=1

(2ck2)knk

≤ NNN−n0−s (2s)!

s!(s+ 1)!

s!

n1! · · ·ns!

s
∏

k=2

(2cek)knk

where we have used that (k!)nk ≥ (ke−1)knk . Since s =
∑s

k=1 knk and
N =

∑

k nk, we have N − n0 − s =
∑s

k=2(1 − k)nk. Using s! ≤ (s)s, we
obtain the bound

En0,...,ns ≤ N
(2s)!

s!(s+ 1)!

s
∏

k=2

1

nk!
(N1−k(2ceks)k)nk .

We next sum over all ni ≥ 0 so that at least one ni ≥ 1 for i ∈ {2, . . . , s}.
This gives, with γk := N1−k(2ceks)k,
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∑

n0,...,ns:maxj≥2 nj≥1

En0,...,ns ≤ N
(2s)!

s!(s+ 1)!

s
∑

k=2

(eγk − 1)
∏

6̀=k

eγ`

≤ N
(2s)!

s!(s+ 1)!
e

P

`≥2 γ`(
∑

`≥2

γ`)

where we used that ex − 1 ≤ xex for all x ≥ 0. Note that in the range of
s where s2 ≤ N1−ε, if we choose K big enough so that Kε ≥ 1,

∑

`

γ` =
∑

2≤`≤s

N1−`(2ce`s)`

≤ NK(2cesKN−1)2 +N
∑

K+1≤`≤s

(2ces2N−1)`

≤ constant(N−1K2s2 +N(2ceN−ε)K+1) ≤ constantN−ε

goes to zero as N goes to infinity. Thus, we conclude that

∑

n0,...,ns

En0,...,ns ≤ CCN
1 N

−ε.

Hence, in the regime s2/N going to zero, the contribution of the indices
{i0, . . . , i2s−1} associated with a path of type (n0, . . . , ns) with some nk ≥
1 for some k ≥ 2 is negligible compared to the contribution of simple even
paths.

ut

Exercise 2.4. The extension of Theorem 2.3 to Hermitian Wigner matrices
satisfying the same type of hypotheses is left to the reader as an exercise.

Bibliographical notes. Soshnikov [181] elaborated on his combinatorial es-
timation of moments to prove that the largest eigenvalue fluctuations follow
the Tracy–Widom law, by estimating moments of order N

2
3 when the entries

are symmetrically distributed and have sub-Gaussian tails. By approxima-
tion, Ruzmaikina [174] could weaken the later hypothesis to the case where
the entries have only the eighteenth (thirty-sixth according to [9]) moment
finite. The case where the entries are not symmetrically distributed is still
mysterious, despite recent progress by Péché and Soshnikov [166] who prove
the universality of moments of order much larger than

√
N (but still much

smaller than N
2
3 ). A rather different result was proved by Johansson [121]; he

showed the universality of the fluctuations of the largest eigenvalue for matri-
ces whose entries are the convolution of a Gaussian law with a law with finite
sixth moments. It is well known [15] that the largest eigenvalue of a Wigner
matrix converges to 2 if and only if the entries have fourth moments. It is
expected that the fluctuations follow the Tracy–Widom law when the fourth
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moment is finite. What happens when the entries have no finite moments is
described in [9, 184]. Also, the case where one adds a finite rank perturbation
to the matrix was studied in [16]; if the perturbation is sufficiently small the
fluctuations still follows the Tracy–Widom law, whereas if it is large, they will
be Gaussian.

Other classical ensembles were studied; for instance Wishart matrices [27,
183, 14, 190].

In the next chapter, we shall consider polynomials in several random ma-
trices; it was shown in [111] that the spectral radius of polynomials in several
independent matrices following the GUE converge to the expected limit (that
is the edge of the support of the limiting spectral measure of this polynomial).
This was generalized to the case of matrices interacting via a convex potential
in [106].



3

Words in several independent Wigner matrices

In this chapter, we consider m independent Wigner N × N matrices
{AN,`, 1 ≤ ` ≤ m} with real or complex entries. That is, the AN,` are

self-adjoint random matrices with independent entries
(

AN,`
ij , 1 ≤ i ≤ j ≤ N

)

above the diagonal that are centered and with variance one. Moreover, the
(

AN,`
ij , 1 ≤ i ≤ j ≤ N

)

1≤`≤m
are independent. We shall generalize Theorem

3.3 to the case where one considers words in several matrices, that is show
thatN−1Tr

(

AN,`1AN,`2 · · ·AN,`k
)

converges for all choices of `i ∈ {1, . . . ,m}
and give a combinatorial interpretation of the limit. In Part VI, we describe
the non-commutative framework proposed by D. Voiculescu to see the limit
in the more natural framework of free probability. Here, we simply general-
ize Theorem 1.13 as a first step towards Part III. Let us first describe the
combinatorial objects that we shall need.

3.1 Partitions of colored elements and stars

Because we now have m different matrices, the partitions that will naturally
show up are partitions of elements with m different colors. In the following,
each ` ∈ {1, . . . ,m} will be assigned to a different color. Also, because matrices
do not commute, the order of the elements is important. This leads us to the
following definition.

Definition 3.1. Let q(X1, . . . , Xm) = X`1X`2 · · ·X`k
be a monomial in m

non-commutative indeterminates.
We define the set S(q) associated with the monomial q as the set of k

colored points on the real line so that the first point has color `1, the second
one has color `2, till the last one that has color `k.

NP (q) is the set of non-crossing pair partitions of S(q) such that two
points of S(q) cannot be in the same block if they have different colors.
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Note that S defines a bijection between non-commutative monomials and the
set of colored points on the real line.

Even though the language of non-crossing partitions is very much adapted
to generalization in free probability (see the last part of these notes) where
partitions can eventually be not pair partitions, it seems to us that it is more
natural to consider the bijective point of view of stars when considering matrix
models in Part III. The definition we give below is equivalent to the above
definition according to Figure 1.4 (with colors).

Definition 3.2. Let q(X1, . . . , Xm) = X`1X`2 · · ·X`k
be a monomial in m

non-commutative indeterminates.
We define a star of type q as a vertex equipped with k colored half-edges,

one marked half-edge and an orientation such that the marked half-edge is of
color `1, the second (following the orientation) is of color `2, etc., until the
last half-edge that is of color `k.

PM(q) is the set of planar maps (see Definition 1.8) with one star of type
q such that the half-edges can be glued only if they have the same color.

Equivalently, a star can be represented by an annulus with an orientation,
colored dots and a marked dot (see Figure 3.1; color 1 is blue and color 2 is
dashed).
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Fig. 3.1. The star of type q(X) = X2

1X2

2X4

1X2

2

Remark 2. Planar maps with one colored star are also in bijection with trees
with colored edges. However, when we deal with planar maps with several
stars (see, e.g., Part III), the language of trees will become less transparent
and we will no longer use it.

3.2 Voiculescu’s theorem

The aim of this chapter is to prove the following:



3.2 Voiculescu’s theorem 51

Theorem 3.3 (Voiculescu [197]). Assume that for all k ∈ N,

Bk := sup
1≤`≤m

sup
N∈N

sup
ij∈{1,...,N}2

E[|
√
NAN,`

ij |k] <∞ (3.1)

and

max
1≤i,j≤N

|E[AN,`
ij ]| = 0, lim

N→∞
max

`

1

N2

∑

1≤i,j≤N

|NE[|AN,`
ij |2] − 1| = 0.

Then, for any `j ∈ {1, . . . ,m}, 1 ≤ j ≤ k,

lim
N→∞

1

N
Tr
(

AN,`1AN,`2 · · ·AN,`k
)

= σm(X`1 · · ·X`k
)

where the convergence holds in expectation and almost surely. σm(X`1 · · ·X`k
)

is the number |NP (X`1 · · ·X`k
)| = |PM(X`1 · · ·X`k

)| of planar maps with one
star of type X`1 · · ·X`k

.

Remark 3. • Because a star has a marked edge and an orientation, each edge
can equivalently be labeled. The counting is therefore performed for these
labeled objects, regardless of possible symmetries.

• σm, once extended by linearity to all polynomials, is called the law of
m free semi-circular variables since they satisfy the freeness property (17.1)
and the moments of each variables are given by the moments of the semicircle
law.

Proof. The proof is very close to that of Theorem 1.13.

1. Expanding the expectation.
Setting BN =

√
NAN , we have

E

[

1

N
Tr
(

AN,`1AN,`2 · · ·AN,`k
)

]

=
1

N
k
2 +1

N
∑

i1,...,ik=1

E[B`1
i1i2

B`2
i2i3

· · ·B`k
iki1

] (3.2)

where B`
ij , 1 ≤ i, j ≤ N denotes the entries of BN,` (which may possibly

depend on N). We denote by i = (i1, . . . , ik) and set

P (i, `) = E[B`1
i1i2

B`2
i2i3

· · ·B`k
iki1

].

By hypothesis, P (i, `) is uniformly bounded by Bk. We let, as in the
proof of Theorem 1.13, V (i) = {i1, . . . , ik} be the set of vertices, E(i)
the collection of the k half-edges (ep)

k
p=1 = (ip, ip+1)

k
p=1 and consider

the graph G(i) = (V (i), E(i)). G(i) is, as before, a rooted, oriented and
connected graph.
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P (i, `) equals zero unless any edge has at least multiplicity two in G(i).
Therefore, by the same considerations as in the proof of Theorem 1.13,
the indices that contribute to the first order in (3.2) are such that G(i) is
a rooted oriented tree. In particular, the limit equals zero if k is odd. This
is equivalent to saying (see the bijection between trees and non-crossing
partitions, Figure 1.3) that if we draw the points i1, · · · ik, i1 on the real
line, we can draw a non-crossing pair-partition between the edges of E(i).
We write E(i) = {(isl

, isl+1
); (irl

, irl+1
)}1≤l≤ k

2
for the corresponding par-

tition. Since G(i) is a tree we have again that (isl
, isl+1

) = (irl+1
, irl

) for

l ∈ {1, . . . , k
2}. Thus,

P (i, `) =

k
2
∏

l=1

E[B
N,`sl
isl

isl+1
B

N,`rl
irl

irl+1
].

By our hypothesis, we can replace E[B
N,`sl

isl
isl+1

B
N,`rl

irl
irl+1

] by 1`sl
=`rl

up to a

small error in the sum of the P (i, `)’s. Therefore, if the edges of E(i) are
colored according to which matrix they came from, the only contributing
indices will come from a non-crossing pair-partition where only edges of
the same color can belong to the same block. This proves that

E

[

1

N
Tr
(

AN,`1AN,`2 · · ·AN,`k
)

]

= |σm(X`1 · · ·X`k
)| + o(1).

2. Almost sure convergence. To prove the almost sure convergence, we esti-
mate the variance and then use the Borel–Cantelli lemma. The variance
is given by

Var(AN,`1AN,`2 · · ·AN,`k) := E

[

1

N2
Tr
(

AN,`1AN,`2 · · ·AN,`k
)2
]

− E

[

1

N
Tr
(

AN,`1AN,`2 · · ·AN,`k
)

]2

=
1

N2+k

N
∑

i1, . . . , ik = 1
i′1, . . . , i

′
k = 1

[P (i, i′) − P (i)P (i′)]

with P (i) as before and

P (i, i′) := E[B`1
i1i2

B`2
i2i3

· · ·B`k

iki1
B`1

i′1i′2
· · ·B`k

i′ki′1
].

We denote by G(i, i′) the graph with vertices V (i, i′)
given by {i1, . . . , ik, i′1, . . . , i′k} and edges E(i, i′) equal to
{(ip, ip+1)1≤p≤k, (i

′
p, i

′
p+1)1≤p≤k}. For i, i′ to contribute to the sum,

G(i, i′) must be connected (otherwise P (i, i′) = P (i)P (i′)), and so it is
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an oriented rooted connected graph. Again, each edge must appear twice
and the walk on G(i) begins and finishes at the root i1. Therefore, exactly
the same arguments that we used in the proof of Theorem 1.13 show that

|V (i, i′)| ≤ k.

By boundedness of P (i, i′) − P (i)P (i′) we conclude that

Var(AN,`1AN,`2 · · ·AN,`k) ≤ DkN
−2

for some finite constant Dk. The proof is thus complete by a further use
of the Borel–Cantelli lemma.

ut

Exercise 3.4. The next exercise concerns a special case of what is called
”Asymptotic freeness” and was proved in greater generality by D. Voiculescu
(see Theorem 17.5).

Let (AN
ij , 1 ≤ i ≤ j ≤ N) be independent real variables and consider AN

the self-adjoint matrix with these entries. Assume

E[AN
ij ] = 0 E[(

√
NAN

ij )2] = 1 ∀i ≤ j.

Assume that for all k ∈ N,

Bk = sup
N∈N

sup
ij∈{1,...,N}2

E[|
√
NAN

ij |k] <∞.

Let DN be a deterministic diagonal matrix such that

sup
N∈N

max
i≤j

|DN
ii | <∞ lim

N→∞

1

N
Tr((DN )k) = mk for all k ∈ N.

Show that:

1. for any k ∈ N,

lim
N→∞

E

[

1

N
Tr(DN (AN )k)

]

= Ck/2m1,

2. for any k1, k2 ∈ N,

lim
N→∞

E

[

1

N
Tr((DN )l1(AN )k1(DN )l2(AN )k2)

]

= Ck1/2Ck2/2ml1+l2 + C(k1+k2)/2ml1ml2 ,

3. for any l1, k1, · · · , lp, kp ∈ N,

lim
N→∞

E

[(

1

N
Tr((DN )l1 − 1

N
Tr(DN )l1

)(

(AN )k1 − E

[

1

N
Tr(AN )k1

])
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· · ·
(

(DN )lp − 1

N
Tr(DN )lp

)(

(AN )kp − E

[

1

N
Tr(AN )kp

])]

goes to zero as N goes to infinity for any integer numbers l1, . . . , lp,
k1, . . . , kp.

Hint: Expand the trace in terms of a weighted sum over the indices and show
that the main contribution comes from indices whose associated graph is a
tree. Fixing the tree, average out the quantities in the DN and conclude (be
careful that the DN ’s can come with the same indices but show then that the
main contribution comes from independent entries of the (AN )k

ii)’s because of
the tree structure).

In [84, 6], the previous exercise is generalized to prove the convergence
of any words in {AN

1 , . . . ,A
N
m} and {DN

1 , . . . , D
N
m} when the trace of words

in the deterministic matrices {DN
1 , . . . , D

N
m} are assumed to converge and

{AN
1 , . . . ,A

N
m} are independent Wigner matrices. This can also be deduced

from Theorem 17.5 in the case of complex Gaussian matrices (by using their
invariance under multiplication by unitary matrices).

Bibliographical notes. After the seminal article [197] of Voiculescu,
Theorem 3.3 was generalized to non-Gaussian entries by Dykema [84]. Weaker
hypotheses on the matrices AN to generalize Exercise 3.4 are given in [6].
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Wigner matrices and concentration inequalities
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In the last twenty years, concentration inequalities have developed into a
very powerful tool in probability theory. They provide a general framework to
control the probability of deviations of smooth functions of random variables
from their mean or their median. We begin this section by providing some
general framework where concentration inequalities are known to hold. We
first consider the case where the underlying measure satisfies a log-Sobolev
inequality; we show how to prove this inequality in a simple situation and
then how it implies concentration inequalities. We then review a few other
situations where concentration inequalities hold. To apply these techniques
to random matrices, we show that certain functions of the eigenvalues of
matrices, such as

∫

f(x)dLAN (x) with f Lipschitz, are smooth functions of
the entries of the matrix AN so that concentration inequalities hold as soon
as the joint law of the entries satisfies one of the conditions seen in the first
two chapters of this part. Another useful a priori control is provided by
Brascamp–Lieb inequalities; we shall apply them to the setting of random
matrices at the end of this part.

To motivate the reader, let us state the type of result we want to obtain
in this part.

To this end, we introduce some extra notations. Let us recall that if X is a
symmetric (resp. Hermitian) matrix and f is a bounded measurable function,
f(X) is defined as the matrix with the same eigenvectors than X but with
eigenvalues that are the image by f of those ofX ; namely, if e is an eigenvector
of X with eigenvalue λ, Xe = λe, f(X)e := f(λ)e. In terms of the spectral
decomposition X = UDU∗ with U orthogonal (resp. unitary) and D diagonal
real, one has f(X) = Uf(D)U∗ with f(D)ii = f(Dii). For M ∈ N, we denote

by 〈·, ·〉 the Euclidean scalar product on RM (resp. CM ), 〈x, y〉 =
∑M

i=1 xiyi

(〈x, y〉 :=
∑M

i=1 xiy
∗
i ), and by || · ||2 the associated norm ||x||22 := 〈x, x〉.

Throughout this section, we denote the Lipschitz constant of a function
G : RM → R by

|G|L := sup
x6=y∈RM

|G(x) −G(y)|
‖x− y‖2

,

and call G a Lipschitz function if |G|L <∞.

Lemma II.1. Let g : RN → R be Lipschitz with Lipschitz constant |g|L.
Then, with AN denoting the Hermitian (or symmetric) matrix with entries
(AN

ij )1≤i,j≤N , the map {AN
ij}1≤i≤j≤N 7→ Tr(g(AN )) is a Lipschitz function

with constant
√
N |g|L. Therefore, if the joint law of (AN

ij )1≤i≤j≤N is “good”,
there exists α > 0, constants c > 0 and C <∞ so that for all N ∈ N

P
(∣

∣Tr(g(AN )) − E[Tr(g(AN ))]
∣

∣ > δ|g|L
)

≤ Ce−c|δ|α .

“Good” here means for instance that the law satisfies a log-Sobolev inequality;
an example is when the {AN

ij }1≤i≤j≤N are independent Gaussian variables
with uniformly bounded covariance (see Theorem 6.6).
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The interest of results such as Lemma II.1 is that they provide bounds on
deviations that do not depend on the dimension. They can be used to show
laws of large numbers (reducing the proof of the almost sure convergence to
the prove of the convergence in expectation) or to ease the proof of central
limit theorems (indeed, when α = 2 in Lemma II.1, Tr(g(AN ))−E[Tr(g(AN ))]
has a sub-Gaussian tail, providing tightness arguments for free).

We shall recall below the elements of the theory of concentration we shall
need. In fact, we will mostly use concentration inequalities related to log-
Sobolev inequalities; we shall therefore provide details on this point and give
full proofs. We will then review other classical settings where concentration
inequalities are known to apply. Finally, we will apply this theory to random
matrices and provide for instance sufficient hypotheses so that Lemma II.1
holds.



4

Concentration inequalities and logarithmic

Sobolev inequalities

We first derive concentration inequalities based on the logarithmic Sobolev
inequality and then give some generic and classical examples of laws that sat-
isfy this inequality. Since we shall use it in these notes for Wigner’s matrices,
we focus first on concentration for laws in RN . We then briefly generalize
the results to compact Riemannian manifolds in order to state concentration
inequalities for probability measures on the orthogonal or unitary group.

4.1 Concentration inequalities for laws satisfying
logarithmic Sobolev inequalities

Throughout this section an integer number N will be fixed.

Definition 4.1. A probability measure P on RN is said to satisfy the logarith-
mic Sobolev inequality (LSI) with constant c if, for any differentiable function
f : RN → R,

∫

f2 log
f2

∫

f2dP
dP ≤ 2c

∫

‖∇f‖2
2dP. (4.1)

Here, ‖∇f‖2
2 =

∑N
i=1(∂xif)2.

The interest in the logarithmic Sobolev inequality, in the context of concen-
tration inequalities, lies in the following argument, that among other things,
shows that LSI implies sub-Gaussian tails. This fact and a general study of
logarithmic Sobolev inequalities may be found in [107],[171] or [138]. The
Gaussian law, and any probability measure ν absolutely continuous with re-
spect to the Lebesgue measure satisfying the Bobkov and Götze [38] condition
(including ν(dx) = Z−1e−|x|αdx for α ≥ 2, where Z =

∫

e−|x|αdx), as well as
any distribution absolutely continuous with respect to such laws possessing a
bounded above and below density, satisfies the LSI [138], [107, Property 4.6].
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Lemma 4.2 (Herbst). Assume that P satisfies the LSI on RN with constant
c. Let G be a Lipschitz function on RN , with Lipschitz constant |G|L. Then,
for all λ ∈ R, we have

∫

eλ(G−EP (G))dP ≤ ecλ2|G|2L/2, (4.2)

and so for all δ > 0

P (|G−EP (G)| ≥ δ) ≤ 2e−δ2/2c|G|2L . (4.3)

Note that Lemma 4.2 also implies that EPG is finite.

Proof of Lemma 4.2. We denote by EP the expectation EP [f ] =
∫

fdP .
Note first that (4.3) follows from (4.2). Indeed, by Chebychev’s inequality, for
any λ > 0,

P (|G−EPG| ≥ δ) ≤ e−λδEP [eλ|G−EP G|]

≤ e−λδ(EP [eλ(G−EP G)] +EP [e−λ(G−EP G)])

≤ 2e−λδec|G|2Lλ2/2.

Optimizing with respect to λ (by taking λ = δ/c|G|2L) yields the bound (4.3).
Turning to the proof of (4.2), let us first assume that G is a bounded

differentiable function such that

|| ||∇G||22||∞ := sup
x∈RN

N
∑

i=1

(∂xiG(x))2 <∞.

Define
Xλ = logEP e

2λ(G−EP G) .

Then, taking f = eλ(G−EP G) in (4.1), some algebra reveals that for λ > 0,

d

dλ

(

Xλ

λ

)

≤ 2c|| ||∇G||22||∞ .

Now, because G−EP (G) is centered,

lim
λ→0+

Xλ

λ
= 0

and hence integrating with respect to λ yields

Xλ ≤ 2c|| ||∇G||22||∞λ2 ,

first for λ ≥ 0 and then for any λ ∈ R by considering the function −G instead
of G. This completes the proof of (4.2) in the case where G is bounded and
differentiable.
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Let us now assume only that G is Lipschitz with |G|L < ∞. For ε > 0,
define Ḡε = G ∧ (−1/ε) ∨ (1/ε), and note that |Ḡε|L ≤ |G|L < ∞. Consider
the regularization Gε(x) = pε ∗ Ḡε(x) =

∫

Ḡε(y)pε(x−y)dy with the Gaussian

density pε(x) = e−|x|2/2εdx/
√

(2πε)N such that pε(x)dx converges weakly to
the atomic measure δ0 as ε converges to 0. Since for any x ∈ RN ,

|Gε(x) − Ḡε(x)| ≤ |G|L
∫

||y||2pε(y)dy = |G|L
√
εN,

Gε converges pointwise to G. Gε is also continuously differentiable and

||||∇Gε||22||∞ = sup
x∈RM

sup
u∈RM

{2〈∇Gε(x), u〉 − ||u||22}

≤ sup
u,x∈RM

sup
δ>0

{2δ−1(Gε(x+ δu) −Gε(x)) − ||u||22}

≤ sup
u∈RM

{2|G|L||u||2 − ||u||22} = |G|2L. (4.4)

Thus, we can apply the previous result to find that for any ε > 0 and all λ ∈ R

EP [eλGε ] ≤ eλEP Gεecλ2|G|2L/2. (4.5)

Therefore, by Fatou’s lemma,

EP [eλG] ≤ elim infε→0 λEP Gεecλ2|G|2L/2. (4.6)

We next show that limε→0EPGε = EPG, which, in conjunction with (4.4),
will conclude the proof. Indeed, (4.5) implies that

P (|Gε −EPGε| > δ) ≤ 2e−δ2/2c|G|2L . (4.7)

Consequently,

E[(Gε −EPGε)
2] = 2

∫ ∞

0

xP (|Gε −EPGε| > x) dx ≤ 4

∫ ∞

0

xe
− x2

2c|G|2
L dx

= 4c|G|2L (4.8)

so that the sequence (Gε − EPGε)ε≥0 is uniformly integrable. Now, Gε con-
verges pointwise to G and therefore there exists a constant K, independent
of ε, such that for ε < ε0, P (|Gε| ≤ K) ≥ 3

4 . On the other hand, (4.7) implies
that P (|Gε −EPGε| ≤ r) ≥ 3

4 for some r independent of ε. Thus,

{|Gε −EPGε| ≤ r} ∩ {|Gε| ≤ K} ⊂ {|EPGε| ≤ K + r}

is not empty, providing a uniform bound on (EPGε)ε<ε0 . We thus deduce from
(4.8) that supε<ε0 EPG

2
ε is finite, and hence (Gε)ε<ε0 is uniformly integrable.

In particular,
lim
ε→0

EPGε = EPG <∞,

which finishes the proof. ut
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4.2 A few laws satisfying a log-Sobolev inequality

In the sequel, we shall be interested in laws of variables that are either inde-
pendent or in interaction via a potential. We shall give sufficient conditions
to ensure that a log-Sobolev inequality is satisfied.

• Laws of independent variables.
One of the most important properties of the log-Sobolev inequality is the
product property:

Lemma 4.3. Let (µi)i=1,2 be two probability measures on RN and RM ,
respectively, satisfying the logarithmic Sobolev inequalities with coefficients
(ci)i=1,2. Then, the product probability measure µ1⊗µ2 on RM+N satisfies
the logarithmic Sobolev inequality with coefficient max(c1, c2).
Consequently, if µ is a probability measure on RM satisfying a logarithmic
Sobolev inequality with a coefficient c < ∞, then the product probability
measure µ⊗n satisfies the logarithmic Sobolev inequality with the same co-
efficient c for any integer n.

Proof. Let f be a continuously differentiable function on RN ×RM . Then,
using the logarithmic Sobolev inequality under the probability measure µ1

applied to f(., x2) and under µ2 applied to µ1(f
2)(.) =

∫

f2(x1, .)dµ(x1),
we obtain

µ1 ⊗ µ2

(

f2 log
f2

µ1 ⊗ µ2(f2)

)

= µ2

(

µ1(f
2 log

f2

µ1(f2)
) + µ1(f

2) log
µ1(f

2)

µ1 ⊗ µ2(f2)

)

≤ µ2

(

2c1µ1[‖∇x1f‖2
2]
)

+ 2c2µ2

(

‖∇x2

√

µ1(f2)‖2
2

)

≤ µ2 ⊗ µ1

(

2c1‖∇x1f‖2
2 + 2c2‖∇x2f‖2

2

)

≤ 2max(c1, c2)µ2 ⊗ µ1

(

‖∇f‖2
2

)

where we have used in the last line that ‖∇f‖2
2 = ‖∇x1f‖2

2 +‖∇x2f‖2
2 and

‖∇x2

√

µ1(f2)‖2
2 =

M
∑

i=1

(∂xi
2
(

∫

f(x1, x2)
2dµ1(x1))

1
2 )2

=

M
∑

i=1

(
∫

f(x1, x2)∂xi
2
f(x1, x2)dµ1(x1)

(
∫

f(x1, x2)2dµ1(x1))
1
2

)2

≤
M
∑

i=1

∫

(∂xi
2
f(x1, x2))

2dµ1(x1)

by the Cauchy–Schwarz inequality. ut
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• Log-Sobolev inequalities for variables in strictly convex interaction.
Below, we follow below [8, chapter 5] and [107, chapter 4], which we rec-
ommend for more details. We show that a log-Sobolev inequality holds if
the so-called Bakry–Emery condition is satisfied. We then give sufficient
conditions for the latter to be true. Let dx denote the Lebesgue measure on
R and Φ be a smooth function (at least twice continuously differentiable)
from RN into R going to infinity fast enough so that the probability mea-
sure

µΦ(dx) :=
1

Z
e−Φ(x1,...,xN )dx1 · · · dxN

is well defined. We consider the operator on the set C2
b (RN ) of twice con-

tinuously differentiable functions defined by

LΦ = ∆−∇Φ.∇ =
N
∑

i=1

(∂2
i − ∂iΦ∂i).

Here and below, we shall write for short ∂i = ∂xi for i ∈ {1, . . . , N}. By
integration by parts, one sees that LΦ is symmetric in L2(µΦ), i.e., for any
functions f, g ∈ C2

b (RN ),

µΦ (fLΦg) = µΦ (gLΦf) .

By the Hille–Yoshida theorem (see, e.g., [107, Chapter 1]), we can associate
to the operator LΦ a Markov contractive semi-group (Pt)t≥0, i.e. a family
of linear operators on C0

b (RN ) such that Pt : C0
b (RN ) → C0

b (RN ) satisfies:
(1) P0f = f for all f ∈ C0

b (RN ).
(2) The map t → Pt is continuous in the sense that for all f ∈ C0

b (RN ),
t→ Ptf is a continuous map from R+ into C0

b (RN ).
(3) For any f ∈ C0

b (RN ) and (t, s) ∈ (R+)2,

Pt+sf = PtPsf.

(4) Pt1 = 1 for all t ≥ 0.
(5) Pt preserves positivity, i.e., for any f ≥ 0, Ptf ≥ 0. In particular, by
(4), for all t ≥ 0,

‖Ptf‖∞ ≤ ‖f‖∞
(6)

LΦ(f) = lim
t↓0

t−1(Ptf − f)

for any function f for which this limit exists.

Exercise 4.4. Let Φ be a twice continuously differentiable function, with
uniformly bounded second derivatives. Then, by Theorem 20.16, there ex-
ists a unique solution to the stochastic differential equation

dxi
t = dBi

t − ∂iΦ(xt)dt

such that xi
0 = zi for 1 ≤ i ≤ N . Denote by xi,z

· this solution.
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1. Show that the law P z
t of xz

t obeys

∂tE[f(xz
t )] = E[LΦf(xz

t )].

Hint: Use Itô’s calculus.
2. Let Ptf(z) := E[f(xz

t )]. Show that Pt satisfies conditions (1)–(6) above.
3. Assume Hess Φ(x) ≥ (1/c)I for all x with some c > 0 and show that
Ptf(x) − µΦ(f) goes to zero exponentially fast for any C1 function f .
Hint: Write d(xz

t − xy
t ) = −(∇Φ(xz

t ) −∇Φ(xy
t ))dt and use that

< ∇Φ(xz
t ) −∇Φ(xy

t ), xz
t − xy

t >≥
1

c
‖xz

t − xy
t ‖2

2

We define the operator “carré du champ” Γ1 by

Γ1(f, f) =
1

2

(

LΦf
2 − 2fLΦf

)

.

Simple algebra shows that Γ1(f, f) =
∑N

i=1(∂if)2 = ‖∇f‖2
2. We define

Γ1(f, g) by bilinearity:

Γ1(f, g) = Γ1(g, f) =
1

2
(Γ1(f + g, f + g) − Γ1(f, f) − Γ1(g, g)) .

Note that because LΦ is symmetric in L2(µΦ), Pt is reversible in L2(µΦ),
i.e.,

µΦ(fPtg) = µΦ(gPtf)

for any smooth functions f, g. In particular, since Pt1 = 1, µΦPt = µΦ and
so µΦ is invariant under Pt. We expect that Pt is ergodic in the sense that
for all f ∈ C0

b (RN ),
lim

t→∞
µΦ(Ptf − µΦf)2 = 0. (4.9)

We shall not prove this point in the most general context here but only
when the Bakry–Emery condition holds, see (4.12).
Finally, let us introduce the ‘carré du champ itéré’

Γ2(f, f) =
1

2

d

dt
(Pt(Γ1(f, f)) − Γ1(Ptf, Ptf)) |t=0

=
1

2
{LΦΓ1(f, f) − 2Γ1(f,LΦf)}.

We define the Bakry–Emery condition as follows.

Definition 4.5. We say that the Bakry–Emery condition (denoted (BE))
is satisfied if there exists a positive constant c > 0 such that

Γ2(f, f) ≥ 1

c
Γ1(f, f) (4.10)

for any function f for which Γ1(f, f) and Γ2(f, f) are well defined.
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In our case,

Γ2(f, f) =

m
∑

i,j=1

(∂i∂jf)2 +

m
∑

i,j=1

∂ifHess(Φ)ij∂jf

with Hess(Φ) the Hessian of Φ; Hess(Φ)ij = ∂i∂jΦ. Thus, (BE) is equivalent
to Hess(Φ)(x) ≥ c−1I (observe that the choice f =

∑

vixi shows that (BE)
implies the latter).

Theorem 4.6 (Bakry–Emery theorem). Bakry–Emery condition im-
plies that µΦ satisfies the logarithmic Sobolev inequality with constant c.

Before going into the proof of this theorem, let us observe the following:

Corollary 4.7. If for all x ∈ RN ,

Hess(Φ)(x) ≥ 1

c
I

in the sense of the partial order on self-adjoint operators, then (BE) holds
and µΦ satisfies the logarithmic Sobolev inequality with constant c.
In particular, if µ is the law of N independent Gaussian variables with
variance bounded above by c, then µ satisfies the logarithmic Sobolev in-
equality with constant c.

Proof of Theorem 4.6. Let us first prove (4.9) when (BE) is satis-
fied. Let f be a continuously differentiable function such that ‖∇f‖2

is uniformly bounded. Fix t > 0 and consider, for s ∈ [0, t], ψ(s) =
PsΓ1(Pt−sf, Pt−sf). We shall assume hereafter that Ptf is sufficiently
smooth so that Γ1(Pt−sf, Pt−sf) is in the domain of the generator. We
refer to [6] or [171] for details about this assumption. Then, we find

∂sψ(s) = 2PsΓ2(Pt−sf, Pt−sf)

≥ 2

c
PsΓ1(Pt−sf, Pt−sf) =

2

c
ψ(s)

where we finally used (BE). Thus, for all t ≥ 0,

Γ1(Ptf, Ptf) ≤ e−
2
c tPtΓ1(f, f). (4.11)

Since Γ1(f, f) = ‖∇f‖2
2 is uniformly bounded, we deduce that Γ1(Ptf, Ptf) =

‖∇Ptf‖2
2 goes to zero as t goes to infinity, ensuring that Ptf converges al-

most surely to a constant. Indeed, for all x, y in RN , (4.11) implies that
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|Ptf(x) − Ptf(y)| =

∣

∣

∣

∣

∫ 1

0

〈∇Ptf(αx + (1 − α)y), (x − y)〉dα
∣

∣

∣

∣

≤ maxz∈RN‖∇Ptf‖2(z)‖x− y‖2

≤ e−
2
c tmaxz∈RNPt‖∇f‖2(z)‖x− y‖2

≤ e−
2
c t‖‖∇f‖2‖∞‖x− y‖2

where we used the fifth property of the Markov semi-group. Thus, for
f ∈ C1

b (RN ),
lim

t→∞
Ptf = lim

t→∞
µΦ(Ptf) = µΦ(f) a.s. (4.12)

The convergence also holds in L2(µΦ) since Ptf is uniformly bounded by
property (5) of Markov processes, yielding (4.9).
Let f be a positive bounded continuous function so that µΦf = 1. We set
ft = Ptf and let

Sf (t) = µΦ(ft log ft).

Since ft converges to µΦf and ft log ft is uniformly bounded, we have

lim
t→∞

Sf (t) = µΦ(f) logµΦ(f) = 0.

Hence,

Sf (0) = −
∫ ∞

0

dt
d

dt
Sf (t) =

∫ ∞

0

dtµΦΓ1(ft, log ft). (4.13)

Next using the fact that Pt is symmetric together with the Cauchy–
Schwarz inequality, we get

µΦ [Γ1(ft, log ft)] = µΦ [Γ1 (f, Pt(log ft))] (4.14)

≤
(

µΦ
Γ1(f, f)

f

)
1
2

(µΦ [fΓ1(Pt log ft, Pt log ft)])
1
2 .

Applying (4.11) to the function log ft, we obtain

(µΦ(fΓ1(Pt log ft, Pt log ft)))
1
2 ≤

(

µΦ(fe−
2
c tPtΓ1(log ft, log ft))

)
1
2

(4.15)

= e−
1
c t (µΦ(ftΓ1(log ft, log ft)))

1
2

= e−
1
c t (µΦ(Γ1(ft, log ft)))

1
2

where in the last stage we have used symmetry of the semigroup and the
fact that Γ1(f, log f) = fΓ1(log f, log f). The inequalities (4.14) and (4.15)
imply the following bound:
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µΦΓ1(ft, log ft) ≤ e−
2
c tµΦ

Γ1(f, f)

f
= 4e−

2
c tµΦΓ1(f

1
2 , f

1
2 ). (4.16)

Plugging this into (4.13), one arrives at

Sf (0) ≤
∫ ∞

0

4e−
2t
c dtµΦΓ1(f

1
2 , f

1
2 )) = 2cµΦΓ1(f

1
2 , f

1
2 )

which completes the proof. ut

Bibliographical notes. The reader interested in the theory of concen-
tration inequalities and log-Sobolev inequalities can find more material for
instance in the articles [138, 107, 8, 140, 136]. The Bakry–Emery condition
was introduced in [19, 18].
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Generalizations

5.1 Concentration inequalities for laws satisfying weaker
coercive inequalities

Concentration inequalities under log-Sobolev inequalities are optimal in the
sense that they provide a Gaussian tail for statistics that are expected to
satisfy a central limit theorem. However, for that very same reason, laws sat-
isfying a log-Sobolev inequality must have a sub-Gaussian tail. One way to
weaken this hypothesis is to weaken both requirements and hypotheses, for in-
stance to assume a weaker coercivity inequality such as a Poincaré inequality.
In this section, we keep the notations of the previous section. Let us recall that
a probability measure µ on RM satisfies Poincaré’s inequality with coefficient
m > 0 iff for any test function f ∈ C2

b (RM )

µΦ(Γ1(f, f)) ≥ mµΦ[(f − µ(f))2].

Exercise 5.1. Show that Poincaré’s inequality satisfies a product property
similar to the product property of LSI that we saw in Lemma 4.3.

We have:

Lemma 5.2. [1, Theorem 2.5] Assume that µΦ satisfies Poincaré’s inequality
with constant m. Then, for any Lipschitz function f

µΦ

(

exp{
√

2m
f − µΦ(f)

|f |L
}
)

≤ K

with K = 2
∏∞

1 (1 − 4−m)−2m

. As a consequence, for all δ > 0,

µΦ(|f − µΦ(f)| ≥ δ) ≤ 2Ke
−
√

m
2

δ
|f|L .

Note that the lemma shows that measures satisfying Poincaré’s inequality
must have a sub-exponential tail.
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Exercise 5.3. Prove the above lemma by showing that for any λ > 0, any
continuously differentiable function f ,

E[eλf ] ≤ E[e
λ
2 f ]2 +

|f |2Lλ2

4m
E[eλf ].

Exercise 5.4. Show that a log-Sobolev inequality with coefficient c implies a
spectral gap inequality with coefficient bounded below by c−1. Hint: Put f =
1 + εg in (LSI) and let ε go to zero.

5.2 Concentration inequalities by Talagrand’s method

Talagrand’s concentration inequality does not require that the underlying
measure satisfies a coercive inequality. It holds for the law of independent
equidistributed uniformly bounded variables. The price to pay is that one
needs to assume that the test function is convex and also to consider concen-
tration with respect to the median rather than the mean.

Let us recall that the median MY of a random variable Y is defined as
the largest real number such that P (Y ≤ x) ≤ 2−1. Then, let us state the
following easy consequence of a theorem due to Talagrand [189, Theorem 6.6].

Theorem 5.5 (Talagrand). Let K be a connected compact subset of R with
diameter |K| = supx,y∈K |x − y|. Consider a convex real-valued function f

defined on KN . Assume that f is Lipschitz on KN , with constant |f |L. Let P
be a probability measure on K and X1, . . . , XN be N independent copies with
law P . Then, if Mf is the median of f(X1, . . . , XN ), for all ε > 0,

P (|f(X1, . . . , XN ) −Mf | ≥ ε) ≤ 4e
− ε2

16|K|2|f|2
L .

Theorem 6.6 of [189] deals with the case where K ⊂ [−1, 1] (which easily
generalizes in the above statement by rescaling) and functions f that can be
Lipschitz only in a subset of KN (in which case the above statement has to
be corrected by the probability that (X1, . . . , XN ) belongs to this subset).

Under the hypotheses of the above theorem,

E[|f(X1, . . . , XN ) −Mf |] =

∫ ∞

0

P (|f(X1, . . . , XN ) −Mf | ≥ t) dt

≤ 4

∫ ∞

0

e
− t2

16|K|2|f|2
L dt = 16|K||f |L.

Hence, we obtain as an immediate corollary to Theorem 5.5:

Corollary 5.6. Under the hypotheses of Theorem 5.5, for all t ∈ R+,

P (|f(X1, . . . , XN ) −E[f(X1, . . . , XN )]| ≥ (t+ 16)|K||f |L) ≤ 4e−
t2

16 .
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5.3 Concentration inequalities on compact Riemannian
manifold with positive Ricci curvature

Let M be a compact connected manifold of dimension N equipped with a
Riemannian metric g. g is a differentiable map onM such that for each x ∈M ,
gx is a scalar product on the tangent space of M at x and therefore can be
identified with a positive N ×N matrix ((gx)ij)1≤i,j≤N . We shall denote by
µ the Lebesgue measure on (M, g), that is, the normalized volume measure;
it is seen that locally

dµ(x) =
√

det(gx)dx.

On (M, g), one can define the Laplace–Baltrami operator∆ (which generalizes
the usual Laplace operator on RN ) and a gradient ∇ such that for any smooth
real-valued function f all x ∈M , all y in the tangent space TxM at x,

dfx(y) = gx(∇f, y).

We let Φ be a smooth function on M and define

µΦ(dx) =
1

Z
e−Φ(x)dµ(x)

as well as the operator LΦ such that for all smooth functions (h, f)

µΦ(fLΦh) = µΦ(hLΦf) = µΦ(gx(∇f,∇h)).

By integration by parts, LΦ can be written in local coordinates:

LΦ =

N
∑

i,j=1

gij
x ∂i∂j +

N
∑

i=1

bΦi (x)∂i

with some bi that can be explicitly computed in terms of Φ and gx. We can
define the “opérateurs carré du champ” as before. Simple algebra shows that

Γ1(f, f)(x) :=
(

LΦ(f2) − 2fLΦ(f)
)

(x)

=

N
∑

i,j=1

(gx)ij∂if(x)∂jf(x) = g−1
x (∇f(x),∇f(x))

and,

Γ2(f, f)(x) := (LΦ(Γ1(f, f)) − 2Γ1(LΦf, f)) (x)

= (Hessxf,Hessxf)gx + (Ricx + HessxΦ)(∇f(x),∇f(x))

Here, in local coordinates, the Hessian (Hessf)ij of f at x is equal to (∂ij −
Γ k

ij∂k)f where Γ k
ij are the Christofell symbols,
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(Hessf,Hessf)g =
∑

gijgjl(Hessf)ij(Hessf)jl,

(HessΦ)(∇f,∇f) is obtained by differentiating twice Φ in the direction ∇f
and Ric denotes the Ricci tensor. An analytic definition of Ric is actually
given above as the term due to the non-commutativity of derivatives on the
manifold.

The arguments of Theorem 4.6 extend to the setting of a compact Rie-
mannian manifold. Indeed, they were mainly based on the facts that gx is
positive definite and that ∇ obeys the Leibniz property

∇(h(f)) = ∇f(∇h)(f)

for any differentiable functions f, h : M → M . Since these properties still
hold, the proof of Theorem 4.6 can be generalized to this setting yielding:

Corollary 5.7. If for all x ∈ M and v ∈ TxM ,

(Ricx + HessΦx)(v, v) ≥ c−1g−1
x (∇f,∇f),

µΦ satisfies a log-Sobolev inequality with constant c, i.e., for any function
f : M → R we have

µΦ

(

f2 log
f2

µΦ(f2)

)

≤ 2cµΦ(Γ1(f, f)).

A straightforward generalization of the proof of Lemma 4.2 shows:

Corollary 5.8. Assume that for all x ∈M and v ∈ TxM ,

(Ricx + HessΦx)(v, v) ≥ c−1g−1
x (v, v).

Then, for any differentiable function f on M , if we set

‖|∇f‖|2 := sup
x∈M

Γ1(f, f)
1
2 (x),

for all δ > 0

µΦ (|f − µΦ(f)| ≥ δ) ≤ 2e
− δ2

2c|‖∇f‖|2
2 .

Exercise 1. Prove the corollary. Hint: Prove and use Leibniz rule

Γ1(e
f , ef ) = e2fΓ1(f, f)

and follow the proof of Lemma 4.2.
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5.4 Local concentration inequalities

In many instances, one may need to obtain concentration inequalities for func-
tions that are only locally Lipschitz. To this end we state (and prove) the
following lemma. Let (X, d) be a metric space and set for f : X → R

|f |L := sup
x,y∈X

|f(x) − f(y)|
d(x, y)

.

Define, for a subset B of X , d(x,B) = infy∈B d(x, y). Then :

Lemma 5.9. Assume that a probability measure µ on (X, d) satisfies a con-
centration inequality; for all δ > 0, for all f : X → R,

µ(|f − µ(f)| ≥ δ) ≤ e
−g( δ

|f|L
)

for some increasing function g on R+. Let B be a subset of X and let f : B →
R such that

|f |BL := sup
x,y∈B

|f(x) − f(y)|
d(x, y)

is finite. Then, with δ(f) := µ
(

1Bc(supx∈B |f(x)| + |f |BLd(x,B))
)

, we have

µ({|f − µ(f1B)| ≥ δ + δ(f)} ∩B) ≤ e
−g( δ

|f|B
L

)
.

Proof. It is enough to define a Lipschitz function f̃ on X , whose Lipschitz
constant |f̃ |L is bounded above by |f |BL and so that f̃ = f on B. We set

f̃(x) = sup
y∈B

{f(y)− |f |BLd(x, y)}.

Note that, if x ∈ B, since f(y)− f(x)− |f |BLd(x, y) ≤ 0, the above supremum

is taken at y = x and f̃(x) = f(x). Moreover, using the triangle inequality,
we get that for any x, z ∈ X ,

f̃(x) ≥ sup
y∈B

{f(y) − |f |BL (d(x, z) + d(z, y))}

= −|f |BLd(x, z) + f̃(z) (5.1)

and hence f̃ is Lipschitz, with constant |f |BL . Therefore, we find that

µ({|f − µ(f1B)| ≥ δ} ∩ B) ≤ µ(|f̃ − µ(f̃)| ≥ δ + µ(|1Bf − f̃ |))

Note that µ(|1Bf − f̃ |) = µ(1Bc |f̃ |). (5.1) with z ∈ B shows that

|f̃(x)| ≤ |f(z)| + |f |BLd(z, x)
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and so optimizing over z ∈ B gives

|f̃(x)| ≤ maxz∈B |f(z)| + |f |BLd(B, x).

Hence,

µ(|1Bf − f̃ |) ≤ µ

(

1Bc(sup
x∈B

|f(x)| + |f |BLd(., B))

)

=: δ(f)

gives the desired estimate. ut

Bibliographical notes. Since the generalization of concentration inequal-
ities to laws satisfying Poincaré’s inequalities by Aida and Stroock [1], many
recent results have considered the case where the decay at infinity is inter-
mediate [94, 21] or even is very slow with heavy tails [22]. The generalization
to Riemannian manifolds of the Bakry–Emery condition was already intro-
duced in [18]. The case of discrete-valued random variables was considered by
Talagrand [188].
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Concentration inequalities for random matrices

In this chapter, we shall apply the previous general results on concentration
inequalities to random matrix theory, in particular to the eigenvalues of ran-
dom matrices. To this end, we shall first study the regularity of the eigenvalues
of matrices as a function of its entries (since the idea will be to apply con-
centration inequalities to the entries of the random matrices and then see the
eigenvalues as nice functions of these entries).

6.1 Smoothness and convexity of the eigenvalues of a
matrix

We shall not follow [108] where smoothness and convexity were mainly proved
by hand for smooth functions of the empirical measure and for the largest
eigenvalue. We will rather, as in [6], rely on Weyl and Lidskii inequalities (see
Theorems 19.1 and 19.4). We recall that we denote, for B ∈ MN (C), ‖B‖2

its Euclidean norm:

‖B‖2 :=





N
∑

i,j=1

|Bij |2




1
2

.

From Weyl and Löwner Theorem 19.4, we will deduce that each eigen-
value of the matrix is a Lipschitz function of the entries of the matrix.

We define E(1)
N = RN(N+1)/2 (resp. E(2)

N = CN(N−1)/2 × RN ) and denote
by A the symmetric (resp. Hermitian) N × N Wigner matrix such that

A = A∗; (A)ij = Aij , 1 ≤ i ≤ j ≤ N for (Aij)1≤i≤j≤N ∈ E(β)
N , β = 1

(resp. β = 2).

Lemma 6.1. We denote by λ1(A) ≤ λ2(A) ≤ · · · ≤ λN (A) the eigenvalues

of A ∈ H(2)
N . Then for all k ∈ {1, . . . , N}, all A,B ∈ H(2)

N ,

|λk(A + B) − λk(A)| ≤ ‖B‖2.
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In other words, for all k ∈ {1, . . . , N},

(Aij)1≤i≤j≤N ∈ E(2)
N → λk(A)

is Lipschitz with constant one.
For all Lipschitz functions f with Lipschitz constant |f |L, the function

(Aij)1≤i≤j≤N ∈ E(2)
N →

N
∑

k=1

f(λk(A))

is Lipschitz with respect to the Euclidean norm with a constant bounded above
by

√
N |f |L. When f is continuously differentiable we have

lim
ε→0

ε−1

(

N
∑

k=1

f(λk(A + εB)) −
N
∑

k=1

f(λk(A))

)

= Tr(f ′(A)B).

Proof. The first inequality is a direct consequence of Theorem 19.4 and en-
tails the same control on λmax(A). For the second we only need to use the
Cauchy–Schwarz inequality:

∣

∣

∣

∣

∣

N
∑

i=1

f(λi(A)) −
N
∑

i=1

f(λi(A + B))

∣

∣

∣

∣

∣

≤ |f |L
N
∑

i=1

|λi(A) − λi(A + B)|

≤
√
N |f |L

(

N
∑

i=1

|λi(A) − λi(A + B)|2
)

1
2

≤
√
N |f |L‖B‖2

where we used Theorem 19.4 in the last line. For the last point, we check it
for f(x) = xk where the result is clear since

Tr((A + εB)k) = Tr(Ak) + εkTr(Ak−1B) +O(ε2) (6.1)

and complete the argument by density of the polynomials. ut
We can think of

∑N
i=1 f(λi(A)) as Tr(f(A)). Then, the second part of the

previous lemma can be extended to several matrices as follows.

Lemma 6.2. Let P be a polynomial in m non-commutative indeterminates.
For 1 ≤ i ≤ m, we denote by Di the cyclic derivative with respect to the ith
variable given, if P is a monomial, by

DiP (X1, . . . , Xm) =
∑

P=P1XiP2

P2(X1, . . . , Xm)P1(X1, . . . , Xm)
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where the sum runs over all decompositions of P into P1XiP2 for some
monomials P1 and P2. Di is extended linearly to polynomials. Then, for all

(A1, · · · ,Am) and (B1, . . . ,Bm) ∈ H(2)
N ,

lim
ε→0

ε−1 (Tr(P (A1 + εB1, · · · ,Am + εBm)) − Tr(P (A1, . . . ,Am)))

=

m
∑

i=1

Tr(DiP (A1, . . . ,Am)Bi).

In particular, if (A1, · · · ,Am) belong to the subset ΛN
M of elements of H(2)

N

with spectral radius bounded by M <∞,

((Ak)ij) 1≤i≤j≤N
1≤k≤m

∈ CN(N+1)m/2,Ak ∈ H(2)
N ∩ ΛN

M → Tr(P (A1, . . . ,Am))

is Lipschitz with a Lipschitz norm bounded by
√
NC(P,M) for a constant

C(P,M) that depends only on M and P . If P is a monomial of degree d, one
can take C(P,M) = dMd−1.

Proof. We can assume without loss of generality that P is a monomial. The
first equality is due to the simple expansion

Tr(P (A1 + εB1, · · · ,Am + εBm)) − Tr(P (A1, . . . ,Am))

= ε
m
∑

i=1

∑

P=P1XiP2

Tr(P1(A1, . . . ,Am)BiP2(A1, . . . ,Am)) +O(ε2)

together with the trace property Tr(AB) = Tr(BA).
For the estimate on the Lipschitz norm, observe that if P is a monomial

containing di times Xi,
∑m

i=1 di = d and DiP is the sum of exactly di mono-
mials of degree d− 1. Hence, DiP (A1, . . . ,Am) has spectral radius bounded
by diM

d−1 when (A1, . . . ,Am) are Hermitian matrices in ΛN
M . Hence, by

Cauchy–Schwarz inequality, we obtain

∣

∣

∣

∣

m
∑

i=1

Tr(DiP (A1, . . . ,Am)Bi)

∣

∣

∣

∣

≤
(

m
∑

i=1

Tr(|DiP (A1, . . . ,Am)|2)
)

1
2
(

m
∑

i=1

Tr(B2
i )

)
1
2

≤
(

N

m
∑

i=1

d2
iM

2(d−1)

)
1
2
(

m
∑

i=1

‖Bi‖2
2

)
1
2

≤
√
NdMd−1

(

m
∑

i=1

‖Bi‖2
2

)
1
2

.

ut
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Exercise 6.3. Prove that when m = 1, D1P (x) = P ′(x).

We now prove the following result originally due to Klein.

Lemma 6.4 (Klein’s lemma). Let f : R → R be a convex function. Then,
if A is the N ×N Hermitian matrix with entries (Aij)1≤i≤j≤N on and above
the diagonal,

ψf : (Aij)1≤i≤j≤N ∈ CN →
N
∑

i=1

f(λi(A))

is convex. Moreover, if f is twice continuously differentiable with f ′′(x) ≥ c
for all x, ψf is twice continuously differentiable with Hessian bounded below
by cI.

Proof. Let X,Y ∈ H(2)
N . We shall show that if f is a convex continuously

differentiable function

Tr (f(X) − f(Y )) ≥ Tr ((X − Y )f ′(Y )) . (6.2)

TakingX = A orX = B and Y = 2−1(A+B) and summing the two resulting
inequalities shows that for any couple A,B of N ×N Hermitian matrices,

Tr

(

f

(

1

2
A +

1

2
B

))

≤ 1

2
Tr (f(A)) +

1

2
Tr (f(B))

which implies that (Aij)1≤i≤j≤N → Tr(f(A)) is convex. The result follows
for general convex functions f by approximations.

To prove (6.2), let us denote by λi(C) the eigenvalues of a Hermitian
matrix C and by ξi(C) the associated eigenvector and write

〈ξi(X), (f(X) − f(Y )) ξi(X)〉

= f(λi(X)) −
N
∑

j=1

|〈ξi(X), ξj(Y )〉|2f(λj(Y ))

=

N
∑

j=1

|〈ξi(X), ξj(Y )〉|2(f(λi(X)) − f(λj(Y )))

≥
N
∑

j=1

|〈ξi(X), ξj(Y )〉|2(λi(X) − λj(Y ))f ′(λj(Y ))

where we have used the convexity of f to write f(x)−f(y) ≥ (x−y)f ′(y). The
right-hand side of the last inequality is equal to 〈ξi(X), ((X − Y )f ′(Y )) ξi(X)〉
and therefore summing over i yields (6.2), which completes the first part of
the proof of the lemma.

We give another proof below that also provides a lower bound of the Hes-
sian of ψf . The smoothness of ψf is clear when f is a polynomial since then
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ψf ((Aij)1≤i≤j≤N ) is a polynomial function in the entries. Let us compute its
second derivative when f(x) = xp. Expanding (6.1) one step further gives

Tr((A + εB)k) = Tr(Ak) + ε

p−1
∑

k=0

Tr(AkBAp−1−k)

+ ε2
∑

0≤k+l≤p−2

Tr(AkBAlBAp−2−k−l) +O(ε3)

= Tr(Ak) + εpTr(Ap−1B)

+
ε2

2
p

∑

0≤l≤p−2

Tr(AlBAp−2−lB) +O(ε3). (6.3)

A compact way to write this formula is by defining, for two real numbers x, y,

Kf (x, y) :=
f ′(x) − f ′(y)

x− y

and setting for a matrix A with eigenvalues λi(A) and eigenvector ei, 1 ≤ i ≤
N ,

Kf (A,A) =

N
∑

i,j=1

Kf (λi(A), λj(A))eie
∗
i ⊗ eje

∗
j .

Since Kxp(x, y) = p
∑p−1

r=0 x
ryp−1−r, the last term in the r.h.s. of (6.3) reads

p
∑

0≤l≤p−1

Tr(AlBAp−2−lB) = 〈Kxp(A,A),B ⊗B〉 (6.4)

where for B,C,D,E ∈ MN (C), 〈B ⊗ C,D ⊗ E〉 := 〈B,D〉2〈C,E〉2 with

〈B,D〉2 =
∑N

i,j=1 BijD̄ij . In particular, 〈eie
∗
i ⊗eje

∗
j ,B⊗B〉 = | < ei, Bej > |2

with < u,Bv >=
∑N

i,j=1 uiv̄jBij . By (6.3) and (6.4), for any Hermitian matrix
X,

Hess(Tr(Ap))[X,X ] = 〈Kxp(A,A), X ⊗X〉

=

N
∑

r,m=1

Kxp(λr(A), λm(A))| < er, Xem > |2

Now Kf (A,A) makes sense for any twice continuously differentiable function
f and by density of the polynomials in the set of twice continuously differen-
tiable function f , we can conclude that ψf is twice continuously differentiable
too. Moreover, for any twice continuously differentiable function f ,

Hess(Tr(f(A)))[X,X ] =

N
∑

r,m=1

Kf (λr(A), λm(A))| < er, Xem > |2.
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Since Kf is pointwise bounded below by c when f ′′ ≥ c we finally deduce that

Hess(Tr(f(A)))[X,X] ≥ cTr(XX∗).

The proof is thus complete. ut

Let us also notice the following:

Lemma 6.5. Assume λ1(A) ≤ λ2(A) · · · ≤ λN (A). The functions

A ∈ H(2)
N → λ1(A) and A ∈ H(2)

N → λN (A)

are convex. For any norm ‖ · ‖ on M(2)
N , (Aij)1≤i,j≤N → ‖A‖ is convex.

Proof. The first result is clear since we have already seen that λN (A+B) ≤
λN (A) + λN (B). Since for α ∈ R, λi(αA) = αλi(A), we conclude that A →
λN (A) is convex. The same result holds for λ1 (by changing the sign A →
−A). The convexity of (Aij)1≤i,j≤N → ‖A‖ is due to the definition of the
norm. ut

6.2 Concentration inequalities for the eigenvalues of
random matrices

We consider a Hermitian random matrix A whose real or complex entries have
joint law µN that satisfies one of the two hypotheses below.

Either the entries of A are independent and satisfy for some c > 0 the
following condition:

• (H1) A = XN/
√
N = (A)∗ with (XN

ij , 1 ≤ i ≤ j ≤ N) independent, with

laws (µN
ij , 1 ≤ i ≤ j ≤ N), that are probability measures on C or R satisfying

a log-Sobolev inequality with constant c <∞;
or µN is a Gibbs measure with strictly convex potential, i.e., satisfies:

• (H2) there exists a strictly convex twice continuously differentiable func-
tion V : R → R, V ′′(x) ≥ 1

c > 0, so that

µN (dA) = Z−1
N e−NTr(V (A))dA

with dA =
∏

1≤i≤j≤N d<(Aij)
∏

1≤i<j≤N d=(Aij) for complex entries or
dA =

∏

1≤i≤j≤N dAij for real entries.

Note that when V = 1
2x

2, µN is the law of a Gaussian Wigner matrix but
in any other case the entries of A with law µN are not independent.

We can now state the following theorem.

Theorem 6.6. Suppose there exists c > 0 so that either (H1) or (H2) holds.
Then:
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1. For any Lipschitz function f on R, for any δ > 0,

µN
(

|LA(f) − µN [LA(f)]| ≥ δ
)

≤ 2e
− 1

4c|f|2
L

N2δ2

.

2. Let λ1(A) ≤ λ2(A) · · · ≤ λN (A) be the eigenvalues of a self-adjoint matrix
A. For any k ∈ {1, . . . , N},

µN
(

|λk(A) − µN (λk(A))| ≥ δ
)

≤ 2e−
1
4c Nδ2

.

In particular, these results hold when the Xij are independent Gaussian
variables with uniformly bounded variances.

Proof of Theorem 6.6. For the first case, we use the product property of
Lemma 4.3 which implies that ⊗i≤jµ

N
ij satisfies the log-Sobolev inequality

with constant c. By rescaling, the law of the entries of A satisfies a log-Sobolev
inequality with constant c/N . For the second case, the assumption V ′′(x) ≥ 1

c

implies, by Lemma 6.4, that (Aij)1≤i≤j≤N ∈ E(β)
N → NTr(V (A)) is twice

continuously differentiable with Hessian bounded below by N
c . Therefore, by

Corollary 4.7, µN satisfies a log-Sobolev inequality with constant c/N .
Thus, to complete the proof of the first result of the theorem, we only need

to recall that by Lemma 6.1, G(AN
ij , 1 ≤ i ≤ j ≤ N) = Tr(f(A)) is Lipschitz

with constant bounded by
√
N |f |L whereas AN

ij , 1 ≤ i ≤ j ≤ N → λk(A) is
Lipschitz with constant one. For the second, we use Lemma 6.5. ut
Exercise 6.7. State the concentration result when the µN

ij only satisfy the
Poincaré inequality.

Exercise 6.8. If A is not Hermitian but has all entries with a joint law of
type µN as above, show that the law of the spectral radius of A satisfies a
concentration of measure inequality.

When the laws satisfy instead a Talagrand-type condition we state the
induced concentration bounds:

Theorem 6.9. Let µN (f(A)) =
∫

f(X/
√
N)
∏

dµN
i,j(Xij) with (µN

i,j , i ≤ j)
compactly supported probability measures on a connected compact subset K of
C. Fix δ1 = 8|K|√π. Then, for any δ ≥ δ1N

−1, for any convex function f ,

µN
(

|Tr(f(A)) − µN [Tr(f(A))]| ≥ Nδ|f |L
)

(6.5)

≤ 32|K|
δ

exp

(

−N2 1

16|K|2a2

(δ − δ1N
−1)2

16|K|

)

.

If λmax(A) is the largest (or smallest) eigenvalue of A, or the spectral radius
of A, for δ ≥ δ1(N),

µN
(

|λmax(A) −EN [λmax(A)]| ≥ δN
1
2

)

≤ 32|K|
δ

exp

(

− 1

16|K|2a2

(δ − δ1N
− 1

2 )2

16|K|

)

.
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Proof. Applying Corollary 5.6, Lemmas 6.1 and 6.4 with a function f :
A → Tr(f(A)) that is Lipschitz with Lipschitz constant |f |L provides the
first bound. ut

Observe that the speed of the concentration we obtained is optimal for
Tr(f(XN )) (since it agrees with the speed of the central limit theorem). It
is also optimal in view of the large deviation principle we will prove in the
next section. However, it does not capture the true scale of the fluctuations of
λmax(A) that are of order N− 1

3 . Improvements of concentration inequalities
in that direction were obtained by M. Ledoux [139].

We emphasize that Theorem 6.6 applies also when the variance of XN
ij

depends on i, j. For instance, it includes the case where XN
ij = aN

ijY
N
ij with

Y N
ij i.i.d. with law P satisfying the log-Sobolev inequality and aij uniformly

bounded (since if P satisfies the log-Sobolev inequality with constant c, the
law of ax under P satisfies it also with a constant bounded by |a|2c).

6.3 Concentration inequalities for traces of several
random matrices

The previous theorems also extend to the setting of several random matrices.
If we wish to consider polynomial functions of these matrices, we can use local
concentration results (see Lemma 5.9). We do not need to assume the random
matrices independent if they interact via a convex potential.

Definition 6.10. Let V be a polynomial in m non-commutative variables. We
say that V is convex iff for any N ∈ N,

φN
V : ((Ak)ij) i≤j

1≤k≤m
∈ E(2)

N → TrV (A1, . . . ,Am)

is convex.

Exercise 6.11. • Define X.Y = 2−1
∑m

i=1(XiYi + YiXi).
Let D = (D1, . . . , Dm) with Di the cyclic derivative with respect to the
ith variable as defined in Lemma 6.2. Show that φN

V is convex if for any

X = (Xi)1≤i≤m and Y = (Yi)1≤i≤m in H(2)
N (C)m, V (X)∗ = V (X) and

(DV (X) −DV (Y)).(X − Y )

is a non-negative matrix in H(2)
N (C).

• Show that φN
V is convex if V (X1, . . . , Xm) =

∑k
i=1 Vi(

∑m
j=1 α

i
jXj) when

αi
j are real variables and Vi are convex functions on R. Hint: use Klein’s

Lemma 6.4.
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Let c be a positive real.

dµN,β
V (A1, . . . ,Am) :=

1

ZN
V

e−NTr(V (A1,...,Am))dµN,β
c (A1) · · · dµN,β

c (Am)

with µN,β
c the law of an N × N Wigner matrix with complex (β = 2) or

real (β = 1) Gaussian entries with variance 1/cN , that is, the law of the
self-adjoint N ×N matrix A with entries with law

µN,2
c (dA) =

1

Zc
N

e−
cN
2

PN
i,j=1 |Aij |2

∏

i≤j

d<Aij

∏

i≤j

d=Aij

and

µN,1(dA) =
1

Zc
N

e−
cN
4

PN
i,j=1 A2

ij

∏

i≤j

dAij .

We then have the following corollary.

Corollary 6.12. Let µN,β
V be as above. Then:

1. For any Lipschitz function f of the entries of the matrices Ai, 1 ≤ i ≤ m,
for any δ > 0,

µN,β
V (|f − µN,β

V (f)| > δ) ≤ 2e
− Ncδ

2|f|L .

2. Let M be a positive real, define ΛN
M = {Ai ∈ H(2)

N ; max1≤i≤mλmax(Ai) ≤
M} and let P be a monomial of degree d ∈ N. Then, for any δ > 0

sabsµN,β
V

(

{|Tr(P (A1, . . . ,Am)) − µN,β
V (Tr(P (A1, . . . ,Am)1ΛN

M
))|

> δ + δ(M,N)} ∩ ΛN
M

)

≤ 2e
− cδ2

d2M2(d−1)

with
δ(M,N) ≤MdµN,β

V

(

(1 + d‖A‖2)1(ΛN
M )c

)

.

Proof. By assumption, the law µN,β
V of the entries of (A1, . . . ,Am) is ab-

solutely continuous with respect to the Lebesgue measure. The Hessian of
the logarithm of the density is bounded above by −NcI . Hence, by Corollary
4.7, µN,β

V satisfies a log-Sobolev inequality with constant 1/Nc and thus by

Lemma 4.2 we find that µN,β
V satisfies the first statement of the corollary.

We finally conclude by using Lemma 5.9 and the fact that X1, . . . , Xm →
Tr(P (X1, . . . , Xm)) is locally Lipschitz by Lemma 6.2. ut
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6.4 Concentration inequalities for the Haar measure on
O(N)

Now, let us consider the Haar measure on the orthogonal group

O(N) = {A ∈ MN×N (R);OOT = I}.

This is the unique non-negative regular Borel measure on the compact group
O(N) that is left-invariant (see [172, Theorem 5.14]) and with total mass one.
Let us introduce

SO(N) = {A ∈ O(N) : det(O) = 1}.
For any A ∈ O(N), det(O) ∈ {+1,−1}, so that O(N) can be decomposed as
two copies of SO(N). One way to go from one copy of SO(N) to the other is
for instance to change the sign of one column vector of the matrix. Let T be
such a transformation. Then, if mN denotes the Haar measure on O(N), MN

the Haar measure on SO(N), and T]M
N(.) = MN(T.), we deduce that

mN =
1

2
MN +

1

2
T]M

N .

Note that concentration inequalities under the Haar measure on O(N) do not
hold in general by taking a function concentrated on only one of the copies
of SO(N). However, on SO(N), concentration holds. Namely, endow SO(N)
with the Riemaniann metric given, for M,M ′ ∈ SO(N), by

d(M,M ′) = inf
(Mt)t∈[0,1]:M0=M,M1=M ′

∫ 1

0

(

1

2
Tr[(∂tMt)(∂tMt)

∗]

)
1
2

dt

where the infimum is taken over all differentiable paths M. : [0, 1] → SO(N).
This metric is Riemannian. It is the invariant (under conjugation) metric on
SO(N) such that the circle consisting of the rotations around a fixed subspace
RN−2 has length 2π. The later normalization can be checked by taking, if
(ei)1≤i≤N is an orthonormal basis of RN , Mt to be a rotation of angle θ in
the vector space generated by e1, e2, the identity on e3, . . . , eN). The Ricci
curvature on SO(N) for this metric has been computed in [155]:

Theorem 6.13 (Gromov). [155, p. 129]

Ric(SO(N)) ≥ N − 2

2
I.

This result extends to SU(N) when one replaces O(N) by U(N); indeed, one
has (see, e.g., [118] or [6])

Ric(SU(N)) ≥ N − 3/2. (6.6)
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To deduce concentration inequalities, let us compare the above metric on
SO(N) with the Euclidean metric on MN (C). To do so, we observe that

(

1

2
Tr((M −M ′)(M −M ′)∗)

)
1
2

= inf
(Mt)t∈[0,1]:M0=M,M1=M ′

∫ 1

0

(

1

2
Tr[(∂tMt)(∂tMt)

∗]

)
1
2

dt

if the infimum is taken on MN (C) (just take Mt = M + t(M ′ −M) to get ≥
and use the fact that M →

√

Tr(MM∗) is convex (as a norm) with Jensen’s
inequality for the converse inequality). Hence, for all M,M ′ ∈ SO(N),

(

1

2
Tr((M −M ′)(M −M ′)∗)

)
1
2

≤ d(M,M ′).

Therefore, we deduce the following:

Corollary 6.14. For any differentiable function f : SO(N) → R such that,
for any X,Y ∈ SO(N), |f(X)− f(Y )| ≤ |f |L‖X −Y ‖2, we have for all t ≥ 0

MN

(∣

∣

∣

∣

∣

f −
∫

SO(N)

f(O)dMN (O)

∣

∣

∣

∣

∣

≥ δ

)

≤ 2e
− N

24|f|2
L

δ2

.

If f extends to O(N) as a Lipschitz function on SO(N) and T (SO(N)), we
have

mN

(∣

∣

∣

∣

∣

f −
∫

O(N)

f(O)dmN (O)

∣

∣

∣

∣

∣

≥ δ + |f |L
)

≤ 2e
− N

24|f|2
L

δ2

Proof. The concentration result under MN is a direct consequence of the
lower bound on Ric(SO(N)) and Corollary 5.8. Indeed, the previous compar-
ison of the metrics shows that

|f(X) − f(Y )|2 ≤ |f |2LTr[(X − Y )(X − Y )∗] ≤ 2|f |2Ld(X,Y )2.

Hence, if f is differentiable, 2|f |2L = ‖|∇f‖|22 and Corollary 5.8 allows us
to conclude. Concentration under mN is based on the fact that if T is a
transformation of SO(N) such as a change of sign of the first column vector,
then

Tr(X − TX)(X − TX)∗ = 4
N
∑

i=1

(O1,i)
2 = 4.

Therefore,

∣

∣

∣

∣

∣

∫

SO(N)

f(O)dMN (O) −
∫

SO(N)

f(TO)dMN (O)

∣

∣

∣

∣

∣

≤ 2|f |L,
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and so recalling that mN = 2−1MN + 2−1T#M
N ,

∣

∣

∣

∣

∣

∫

SO(N)

f(O)dMN (O) −
∫

O(N)

f(O)dmN (O)

∣

∣

∣

∣

∣

≤ |f |L.

Hence, we find that

mN

(∣

∣

∣

∣

∣

f −
∫

O(N)

f(O)dmN (O)

∣

∣

∣

∣

∣

≥ Nδ + |f |L
)

≤ 1

2
MN

(

V :

∣

∣

∣

∣

∣

f(TV ) −
∫

SO(N)

f(TO)dMN (O)

∣

∣

∣

∣

∣

≥ δ

)

+
1

2
MN

(

V :

∣

∣

∣

∣

∣

f(V ) −
∫

SO(N)

f(O)dMN (O)

∣

∣

∣

∣

∣

≥ δ

)

≤ 2e
− N−2

8|f|2
L

δ2

which completes the proof. ut

As an application, we have the following corollary.

Corollary 6.15. Let F be a Lipschitz function on R, and D and D′ be fixed
diagonal matrices (whose entries are real and uniformly bounded by ||D||∞
and ‖D′||∞ respectively). Then, for any δ > 0,

MN (|Tr(F (D′ +ODO∗)) − E[Tr(F (D′ +ODO∗))]| ≥ δN |F |L)

≤ 2e
− (N−2)N

25||D||2∞
δ2

.

Proof. Put f(O) = Tr(F (D′ + ODO∗)) and note that, for any O ∈ O(N),
by Lemma 6.1,

|f(O) − f(Õ)|2 ≤ N |F |2L‖ODO∗ − ÕDÕ∗‖2
2 ≤ 4N |F |2L||D||2∞‖O − Õ‖2

2.

Plugging this estimate into the main result of Theorem 6.13 completes the
proof. ut

These concentration inequalities also extend to the Haar measure on U(N)
even though this time U(N) decomposes as a continuum of copies of SU(N)
(namely SU(N) times a rotation). This is, however, enough to get (see, e.g.,
[6]) the following theorem.

Theorem 6.16. Let (XN
1 , . . . , X

N
m ) ∈ H(2)

N be a sequence such that

L := sup
1≤i≤m

sup
N∈N

λmax(X
N
i ) <∞

and denote mN the Haar measure on U(N). Then, for any polynomial P
of m + 2 noncommutative variables (X1, . . . , Xm, U, U

∗), there exists c =
c(L, P ) > 0 such that for N large enough
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mN

(∣

∣

∣

∣

1

N
Tr(P (X1, . . . , Xm, U, U

∗))

−
∫

1

N
Tr(P (X1, . . . , Xm, V, V

∗))dmN (V )

∣

∣

∣

∣

> δ

)

≤ e−cN2δ2

.

Bibliographical notes. Klein’s lemma can be found for instance in [173].
The idea to apply concentration of measures theory to the concentration of
the spectral measure and the largest eigenvalue of random matrices started
in [108], even though it was already obtained in particular cases in differ-
ent papers by using for instance martingale expansions. It was generalized
to the concentration of each eigenvalue around its median in [3], and to the
concentration of the permanent of random matrices in [92]. In [151], the Lip-
schitz condition was generalized to norms different than the Euclidean norm.
The applications of these ideas to the eigenvalues of Haar distributed random
matrices was used in [103], based on a lower bound on the Ricci curvature
of SO(N) due to Gromov [155] and developed in [63] from the viewpoint of
random walks on compact groups.

6.5 Brascamp–Lieb inequalities; applications to random
matrices

We introduce first Brascamp–Lieb inequalities and show how they can be de-
rived from results from optimal transport theory, following a proof of Hargé
[114]. We then show how these inequalities can be used to obtain a priori con-
trols for random-matrix quantities such as the spectral radius. Such controls
will be particularly useful in the next chapter.

6.5.1 Brascamp–Lieb inequalities

The Brascamp–Lieb inequalities we shall be interested in allow us to compare
the expectation of convex functions under a Gaussian law and under a law
with a log-concave density with respect to this Gaussian law. It is stated as
follows.

Theorem 6.17. (Brascamp–Lieb [47], Hargé [114, Theorem 1.1]) Let
n ∈ N. Let g be a convex function on Rn and f a log-concave function on
Rn. Let γ be a Gaussian measure on Rn. We suppose that all the following
integrals are well defined, then:

∫

g(x+ l −m)
f(x)dγ(x)
∫

fdγ
≤
∫

g(x)dγ(x)

where

l =

∫

xdγ, m =

∫

x
f(x)dγ(x)
∫

fdγ
.
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This theorem was proved by Brascamp and Lieb [47, Theorem 7] (case g(x) =
|x1|α), by Caffarelli [59, Corollary 6] (case g(x) = g(x1)) and then for a
general convex function g by Hargé [114]. Hargé followed the idea introduced
by Caffarelli to use optimal transport of measure. Unfortunately we cannot
develop the theory of optimal transport here but shall still provide Hargé’s
proof (which is based, as for the proof of log-Sobolev inequalities, on the use
of a semi-group that interpolates between the two measures of interest) as
well as the statement of the results in optimal transport theory that the proof
requires. For more information on the latter, we refer the reader to the two
survey books by Villani [195, 196].

We shall define dµ(x) = f(x)dγ(x)/
∫

fdγ.
Brenier [48] (see also McCann [149]) has shown that there exists a convex

function φ : Rn → R such that

∫

g(y)dµ(y) =

∫

g(∇φ(x))dγ(x).

In other words, µ can be realized as the image (or push forward) of µ by the
map ∇φ.

Caffarelli [58, 57] then proved that if the density f is Hölder continuous
with exponent α ∈]0, 1[, φ is C2,α for any α ∈]0, 1[ (i.e. twice continuously
differentiable with a second derivative Hölder continuous with exponent α).
Moreover, by Caffarelli [59, Theorem 11], we know (and here we need to have
γ, µ as specified above to get the upper bound) that for any vector e ∈ Rn,

0 ≤ ∂eeφ = 〈Hess(φ)e, e〉 ≤ 1.

We now start the proof of Theorem 6.17. Observe first that we can assume
without loss of generality that γ is the law of independent centered Gaussian
variables with variance one (up to a linear transformation on the x’s).

We let ψ(x) = −φ(x)+ 1
2‖x‖2

2 so that 0 ≤ Hess(ψ) ≤ I (with I the identity
matrix and where inequalities hold in the operator sense) and write

∫

g(y)dµ(y) =

∫

g(x−∇ψ(x))dγ(x).

The idea is then to consider the following interpolation

θ(t) =

∫

g(x− Pt(∇ψ)(x))dγ(x)

with Pt the Ornstein–Uhlenbeck process given, for h : Rn → R by

Pth(x) =

∫

h(e−
t
2x+

√
1 − e−ty)dγ(y)

and Pt(∇ψ) = (Pt(∇1ψ), . . . , Pt(∇nψ)) with ∇iψ = ∂xiψ. Note that for a
Lipschitz function h, for all x ∈ Rn,



6.5 Brascamp–Lieb inequalities; applications to random matrices 89

|Pth(x) − h(x)| ≤
∫

|h(e− t
2x+

√
1 − e−ty) − h(x)|dγ(y)

≤ |h|L(
√

1 − e−t + (1 − e−
t
2 ))

∫

(‖x‖2 + ‖y‖2)dγ(y)

goes to zero as t goes to zero (since
∫

‖x‖2dγ(x) < ∞). Similarly, for t > 1,
there is a finite constant C such that

|Pth(x) −
∫

hdγ| ≤ C|h|Le−
t
2

(

‖x‖2 +

∫

‖y‖2dγ(y)

)

which shows that Pth goes to
∫

hdγ as t goes to infinity. Since ψ is twice
continuously differentiable with Hessian bounded by one, each ∇iψ, 1 ≤ i ≤
n, has uniformly bounded derivatives (by one) and so is Lipschitz for the
Euclidean norm (with norm bounded by

√
n). Hence, the above applies with

h = ∇iψ, 1 ≤ i ≤ n.
Let us assume that g is smooth and ∇g is bounded. Then, we deduce from

the above estimates that, again because
∫

‖x‖2dγ(x) is finite,

lim
t→0

θ(t) = θ(0) =

∫

g(x−∇ψ(x))dγ(x) =

∫

g(x)dµ(x),

lim
t→∞

θ(t) =

∫

g(x−
∫

∇ψdγ)dγ(x).

Since
∫

∇ψdγ =

∫

(∇ψ − x)dγ +

∫

xdγ =

∫

xdγ −
∫

xdµ

we see that Theorem 6.17 is equivalent to prove that θ(0) ≤ θ(∞) and so it is
enough to show that θ is non-decreasing. But, t → θ(t) is differentiable with
derivative

θ′(t) = −
∫

〈∇g(x− Pt(∇ψ)(x)), ∂tPt(∇ψ)(x)〉 dγ(x) (6.7)

with

∂tPt(h)(x)

=

∫ 〈

−1

2
e−

t
2x+

1

2
e−t(1 − e−t)−

1
2 y,∇h(e− t

2x+
√

1 − e−ty)

〉

dγ(y)

= −1

2
e−

t
2 〈x, Pt(∇h)(x)〉 +

1

2
e−t

∫

∆h(e−
t
2x+

√
1 − e−ty)dγ(y)

= −1

2
〈x,∇Pth(x)〉 +

1

2
∆(Pth)(x) := L(Pth)(x)
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where in the second line we integrated by parts under the standard Gaussian
law γ. Note also, again by integration by parts, that

∫

h1Lh2dγ(x) = −1

2

∫

〈∇h1,∇h2〉dγ.

Hence, (6.7) implies

θ′(t) = −
∫ n
∑

i=1

(∂ig)(x− Pt(∇ψ))LPt(∂iψ)dγ

=
1

2

n
∑

i,j=1

∫

∂j((∂ig)(x− Pt(∇ψ)))∂j (Pt(∂iψ)))dγ

=
1

2

n
∑

i,j,k=1

∫

(1k=j − ∂j(Pt(∂kψ)))(∂k∂ig)(x− Pt(∇ψ))Pt(∂iψ))dγ.

Thus, if we let

Mij(x) := ∂j(Pt(∂iψ))(x), and Cij(x) = (∂j∂ig)(x− Pt(∇ψ)),

we have written, with Iij = 1i=j the identity matrix,

θ′(t) =
1

2

n
∑

j=1

n
∑

i=1

n
∑

k=1

∫

(I −M(x))kjCik(x)Mij(x)dγ(x)

=
1

2

∫

Tr(C(x)(I −M(x))M∗(x))dγ(x) ≥ 0

since by Caffarelli we know that 0 ≤ M(x) ≤ I for all x, whereas C ≥ 0 by
hypothesis.

This completes the proof for smooth g with bounded gradient. The gen-
eralization to all convex functions g is easily done by approximation. The
function can indeed be assumed as smooth as wished, since we can always
restrict first the integral to a large ball B(0, R), then on this large ball use
the Stone–Weierstrass theorem to approximate g by a smooth function, and
extend again the integral. We can assume the gradient of g bounded by ap-
proximating g by

gR(x) = sup
y∈B(0,R)

{g(y) + 〈∇g(y), x− y〉}.

gR is convex and with bounded gradient. Moreover, since g(x) ≥ g(y) +
〈∇g(y), x−y〉 by convexity of g, gR = g on B(0, R), while g(0)+ 〈∇g(0), x〉 ≤
gR(x) ≤ g(x) shows that gR, R ≥ 0 is uniformly integrable so that we can
use the dominated convergence theorem to show that the expectation of gR

converges to that of g.
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6.5.2 Applications of Brascamp–Lieb inequalities

We apply now Brascamp-Lieb inequalities to the setting of random matrices.
To this end, we must restrict ourselves to random matrices with entries follow-
ing a law that is absolutely continuous with respect to the Lebesgue measure
and with strictly log-concave density. We restrict ourselves to the case of m
N ×N Hermitian (or symmetric) random matrices with entries following the
law

dµN,β
V (A1, . . . ,Am) :=

1

ZN
V

e−NTr(V (A1,...,Am))dµN,β
c (A1) · · · dµN,β

c (Am)

with µN,β
c the law of an N × N Wigner matrix with complex (β = 2) or

real (β = 1) Gaussian entries with covariance 1/cN , that is, the law of the
self-adjoint N ×N matrix A with entries with law

µN,β
c (dA) =

1

Zc
N

e−
cN
2 Tr(A2)dA

with dA =
∏

i≤j d<(Aij )
∏

i≤j d(=Aij ) when β = 2 and dA =
∏

i≤j dAij if
β = 1.

We assume that V is convex in the sense that for any N ∈ N,

(Aij )1≤i≤j≤N ∈ E(β)
N → Tr(V (A1, . . . ,Am))

is real valued and convex, see sufficient conditions in Exercise 6.11.
Theorem 6.17 implies that for all convex functions g on (R)βmN(N−1)/2+mN ,

∫

g(A−M)dµN,β
V (A) ≤

∫

g(A)

m
∏

i=1

dµN,β
c (Ai) (6.8)

where M =
∫

AdµN,β
V (A) is the m-tuple of deterministic matrices (Mk)ij =

∫

(Ak)ijdµ
N,β
V (A). In (6.8), g(A) is shorthand for a function of the (real and

imaginary parts of the) entries of the matrices A = (A1, . . . ,Am).
By different choices of the function g we shall now obtain some a priori

bounds on the random matrices (A1, . . . ,Am) with law µN,β
c .

Lemma 6.18. Assume that the function V is convex and there exists d > 0
such that for some finite c(V ),

V (X1, . . . , Xm) ≤ c(V )

(

1 +

m
∑

i=1

X2d
i

)

.

For c > 0, there exists C0 = C0(c, V (0), DiV (0), c(V ), d) finite such that for
all i ∈ {1, . . . ,m}, all n ∈ N,

lim sup
N

µN,β
V

(

1

N
Tr(A2n

i )

)

≤ Cn
0 .

Moreover, C0 depends continuously on V (0), DiV (0), c(V ) and in particular
is uniformly bounded when these quantities are.
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Note that this lemma shows that, for i ∈ {1, . . . ,m}, the spectral measure of
Ai is asymptotically contained in the compact set [−√

C0,
√
C0].

Proof. Let k be in {1, . . . ,m}. As A → Tr(A4d
k ) is convex by Klein’s lemma

6.4, Brascamp–Lieb inequality (6.8) implies that

µN,β
V

(

1

N
Tr(Ak −Mk)4d

)

≤ µN,β
c

(

1

N
Tr(Ak)4d

)

= µN,β
c (LAk

(x4d)) (6.9)

where Mk = µN,β
V (Ak) stands for the matrix with entries

∫

(Ak)ijdµ
N,β
V (dA).

Thus, since µN,β
c (LAk

(x4d)) converges by Wigner’s theorem 1.13 towards

c−2dC2d ≤ (c−14)2d

with C2d the Catalan number, we only need to control Mk. First observe
that for all k the law of Ak is invariant under the multiplication by unitary
matrices so that for any unitary matrices U ,

Mk = µN,β
V [Ak] = UµN,β

V [Ak]U∗ ⇒ Mk = µN,β
V

(

1

N
Tr(Ak)

)

I. (6.10)

Let us bound µN,β
V ( 1

N Tr(Ak)). Jensen’s inequality implies

ZV
N≥e−N2µN,β

c ( 1
N Tr(V )) ≥ e−N2c(V )µN,β

c ( 1
N Tr(1+

P

X2d
i ))

By Theorem 3.3, µN,β
c ( 1

N Tr(X2d
i ) converges to a finite constant and therefore

we find a finite constant C(V ) such that ZV
N≥e−N2C(V ).

We now use the convexity of V , to find that for all N ,

Tr (V (A))≥Tr(V (0) +

m
∑

i=1

DiV (0)Ai)

with Di the cyclic derivative introduced in Lemma 6.2. By Chebyshev’s in-
equality, we therefore obtain, for all λ ≥ 0,

µN,β
V (|LAk

(x)| ≥ y) ≤ µN,β
V (LAk

(x) ≥ y) + µN,β
V (−LAk

(x) ≥ y)

≤ eN2(C(V )−V (0)−λy)
(

µN,β
c (e−NTr(

Pm
i=1 DiV (0)Ai−λAk))

+µN,β
c (e−NTr(

Pm
i=1 DiV (0)Ai+λAk))

)

= eN2(C(V )−V (0)−λy)e
N
2c

P

6̀=k Tr(DiV (0)2)
(

e
N
2c Tr((DkV (0)−λ)2) + e

N
2c Tr((DkV (0)+λ)2)

)

.

Optimizing with respect to λ shows that there exists B = B(V )

µN
V (|LAk

(x)|≥y) ≤ eBN2−N2c
4 y2
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so that for N large enough,

µN,β
V (|LAk

(x)|) =

∫ ∞

0

µN
V (|LAk

(x)|≥y) dy

≤ 4
√
c−1B +

∫

y≥4
√

c−1B

e−
N2c

4 (y2−4 B
c )dy ≤ 8

√
Bc−1. (6.11)

This, with (6.9), completes the proof. ut
Let us derive some other useful properties due to the Brascamp–Lieb in-

equality. We first obtain an estimate on the spectral radius λN
max(A), defined

as the maximum of the spectral radius of A1,. . . , Am under the law µN,β
V .

Lemma 6.19. Under the hypothesis of Lemma 6.18, there exists α = α(c) > 0
and M0 = M0(V ) <∞ such that for all M≥M0 and all integer N ,

µN,β
V (λN

max
(A) > M) ≤ e−αMN .

Moreover, M0(V ) is uniformly bounded when V (0), DiV (0) and c(V ) are.

Proof. The spectral radius λN
max(A) = max1≤i≤m sup‖u‖2=1 < u,AiA

∗
i u >

1
2

is a convex function of the entries (see Lemma 6.5), so we can apply the
Brascamp–Lieb inequality (6.8) to obtain that for all s ∈ [0, c

10 ],

∫

esNλN
max(A−M)dµN,β

V (A) ≤
∫

esNλN
max(A)dµN,β

c (A).

But, by Theorem 6.6 applied with a quadratic potential V , we know that

∫

esNλN
max(A)dµN,β

c (A)

≤ esNµN,β
c (λN

max)

∫

esN(λN
max−µN,β

c (λN
max))dµN,β

c

= sNesNµN,β
c (λN

max)

∫ ∞

−∞
esNyµN,β

c

(

λN
max − µN,β

c (λN
max) ≥ y

)

dy

≤ sNesNµN,β
c (λN

max)

(

1 + 2

∫ ∞

0

esNye−
Nc
4 y2

dy

)

≤
√

2πsNesNµN,β
c (λN

max)(1 + 2e
2s2N

c )

Hence, since µN,β
c (λN

max) is uniformly bounded by Theorem 2.3, we deduce
that for all s ≥ 0, there exists a finite constant C(s) such that

∫

esNλN
max(A−M)dµN,β

V (A) ≤ C(s)N .
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By (6.10) and (6.11), we know that

λN
max(A) ≤ λN

max(A −M) + λN
max(M) ≤ λN

max(A −M) + 8
√
Bc−1

from which we deduce that
∫

esNλN
max(A)dµN,β

V (A) ≤ CN for a positive finite
constant C. We conclude by a simple application of Chebyshev’s inequality.
ut
Lemma 6.20. If c > 0, ε ∈ ]0, 1

2 [, then there exists C = C(c, ε) < ∞ such

that for all d ≤ N
1
2−ε,

µN,β
V (|λN

max
(A)|d) ≤ Cd.

Note that this control could be generalized to d ≤ N 2/3−ε, by using the
refinements obtained by Soshnikov in [180, Theorem 2 p.17] but we shall not
need it here.

Proof. Since A → λN
max(A) is convex, we can again use Brascamp–ieb in-

equalities to insure that

µN,β
V

(

|λN
max(A − µN,β

V (A))|d
)

≤ µN,β
c

(

|λN
max(A − µN,β

c (A))|d
)

.

Now, we have seen in the proof of Lemma 6.18 that µN,β
V (A) has a uniformly

bounded spectral radius, say by x. Moreover, by Theorem 2.3, we find that

µN,β
c

(

|λN
max(A)|N

1
2
−ε/2

)

≤ c(ε)
N(2c−1)N

1
2
−ε/2

√

πN3( 1
2−ε/2)

.

Applying Jensen’s inequality we therefore get, for d ≤ N
1
2−ε,

µN,β
c

(

|λN
max(A)|d

)

≤ c′(ε)(2c−1)d.

Hence,

µN,β
V

(

|λN
max(A)|d

)
1
d ≤ x+ c′(ε)

1
d 2c−1

which proves the claim. ut

6.5.3 Coupling concentration inequalities and Brascamp–Lieb
inequalities

We next turn to concentration inequalities for the trace of polynomials on the
set

ΛN
M = {A ∈ Hm

N : λN
max(A) = max1≤i≤m(λN

max(Ai)) ≤M} ⊂ RN2m.

We let

δ̃N (P ) := Tr(P (A1, . . . ,Am)) − µN,β
V (Tr(P (A1, . . . ,Am))) .

Then, we have
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Lemma 6.21. For all N in N, all M > 0, there exists a finite constant
C(P,M) and ε(P,M,N) such that for any ε > 0,

µN,β
V

(

{|δ̃N (P )|≥ε+ ε(P,M,N)} ∩ ΛN
M

)

≤ 2e−
cε2

2C(P,M) .

If P is a monomial of degree d we can choose

C(P,M) ≤ d2M2(d−1)

and there exists M0 <∞ so that for M ≥M0, all ε ∈ ]0, 1
2 [, and all monomial

P of degree smaller than N 1/2−ε,

ε(P,M,N) ≤ 3dN(CM)d+1e−
α
2 NM

with C the constant of Lemma 6.20.

Proof. It is enough to consider the case where P is a monomial. By Corollary
6.12, we only need to control ε(P,M,N).

ε(P,M,N) ≤ µN,β
V

(

1(ΛN
M )c

(

|Tr(P )| + dMd−1

√

√

√

√

m
∑

i=1

Tr(AiA∗
i )

+ sup
A∈ΛN

M

|Tr(P (A))|
))

≤ NµN,β
V

(

1(ΛN
M )c

(

|λN
max(A)|d

+
√

C(P,M)|λN
max(A)|2 +Md

))

.

Now, by Lemmas 6.19 and 6.20, we find that

µN
V

(

1(ΛN
M )c |λN

max(A)|d
)

≤ µN
V

(

1(ΛN
M )c

)
1
2

µN
V

(

|λN
max(A)|2d

)
1
2 ≤ Cde−

α
2 NM .

By the previous control on C(P,M), we get, for d ≤ N
1
2−ε and M large

enough,

ε(P,M,N) ≤ 3dN(CM)d+1e−
α
2 NM ,

which proves the claim. ut

For later purposes, we have to find a control on the variance of L.
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Lemma 6.22. For any c > 0 and ε ∈ ]0, 1
2 [, there exists B,C,M0 > 0 such

that for all t ∈ Bη,c, all M≥M0, and monomial P of degree less than N
1
2−ε,

µN,β
V

(

(δ̃N (P ))2
)

≤ BC(P,M) + C2dN4e−
αMN

2 . (6.12)

Moreover, the constants C,M0, B depend continuously on V (0), DiV (0) and
c(V ).

Proof. If P is a monomial of degree d, we write

µN,β
V ((δ̃N (P ))2) ≤ µN,β

V (1ΛN
M

(δ̃N (P ))2) + µN,β
V (1(ΛN

M )c(δ̃N (P ))2) = I1 + I2.

(6.13)
For I1, the previous lemma implies that, for d ≤ N ,

I1 = 2

∫ ∞

0

xµN,β
V

(

{|Tr(P ) − µN,β
V (Tr(P ))|≥x} ∩ ΛN

M

)

dx

≤ ε(P,N,M)2 + 4

∫ ∞

0

xe−
cx2

2C(P,M) dx ≤ BC(P,M)

with a constant B that depends only on c. For the second term, we take
M≥M0 with M0 as in Lemma 6.19 to get

I2 ≤ µN,β
V [(ΛN

M )c]
1
2µN,β

V ((δ̃N (P ))4)
1
2 ≤ e−

αMN
2 µN,β

V ((δ̃N (P ))4)
1
2 .

By the Cauchy–Schwartz inequality, we obtain the control

µN,β
V [δ̃N (P )4] ≤ 24µN,β

V ((Tr(P ))4).

Now, by non-commutative Hölder’s inequality Theorem 19.5,

[Tr(P )]4 ≤ N4max1≤i≤m
1

N
Tr(A4d

i )

so that we obtain the bound

µN,β
V [δ̃N (P )4] ≤ 24N4max1≤i≤mµ

N,β
V [

1

N
Tr(A4d

i )].

By Lemma 6.20, for d ≤ N
1
2−ε,

µN,β
V

[

1

N
Tr(A4d

i )

]

≤ C2d. (6.14)

Plugging back this estimate into (6.13), we have proved that for N and M

sufficiently large, all monomials P of degree d ≤ N
1
2−ε, all t ∈ Bη,c

µN,β
V

(

(δ̂N (P ))2
)

≤ BC(P,M) + C2dN4e−
αMN

2

with a finite constant C depending only on ε, c and M0. ut
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Bibliographical notes. Brascamp–Lieb inequalities were first introduced
in [47]. The relation between FKG inequalities and optimal transportation was
shown in [59], based on optimal bounds on the Hessian of the transport map.
The application of this strategy to Brascamp–Lieb inequalities is due to Hargé
[114]. It was used in the context of random matrices in [104, 105], following
the lines that we shall develop in the next part.





Part III

Matrix models





101

In this part, we study matrix models, that is, the laws of interacting Hermitian
matrices of the form

dµN,2
V (A1, . . . ,Am) :=

1

ZN
V

e−NTr(V (A1,...,Am))dµN,2(A1) · · · dµN,2(Am)

where ZN
V is the normalizing constant given by the matrix integral

ZN
V =

∫

e−NTr(V (A1,...,Am))dµN,2(A1) · · · dµN,2(Am)

and V is a polynomial in m non-commutative variables:

V (X1, . . . , Xm) =

n
∑

i=1

tiqi(X1, . . . , Xm)

with qi non-commutative monomials:

qi(X1, . . . , Xm) = Xji
1
· · ·Xji

ri

for some jk
l ∈ {1, . . . ,m}, ri ≥ 1. Moreover, dµN,2(A) denotes the standard

law of the GUE, i.e., under dµN,2(A), A is an N ×N Hermitian matrix such
that

A(k, l) = Ā(l, k) =
gkl + ig̃kl√

2N
, k < l, A(k, k) =

gkk√
N

with independent centered standard Gaussian variables (gkl, g̃kl)k≤l. In other
words

dµN,2(A) = Z−1
N 1

A∈H(2)
N

e−
N
2 Tr(A2)

∏

1≤i≤j≤N

d<(A(i, j))
∏

1≤i<j≤N

d=(A(i, j)).

Since we restrict ourselves to Hermitian matrices in this part, we shall drop
the subscript β = 2 and write for short µN = µN,2.

Let us define by C〈X1, . . . , Xm〉 the set of polynomials inm non-commutative
variables and, for P ∈ C〈X1, . . . , Xm〉,

L̂N (P ) := LA1,...,Am(P ) =
1

N
Tr (P (A1, . . . ,Am)) .

When V vanishes, we have seen in Chapter 3 that for any polynomial
function P , L̂N (P ) converges as N goes to infinity. Moreover the limit σm(P )
is such that if P is a monomial, σm(P ) is the number of non-crossing pair
partitions of a set of points with m colors, or equivalently the number of
planar maps with one star of type P . In this part, we shall generalize such a
type of result to the case where V does not vanish but is “small” and “nice”
in a sense that we shall precise.

This part is motivated by a work of Brézin, Parisi, Itzykson and Zuber [50]
and large developments that occurred thereafter in theoretical physics [78].
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They specialized an idea of ’t Hooft [187] to show that if V =
∑n

i=1 tiqi with
fixed monomials qi of m non-commutative variables, and if we see ZN

V = ZN
t

as a function of t = (t1, . . . , tn),

logZN
t :=

∑

g≥0

N2−2gFg(t), (III.15)

where

Fg(t) :=
∑

k1,...,kn∈Nk

k
∏

i=1

(−ti)ki

ki!
Mg((qi, ki)1≤i≤k)

is a generating function of integer numbers Mg((qi, ki)1≤i≤k) that count cer-
tain graphs called maps. A map is a connected oriented graph that is em-
bedded into a surface. Its genus g is by definition the genus of a surface in
which it can be embedded in such a way that edges do not cross and the faces
of the graph (that are defined by following the boundary of the graph) are
homeomorphic to a disk. The vertices of the maps we shall consider will have
the structure of a star, that is a vertex with colored edges embedded into a
surface (that is an order on the colored edges is specified). More precisely, a
star of type q, for some monomial q = X`1 · · ·X`k

, is a vertex with degree
deg(q) and oriented colored half-edges with one marked half edge of color `1,
the second of color `2, etc., until the last one of color `k. Mg((qi, ki)1≤i≤k) is
then the number of maps with ki stars of type qi, 1 ≤ i ≤ n.

Adding to V a term t q for some monomial q and identifying the first-order
derivative with respect to t at t = 0 we derive from (III.15)

∫

L̂N (q)dµN
V =

∑

g≥0

N−2g
∑

k1,...,kn∈Nk

k
∏

i=1

(−ti)ki

ki!
Mg((qi, ki)1≤i≤k , (q, 1)).

(III.16)
The equalities (III.15) and (III.16) derived in [50] are only formal, i.e., mean
that all the derivatives on both sides of the equality coincide at t = 0. They
can thus be deduced from the Wick formula (which gives the expression of ar-
bitrary moments of Gaussian variables) or equivalently by the use of Feynman
diagrams.

Even though topological expansions such as (III.15) and (III.16) were first
introduced by ’t Hooft in the course of computing the integrals, the natural
reverse question of computing the numbers Mg((qi, ki)1≤i≤k) by studying the
associated integrals over matrices encountered a large success in theoretical
physics (see, e.g., the review papers [78, 70]). In the course of doing so, one
would like for instance to compute limN→∞N−2 logZN

t and claim that this
limit is equal to F0(t). There is here the belief that one can interchange
derivatives and limit, a claim that needs to be justified.

We shall indeed prove that the formal limit can be strenghtened into a
large N expansion in the sense that
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1

N2
logZN

t = F0(t) +
1

N2
F1(t) + o(N−2)

where N2 × o(N−2) goes to zero as N goes to infinity. This asymptotic ex-
pansion holds when V is small and satisfies some convexity hypothesis (which
insures that the partition function ZN

V is finite and the support of the limiting
spectral measures of Ai, 1 ≤ i ≤ m, under µN

V is connected, see [106]).
This part summarizes results from [104] and [105]. The full expansion (i.e.,

higher-order corrections) was obtained by E. Maurel Segala [148] in the multi-
matrix setting. Such expansion in the one matrix case was already derived on
a physical level of rigor in [4] and then made rigorous in [2, 86]. However, in
the case of one matrix, techniques based on orthogonal polynomials can be
used. In the multi-matrix case this approach fails in general (or at least has
not yet been extended). [104, 105, 148] take a completely different route based
on the free probability setting of limiting tracial states and of the so-called
Master loop or Schwinger–Dyson equations.

We start this part by introducing the combinatorial objects we shall con-
sider and their relations with non-commutive polynomials. Then, we prove the
formal expansion of Brézin, Itzykson, Parisi and Zuber. The next two chap-
ters consider the asymptotic expansion; we first obtain the convergence of the
free energy towards the expected generating function for the enumeration of
planar maps, and then study the first order correction to this limit, showing
it is related with the enumeration of maps with genus one.

The techniques we shall present here have the advantage to be robust. We
use them here to study partition functions of Hermitian matrices, but they
can be generalized to orthogonal or symplectic matrices (in a work in progress
of E. Maurel Segala) or to matrices following the Haar measure on the unitary
group [66]. The last extension is particularly interesting since then Gaussian
calculus and Feynman diagram techniques fail (since unitary matrices have no
Gaussian entries) so that the diagrammatic representation of the limit is not
straightforward even on a formal level (see [65] for a formal expansion with
no diagrammatic interpretation).





7

Maps and Gaussian calculus

We start this chapter by introducing non-commutative polynomials and their
relations with special vertices called stars. We then relate the enumeration of
the maps buildt upon such vertices with the formal expansion of Gaussian
matrix integrals.

7.1 Combinatorics of maps and non-commutative
polynomials

In this section, we define non-commutative polynomials and non-commutative
laws such as the “empirical distribution” of matrices A1, . . . ,Am which gen-
eralize the notion of probability measures and empirical measures to the case
of non-commutative variables. We will then describe precisely the combina-
torial objects related with matrix integrals. Recalling the bijection between
non-commutative monomials and graphical objects such as stars or ordered
sets of colored points, we will show how operations such as derivatives on
monomials have their graphical interpretation. This will be our basis to show
that some differential equations for non-commutative laws can be interpreted
in terms of some surgery on maps, as introduced by Tutte [194] to prove in-
duction relations for map enumeration (see, e.g., Bender and Canfield [29] for
generalizations).

7.2 Non-commutative polynomials

We denote by C〈X1, . . . , Xm〉 the set of complex polynomials in the non-
commutative unknowns X1,. . . ,Xm. Let ∗ denote the linear involution such
that for all complex z and all monomials

(zXi1 · · ·Xip)∗ = zXip · · ·Xi1 .



106 7 Maps and Gaussian calculus

We will say that a polynomial P is self-adjoint if P = P ∗ and denote by
C〈X1, . . . , Xm〉sa the set of self-adjoint elements of C〈X1, . . . , Xm〉.

The potential V will later on be assumed to be self-adjoint. This means
that

V (A) =

n
∑

j=1

tjqi =

n
∑

j=1

t̄jq
∗
j =

n
∑

j=1

<(tj)
qj + q∗j

2
+

n
∑

j=1

=(tj)
qj − q∗j

2i
.

Note that the parameters (tj = <(tj) + i=(tj), 1 ≤ j ≤ n) may a priori
be complex. This hypothesis guarantees that Tr(V (A)) is real for all A =
(A1, . . . ,Am) in the set HN of N ×N Hermitian matrices.

In the sequel, the monomials (qi)1≤i≤n will be fixed and we will consider
V = Vt =

∑n
i=1 tiqi as the parameters ti vary in such a way that V stays

self-adjoint.

7.2.1 Convexity

We shall assume hereafter that V is convex, see Definition 6.10. While it may
not be the optimal hypothesis, convexity provides many simple arguments.
Note that as we add a Gaussian potential 1

2

∑m
i=1 X

2
i to V we can relax the

hypothesis by the notion of c-convexity.

Definition 7.1. We say that V is c-convex if c > 0 and V + 1−c
2

∑m
1 X2

i is
convex. In other words, the Hessian of

φN,c
V : E(2)

N −→ R

(<(Ak(i, j)),=(Ak(i, j)))1≤k≤m
1≤i≤j≤N −→ Tr(V (A1, . . . ,Am)

+ 1−c
2

∑m
k=1 A2

i )

is non-negative. Here, for k ∈ {1, . . . ,m}, Ak is the Hermitian matrix with

entries
√

2
−1

(Ak(p, q) + iAk(q, p)) above the diagonal and Ak(i, i) on the di-
agonal.

Note that when V is c-convex, µN
V has a log-concave density with respect to

the Lebesgue measure so that many results from the previous part will apply,
in particular concentration inequalities and Brascamp–Lieb inequalities.

In the rest of this chapter, we assume that V is c-convex for some c > 0
fixed. Arbitrary potentials could be considered as far as first-order asymptotics
are studied in [104], at the price of adding a cutoff. In fact, adding a cutoff
and choosing the parameters ti’s small enough (depending eventually on this
cutoff), forces the interaction to be convex so that most of the machinery we
are going to describe will apply also in this context. We let V = Vt =

∑n
i=1 tiqi

and define Uc = {t ∈ Cn : Vt is c-convex} ⊂ Cn. Moreover, Bη will denote
the open ball in Cn centered at the origin and with radius η > 0 (for instance
for the metric |t| = max1≤i≤n|ti|).



7.2 Non-commutative polynomials 107

7.2.2 Non-commutative derivatives

First, for 1 ≤ i ≤ m, let us define the non-commutative derivatives ∂i with
respect to the variable Xi. They are linear maps from C〈X1, . . . , Xm〉 to
C〈X1, . . . , Xm〉⊗2 given by the Leibniz rule

∂iPQ = ∂iP × (1 ⊗Q) + (P ⊗ 1) × ∂iQ (7.1)

and ∂iXj = 1i=j1 ⊗ 1. Here, × is the multiplication on C〈X1, . . . , Xm〉⊗2;
P ⊗Q×R ⊗ S = PR⊗QS. So, for a monomial P , the following holds:

∂iP =
∑

P=RXiS

R⊗ S

where the sum runs over all possible monomials R,S so that P decomposes
into RXiS. We can iterate the non-commutative derivatives; for instance ∂2

i :
C〈X1, . . . , Xm〉 → C〈X1, . . . , Xm〉 ⊗C〈X1, . . . , Xm〉 ⊗C〈X1, . . . , Xm〉 is given
for a monomial function P by

∂2
i P = 2

∑

P=RXiSXiQ

R⊗ S ⊗Q.

We denote by ] : C〈X1, . . . , Xm〉⊗2 × C〈X1, . . . , Xm〉 → C〈X1, . . . , Xm〉 the
map P ⊗ Q]R = PRQ and generalize this notation to P ⊗ Q ⊗ R](S, V ) =
PSQV R. So ∂iP]R corresponds to the derivative of P with respect to Xi

in the direction R, and similarly 2−1[D2
i P](R,S) + D2

i P](S,R)] the second
derivative of P with respect to Xi in the directions R,S.

We also define the so-called cyclic derivative Di. If m is the map m(A ⊗
B) = BA, let us define Di = m◦∂i. For a monomial P , DiP can be expressed
as

DiP =
∑

P=RXiS

SR.

7.2.3 Non-commutative laws

For (A1, . . . ,Am) ∈ Hm
N , let us define the linear form LA1,...,Am from

C〈X1, . . . , Xm〉 into C by

LA1,...,Am(P ) =
1

N
Tr (P (A1, . . . ,Am))

where Tr is the standard trace Tr(A) =
∑N

i=1 A(i, i). LA1,...,Am will be called
the empirical distribution of the matrices (note that in the case of one matrix,
it is the empirical distribution of the eigenvalues of this matrix). When the
matrices A1, . . . ,Am are generic and distributed according to µN

V , we will

drop the subscripts A1, . . . ,Am and write for short L̂N = LA1,...,Am . We
define, when V = Vt =

∑n
i=1 tiqi,
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L̄N
t (P ) := µN

Vt
[L̂N (P )].

L̂N , L̄N
t will be seen as elements of the algebraic dual C〈X1, . . . , Xm〉D of

C〈X1, . . . , Xm〉 equipped with the involution ∗. C〈X1, . . . , Xm〉D is equipped
with its weak topology.

Definition 7.2. A sequence (µn)n∈N in C〈X1, . . . , Xm〉D converges weakly (or
in moments) to µ ∈ C〈X1, . . . , Xm〉D iff for any P ∈ C〈X1, . . . , Xm〉,

lim
n→∞

µn(P ) = µ(P ).

Lemma 7.3. Let C(`1, . . . , `r), `i ∈ {1, . . . ,m}, r ∈ N, be finite non-negative
constants and

K(C) = {µ ∈ C〈X1, . . . , Xm〉D; |µ(X`1 · · ·X`r)| ≤C(`1, . . . , `r)

∀`i ∈ {1, . . . ,m}, r ∈ N}.
Then, any sequence (µn)n∈N in K(C) is sequentially compact, i.e., has a sub-
sequence (µφ(n))n∈N that converges weakly (or in moments).

Proof. Since µn(X`1 · · ·X`r) ∈ C is uniformly bounded, it has converging
subsequences. By a diagonalization procedure, since the set of monomials is
countable, we can ensure that for a subsequence (φ(n), n ∈ N), the terms
µφ(n)(X`1 · · ·X`r), `i ∈ {1, . . . ,m}, r ∈ N converge simultaneously. The limit
defines an element of C〈X1, . . . , Xm〉D by linearity. ut

The following is a triviality, that however we recall since we will use it
several times.

Corollary 7.4. Let C(`1, . . . , `r), `i ∈ {1, . . . ,m}, r ∈ N, be finite non nega-
tive constants and (µn)n∈N a sequence in K(C) that has a unique limit point.
Then (µn)n∈N converges weakly (or in moments) to this limit point.

Proof. Otherwise we could choose a subsequence that stays at positive dis-
tance of this limit point, but extracting again a converging subsequence gives
a contradiction. Note as well that any limit point will belong automatically
to C〈X1, . . . , Xm〉D. ut

Remark 7.5. The laws L̂N , L̄N
t are more than only linear forms on the space

C〈X1, . . . , Xm〉; they satisfy also the properties

µ(PP ∗) ≥ 0, µ(PQ) = µ(QP ), µ(1) = 1 (7.2)

for any polynomial functions P,Q. Since these conditions are closed for the
weak topology, we see that any limit point of L̂N , L̄N

t will also satisfy these
properties. A linear functional on C〈X1, . . . , Xm〉 that satisfies such conditions
are called tracial states, or non-commutative laws. This leads to the notion of
C∗-algebras and representations of the laws as moments of non-commutative
operators in C∗-algebras. However, we do not want to detail this point in these
notes.
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7.3 Maps and polynomials

In this section, we complete Section 3.1 to describe the graphs that will be enu-
merated by matrix models. Let q(X1, . . . , Xm) = X`1X`2 · · ·X`k

be a mono-
mial in m non-commutative variables.

Hereafter, monomials (qi)1≤i≤n will be fixed and we will write for short,
for k = (k1, . . . , kn),

Mg
k = card{ maps with genus g

and ki stars of type qi, 1 ≤ i ≤ n},
and for a monomial P ,

Mg
k(P ) = card{ maps with genus g

ki stars of type qi, 1 ≤ i ≤ n and one of type P}.

7.3.1 Maps and polynomials

Because there is a one-to-one mapping between stars and monomials, the
operations on monomials such as involution or derivatives have their graphical
interpretation.

The involution comes to reverse the orientation and to shift the marked
edge by one in the sense of the new orientation (see Figure 7.1). This is
equivalent to considering the star in a mirror.

�������
�

�������
�

X1

X1

X1

X1

X1 X1 X2

X2

X2

X2

X1

X1

X1

X1

X1

X1 X2

X2

X2

X2

Fig. 7.1. A star of type q versus a star of type q∗

For derivations, the interpretation goes as follows.
Let q be a given monomial. The derivation ∂i appears as a way to find out

how to decompose a star of type q by pointing out a half-edge of color i: a star
of type q can indeed be decomposed into one star of type q1, one half-edge of
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color i and another star of type q2, all sharing the same vertex, iff q can be
written as q = q1Xiq2. This is particularly useful to write induction relation
on the number of maps. For instance, let us consider a planar map M and
the event AM (Xiq) that, inside M , a star of type Xiq is such that the first
marked half-edge is glued to a half-edge of q. Then, if this happens, since the
map is planar, it will be decomposed into two planar maps separated by the
edge between these two Xi. Such a gluing can be done only with the edges Xi

appearing in the decomposition of q as q = q1Xiq2. Moreover, the two stars
of type q1 and q2 will belong to two “independent” planar maps. So, we can
symbolically write

1AM (Xiq) =
∑

q=q1Xiq2

1q1∈M1 ⊗M=M1⊗iM2 1q2∈M2 (7.3)

where M = M1 ⊗i M2 means that M decomposes into two planar maps M1

and M2, M2 being surrounded by a cycle of color i that separates it from
M1 (see Figure 7.2). Note here that we forgot in some sense that these three

���
�

M1

X1

X1

X1
X1

X1

X1
X2

X2

X2

X2

M2

Fig. 7.2. A star of type q = X2

1X2

2X4

1X2

2 decomposed into X1(X1X
2

2X1)X1(X
2

1X2

2 )
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objects were sharing the same vertex; this is somehow irrelevant here since a
vertex is finally nothing but the point of junction of several edges; as long as
we are concerned with the combinatorial problem of enumerating these maps,
we can safely split the map M into these three objects. (7.3) is very close to
the derivation operation ∂i.

Similarly, let us consider again a planar map M containing given stars of
type Xiq and q′ and the event BM (Xiq, q

′) that, inside M , the star of type
Xiq is such that the first marked half-edge is glued to a half-edge of the star
of type q′. Once we know that this happens, we can write

1BM (Xiq,q′) =
∑

q′=q1Xiq2

1q2q1•iq∈M . (7.4)

q2q1 •i q is a new star made of a star of type q and one of type q2q1 with
an edge of color i from one to the other just before the marked half-edges.
Again, once we know that this edge of color i exists, from a combinatorial
point of view, we can simply shorten it till the two stars merge into a bigger
star of type q2q1q. This is the merging operation; it corresponds to the cyclic
derivative Di (see Figure 7.3).
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X1

X1

X1

X1

X1

X1

X1

X1

Fig. 7.3. Merging of a star of type q = X2
1X2

2X4
1X2

2 and a star of type X2
1X2

2

7.4 Formal expansion of matrix integrals

The expansion obtained by ’t Hooft is based on Feynman diagrams, or equiv-
alently on Wick’s formula that can be stated as follows.

Lemma 7.6 (Wick’s formula). Let (G1, . . . , G2n) be a Gaussian vector
such that E[Gi] = 0 for i ∈ {1, . . . , 2n}. Then,
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E[G1 · · ·G2n] =
∑

π∈PP (2n)

∏

(b,b′) block of π,

b<b′

E[GbGb′ ]

where the sum runs over all pair-partitions of the ordered set {1, . . . , 2n}.

Proof. Recall that if G is a standard Gaussian variable, for all n ∈ N,

E[G2n] = 2n!! :=
(2n)!

2nn!

is the number of pair-partitions of the ordered set {1, 2, . . . , 2n}. Thus, for any

real numbers (α1, . . . , α2n), since
∑2n

i=1 αiGi is a centered Gaussian variable

with covariance σ2 =
∑2n

i,j=1 αiαjE[GiGj ], and so
∑2n

i=1 αiGi has the same
law that σ times a standard Gaussian variable,

E





(

2n
∑

i=1

αiGi

)2n


 =





2n
∑

i,j=1

αiαjE[GiGj ]





n

2n!!.

Identifying on both sides the term corresponding to the coefficient α1 · · ·α2n,
we obtain

(2n)!E[G1 · · ·G2n] = 2n!!
∑

π∈Σ

∏

(b,b′)∈π

E[GbGb′ ]

where Σ is the set of pairs of 2n elements. To compare this set with the
collection of pairings of an ordered set, we have to order the elements of the
pairs, and we have 2n possible choices, and then order the pairs, which gives
another n! possible choices. Thus,

∑

π∈Σ

∏

(b,b′)∈π

E[GbGb′ ] = 2nn!
∑

π∈PP (2n)

∏

(i,j) block of π

E[GiGj ]

completes the argument as 2nn!2n!! = (2n)!. ut

We now consider moments of traces of Gaussian Wigner’s matrices. Since
we shall consider the moments of products of several traces, we shall now use
the language of stars. Let us recall that a star of type q(X) = X`1 · · ·X`2

is a vertex equipped with k colored half-edges, one marked half-edge and an
orientation such that the marked half-edge is of color `1, the second (following
the orientation) of color `2, etc., till the last half-edge of color `k. The graphs
we shall enumerate will be obtained by gluing pairwise the half-edges.

Definition 7.7. Let r,m ∈ N. Let q1, . . . , qr be r monomials in m non-
commutative variables. A map of genus g with a star of type qi for i ∈
{1, . . . , r} is a connected graph embedded into a surface of genus g with r
vertices so that
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1. For 1 ≤ i ≤ r, one of the vertices has degree deg(qi), and this vertex is
equipped with the structure of a star of type qi (i.e., with the corresponding
colored half-edges embedded into the surface in such a way that the orien-
tation of the star and the orientation of the surface agree). The half-edges
inherit the orientation of their stars, i.e., each side of each half-edge is
endowed with an opposite orientation corresponding to the orientation of
a path traveling around the star by following the orientation of the star.

2. The half-edges of the stars are glued pair-wise and two half-edges can be
glued iff they have the same color and orientation; thus edges have only
one color and one orientation.

3. A path traveling along the edges of the map following their orientation will
make a loop. The surface inside this loop is homeomorphic to a disk and
called a face (see Figure 7.4).

Note that each star has a distinguished half-edge and so each half-edge of a star
is labeled. Moreover, all stars are labeled. Hence, the enumeration problem
we shall soon consider can be thought as the problem of matching the labeled
half-edges of the stars and so we will distinguish all the maps where the
gluings are not done between exactly the same set of half-edges, regardless of
symmetries. This is important to make clear since we shall shortly consider
enumeration issues. The genus of a map is defined as in Definition 1.8. Note
that since at each vertex we imposed a cyclic orientation at the ends of the
edges adjacent to this vertex, there is a unique way to embed the graph drawn
with stars in a surface; we have to draw the stars so that their orientation
agrees with the orientation of the surface.

Fig. 7.4. A planar bi-colored map with stars of type q1 = X1X2X1X2, q2 = X2

1X2

2 ,
q3 = X1X2X1X2
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There is a dual way to consider maps in the spirit of Figure 1.5; as in
the figure in the center of Figure 1.5, we can replace a star of type q(X) =
Xi1 · · ·Xip by a polygon (of type q) with p faces, a boundary edge of the
polygon replacing an edge of the star and taking the same color as the edge,
and a marked boundary edge and an orientation. A map is then a covering of
a surface (with the same genus as the map) by polygonals of type q1, . . . , qr.
The constraint on the colors becomes a constraint on the colors of the sides
of the polygons of the covering.

Example 1. A triangulation (resp. a quadrangulation) of a surface of genus g
by F faces (the number of triangles, resp. squares) is equivalent to a map of
genus g with F stars of type q(X) = X3 (resp. q(X) = X4).

Exercise 7.8. Draw the quadrangulation corresponding to Figure 7.4.

We will define, for k = (k1, . . . , kn),

Mg((qi, ki), 1 ≤ i ≤ n) = card{ maps with genus g

and ki stars of type qi, 1 ≤ i ≤ n}.
Note here that the stars are labeled in the counting. Hence, the problem
amounts to counting the possible matchings of the half-edges of the stars, all
the half-edges being labeled.

In this section we shall first encounter eventually non-connected graphs;
these graphs will then be (finite) unions of maps. We denote byGg,c((qi, ki), 1 ≤
i ≤ n) the set of graphs that can be described as a union of c maps, the total
set of stars to construct these maps being ki stars of type qi, 1 ≤ i ≤ n and
the genus of each connected components summing up to g. When counting
these graphs, we will also assume that all half-edges are labeled. Moreover,
we shall count these graphs up to homeomorphism, that is up to continu-
ous deformation of the surface on which the graphs are embedded. Thus, our
problem is to enumerate the number of possible pairings of the half-edges (of
a given color) of the stars in such a way that the resulting graph has a given
genus.

We now argue that

Lemma 7.9. Let q1, . . . , qn be monomials. Then,

∫ n
∏

i=1

(NTr(qi(A1, . . . ,Am)))dµN (A1) · · · dµN (Am)

=
∑

g∈N

∑

c≥1

1

N2g−2c
]{Gg,c((qi, 1), 1 ≤ i ≤ n)}.

Here, Gg,c((qi, 1), 1 ≤ i ≤ n) is the set of unions of c maps drawn on the
stars of type (qi)1≤i≤n, with the sum of the genera of each map equal to g.
]{Gg,c((qi, 1), 1 ≤ i ≤ n)} is the number of graphs of the set Gg,c((qi, 1), 1 ≤
i ≤ n).
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As a warm-up, let us show the following:

Lemma 7.10. Let q be a monomial. Then, we have the following expansion

∫

N−1Tr(q(A1, . . . ,Am))dµN (A1) · · · dµN (Am) =
∑

g∈N

1

N2g
]{Gg((q, 1))}

where ]{G0((q, 1))} equals σm(q) as found by Voiculescu, Theorem 3.3.

Proof. As usual we expand the trace and write, if q(X1, . . . , Xm) = Xj1 · · ·Xjk
,

∫

Tr(q(A1, . . . ,Am))dµN (A1) · · · dµN (Am)

=
∑

1≤r1,...,rk≤N

∫

Aj1(r1, r2) · · ·Ajk
(rk , r1)dµ

N (A1) · · · dµN (Am)

=
∑

r1,...,rk

∑

π∈PP (k)

∏

(wv) block of π
w<v

E[Ajw (rw, rw+1)Ajv (rv , rv+1)]. (7.5)

Note that
∏

E[Ajw (rw, rw+1)Ajv (rv .rv+1)] is either zero or N−k/2. It is not
zero only when jw = jv and rwrw+1 = rv+1rv for all the blocks (v, w) of
π. Hence, if we represent q by the star of type q, we see that all the graphs
where the half-edges of the star are glued pairwise and colorwise will give a
contribution. But how many indices will give the same graph ? To represent
the indices on the star, we fatten the half-edges as double half-edges. Thinking
that each random variable sits at the end of the half-edges, we can associate
to each side of the fat half-edge one of the indices of the entry (see Figure
7.5). When the fattened half-edges meet at the vertex, observe that each side
of the fattened half-edges meets one side of an adjacent half-edge on which
sits the same index. Hence, we can say that the index stays constant over the
broken line made of the union of the two sides of the fattened half-edges.

$r_1$ $r_2$

$r_2$$r_1$

$r_3$

$r_3$

$r_4$

$r_4$

Fig. 7.5. Star of type X4 with prescribed indices

When gluing pairwise the fattened half-edges we see that the condition
rwrw+1 = rv+1rv means that the indices are the same on each side of the
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half-edge and hence stay constant on the resulting edge. The connected lines
made with the sides of the fattened edges can be seen to be the boundaries
of the faces of the correponding graphs. Therefore we have exactly NF pos-
sible choices of indices for a graph with F faces. These graphs are otherwise
connected, with one star of type q. (7.5) thus shows that

∫

Tr(q(A1, . . . ,Am))dµN (A1) · · · dµN (Am)

=
∑

g≥0

NF

N
k
2

]{maps with one star of type q and F faces}

Recalling that 2− 2g = F + ] vertices− ] edges = F + 1− k/2 completes the
proof. ut

Remark 7.11. In the above it is important to take µN to be the law of the
GUE (and not GOE for instance) to insure that E[(Ak)ij(Ak)ji] = 1/N but
E[((Ak)ij)

2] = 0. The GOE leads to the enumeration of other combinatorial
objects (and in particular an expansion in N−1 rather than N−2).

Proof of Lemma 7.9. We let qi(X1, . . . , Xm) = X`i
1
· · ·X`i

di

. As usual, we

expand the traces:

∫ n
∏

i=1

(NTr(qi(A1, . . . ,Am)))dµN (A1) · · · dµN (Am)

= Nn
∑

ik
1 ,...,ik

dk
1≤k≤n

E[
∏

1≤k≤n

A`k
1
(ik1i

k
2) · · ·A`k

dk

(ikdk
ik1)]

= Nn
∑

ik
1 ,...,ik

dk
1≤k≤n

∑

π∈PP (
P

di)

Z(π, i)

where in the last line we used Wick’s formula, π is a pair partition of the
edges
{(ikj , ikj+1)1≤j≤dk−1, (i

k
dk
, ik1), 1 ≤ k ≤ n} and Z(π, i) is the product of the

variances over the corresponding blocks of the partition. A pictorial way to
represent this sum over PP (

∑

di) is to represent X`k
1
(ik1i

k
2) · · ·X`k

dk

(ikdk
ik1) by

its associated star of type qk, for 1 ≤ k ≤ n. Note that in the counting this
star will be labeled (here by the number k). A partition π is represented by
a pairwise gluing of the half-edges of the stars. Z(π), as the product of the
variances, vanishes unless each pairwise gluing is done in such a way that the
indices written at the end of the glued half-edges coincides and the number of
the variable (or color of the half-edges) coincide. Otherwise, each covariance
being equal to N−1, Z(π, i) = N− Pn

i=1 ki/2. Note also that once the gluing is
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done, by construction the indices are fixed on the boundary of each face of the
graph (this is due to the fact that E[Ar(i, j)Ar(k, l)] is null unless kl = ji).
Hence, there are exactly NF possible choices of indices for a given graph, if F
is the number of faces of this graph (note here that if the graph is disconnected,
we count the number of faces of each connected part, including their external
faces and sum the resulting numbers over all connected components). Thus,
we find that

∑

ik
1

,...,ik
dk

1≤k≤n

∑

π∈PP (
P

di)

Z(π, i) =
∑

F≥0

∑

G∈GF ((qi,1),1≤i≤n)

N− Pn
i=1 ki/2NF

where GF denotes the union of connected maps with a total number of faces
equal to F (the external face of each map being counted). Note that for a
connected graph, 2− 2g = F − ]edges+ ]vertices. Because the total number
of edges of the graphs is ]edges =

∑n
i=1 ki/2 and the total number of vertices

is ]vertices = n, we see that if gi, 1 ≤ i ≤ c, are the genera of each connected
component of our graph, we must have

2c− 2

c
∑

i=1

gi = F −
n
∑

i=1

ki/2− n.

This completes the proof. ut

We then claim that we find the topological expansion of Brézin, Itzykson,
Parisi and Zuber [50]:

Lemma 7.12. Let q1, . . . , qn be monomials. Then, we have the following for-
mal expansion

log

(∫

e
Pn

i=1 tiNTr(qi(A1,...,Am))dµN (A1) · · · dµN (Am)

)

=
∑

g≥0

1

N2g−2

∑

k1,...,kn∈Nn\{0}

n
∏

i=1

(ti)
ki

ki!
Mg((qi, ki), 1 ≤ i ≤ n)

where the equality means that derivatives of all orders at ti = 0, 1 ≤ i ≤ n,
match.

Note here that the sum in the right-hand side is not absolutely convergent
(in fact the left-hand side is in general infinite if the ti’s do not have the
appropriate signs). However, we shall see in subsequent chapters that if we
stop the expansion at g ≤ G <∞ (but keep the summation over all ki’s) the
expansion is absolutely converging for sufficiently small ti’s.
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Proof of Lemma 7.12. The idea is to expand the exponential. Again, this
has no meaning in terms of convergent series (and so we do not try to justify
uses of Fubini’s theorem, etc.) but can be made rigorous by the fact that we
only wish to identify the derivatives at t = 0 (and so the formal expansion is
only a way to compute these derivatives). So, we find that

L :=

∫

e
Pn

i=1 tiNTr(qi(A1,...,Am))dµN (A1) · · · dµN (Am)

=

∫ n
∏

i=1

(

etiNTr(qi(A1,...,Am))
)

dµN (A1) · · · dµN (Am)

=

∫ n
∏

i=1





∑

ki≥0

(ti)
ki

ki!
(NTr(qi(A1, . . . ,Am)))ki



 dµN (A1) · · · dµN (Am)

=
∑

k1,...,kn∈N

(t1)
k1 · · · (tn)kn

k1! · · · kn!

∫ n
∏

i=1

(NTr(qi(A1, . . . ,Am)))kidµN (A1) · · · dµN (Am)

=
∑

k1,...,kn∈N

(t1)
k1 · · · (tn)kn

k1! · · · kn!

∑

g≥0

∑

c≥0

1

N2g−2c
]{Gg,c((qi, ki), 1 ≤ i ≤ n)}

(7.6)

where we finally used Lemma 7.9. Note that the case c = 0 is non-empty
only when all the ki’s are null, and the resulting contribution is one. Now,
we relate ]{Gg,c((qi, ki), 1 ≤ i ≤ n)} with the number of maps. Since graphs
in Gg,c((qi, ki), 1 ≤ i ≤ n) can be decomposed into a union of disconnected
maps, ]{Gg,c((qi, ki), 1 ≤ i ≤ n)} is related with the ways to distribute the
stars and the genus among the c maps, and the number of each of these maps.
In other words, we have (since all stars are labeled)

]{Gg,c((qi, ki), 1 ≤ i ≤ n)}

=
1

c!

∑

Pc
i=1

gi=g

gi≥0

g!

g1! · · · gc!

∑

Pc
j=1

l
j
i
=ki

1≤j≤n

n
∏

i=1

ki!

l1i ! · · · lci !

c
∏

j=1

Mg((qi, l
j
i ), 1 ≤ i ≤ n).

Plugging this expression into (7.6) we get
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L :=
∑

k1,...,kn∈N

(t1)
k1 · · · (tn)kn

c!k1! · · · kn!

∑

g≥0

∑

c≥0

1

N2g−2c

∑

Pc
i=1

gi=g

gi≥0

g!

g1! · · · gc!
×

∑

Pc
j=1

l
j
i
=ki

1≤j≤n

n
∏

i=1

ki!

l1i ! · · · lci !
c
∏

j=1

Mg((qi, l
j
i ), 1 ≤ i ≤ n)

=
∑

c≥0

1

c!

∑

g=
Pc

i=1 gi

g!

g1! · · · gc!

∑

k1,...,kn∈N

∑

Pc
j=1

l
j
i
=ki

1≤j≤n

c
∏

j=1

(

1

N2gj−2

n
∏

i=1

(ti)
lji

lji !
Mg((qi, l

j
i ), 1 ≤ i ≤ n)

)

=
∑

c≥0

1

c!





∑

g≥0

1

N2g−2

∑

l1,···ln≥0

n
∏

i=1

(ti)
li

li!
Mg((qi, li), 1 ≤ i ≤ n)





c

= exp





∑

g≥0

1

N2g−2

∑

l1,···ln≥0

n
∏

i=1

(ti)
li

li!
Mg((qi, li), 1 ≤ i ≤ n)





which completes the proof. ut
The goal of subsequent chapters is to justify that this equality does not only

hold formally but as a large N expansion. Instead of using Wick’s formula, we
shall base our analysis on differential calculus and its relations with Gaussian
calculus (note here that Wick’s formula might also have been proven by use of
differential calculus). The point here will be that we can design an asymptotic
framework for differential calculus, which will then encode the combinatorics
of the first-order term in ’t Hooft’s expansion, that is, planar maps. To make
this statement clear, we shall see that a nice set-up is when the potential
V =

∑

tiqi possesses some convexity property.
Bibliographical notes. The formal relation between Gaussian matrix

integrals and the enumeration of maps first appeared in the work of ’t Hooft
[187] in the context of quantum chromodynamics, and soon used in many
situations [32, 50] in relation with 2D gravity [78, 99, 51, 207], and with
string theory [41, 79]. It was used as well in mathematics [211, 133, 113, 132].
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First-order expansion

At the end of this chapter (see Theorem 8.8) we will have proved that Lemma
7.12 holds as a first-order limit, i.e.,

lim
N→∞

1

N2
log

∫

e
Pn

i=1 tiNTr(qi(A1,...,Am))dµN (A1) · · · dµN (Am)

=
∑

k1,...,kn∈Nn\{0}

n
∏

i=1

(ti)
ki

ki!
M0((qi, ki), 1 ≤ i ≤ n)

provided the parameters t = (ti)1≤i≤n are sufficiently small and such that
the polynomial V =

∑

tiqi is strictly convex (i.e., belong to Uc ∩Bη for some
c > 0 and η ≤ η(c) for some η(c) > 0). To prove this result we first show
that, under the same assumptions, L̄N

t (q) = µN
P

tiqi
(N−1Tr(q)) converges as

N goes to infinity to a limit that is as well related with map enumeration (see
Theorem 8.4).

The central tool in our asymptotic analysis will be the so-called Schwinger–
Dyson (or loop) equations. In finite dimension, they are simple emanation of
the integration by parts formula (or, somewhat equivalently, of the symme-
try of the Laplacian in L2(dx)). As dimension goes to infinity, concentration
inequalities show that L̄N

t approximately satisfies a closed equation that we
will simply refer to as the Schwinger–Dyson equation. The limit points of L̄N

t

will therefore satisfy this equation. We will then show that this equation has a
unique solution in some small range of the parameters. As a consequence, L̄N

t

will converge to this unique solution. Showing that an appropriate generating
function of maps also satisfies the same equation will allow us to determine
the limit of L̄N

t .

8.1 Finite-dimensional Schwinger–Dyson equations

Property 8.1. For all P ∈ C〈X1, . . . , Xm〉, all i ∈ {1, . . . ,m},
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µN
Vt

(

L̂N ⊗ L̂N (∂iP )
)

= µN
Vt

(

L̂N ((Xi +DiVt)P )
)

.

Proof. A simple integration by part shows that for any differentiable function

f on R such that fe−N x2

2 goes to zero at infinity,

N

∫

f(x)xe−N x2

2 dx =

∫

f ′(x)e−N x2

2 dx.

Such a result generalizes to a complex Gaussian by the remark that

N(x+ iy)e−N
|x|2

2 −N
|y|2

2 = −(∂x + i∂y)e−
|x|2

2 − |y|2

2

= −∂x−iye
− |x|2

2 − |y|2

2 .

As a consequence, applying such a remark to the entries of a Gaussian random
matrix, we obtain for any differentiable function f of the entries, all r, s ∈
{1, . . . , N}2, all r ∈ {1, . . . ,m},

N

∫

Al(r, s)f(Ak(i, j), 1 ≤ i, j ≤ N, 1 ≤ k ≤ m)dµN (A1) · · · dµN (Am) =

∫

∂Al(s,r)f(Ak(i, j), 1 ≤ i, j ≤ N, 1 ≤ k ≤ m)dµN (A1) · · · dµN (Am).

Using repeatedly this equality, we arrive at

∫

1

N
Tr(AkP )dµN

V (A) =
1

2N2

N
∑

i,j=1

∫

∂Ak(j,i)(Pe
−NTr(V ))ji

∏

dµN (Ai)

=
1

2N2

N
∑

i,j=1

∫





∑

P=QXkR

2QiiRjj

−N
n
∑

l=1

tl
∑

ql=QXkR

N
∑

h=1

2PjiQhjRih



 dµN
V (A)

=

∫ (

1

N2
(Tr ⊗ Tr)(∂kP ) − 1

N
Tr(DkV P )

)

dµN
V (A)

which yields

∫

(

L̂N ((Xk +DkV )P ) − L̂N ⊗ L̂N (∂kP )
)

dµN
V (A) = 0. (8.1)

ut
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8.2 Tightness and limiting Schwinger–Dyson equations

We say that τ ∈ C〈X1, . . . , Xm〉D satisfies the Schwinger–Dyson equation with
potential V , denoted for short by SD[V], if and only if for all i ∈ {1, . . . ,m}
and P ∈ C〈X1, . . . , Xm〉,

τ(I) = 1, τ ⊗ τ(∂iP ) = τ((DiV +Xi)P ) SD[V].

We shall now prove the following:

Property 8.2. Assume that Vt is c-convex. Then, (L̄N
t = µN

Vt
(L̂N ), N ∈ N)

is tight. Its limit points satisfy SD[Vt] and

|τ(X`1 · · ·X`r)| ≤Mr
0 (8.2)

for all `1, . . . , `r ∈ N, all r ∈ N, with an M0 that only depends on c.

Proof. By Lemma 6.19, we find that for all `1, . . . , `r,

|L̄N
t (X`1 · · ·X`r)| ≤ µN

Vt
(|λmax(A)|r)

=

∫ ∞

0

rxr−1µN
Vt

(|λmax(A)| ≥ x)dx (8.3)

≤ Mr
0 +

∫ ∞

M0

rxr−1e−αNxdx

= Mr
0 + r(αN)−r

∫ ∞

0

rxr−1e−xdx. (8.4)

Hence, if K(C) denotes the compact set defined in Lemma 7.4, L̄N
t ∈ K(C)

with C(`1, . . . , `r) = Mr
0 + rα−r

∫∞
0
rxr−1e−xdx. (L̄N

t , N ∈ N) is therefore
tight. Let us consider now its limit points; let τ be such a limit point. By
(8.4), we must have

|τ(X`1 · · ·X`r )| ≤Mr
0 . (8.5)

Moreover, by concentration inequalities (see Lemma 6.22), we find that

lim
N→∞

∣

∣

∣

∣

∫

L̂N
A ⊗ L̂N

A(∂kP )dµN
V (A) −

∫

L̂N
Adµ

N
V (A) ⊗

∫

L̂N
Adµ

N
V (A)(∂kP )

∣

∣

∣

∣

= 0

so that Property 8.1 implies that

lim sup
N→∞

∣

∣L̄N
t ((Xk +DkVt)P )) − L̄N

t ⊗ L̄N
t (∂kP )

∣

∣ = 0. (8.6)

Hence, (8.1) shows that

τ((Xk +DkV )P ) = τ ⊗ τ(∂kP ). (8.7)

ut
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8.2.1 Uniqueness of the solutions to Schwinger–Dyson’s equations
for small parameters

Let R ∈ R+ (we will always assume R ≥ 1 in the sequel).
(CS(R))An element τ ∈ C〈X1, . . . , Xm〉D satisfies (CS(R)) if and only

if for all k ∈ N,

max1≤i1,...,ik≤m|τ(Xi1 · · ·Xik
)| ≤ Rk.

In the sequel, we denote by D the degree of V , that is the maximal degree
of the q′is; qi(X) = Xji

1
· · ·Xji

di

with, for 1 ≤ i ≤ n, deg(qi) =: di ≤ D and

equality holds for some i.
The main result of this paragraph is:

Theorem 8.3. For all R ≥ 1, there exists ε > 0 so that for |t| = max1≤i≤n|ti| <
ε, there exists at most one solution τt to SD[Vt] that satisfies (CS(R)).

Remark: Note that if V = 0, our equation becomes

τ(XiP ) = τ ⊗ τ(∂iP ).

Because if P is a monomial, τ ⊗ τ(∂iP ) =
∑

P=P1XiP2
τ(P1)τ(P2) with P1

and P2 with degree smaller than P , we see that the equation SD[0] allows us
to define uniquely τ(P ) for all P by induction. The solution can be seen to
be exactly τ(P ) = σm(P ), σm the law of m free semi-circular variables found
in Theorem 3.3. When V is not zero, such an argument does not hold a priori
since the right-hand side will also depend on τ(DiqjP ), with DiqjP of degree
strictly larger than XiP . However, our compactness assumption (CS(R))
gives uniqueness because it forces the solution to be in a small neighborhood
of the law τ0 = σm of m free semi-circular variables, so that perturbation
analysis applies. We shall see in Theorem 8.5 that this solution is actually the
generating function for the enumeration of maps.

Proof. Let us assume we have two solutions τ and τ ′. Then, by the equation
SD[V], for any monomial function P of degree l − 1, for i ∈ {1, . . . ,m},

(τ − τ ′)(XiP ) = ((τ − τ ′) ⊗ τ)(∂iP ) + (τ ′ ⊗ (τ − τ ′))(∂iP ) − (τ − τ ′)(DiV P )

Hence, if we let, for l ∈ N,

∆l(τ, τ
′) = sup

monomial P of degree l
|τ(P ) − τ ′(P )|

we get, since if P is of degree l − 1,

∂iP =

l−2
∑

k=0

p1
k ⊗ p2

l−2−k
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where pi
k, i = 1, 2 are monomial of degree k or the null monomial, and DiV

is a finite sum of monomials of degree smaller than D − 1,

∆l(τ, τ
′) = maxP of degree l−1max1≤i≤m{|τ(XiP ) − τ ′(XiP )|}

≤ 2

l−2
∑

k=0

∆k(τ, τ ′)Rl−2−k + C|t|
D−1
∑

p=0

∆l+p−1(τ, τ
′)

with a finite constant C (that depends on n only). For γ > 0, we set

dγ(τ, τ ′) =
∑

l≥0

γl∆l(τ, τ
′).

Note that under (CS(R)), this sum is finite for γ < (R)−1. Summing the two
sides of the above inequality times γl we arrive at

dγ(τ, τ ′) ≤ 2γ2(1 − γR)−1dγ(τ, τ ′) + C|t|
D−1
∑

p=0

γ−p+1dγ(τ, τ ′).

We finally conclude that if (R, |t|) are small enough so that we can choose
γ ∈ (0, R−1) so that

2γ2(1 − γR)−1 + C|t|
D−1
∑

p=0

γ−p+1 < 1

then dγ(τ, τ ′) = 0 and so τ = τ ′ and we have at most one solution. Taking
γ = (2R)−1 shows that this is possible provided

1

4R2
+ C|t|

D−1
∑

p=0

(2R)p−1 < 1

so that when R is large, we see that we need |t| to be at most of order |R|−D+2.
ut

8.3 Convergence of the empirical distribution

We are now in a position to state the main result of this part:

Theorem 8.4. For all c > 0, there exists η > 0 and M0 ∈ R+ (given in

Lemma 6.19) so that for all t ∈ Uc ∩ Bη, L̂N (resp. L̄N
t ) converges almost

surely (resp. everywhere) to the unique solution of SD[Vt] such that

|τ(X`1 · · ·X`r)| ≤Mr
0

for all choices of `1, . . . , `r.
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Proof. By Property 8.2, the limit points of L̄N
t satisfy CS(M0) and SD[Vt].

Since M0 does not depend on t, we can apply Theorem 8.3 to see that if t is
small enough, there is only one such limit point. Thus, by Corollary 7.4 we
can conclude that (L̄N

t , N ∈ N) converges to this limit point. From Lemma
6.22, we have that

µN
V (|(L̂N − L̄N

t )(P )|2) ≤ BC(P,M)N−2 + C2dN2e−αMN/2

insuring by Borel–Cantelli lemma that

lim
N→∞

(L̂N − L̄N
t )(P ) = 0 a.s

resulting with the almost sure convergence of L̂N . ut

8.4 Combinatorial interpretation of the limit

In this part, we are going to identify the unique solution τt of Theorem 8.3
as a generating function for planar maps. Namely, for short, we write k =
(k1, . . . , kn) ∈ Nn and denote by P a monomial in C〈X1, . . . , Xm〉,

Mk(P ) = card{ planar maps with ki labeled stars of type qi for 1 ≤ i ≤ n

and one of type P}.
This definition extends to P ∈ C〈X1, . . . , Xm〉 by linearity. By convention,
Mk(1) = 1k=0. Then, we shall prove:

Theorem 8.5.

1. The family {Mk(P ),k ∈ Nn, P ∈ C〈X1, . . . , Xm〉} satisfies the induction
relation: for all i ∈ {1, . . . ,m}, all P ∈ C〈X1, . . . , Xm〉, all k ∈ Nn,

Mk(XiP ) =
∑

0≤pj≤kj
1≤j≤n

n
∏

j=1

C
pj

kj

∑

P=p1Xip2

Mp(P1)Mk−p(P2)

+
∑

1≤j≤n

kjMk−1j ([Diqj ]P )

(8.8)

where 1j(i) = 1i=j and Mk(1) = 1k=0. (8.8) defines uniquely the family
{Mk(P ),k ∈ Nn, P ∈ C〈X1, . . . , Xm〉}.

2. There exists A,B finite constants so that for all k ∈ Nn, all monomial
P ∈ C〈X1, . . . , Xm〉,

|Mk(P )| ≤ k!A
Pn

i=1 kiBdeg(P )
n
∏

i=1

CkiCdeg(P ) (8.9)

with k! :=
∏n

i=1 ki! and Cp the Catalan numbers.
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3. For t in B(4A)−1 ,

Mt(P ) =
∑

k∈Nn

n
∏

i=1

(−ti)ki

ki!
Mk(P )

is absolutely convergent. For t small enough, Mt is the unique solution
of SD[Vt] that satisfies CS(4B).

By Theorem 8.3 and Theorem 8.4, we therefore readily obtain:

Corollary 8.6. For all c > 0, there exists η > 0 so that for t ∈ Uc ∩ Bη, L̂N

converges almost surely and in expectation to

τt(P ) = Mt(P ) =
∑

k∈Nn

n
∏

i=1

(−ti)ki

ki!
Mk(P )

Let us remark that by definition of L̂N , for all P,Q in C〈X1, . . . , Xm〉,

L̂N (PP ∗) ≥ 0 and L̂N (PQ) = L̂N (QP ).

These conditions are closed for the weak topology and hence we find:

Corollary 8.7. There exists η > 0 (η ≥ (4A)−1) so that for t ∈ Bη, Mt is a
linear form on C〈X1, . . . , Xm〉 such that for all P,Q

Mt(PP
∗) ≥ 0 Mt(PQ) = Mt(QP ) Mt(1) = 1.

Remark. This means that Mt is a tracial state. The traciality property can
easily be derived by symmetry properties of the maps. However, I do not
know of any other way (and in particular any combinatorial way) to prove
the positivity property Mt(PP

∗) ≥ 0 for all polynomial P , except by using
matrix models. This property will be seen to be useful to actually solve the
combinatorial problem (i.e., find an explicit formula for Mt), see Section 15.2.

Proof of Theorem 8.5.

1. Proof of the induction relation (8.8).
• We first check them for k = 0 = (0, . . . , 0). By convention, there is

only one planar map with no vertex, so M0(1) = 1. We now check
that

M0(XiP ) = M0 ⊗M0(∂iP ) =
∑

P=p1Xip2

M0(p1)M0(p2).

But this is clear from (7.3) since for any planar map with only one
star of type XiP , the half-edge corresponding to Xi has to be glued
to another half-edge of P , hence the event AM (XiP ) must hold, and
if Xi is glued to the half-edge Xi coming from the decomposition P =
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p1Xip2, the map is split into two (independent) planar maps with stars
p1 and p2 respectively (note here that p1 and p2 inherits the structure
of stars since they inherit the orientation from P as well as a marked
half-edge corresponding to the first neighbor of the glued Xi.)

• We now proceed by induction over the k’s and the degree of P ; we
assume that (8.8) is true for

∑

ki ≤ M and all monomials, and for
∑

ki = M + 1 when deg(P ) ≤ L. Note that Mk(1) = 0 for |k| ≥ 1
since we cannot glue a vertex with zero half-edges to any half-edge of
another star. Hence, this induction can be started with L = 0. Now,
consider R = XiP with P of degree less than L and the set of planar
maps with a star of type XiQ and kj stars of type qj , 1 ≤ j ≤ n, with
|k| =

∑

ki = M + 1. Then,
� either the half-edge corresponding to Xi is glued with an half-edge
of P , say to the half-edge corresponding to the decomposition P =
p1Xip2; we then can use (7.3) to see that this cuts the map M into
two disjoint planar maps M1 (containing the star p1) and M2 (resp.
p2), the stars of type qi being distributed either in one or the other of
these two planar maps; there will be ri ≤ ki stars of type qi in M1,
the rest in M2. Since all stars all labeled, there will be

∏

Cri

ki
ways to

assign these stars in M1 and M2.
Hence, the total number of planar maps with a star of type XiQ and
ki stars of type qi, such that the marked half-edge of XiP is glued to
a half-edge of P is

∑

P=p1Xip2

∑

0≤ri≤ki
1≤i≤n

n
∏

i=1

Cri

ki
Mr(p1)Mk−r(p2) (8.10)

� Or the half-edge corresponding to Xi is glued to a half-edge of an-
other star, say qj ; let’s say to the edge coming from the decomposition
of qj into qj = q1Xiq2. Then, we can use (7.4) to see that once we
are given this gluing of the two edges, we can replace XiP and qj by
q2q1P .
We have kj ways to choose the star of type qj and the total number
of such maps is

∑

qj=q1Xiq2

kjMk−1j (q2q1P )

Summing over j, we obtain by linearity of Mk

n
∑

j=1

kjMk−1j ([Diqj ]P ) (8.11)

(8.10) and (8.11) give (8.8). Moreover, it is clear that (8.8) defines
uniquely Mk(P ) by induction.
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2. Proof of (8.9). To prove the second point, we proceed also by induction
over k and the degree of P . First, for k = 0, M0(P ) is the number of
colored maps with one star of type P which is smaller than the number of

planar maps with one star of type xdeg P since colors only add constraints.
Hence, we have, with Ck the Catalan numbers,

Mk(P ) ≤ C
[
deg(P )

2 ]
≤ Cdeg(P )

showing that the induction relation is fine with A = B = 1 at this step.
Hence, let us assume that (8.9) is true for

∑

ki ≤M and all polynomials,
and

∑

ki = M+1 for polynomials of degree less than L. Since Mk(1) = 0
for

∑

ki ≥ 1 we can start this induction. Moreover, using (8.8), we get
that, if we define k! =

∏n
i=1 ki!,

Mk(XiP )

k!
=

∑

0≤pi≤ki
1≤j≤n

∑

P=P1XiP2

Mp(P1)

p!

Mk−p(P2)

(k − p)!

+
∑

1≤j≤n
kj 6=0

Mk−1j
((DiqjP )

(k − 1j)!
.

Hence, taking P of degree less or equal to L and using our induction
hypothesis, we find that

∣

∣

∣

∣

Mk(XiP )

k!

∣

∣

∣

∣

≤
∑

0≤pj≤kj
1≤j≤n

∑

P=P1XiP2

A
P

kiBdegP−1
n
∏

i=1

CpjCkj−pjCdegP1CdegP2

+ 2
∑

1≤l≤n

A
P

kj−1
∏

j

CkjB
degP+deqql−1CdegP+deqql−1

≤ A
P

kiBdegP+1
∏

i

CkiCdegP+1

(

4n

B2
+ 2

∑

1≤j≤n B
degqj−24degqj−2

A

)

where we used Lemma 1.9 in the last line. It is now sufficient to choose A
and B such that

4n

B2
+ 2

∑

1≤j≤n B
degqj−24degqj−2

A
≤ 1

(for instance B = 2n+1 and A = 4nBD−24D−2 if D is the maximal degree
of the qj) to verify the induction hypothesis works for polynomials of all
degrees (all L’s).
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3. Properties of Mt. From the previous considerations, we can of course
define Mt and the series is absolutely convergent for |t| ≤ (4A)−1 since
Ck ≤ 4k. Hence Mt(P ) depends analytically on t ∈ B(4A)−1 . Moreover,
for all monomial P ,

|Mt(P )| ≤
∑

k∈Nn

n
∏

i=1

(4tiA)ki(4B)degP ≤
n
∏

i=1

(1 − 4Ati)
−1(4B)degP .

so that for small t, Mt satisfies CS(4B).
4. Mt satisfies SD[Vt]. This is derived by summing (8.8) written for all k

and multiplied by the factor
∏

(ti)
ki/ki!. From this point and the previous

one (note that B is independent from t), we deduce from Theorem 8.3
that for sufficiently small t, Mt is the unique solution of SD[Vt] that
satisfies CS(4B).

ut

8.5 Convergence of the free energy

Theorem 8.8. Let c > 0. Then, for η small enough, for all t ∈ Bη ∩ Uc, the
free energy converges towards a generating function of the numbers of certain
planar maps:

lim
N→∞

1

N2
log

ZVt

N

Z0
N

=
∑

k∈Nn\(0,..,0)

∏

1≤i≤n

(−ti)ki

ki!
Mk.

Moreover, the limit depends analytically on t in a neighborhood of the origin.

Proof. We may assume without loss of generality that c ∈ (0, 1]. For α ∈
[0, 1], Vαt is c-convex since

Vαt +
1

2

m
∑

i=1

X2
i =α(Vt(X1, . . . , Xm) +

1 − c

2

m
∑

i=1

X2
i )

+
(1 − α)(1 − c) + c

2

m
∑

i=1

X2
i

where all terms are convex (as we assumed c ≤ 1), whereas the last one is
c-convex. Set

FN (α) =
1

N2
logZVαt

N .

Then, 1
N2 log

Z
Vt
N

Z0
N

= FN (1) − FN (0). Moreover

∂αF
N
γ(α) = −L̄N

αt(Vt). (8.12)
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By Theorem 8.4, we know that for all α ∈ [0, 1] (since Vαt is c-convex),

lim
N→∞

L̄N
αt(Vt) = ταt(Vt)

whereas by (8.4), we know that L̄N
αt(Vt) stays uniformly bounded. Therefore,

a simple use of dominated convergence theorem shows that

lim
N→∞

1

N2
log

ZVt

N

Z0
N

= −
∫ 1

0

ταt(Vt)dα = −
n
∑

i=1

ti

∫ 1

0

ταt(qi)dα. (8.13)

Now, observe that by Corollary 8.6,

τt(qi) =
∑

k∈Nn

∏

1≤j≤n

(−tj)kj

kj !
Mk+1i

= −∂ti

∑

k∈Nn\{0,...,0}

∏

1≤j≤n

(−tj)kj

kj !
Mk

so that (8.13) implies that

lim
N→∞

1

N2
log

ZVt

N

Z0
N

= −
∫ 1

0

∂α[
∑

k∈Nn\{0,...,0}

∏

1≤j≤n

(−αtj)kj

kj !
Mk]dα

= −
∑

k∈Nn\{0,...,0}

∏

1≤j≤n

(−tj)kj

kj !
Mk.

ut

Bibliographical notes. The study of matrix models in mathematics is
not new. The one matrix model was already studied by Pastur [164] who
derived the limiting spectral density of such measures as well as the nearest-
neighbor spacing distribution. The problem of the universality of the fluc-
tuations of the largest eigenvalue was addressed in [163, 71]. Cases where
the potential is not strictly convex were studied for instance in [72, 141].
Specific two-matrix models (mainly models with quadratic interaction) were
studied by Mehta and coauthors [152, 154, 60] and, on less rigorous ground,
for instance in [4, 87, 80, 125, 123]. In this case, large deviations techniques
[109, 101] are also available (see [146] on a less rigorous ground), yielding a
non-perturbative approach. Matrix models were considered in the generality
presented in this section in [104].
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Second-order expansion for the free energy

At the end of this chapter, we will have proved that Lemma 7.12 holds, up to
the second-order correction in the large N limit, i.e., that

1

N2
log

(∫

e
Pn

i=1 tiNTr(qi(X1,...,Xm))dµN (X1) · · · dµN (Xm)

)

=

1
∑

g=0

1

N2g−2

∑

k1,...,kn∈N

n
∏

i=1

(ti)
ki

ki!
Mg((qi, ki), 1 ≤ i ≤ n) + o

(

1

N2

)

for some parameters ti small enough and such that
∑

tiqi is c-convex. As
for the first order, we shall prove first a similar large N expansion for L̄N

t .
We will first refine the arguments of the proof of Theorem 8.3 to estimate
L̄N

t − τt. This will already prove that (L̄N
t − τt)(P ) is at most of order N−2

for any polynomial P . To get the limit of N 2(L̄N
t − τt)(P ), we will first obtain

a central limit theorem for L̂N − τt which is of independent interest. The
key argument in our approach, besides further uses of integration by parts-
like arguments, will be the inversion of a differential operator acting on non-
commutative polynomials which can be thought as a non-commutative analog
of a Laplacian operator with a drift.

We shall now estimate differences of L̂N and its limit. So, we set

δ̂N
t = N(L̂N − τt)

δ̄N =

∫

δ̂NdµN
V = N(L̄N

t − τt)

δ̃N
t = N(L̂N − L̄N

t ) = δ̂N
t − δ̄N .

In order to simplify the notations, we will make t implicit and drop the sub-
script t in the rest of this chapter so that we will denote L̄N , τ, δ̂N , δ̄N and
δ̃N in place of L̄N

t , τt, δ̂
N
t , δ̄

N and δ̃N
t , as well as V in place of Vt.
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9.1 Rough estimates on the size of the correction δ̃N

t

In this section we improve on the perturbation analysis performed in Section
8.2.1 to get the order of

δ̄N (P ) = N(L̄N (P ) − τ)(P )

for all monomial P .

Proposition 9.1. For all c > 0,ε ∈ ]0, 1
2 [, there exists η > 0, C < +∞, such

that for all integer number N , all t ∈ Bη ∩ Uc, and all monomial function P

of degree less than N
1
2−ε,

|δ̄N (P )|≤C
deg (P )

N
.

Proof. The starting point is the finite dimensional Schwinger–Dyson equa-
tion of Property 8.1,

µN
V (L̂N [(Xi +DiV )P ]) = µN

V

(

L̂N ⊗ L̂N (∂iP )
)

. (9.1)

Therefore, since τ satisfies the Schwinger–Dyson equation SD[V], we get that
for all polynomial P ,

δ̄N (XiP ) = −δ̄N(DiV P ) + δ̄N ⊗ L̄N (∂iP ) + τ ⊗ δ̄N (∂iP ) + r(N,P ) (9.2)

with
r(N,P ) := N−1µN

V

(

δ̃N ⊗ δ̃N (∂iP )
)

.

We take P as monomial of degree d≤N
1
2−ε and see that

|r(N,P )| ≤ 1

N

∑

P=P1XiP2

µN
V

(

|δ̃N (P1)|2
)

1
2

µN
V

(

|δ̃N (P2)|2
)

1
2

≤ C

N

d−1
∑

l=0

(Bl2M2(l−1) + ClN4e−
αMN

2 )
1
2 ×

(B(d − l − 1)2M2(d−l−1) + C(d−l−1)N4e−
αMN

2 )
1
2

≤ C

N
d(B(d − 1)2M2(d−2) + C(d−1)N4e−

αMN
2 ) := r(N, d,M)

where we used in the second line Lemma 6.22 and assumed M ≥M0, and
d≤N

1
2−ε. We set

∆N
d := maxP monomial of degree d|δ̄N (P )|.



9.1 Rough estimates on the size of the correction δ̃N
t 135

Observe that by (6.14), for any monomial of degree d less than N
1
2−ε,

|L̄N
t (P )| ≤C(ε)d, |τ(P )| ≤Cd

0 ≤C(ε)d.

Thus, by (9.2), writing DiV =
∑

tjDiqj , we get that for d < N
1
2−ε

∆N
d+1≤max1≤i≤m

n
∑

j=1

|tj |∆N
d+deg(Diqj)

+ 2
d−1
∑

l=0

C(ε)d−l−1∆N
l + r(N, d,M).

We next define for κ≤ 1

∆N (κ, ε) =

N
1
2
−ε

∑

k=1

κk∆N
k .

We obtain, if D is the maximal degree of V ,

∆N (κ, ε) ≤ [C ′|t| + 2(1 − C(ε)κ)−1κ2]∆N (κ, ε)

+C|t|
N

1
2
−ε+D
∑

k=N
1
2
−ε+1

κk−D∆N
k +

N
1
2
−ε

∑

k=1

κkr(N, k,M) (9.3)

where we choose κ small enough so that C(ε)κ < 1. Moreover, since D is
finite, bounding ∆N

k by 2NC(ε)k, we get

N
1
2
−ε+D
∑

k=N
1
2
−ε+1

κk−D∆N
k ≤ 2DN(κC(ε))N

1
2
−ε

κ−D.

When κC(ε) < 1, as N goes to infinity, this term is negligible with respect to
N−1 for all ε > 0. The following estimate holds according to Lemma 6.22:

N
1
2
−ε

∑

k=1

κkr(N, k,M)≤C

N

N
1
2
−ε

∑

k=1

kκk(B(k− 1)2M2(k−2) +C(k−1)N4e−
αNM

2 )≤C
′′

N

if κ is small enough so that M2κ < 1 and Cκ < 1. We observed here that
N4e−

αNM
2 is uniformly bounded independently of N ∈ N. Now, if |t| is small,

we can choose κ so that

ζ := 1 − [C ′|t| + 2(1 − C(ε)κ)−1κ2] > 0.

Plugging these controls into (9.3) shows that for all ε > 0, and for κ > 0 small
enough, there exists a finite constant C(κ, ε) so that

∆N (κ, ε)≤C(κ, ε)N−1

and so for all monomial P of degree d≤N 1
2−ε,

|δ̄N (P )|≤C(κ, ε)κ−dN−1.

ut
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To get the precise evaluation of Nδ̄N (P ), we shall first obtain a central
limit theorem under µN

V which in turn will allow us to estimate the limit of
Nr(N,P ).

9.2 Central limit theorem

We shall here prove that

δ̂N (P ) = N(L̂N − τ)(P )

satisfies a central limit theorem for all polynomial P . By Proposition 9.1, it
is equivalent to prove a central limit theorem for δ̃N (P ), P ∈ C〈X1, . . . , Xm〉.
We start by giving a weak form of a central limit theorem for Stieltjes-like
functions. We then extend by density the result to polynomial functions in the
image of some differential operator and finally to any polynomials by inverting
this operator.

Until the end of this chapter, we will always assume the following hypoth-
esis (H).

(H): Let c be a positive real number. The parameter t is in Bη,c with η
sufficiently small such that we have the convergence to the solution of SD[Vt]
as well as the control given by Lemma 6.18, and Proposition 9.1.

Note that (H) implies also that the control of Lemma 6.18 is uniform, and
that we can apply Lemma 6.19 and Lemma 6.21 with uniform constants.

9.2.1 Central limit theorem for Stieltjes test functions

One of the issues that one needs to address when working with polynomials is
that they are not uniformly bounded. For that reason, we will prefer to work
in this section with the complex vector space Cm

st (C) generated by the Stieltjes
functionals

STm(C) =







→
∏

1≤i≤p

(

zi −
m
∑

k=1

αk
i Xk

)−1

; zi ∈ C\R, αk
i ∈ R, p ∈ N







(9.4)

where
∏→

is the non-commutative product. We can also equip STm(C) with
an involution





→
∏

1≤k≤p

(

zk −
m
∑

i=1

αk
i Xi

)−1




∗

=

→
∏

1≤k≤p

(

zp−k −
m
∑

i=1

αp−k
i Xi

)−1

.

We denote by Cm
st (C)sa the set of self-adjoint elements of Cm

st (C). The deriva-
tive is defined by the Leibniz rule (7.1) (taken with P,Q which are Stieltjes
functionals) and



9.2 Central limit theorem 137

∂i

(

z −
m
∑

i=1

αiXi

)−1

= αi

(

z −
m
∑

i=1

αiXi

)−1

⊗
(

z −
m
∑

i=1

αiXi

)−1

.

We recall two notations; first ] is the operator

(P ⊗Q)]h = PhQ

and
(P ⊗Q⊗R)](g, h) = PgQhR

so that for a monomial q

∂i ◦ ∂jq#(hi, hj) =
∑

q=q0Xiq1Xjq2

q0hiq1hjq2 +
∑

q=q0Xjq1Xiq2

q0hjq1hiq2.

Lemma 9.2. Assume (H) and let h1, . . . , hm be in Cm
st (C)sa. Then the ran-

dom variable

YN (h1, . . . , hm) = N

m
∑

k=1

{L̂N ⊗ L̂N (∂khk) − L̂N [(Xk +DkV )hk]}

converges in law to a real centered Gaussian variable with variance

C(h1, . . . , hm) =
m
∑

k,l=1

(τ ⊗ τ [∂khl × ∂lhk] + τ(∂l ◦ ∂kV ](hk, hl))) +
m
∑

k=1

τ(h2
k).

Proof. Define W = 1
2

∑

iX
2
i + V . Notice that YN (h1, . . . , hm) is real-valued

because the h′ks and W are self-adjoint. The proof of the lemma follows from
a change of variable. We take h1, . . . , hm in Cm

st (C)sa, λ ∈ R and perform a
change of variable Bi = F (A)i = Ai + λ

N hi(A) in ZN
V . Note that since the

hi are C∞ and uniformly bounded, this defines a bijection on Hm
N for N big

enough. We shall compute the Jacobian of this change of variables up to its
second-order correction. The Jacobian J may be seen as a matrix (Ji,j)1≤i,j≤m

where the Ji,j are in L(HN ) the set of endomorphisms of HN , and we can
write J = I + λ

N J with

J i,j : HN −→ HN

X −→ ∂ihj#X.

Now, for 1 ≤ i, j ≤ m, X −→ ∂ihj#X is bounded for the operator
norm uniformly in N (since hj ∈ Cst(C), ∂ihj ∈ Cst(C) ⊗ Cst(C) is uniformly
bounded) so that for sufficiently large N , the operator norm of λ

N J is less
than 1. From this we deduce

| det J | =

∣

∣

∣

∣

det

(

I +
λJ

N

)∣

∣

∣

∣

= exp

(

Tr log

(

I +
λJ

N

))

= exp





∑

k≥1

(−1)k+1λk

kNk
Tr(J

k
)



 .
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Observe that as J is a matrix of size m2N2 and of uniformly bounded norm,

the kth term (−1)k+1λk

Nk tr(J
k
) is of order 1

Nk−2 . Hence, only the two first terms
in the expansion will contribute to the order 1. To compute them, we only have
to remark that if φ an endomorphism of HN is of the form φ(X) =

∑

l AlXBl,
with N ×N matrices Ai,Bi then Trφ =

∑

l TrAlTrBl (this can be checked
by decomposing φ on the canonical basis of HN ). Now,

J
k

ij : X −→
∑

1≤i1,...,ik−1≤m

∂ihi2](∂i2hi3](· · · (∂ik−1
hj]X) · · · )).

Thus, we get

Tr(J) =
∑

i

TrJ ii =
∑

1≤i1,...,ik≤m

tr ⊗ tr(∂ihi)

and
Tr(J

2
) =

∑

ij

Tr(J ijJji) =
∑

1≤i,j≤m

tr ⊗ tr(∂ihj × ∂jhi)

since J ijJji(X) = ∂ihj][∂jhi]X ] = ∂ihj×∂jhi]X where X1
i ⊗Y 1

i ×X2
i ⊗Y 2

i =
X1

i X
2
i ⊗ Y 2

i Y
1
1 . We can now make the change of variable Ai → Ai + λ

N hi(A)
to find that

ZN
V =

∫

e−NtrV dµN =

∫

e−NTr(W (Ai+
λ
N hi(X))−W (Ai))e

λ
N

P

i Tr⊗Tr(∂ihi) ×

e−
λ2

2N2

P

i,j Tr⊗Tr(∂ihj∂jhi)eO( 1
N )dµN

V × ZN
V

where O( 1
N ) is a function uniformly bounded by C/N for some finite C =

C(h).
The first term can be expanded into

W

(

Ai +
hi(A)

N

)

−W (Ai) =
1

N

∑

i

∂iW]hi+
1

N2

∑

i,j

∂i◦∂jW#(hi, hj)+
RN

N3

where RN is a polynomial of degree less than the degree of DV whose coeffi-
cients are bounded by those of a fixed polynomial R. To sum up, the following
equality holds:

∫

eλYN (h1,...,hm)−λ2

2 CN (h1,...hm)+ 1
N {O(L̂N (R))}dµN

V = 1

with

CN (h1, . . . , hm) := L̂N
(

∑

i,j

∂i ◦ ∂jW#(hi, hj)
)

+ L̂N ⊗ L̂N
(

∑

i,j

∂ihj∂jhi

)

.

We can decompose the previous expectation in two terms E1 and E2 with
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E1 = EV

[

1ΛN
M
eλYN (h1,...,hm)−λ2

2 CN (h1,...,hm)+ O(L̂N (R))
N

]

and

E2 = EV

[

1(ΛN
M )ceλYN (h1,...,hm)−λ2

2 CN(h1,...,hm)+ O(L̂N (R))
N

]

.

On ΛN
M = {A : maxi(λ

N
max(Ai))≤M} all the quantities are Lipschitz bounded

so that O(L̂N (R))
N goes uniformly to 0 and YN (h1, . . . , hm) is at most of order

ecN . Now, by concentration inequalities CN (h1, . . . , hm) concentrates in the

scale e−N2

(see Lemma 6.21). Thus, in E1, L̂N can be replaced by its expec-
tation L̄N and then by its limit as L̄N converges to τ (see Theorem 8.6). This
proves that we can replace CN by C in E1.

The aim is now to show that for M sufficiently large, E2 vanishes when N
goes to infinity. It would be an easy task if all the quantities were in Cm

st (C)
but some derivatives of V appear so that there are polynomial terms in the
exponential. The idea to pass this difficulty is to make the reverse change of
variables. ForN bigger than the norm of the hi’s, and with Bi = Ai+

1
N hi(A),

E2 = EV

[

1{A:maxi(λN
max(Ai))≥M}e

λYN (h1,...,hm)−λ2

2 CN (h1,...,hm)+ O(L̂N (R))
N

]

= µN
V

(

B : maxi(λ
N
max(Ai))≥M

)

≤µN
V

(

maxi(λ
N
max(Bi))≥M − 1

)

.

This last quantity goes exponentially fast to 0 for M sufficiently large by
Lemma 6.19. Hence, we arrive, for M large enough, at

lim
N→∞

∫

1ΛN
M
eλYN (h1,...,hm)dµN

V = e
λ2

2 C(h1,...,hm).

Because µN
V (ΛN

M ) goes to one asN goes to infinity by Lemma 6.19, we conclude
that YN (h1, . . . , hm) converges in law under 1ΛN

M
dµN

V /µ
N
V (ΛN

M ) to a centered

Gaussian variable with covariance C(h1, . . . , hm) (since the convergence of
the Laplace transforms to a Gaussian law ensures the weak convergence). But
since µN

V (ΛN
M ) goes to one, this convergence in law also holds under µN

V (since
for any bounded continuous function µN

V (f) −
∫

f1ΛN
M
dµN

V /µ
N
V (ΛN

M ) goes to

zero as N goes to infinity). ut

9.2.2 Central limit theorem for some polynomial functions

We now extend Lemma 9.2 to polynomial test functions.

Lemma 9.3. Assume (H). Then, for all P1, . . . , Pm in C〈X1, . . . , Xm〉sa, the
variable

YN (P1, . . . , Pm) = N

m
∑

k=1

[L̂N ⊗ L̂N (∂kPk) − L̂N [(Xk +DkV )Pk ]]
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converges in law to a real centered Gaussian variable with variance

C(P1, · · · , Pm) =

m
∑

k,l=1

(τt⊗τt[∂kPl×∂lPk]+τt(∂l◦∂kV ](Pk, Pl)))+

m
∑

k=1

τt(P
2
k ).

Proof. Let P1, . . . , Pm be self-adjoint polynomials and hε
1, . . . , h

ε
m be Stieltjes

functionals which approximate P1, · · · , Pm such as

hε
i(A) = Pi

(

A1

1 + εA2
1

, . . . ,
Am

1 + εA2
m

)

.

Since E[YN (P1, . . . , Pm)] = 0 by (9.1),

YN (P1, . . . , Pm) = δ̃N (KN (P1, . . . , Pm))

with

KN(P1, . . . , Pm) =

m
∑

k=1

(

L̂N ⊗ I(∂kPk) − (Xk +DkV )Pk

)

and the same for YN (hε
1, . . . , h

ε
m). It is not hard to see that on ΛN

M ,

KN (hε
1, . . . , h

ε
m) −KN (P1, . . . , Pm)

is a Lipschitz function with a constant bounded by εC(M) for some finite
constant C(M) which depends only on M . Hence, by Lemma 6.21, we have

µN
V

(

|δ̂N (KN (hε
1, . . . , h

ε
k) −KN (P1, . . . , Pk))|≥δ

)

≤e−αMN + e
− δ2

2cε2C(M)2

and so for any bounded continuous function f : R → R, if νσ2 is the centered
Gaussian law of variance σ2, we deduce

lim
N→∞

µN
V

(

f(δ̃N (KN(P1, . . . , Pk)))
)

= lim
ε→0

lim
N→∞

µN
V

(

f(δ̃N(KN (hε
1, . . . , h

ε
k))
)

= lim
ε→0

νC(hε
1,...,hε

m)(f) = νC(P1,...,Pm)(f)

where we used in the second line Lemma 9.2 and in the last line Lemma 6.18
to obtain the convergence of C(hε

1, . . . , h
ε
m) to C(P1, . . . , Pm). ut

YN depends on N L̂N ⊗ L̂N , in which one of the empirical distribution
L̂N can be replaced by its deterministic limit. This is the content of the next
lemma.

Lemma 9.4. Assume (H) and let P1, . . . , Pk be self-adjoint polynomial func-
tions. Then, the variable
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ZN(P1, . . . , Pm) = δ̂N

(

m
∑

k=1

(Xk +DkV )Pk −
m
∑

k=1

(τt ⊗ I + I ⊗ τt)(∂kPk)

)

converges in law to a centered Gaussian variable with variance

C(P1, · · · , Pm) =

m
∑

k,l=1

(τt⊗τt[∂kPl×∂lPk]+τt(∂l◦∂kV ](Pk, Pl)))+

m
∑

k=1

τt(P
2
k ).

Proof. The only point is to notice that

YN (P1, · · ·, Pm) =

m
∑

k=1

(

δ̂N ⊗ τt + τt ⊗ δ̂N
)

(∂kPk)−δ̂N((Xk+DkV )Pk)+rN,P

with rN,P = N−1
∑m

k=1 δ̂
N ⊗ δ̂N (∂kPk) of order N−1 with probability going

to 1 by Lemma 6.21 and Property 9.1. Thus

YN (P1, . . . , Pm)

= δ̃N

(

m
∑

k=1

(−(Xk +DkV )Pk + (I ⊗ τt + τt ⊗ I)(∂kPk))

)

+O
( 1

N

)

= −ZN(P1, . . . , Pm) +O
( 1

N

)

.

This, with the previous lemma, proves the claim. ut

9.2.3 Central limit theorem for all polynomial functions

In the previous part, we obtained the central limit theorem only for the family
of random variables δ̂N (Q) with Q in

F =

{

m
∑

k=1

(Xk +DkV )Pk −
m
∑

k=1

(τt ⊗ I + I ⊗ τt)(∂kPk), ∀i, Pi self-adjoint

}

.

In this section, we wish to extend it to δ̂N (Q) for any self-adjoint polynomial
function Q, that is, prove the following theorem:

Theorem 9.5. Let t ∈ Uc∩Bη. There exists ηc > 0 so that for η < ηc, for all
polynomials P1, . . . , Pk ∈ C〈X1, . . . , Xm〉, (Tr(Pi) −Nτt(Pi))1≤i≤k converges
in law to a centered Gaussian vector with covariance {σ(Pi, Pj), 1 ≤ i, j ≤ k}

We shall describe σ in the course of the proof. Its interpretation as a generating
function for maps is given in Section 9.3.

To prove the theorem, we have to show that the set F is dense for some
convenient topology in C〈X1, . . . , Xm〉.

The strategy is to see F as the image of an operator that we will invert.
The first operator that comes to mind is
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Ψ : (P1, . . . , Pk) →
m
∑

k=1

(Xk +DkV )Pk −
m
∑

k=1

(τt ⊗ I + I ⊗ τt)(∂kPk)

as we immediately have F = Ψ(C〈X1, . . . , Xm〉sa, . . . ,C〈X1, . . . , Xm〉sa).
In order to obtain an operator from C〈X1, . . . , Xm〉 to C〈X1, . . . , Xm〉 we

will prefer to apply this with Pk = DkP for all k and for a given P ; as we shall
see later, Ψ(D1P, . . . , DmP ) is closely related with the projection on functions
of the type TrP of the operator on the entries L = ∆ −∇Ntr(W ).∇ which
is symmetric in L2(µN

V ) ( here W = V + 1
2

∑

A2
k). The resulting operator is

a differential operator. As such, it may be difficult to find a normed space
stable for this operator (since the operator will deteriorate the smoothness of
the functions) in which it is continuous and invertible.

To avoid this issue, we will first divide each monomials of P by its degree
(which more or less amounts to integrate and then divide by x the function
in the one variable case).

Then, we define a linear map Σ on C〈X1, . . . , Xm〉 such that for all mono-
mials q of degree greater or equal to 1

Σq =
q

deg q
.

For later use, we set C〈X1, . . . , Xm〉(0) to be the subset of polynomials P of
C〈X1, . . . , Xm〉sa such that P (0, . . . , 0) = 0. We let Π be the projection from
C〈X1, . . . , Xm〉sa onto C〈X1, . . . , Xm〉(0) (i.e., Π(P ) = P − P (0, . . . , 0)). We
now define some operators on C〈X1, . . . , Xm〉(0), i.e., from C〈X1, . . . , Xm〉(0)
into C〈X1, . . . , Xm〉(0),

Ξ1 : P −→ Π

(

m
∑

k=1

∂kΣP]DkV

)

Ξ2 : P −→ Π

(

m
∑

k=1

(µ⊗ I + I ⊗ µ)(∂kDkΣP )

)

.

We define Ξ0 = I − Ξ2 and Ξ = Ξ0 + Ξ1, where I is the identity
on C〈X1, . . . , Xm〉(0). Note that the images of Ξi and Ξ are included in
C〈X1, . . . , Xm〉sa since V is assumed self-adjoint. With these notations, Lemma
9.4, once applied to Pi = DiΣP , 1 ≤ i ≤ m, reads:

Proposition 9.6. For all P in C〈X1, . . . , Xm〉(0), δ̂N (ΞP ) converges in law
to a centered Gaussian variable with covariance

C(P ) := C(D1ΣP, . . . , DmΣP ).

Proof. We have for all tracial states τ , τ(∂kP]V ) = τ(DkPV ) and if P is in
C〈X1, . . . , Xm〉(0), we have the identity

P =
∑

k

∂kΣP]Xk.
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Then, as δ̂N is tracial (7.2) and vanishes on constant terms (so that the
projection Π can be removed in the definition of Ξ), for all polynomial P ,

δ̂N (ΞP ) = δ̂N

(

P +

m
∑

k=1

∂kΣP]DkV −
m
∑

k=1

(µ⊗ I + I ⊗ µ)(∂kDkΣP )

)

= δ̂N

(

m
∑

k=1

(Xk +DkV )DkΣP −
m
∑

k=1

(µ⊗ I + I ⊗ µ)(∂kDkΣP )

)

= ZN (D1ΣP, . . . , DmΣP ).

We then use Lemma 9.4 to conclude. ut

To generalize the central limit theorem to all polynomial functions, we
need to show that the image of Ξ is dense and to control approximations. If
P is a polynomial and q a non-constant monomial we will denote by λq(P ) the
coefficient of q in the decomposition of P in monomials. We can then define
a norm ‖.‖A on C〈X1, . . . , Xm〉(0) for A > 1 by

‖P‖A =
∑

deg q 6=0

|λq(P )|Adeg q .

In the formula above, the sum is taken over all non-constant monomials.
We also define the operator norm given, for T from C〈X1, . . . , Xm〉(0) to
C〈X1, . . . , Xm〉(0), by

|||T |||A = sup
‖P‖A=1

‖T (P )‖A.

Finally, let C〈X1, . . . , Xm〉(0)A be the completion of C〈X1, . . . , Xm〉(0) for
‖.‖A. We say that T is continuous on C〈X1, . . . , Xm〉(0)A if |||T |||A is finite.
We shall prove that Ξ is continuous on C〈X1, . . . , Xm〉(0)A with continuous
inverse when t is small.

Lemma 9.7. With the previous notations:

1. The operator Ξ0 is invertible on C〈X1, . . . , Xm〉(0).
2. There exists A0 > 0 such that for all A > A0, the operators Ξ2, Ξ0 and
Ξ−1

0 are continuous on C〈X1, . . . , Xm〉(0)A and their norm are uniformly
bounded for t in Bη.

3. For all ε, A > 0, there exists ηε > 0 such for |t| < ηε, Ξ1 is continuous on
C〈X1, . . . , Xm〉(0)A and |||Ξ1|||A≤ε.

4. For all A > A0, there exists η > 0 such that for t ∈ Bη, Ξ is continuous,
invertible with a continuous inverse on C〈X1, . . . , Xm〉(0)A. Besides the
norms of Ξ and Ξ−1 are uniformly bounded for t in Bη.

5. There exists C > 0 such that for all A > C, C is continuous from
C〈X1, . . . , Xm〉(0)A into R.
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Proof. 1. Observe that since Ξ2 reduces the degree of a polynomial by at
least 2,

P →
∑

n≥0

(Ξ2)
n(P )

is well defined on C〈X1, . . . , Xm〉(0) as the sum is finite for any polynomial
P . This gives an inverse for Ξ0 = I −Ξ2.

2. First remark that a linear operator T has a norm less than C with respect
to ‖.‖A if and only if for all non-constant monomial q,

‖T (q)‖A≤CAdeg q .

Recall that µ is uniformly compactly supported (see Lemma 6.18 ) and let

C0 < +∞ be such that |µ(q)|≤Cdeg q
0 for all monomial q. Take a monomial

q = Xi1 · · ·Xip , and assume that A > 2C0,

∥

∥

∥

∥

∥

Π

(

∑

k

(I ⊗ µ)∂kDkΣq

)∥

∥

∥

∥

∥

A

≤p−1
∑

k,q=q1Xkq2,
q2q1=r1Xkr2

‖r1µ(r2)‖A

≤ p−1
∑

k,q=q1Xkq2,
q2q1=r1Xkr2

Adeg r1Cdeg r2

0 =
1

p

p−1
∑

n=0

p−2
∑

l=0

AlCp−l−2
0

≤Ap−2

p−2
∑

l=0

(

C0

A

)p−2−l

≤2A−2‖q‖A

where in the second line, we observed that once deg(q1) is fixed, q2q1
is uniquely determined and then r1, r2 are uniquely determined by the
degree l of r1. Thus, the factor 1

p is compensated by the number of possible
decompositions of q, i.e., the choice of n, the degree of q1. If A > 2, P →
Π (
∑

k(I ⊗ µ)∂kDkΣP ) is continuous of norm strictly less than 1
2 . And

a similar calculus for Π (
∑

k(µ⊗ I)∂kDkΣ) shows that Ξ2 is continuous
of norm strictly less than 1. It follows immediately that Ξ0 is continuous.
Since Ξ−1

0 =
∑

n≥0Ξ
n
2 , Ξ

−1
0 is continuous as soon as Ξ2 is of norm strictly

less than 1.
3. Let q = Xi1 · · ·Xip be a monomial and let D be the degree of V and
B(≤ Dn) the sum of the maximum number of monomials in DkV .

‖Ξ1(q)‖A ≤ 1

p

∑

k,q=q1Xkq2

‖q1DkV q2‖A ≤ 1

p

∑

k,q=q1Xkq2

|t|BAp−1+D−1

= |t|BAD−2‖q‖A.

It is now sufficient to take ηε < (BAD−2)−1ε.
4. We choose η < (BAD−2)−1|||Ξ−1

0 |||−1
A so that when |t|≤η,

|||Ξ1|||A|||Ξ−1
0 |||A < 1.
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By continuity, we can extend Ξ0, Ξ1, Ξ2, Ξ and Ξ−1
0 on the space

C〈X1, . . . , Xm〉(0)A. The operator

P →
∑

n≥0

(−Ξ−1
0 Ξ1)

nΞ−1
0

is well defined and continuous. This is an inverse of Ξ = Ξ0 + Ξ1 =
Ξ0(I +Ξ−1

0 Ξ1).
5. We finally prove that C is continuous from C〈X1, . . . , Xm〉(0)A into R

where we recall that we assumed A > C0. Let us consider the first term

C1(P ) :=
m
∑

k,l=1

µ⊗ µ(∂kDlΣP × ∂lDkΣP ).

Then, we obtain as in the second point of this proof

|C1(P )| ≤ 4
m
∑

k,l=1

∑

q,q′

|λq(P )||λq′ (P )|
deg q deg q′

∑

q=q1Xkq2,q′=q′
1

Xlq′
2

q2q1=r1Xlr2,q′2q′1=r′1Xkr′2

Cdeg q+deg q′−4
0

≤ 4
∑

q,q′

|λq(P )||λq′ (P )|deg q deg q′Cdeg q+deg q′−4
0

≤ 4(sup
`≥0

`C`−2
0 A−`)2‖P‖2

A.

We next turn to showing that

C2(P ) :=

m
∑

k,l=1

µ (∂k ◦ ∂lV ](DkΣP,DlΣP ))

is also continuous for ‖.‖A. In fact, noting that we may assume V ∈
C〈X1, . . . , Xm〉(0) without changing C2, we find

|C2(P )|≤
∑

p,q,q′,k,l

|λp(V )|
∑

q,q′ ,p=p1Xkp2Xlp3
q=q1Xkq2,q′=q′

1
Xkq′

2

|λq(P )||λq′ (P )|Cdeg p+deg q+deg q′−4
0

deg q deg q′

≤ n|t|D2
∑

q,q′

|λq(P )||λq′ (P )|CD+deg q+deg q′−4
0

≤ n|t|D2CD−4
0 ‖P‖2

A.

The continuity of the last term C3(P ) =
∑m

i=1 µ
(

(DjΣP )2
)

is obtained
similarly.

ut
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We can compare the norm ‖·‖A to a more intuitive norm, namely the Lipschitz
norm ‖ · ‖M

L defined by

‖P‖M
L = sup

N∈N

sup
x1,...,xm∈H

(2)
N

∀i,‖xi‖∞≤M

m
∑

k=1

(‖DkPDkP
∗‖A)

1
2 .

We will say that a semi-norm N is weaker than a semi-norm N ′ if and
only if there exists C < +∞ such that for all P in C〈X1, . . . , Xm〉(0),

N (P )≤CN ′(P ).

Lemma 9.8. For A > M , the semi-norm ‖.‖M
L restricted to the space

C〈X1, . . . , Xm〉(0) is weaker than the norm ‖.‖A.

Proof. For all P in C〈X1, . . . , Xm〉(0), the following inequalities hold:

‖P‖M
L ≤

∑

q

|λq(P )|‖q‖M
L ≤

∑

q

|λq(P )| deg qMdeg q≤
(

sup
l
l

(

M

A

)l
)

‖P‖A.

ut
To take into account the previous results, we define a new hypothesis (H’)

stronger than (H).
(H’): (H) is satisfied, A − 1 > max(A0,M0, C) for the M0 which appear

in Lemma 6.19 and the C which appear in Proposition 9.1 Besides, |t|≤η
with η as in the fourth point of Lemma 9.7 in order that Ξ and Ξ−1 are
continuous on C〈X1, . . . , Xm〉(0)A and C〈X1, . . . , Xm〉(0)A−1, and that C is
also continuous for these norms.

The two main additional consequences of this hypothesis are the conti-
nuity of Ξ for ‖ · ‖A. The strange condition about the continuity of Ξ on
C〈X1, . . . , Xm〉(0)A−1 is here assumed for a technical reason which will ap-
pear only in the last section on the interpretation of the first order correction
to the free energy.

While (H′) is full of conditions, the only important hypothesis is the c-
convexity of V . Given such a V , we can always find constants A and η which
satisfy the hypothesis. The only restriction will be then that t is sufficiently
small.

We can now prove the general central limit theorem which is up to the
identification of the variance equivalent to Theorem 9.5.

Theorem 9.9. Assume (H’). For all P in C〈X1, . . . , Xm〉sa, δ̂
N (P ) con-

verges in law to a centered Gaussian variable γP with variance

σ(2)(P ) := C(Ξ−1Π(P )) = C(D1ΣΞ
−1Π(P ), · · · , DmΣΞ

−1Π(P )).

If P ∈ C〈X1, . . . , Xm〉, δ̂N (P ) converges to the complex centered Gaussian
variable γ(P+P∗)/2 + iγ(P−P∗)/2i (the covariance of γ(P+P∗)/2 and γ(P−P∗)/2i

being given by σ(2)((P + P ∗)/2, (P − P ∗)/2i) where σ(2)(·, ·) is the bilinear
form associated to the quadratic form σ(2)).
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Proof. As δ̂N (P ) does not depend on constant terms, we can directly take
P = Π(P ) in C〈X1, . . . , Xm〉(0). Now, by Lemma 9.7. 4, we can find
an element Q of C〈X1, . . . , Xm〉(0)A such that ΞQ = P . But the space
C〈X1, . . . , Xm〉(0) is dense in C〈X1, . . . , Xm〉(0)A by construction. Thus, there
exists a sequence Qn in C〈X1, . . . , Xm〉(0) such that

lim
n→∞

‖Q−Qn‖A = 0.

Let us define Rn = P −ΞQn in C〈X1, . . . , Xm〉(0).

Now according to Property 9.6 for all n, δ̂N (ΞQn) converges in law to a
Gaussian variable γn of variance C(Qn) with

C(Qn) = C(D1ΣQn, . . . , DmΣQn).

As C is continuous by Lemma 9.7.4, it can be extended to the space
C〈X1, . . . , Xm〉(0)A and σ(2)(P ) = C(Ξ−1P ) = C(Q) = limn C(Qn) is well
defined. Hence, γn converges weakly to γ∞, the centered Gaussian law with
covariance C(Q), when n goes to +∞. The last step is to prove the conver-

gence in law of δ̂N (P ) to γ∞. We will use the Dudley distance dD . Below, as

a parameter of dD, we, for short, write δ̂N (P ) for the law of δ̂N (P ). We make
the following decomposition:

dD(δ̂N (P ), γ∞)≤dD(δ̂N (P ), δ̂N (ΞQn)) + dD(δ̂N (ΞQn), γn) + dD(γn, γ∞).
(9.5)

By the above remarks, dD(δ̂N (ΞQn), γn) goes to 0 when N goes to +∞ and
dD(γn, γ∞) goes to 0 when n goes to +∞. We now use the bound on the
Dudley distance

dD(δ̂N (P ), δ̂N (ΞQn))≤E[|δ̂N (P ) − δ̂N (ΞQn)| ∧ 1] = E[|δ̂N (Rn)| ∧ 1].

We control the last term by Lemmas 6.21 and 6.19 so that for M≥M0,

E[|δ̂N (Rn)| ∧ 1]≤e−αNM + 2

√

2π

c
‖Rn‖M

L + εNRn,M + |mN
Rn,M |.

But we deduce from Lemma 9.8 that since we chose M < A, there exists a
finite constant C such that

‖Rn‖M
L ≤C‖Rn‖A = C‖Ξ(Q−Qn)‖A≤C‖|Ξ‖|A‖Q−Qn‖A

and so ‖Rn‖M
L goes to zero as n goes to infinity. And since ‖Rn‖M

L is finite,
εNRn,M goes to zero. Similarly, using the bound of Lemma 6.21 on mN

P,M for P
monomial, we find that

|mN
Rn,M | ≤ N

∑

q

|λq(Rn)|deg(q)(3Mdeg(q) + deg(q)2)e−αMN

≤ N sup
`≥0

(`(3M ` + `2)A−`)‖Rn‖Ae
−αMN
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goes to zero as N goes to infinity. Thus, E[|δ̂N (Rn)| ∧ 1] goes to zero as n
and N go to infinity. Putting things together, we obtain if we first let N go
to +∞ and then n, the desired convergence limN dD(δ̂N (P ), γ∞) = 0. ut

Note that the convergence in law in Theorem 9.9 can be generalized to a
convergence in moments:

Corollary 9.10. Assume (H’). Let P be a self-adjoint polynomial, then

δ̂N (P ) converges in moments to a real centered Gaussian variable with vari-
ance σ(2)(P ), i.e for all k in N,

lim
N→∞

∫

(δ̂NP )kdµN
V =

1
√

2πσ(2)(P )

∫

xke
− x2

2σ(2)(P ) dx.

Proof. Indeed, once again we decompose
∫

(δ̂NP )kdµN
V into EN

1 +EN
2 with

EN
1 =

∫

1ΛN
M

(δ̂NP )kdµN
V EN

2 =

∫

1(ΛN
M )c(δ̂NP )kdµN

V

with M ≥M0. For E1, we notice that the law of δ̂NP has a sub-Gaussian
tail according to Lemma 6.21. Therefore, we can replace xk by a bounded
continuous function, producing an error independent of N . Applying Theorem
9.9 then shows that

lim
N→∞

∫

1ΛN
M

(δ̂NP )kdµN
V =

1
√

2πσ(2)(P )

∫

xke
− x2

2σ(2)(P ) dx.

For the second term, we use the trivial bound

|EN
2 |≤Nk

∫

1(ΛN
M )c(|λmax(A)| + |µ|(P ))kdµN

V

≤kNk

∫

λ≥M

(λ + |µ|(P ))k−1e−αλNdλ

which goes to zero as N goes to infinity for all finite k. ut

9.3 Comments on the results

There is a natural interpretation of the operator Ξ in terms of the symmetric
differential operator in L2(µN

V ) given by



9.3 Comments on the results 149

LN =

m
∑

k=1

N
∑

i,j=1

eNTr(V (X)+2−1 Pm
i=1(X

k)2)∂Xk
ij
e−NTr(V (X)+2−1 Pm

i=1(X
k)2)∂Xk

ji

=

m
∑

k=1

N
∑

i,j=1

(

∂Xk
ij
∂Xk

ji
−N(DkV +Xk)ji∂Xk

ji

)

.

One checks by integration by parts that for any pair of continuously differen-
tiable functions f, g

µN
V (fLNg) = µN

V (gLNf) = −
m
∑

k=1

N
∑

i,j=1

µN
V

(

∂Xk
ij
g∂Xk

ij
f
)

. (9.6)

Moreover, for any polynomial P , with the notation of Lemma 9.3, we find
that

1

N
LNTr(ΣP (X)) = YN (D1ΣP, . . . , DmΣP ) = Tr(ΞP ) + o(1)

according to Lemma 9.4. Applying (9.6) with f = 1 and g = Tr(ΣP (X))
shows that

lim
N→∞

µN
V (Tr(ΞP )) = 0.

Furthermore, taking f = TrP (X) and g = TrQ(X) into (9.6) we deduce by
(6.22) that

σ(2)(ΞP,Q) = lim
N→∞

µN
V

(

Tr(ΞP (X))
(

TrQ(X) − µN
V (TrQ(X))

))

= lim
N→∞

1

N
µN

V

(

LNTr(ΣP (X))
(

TrQ(X) − µN
V (TrQ(X))

))

= lim
N→∞

1

N

m
∑

k=1

N
∑

i,j=1

µN
V ((DkΣP (X))ij(DkQ(X))ij)

=

m
∑

k=1

τt ((DkΣP (X))(DkQ(X))∗) .

Thus, we have proved the following:

Lemma 9.11. For all polynomial function P so that P (0) = 0,

σ(2)(ΞP,Q) =

m
∑

k=1

τt ((DkΣP (X))(DkQ(X))∗) .

Let us define, for k = (k1, . . . , kn),

Mk(P,Q) = ]{ maps with ki stars of type qi,

one of type P and one of type Q}.
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and

Mt(P,Q) =
∑

k1,...,kn

n
∏

i=1

(−ti)ki

ki!
Mk1,...,kn(P,Q).

We extend Mt to polynomials by linearity. Then we claim that σ2(P,Q) and
M(P,Q) satisfy the same kind of induction relation.

Proposition 9.12. For all monomials P,Q and all k,

Mk1,...,kn(XkP,Q)

=
∑

0≤pi≤ki

∑

P=RXkS

∏

i

Cpi

ki
Mp1,...,pn(R,Q)Mk1−p1,...,kn−pn(S)

+
∑

0≤pi≤ki

∑

P=RXkS

∏

i

Cpi

ki
Mp1,...,pn(S,Q)Mk1−p1,...,kn−pn(R)

+
∑

0≤j≤n

kjMk1,...,kj−1,...,kn(DkV P,Q)

+ Mk1,...,kn(DkQP )

and

Mt(XkP,Q) = Mt((I⊗τt+τt⊗I)DkP )−Mt(DkV P,Q)+τt(DkQP ). (9.7)

Besides there exists η > 0 so that there exists R < +∞ such that for all
monomials P and Q, all t ∈ B(0, η),

|Mt(P,Q)| ≤ Rdeg P+deg Q. (9.8)

Proof. The proof is very close to that of Theorem 8.5 which explains the
decomposition of planar maps with one root. First we look for a relation on
Mk1,...,kn(XkP,Q). We look at the first half-edge associated with Xk, then
three cases may occur:

1. The first possibility is that the branch is glued to another branch of P =
RXkS. It cuts P into two: R and S and it occurs for all decomposition
of P into P = RXkS, which is exactly what D does. Then either the
component R is linked to Q and to pi stars of type qi for each i, this leads
to

∏

Cpi

ki
Mp1,...,pn(R,Q)Mk1−p1,...,kn−pn(S)

possibilities or we have a symmetric case with S linked to Q in place of
R.

2. The second case occurs when the branch is glued to a vertex of type qj

for a given j; first we have to choose between the kj vertices of this type
then we contract the edges arising from this gluing to form a vertex of
type DiqjP1, which creates
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kjMk1,...,kj−1,...,kn(DkqjP,Q)

possibilities.
3. The last case is that the branch can be glued to the star associated to
Q = RXiS. We then only have to count planar graphs:

Mk1,...,kn(DkQP ).

We can now sum on the k’s to obtain the relation on M.
Finally, to show the last point of the proposition, we only have to prove

that there exist A > 0, B > 0 such that for all k’s, for all monomials P and
Q,

Mk1,...,kn(P,Q)
∏

i ki!
≤ A

P

i kiBdeg P+deg Q.

This follows easily by induction over the degree of P with the previous relation
on the M since we have proved such a control for Mk1,...,kn(Q) in [104]. ut

We can now prove the theorem:

Theorem 9.13. Assume (H’) with η small enough. Then, for all polynomials
P,Q,

σ(2)(P,Q) = M(P,Q)

Proof. First we transform the relation on M. We use (9.7) with P = DkΣR
to deduce

M(ΞR,Q) =
∑

k

τt(DkQDkΣR).

Let us define ∆ = σ(2) −M. Then according to the previous property, ∆ is
compactly supported and for all polynomials P and Q,

∆(ΞP,Q) = 0.

Moreover, with M(1, Q) = 0 = σ(2)(1, Q),

∆(1, Q) = 0.

To conclude we have to invert one more time the operator Ξ. For a polynomial
P we take as in the proof of the central limit theorem, a sequence of polynomial
Sn which goes to S = Ξ−1P in C〈X1, . . . , Xm〉(0)A.

∆(P,Q) = ∆(Ξ(Sn + S − Sn), Q) = ∆(Ξ(S − Sn), Q).

But by continuity of Ξ, Ξ(S − Sn) goes to 0 for the norm ‖.‖A. Moreover,
because ∆ is compactly supported, ∆ is continuous for ‖.‖R, and so ∆(Ξ(S−
Sn), Q) goes to zero when n goes to +∞ provided A ≥ R, which we can always
assume if η is small enough. ut
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9.4 Second-order correction to the free energy

We now deduce from the central limit theorem the precise asymptotics of
Nδ̄N (P ) and then compute the second-order correction to the free energy.

Let φ0 and φ be the linear forms on C〈X1, . . . , Xm〉 which are given, if P
is a monomial by

φ0(P ) =

m
∑

i=1

∑

P=P1XiP2XiP3

σ(2)(P3P1, P2).

and φ = φ0 ◦Σ.

Proposition 9.14. Assume (H’). Then, for any polynomial P ,

lim
N→∞

Nδ̄N (P ) = φ(Ξ−1P ).

Proof. Again, we base our proof on the finite-dimensional Schwinger–Dyson
equation (9.1) which, after centering, reads for i ∈ {1, . . . ,m},

N2µN
V

(

(L̂N − τt)[(Xi +DiV )P − (I ⊗ τt + τt ⊗ I)∂iP
)

= µN
V

(

δ̂N ⊗ δ̂N (∂iP )
)

.
(9.9)

Taking P = DiΣP and summing over i ∈ {1, . . . ,m}, we thus have

N2µN
V

(

(L̂N − τt)(ΞP )
)

= µN
V

(

δ̂N ⊗ δ̂N

(

m
∑

i=1

∂i ◦DiΣP

))

(9.10)

By Theorem 9.9 and Lemma 9.10 we see that

lim
N→∞

µN
V

(

δ̂N ⊗ δ̂N (
m
∑

i=1

∂i ◦DiP )

)

= φ(P )

which gives the asymptotics of Nδ̄N (ΞP ) for all P .
To generalize the result to arbitrary P , we proceed as in the proof of

the full central limit theorem. We take a sequence of polynomials Qn which
goes to Q = Ξ−1P when n goes to ∞ for the norm ‖.‖A. We define Rn =
P − ΞQn = Ξ(Q−Qn). Note that as P and Qn are polynomials then Rn is
also a polynomial.

Nδ̄N (P ) = Nδ̄N (ΞQn) +Nδ̄N(Rn).

According to Property 9.1, for any such monomial P of degree less than N
1
2−ε,

|Nδ̄N (P )| ≤ Cdeg(P ).
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So if we take the limit in N , for any monomial P ,

lim sup
N

|Nδ̄N (P )| ≤ Cdeg(P )

and therefore lim supN |Nδ̄N (P )| ≤ ‖P‖C ≤ ‖P‖A. The last inequality comes
from the hypothesis (H’) which requires C < A. We now fix n and take the
large N limit,

lim sup
N

|Nδ̄N (P −ΞQn)| ≤ lim sup
N

|Nδ̄N (Rn)| ≤ ‖Rn‖A.

If we take the limit in n the right term vanishes and we are left with:

lim
N
Nδ̄N (P ) = lim

n
lim
N
Nδ̄N (Qn) = lim

n
φ(Qn).

It is now sufficient to show that φ is continuous for the norm ‖.‖A.
But the map P → ∑m

i=1 ∂i ◦ DiP is continuous from C〈X1, . . . , Xm〉(0)A

to C〈X1, . . . , Xm〉(0)A−1 and σ2 is continuous for ‖.‖A−1 due to the technical
hypothesis in (H’). This proves that φ is continuous and then can be extended
on C〈X1, . . . , Xm〉(0)A. Thus

lim
N
Nδ̄N (P ) = lim

n
φ(Qn) = φ(Q).

ut

Theorem 9.15. Assume that Vt satisfies (H’) with a given c > 0. Then

log
ZVt

N

Z0
N

= N2Ft + F 1
t + o(1)

with

Ft =

∫ 1

0

ταt(Vt)dα

and

F 1
t =

∫ 1

0

φαt(Ξ
−1
αt Vt)dα.

Proof. As in the proof of Theorem 8.8, we note that αVt = Vαt is c-convex
for all α ∈ [0, 1] We use (8.12) to see that

∂α logZN
Vαt

= µN
αt(L̂

N (Vt))

so that we can write

log
ZN

Vαt

ZN
0

=

∫ 1

0

µN
Vαt

(L̂N (Vt))dα

= N2Ft +

∫ 1

0

[Nδ̄N
αt(Vt)]ds. (9.11)
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Proposition 9.14 and (9.11) finish the proof of the theorem since by Proposi-
tion 9.1, all the Nδ̄N (qi) can be bounded independently of N and t ∈ Bη,c so
that dominated convergence theorem applies. ut

As for the combinatorial interpretation of the covariance we relate F 1 to
a generating function of maps. This time, we will consider maps on a torus
instead of a sphere. Such maps are said to be of genus 1.

M1
k1,...,kn

(P ) = ]{ maps of genus 1 with ki stars of type qi or q∗i
and one of type P}

and

M1
k1,...,kn

= ]{ maps with ki stars of type qi or q∗i }.

We also define the generating function:

M1
t(P ) =

∑

k1,...,kn

n
∏

i=1

(−ti)ki

ki!
M1

k1,...,kn
(P ).

Proposition 9.16. For all monomials P and all k,

M1
k1,...,kn

(XkP )

=
∑

0≤pi≤ki

∑

P=RXkS

∏

i

Cpi

ki
M1

p1,...,pn
(R)Mk1−p1,...,kn−pn(S)

+
∑

0≤pi≤ki

∑

P=RXkS

∏

i

Cpi

ki
Mp1,...,pn(R)M1

k1−p1,...,kn−pn
(S)

+
∑

0≤j≤n

kjM1
k1,...,kj−1,...,kn

(DkV P,Q)

+
∑

P=RXkS

Mk1,...,kn(R,S)

and

M1
t(XkP ) = M1

t((I⊗τt+τt⊗I)∂kP )−M1
t(DkV P )+Mt⊗Mt(∂kP ). (9.12)

Besides, for η small enough, there exists R < +∞ such that for all mono-
mials P , all t ∈ B(0, η),

|M1(P )| ≤ Rdeg P .

Proof. We proceed as for the combinatorial interpretation of the variance.
We look at the first edge which comes out of the branch Xk, then two cases
may occur:
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1. The first possibility is that the branch is glued to another branch of P =
RXkS. It forms a loop starting from P . There are two cases.
a) The loop can be retractible. It cuts P in two: R and S and it occurs

for all decomposition of P into P = RXkS which is exactly what does
D. Then either the component R or the component S is of genus 1
and the other component is planar. It produces either

∏

i

Cpi

ki
M1

p1,...,pn
(R)Mk1−p1,...,kn−pn(S)

possibilities ot the symmetric formula.
b) The loop can also be non-trivial in the fundamental group of the

surface. Then the surface is cut into two parts. We are left with a
planar surface with two fixed starsR and S. This gives Mk1,...,kn(R,S)
possibilities.

2. The second possibility occurs when the branch is glued to a vertex of type
qj for a given j. First we have to choose between the kj vertices of this
type, then we contract the edges arising from this gluing to form a vertex
of type DiqjP1, which creates

kjM1
k1,...,kj−1,...,kn

(DkqjP,Q)

possibilities.

We can now sum on the k’s to obtain the relation on M1.
Finally, to show that M1 is compactly supported we only have to prove

that there exist A > 0, B > 0 such that for all k’s, for all monomials P ,

M1
k1,...,kn

(P )
∏

i ki!
≤ A

P

i kiBdeg P .

Again this follow easily by induction with the previous relation on the M1. ut

Proposition 9.17. Assume (H’). There exists η > 0 small enough so that
for t ∈ Bη,c,

1. For all monomials P ,
φ(Ξ−1P ) = M1(P ).

2.

F 1
t =

∑

k∈Nn\{0}

n
∏

i=1

(−ti)ki

ki!
M1

k1,...,kn

Proof. We use the equation of the previous property on M1 with P = DkΣP
and we sum, then

M1(ΞP ) = M(
∑

k

∂kDkP ) =
∑

k

σ2(∂kDkP ) = φ(ΞP )
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where we have used the combinatorial interpretation of the covariance (The-
orem 9.13). As M1 and φ are continuous for ‖.‖A when η is small enough, we
can apply this to Ξ−1P and conclude.

Finally, for η sufficiently small the sum is absolutely convergent so that
we can interchange the integral and the sum:

F 1
t =

∫ 1

0

M1
αt(Vt)dα

=

n
∑

i=1

∑

ki,...,kn

∫ 1

0

(−ti)
∏

j

(−αtj)kj

kj !
M1

k(qi)dα.

=

∫ 1

0

∂αM1
αtdα = M1

t .

This proves the statement. ut

Bibliographical notes. Central limit theorems for the trace of polynomi-
als in independent Gaussian matrices were first considered in [54, 100], based
on a dynamical approach. Similar questions were undertaken under a free
probability perspective in [157] where the interpretation of the covariances
appearing in the central limit theorem of independent Gaussian matrices in
terms of planar diagrams is used to define a new type of freeness. The case
where the potential is not convex and the limiting measure may have a dis-
connected support is addressed in [162]; in certain cases Pastur can compute
the logarithm of the Laplace transform of linear statistics and show that it is
not given by half the covariance, as it should if a central limit theorem would
hold.

The asymptotic topological expansion of one-matrix integrals was studied
in [2, 86], using orthogonal polynomials. The so-called Schwinger–Dyson (or
loop, or Master loop) equations were already used to analyze these questions
in many papers in physics, see, e.g., [87, 31, 88].
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Eigenvalues of Gaussian Wigner matrices and

large deviations





159

In this part, we consider the case where the entries of the matrix XN,β are
the so-called Gaussian ensembles. Moreover, since the results depend upon
the fact that the entries are real or complex, we now show the difference in
the notations. We consider N ×N self-adjoint random matrices with entries

XN,β
kl =

∑β
i=1 g

i
kle

i
β√

βN
, 1 ≤ k < l ≤ N, XN,β

kk =

√

2

βN
gkke

1
β, 1 ≤ k ≤ N

where (ei
β)1≤i≤β is a basis of Rβ , that is e11 = 1, e12 = 1, e22 = i. This definition

can be extended to the case β = 4, named the Gaussian symplectic ensemble,

when N is even by choosing XN,β =
(

XN,β
ij

)

1≤i,j≤ N
2

with XN,β
kl a 2×2 matrix

defined as above but with (ek
β)1≤k≤4 the Pauli matrices

e14 =

(

1 0
0 1

)

, e24 =

(

0 −1
1 0

)

, e34 =

(

0 −i
−i 0

)

, e44 =

(

i 0
0 −i

)

.

(gi
kl, k ≤ l, 1 ≤ i ≤ β) are independent equidistributed centered Gaussian

variables with variance 1. (XN,2, N ∈ N) is commonly referred to as the Gaus-
sian Unitary Ensemble (GUE), (XN,1, N ∈ N) as the Gaussian Orthogonal
Ensemble (GOE) and (XN,4, N ∈ N) as the Gaussian Symplectic Ensemble
(GSE) since they can be characterized by the fact that their laws are invariant
under the action of the unitary, orthogonal and symplectic group respectively

(see [153]). We denote by P
(β)
N the law of XN,β.

The main advantage of the Gaussian ensembles is that the law of the
eigenvalues of these matrices is explicit and rather simple. Namely, we now
discuss the following lemma.

Lemma IV.1. Let X ∈ H(β)
N be random with law P

(β)
N . The joint distribution

of the eigenvalues λ1(X) ≤ · · · ≤ λN (X), has density proportional to

1x1≤···≤xN

∏

1≤i<j≤N

|xi − xj |β
N
∏

i=1

e−βx2
i /4. (IV.13)

We shall prove this lemma later, when studying Dyson’s Brownian motion,
see Corollary 12.4. Let us, however, emphasize the ideas behind a direct proof
in the case β = 1. It is simply to write the decomposition X = UDU ∗,
with the eigenvalues matrix D that is diagonal and with real entries, and
with the eigenvectors matrix U (that is unitary). Suppose this map was a
bijection (which it is not, at least at the matrices X that do not possess
all distinct eigenvalues) and that one can parametrize the eigenvectors by
βN(N − 1)/2 parameters in a smooth way (which one cannot in general).
Then, it is easy to deduce from the formula X = UDU ∗ that the Jacobian
of this change of variables depends polynomially on the entries of D and is
of degree βN(N − 1)/2 in these variables. Since the bijection must break
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down when Dii = Djj for some i 6= j, the Jacobian must vanish on that
set. When β = 1, this imposes that the polynomial must be proportional to
∏

1≤i<j≤N (xi − xj). Further degree and symmetry considerations allow us to
generalize this to β = 2. We refer the reader to [6] for a full proof, that shows
that the set of matrices for which the above manipulations are not permitted
has Lebesgue measure zero.



10

Large deviations for the law of the spectral

measure of Gaussian Wigner’s matrices

In this section, we consider the law of N random variables (λ1, . . . , λN ) with
law

PN
V,β(dλ1, . . . , dλN ) = (ZN

V,β)−1|∆(λ)|βe−N
PN

i=1 V (λi)
N
∏

i=1

dλi, (10.1)

for a continuous function V : R → R such that

lim inf
|x|→∞

V (x)

β log |x| > 1 (10.2)

and a positive real number β. Here, ∆(λ) =
∏

1≤i<j≤N (λi − λj).

When V (x) = 4−1βx2, we have seen in Lemma IV that PN
4−1βx2,β is the

law of the eigenvalues of an N ×N GOE (resp. GUE, resp GSE) matrix when
β = 1 (resp. β = 2, resp. β = 4). The case β = 4 corresponds to another
matrix ensemble, namely the GSE. In view of these remarks and other ap-
plications discussed in Part III, we consider in this section the slightly more
general model with a potential V . We emphasize, however, that the distribu-
tion (10.1) precludes us from considering random matrices with independent
non-Gaussian entries.

We have proved already at the beginning of these notes that the empirical
measure

LN =
1

N

N
∑

i=1

δλN
i

converges almost surely towards the semi-circular law. Moreover, we studied
its fluctuations around its mean, both by the central limit theorem and by
concentration inequalities. Such results did not depend much on the Gaussian
nature of the entries.

We address here a different type of question. Namely, we study the prob-
ability that LN takes a very unlikely value. This was already considered in
our discussion of concentration inequalities (cf. Part II), where the emphasis
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was put on obtaining upper bounds on the probability of deviation. In con-
trast, the purpose of the analysis here is to exhibit a precise estimate on these
probabilities, or at least on their logarithmic asymptotics. The appropriate
tool for handling such questions is large deviation theory, and we present in
Appendix 20.1 a concise introduction to that theory and related definitions
and references.

Endow P(R) with the usual weak topology. Our goal is to estimate the
probability PN

V,β(LN ∈ A), for measurable sets A ⊂ P(R). Of particular in-
terest is the case where A does not contain the limiting distribution of LN .

Define the non-commutative entropy Σ : P(R) → [−∞,∞], as

Σ(µ) =

∫ ∫

log |x− y|dµ(x)dµ(y) . (10.3)

Set next

IV
β (µ) =

{∫

V (x)dµ(x) − β
2Σ(µ) − cVβ , if

∫

V (x)dµ(x) <∞
∞, otherwise ,

with cVβ = infν∈P(R){
∫

V (x)dν(x) − β
2Σ(ν)}.

(10.4)

Theorem 10.1. Let LN = N−1
∑N

i=1 δλN
i

be the empirical measure of the

random variables {λN
i }N

i=1 distributed according to the law PN
V,β, see (10.1).

Then, the family of random measures LN satisfies, in P(R) equipped with
the weak topology, a full large deviation principle with good rate function IV

β

in the scale N2. That is, IV
β : P(R) → [0,∞] possesses compact level sets

{ν : IV
β (ν) ≤M} for all M ∈ R+, and

For any open set O ⊂ P(R) ,

lim inf
N→∞

1

N2
logPN

β,V (LN ∈ O) ≥ − inf
O
IV
β ,

(10.5)

and
For any closed set F ⊂ P(R) ,

lim sup
N→∞

1

N2
logPN

β,V (LN ∈ F ) ≤ − inf
F
IV
β .

(10.6)

The proof of Theorem 10.1 relies on the properties of the function IV
β

collected in Lemma 10.2 below.

Lemma 10.2.

(a) IV
β is well defined on P(R) and takes its values in [0,+∞].

(b) IV
β is a good rate function.

(c) IV
β is a strictly convex function on P(R).

(d) IV
β achieves its minimum value at a unique probability measure σV

β on R

characterized, if CV
β = infν∈P(R)

(

∫

(V (x) − β
∫

log |x− y|dσV
β (y))dν(x)

)

,

by
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V (x) − β

∫

log |y − x|dσV
β (y) = Cβ

V , σ
V
β a.s., (10.7)

and, for all x outside of the support of σV
β ,

V (x) − β

∫

log |y − x|dσV
β (y) ≥ CV

β . (10.8)

As an immediate corollary of Theorem 10.1 and of part (d) of Lemma 10.2
we have the following.

Corollary 10.3 (Second proof of Wigner’s theorem). Under PN
V,β, LN

converges almost surely towards σV
β .

Proof of Lemma 10.2. If IV
β (µ) < ∞, since V is bounded below by as-

sumption (10.2), Σ(µ) > −∞ and therefore also
∫

V dµ < ∞. This proves
that IV

β (µ) is well defined (and by definition non-negative), yielding point (a).
Set

f(x, y) =
1

2
V (x) +

1

2
V (y) − β

2
log |x− y|. (10.9)

Note that f(x, y) goes to +∞ when x, y do by (10.2). Indeed, log |x − y| ≤
log(|x| + 1) + log(|y| + 1) implies

f(x, y) ≥ 1

2
(V (x) − β log(|x| + 1)) +

1

2
(V (y) − β log(|y| + 1)) (10.10)

as well as when x, y approach the diagonal {x = y}; for all L > 0, there exist
constants K(L) (going to infinity with L) such that

{(x, y) : f(x, y) ≥ K(L)} ⊂ BL ,

BL := {(x, y) : |x− y| < L−1} ∪ {(x, y) : |x| > L} ∪ {(x, y) : |y| > L}.
(10.11)

Since f is continuous on the compact set Bc
L, we conclude that f is bounded

below, and denote bf > −∞ a lower bound.

We now show that Iβ
V is a good rate function, and first that its level sets

{Iβ
V ≤ M} are closed, that is, that Iβ

V is lower semi-continuous. Indeed, by
the monotone convergence theorem, we have the following:

IV
β (µ) =

∫ ∫

f(x, y)dµ(x)dµ(y) − cVβ

= sup
M≥0

∫ ∫

(f(x, y) ∧M)dµ(x)dµ(y) − cVβ .

But fM = f ∧M is bounded continuous and so for M <∞,

IV,M
β (µ) =

∫ ∫

(f(x, y) ∧M)dµ(x)dµ(y)
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is bounded continuous on P(R). As a supremum of the continuous functions

IV,M
β , IV

β is lower semi-continuous. Hence, by Theorem 20.11, to prove that

{IV
β ≤ L} is compact, it is enough to show that {IV

β ≤ L} is included in a
compact subset of P(R) of the form

Kε = ∩B∈N{µ ∈ P(R) : µ([−B,B]c) ≤ ε(B)}

with a sequence ε(B) going to zero as B goes to infinity.
Arguing as in (10.11), there exist constants K ′(L) going to infinity as L

goes to infinity, such that

{(x, y) : |x| > L, |y| > L} ⊂ {(x, y) : f(x, y) ≥ K ′(L)} . (10.12)

Hence, for any L > 0 large,

µ (|x| > L)
2

= µ⊗ µ (|x| > L, |y| > L)

≤ µ⊗ µ (f(x, y) ≥ K ′(L))

≤ 1

K ′(L) − bf

∫ ∫

(f(x, y) − bf )dµ(x)dµ(y)

=
1

K ′(L) − bf
(IV

β (µ) + cVβ − bf )

Hence, with ε(B) = [
√

(M + cVβ − bf )+/
√

(K ′(B) − bf )+] ∧ 1 going to zero

when B goes to infinity, one has that {IV
β ≤ M} ⊂ Kε. This completes the

proof of point (b).
Since IV

β is a good rate function, it achieves its minimal value. Let σV
β

be a minimizer. Then, for any signed measure ν̄(dx) = φ(x)σV
β (dx) + ψ(x)dx

with two bounded measurable compactly supported functions (φ, ψ) such that
ψ ≥ 0 and ν̄(R) = 0, for ε > 0 small enough, σV

β + εν̄ is a probability measure
so that

IV
β (σV

β + εν̄) ≥ IV
β (σV

β )

which gives
∫ (

V (x) − β

∫

log |x− y|dσV
β (y)

)

dν̄(x) ≥ 0.

Taking ψ = 0, we deduce by symmetry that there is a constant CV
β such that

V (x) − β

∫

log |x− y|dσV
β (y) = CV

β , σV
β a.s., (10.13)

which implies that σV
β is compactly supported (as V (x)−β

∫

log |x−y|dσV
β (y)

goes to infinity when x does). Taking φ(x) = −
∫

ψ(y)dy, we then find that

V (x) − β

∫

log |x− y|dσV
β (y) ≥ CV

β (10.14)
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Lebesgue almost surely, and then everywhere outside of the support of σV
β by

continuity. By (10.13) and (10.14) we deduce that

CV
β = inf

ν∈P(R)
{
∫

(V (x) − β

∫

log |x− y|dσV
β (y))dν(x)} .

This completes the proof of (10.7) and (10.8). The claimed uniqueness of σV
β ,

and hence the completion of the proof of part (d), then follows from the strict
convexity claim (point (c) of the lemma), which we turn to next.

Note first that we can rewrite IV
β as

IV
β (µ) = −β

2
Σ(µ− σV

β ) +

∫ (

V − β

∫

log |x− y|dσV
β (y) − CV

β

)

dµ(x).

The fact that IV
β is strictly convex comes from the observation that Σ is

strictly concave, as can be checked from the formula

log |x− y| =

∫ ∞

0

1

2t

(

exp

{

− 1

2t

}

− exp

{

−|x− y|2
2t

})

dt (10.15)

which entails that for any µ ∈ P(R),

Σ(µ−σV
β ) = −

∫ ∞

0

1

2t

(∫ ∫

exp{−|x− y|2
2t

}d(µ− σV
β )(x)d(µ − σV

β )(y)

)

dt.

Indeed, one may apply Fubini’s theorem when µ1, µ2 are supported in [− 1
2 ,

1
2 ]

since then µ1 ⊗ µ2(exp{− 1
2t} − exp{− |x−y|2

2t } ≤ 0) = 1. One then deduces
the claim for any compactly supported probability measures by scaling and
finally for all probability measures by approximations. The fact that for all
t ≥ 0,

∫ ∫

exp{−|x− y|2
2t

}d(µ− σV
β )(x)d(µ − σV

β )(y)

=

√

t

2π

∫ +∞

−∞

∣

∣

∣

∣

∫

exp{iλx}d(µ− σV
β )(x)

∣

∣

∣

∣

2

exp{− tλ2

2
}dλ

therefore entails that Σ is concave since µ →
∣

∣

∣

∫

exp{iλx}d(µ− σV
β )(x)

∣

∣

∣

2

is

convex for all λ ∈ R. Strict convexity comes from Cauchy–Schwarz inequality,
Σ(αµ+ (1 − α)ν) = αΣ(µ) + (1 − α)Σ(ν) if and only if Σ(ν − µ) = 0 which
implies that all the Fourier transforms of ν − µ are null, and hence µ = ν.
This completes the proof of the lemma. ut

Proof of Theorem 10.1. To begin, let us remark that with f as in (10.9),

PN
V,β(dλ1, . . . , dλN ) = (Zβ,V

N )−1e−N2
R

x6=y
f(x,y)dLN(x)dLN(y)

N
∏

i=1

e−V (λi)dλi.
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Hence, if µ→
∫

x6=y
f(x, y)dµ(x)dµ(y) was a bounded continuous function, the

proof would follow from a standard Laplace method (see Theorem 20.8 in the
appendix). The main point is therefore to overcome the singularity of this
function, with the most delicate part being overcoming the singularity of the
logarithm.

Following Appendix 20.1 (see Corollary 20.6 and Definition 13.10), a full
large deviation principle can be proved by showing that exponential tightness
holds, as well as estimating the probability of small balls. We follow these
steps below.

• Exponential tightness. Observe that by Jensen’s inequality,

logZβ,V
N ≥ N log

∫

e−V (x)dx

−N2

∫ (∫

x6=y

f(x, y)dLN (x)dLN (y)

) N
∏

i=1

e−V (λi)dλi
∫

e−V (x)dx
≥ −CN2

with some finite constant C. Moreover, by (10.10) and (10.2), there exist
constants a > 0 and c > −∞ so that

f(x, y) ≥ a|V (x)| + a|V (y)| + c

from which one concludes that for all M ≥ 0,

PN
V,β

(∫

|V (x)|dLN ≥M

)

≤ e−2aN2M+(C−c)N2

(∫

e−V (x)dx

)N

.

Since V goes to infinity at infinity, KM = {µ ∈ P(R) :
∫

|V |dµ ≤ M} is a
compact set for all M <∞, so that we have proved that the law of LN under
PN

V,β is exponentially tight.
•Large deviation upper bound. d denotes the Dudley metric, see (0.1). We

prove here that for any µ ∈ P(R), if we set P̄N
V,β = Zβ,V

N PN
V,β

lim
ε→0

lim sup
N→∞

1

N2
log P̄N

V,β (d(LN , µ) ≤ ε) ≤ −
∫

f(x, y)dµ(x)dµ(y). (10.16)

For any M ≥ 0, the following bound holds:

P̄N
V,β (d(LN , µ) ≤ ε)

≤
∫

d(LN ,µ)≤ε

e−N2
R

x6=y
f(x,y)∧MdLN(x)dLN(y)

N
∏

i=1

e−V (λi)dλi.

Since under the product Lebesgue measure, the λi’s are almost surely distinct,
it holds that LN ⊗ LN (x = y) = N−1, P̄N

V,β almost surely. Thus, we deduce
for all M ≥ 0, with fM (x, y) = f(x, y) ∧M ,
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∫

fM (x, y)dLN (x)dLN (y) =

∫

x6=y

fM (x, y)dLN (x)dLN (y) +MN−1,

and so

P̄N
V,β (d(LN , µ) ≤ ε)

≤ eMN

∫

d(LN ,µ)≤ε

e−N2
R

fM (x,y)dLN(x)dLN(y)
N
∏

i=1

e−V (λi)dλi.

Since IV,M
β (ν) =

∫

fM (x, y)dν(x)dν(y) is bounded continuous, we deduce that

lim
ε→0

lim sup
N→∞

1

N2
log P̄N

V,β (d(LN , µ) ≤ ε) ≤ −IV,M
β (µ).

We finally let M go to infinity and conclude by the monotone convergence
theorem. Note that the same argument shows that

lim sup
N→∞

1

N2
logZβ,V

N ≤ − inf
µ∈P(R)

∫

f(x, y)dµ(x)dµ(y). (10.17)

• Large deviation lower bound. We prove here that for any µ ∈ P(R)

lim
ε→0

lim inf
N→∞

1

N2
log P̄N

V,β (d(LN , µ) ≤ ε) ≥ −
∫

f(x, y)dµ(x)dµ(y). (10.18)

Note that we can assume without loss of generality that IV
β (µ) < ∞, since

otherwise the bound in trivial, and so in particular, we may and shall assume
that µ has no atoms. We can also assume that µ is compactly supported
since if we consider µM = µ([−M,M ])−11|x|≤Mdµ(x), clearly µM converges
towards µ and by the monotone convergence theorem, one checks that, since
f is bounded below,

lim
M↑∞

∫

f(x, y)dµM (x)dµM (y) =

∫

f(x, y)dµ(x)dµ(y)

which insures that it is enough to prove the lower bound for (µM ,M ∈
R, IV

β (µ) < ∞), and so for compactly supported probability measures with
finite entropy.

The idea is to localize the eigenvalues (λi)1≤i≤N in small sets and to take
advantage of the fast speed N 2 of the large deviations to neglect the small
volume of these sets. To do so, we first remark that for any ν ∈ P(R) with no
atoms, if we set

x1,N = inf

{

x| ν (] −∞, x]) ≥ 1

N + 1

}

xi+1,N = inf

{

x ≥ xi,N | ν
(

]xi,N , x]
)

≥ 1

N + 1

}

1 ≤ i ≤ N − 1,
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for any real number η, there exists an integer number N(η) such that, for any
N larger than N(η),

d

(

ν,
1

N

N
∑

i=1

δxi,N

)

< η.

In particular, for N ≥ N( δ
2 ),

{

(λi)1≤i≤N | |λi − xi,N | < δ

2
∀i ∈ [1, N ]

}

⊂ {(λi)1≤i≤N | d(LN , ν) < δ}

so that we have the lower bound

P̄N
V,β (d(LN , µ) ≤ ε)

≥
∫

∩i{|λi−xi,N |< δ
2 }

e−N2
R

x6=y
f(x,y)dLN(x)dLN(y)

N
∏

i=1

e−V (λi)dλi

=

∫

∩i{|λi|< δ
2 }

∏

i<j

|xi,N − xj,N + λi − λj |βe−N
PN

i=1 V (xi,N+λi)
N
∏

i=1

dλi

≥





∏

i+1<j

|xi,N − xj,N |β
∏

i

|xi,N − xi+1,N | β
2 e−N

PN
i=1 V (xi,N )





×





∫

∩i{|λi|<
δ
2
}

λi<λi+1

∏

i

|λi − λi+1|
β
2 e−N

PN
i=1[V (xi,N+λi)−V (xi,N )]

N
∏

i=1

dλi





=: PN,1 × PN,2 (10.19)

where we used that |xi,N − xj,N + λi − λj | ≥ |xi,N − xj,N | ∨ |λi − λj | when
λi ≥ λj and xi,N ≥ xj,N . To estimate PN,2, note that since we assumed that
µ is compactly supported, the (xi,N , 1 ≤ i ≤ N)N∈N are uniformly bounded
and so by continuity of V

lim
N→∞

sup
N∈N

sup
1≤i≤N

sup
|x|≤δ

|V (xi,N + x) − V (xi,N )| = 0.

Moreover, writing u1 = λ1, ui+1 = λi+1 − λi,

∫

|λi|<
δ
2

∀i

λi<λi−1

∏

i

|λi − λi+1|
β
2

N
∏

i=1

dλi ≥
∫

0<ui<
δ

2N

N
∏

i=2

u
β
2

i

N
∏

i=1

dui

≥
(

δ

(β + 2)N

)N( β
2 +1)

.

Therefore,
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lim
δ→0

lim inf
N→∞

1

N2
logPN,2 ≥ 0. (10.20)

To handle the term PN,1, the uniform boundness of the xi,N ’s and the con-
vergence of their empirical measure towards µ imply that

lim
N→∞

1

N

N
∑

i=1

V (xi,N ) =

∫

V (x)dµ(x). (10.21)

Finally, since x → log(x) increases on R+, we notice that
∫

x1,N≤x<y≤xN,N

log(y − x)dµ(x)dµ(y)

≤
∑

1≤i≤j≤N−1

log(xj+1,N − xi,N )

∫

x∈[xi,N ,xi+1,N ]

y∈[xj,N ,xj+1,N ]

1x<ydµ(x)dµ(y)

=
1

(N + 1)2

∑

i<j

log |xi,N − xj+1,N | + 1

2(N + 1)2

N−1
∑

i=1

log |xi+1,N − xi,N |.

Since log |x − y| is bounded when x, y are in the support of the compactly
supported measure µ, the monotone convergence theorem implies that the
left side in the last display converges towards

∫ ∫

log |x−y|dµ(x)dµ(x). Thus,
with (10.21), we have proved

lim inf
N→∞

1

N2
logPN,1 ≥

∫

x<y

log(y − x)dµ(x)dµ(y) −
∫

V (x)dµ(x)

which concludes, with (10.19) and (10.20), the proof of (10.18).
•Conclusion. By (10.18), for all µ ∈ P(R),

lim inf
N→∞

1

N2
logZN

β,V ≥ lim
ε→0

lim inf
N→∞

1

N2
log P̄N

V,β (d(LN , µ) ≤ ε)

≥ −
∫

f(x, y)dµ(x)dµ(y)

and so optimizing with respect to µ ∈ P(R) and with (10.17),

lim
N→∞

1

N2
logZN

β,V = − inf
µ∈P(R)

{∫

f(x, y)dµ(x)dµ(y)

}

= −cVβ .

Thus, (10.18) and (10.16) imply the weak large deviation principle, i.e., that
for all µ ∈ P(R),

lim
ε→0

lim inf
N→∞

1

N2
logPN

V,β (d(LN , µ) ≤ ε)

= lim
ε→0

lim sup
N→∞

1

N2
logPN

V,β (d(LN , µ) ≤ ε) = −IV
β (µ).

This, together with the exponential tightness property proved above completes
the proof of the full large deviation principle stated in Theorem 10.1. ut
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Bibliographical Notes. The proof of Theorem 10.1 is a slight generaliza-
tion of the techniques introduced in [25] to more general potentials. The ideas
developed in this chapter were extended to the Ginibre ensembles in [28] and
to diverse other situations, including Wishart matrices, in [117]. We discuss
the generalization of large deviation principles to a multi-matrix setting in
the last part of these notes.



11

Large deviations of the maximum eigenvalue

We here restrict ourselves to the case where V (x) = βx2/4 and for short
denote by PN

β the law of the eigenvalues (λi)1≤i≤N :

PN
β (dλ1, . . . , dλN ) =

1

ZN
β

∏

1≤i<j≤N

|λi − λj |β
∏

1≤i≤N

e−
βNλ2

i
4 dλi

with

ZN
β =

∫

∏

1≤i<j≤N

|λi − λj |β
∏

1≤i≤N

e−
βNλ2

i
4 dλi.

Selberg (cf. [153, Theorem 4.1.1] or [6]) found the explicit formula for ZN
β for

any β ≥ 0:

ZN
β = (2π)

N
2

(

βN

2

)−βN(N−1)/4−N
2

N
∏

j=1

Γ ( jβ
2 )

Γ (β
2 )
. (11.1)

The knowledge of ZN
β up to the second order is crucial below, reason why we

restrict ourselves to quadratic potentials in the next theorem (see Exercise
11.4 for a slight extension).

Theorem 11.1. [24] The law of the maximal eigenvalue λ∗
N = maxN

i=1λi un-
der PN

β , with β ≥ 0, satisfies the LDP with speed N and the GRF

I∗(x) =

{

β
∫ x

2

√

(z/2)2 − 1dz, x ≥ 2 ,
+∞, otherwise .

(11.2)

The next estimate is key to the proof of Theorem 11.1.

Lemma 11.2. For every M large enough and all N ,

PN
β

(

maxN
i=1|λi| ≥M

)

≤ e−βNM2/9 .
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Proof. Observe that for any |x| ≥M ≥ 8 and λi ∈ R,

|x− λi|e−
λ2

i
8 ≤ (|x| + |λi|)e−

λ2
i
8 ≤ 2|x| ≤ e

x2

8 .

Therefore, integrating with respect to λ1 yields, for M ≥ 8,

PN
β (|λ1| ≥M)

=
ZN−1

β

ZN
β

∫

|x|≥M

dxe−
βx2

4
(N+1)

2

∫ N
∏

i=2

(

|x− λi|e−
λ2

i
4 − x2

8

)β

dPN−1
β (λj , j ≥ 2)

≤ e−
β
8 NM2 Z

N−1
β

ZN
β

∫

|x|≥M

e−x2/8dx

∫ N
∏

i=2

(|x− λi|e−λ2
i /4e−x2/8)dPN−1

β

≤ e−
β
8 NM2 Z

N−1
β

ZN
β

∫

e−x2/8dx.

Further, following (11.1), we compute that

lim
N→∞

1

N
log

ZN−1
β

ZN
β

= −β
4
. (11.3)

Therefore, for any M ≥ 8, for N large enough, we get

PN
β (maxN

i=1|λi| ≥M) ≤ NPN
β (|λ1| ≥M) ≤ e−

β
9 NM2

,

and the lemma follows. ut

Proof of Theorem 11.1. I∗(x) is a good rate function since it is a continu-
ous function (except at x = 2 where it is lower semi-continuous) and it goes
to infinity at infinity. Moreover, with I∗(x) continuous and strictly increasing
on [2,∞[ it suffices to show that for any x < 2,

lim sup
N→∞

1

N
logPN

β (λ∗N ≤ x) = −∞, (11.4)

whereas for any x > 2

lim
N→∞

1

N
logPN

β (λ∗N ≥ x) = −I∗(x). (11.5)

In fact, from these two estimates and since I∗ increases on [2,∞[, we find that
for all x < y,

lim
N→∞

1

N
logPN

β (λ∗N ∈ [x, y]) = − inf
z∈[x,y]

I∗(z),
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the above right-hand side being equal to −∞ if y ≤ 2, to zero if x ≤ 2 ≤ y
and to I∗(x) if x ≥ 2. By continuity of I∗, we also deduce that we have the
same limits if we take (x, y) instead of [x, y]. Since A = {[x, y], (x, y), x < y}
is a basis for the topology on R, we conclude by Theorem 20.5.

Starting with (11.4), fix x < 2 and f ∈ Cb(R) such that f(y) = 0 for
all y ≤ x, whereas

∫

fdσ > 0. Note that {λ∗N ≤ x} ⊆ {
∫

fdLXN = 0}, so
(11.4) follows by applying the upper bound of the large deviation principle
of Theorem 10.1 for the closed set F = {µ :

∫

fdµ = 0}, such that σ /∈ F .
Turning to the upper bound in (11.5), fix M ≥ x > 2, noting that

PN
β (λ∗N ≥ x) = PN

β (maxN
i=1|λi| > M) + PN

β

(

λ∗N ≥ x,maxN
i=1|λi| ≤M

)

(11.6)
By Lemma 11.2, the first term is exponentially negligible for all M large
enough. To deal with the second term, let PN−1

N (λ ∈ ·) = PN−1
β ((1 −

N−1)1/2λ ∈ ·), LN−1 = (N − 1)−1
∑N

i=2 δλi and

CN :=
ZN−1

β

ZN
β

(1 −N−1)N(N−1)/4.

Further, let B(σ, δ) denote an open ball in P(R) of radius δ > 0 and center
σ, and BM (σ, δ) its intersection with P([−M,M ]). Observe that for any z ∈
[−M,M ] and µ ∈ P([−M,M ]),

Φ(z, µ) := β

∫

log |z − y|dµ(y) − β

4
z2 ≤ β log(2M).

Thus, for the second term in (11.6),

PN
β

(

λ∗N ≥ x,maxN
i=1|λi| ≤M

)

≤ NCN

∫ M

x

dλ1

∫

[−M,M ]N−1

e(N−1)Φ(λ1,LN−1)dPN−1
N (λj , j ≥ 2)

≤ NCN

(

∫ M

x

e(N−1) supµ∈BM (σ,δ) Φ(z,µ)dz + (2M)NPN−1
N (LN−1 /∈ B(σ, δ))

)

.

(11.7)

For any h of Lipschitz norm at most 1 and N ≥ 2,

|(N − 1)−1
N
∑

i=2

(h((1 −N−1)1/2λi) − h(λi))| ≤ 3N−1maxN
i=2|λi|.

Thus, by Lemma 11.2, the spectral measures LN−1 under σN−1 are expo-
nentially equivalent in P(R) to the spectral measures LN−1 under PN−1

N , so
Theorem 10.1 applies also for the latter (cf. Definition 20.9 and Lemma 20.10).
In particular, the second term in (11.7) is exponentially negligible as N → ∞
for any δ > 0 and M <∞ (since it behaves like e−c(δ)N2

). Therefore,
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lim sup
N→∞

1

N
logPN

β

(

λ∗N ≥ x,maxN
i=1|λi| ≤M

)

≤ lim sup
N→∞

1

N
logCN + lim

δ↓0
sup

z∈[x,M ]
µ∈BM (σ,δ)

Φ(z, µ) (11.8)

Note that Φ(z, µ) = infη>0 Φη(z, µ) with Φη(z, µ) := β
∫

log(|z−y|∨η)dµ(y)−
β
4 z

2 continuous on [−M,M ] × P([−M,M ]). Thus, (z, µ) 7→ Φ(z, µ) is upper
semi-continuous, which implies

lim
δ↓0

sup
z∈[x,M ]

µ∈BM (σ,δ)

Φ(z, µ) = sup
z∈[x,M ]

Φ(z, σ) (11.9)

With σ supported on [−2, 2], D(z) := d
dzΦ(z, σ) exists for z ≥ 2. Moreover,

D(z) = −β
√

(z/2)2 − 1 ≤ 0. It is shown in [25, Lemma 2.7] that Φ(2, σ) =
−β/2. Hence, for x > 2,

sup
z≥x

Φ(z, σ) = Φ(x, σ) = −1

2
− I∗(x) . (11.10)

By (11.3), we deduce that

lim
N→∞

N−1 logCN =
β

2
.

Combining this with (11.8)–(11.10) completes the proof of the upper bound
for (11.5). To prove the complementary lower bound, fix y > x > r > 2 and
δ > 0, noting that for all N ,

PN
β (λ∗N ≥ x)

≥ PN
β

(

λ1 ∈ [x, y],maxN
i=2|λi| ≤ r

)

= CN

∫ y

x

e−λ2
1/4dλ1

∫

[−r,r]N−1

e(N−1)Φ(λ1,LN−1)dPN−1
N (λj , j ≥ 2)

≥kCN exp
(

(N − 1) inf
z∈[x,y]

µ∈Br(σ,δ)

Φ(z, µ)
)

PN−1
N (LN−1 ∈ Br(σ, δ))

with k = k(x, y) > 0. Recall that the large deviation principle with speed N 2

and good rate function I(·) applies for the measures LN−1 under PN−1
N . It

follows by this LDP’s upper bound that PN−1
N (LN−1 /∈ B(σ, δ)) → 0, whereas

by the symmetry of PN
β (·) and the upper bound of (11.5),

PN−1
N (LN−1 /∈ P([−r, r])) ≤ 2PN−1

β (λ∗N ≥ r) → 0

as N → ∞. Consequently,
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lim inf
N→∞

1

N
logPN

β (λ∗N ≥ x) ≥ 1

2
+ β inf

z∈[x,y]
µ∈Br(σ,δ)

Φ(z, µ)

Observe that (z, µ) 7→ Φ(z, µ) is continuous on [x, y]×P([−r, r]), for y > x >
r > 2. Hence, considering δ ↓ 0 followed by y ↓ x results in the required lower
bound

lim inf
N→∞

1

N
logPN

β (λ∗N ≥ x) ≥ β

2
+ βΦ(x, σ) .

ut

Exercise 11.3 (suggested by B. Collins). Generalize the proof to obtain
the large deviation principle for the joint law of the kth largest eigenvalues (k
finite) with good rate function given by

I∗(x1, . . . , xk) =

k
∑

l=1

I∗(xk) − β
∑

1≤`≤p≤k

log(x` − xk) + constant.

if x1 ≥ x2 · · · ≥ xk ≥ 2 and +∞ otherwise.

Exercise 11.4. Consider

PN
αV (dλ1, . . . , dλN ) = e−Nα

PN
i=1 V (λi)dPN

2 (dλ1, . . . , dλN )/ZN
αV

with V a polynomial such that V ′′(x) ≥ 0 for |x| large enough. Show that for
α positive small enough, the law of λ∗N under PN

αV satisfies a large deviation
principle with rate function

I∗αV (x) =

{

Φ(µαV , x) − infy Φ(µαV , y), x ≥ xV ,
+∞, otherwise .

with Φ(µ, x) = 2
∫

log |x− y|dµ(y)− 1
2x

2 −αV (x) and µV the unique solution
of the Schwinger–Dyson equation of Theorem 8.3.

Hint: Observe that we are in the situation of Part III so that we know that
1
N

∑

δλi converges almost surely to µαV and ZN
αV = eN2IαV CαV (1 + o(1)).

Then, show that the proof of Theorem 11.1 extends.

Bibliographical notes. This proof is taken from [24]. It was generalized
to the case of a deformed Gaussian ensemble in [143].





Part V

Stochastic calculus
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We shall now study the Hermitian Brownian motion. It is a matrix-valued pro-
cess (HN

t )t≥0 constructed as Gaussian Wigner matrices but with Brownian
motion entries instead of Gaussians. We shall describe below the symmet-
ric and the Hermitian Brownian motions, leaving the generalization to the
symplectic Brownian motions as exercises. We define the symmetric (resp.
Hermitian) Brownian motion HN,β for β = 1 (resp. β = 2) as a process with
values in the set of N ×N symmetric (resp. Hermitian) matrices with entries
{

HN,β
i,j (t), t ≥ 0, i ≤ j

}

constructed via independent real-valued Brownian

motions (Bi,j , B̃i,j , 1 ≤ i ≤ j ≤ N) by

HN,β
k,l (t) =

{

1√
βN

(Bk,l(t) + i(β − 1)B̃k,l(t)), if k < l
√

2√
βN

Bl,l(t), if k = l.
(V.1)

Considering the matrix-valued processes, and the associated dynamics, has
the advantage to allow us not only to consider one Gaussian Wigner matrix
XN = HN,β(1) but also, if XN(0) is some Hermitian Wigner matrix, the sum
XN(1) = HN,β(1)+XN(0) seen as the matrix at time one of the matrix-valued
process XN(t) = HN,β(t) +XN(0). Studying the evolution of the eigenvalues
of XN(t) allows us to prove the law of large numbers for the spectral measure
of XN(1) (see Lemma 12.5) as well as large deviation principles (see Theorem
13.1). The latter large deviations estimates result in the asymptotics for the
spherical or Itzykson–Zuber–Harich–Chandra integrals (see Theorem 14.1)
that in turn will give us the value of free energies for diverse two matrices
matrix models (see Theorem 15.1) as well as estimates on Schur functions
(see Corollary 14.2).





12

Stochastic analysis for random matrices

12.1 Dyson’s Brownian motion

Let XN(0) be a symmetric (resp. Hermitian) matrix with eigenvalues
(λ1

N (0), . . . , λN
N (0)). Let, for t ≥ 0, λN (t) = (λ1

N (t), . . . , λN
N (t)) denote the

(real) eigenvalues of XN (t) = XN(0) + HN,β(t) for t ≥ 0. We shall prove
that (λN (t))t≥0 is a semi-martingale with respect to the filtration Ft =

σ(Bi,j(s), B̃ij(s), 1 ≤ i, j ≤ N, s ≤ t) whose evolution is described by a
stochastic differential system. This result was first stated by Dyson [85], and
(λN (t))t≥0, when XN(0) = 0, has since then been called Dyson’s Brownian
motion. To begin with, let us describe the stochastic differential system that
governs the evolution of (λN (t))t≥0 and show that it is well defined.

Lemma 12.1. Let (W 1, . . . ,WN ) be an N -dimensional Brownian motion in
a probability space (Ω,P ) equipped with a filtration F = {Ft, t ≥ 0}. Let ∆N

be the simplex ∆N = {(xi)1≤i≤N ∈ RN : x1 < x2 < · · · < xN−1 < xN} and
take λN (0) = (λ1

N (0), . . . , λN
N (0)) ∈ ∆N . Let β ≥ 1. Let T ∈ R+. There exists

a unique strong solution (see Definition 20.13) to the stochastic differential
system

dλi
N (t) =

√
2√
βN

dW i
t +

1

N

∑

j 6=i

1

λi
N (t) − λj

N (t)
dt (12.1)

with initial condition λN (0) such that λN (t) ∈ ∆N for all t ≥ 0. We denote
by PN

T,λN (0) its law in P(C([0, T ], ∆N)). It is called Dyson’s Brownian motion.

This weak solution (see Definition 20.14) is as well unique.

For any β ≥ 1, the Dyson Brownian motion can be defined from general
initial conditions, thus extending Lemma 12.1 to λN (0) ∈ ∆N (cf. [6]). We
shall take this generalization for granted in the sequel.

Proof. To prove the claim, let us introduce, for R > 0, the auxiliary system
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dλi
N,R(t) =

√

2

βN
dW i

t +
1

N

∑

j 6=i

φR(λi
N,R(t) − λj

N,R(t))dt, (12.2)

with φR(x) = x−1 if |x| ≥ R−1 and φR(x) = Rsgn(x) if |x| < (R)−1. We take
λi

N,R(0) = λi
N (0) for i ∈ {1, . . . , N}. Since φR is uniformly Lipschitz, it is

known (cf. Theorem 20.16) that this system admits a unique strong solution

as well as a unique weak solution PN,R
T,λN (0), that is a probability measure on

C([0, T ],RN). Moreover, this strong solution is adapted to the filtration F . We
can now construct a solution to (12.1) by putting λN (t) = λN,R(t) on |λi

N (s)−
λj

N (s)| ≥ R−1 for all s ≤ t and all i 6= j. To prove that this construction is
possible, we need to show that almost surely λN,R(t) = λN,R′(t) for R > R′

for some (random) R′ and for all t’s in a compact set. To do so, we want to
prove that for all times t ≥ 0, (λ1

N (t), . . . , λN
N (t)) stay sufficiently apart. To

prove this fact, let us consider the Lyapounov function

f(x1, . . . , xN ) =
1

N

N
∑

i=1

x2
i −

1

N2

∑

i6=j

log |xi − xj |

and for M > 0 set

TM = inf{t ≥ 0 : f(λN (t)) ≥M}.
Since f is C∞(∆N ,R) on sets where it is uniformly bounded (note here that
f is bounded below uniformly), we also deduce that {TM > T} is in FT for
all T ≥ 0. Thus, TM is a stopping time. Moreover, using that log |x − y| ≤
log(|x| + 1) + log(|y| + 1) and x2 − 2 log(|x| + 1) ≥ c for some finite constant,
we find that for all i 6= j,

− 1

N2
log |xi − xj | ≤ f(x1, . . . , xN ) − c.

Thus, on {TM > T}, for all t ≤ T ,

|λi(t) − λj(t)| ≥ eN2(−M+c) =: R−1

so that λN coincides with λN,R and is therefore adapted. Itô’s calculus (see
Theorem 20.18) gives

df(λN (t))

=
2

N

N
∑

i=1



λi
N (t) − 1

N

∑

k 6=i

1

λi
N (t) − λk

N (t)





1

N

∑

l6=i

1

λi
N (t) − λl

N (t)
dt

+
2

βN

N
∑

i=1



1 +
1

N

∑

k 6=i

1

(λi
N (t) − λk

N (t))2



 dt+ dMN (t)
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with MN the local martingale

dMN(t) =
2

3
2

β
1
2N

3
2

N
∑

i=1



λi
N (t) − 1

N

∑

k 6=i

1

λi
N (t) − λk

N (t)



 dW i
t .

Observing that for all i ∈ {1, . . . , N},

N
∑

i=1









∑

k 6=i

1

λi
N (t) − λk

N (t)









∑

l6=i

1

λi
N (t) − λl

N (t)



−
∑

k 6=i

1

(λi
N (t) − λk

N (t))2





=
∑

k 6=i,l6=i
k 6=l

1

λi
N (t) − λk

N (t)

1

λi
N (t) − λl

N (t)

=
∑

k 6=i,l6=i
k 6=l

1

λk
N (t) − λl

N (t)

(

1

λi
N (t) − λk

N (t)
− 1

λi
N (t) − λl

N (t)

)

= −2
∑

k 6=i,l6=i
k 6=l

1

λi
N (t) − λk

N (t)

1

λi
N (t) − λl

N (t)
= 0

and
N
∑

i=1

λi
N (t)

∑

k 6=i

1

λi
N (t) − λk

N (t)
=
N(N − 1)

2
,

we obtain that

df(λN (t)) =
β(N + 1)

βN
dt+

(2 − 2β)

βN2

∑

k,i,k 6=i

1

(λi
N (t) − λk

N (t))2
dt+ dMN(t).

Thus, for all β ≥ 1, for all M <∞, since (MN (t∧ TM ), t ≥ 0) is a martingale
with vanishing expectation,

E[f(λN (t ∧ TM ))] ≤ 3E[t ∧ TM ] + f(λN (0)).

Therefore, if c = − inf{f(x1, . . . , xN ); (xi)1≤i≤N ∈ RN},

(M + c)P (t ≥ TM ) ≤ E[(f(λN (t ∧ TM )) + c) 1t≥TM ]

≤ E[f(λN (t ∧ TM )) + c]

≤ 3E[t ∧ TM ] + c+ f(λN (0))

≤ 3t+ c+ f(λN (0))

which proves that for M + c > 0,
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P (t ≥ TM ) ≤ 3t+ c+ f(λN (0))

M + c
.

Hence, the Borel–Cantelli lemma implies that for all t ∈ R+,

P (∪M0 ∩M≥M0 {TM2 ≥ t}) = 1,

and so in particular,
∑

i6=j log |λi
N (t) − λj

N (t)| > −∞ almost surely for all
times. Since (λN (t ∧ TM ))t≥0 are continuous for all M < ∞ (as bounded
perturbations of Brownian motions), we conclude that λN (t ∧ TM ) ∈ ∆N for
all t ≥ 0 and all M > 0. As TM goes to infinity almost surely as M goes to
infinity, we conclude that λN (t) ∈ ∆N for all t ≥ 0.

Now, to prove uniqueness of the weak solution, let us consider, for R ∈ R+,
the auxiliary system (12.2) with strong solution (λj

N,R(t), 1 ≤ j ≤ N)t≥0.
Remark that for all R, there exists M = M(R,N) <∞ so that

{T ≤ TM} ⊂ ∩t≤T ∩i6=j {|λi
N (t) − λj

N (t)| ≥ R−1}.

Hence, on {T ≤ TM}, (λN (t))0≤t≤T satisfies (12.2) and therefore λi
N (t) =

λi
N,R(t) is uniquely determined for all i ∈ {1, . . . , N} and all t ≤ T . Since we

have seen that TM2 goes to infinity almost surely, we conclude that there exists
a unique strong solution (λN (t))0≤t≤T to (12.1); it coincides with (λj

N,R(t), 1 ≤
j ≤ N)0≤t≤T for some R sufficiently large (and random). Its weak solution
PN

T,λN (0) is also unique since its restriction to T ≤ TM is uniquely determined
for all M <∞. ut

Let β = 1 or 2 and XN,β(0) ∈ H(β)
N with eigenvalues λN (0) ∈ RN and set

XN,β(t) = XN,β(0) +HN,β(t).

Theorem 12.2 (Dyson). [85] Let β = 1 or 2 and λN (0) be in ∆N . Then,
the eigenvalues (λN (t))t≥0 of

(

XN,β(t)
)

t≥0
are semi-martingales. Their joint

law is the weak solution to (12.1).

The proof we present goes “backward” by proposing a way to construct
the matrix XN(t) from the solution of (12.1) and a Brownian motion on the
orthogonal group. Its advantage with respect to a “forward” proof is that we
do not need to care about justifying that certain quantities defined from XN

are semi-martingales so that Itô’s calculus applies.

Proof of Theorem 12.2.. We present the proof in the case β = 1 and leave
the generalization to β = 2 as an exercise.

We can assume without loss of generality that XN(0) is the diagonal ma-
trix diag(λ1

N (0), . . . , λN
N (0)) since otherwise if O is an orthogonal matrix so

that XN(0) = ODOT ,

XN(t) = ODO∗ +HN (t) = O(D + H̃N (t))OT = OX̃N (t)OT



12.1 Dyson’s Brownian motion 185

with H̃N(t) = OTHN (t)OT another Hermitian Brownian motion, indepen-
dent from O. Since X̃N (t) has the same eigenvalues than XN(t) and the same
law, we can assume without loss of generality that XN(0) is diagonal.

Let M > 0 be fixed. We consider the strong solution of (12.1) till the
random time TM . We let wij , 1 ≤ i < j ≤ N be independent Brownian
motions. Hereafter, all solutions will be equipped with the natural filtration
Ft = σ((wij (s),Wi(s), s ≤ t ∧ TM ) with Wi the Brownian motions of (12.1),
independent of wij , 1 ≤ i < j ≤ N . We set for i < j

dRN
ij (t) =

1√
N

1

λj
N (t) − λi

N (t)
dwij(t).

We let RN (t) be the skew-symmetric matrix (i.e., RN (t) = −RN(t)T ) with
such entries above the diagonal and set ON to be the strong solution of

dON (t) = ON (t)dRN (t) − 1

2
ON (t)d〈(RN )TRN〉t (12.3)

with ON (0) = I . Here, for semi-martingales A,B with values in MN (R),

〈A,B〉t = (
∑N

k=1〈Aik , Bkj〉t)1≤i,j≤N is the martingale bracket of A and B
and 〈A〉t is the finite variation part of A at time t. Existence and uniqueness
of strong solutions of (12.3) for the filtration Ft are given till the random time
TM since (12.3) has bounded Lipschitz coefficients (see Theorem 20.16). Note
that since the martingale bracket of a semi-martingale is given by the bracket
of its martingale part,

d〈(ON )TON 〉t = 〈[d(RN )T ](ON )T , ONdRN〉t = d〈(RN )TRN〉t.

Hence

dON (t)TON (t) = ON (t)T dON (t) + (dON (t)T )ON (t) + d〈(ON )TON 〉t.

If ON (t)TON (t) = I , we deduce that dON (t)TON (t) is equal to dRN (t) +
dRN (t)T = 0 as RN (t) is skew-symmetric, from which it can be guessed that
ON (t)TON (t) = I at all times. This can be in fact proved, see [6], by showing
that dON (t)TON (t) is linear in ON (t)TON (t) − I with uniformly bounded
coefficients on {TM ≥ t}. Thus, (ON )T (t)ON (t) = I at all times. We now
show that Y N (t) := ON (t)TD(λN (t))ON (t) has the same law than XN(t)
which will prove the claim. By construction, Y N (0) := diag(λN (0)) = XN(0).
Moreover,

dY N (t) = dON (t)D(λN (t))ON (t)T +ON (t)D(λN (t))dON (t)T

+ON (t)dD(λN (t))ON (t)T + d〈OND(λN )(ON )T 〉(t) (12.4)

where for all i, j ∈ {1, . . . , N}, we adopted the notation



186 12 Stochastic analysis for random matrices

(

d〈OND(λN )(ON )T 〉t
)

ij

=

N
∑

k=1

(

1

2
ON

ik(t)d〈λk
N , O

N
jk〉t + λk

N (t)d〈ON
ik , O

N
jk〉t

+
1

2
ON

jk(t)d〈λk
N , O

N
ik〉t
)

=
N
∑

k=1

λk
N (t)d〈ON

ik , O
N
jk〉t.

The last equality is due to the independence of (Wi)1≤i≤N and (wij)1≤i<j≤N

which results in 〈λk
N , O

N
ik〉t ≡ 0. By left multiplication by (ON (t))T and right

multiplication by ON (t) of (12.4) we arrive at

dWN (t) = (ON (t))T dON (t)D(λN (t)) +D(λN (t))dON (t)TON (t) (12.5)

+ dD(λN (t)) + (ON (t))T d〈OND(λN )(ON )T 〉(t)ON (t)

with dWN (t) = (ON (t))T dY N (t)ON (t). Let us compute the last term in the
right-hand side of (12.5). For all i, j ∈ {1, . . . , N}2, we have

d〈OND(λN )(ON )T 〉ijt =

N
∑

k=1

λk
N (t)d〈ON

ik , O
N
jk〉t

=
N
∑

k,l,m=1

λk
N (t)ON

il (t)ON
jm(t)d〈RN

lk , R
N
mk〉t

=
1

N

∑

k 6=l

λk
N (t)

(λk
N (t) − λl

N (t))2
ON

il (t)ON
jl (t)dt

where we finally used the definition of RN to compute the martingale brackets
that gives

d〈RN
lk , R

N
mk〉t = 1l=m6=k

1

N(λk
N (t) − λl

N (t))2
dt.

Hence, for all i, j ∈ {1, . . . , N}2, we get

[(ON )T (t)d〈OND(λN )(ON )T 〉tON (t)]ij = 1i=j

N
∑

k 6=i

λk
N (t)

N(λi
N (t) − λk

N (t))2
dt.

Similarly, recall that

(ON )T (t)dON (t) = dRN (t) − 2−1d〈(RN )TRN 〉t
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with for all i, j ∈ {1, . . . , N}2,

d〈(RN )TRN 〉ijt =

N
∑

k=1

d〈RN
ki, R

N
kj〉t

=
1i=j

N

∑

k 6=i

(λk
N (t) − λi

N (t))−2dt.

Therefore, identifying the terms on the diagonal in (12.5) and recalling that
RN is null on the diagonal, we find that

dW ii
N (t) =

√

2

N
dW i

t .

Outside the diagonal, for i 6= j, we get

dW ij
N (t) = [dRN (t)D(λN (t)) +D(λN (t))dRN (t)T ]ij

=
1√
N
dwij(t).

Hence, WN (t) has the law of a symmetric Brownian motion. Thus, since
(ON (t), t ≥ 0) is adapted, dY N (t) = ON (t)dWN (t)(ON (t))T is a continu-
ous matrix-valued martingale whose quadratic variation is given by

〈Y N
ij , Y

N
kl 〉t = 1ij=kl or lkN

−1t i 6= j, 〈Y N
ii , Y

N
kl 〉t = 1i=k=l2N

−1t.

Therefore, by Levy’s theorem ( cf. [122, p. 157]), (Y N (t) − Y N (0), t ≥ 0) is
a symmetric Brownian motion, and so (Y N (t), t ≥ 0) has the same law than
(XN (t), t ≥ 0) since XN(0) = Y N (0). ut

Corollary 12.3 (Dyson). Let β = 1 or 2 and λN (0) in ∆N . Then, the
eigenvalues (λN (t))t≥0 of

(

XN,β(t)
)

t≥0
are continuous semi-martingales with

values in ∆N for all t > 0. The joint law of (λN (t))t≥ε is the weak solution
to (12.1) starting from λN (ε) ∈ ∆N for any ε > 0. λN (ε) converges to λN (0)
as ε goes to zero.

Proof. To remove the hypothesis that the eigenvalues of XN (0) belong to
∆N , note that for all t > 0, λN (t) belongs to ∆N almost surely. Indeed, the set
of symmetric matrices with at least one double eigenvalue can be characterized
by the fact that the discriminant of their characteristic polynomial vanishes,
and so the entries of such matrices belong to a submanifold with codimension
greater than one. Since the law of the entries ofXN(t) is absolutely continuous
with respect to the Lebesgue measure, this set has measure zero. Therefore,
we can represent the eigenvalues of (XN (t), t ≥ ε) as solution of (12.1) for any
ε > 0. By using Lemma 1.16, we see that for all s, t ∈ R
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N
∑

i=1

(λi
N (t) − λi

N (s))2 ≤ 1

N

N
∑

i,j=1

(Bij(t) −Bij(s))
2

so that the continuity of the Brownian motions paths results in the continuity
of t→ λN (t) for any givenN . Hence, the eigenvalues of (XN (t))t≤T are strong
solutions of (12.1) for all t > 0 and are continuous at the origin. ut

Exercise 2. Let XN,4 =
(

XN,4
ij

)

be a 2N × 2N complex matrix defined as

the N ×N self-adjoint random matrices with entries

XN,4
kl =

∑β
i=1 g

i
kle

i
4√

βN
, 1 ≤ k < l ≤ N, XN,4

kk =

√

2

βN
gkke

1
4, 1 ≤ k ≤ N

where (ei
4)1≤i≤4 are the Pauli matrices

e14 =

(

1 0
0 1

)

, e24 =

(

0 −1
1 0

)

, e34 =

(

0 −i
−i 0

)

, e44 =

(

i 0
0 −i

)

.

Define HN,4 similarly by replacing the Gaussian entries by Brownian mo-
tions. Show that if XN(0) a Hermitian matrix with eigenvalues λ2N (0)), the
eigenvalues λ2N (t)) of XN(0)+HN,4 satisfy the stochastic differential system

dλi
2N (t) =

1√
4N

dW i
t +

1

2N

∑

j 6=i

1

λi
N (t) − λj

N (t)
dt. (12.6)

Corollary 12.4. For β = 1 or 2, the law of the eigenvalues of the Gaussian
Wigner matrix XN,β is given by

PN
β (dx1, . . . , dxN ) =

1

ZN
1x1≤···≤xN

∏

1≤i<j≤N

|xi − xj |β
N
∏

i=1

e−βx2
i /4. (12.7)

Proof. In Dyson’s theorem, we can easily replace the Hermitian Brow-
nian motion (HN (t))t∈R+ by the Hermitian Ornstein–Uhlenbeck process
(H̃N (t))t∈R+ whose entries are solutions of

dH̃k,l(t) = dHk,l(t) −
1

2
H̃k,l(t)dt.

H̃k,l(t) converges as t goes to infinity towards a centered Gaussian variable
with covariance N−1, independently of the initial condition XN(0). Hence,
Wigner matrices appear as the large time limit of H̃ and in particular their
law is invariant for the dynamics of the Ornstein–Uhlenbeck process. On the
other hand, a slight modification of the proof of Dyson’s Theorem 12.2 (we
can here assume that XN(0) has eigenvalues in the simplex) shows that the
eigenvalues of H̃ follow the SDE



12.2 Itô’s calculus 189

dλi
N (t) =

√
2√
βN

dW i
t − 1

2
λi

N (t)dt +
1

N

∑

j 6=i

1

λi
N (t) − λj

N (t)
dt.

Hence, the law P
(β)
N , as the large time limit of the law of λN (t), must be

invariant under the above dynamics. Itô’s calculus shows that the infinitesimal
generator of these dynamics is

L =
1

βN

N
∑

i=1

∂2
i +

N
∑

i=1

(
1

N

∑

j 6=i

1

λi − λj
− 1

2
λi)∂i

and therefore we must have, for any twice continuously differentiable function
f on RN ,

∫

Lf(λ1, . . . , λN )dP
(β)
N (λ1, . . . , λN ) = 0.

Some elementary algebra shows that the choice proposed in (12.7) fulfills
this requirement. Furthermore it is the unique such probability measure on
the simplex since if there was another invariant distribution QN for L, we
could follow the proof of Theorem 12.2 to reconstruct a Hermitian Ornstein-
Uhlenbeck process H̃N (t) and a matrixXN(0) whose eigenvalues would follow
QN so that H̃k,l(0) = XN(0)k,l and

dH̃k,l(t) = dHk,l(t) −
1

2
H̃k,l(t)dt.

But this gives a contradiction since as time goes to infinity, the law of H̃k,l is
a Gaussian law, independently of the law QN . ut

12.2 Itô’s calculus

Let (W 1, . . . ,WN ) be independent Brownian motions and (λ1
N (0), . . . , λN

N (0))
be real numbers. Let β be a real number greater than one and let (λN (t))t≥0

be the unique strong solution to (12.1). We denote by

LN(t, dx) :=
1

N

N
∑

i=1

δλi
N (t) ∈ P(R)

the empirical measure of λN (t). We shall sometimes use the short notation
for bounded measurable functions f on R,

∫

fdLN (t) :=

∫

f(x)LN (t, dx) =
1

N

N
∑

i=1

f(λi
N (t)).

Then, by Itô’s calculus Theorem 20.18, we know that for all f ∈ C2([0, T ] ×
R,R),
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∫

f(t, x)LN (t, dx) =

∫

f(0, x)LN (0, dx) +

∫ t

0

∫

∂sf(s, x)LN(s, dx)ds

(12.8)

+
1

2

∫ t

0

∫

∂xf(s, x) − ∂xf(s, y)

x− y
LN(s, dx)LN (s, dy)ds

+

(

2

β
− 1

)

1

2N

∫ t

0

∫

∂2
xf(s, x)LN (s, dx)ds +Mf

N(s)

with Mf
N the martingale given for s ≤ T by

Mf
N(t) =

√
2√

βN
3
2

N
∑

i=1

∫ t

0

∂xf(s, λi
N (s))dBi

s.

Note that Mf
N is a martingale with bracket

〈Mf
N 〉t =

2

βN2

∫ t

0

∫

(∂xf(s, x))2LN (s, dx)du ≤ 2‖∂xf‖2
∞t

βN2
.

12.3 A dynamical proof of Wigner’s Theorem 1.13

In this section, we shall give a dynamical proof of Theorem 1.13; it is re-
stricted to Gaussian entries but generalized in the sense that we can study
the asymptotic behavior of the spectral measure of any sum of two indepen-
dent symmetric matrices, one being a Gaussian Wigner matrix, the second
being deterministic with a converging spectral distribution. Moreover, our
proof only relies on (12.1) and thus our result generalizes to any β ≥ 1, and
in particular to the Hermitian and the symplectic case too (that corresponds
to β = 2 and 4).

For T > 0, we denote by C([0, T ],P(R)) the space of continuous processes
from [0, T ] into P(R) equipped with its weak topology. We have

Lemma 12.5. Let λN (0) ∈ RN so that LN(0) = 1
N

∑N
i=1 δλk

N (0) converges as

N goes to infinity towards µ ∈ P(R). We assume

C0 := sup
N≥0

∫

log(x2 + 1)dLN (0)(x) <∞. (12.9)

Let (λ1
N (t), . . . , λN

N (t))t≥0 be the solution to (12.1) and set

LN(t) =
1

N

N
∑

i=1

δλi
N (t).
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Then, for any finite time T , (LN (t), t ∈ [0, T ]) converges almost surely in
C([0, T ],P(R)). Its limit is the unique measure-valued process (µt, t ∈ [0, T ])
so that µ0 = µ and for all z ∈ C\R

Gt(z) =

∫

(z − x)−1dµt(x)

satisfies the complex Burgers equation

Gt(z) = G0(z) −
∫ t

0

Gs(z)∂zGs(z)ds. (12.10)

with given initial condition G0.

We begin the proof by showing that (LN (t), t ∈ [0, T ]) is almost surely tight
in C([0, T ],P(R)) and then show that it has a unique limit point characterized
by (12.10).

We first describe compact sets of C([0, T ],P(R)); they are of the form

K = {∀t ∈ [0, T ], µt ∈ K} ∩i≥0 {t→ µt(fi) ∈ Ci} (12.11)

where
• K is a compact set of P(R) such as

Kε,m := ∩m≥0{µ([−m,m]) ≤ εm} (12.12)

for a sequence {εm,m ≥ 0} of positive real numbers going to zero as m goes
to infinity.

• (fi)i≥0 is a sequence of bounded continuous functions dense in C0(R)
and Ci are compact sets of C([0, T ],R). By the Arzela–Ascoli theorem, it is
known that the latter are of the form

Cε,M := {g : [0, T ] → R, sup
t,s∈[0,T ]
|t−s|≤ηn

|g(t)−g(s)| ≤ εn, sup
t∈[0,T ]

|g(t)| ≤M} (12.13)

with sequences {εn, n ≥ 0} and {ηn, n ≥ 0} of positive real numbers going to
zero as n goes to infinity.

In fact, if we take a sequence µn in K, for all i ∈ N, we can find a sub-
sequence such that µφi(n)

. (fi) converges as a bounded continuous function on
[0, T ]. By a diagonalization procedure, we can find φ so that µφ(n)

. (fi) con-
verges simultaneously towards some µ.(fi) for all i ∈ N. Note at this point
that since the fi have compact support, the limit µ. might not have mass one.
This is dealt with by the second condition. Indeed, since the time marginals of

µ
φ(n)
t are tight for all t we can, again up to take another subsequence, insure

that µt ∈ P(R), at least for a countable number of times. The continuity of
t→ µt(fi) and the density of the family fi then shows that µt ∈ P(R) for all
t. Hence, we have proved that µn is sequentially compact. Further, the limit
µ also belongs to K, which finishes to show that K is compact.
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We shall prove below that L̂N is almost surely tight. For later purposes
(namely the study of large deviation properties), we next prove a slightly
stronger result.

Lemma 12.6. Let T ∈ R+. Assume (12.9). Then, there exists a = a(T ) > 0
and M(T ) <∞ so that:

1. For M ≥M(T )

P

(

sup
t∈[0,T ]

∫

log(x2 + 1)LN(t, dx) ≥M

)

≤ e−a(T )MN2

.

2. For any δ > 0 and M > 0, for any twice continuously differentiable
function f so that ‖f ′′‖∞ ≤ 2−3Mδ−

3
4 ,

P

(

sup
t,s∈[0,T ]
|t−s|≤δ

∣

∣

∣

∣

∫

f(x)LN (t, dx)−
∫

f(x)LN (s, dx)

∣

∣

∣

∣

≥Mδ
1
4

)

≤ 2(Tδ−1 + 1)e
− βN2M2

28‖f′‖2
∞δ

1
2 .

3. For all T ∈ R+, all L ∈ N, there exists a compact set K(L) of the set
C([0, T ],P(R)) of continuous probability measures-valued processes so that

P (LN (.) ∈ K(L)c) ≤ e−N2L.

In particular, the law of (LN(s), s ∈ [0, T ]) is almost surely tight in
C([0, T ],P(R)).

Proof. We base our proof on (12.1). Using Section 12.2 with f(x) = log(x2 +
1), we get since

∣

∣

∣

∣

f ′(x) − f ′(y)

x− y

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

f ′′(αx + (1 − α)y)dα

∣

∣

∣

∣

≤ ‖f ′′‖∞ <∞,

for all s ≥ 0,
∣

∣

∣

∣

∫

log(x2 + 1)dLN(s)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

log(x2 + 1)dLN (0)

∣

∣

∣

∣

+2‖f ′′‖∞s+ |MN
s | (12.14)

with MN
s the martingale

MN
s =

2
√

2√
βN

3
2

N
∑

i=1

∫ s

0

λi
N (u)

λi
N (u)2 + 1

dW i
u.

Note that
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〈MN 〉s =
8

βN3

N
∑

i=1

∫ s

0

λi
N (u)2

(λi
N (u)2 + 1)2

du ≤ 8s

βN2
.

Hence, we can use Corollary 20.23 to obtain for all L ≥ 0

P

(

sup
s≤T

|MN
s | ≥ L

)

≤ 2e−
βN2L2

16T .

Thus, (12.14) shows that for M ≥ C0 + 2‖f ′′‖∞T ,

P

(

sup
s≤T

∣

∣

∣

∣

∫

log(x2 + 1)dLN (s)

∣

∣

∣

∣

≥M

)

≤ 2e−
βN2(M−C0+2‖f′′‖∞T )2

16T (12.15)

which proves the first point. For the second point we proceed similarly by first
noticing that if ti = iδ for i ∈ [0, [T/δ] + 1],







sup
t,s∈[0,T ]
|t−s|≤δ

∣

∣

∣

∣

∫

fdLN (t) −
∫

fdLN (s)

∣

∣

∣

∣

≥Mδ
1
4







⊂ ∪1≤i≤[T/δ]+1

{

sup
ti≤s≤ti+1

∣

∣

∣

∣

∫

fdLN(s) −
∫

fdLN(ti)

∣

∣

∣

∣

≥ 2−1Mδ
1
4

}

.

Now, for s ∈ [ti, ti+1], we write by a further use of Section 12.2,

∣

∣

∣

∣

∫

fdLN(s) −
∫

fdLN(ti)

∣

∣

∣

∣

≤ 2‖f ′′‖∞δ + |Mf
N (s)|

with

〈Mf
N 〉s =

8

βN3

N
∑

i=1

∫ s

ti

(f ′(λi
N (u)))2du ≤ 8δ‖f ′‖2

∞
βN2

.

Thus Corollary 20.23 shows that

sup
ti≤s≤ti+1

∣

∣

∣

∣

∫

fdLN(s) −
∫

fdLN(ti)

∣

∣

∣

∣

≤ 2‖f ′′‖∞δ + ε

with probability greater than 1 − 2e
− βN2(ε)2

16δ‖f′‖2
∞ . As a conclusion, for ε =

2−1Mδ
1
4 − 2‖f ′′‖∞δ ≥ 2−2Mδ

1
4 we have proved

P



 sup
t,s∈[0,T ]
|t−s|≤δ

∣

∣

∣

∣

∫

fdLN(t) −
∫

fdLN(s)

∣

∣

∣

∣

≥Mδ
1
4



 ≤
[T/δ]+1
∑

i=1

2e
− βN2M2

28‖f′‖2
∞δ

1
2

which proves the second claim.
To conclude our proof, let us notice that:

• The set
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KM = {µ ∈ P(R) :

∫

log(1 + x2)dµ(x) ≤M}

is compact and by Borel–Cantelli lemma, we deduce from point 1 that

P ({LN(t) ∈ KM ∀ t ∈ [0, T ]}c) ≤ e−a(T )MN2

.

• Take f twice continuously differentiable and consider the compact subset
of C([0, T ],P(R)

CT (f,M) := {µ ∈ C([0, T ],P(R)) :

sup
|t−s|≤n−2

|µt(f) − µs(f)| ≤M
√
n
−1 ∀n ∈ N∗}.

The previous estimates imply that if ‖f ′′‖∞ ≤Mn for all n

P (LN ∈ CT (f,M)c) ≤
∑

n≥1

2(Tn2 + 1)e
− βN2nM2

216‖f′‖2
∞ ≤ C(T )e

− βN2M2

216‖f′‖2
∞

with some finite constant C(T ) that only depends on T . Choosing a countable
family fi of twice continuously differentiable functions dense in C0(R) and such
that ‖f ′′‖∞ ≤ i and ‖f ′‖∞ ≤

√
i for all i, we obtain

P ({LN ∈ (∩i≥0CT (fi,Mi))c}) ≤ C(T )
∑

i≥1

e
− βN2i2M2

216‖f′
i
‖2
∞ ≤ C ′(T )e−

βN2M2

216 .

• Hence, we conclude that the compact set

K(M) = KM ∩ ∩i≥0CT (fi,Mi)

of C([0, T ],P(R)) is such that P (LN ∈ K(M)c) ≤ C(T )e−
βN2M2

216 and thus by
Borel–Cantelli lemma

P (∪N0 ∩N≥N0 {LN ∈ K(M)}) = 1.

ut
To characterize the limit points of LN , let us use also Itô’s calculus of

Section 12.2 with f(t, x) = f(x) = (z−x)−1 for z ∈ C\R (or separately for its
real and imaginary parts). Again by Corollary 20.23, MN

f goes almost surely
to zero and therefore, any limit point (µt, t ∈ [0, T ]) of (LN(t), t ∈ [0, T ])
satisfies the equation

∫

f(x)dµt(x) =

∫

f(x)dµ0(x) +

∫ t

0

∫

∂sf(x)dµs(x)ds (12.16)

+
1

2

∫ t

0

∫

∂xf(x) − ∂xf(y)

x− y
dµs(x)dµs(y)ds.

Thus, Gt(z) =
∫

(z − x)−1dµt(x) satisfies (12.10).
To conclude our proof, we show that (12.10) has a unique solution.
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Lemma 12.7. For any t > 0 and z with modulus |z| large enough, z+ tG0(z)
is invertible with inverse Ht. The solution of (12.10) is the unique analytic
function on C\R such that for any t > 0 and z with large enough modulus

Gt(z) = G0 (Ht(z)) .

Comments. This result is a particular case of free convolution (see Section
17.3.2) and of the notion of subordination (cf. [35]).

Exercise 3. Take µ = δ0 and prove that µt is the semicircular law with
variance t. Hint. Use that by scaling property Gt(z) = t−

1
2G1(t

− 1
2 z) for all

t > 0 and deduce a formula for G1.

Proof. We use the characteristic method. Let us associate to z the solution
{zt, t ≥ 0} of the equation

∂tzt = Gt(zt), z0 = z.

Such a solution exists at least up to time (=z)2/2 since if =(z) > 0, =(Gt(z)) ∈
[− 1

=(z) , 0] implies that we can construct a unique solution zt with =(zt) > 0

up to that time, a domain on which Gt is Lipschitz. Now, ∂tGt(zt) = 0 implies

zt = tG0(z) + z, Gt(z + tG0(z)) = G0(z)

from which the conclusion follows. ut

Bibliographical notes. The previous arguments on Dyson’s Brownian
motion are inspired by [150, p.123], where the density of the eigenvalues of
symmetric Brownian motions are discussed, [170] where the stochastic differ-
ential equation (12.1) is studied, [160] where Brownian motions of ellipsoids
is considered as well as [165] where decompositions of Brownian motions on
certain manifolds of matrices are analyzed. Theorem 12.2 is also stated in
Mehta’s book [153, Theorem 8.2.1](see also Chan [61]). Similar results can be
obtained for Wishart processes, see [52]. The interpretation of Dyson’s Brow-
nian motion as a Brownian motion in a Weyl chamber was used in [40, 36].
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Large deviation principle for the law of the

spectral measure of shifted Wigner matrices

The goal of this section is to prove the following theorem.

Theorem 13.1. Assume that DN is uniformly bounded with spectral mea-
sure converging to µD. Let Xβ,N be a Gaussian symmetric (resp. Hermitian)
Wigner matrix when β = 1 (resp. β = 2). Then the law of the spectral measure
LY N,β of the Wigner matrix Y N,β = DN + Xβ,N satisfies a large deviation
principle in the scale N 2 with a certain good rate function Jβ(µD , .).

We shall base our approach on Bryc’s theorem (6.13), that says that the
above large deviation principle statement is equivalent to the fact that for any
bounded continuous function f on P(R),

Λ(f) = lim
N→∞

1

N2
log

∫

eN2f(L
Y N,β )dP

exists and is given by − inf{Jβ(µD, ν) − f(ν)}. It is not clear how one could
a priori study such limits, except for very trivial functions f . However, if we
consider the matrix-valued process Y N,β(t) = DN +HN,β(t) with Brownian
motion HN,β described in (V.1) and its spectral measure process

LN,β(t) := LY N,β(t) =
1

N

N
∑

i=1

δλi(Y N,β(t)) ∈ P(R),

we may construct martingales by use of Itô’s calculus. Indeed, continuous
martingales lead to exponential martingales, which have constant expectation,
and therefore allow one to compute the exponential moments of a whole family
of functionals of LN(t). This idea gives easily a large deviation upper bound
for the law of (LN,β(t), t ∈ [0, 1]), and therefore for the law of LY N,β , that
is, the law of LN,β(1). The difficult point here is to check that this bound is
sharp, i.e., it is enough to compute the exponential moments of this family of
functionals in order to obtain the large deviation lower bound.
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An alternative tempting way to prove this large deviation lower bound
would be, as for the proof of Theorem 10.1, to force the paths of the eigenvalues
to be in small tubes around the quantiles of their limiting law. However, these
tubes would need to be very small, with width of order δ ≈ N−1 and the
probability P (sup0≤s≤1 |Bs| ≤ δ) ≈ e−

c
δ2 is now giving a contribution on the

scale eN2

.
Let us now state more precisely our result. We shall consider {LN,β(t), t ∈

[0, 1]} as an element of the set C([0, 1],P(R)) of continuous processes with
values in P(R). The rate function for these deviations shall be given as follows.
For any f, g ∈ C2,1

b (R × [0, 1]), any s ≤ t ∈ [0, 1], and any ν. ∈ C([0, 1],P(R)),
we let

Ss,t(ν, f) =

∫

f(x, t)dνt(x) −
∫

f(x, s)dνs(x)

−
∫ t

s

∫

∂uf(x, u)dνu(x)du

−1

2

∫ t

s

∫ ∫

∂xf(x, u) − ∂xf(y, u)

x− y
dνu(x)dνu(y)du, (13.1)

〈f, g〉s,t
ν =

∫ t

s

∫

∂xf(x, u)∂xg(x, u)dνu(x)du , (13.2)

and

S̄s,t
β (ν, f) = Ss,t(ν, f) − 1

β
〈f, f〉νs,t . (13.3)

Set, for any probability measure µ ∈ P(R),

Sµ,β(ν) :=

{

+∞ , if ν0 6= µ,

S0,1
β (ν) := supf∈C2,1

b (R×[0,1]) sup0≤s≤t≤1 S̄
s,t
β (ν, f) , otherwise.

(13.4)
Then, the main theorem of this section is the following:

Theorem 13.2. Let β = 1 or 2. (1) For any µ ∈ P(R), Sµ,β is a good rate
function on C([0, 1],P(R)), i.e. {ν ∈ C([0, 1],P(R));Sµ(ν) ≤ M} is compact
for any M ∈ R+.

(2) Assume that

sup
N
LDN (|x|4) <∞, LDN converges to µD, (13.5)

then the law of (LN,β(t), t ∈ [0, 1]) satisfies a large deviation upper-bound in
the scale N2 with good rate function SµD ,β. The large deviation lower bound
holds around any measure-valued path with uniformly bounded fourth moment,
i.e., for all µ. so that supt∈[0,1] µt(x

4) is finite:
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lim inf
δ→0

lim inf
N→∞

1

N2
logP

(

sup
t∈[0,1]

d(LN,β(t), µt) < δ

)

≥ −SµD,β(µ.).

In [110, Theorem 3.3] O. Zeitouni and I proved the following:

Theorem 13.3. Take β = 1 or 2 and take

A = {µ ∈ P(R) : there exists ε > 0,

∫

|x|5+εdµD(x) <∞}.

Then, for any ν such that SµD (ν) <∞, there exists a sequence νn : [0, 1] → A
of measure-valued paths such that

lim
n→∞

νn = ν lim
n→∞

SµD ,β(νn) = SµD ,β(ν).

This result could be extended by replacing 5 + ε by 4 + ε (which we needed
first, since Theorem 13.2 was originally obtained under these 5+ moment
conditions) but we decided not to enter into this proof here since it is purely
analytical. We shall, however, provide here a complete proof of Theorem 13.2
that slightly simplifies that given in [109].

Theorems 13.2 and 13.3 imply the following:

Theorem 13.4. Assume that (13.5) holds and µD ∈ A. Then the law of
(LN (t), t ∈ [0, 1]) satisfies a large deviation principle in the scale N 2 with
good rate function SµD .

Note that the application (µt, t ∈ [0, 1]) → µ1 is continuous from
C([0, 1],P(R)) into P(R), so that Theorem 13.2 and the contraction prin-
ciple Theorem 20.7 imply that the law of LN (1) satisfies a large deviation
principle.

Theorem 13.5. Under assumption (13.5) and µD ∈ A, Theorem 13.1 is true
with

Jβ(µD, µE) =
β

2
inf{SµD (ν.); ν1 = µ}.

Remark 4. Remark that without using Theorem 13.3, we could still get a
large deviation lower bound for the law of LN(1) around measure with fourth
moments; this is due to the fact that the optimal paths in the above infimum
have fourth moments (as can be guessed from the remark that optimal paths
have to be Brownian bridges, cf., e.g., [55]).

In [101], the infimum in Theorem 13.5 was studied. It was shown that it
is achieved and that, if

∫

log |x− y|dµD(x)dµD(y) > −∞, the minimizer µ∗
. ∈

(C([0, 1],P(R)) is such that µ∗
t (dx) = ρ∗t (x)dx is absolutely continuous with

respect to Lebesgue measure for all t ∈ (0, 1) and there exists a measurable
function u. such that ft(x) = ut(x) + iπρt(x) is solution (at least in a weak
sense) of the complex Burgers equation
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∂tft(x) = −1

2
∂xft(x)

2

with boundary conditions given by the imaginary part of f at t = 0 and t = 1.
This result was stated first by Matytsin [146]. Interestingly, the complex

Burgers equation also describes limit shapes of plane partitions and dimers,
see [127].

The main point to prove Theorem 13.2 is to observe that the evolution of
LN is described, thanks to Itô’s calculus 12.2, by an autonomous differential
equation. This is the starting point to use the ideas of Kipnis–Olla–Varadhan
papers [131, 130]. These papers concern the case where the diffusive term
is not vanishing (βN is of order one). The large deviations for the law of
the empirical measure of the particles following (12.1) in such a scaling have
been studied by Fontbona [91] in the context of McKean–Vlasov diffusion
with singular interaction. We shall first recall for the reader the techniques of
[131, 130] applied to the empirical measures of independent Brownian motions
as presented in [130]. We will then describe the necessary changes to adapt
this strategy to our setting.

13.1 Large deviations from the hydrodynamical limit for
a system of independent Brownian particles

Note that the deviations of the law of the empirical measure of independent
Brownian motions on path space

LN =
1

N

N
∑

i=1

δBi
[0,1]

∈ P(C([0, 1],R))

are well known by Sanov’s theorem which yields (cf. [74, Section 6.2]):

Theorem 13.6. Let W be the Wiener law. Then, the law (LN)#W⊗N of
LN under W⊗N satisfies a large deviation principle in the scale N with rate
function given, for µ ∈ P(C([0, 1],R)), by I(µ|W) that is infinite if µ is not
absolutely continuous with respect to Wiener measure and otherwise given by

I(µ|W) =

∫

log
dµ

dW log
dµ

dW dW .

Thus, if we consider

LN (t) =
1

N

N
∑

i=1

δBi
t
, t ∈ [0, 1],

since LN → (LN (t), t ∈ [0, 1]) is continuous from P(C([0, 1],R)) into
C([0, 1],P(R)), the law of (LN(t), t ∈ [0, 1]) under W⊗N satisfies a large devi-
ation principle by the contraction principle Theorem 20.7. Its rate function is
given, for p ∈ C([0, 1],P(R)), by
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S(p) = inf{I(µ|W) : (xt)#µ = pt ∀t ∈ [0, 1]}.

Here, (xt)#µ denotes the law of xt under µ. It was shown by Föllmer [90] that
in fact S(p) is infinite unless there exists k ∈ L2(pt(dx)dt) such that

inf
f∈C1,1(R×[0,1])

∫ 1

0

∫

(∂xf(x, t) − k(x, t))2pt(dx)dt = 0, (13.6)

and for all f ∈ C2,1(R × [0, 1]),

∂tpt(ft) = pt(∂tft) +
1

2
pt(∂

2
xft) + pt(∂xftkt).

Moreover, we then have

S(p) =
1

2

∫ 1

0

pt(k
2
t )dt. (13.7)

Kipnis and Olla [130] proposed a direct approach to obtain this result based
on exponential martingales. Its advantage is to be much more robust and to
adapt to many complicated settings encountered in hydrodynamics (cf. [129]).
Let us now summarize it. It follows the following scheme:

• Exponential tightness and study of the rate function S. Since the rate
function S is the contraction of the relative entropy I(.|W), it is clearly a
good rate function. This can be proved directly from formula (13.7) as we
shall detail it in the context of the eigenvalues of large random matrices.
Similarly, we shall not detail here the proof that LN#W⊗N is exponentially
tight, a property that reduces the proof of the large deviation principle to
the proof of a weak large deviation principle and thus to estimate the
probability of deviations into small open balls (cf. Theorem 20.4). We will
now concentrate on this last point.

• Itô’s calculus. Itô’s calculus (cf. Theorem 20.18) implies that for any
function F in C2,1

b (RN × [0, 1]), any t ∈ [0, 1]

F (B1
t , . . . , B

N
t , t) =F (0, . . . , 0) +

∫ t

0

∂sF (B1
s , . . . , B

N
s , s)ds

+

N
∑

i=1

∫ t

0

∂xiF (B1
s , · · · , BN

s , s)dB
i
s

+
1

2

∑

1≤i,j≤N

∫ t

0

∂xi∂xjF (B1
s , . . . , B

N
s , s)ds.

Moreover, MF
t =

∑N
i=1

∫ t

0
∂xiF (B1

s , · · · , BN
s , s)dB

i
s is a martingale with

respect to the filtration of the Brownian motion, with bracket

〈MF 〉t =

N
∑

i=1

∫ t

0

[∂xiF (B1
s , · · · , BN

s , s)]
2ds.
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Taking F (x1, . . . , xN , t) = N−1
∑N

i=1 f(Bi
t , t) =

∫

f(x, t)LN (t, dx) =
∫

ftdLN(t), we deduce that for any f ∈ C2,1
b (R × [0, 1]),

MN
f (t) =

∫

ftdLN (t) −
∫

f0dLN (0) −
∫ t

0

∫

∂sfsdLNsds

−
∫ t

0

1

2

∫

∂2
xfsdLN(s)ds

is a martingale with bracket

〈MN
f 〉t =

1

N

∫ t

0

∫

(∂xfs)
2dLN (s)ds.

The last ingredient of stochastic calculus we want to use is that (cf. Theo-
rem 20.20) for any bounded continuous martingale mt with bracket 〈m〉t,
any λ ∈ R,

{

exp(λmt −
λ2

2
〈m〉t), t ∈ [0, 1]

}

is a martingale. In particular, it has constant expectation. Thus, we deduce
that for all f ∈ C2,1

b (R × [0, 1]), all t ∈ [0, 1],

E[exp{N(MN
f (t) − 1

2
〈MN

f 〉t)}] = 1. (13.8)

• Weak large deviation upper bound.
We equip C([0, 1],P(R)) with the weak topology on P(R) and the uni-
form topology on the time variable. It is then a Polish space. A distance
compatible with such a topology is given, for any µ, ν ∈ C([0, 1],P(R)), by

D(µ, ν) = sup
t∈[0,1]

d(µt, νt)

with a distance d on P(R) compatible with the weak topology such as the
Dudley distance (0.1).

Lemma 13.7. For any p ∈ C([0, 1],P(R)),

lim sup
δ→0

lim sup
N→∞

1

N
logW⊗N (D(LN , p) ≤ δ) ≤ −S(p).

Proof.Let p ∈ C([0, 1],P(R)). Observe first that if p0 6= δ0, since LN (0) =
δ0 almost surely,

lim sup
δ→0

lim sup
N→∞

1

N
logW⊗N

(

sup
t∈[0,1]

d(LN (t), pt) ≤ δ

)

= −∞.

Therefore, let us assume that p0 = δ0. We set
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B(p, δ) = {µ ∈ C([0, 1],P(R)) : D(µ, p) ≤ δ}.
Let us define, for f, g ∈ C2,1

b (R × [0, 1]), µ ∈ C([0, 1],P(R)), 0 ≤ t ≤ 1,

T 0,t(f, µ) = µt(ft) − µ0(f0) −
∫ t

0

µs(∂sfs)ds−
∫ t

0

µs

(

1

2
∂2

xfs

)

ds

and

〈f, g〉0,t
µ :=

∫ t

0

µs(∂xfs∂xgs)ds.

Then, by (13.8), for any t ≤ 1,

E

[

exp

{

N

(

T 0,t(f, LN ) − 1

2
〈f, f〉0,t

LN

)}]

= 1.

Therefore, if we write for short T (f, µ) = T 0,1(f, µ) − 1
2 〈f, f〉0,1

µ ,

W⊗N (D(LN , p) ≤ δ)

= W⊗N

(

1D(LN ,p)≤δ
eNT (f,LN)

eNT (f,LN)

)

≤ exp{−N inf
B(p,δ)

T (f, .)}W⊗N
(

1D(LN ,p)≤δe
NT (f,LN)

)

≤ exp{−N inf
B(p,δ)

T (f, .)}W⊗N
(

eNT (f,LN )
)

(13.9)

= exp{−N inf
µ∈B(p,δ)

T (f, µ)}.

Since µ→ T (f, µ) is continuous when f ∈ C2,1
b (R × [0, 1]), we arrive at

lim sup
δ→0

lim sup
N→∞

1

N
logW⊗N

(

sup
t∈[0,1]

d(LN (t), pt) ≤ δ

)

≤ −T (f, p).

We now optimize over f to obtain a weak large deviation upper bound
with rate function

S(p) = sup
f∈C2,1

b (R×[0,1])

(

T 0,1(f, p) − 1

2
〈f, f〉0,1

p

)

= sup
f∈C2,1

b (R×[0,1])

sup
λ∈R

(λT 0,1(f, p) − λ2

2
〈f, f〉0,1

p )

=
1

2
sup

f∈C2,1
b (R×[0,1])

T 0,1(f, p)2

〈f, f〉0,1
p

(13.10)

From the last formula, one sees that any p such that S(p) < ∞ is such
that f → Tf (p) is a linear map that is continuous with respect to the norm

||f ||0,1
p = (〈f, f〉0,1

p )
1
2 . Hence, Riesz’s theorem asserts that there exists a

function k verifying (13.6, 13.7).
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• Large deviation lower bound. The derivation of the large deviation upper
bound was thus fairly easy. The lower bound is a bit more sophisticated
and relies on the proof of the following points:
(a) The solutions to the heat equations with a smooth drift are unique.
(b) The set described by these solutions is dense in C([0, 1],P(R)).
(c) The entropy behaves continuously with respect to some approximation
by elements of this dense set.
We now describe more precisely these ideas. In the previous section (see
(13.9)), we have merely obtained the large deviation upper bound from
the observation that for all ν ∈ C([0, 1],P(R)), all δ > 0 and any f ∈
C2,1

b ([0, 1],R),

E

[

1LN∈B(ν,δ) exp

(

N

(

T 0,1(LN , f) − 1

2
〈f, f〉0,1

LN

))]

≤ E

[

exp

(

N

(

T 0,1(LN , f) − 1

2
〈f, f〉0,1

LN

))]

= 1.

To make sure that this upper bound is sharp, we need to check that for
any ν ∈ C([0, 1],P(R)) and δ > 0, this inequality is almost an equality for
some function f = k, i.e., there exists k ∈ C2,1

b ([0, 1],R),

lim inf
N→∞

1

N
log

E

[

1LN∈B(ν,δ) exp
(

N(T 0,1(LN , k) − 1
2 〈k, k〉

0,1
LN

)
)]

E

[

exp
(

N(T 0,1(LN , k) − 1
2 〈k, k〉

0,1
LN

)
)] ≥ 0.

In other words that we can find a k such that the probability that LN (.)
belongs to a small neighborhood of ν under the shifted probability measure

PN,k =
exp

(

N(T 0,1(LN , k) − 1
2 〈k, k〉

0,1
LN

)
)

E[exp
(

N(T 0,1(LN , k) − 1
2 〈k, k〉

0,1
LN

)
)

]

is not too small. In fact, we shall prove that for good processes ν, we can
find k such that this probability goes to one by the following argument.
Take k ∈ C2,1

b (R× [0, 1]). Under the shifted probability measure PN,k, it is

not hard to see that LN (.) is exponentially tight (indeed, for k ∈ C2,1
b (R×

[0, 1]), the density of PN,k with respect to P is uniformly bounded by eC(k)N

with a finite constant C(k) so that PN,k ◦ (LN(.))−1 is exponentially tight
since P◦ (LN(.))−1 is). As a consequence, LN(.) is almost surely tight. We
let µ. be a limit point. Now, by Itô’s calculus, for any f ∈ C2,1

b (R× [0, 1]),
any 0 ≤ t ≤ 1,

T 0,t(LN , f) =

∫ t

0

∫

∂xfu(x)∂xku(x)dLN (u)(x)du +MN
t (f)

with a martingale (MN
t (f), t ∈ [0, 1]) with bracket
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(

N−2

∫ t

0

∫

(∂xf(x))2dLN (s)(x)ds, t ∈ [0, 1]

)

.

Since the bracket ofMN
t (f) goes to zero, the martingale (MN

t (f), t ∈ [0, 1])
goes to zero uniformly almost surely. Hence, any limit point µ. of LN (.)
under PN,k must satisfy

T 0,1(µ, f) =

∫ 1

0

∫

∂xfu(x)∂xku(x)dµu(x)du (13.11)

for any f ∈ C2,1
b (R × [0, 1]).

When (µ, k) satisfies (13.11) for all f ∈ C2,1
b (R × [0, 1]), we say that k is

the field associated with µ.
Therefore, if we can prove that there exists a unique solution ν. to (13.11),
we see that LN(.) converges almost surely under PN,k to this solution.
This proves the lower bound at any measure-valued path ν. that is the
unique solution of (13.11), namely for any k ∈ C2,1

b (R × [0, 1]) such that
there exists a unique solution νk to (13.11),

lim inf
δ→0

lim inf
N→∞

1

N
logW⊗N

(

sup
t∈[0,1]

d(LN (t), νk) < δ

)

= lim inf
δ→0

lim inf
N→∞

1

N
log PN,k

(

1supt∈[0,1] d(LN(t),νk)<δe
−NT (k,LN)

)

≥ −T (k, νk) + lim inf
δ→0

lim inf
N→∞

1

N
log PN,k

(

sup
t∈[0,1]

d(LN (t), νk) < δ

)

≥ −S(νk). (13.12)

where we used in the second line the continuity of µ→ T (µ, k) due to our
assumption that k ∈ C2,1

b (R × [0, 1]) and the fact that

PN,k

(

sup
t∈[0,1]

d(LN (t), νk) < δ

)

goes to one in the third line. Hence, the question boils down to uniqueness
of the weak solutions of the heat equation with a drift. This problem is
not too difficult to solve here and one can see that for instance for fields k
that are analytic within a neighborhood of the real line, there is at most
one solution to this equation. To generalize (13.12) to any ν ∈ {S < ∞},
it is not hard to see that it is enough to find, for any such ν, a sequence
νkn for which (13.12) holds and such that

lim
n→∞

νkn = ν, lim
n→∞

S(νkn) = S(ν). (13.13)
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Now, observe that S is a convex function so that for any probability mea-
sure pε,

S(µ ∗ pε) ≤
∫

S((.− x)#µ)pε(dx) = S(µ) (13.14)

where in the last inequality we neglected the condition at the initial time
to say that S((. − x)#µ) = S(µ) for all x. Hence, since S is also lower
semicontinuous, one sees that S(µ ∗ pε) will converge to S(µ) for any µ
with finite entropy S. Performing also a regularization with respect to time
and taking care of the initial conditions allows us to construct a sequence
νn with analytic fields satisfying (13.13). This point is quite technical but
still manageable in this context. Since it will be done quite explicitly in
the case we are interested in, we shall not detail it here.

13.2 Large deviations for the law of the spectral measure
of a non-centered large dimensional matrix-valued
Brownian motion

To prove a large deviation principle for the law of the spectral measure of
Hermitian Brownian motions, the first natural idea would be, following (12.1),
to prove a large deviation principle for the law of the spectral measure of
L̃N : t → N−1

∑N
i=1 δ√N

−1
Bi(t)

, to use Girsanov’s theorem to show that the

law we are considering is absolutely continuous with respect to the law of
independent Brownian motions, with a density that only depends on L̃N and
conclude by Laplace’s method (cf. Theorem 20.8). However, this approach
presents difficulties due to the singularity of the interacting potential, and
thus of the density. Here, the techniques developed in [130] will, however, be
very efficient because they only rely on smooth functions of the empirical
measure since the empirical measures are taken as distributions so that the
interacting potential is smoothed by the test functions. (Note, however, that
this strategy would not have worked with more singular potentials.) According
to (12.1), we can in fact follow the very same approach.

Itô’s calculus

With the notations of (13.1) and (13.2), we have by Section 12.2:

Theorem 13.8. For all β ≥ 1, for any N ∈ N, any f ∈ C2,1
b (R × [0, 1]) and

any s ∈ [0, 1),
(

Ss,t(LN,β, f) + β/2−1
2N

∫ t

s

∫

∂2
xf(y, s)dLN,β(s)(y)ds, s ≤ t ≤ 1

)

is a bounded martingale with quadratic variation

〈Ss,.(LN,β, f)〉t =
2

βN2
〈f, f〉s,t

LN,β
.
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Remark 5. Observe that if the entries were not Brownian motions but diffu-
sions described for instance as solution of a stochastic differential equation

dxt = dBt + U(xt)dt,

then the evolution of the spectral measure of the matrix would no longer
be autonomous. In fact, our strategy is strongly based on the fact that the
variations of the spectral measure under small changes of time only depends
on the spectral measure, allowing us to construct exponential martingales
that are functions of the process of the spectral measure only. It is easy to
see that if the entries of the matrix are not Gaussian, the variations of the
spectral measures will depend on much more general functions of the entries
than those of the spectral measure.

However, this strategy can also be used to study the spectral measure of
other Gaussian matrices as emphasized in [55, 101].

From now on, we shall consider the case where β = 2 and drop the sub-
script β in HN,β, LN,β, etc. This case is slightly easier to write down since
there are no error terms in Itô’s formula, but everything extends readily to
the cases β ≥ 1. One also needs to notice that

Sβ(µ) = sup
f∈C

2,1
β

(R×[0,1])

0≤s≤t≤1

{

Ss,t(µ, f) − 1

β
〈f, f〉s,t

µ

}

=
β

2
S2(µ)

where the last equality is obtained by changing f into 2−1βf .

Large deviation upper bound

From the previous Itô’s formula, one can deduce by following the ideas of
[131] (see Section 13.1) a large deviation upper bound for the measure-valued
process LN(.) ∈ C([0, 1],P(R))). To this end, we shall make the following
assumption on the initial condition DN :

(H) CD := sup
N∈N

LDN (log(1 + |x|2)) <∞,

implying that (LDN , N ∈ N) is tight. Moreover, LDN converges weakly, as N
goes to infinity, to a probability measure µD.
Then, we shall prove, with the notations of (13.1)–(13.3), the following:

Theorem 13.9. Assume (H). Then:
(1) SµD is a good rate function on C([0, 1],P(R)).
(2) For any closed set F of C([0, 1],P(R)),

lim sup
N→∞

1

N2
log P (LN(.) ∈ F ) ≤ − inf

ν∈F
SµD (ν).
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We first prove that SµD is a good rate function. Then, we show that exponen-
tial tightness holds and finally obtain a weak large deviation upper bound,
these two arguments yielding (2) (cf. Theorem 20.4).

(a) Let us first observe that SµD (ν) is also given, when ν0 = µD, by

SµD (ν) =
1

2
sup

f∈C2,1
b (R×[0,1])

sup
0≤s≤t≤1

Ss,t(ν, f)2

〈f, f〉s,t
ν

. (13.15)

Consequently, SµD is non-negative. Moreover, SµD is obviously lower semi-
continuous as a supremum of continuous functions.

Hence, we merely need to check that its level sets are contained in relatively
compact sets. By (12.11), it is enough to show that, for any M > 0,

(1) For any integer m, there is a positive real number LM
m so that for any

ν ∈ {SµD ≤M},

sup
0≤s≤1

νs(|x| ≥ LM
m ) ≤ 1

m
, (13.16)

proving that νs ∈ K 1
m ,LM

m
defined in (12.12) for all s ∈ [0, 1].

(2) For any integer m and f ∈ C2
b (R), there exists a positive real number

δM
m so that for any ν ∈ {SµD ≤M},

sup
|t−s|≤δM

m

|νt(f) − νs(f)| ≤ 1

m
, (13.17)

showing that s → νs(f) belongs to the compact set CδM ,||f ||∞ as defined in
(12.13).

To prove (13.16), we consider, for δ > 0, fδ(x) = log
(

x2(1 + δx2)−1 + 1
)

∈
C2,1

b (R × [0, 1]). We observe that

C := sup
0<δ≤1

||∂xfδ||∞ + sup
0<δ≤1

||∂2
xfδ||∞

is finite and, for δ ∈ (0, 1],

∣

∣

∣

∣

∂xfδ(x) − ∂xfδ(y)

x− y

∣

∣

∣

∣

≤ C.

Hence, (13.15) implies, by taking f = fδ in the supremum, that for any
δ ∈ (0, 1], any t ∈ [0, 1], any µ. ∈ {SµD ≤M},

µt(fδ) ≤ µ0(fδ) + 2Ct+ 2C
√
Mt.

Consequently, we deduce by the monotone convergence theorem and letting δ
decrease to zero that for any µ. ∈ {SµD ≤M},

sup
t∈[0,1]

µt(log(x2 + 1)) ≤ µD(log(x2 + 1)) + 2C(1 +
√
M).



13.2 Large deviations for the law of the spectral measure 209

Chebycheff’s inequality and hypothesis (H) thus imply that for any µ. ∈
{SµD ≤M} and any K ∈ R+,

sup
t∈[0,1]

µt(|x| ≥ K) ≤ CD + 2C(1 +
√
M)

log(K2 + 1)

which finishes the proof of (13.16).
The proof of (13.17) again relies on (13.15), which implies that for any

f ∈ C2
b (R), any µ. ∈ {SµD ≤M} and any 0 ≤ s ≤ t ≤ 1,

|µt(f) − µs(f)| ≤ ||∂2
xf ||∞|t− s| + 2||∂xf ||∞

√
M
√

|t− s|. (13.18)

(b) Exponential tightness. By Lemma 12.6, we have:

Lemma 13.10. For any integer number L, there exists a finite integer number
N0 ∈ N and a compact set KL in C([0, 1],P(R)) such that ∀N ≥ N0 ,

P(LN ∈ Kc
L) ≤ exp{−LN2} .

(c) Weak large deviation upper bound. Following the arguments of Section
13.1, we readily get:

Lemma 13.11. For every process ν in C([0, 1],P(R)), if Bδ(ν) denotes the
open ball with center ν and radius δ for the distance D, then

lim
δ→0

lim sup
N→∞

1

N2
log P

(

LN ∈ Bδ(ν)
)

≤ −SµD (ν).

Moreover, processes with finite entropy are characterized as follows.

Lemma 13.12. For any µ ∈ {SµD < ∞}, there exists a measurable function
k such that for any f ∈ C2

b ([0, 1]× R,R)

Ss,t(µ, f) =

∫ t

s

∫

ku(x)∂xf(x, u)dµu(x)du. (13.19)

Moreover,

SµD (µ.) =
1

2

∫ 1

0

∫

ku(x)2dµu(x)du.

Proof. By (13.15), if SµD (µ.) <∞, for any f ∈ C2
b ([0, 1]× R,R), all s ≤ t

∣

∣

∣

∣

∫ t

s

∫

ku(x)∂xf(x, u)dµu(x)du

∣

∣

∣

∣

≤ 2SµD (µ.)
1
2

(∫ 1

0

∫

f(x, u)2dµu(x)du

)

1
2

.

Hence, f →
∫ 1

0

∫

ku(x)∂xf(x, u)dµu(x) is linear, bounded in the Hilbert space
obtained by completing and separating C2

b ([0, 1] × R,R) for the norm

‖f‖2 =

(∫ 1

0

∫

f(x, u)2dµu(x)du

)

1
2

.

Riesz’s theorem (cf. [172]) allows us to conclude for s = 0, t = 1. We get the
general case by taking f = 0 outside [s− ε, t+ ε] and a smooth interpolation
in the time variable in [s− ε, t+ ε]\[s, t]. ut
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Large deviation lower bound

We shall prove at the end of this section the following:

Lemma 13.13. Let

MF∞ =

{

h ∈ C∞
b (R × [0, 1]); ∃ε > 0, C. ∈ L2([0, 1], dt) so that

ht(x) = Ct +

∫

eiλxĥt(λ)dλ with

∫ 1

0

maxλ∈R(e2ε|λ||ĥt(λ)|2)dt <∞.

}

For any field k in MF∞, there exists a unique solution νk to

Ss,t(f, ν) = 〈f, k〉s,t
ν (13.20)

for any f ∈ C2,1
b (R × [0, 1]). We set MC([0, 1],P(R)) to be the subset of

C([0, 1],P(R)) consisting of such solutions.

Note that h belongs to MF∞ implies that it can be extended analytically to
{z : |=(z)| < ε} for almost all t ∈ [0, 1].

As a consequence of Lemma 13.13, if we take ν ∈ MC([0, 1],P(R)) asso-
ciated with a field k, and if we define

PN,k = exp

{

N2

(

S0,1(LN(.), k) − 1

2
〈k, k〉0,1

LN (.)

)}

PN
T,λN (0),

the limit points of LN (.) under PN,k coincide with ν (see the classical
analog (13.11)). Thus, for any open subset O ∈ C([0, 1],P(R)), any ν ∈
O ∩MC([0, 1],P(R)),

P (LN (.) ∈ O) ≥ P (d(LN (.), ν) < δ)

= PN,k
(

1d(LN(.),ν)<δe
−N2(S0,1(LN ,k)− 1

2 〈k,k〉0,1
LN

)
)

≥ e−N2(S0,1(ν,k)− 1
2 〈k,k〉0,1

ν )−g(δ)N2

PN,k (d(LN (.), ν) < δ)

with a function g vanishing at the origin. Hence, for any ν ∈ O∩MC([0, 1],P(R))

lim inf
N→∞

1

N2
log P (LN(.) ∈ O) ≥ −(S0,1(ν, k) − 1

2
〈k, k〉0,1

ν ) = −SµD(ν)

and therefore

lim inf
N→∞

1

N2
log P (LN (.) ∈ O) ≥ − inf

O∩MC([0,1],P(R))
SµD . (13.21)
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To complete the lower bound, it is therefore sufficient to prove that for any
ν ∈ C([0, 1],P(R)) with uniformly bounded fourth moment, there exists a
sequence νn ∈ MC([0, 1],P(R)) such that

lim
n→∞

νn = ν and lim
n→∞

SµD (νn) = SµD (ν). (13.22)

The rate function SµD is not convex a priori since it is the supremum of
quadratic functions of the measure-valued path ν so that there is no reason
why it should be reduced by standard convolution as in the classical setting
(cf. Section 13.1). Thus, it is now unclear how we can construct the sequence
νn satisfying (13.22). Further, we begin with a degenerate rate function that
is infinite unless ν0 = µD.

To overcome the lack of convexity, we shall remember the origin of the
problem; in fact, we have been considering the spectral measure of matrices
and should not forget the special features of operators due to the matri-
ces structure. By definition, the differential equation satisfied by a Hermi-
tian Brownian motion should be invariant if we translate the entries, that is,
translate the Hermitian Brownian motion by a self-adjoint matrix. The nat-
ural limiting framework of large random matrices is free probability, and the
limiting spectral measure of the sum of a Hermitian Brownian motion and a
deterministic self-adjoint matrix converges to the free convolution of their re-
spective limiting spectral measure. Intuitively, we shall therefore expect (and
in fact we will show in the specific case of Cauchy laws) that the rate func-
tion S0,1 decreases by free convolution, generalizing the fact that standard
convolution was decreasing the Brownian motion rate function (cf. (13.14)).
However, because free convolution by a Cauchy law is equal to the standard
convolution by a Cauchy law, we shall regularize our laws by convolution by
Cauchy laws. We now prove the large deviation lower bound of Theorem 13.2.

•Regularization by Cauchy laws. We prove below that convolution by
Cauchy laws reduces the entropy, a point analogous to (13.14). This result
is a special case of Theorem 4.1 in [56] where it is shown that any free convo-
lution reduces the entropy. This generalization was in fact used with the free
convolution with respect to the semi-circular in [110] to prove Theorem 13.3.

Lemma 13.14. Let µ. satisfy (13.19) for some measurable function k ∈
L2(dµt(x)dt). Let pε be the Cauchy law

dpε(c) =
ε

π(ε2 + c2)
dc.

Then, (µt ∗ pε)t∈[0,1] satisfies (13.19) with field kε given by

kε
t(c) =

∫ kt(x)
ε2+(x−c)2 dµt(x)

∫

1
ε2+(x−c)2 dµt(x)

.

Moreover
SµD (µ.) ≥ SµD∗pε(µ. ∗ pε).
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Proof. We verify (13.19) for Stieltjes transform, i.e., functions of the form
f(x) = (z − x)−1 and any [s, t]. Note that if we do that, we can then use
the density of these functions in C2

b (R,R) (again based on the Weierstrass
theorem) and then play on the parameters s, t to get the equation for all
f ∈ C2

b ([0, 1] × R,R). Now, for f = (z − x)−1 we find that

pε ∗ µt((z − x)−1)

=

∫

µt((z − c− x)−1)dpε(c)

= pε ∗ µs((z − x)−1)

+

∫ ∫ t

s

µu((z − c− x)−1)µu((z − c− x)−2)dudpε(c)

+

∫ ∫ t

s

µu((z − c− x)−2ku(x))dudpε(c)

where we have used Fubini and equation (13.19) for µ.. Observe that if z ∈
C+ = {z : =(z) > 0}, as c → (z − c − x)−1(z − c − x′)−2 is analytic on C−,
the residue theorem implies that, since dpε(c)/dc has a unique pole at −iε in
C−,

∫

(z − c− x)−1(z − c− x′)−2dpε(c)

= (z + iε− x)−1(z + iε− x′)−2

=

∫

(z − c− x)−1dpε(c)

∫

(z − c− x′)−2dpε(c)

and therefore we deduce

pε ∗ µt((z − x)−1) = pε ∗ µs((z − x)−1)

+

∫ t

s

pε ∗ µu((z − x)−1)pε ∗ µu((z − x)−2)du

+

∫ t

s

pε ∗ µu((z − x)−2kε
u(x))du

where we finally used
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∫

µu((z − c− x)−2ku(x))dpε(c)

=

∫

(z − c)−2

(∫

εku(x)

π((x − c)2 + ε2)
dµu(x)

)

dc

=

∫

(z − c)−2kε
u(c)dpε ∗ µu(c).

This is (13.20) with the dense set of functions f = (z − x)−1. For the last
point notice that in fact

kε
u(x) = E[ku(x)|x + Cε]

when Cε is a Cauchy variable independent of x and x has law µu. Hence,

SµD∗pε(µ. ∗ pε) =
1

2

∫ 1

0

∫

E[(E[ku(xu)|xu + Cε])
2]du

≤ 1

2

∫ 1

0

∫

E[ku(xu)2]du = SµD (µ.).

ut
Thus, we find that convolution by Cauchy laws (pε)ε>0 decreases the en-

tropy. Since the entropy is lower semicontinuous (as a supremum of continuous
functions), we deduce that

lim
ε→0

SµD∗pε(µ. ∗ pε) = SµD (µ.). (13.23)

Note that x → kε
u(x) is analytic in the strip |=(z)| ≤ ε so that there is some

good chance that pε ∗ µ. will be in MC([0, 1],P(R)). We shall see this point
below for µ. ∈ A with

A = {µ. : [0, 1] → P(R) : sup
t∈[0,1]

µt(x
4) <∞}.

Namely, we prove:

Lemma 13.15. For µ. ∈ A ∩ {SµD < ∞}, for all ε > 0, pε ∗ µ. belongs to
MC([0, 1],P(R)).

Proof. The strategy is to show that kε
t ∈ L2(dx) ∩ L1(dx) in order to use

Plancherel representation. Since kε
t (x) goes to

∫

kt(y)dµt(y) as x goes to in-
finity, we need to substract this quantity to make sure this can happen. For
further use, we need to consider kε

t (x + iδ) for δ < ε, say δ = ε/2. We then
write

kε
t (x+ iδ) =

∫ kt(y)
(x+iδ−y)2+ε2 dµt(y)

∫

1
(x+iδ−y)2+ε2 dµt(y)
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Note that since µt(x
2) is uniformly bounded by say C, µt([−M,M ]c) ≤ CM−2

for all t by Chebyshev inequality. Thus, for x ∈ [−M,M ], with M sufficiently
large

∣

∣

∣

∣

∫

1

(x+ iδ − y)2 + ε2
dµt(y)

∣

∣

∣

∣

≥ 1

(2M + δ)2 + ε2

and therefore there exists a finite constant C = C(ε,M) so that

|kε
t(x+ iδ)| ≤ C

(∫

kt(y)
2dµt(y)

)
1
2

.

We choose below M large. For x ∈ [−M,M ]c, we have that

∫

[−2|x|,2|x|]

((x + iδ)2 + ε2)kt(y)

(x+ iδ − y)2 + ε2
dµt(y)

=

∫

[−2|x|,2|x|]
kt(y)

(

1 + 2
(x+ iδ)y

(x+ iδ)2 + ε2

+O

(

y2

(x+ iδ)2 + ε2

))

dµt(y)

∣

∣

∣

∣

∣

∫

[−2|x|,2|x|]c

((x + iδ)2 + ε2)kt(y)

(x+ iδ − y)2 + ε2
dµt(y)

∣

∣

∣

∣

∣

≤ 1

ε2 − δ2

∫

[−2|x|,2|x|]c
|kt(y)|dµt(y)

≤ 1

ε2 − δ2

(∫

kt(y)
2dµt(y)

)
1
2
(∫

y4

x4
dµt(y)

)
1
2

.

Letting C1
t (k) =

∫

kt(y)dµt(y), C
2
t (k) =

∫

ykt(y)dµt(y) and C3
t (k) =

(∫

kt(y)
2dµt(y)

)
1
2 ,

we get

∫

kt(y)

(x+ iδ − y)2 + ε2
dµt(y)

= C1
t (k) + (2C2

t (k))(x + iδ)((x+ iδ)2 + ε2)−1) + hε
t(x+ iδ)

with some function hε
t so that

|hε
t(x+ iδ)| ≤ cC3

t (k)
1

|x|2 + 1

with a constant c that only depends on supt µt(y
4). Doing the same for the

denominator, we conclude that
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kε
t (x+ iδ) = C1

t +2[C2
t (k)−C1

t (k)C2
t (1)](x+ iδ)((x+ iδ)2 + ε2)−1 + k̄ε

t (x+ iδ)
(13.24)

with some bounded function k̄ε
t (x+ iδ) such that

|k̄ε
t(x + iδ)| ≤ cC3

t (k)
x2

(x2 − δ2 + ε2)2
.

Applying this result to δ = 0, we see that k̄ε
t(x) ∈ L1(dx) ∩ L2(dx) extends

to |=(x)| ≤ δ analytically while staying in L1. This implies in particular that
for λ > 0

|k̂ε
t (λ)| = π−1

∣

∣

∣

∣

∫

eiλxk̄ε
t(x)dx

∣

∣

∣

∣

= π−1

∣

∣

∣

∣

∫

eiλ(x+iδ)k̄ε
t (x+ iδ)dx

∣

∣

∣

∣

≤ e−δλ

∫

|k̄ε
t(x + iδ)|dx ≤ c′C3

t (k)e−δλ

and the same bound for λ < 0. Hence, by the Plancherel formula

k̄ε
t (x) =

∫

eiλxk̂ε
t (λ)dλ,

with k̂ε
t (λ) satisfying the required property that

|k̂ε
t (λ)| ≤ c′C3

t (k)e−δ|λ|

with C3
t (k) in L2([0, 1], dt) since µ has finite entropy. Moreover, Note that

x

x2 + ε2
= <(x+ iε)−1

can be written for ε > 0 as

x

x2 + ε2
= <

(

−i
∫ ∞

0

eiξ(x+iε)dξ

)

=

∫

eiξx
(

sin(ξ)e−ε|ξ|
)

dξ. (13.25)

Hence, we have written by (13.24)

kε
t (x+ iδ) = C1

t +

∫

eiλxk̂ε,2
t (λ)dλ (13.26)

with
|k̂ε,2

t (λ)eδ|λ|| ≤ 2[C2
t (k) + C1

t (k)C2
t (1)] + c′C3

t (k)

for all λ ∈ R. The proof of the lemma is thus complete since C2
t (k), C2

t (1),
C3

t (k) are in L2([0, 1], dt), whereas C2
t (1) =

∫

ydµt(x) is uniformly bounded
as
∫

y2dµt(y) is. ut
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•Large deviations lower bound for processes regularized by Cauchy distri-
bution. Everything looks nice except that we modified the initial condition
from µD into µD ∗ pε, so that in fact SµD (νε,∆) = +∞! and moreover, the
empirical measure-valued process cannot deviate toward processes of the form
νε,∆ even after some time because these processes do not have a finite sec-
ond moment (it can indeed be checked that if µD(x2) < ∞, SµD (µ.) < ∞
implies that supt µt(x

2) < ∞). To overcome this problem, we first note that
this result will still give us a large deviation lower bound if we change the
initial data of our matrices. Namely, let, for ε > 0, CN

ε be an N ×N diagonal
matrix with spectral measure converging to the Cauchy law pε and consider
the matrix-valued process

XN,ε
t = UNC

N
ε U∗

N +DN + HN (t)

with UN a N ×N unitary measure following the Haar measure mN
2 on U(N).

Then, it is well known [30] that the spectral distribution of UNC
N
ε U∗

N +DN

converges to = pε ∗ µD. We choose CN
ε satisfying (H).

Hence, we can proceed as before to obtain the following large deviation
estimates on the law of the spectral measure LN,ε(t)t = LXN,ε

t
. We define

Ap = {µ ∈ C([0, 1],P(R));µt ∈ A ∀t ∈ [0, 1]}

Corollary 13.16. Assume (H). For any ε > 0, for any closed subset F of
C([0, 1],P(R)),

lim sup
N→∞

1

N2
log P (LN,ε(.) ∈ F ) ≤ − inf{SPε∗µD (ν), ν ∈ F}.

Further, for any open set O of C([0, 1],P(R)),

lim inf
N→∞

1

N2
log P (LN,ε(.) ∈ O)

≥ − inf{SPε∗µD (ν), ν ∈ O, ν = Pε ∗ µ, µ ∈ Ap ∩ {SµD <∞}}.

The only point is to prove the lower bound (see Theorem 13.11 for the upper
bound). In [109] we proceed by an extra regularization in time. We will bypass
this argument here.

1. Time discretization of kε ∈ MF∞. We note that since
∫ 1

0

∫

kε
t (x)

2dpε ∗
µt(x)dt is finite, we can approximate kε

t (x) by

kε,p
t (x) = kε

tn
(x) +

t− tn
tn+1 − tn

(kε
tn+1

(x) − kε
tn

(x)) for t ∈ [tn, tn+1[

for some time discretization 0 = t0 < t1 < · · · tp = 1 in such a way that

lim
p→∞

∫ 1

0

∫

(kε
t(x) − kε,p

t (x))
2
dpε ∗ µt(x)dt = 0.
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Indeed, this is clearly true if t → kε
t(x) is continuous (since kε

t(x) is uni-
formly bounded, see Lemma 13.15 so that bounded convergence theorem
applies) and then generalizes to all uniformly bounded field by density of
continuous functions in L2.

2. Change of measure and convergence under the shifted probability measure.
We let PN,k,ε be the law with density

ΛN,k = exp

{

√
N

N
∑

i=1

∫ T

0

kε
t (λ

i
N (t))dW i

t − N

2

N
∑

i=1

∫ T

0

kε
t(λ

i
N (t))2dt

}

with respect to the law PN
T,λε

N (0) of the eigenvalues of XN,ε(t), t ∈ [0, 1]

(W being the d dimensional Brownian motion appearing in (12.1)) . By
Girsanov ’s theorem 20.21, since kε

t (x) is uniformly bounded, PN,k,ε is the
law of

dλi
N (t) =

1

N

N
∑

j=1

1

λi
N (t) − λj

N (t)
dt+ kε

t(λ
i
N (t))dt+

1√
N
dW̃ i

t

with an N -dimensional Brownian motion W̃ under PN,k,ε. Applying Itô’s
calculus and exactly the same argument than in Lemma 12.5 (we leave
this as an exercise, and note that it is important that kε

t is uniformly
bounded and continuous for all t ∈ [0, 1]), we find that the limit point of
LN (.) under PN,k,ε are solution of (13.20) with k = kε and µ0 = µD ∗ pε.
Hence, by Lemma 13.13,

lim
N→∞

PN,k,ε (LN (.) ∈ B(pε ∗ µ., δ)) = 1 (13.27)

for all δ > 0.
3. Approximating the shifted law. Because we did not regularize kε in time,

1
N2 logΛN,k is not necessarily a continuous function of LN(.); indeed, we

cannot use Itô’s calculus to transform
∑N

i=1

∫ T

0
kε

t (λ
i
N (t))dW i

t into an in-
tegral over dt since t → kε

t may not be differentiable. To circumvent this
problem, we consider the law PN,kp,ε corresponding to the discretized field
kp,ε. Then, since kε,p is continuously differentiable in time, if ΛN,kp

is the
density of PN,kp,ε with respect to PN

T,λN (0), we have

1

N2
logΛN,kp,ε

= N2

(

S0,1(LN (.),Kp,ε) − 1

2
〈Kp,ε,Kp,ε〉0,1

LN

)

= N2S̄0,1(LN (.),Kp,ε)

with Kp,ε
t =

∫ x

−∞ kp,ε
t (y)dy. Hence, 1

N2 logΛN,kp,ε

is a smooth function of

LN (.) since Kp,ε
t and its time derivative are C∞ with uniformly bounded

derivatives. Therefore, for a fixed δ, we find a κ(ε, p) vanishing as δ goes
to zero for any p ∈ N, such that
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PN,ε (B(pε ∗ µ., δ)) ≥ e−N2(S̄0,1(pε∗µ.,K
p)+κ(ε,p))PN,kp,ε (B(pε ∗ µ., δ))

(13.28)
To replace PN,kp,ε by PN,k,ε and conclude, note that by Girsanov’s theorem
20.21, if ∆kε,p

t = (kε,p
t − kε

t ),

ΛN := log
dPN,kp,ε

dPN,k,ε
= MN

1 − 1

2
〈MN 〉1

with the martingale (MN
s )0≤s≤1 given by

MN
s =

√
N

N
∑

i=1

∫ s

0

∆kε,p
t (λi

N (t))dW i
t

for an N -dimensional Brownian motion (W i)1≤i≤N under PN,k,ε. We have

PN,kp,ε (B(pε ∗ µ., δ)) ≥ e−κN2

PN,k,ε
(

{ΛN ≥ e−κN2} ∩ B(pε ∗ µ., δ)
)

≥ e−κN2
(

PN,k,ε(B(pε ∗ µ., δ))

−PN,k,ε({ΛN ≤ e−κN2} ∩ B(pε ∗ µ., δ))
)

.

(13.29)

Since x→ kε
t(x) is uniformly Lipschitz, we find that on B(pε ∗ µ., δ),

1

N2
〈MN〉1 =

1

N

N
∑

i=1

∫ 1

0

(∆kε,p
t (λi

N (t)))2dt

=

∫ 1

0

∫

(∆kε,p
t (x))2dpε ∗ µt(x)dt +O(δ) = o(p, δ)

by our choice of kε,p, and with o(p, δ) = o(p)+o(δ) going to zero as p goes
to infinity and δ to zero. Thus, we obtain that

PN,k,ε
(

{ΛN ≤ e−κN2} ∩B(pε ∗ µ., δ)
)

≤ PN,k,ε
(

{MN
1 ≤ −(κ− o(δ, p))N2} ∩B(pε ∗ µ., δ)

)

≤ PN,k,ε
(

e−λMN
1 −λ2

2 〈MN 〉1 ≥ e[λ(κ−o(δ,p))−λ2

2 o(δ,p)]N2
)

≤ e−[λ(κ−o(δ,p))−λ2

2 o(δ,p)]N2

for any λ > 0. Hence, taking λ = (κ− o(δ, p))/o(δ, p) we conclude that for
any κ > 0,

lim sup
δ→0

p→∞

lim sup
N→∞

1

N2
log PN,k,ε

(

{ΛN ≤ e−κN2} ∩ B(pε ∗ µ., δ)
)

= −∞.

(13.30)
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By (13.28), (13.29) and (13.27) we thus conclude that for κ > 0, δ small
enough and p large enough

lim inf
N→∞

1

N2
log PN,ε (B(pε ∗ µ., δ)) ≥ −S̄0,1(pε ∗ µ.,K

p) − κ+ o(ε, p, δ)

(13.31)
with o(ε, p, δ) going to zero as p goes to infinity and δ to zero. Finally, our
choice of kp,ε shows that

lim
p→∞

S̄0,1(pε ∗ µ.,K
p) = S̄0,1(pε ∗ µ.,K)

completing the proof of the lower bound by letting δ going to zero, p going
to infinity and then κ to zero.

• Large deviation lower bound for processes in Ap. To deduce our result
for the case ε = 0, we proceed by exponential approximation. In fact, we have
the following lemma:

Lemma 13.17. Consider, for L ∈ R+, the compact set KL of P(R) given by

KL = {µ ∈ P(R);µ(log(x2 + 1)) ≤ L}.

Then, on KN
ε (KL) :=

⋂

t∈[0,1]

{

{LN,εt ∈ KL} ∩ {LN(t) ∈ KL}
}

, with d the

Duddley distance (0.1),

d(LN,ε(.), LN (.)) ≤ f(N, ε)

where
lim sup

ε→0
lim sup
N→∞

f(N, ε) = 0.

Proof. Step 1: compactly supported measure approximation. Write CN
ε =√

εCN with a matrix CN whose spectral measure converges to a standard
Cauchy law. Denote by (ci)1≤i≤N the eigenvalues of CN . For M > 0, we set

BM := {i : |ci| > M} :=
{

j1, · · · , j|BM |
}

.

Define

CN,M (i, i) =

{

ci if i 6∈ BM

0 otherwise.

Let
Xε,M

N (t) = HN (t) +DN +
√
εUNCN,MU∗

N

and denote by LN,ε,M(t) its spectral measure. Then,

D(LN,ε,M(.), LN (.)) ≤ εM.

In fact, for any continuously differentiable function f , any t ∈ [0, 1],
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|µ̂N,ε,M
t (f) − LN t(f)|

= ε

∣

∣

∣

∣

∫ 1

0

1

N
Tr
(

f ′(XN (t) + α
√
εUNCN,MU∗

N )UNCN,MUN

)

dα

∣

∣

∣

∣

≤ ε

N

∑

i∈BM

|ci|
∫ 1

0

∣

∣〈ei, f
′(XN (t) + α

√
εUNCN,MU∗

N )ei〉
∣

∣ dα

≤ εM

∫ 1

0

(

1

N
Tr(f ′(XN (t) + αεCN,M )2)

)
1
2

dα.

Extending this inequality to Lipschitz functions, we deduce that

|
∫

fdLN,ε,M(t) −
∫

fdLN(t)| ≤ ||f ||LεM

which gives the desired estimate on D(µ̂N,ε,M
. , LN .).

Step 2: small rank perturbation approximation. On the compact set KL, the
Duddley distance is equivalent to the distance

d1(µ, ν) = sup
||f ||L≤1,f↑

∣

∣

∣

∣

∫

fdν −
∫

fdµ

∣

∣

∣

∣

.

Write

Xε
N(t) = Xε,M

N (t) + ε

|BM |
∑

i=1

cjiejie
T
ji
.

Following Lidskii’s theorem (see (1.18)), we find that

d1(LN,ε,M(t), LN,ε(t)) ≤
4|BM |
N

. (13.32)

But Chebycheff’s inequality yields

|BM |
N

=

∫

1|x|≥MdLCN (x)

≤ 1

(log(M2 + 1))2
sup
N

∫

(log(x2 + 1))2dLCN (x)

giving finally, according to condition (13.32), a finite constant C such that

d1(LN,ε,M(t), LN,ε(t)) ≤
CL

(log(M2 + 1))2
.

Now, since d1 and d are equivalent on KL, the proof of the lemma is complete.
ut

We then can prove the following:
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Theorem 13.18. Assume that LDN converges to µD while

sup
N∈N

LDN (x4) <∞.

Then, for any µ. ∈ A

lim
δ→0

lim inf
N→∞

1

N2
log P (D(LN(.), µ.) ≤ δ) ≥ −SµD (µ.).

so that for any open subset O ∈ C([0, 1],P(P(R))),

lim inf
N→∞

1

N2
log P (LN(.) ∈ O) ≥ − inf

O∩A
SµD

Proof of Theorem 13.18. Following Lemma 13.10, we deduce that for any
M ∈ R+, we can find LM ∈ R+ such that for any L ≥ LM ,

sup
0≤ε≤1

P(KN
ε (KL)c) ≤ e−MN2

. (13.33)

Fix M > SµD (µ) + 1 and L ≥ LM . Let δ > 0 be given. Next, observe that
Pε ∗ µ. converges weakly to µ. as ε goes to zero and choose consequently ε
small enough so that D(Pε ∗ µ., µ.) <

δ
3 . Then, write

P (LN(.) ∈ B(µ., δ))

≥ P

(

D(LN (.), µ.) <
δ

3
, LN,ε. ∈ B(Pε ∗ µ.,

δ

3
),KN

ε (KL)

)

≥ P

(

LN,ε. ∈ B(Pε ∗ µ.,
δ

3
)

)

− P(KN
ε (KL)c)

−P

(

D(LN,ε(.), LN (.)) ≥ δ

3
,KN

ε (KL)

)

= I − II − III.

(13.33) implies, up to terms of smaller order, that

II ≤ e−N2(SµD
(µ)+1).

Lemma 13.17 shows that III = 0 for ε small enough and N large, while
Corollary 13.16 implies that for any η > 0, N large and ε > 0

I ≥ e−N2SPε∗µD
(Pε∗µ)−N2η ≥ e−N2SµD

(µ)−N2η.

Theorem 13.18 is proved.
ut
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Proof of Lemma 13.13. Following [55], we take f(x, t) := eiλx for some
λ ∈ R in (13.20) and denote by Lt(λ) =

∫

eiλxdνt(x) the Fourier transform of
νt. ν ∈ MC([0, 1],P(R)) implies that if k is the field associated with ν,

kt(x) = Ct +

∫

eiλxk̂t(λ)dλ

with
∫ 1

0
maxλe

−2ε|λ||k̂t(λ)|2dt ≤ C for a given ε > 0. Then, we find that for
t ∈ [0, 1],

Lt(λ) =L0(λ) −
λ2

2

∫ t

0

∫ 1

0

Ls(αλ)Ls((1 − α)λ)dαds

+ iλ

∫ t

0

∫

Ls(λ+ λ′)k̂(λ′, s)dλ′ds+ iλ

∫ t

0

Ls(λ)Csds.

(13.34)

Multiplying both sides of this equality by e−
ε
4
|λ| gives, with Lε

t(λ) = e−
ε
4
|λ|Lt(λ),

Lε
t(λ) =Lε

0(λ) −
λ2

2

∫ t

0

∫ 1

0

Lε
s(αλ)Lε

s((1 − α)λ)dαds

+ iλ

∫ t

0

∫

Lε
s(λ+ λ′)e

ε
4 |λ+λ′|− ε

4 |λ|k̂(λ′, s)dλ′ds+ iλ

∫ t

0

Lε
s(λ)Csds.

(13.35)

Therefore, if ν, ν̃′ are two solutions with Fourier transforms L and L̃ respec-
tively and if we set ∆ε

t(λ) = |Lε
t(λ) − L̃ε

t(λ)|, we deduce from (13.35) that if

we denote Ds = supλ∈R e
2ε|λ||k̂(λ, s)|,

∆ε
t(λ) ≤ λ2

∫ t

0

∫ 1

0

∆ε
s(αλ)e

− 1
4 (1−α)ελdαds+ |λ|

∫ t

0

∆ε
s(λ)Csds

+ |λ|
∫ t

0

∫

∆ε
s(λ+ λ′)Dse

ε
4 |λ+λ′|− ε

4 |λ|−ε|λ′|dλ′ds

≤ 4|λ|
ε

∫ t

0

sup
|λ′|≤|λ|

∆ε
s(λ

′)ds+ |λ|
∫ t

0

∆ε
s(λ)Csds

+ |λ|
∫ t

0

Ds[ sup
|λ′|≤R

∆ε
s(λ

′) + 2e−
ε
4 R]

∫

e
ε
4 |λ+λ′|− ε

4 |λ|−ε|λ′|dλ′ds

where R is any positive constant and we used that ∆ε
t(λ) ≤ 2e−

ε
4 |λ|. Consid-

ering ∆̄ε
t(R) = sup|λ′|≤R∆

ε
s(λ

′), we therefore obtain, since |λ|+ |λ′| ≥ |λ+λ′|,

∆̄ε
t(R) ≤ R

ε

∫ t

0

(Ds + Cs + 4)∆̄ε
s(R)ds+ 2

R

ε
e−

ε
4 R

∫ t

0

Dsds

By Gronwall’s lemma, we deduce that
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∆̄ε
t(R) ≤ 2

R

ε
e−

ε
4 R

∫ t

0

Dse
R
ε

R

t
s
(Du+Cu+4)duds.

Now, since we assumed D2 :=
∫ 1

0
D2

sds < ∞ and C2 :=
∫ 1

0
C2

sds < ∞,
∫ t

0
(Ds + Cs)ds ≤ (C +D)

√
t, we have

∆̄ε
t(R) ≤ 2

R

ε
De−

ε
4 Re

R
ε [(C+D)

√
t+4t].

Thus ∆̄ε
t(∞) = 0 for t < τ ≡ ( ε2

4(C+D+4) )
2. By induction over the time, we

conclude that ∆̄ε
t(∞) = 0 for any time t ≤ 1, and therefore that ν = ν̃. ut

Bibliographical notes. The previous large deviation estimates were proved
in [109]. Further analysis of the rate function was performed in [101], and of
related PDE questions in [5, 134, 142]. On less rigorous ground, we refer to
[146]. In particular, the rate function SµD (µ) is given as an infimum achieved
at the solution of a complex Burgers equation [101]. By completely different
techniques, Kenyon, Okounkov, Sheffield [128] obtained large deviation prin-
ciples for the law of the random surfaces given by dimers. Interestingly, the
limiting shapes are also described by the complex Burgers equation [127]. This
point may indicate that there is a link between random matrices and random
partitions at the level of large deviations, generalizing the well-known local
connection [17, 161].





14

Asymptotics of

Harish–Chandra–Itzykson–Zuber integrals and
of Schur polynomials

Let Y N,β be the random matrix DN + XN,β with a deterministic diagonal
matrix DN andXN,β a Gaussian Wigner matrix. We now show how the devia-
tions of the law of the spectral measure of Y N,β are related to the asymptotics
of the Harish–Chandra–Itzykson–Zuber (or spherical) integrals

IN (A,B) =

∫

eNTr(AUBU∗)dmβ
N (U)

where mβ
N (U) is the Haar measure on U(N) when β = 2 and O(N) when

β = 1.mN will stand for m2
N to simplify the notations. Here, IN (A,B) makes

sense for any A,B ∈ Mn(C), but we shall consider asymptotics only when

A,B ∈ H(β)
N (C) (the extension of our results to non-self-adjoint matrices is

still open). To this end, we shall make the following hypothesis:

Assumption 1. 1. There exists dmax ∈ R+ such that for any integer number
N , LDN ({|x| ≥ dmax}) = 0 and that LDN converges weakly to µD ∈ P(R).

2. LEN converges to µE ∈ P(R) while LEN (x2) stays uniformly bounded.

Theorem 14.1. Under Assumption 1:
1) There exists a function g : [0, 1] × R+ 7→ R+, depending on µE only,

such that g(δ, L) →δ→0 0 for any L ∈ R+, and, for ÊN , ĒN such that

d(LÊN
, µE) + d(LĒN

, µE) ≤ δ/2 (14.1)

and
∫

x2dLĒN
(x) +

∫

x2dLÊN
(x) ≤ L, (14.2)

and it holds that

lim sup
N→∞

∣

∣

∣

∣

∣

1

N2
log

I
(β)
N (DN , ÊN )

I
(β)
N (DN , ĒN )

∣

∣

∣

∣

∣

≤ g(δ, L) .

We define
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Ī(β)(µD , µE) = lim sup
N↑∞

1

N2
log I

(β)
N (DN , EN )

I(β)(µD , µE) = lim inf
N↑∞

1

N2
log I

(β)
N (DN , EN ) ,

Ī(β)(µD, µE) and I (β)(µD , µE) are continuous functions on {(µE , µD) ∈
P(R)2 :

∫

x2dµE(x) +
∫

x2dµD(x) ≤ L} for any L <∞.

2) For any probability measure µ ∈ P(R),

inf
δ→0

lim inf
N→∞

1

N2
log P (d(LY N,β , µ) < δ)

= inf
δ→0

lim sup
N→∞

1

N2
log P

(

d(LY N ,β, µ) < δ
)

:= −Jβ(µD, µ).

3) We let, for any µ ∈ P(R),

Iβ(µ) =
β

4

∫

x2dµ(x) − β

2

∫ ∫

log |x− y|dµ(x)dµ(y).

If LEN converges to µE ∈ P(R) with Iβ(µE) <∞, we have

I(β)(µD , µE) := Ī(β)(µD , µE) = I(β)(µD , µE)

= −Jβ(µD , µE) + Iβ(µE) − inf
µ∈P(R)

Iβ(µ) +
β

4

∫

x2dµD(x).

Before going any further, let us point out that these results give interesting
asymptotics for Schur polynomials that are defined as follows.

• A Young shape λ is a finite sequence of non-negative integers (λ1, λ2, . . . , λl)
written in non-increasing order. One should think of it as a diagram whose
ith line is made of λi empty boxes: for example,

corresponds to λ1 = 4, λ2 = 4, λ3 = 3, λ4 = 2.

We denote by |λ| =
∑

i λi the total number of boxes of the shape λ.
In the sequel, when we have a shape λ = (λ1, λ2, . . .) and an integer N
greater than the number of lines of λ having a strictly positive length,
we will define a sequence l associated to λ and N , that is an N -tuple of
integers li = λi +N − i. In particular we have that l1 > l2 > . . . > lN ≥ 0
and li − li+1 ≥ 1.
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• For some fixed N ∈ N, a Young tableau will be any filling of the Young
shape with integers from 1 to N that is non-decreasing on each line and
(strictly) increasing on each column. For each such filling, we define the
content of a Young tableau as the N -tuple (µ1, . . . , µN ) where µi is the
number of i’s written in the tableau.

For example,
1 1 2
2 3
3

is allowed (and has content (2, 2, 2)),

whereas
1 1 2
1 3
3

is not.

Notice that, for N ∈ N, a Young shape can be filled with integers from 1
to N if and only if λi = 0 for i > N .

• For a Young shape λ and an integer N , the Schur polynomial sλ is an
element of C[x1, . . . , xN ] defined by

sλ(x1, . . . , xN ) =
∑

T

xµ1

1 . . . xµN

N , (14.3)

where the sum is taken over all Young tableaux T of fixed shape λ and
(µ1, . . . , µN ) is the content of T . On a statistical point of view, one can
think of the filling as the heights of a surface sitting on the tableau λ,
µi being the height of the surface at i. sλ is then a generating function
for these heights when one considers the surfaces uniformly distributed
under the constraints prescribed for the filling. Note that sλ is positive
whenever the xi’s are and, although it is not obvious from this definition
(cf. for example [175] for a proof), sλ is a symmetric function of the xi’s
and actually (sλ, λ) form a basis of symmetric functions and hence play a
key role in representation theory of the symmetric group. If A is a matrix
in MN(C), then define sλ(A) ≡ sλ(A1, . . . , AN ), where the Ai’s are the
eigenvalues of A. Then, by Weyl’s formula (cf. [204, Theorem 7.5.B]), for
any matrices V,W ,

∫

sλ(UV U∗W )dmN (U) =
1

dλ
sλ(V )sλ(W ), (14.4)

with dλ = sλ(I) =
∏

i<j(li − lj)/
∏N−1

i=1 i! with li = λi − i+N . sλ can also
be seen as a generating function for the number of surfaces constructed on
the Young shape with prescribed level areas.

The Schur function sλ has a determinantal formula (cf. [175] and [98]);

sλ(x) =
det(x

lj
i )1≤i,j≤N

∆(x)

with∆(x) the Vandermonde determinant∆(x) =
∏

i<j(xi−xj). Since also the

spherical integral I
(2)
N has a determinantal expression for A = diag(a1, . . . , aN)

and B = diag(b1, . . . , bN ),
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I
(2)
N (A,B) =

det(eaibj )1≤i,j≤N

∆(a)∆(B)
,

with ∆(A) = ∆(a), ∆(B) = ∆(a), we deduce

sλ(M) = I
(2)
N

(

logM,
l

N

)

∆

(

l

N

)

∆(logM)

∆(M)
, (14.5)

where l
N denotes the diagonal matrix with entries N−1(λi−i+N). Therefore,

we have the following immediate corollary to Theorem 14.1:

Corollary 14.2. Let λN be a sequence of Young shapes and set DN =
(N−1(λN

i −i+N))1≤i≤N . We pick a sequence of Hermitian matrices (EN )N≥0

and assume that (DN , EN )N∈N satisfy hypothesis 1 and that Σ(µD) > −∞.
Then,

lim
N→∞

1

N2
log sλN (eEN )

= I(2)(µE , µD) − 1

2

∫

log

[∫ 1

0

eαx+(1−α)ydα

]

dµE(x)dµE(y) +
1

2
Σ(µD).

Proof of Theorem 14.1:. To simplify, let us assume that EN and ÊN are
uniformly bounded by a constant M . Let δ′ > 0 and {Aj}j∈J be a partition
of [−M,M ] such that |Aj | ∈ [δ′, 2δ′] and the end points of Aj are continuity
points of µE . Define

Îj = {i : ÊN (ii) ∈ Aj}, Īj = {i : ĒN (ii) ∈ Aj} .

By (14.1),
|µE(Aj) − |Îj |/N | + |µE(Aj) − |Īj |/N | ≤ δ .

We construct a permutation σN so that |Ê(ii)− Ē(σN (i), σN (i))| < 2δ except
possibly for very few i’s as follows. First, if |Īj | ≤ |Îj | then Ĩj := Īj , whether

if |Īj | > |Îj | then |Ĩj | = |Îj | while Ĩj ⊂ Īj . Then, choose and fix a permutation

σN such that σN (Ĩj) ⊂ Îj . Then, one can check that if J0 = {i : |Ê(ii) −
Ē(σN (i), σN (i))| < 2δ},

|J0| ≥ | ∪j σN (Ĩj)| =
∑

j

|σN (Ĩj)| ≥ N −
∑

j

|Īj\Ĩj |

≥ N − maxj(|Īj | − |Ĩj |)|J | ≥ N − 2δN
M

δ′
.

Next, note the invariance of I
(β)
N (DN , EN ) to permutations of the matrix

elements of DN . That is,
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I
(β)
N (DN , ĒN ) =

∫

exp

{

N
β

2
Tr(UDNU

∗ĒN )

}

dmβ
N (U)

=

∫

exp







N
β

2

∑

i,k

u2
ikDN (kk)ĒN (ii)







dmβ
N (U)

=

∫

exp







N
∑

i,k

u2
ikDN (kk)ĒN (σN (i)σN (i))







dmβ
N (U) .

But, with dmax = maxk|DN (kk)| bounded uniformly in N ,

N−1
∑

i,k

u2
ikDN(kk)ĒN (σN (i)σN (i))

= N−1
∑

i∈J0

∑

k

u2
ikDN(kk)ĒN (σN (i)σN (i))

+N−1
∑

i6∈J0

∑

k

u2
ikDN (kk)ĒN (σN (i)σN (i))

≤ N−1
∑

i,k

u2
ikDN(kk)(ÊN (ii) + 2δ) +N−1dmaxM |J c

0 |

≤ N−1
∑

i,k

u2
ikDN(kk)ÊN (ii) + dmax

M2δ

δ′
.

Hence, we obtain, taking dmax
M2δ

δ′ =
√
δ,

I
(β)
N (DN , ĒN ) ≤ eN

√
δI

(β)
N (DN , ÊN )

and the reverse inequality by symmetry. This proves the first point of the
theorem when (ĒN , ÊN ) are uniformly bounded. The general case (which is
not much more complicated) is proved in [109] and follows from first approx-
imating ĒN and ÊN by bounded operators using (14.2).

The second and the third points are proved simultaneously: in fact, writing

P (d(LY , µ) < δ)

=
1

Zβ
N

∫

d(LY ,µ)<δ

e−
Nβ
4 Tr((Y N,β−DN )2)dY N,β

=
e−

Nβ
4 Tr(D2

N )

Zβ
N

∫

d( 1
N

PN
i=1 δλi

,µ)<δ

I
(β)
N (D(λ), DN )e−

Nβ
4

PN
i=1 λ2

i∆(λ)β
N
∏

i=1

dλi

with Zβ
N the normalizing constant

Zβ
N =

∫

e−
N
2 Tr((Y N,β−DN )2)dY N,β =

∫

e−
N
2 Tr((Y N,β)2)dY N,β,
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we see that the first point gives, since I
(β)
N (D(λ), DN ) is approximately con-

stant on {d(N−1
∑

δλi , µ) < δ} ∩ {d(LDN , µD) < δ},

P (d(LY , µ) < δ)

≈ eN2(I(β)(µD ,µ)− β
4 LDN

(x2))

Zβ
N

∫

d( 1
N

P

N
i=1 δλi

,µ)<δ

e−
Nβ
4

PN
i=1 λ2

i∆(λ)β
N
∏

i=1

dλi

= e−
N2β

4 LDN
(x2)+N2I(β)(µD ,µ)P (d(LX , µ) < δ)

where AN,δ ≈ BN,δ means that N−2 logAN,δB
−1
N,δ goes to zero as N goes to

infinity first and then δ goes to zero.
The large deviation principle proved in the Chapter 10 shows 2) and 3). ut
Note for 3) that if Iβ(µE) = +∞, J(µD , µE) = +∞ so that in this case

the result is empty since it leads to an indetermination. Still, if Iβ(µD) <∞,
by symmetry of I(β), we obtain a formula by exchanging µD and µE . If both
Iβ(µD) and Iβ(µE) are infinite, we can only argue, by continuity of I (β), that
for any sequence (µε

E)ε>0 of probability measures with uniformly bounded
variance and finite entropy Iβ converging to µE ,

I(β)(µD , µE) = lim
ε→∞

{−Jβ(µD, µ
ε
E) + Iβ(µε

E)} − inf Iβ +
β

4

∫

x2dµD(x).

A more explicit formula is not yet available.

Bibliographical notes. Note that the convergence of the spherical integral
is in fact not obvious and is given by the large deviation principle for the
law of the spectral measure of non-centered Wigner matrices. Such types of
convergence were shown to hold for more general integrals, but in a small-
parameters region, in [66].

Harish–Chandra–Itzykson–Zuber integral was studied intensively [49, 89,
210, 65]. Our approach is based on its relation with the large deviation prin-
ciple for the law of the Hermitian Brownian motion. A parallel approach
uses the heat kernel [146]. An important tool, when the integral holds over
the unitary group, is the use of the Harish–Chandra formula that expresses
this integral as a determinant [115, 116, 49]. The asymptotics of the Harish–
Chandra–Itzykson–Zuber integral when one of the matrices has a rank that
is negligible with respect to N were studied in [103, 67]; they are given by the
so-called R-transform.
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Asymptotics of some matrix integrals

We would like to consider integrals of more than one matrix. The simplest
interaction that one can think of is the quadratic one. Such an interaction
describes already several classical models in random-matrix theory; We refer
here to the works of M. Mehta, A. Matytsin, A. Migdal, V. Kazakov, P. Zinn
Justin and B. Eynard for instance. We list below a few models that were
studied.

• The random Ising model on random graphs is described by the Gibbs
measure

µN
Ising(dA, dB) =

1

ZN
Ising

eNTr(AB)−NTr(P1(A))−NTr(P2(B))dAdB

with ZN
Ising the partition function

ZN
Ising =

∫

eNTr(AB)−NTr(P1(A))−NTr(P2(B))dAdB

and two polynomial functions P1, P2. The limiting free energy for this
model was calculated by M. Mehta [153] in the case P1(x) = P2(x) =
x2 + gx4 and integration holds over HN . The limit was studied in [43].
However, the limiting spectral measures of A and B under µN

Ising were not
considered in these papers. A discussion about this problem can be found
in P. Zinn Justin [209].

• One can also define the q− 1 Potts model on random graphs described by
the Gibbs measure

µN
Potts(dA1, ..., dAq)

=
1

ZN
Potts

q
∏

i=2

eNTr(A1Ai)−NTr(Pi(Ai))dAie
−NTr(P1(A1))dA1.

The limiting spectral measures of (A1, . . . ,Aq) were first discussed in [80].
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• As a straightforward generalization, one can consider matrices coupled in
chain following S. Chadha, G. Mahoux and M. Mehta [60] given by

µN
chain(dA1, ..., dAq)

=
1

ZN
chain

q
∏

i=2

eNTr(Ai−1Ai)−NTr(Pi(Ai))dAie
−NTr(P1(A1))dA1.

q can eventually go to infinity as in [147].

The first-order asymptotics of these models can be studied thanks to the
control of spherical integrals obtained in the last chapter.

Theorem 15.1. Assume that Pi(x) ≥ cix
4 + di with ci > 0 and some finite

constants di. Hereafter, β = 1 (resp. β = 2, resp. β = 4) when dA denotes
the Lebesgue measure on SN (resp. HN , resp. HN with N even). Then, with
c = infν∈P(R) Iβ(ν),

FIsing = lim
N→∞

1

N2
logZN

Ising

= − inf

{

µ(P ) + ν(Q) − I(β)(µ, ν) − β

2
Σ(µ) − β

2
Σ(ν)

}

− 2c(15.1)

FPotts = lim
N→∞

1

N2
logZN

Potts

= − inf

{

q
∑

i=1

µi(Pi) −
q
∑

i=2

I(β)(µ1, µi) −
β

2

q
∑

i=1

Σ(µi)

}

− qc (15.2)

Fchain = lim
N→∞

1

N2
logZN

chain

= − inf

{

q
∑

i=1

µi(Pi) −
q
∑

i=2

I(β)(µi−1, µi) −
β

2

q
∑

i=1

Σ(µi)

}

− qc(15.3)

Remark 6. (1) The above theorem actually extends to polynomial functions
going to infinity like x2. However, the case of quadratic polynomials is trivial
since it boils down to the Gaussian case and therefore the next interesting case
is the quartic polynomial as above. Moreover, Theorem 15.2 fails in the case
where P,Q go to infinity only like x2. However, all our proofs would extend
easily for any continuous functions P ′

i s such that Pi(x) ≥ a|x|2+ε + b with
some a > 0 and ε > 0.

(2) Note that we did not assume here that potentials are small perturba-
tions of the Gaussian potential as in Part III.

(3)The above free energies are not very explicit and not easy to analyze.
To give a taste of the kind of information we have been able to establish so
far, we state below a result about the Ising model.
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Proof of Theorem 15.1. It is enough to notice that, when diagonalizing the
matrices Ai’s, the interaction in the models under consideration is expressed in
terms of spherical integrals since, under dA, A = UDAU

∗, with DA diagonal,
U independent from DA following the Haar measure on U(N) when β = 2
and O(N) when β = 1, so that

E[eNTr(AB)|λi
N (A), · · · , λi

N (B), 1 ≤ i ≤ N ] = I
(β)
N (AN , BN ).

Laplace’s (or saddle point) method then gives the result (up to the bound-
edness of the matrices Ai’s in the spherical integrals,that can be obtained by
approximation). We shall not detail it here and refer the reader to [101]. ut

We shall then study the variational problems for the above energies; in-
deed, by standard large deviation considerations, it is clear that the spectral
measures of the matrices (Ai)1≤i≤d will concentrate on the set of the minimiz-
ers defining the free energies, and in particular converge to these minimizers
when they are unique. We prove in [101] the following for the Ising model.

Theorem 15.2. Assume P1(x) ≥ ax4 + b, P2(x) ≥ ax4 + b for some positive
constant a. Then:

(0) The infimum in FIsing is achieved at a unique couple (µA, µB) of
probability measures.

(1) (LA, LB) converges almost surely to (µA, µB).
(2) (µA, µB) are compactly supported with finite non-commutative entropy

Σ(µ) =

∫ ∫

log |x− y|dµ(x)dµ(y).

(3) There exists a couple (ρA→B , uA→B) of measurable functions on R ×
(0, 1) such that ρA→B

t (x)dx is a probability measure on R for all t ∈ (0, 1)
and (µA, µB , ρ

A→B , uA→B) are characterized uniquely as the minimizer of a
strictly convex function under a linear constraint.

In particular, (ρA→B , uA→B) are solution of the Euler equation for isen-

tropic flow with negative pressure p(ρ) = −π2

3 ρ
3 such that, for all (x, t) in the

interior of Ω = {(x, t) ∈ R × [0, 1]; ρA→B
t (x) 6= 0},

{

∂tρ
A→B
t + ∂x(ρA→B

t uA→B
t ) = 0

∂t(ρ
A→B
t uA→B

t ) + ∂x(ρA→B
t (uA→B

t )2 − π2

3 (ρA→B
t )3) = 0

(15.4)

with the probability measure ρA→B
t (x)dx weakly converging to µA(dx) (resp.

µB(dx)) as t goes to zero (resp. one). Moreover, we have

P ′(x) − x− β

2
uA→B

0 (x) − β

2
HµA(x) = 0 µA − a.s

and Q′(x) − x+
β

2
uA→B

1 (x) − β

2
HµB(x) = 0 µB − a.s.
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For the other models, uniqueness of the minimizers is not always clear.
For instance, we obtain uniqueness of the minimizers for the q-Potts models
only for q ≤ 2, whereas it is also expected for q = 3 (when the potential is
convex, uniqueness is, however, always true, see [106]). For the description of
these minimizers, I refer the reader to [101].
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15.1 Enumeration of maps from matrix models

As we have seen in Part III, the enumeration of maps with one color is related
with matrix integrals of the form

ZN
t =

∫

e−NTr(Vt(X))dµN (X)

with Vt =
∑n

i=1 tix
i a polynomial function depending on parameters t =

(t1, · · · , tn). When n is even and tn > 0, the above matrix integral is finite
and we can apply the results of Theorem 10.1 to see that

lim
N→∞

1

N
logZN

t = sup
µ∈P(R)

{∫ ∫

log |x− y|dµ(x)dµ(y) −
∫

Vt(x)dµ(x)

}

− c.

By Lemma 10.2, there is a unique optimizer µt to the above supremum and
it is characterized by the fact that there exists a constant ` such that

` = −2

∫

log |x− y|dµt(y) + Vt(x) +
1

2
x2 µt a.s. (15.5)

` ≤ −2

∫

log |x− y|dµt(y) + Vt(x) +
1

2
x2 µt everywhere. (15.6)

The large deviation principle of Theorem 10.1 as well as the uniqueness of the
minimizers assert that under the Gibbs measure

dµN
t (X) = (ZN

t )−1e−NTr(Vt(X))dµN (X)

L̂N converges almost surely towards µt. Assume now that there exists c > 0
such that Vt is c-convex. Then, if the parameters (ti)1≤i≤n are small enough,
Theorem 8.4 and Corollary 8.6 assert that the limit µt is also a generating
function for planar maps;

µt(x
p) =

∑

k∈Nn

n
∏

i=1

(−ti)ki

ki!
Mk(xp)

with Mk(xp) the number of planar maps with ki stars of type xi and one star
of type xp.

Let us show how to deduce formulae for Mk(xp) when Vt(x) = tx4 from
the above large deviation result, i.e., count quadrangulations and recover the
result of Tutte [194] from the matrix-model approach. The analysis below is
inspired from [32]. As can be guessed, formulae become more complicated as
Vt becomes more complex (see [72] for a more general treatment).

To find an explicit formula for µt from (15.5) and (15.6), let us observe first
that differentiating (15.5) (or using directly the Schwinger–Dyson’s equation)
and integrating with respect to (z − x)−1dµt(x) gives
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Gµt(z)
2 = −4t(αt + z2) − 1 + 4tz3Gµt(z) + zGµt(z)

with Gµt(z) =
∫

(z − x)−1dµt(x), z ∈ C\R and αt =
∫

x2dµt(x). Solving this
equation yields

Gµt(z) =
1

2

(

4tz3 + z −
√

(4tz3 + z)2 − 4(4t(αt + z2) + 1)
)

where we have chosen the solution so that Gµt(z) ≈ z−1 as |z| → ∞. The
square root is chosen as the analytic continuation in C\R− of the square root
on R+. Recall that if pε is the Cauchy law with parameter ε > 0, for x ∈ R,

−=(Gµt(x+ iε)) =

∫

ε

(x− y)2 + ε2
dµt(y) = πpε ∗ µt(x).

Hence, if −=(Gµt(x + iε)) converges as ε decreases towards zero, its limit is
the density of µt. Thus, we in fact have

dµt

dx
= − 1

π
lim
ε↓0

=
(

√

(4t(x+ iε)3 + (x+ iε))2 − 4(4t(αt + (x+ iε)2) + 1)
)

.

To analyze this limit, we write

(4tz3 + z)2 − 4(4t(αt + z2) + 1) = (4t)2(z2 − a1)(z
2 − a2)(z

2 − a3)

for some a1, a2, a3 ∈ C. Note that since Gµt is analytic on C\R, either we
have a double root and a real non-negative root, or three real non-negative
roots. We now argue that when Vt is convex, a1 = a2 and a3 ∈ R+. In fact,
the function

f(x) := −2

∫

log |x− y|dµt(y) + Vt(x) +
1

2
x2

is strictly convex on R\support(µt) and it is continuous at the boundaries
of the support of µt since µt as a bounded density. Since f equals ` on the
support of µt and is greater or equal to ` outside, we deduce that if there is a
hole in the support of µt, f must also be constant equal to ` on this hole. This
contradicts the strict convexity of f outside the support. Hence, the support
S of µt must be an interval and Gµt must be analytic outside S. Thus, we
must have a1 = a2 := b ∈ R and a3 := a ∈ R+ and S = [−√

a,+
√
a]. Plugging

back this equality gives the system of equations

a+ 2b = − 1

2t
, −2ba+ b2 =

1

4t2
− 1

t
, 4t2ab2 = −(4tαt + 1),

which has a unique solution (a, b) ∈ R+ × R, which in turn prescribes αt

uniquely. Thus, we now have

dµt

dx
(x) = ct1[−√

a,
√

a](x
2 − b)

√

a− x2

c−1
t =

∫

[−√
a,
√

a]

(x2 − b)
√

a− x2dx =
π

2
a
[a

4
− b
]

.
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In particular, this expression allows us to write all moments of µt in terms of
Catalan numbers since

∫

x2pdµt(x) = ct

∫

√
a

−√
a

x2p(x2 − b)
√

a− x2dx

=
4

a[a
4 − b]

(a/4)p

∫

[ax2 − b]x2pdσ(x)

=
4

a[a
4 − b]

(a/4)p[aCp+1 − bCp]

where we finally used Property 1.11. Thus, we have found exact formulae for
M((x4, k), (xp, 1)).
Remark. Note that the connectivity argument for the support of the opti-
mizing measure is valid for any c-convex potential, c > 0. It was shown in
[72] that the optimal measure has always the form, in the small-parameters
region,

dµt(x) = ch(x)
√

(x− a1)(a2 − x)dx

with h a polynomial. However, as the degree of Vt grows, the equations for
the parameters of h become more and more complicated.

15.2 Enumeration of colored maps from matrix models

In the context of colored maps, exact computations are much more scarce.
However, for the Ising model, some results can again be obtained (it corre-
sponds to maps with colored vertices of a given degree, say p, corresponding
to monomials V1(A) = Ap and V2(B) = Bp) that can be glued together
by a bi-colored straight line (corresponding to the monomial AB). For the
Ising model with quartic polynomial (the case p = 4), M. Mehta [152] ob-
tained an explicit expression for the free energy corresponding to the potential
V (A,B) = VIsing(A,B) = −cAB + V1(A) + V2(B) when V1 = V2 = (g/4)x4.
The corresponding results for the enumeration of colored quadrangulation was
recently recovered by M. Bousquet-Melou and G. Scheaffer. Let us emphasize
that there is a general approach also based on Schwinger–Dyson equations
that should allow us to understand these results, see B. Eynard [87]. The
remark is that by the Schwinger-Dyson equation we know that the limiting
state µt satisfies

µt((W
′
1(A) −B)P ) = µt ⊗ µt(∂AP ),

µt((W
′
2(B) −A)P ) = µt ⊗ µt(∂BP ).

Taking P = P (A) = (x − A)−1 in the second equation and P (A,B) =
1

(x−A)
(W ′

2(y)−W ′
2(B))

(y−B) we find that if
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E(x, y) = (y −W ′
1(x))(x −W ′

2(y)) + 1 −Q(x, y)

with

Q(x, y) = µt

(

W ′
1(x) −W ′

1(A)

(x− A)

W ′
2(y) −W ′

2(B)

(y −B)

)

,

E(x,W ′
1(x) −GµA(x)) = 0

where GµA(x) = µt((x − A)−1). Hence, as for one-matrix models, GµA is
solution to an algebraic equation, with some unknown coefficients µt(A

iBj)
with i, j smaller are equal to the degree of W ′

1 (resp. W ′
2) minus one. The large

deviations theorem 15.1 should now show us (but we have not yet been able
to prove it) that for small enough parameters, the support of µA and µB are
connected. Connectivity of the support was in fact proved by using dynamics
in a general convex potential setting, including the Ising model, in [106]. This
information should also prescribe uniquely the solution.

Bibliographical notes. The question of enumerating maps was first tack-
led by Tutte [194, 193, 192] who enumerated rooted planar triangulations and
quadrangulations (see, e.g., E. Bender and E. Canfield [29] for generaliza-
tions). In general, the equations obtained by Tutte’s approach are not exactly
solvable; their analysis was the subject of subsequent developments (see [97]).
Because this last problem is in general difficult, a bijective approach was de-
veloped after the work of Cori and Vauquelin [69] and Schaeffer’s thesis (see
e.g [176]). It was shown that planar triangulations and quadrangulations can
be encoded by labeled trees, which are much easier to count. This idea proved
to be very fruitful in many respects and was generalized in many ways [24, 46].
It allows us not only to study the number of maps but also part of their ge-
ometry; P. Chassaing and G. Schaeffer [62] could prove that the diameter of

uniformly distributed quadrangulations with n vertices behaves like n
1
4 . This

in particular allowed a limiting object for random planar maps to be defined
[135, 144]. Such results seem out of reach of random-matrix techniques. The
case of planar bi-colored maps related to the so-called Ising model on ran-
dom planar graphs could also be studied [44]. However, there are still many
several-colors problems that could be solved by using random matrices but not
on a direct combinatorial approach, see e.g the Potts model [80], the dually
weighted graph model [124, 102].
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Free probability
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Free probability is a probability theory for non-commutative variables. In this
field, random variables are usually bounded operators on a Hilbert space. The
law of a self-adjoint operator T is given as the evaluation (〈ζ, T nζ〉)n≥0 of
its moments in the direction of a fixed vector ζ of this Hilbert space. Large
N × N matrices can be seen to fit in this framework as bounded operators
on the Hilbert space CN equipped for instance with the Euclidean scalar
product. We will see in fact that free probability is the right framework to
consider random matrices as their size goes to infinity.

For the sake of completeness, but actually not needed for our purpose,
we shall recall some notions of operator algebras. We shall then describe
free probability as a probability theory on non-commutative functionals (a
point of view that forgets the space of realizations of the laws) equipped with
the notion of freeness that generalizes the idea of independence to this non-
commutative setting. We will then focus on large random matrices and show
that their asymptotics are related with freeness. In particular, independent
Wigner’s matrices converge to free semi-circular operators and the Hermitian
Brownian motion converges to the free Brownian motion. Conversely, large
random matrices can be seen as an approximation to a large class of (and
maybe all) operators. In particular, ideas from classical probability, once ap-
plied to large random matrices, can be imported to operator algebra theory
via such an approximating scheme. In this part, we shall emphasize the uses
of stochastic dynamics, as applied to the Hermitian and the free Brownian
motions, to obtain large deviations estimates and study free entropies.
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Free probability setting

16.1 A few notions about algebras and tracial states

Definition 16.1. A C∗-algebra (A, ∗) is a complex algebra equipped with an
involution ∗ and a norm ||.||A such that A is complete for the norm ‖ · ‖A
and, for any X,Y ∈ A,

‖XY ‖A ≤ ‖X‖A ‖Y ‖A, ‖X∗‖A = ‖X‖A, ‖XX∗‖A = ‖X‖2
A.

X ∈ A is self-adjoint iff X∗ = X . Asa denote the set of self-adjoint elements
of A. A C∗-algebra (A, ∗) is unital if it contains a neutral element I .

A can always be realized as a sub-C∗-algebra of the space B(H) of bounded
linear operators on a Hilbert space H . For instance, if A is a unital C∗-algebra
furnished with a positive linear form τ , one can always construct such a Hilbert
space H by completing and separating L2(τ) (this is the Gelfand–Neumark–
Segal construction, see [186, Theorem 2.2.1]). We shall restrict ourselves to
this case in the sequel and denote by H a Hilbert space equipped with a scalar
product 〈., .〉H such that A ⊂ B(H).

Definition 16.2. If A is a sub-C∗-algebra of B(H), A is a von Neumann
algebra iff it is closed for the weak topology, generated by the semi-norms
{pξ,η(X) = 〈Xξ, η〉H , ξ, η ∈ H}.

Let us notice that by definition, a von Neumann algebra contains only
bounded operators. The theory nevertheless allows us to consider unbounded
operators thanks to the notion of affiliated operators. A densely defined self-
adjoint operator X on H is said to be affiliated to A iff for any Borel function
f on the spectrum of X , f(X) ∈ A (see [167, p.164]). Here, f(X) is well
defined for any operator X as the operator with the same eigenvectors as X
and eigenvalues given by the image of those of X by the map f . Murray and
von Neumann have proved that if X and Y are affiliated with A, aX + bY is
also affiliated with A for any a, b ∈ C.
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A state τ on a unital von Neumann algebra (A, ∗) is a linear form on A
such that τ(Asa) ⊂ R and:
1. Positivity τ(AA∗) ≥ 0, for any A ∈ A.
2. Total mass τ(I) = 1.

A tracial state satisfies the additional hypothesis:

3. Traciality τ(AB) = τ(BA) for any A,B ∈ A.

The couple (A, τ) of a von Neumann algebra equipped with a state τ is
called a W ∗- probability space.

Exercise 16.3. 1. Let n ∈ N, and consider A = Mn(C) as the set of bounded
linear operators on Cn. For any v ∈ Cn, 〈v, v〉Cn =

∑n
i=1 |vi|2 = ‖v‖2

Cn =
1,

τv(M) = 〈v,Mv〉Cn

is a state. There is a unique tracial state on Mn(C) that is the normalized
trace

1

n
Tr(M) =

1

n

n
∑

i=1

Mii.

2. Let (X,Σ, dµ) be a classical probability space. Then A = L∞(X,Σ, dµ)
equipped with the expectation τ(f) =

∫

fdµ is a (non-)commutative proba-
bility space. Here, L∞(X,Σ, dµ) is identified with the set of bounded linear
operators on the Hilbert space H obtained by separating L2(X,Σ, dµ) (by
the equivalence relation f ' g iff µ((f − g)2) = 0). The identification
follows from the multiplication operator M(f)g = fg. Observe that A is
weakly closed for the semi-norms (〈f, .g〉H , f, g ∈ L2(µ)) as L∞(X,Σ, dµ)
is the dual of L1(X,Σ, dµ).

3. Let G be a discrete group, and (eh)h∈G be a basis of `2(G). Let λ(h)eg =
ehg. Then, we take A to be the von Neumann algebra generated by the
linear span of λ(G). The (tracial) state is the linear form such that
τ(λ(g)) = 1g=e(e = neutral element).
We refer to [200] for further examples and details.

The notion of law τX1 ,...,Xm of m operators (X1, . . . , Xm) in a W ∗-
probability space (A, τ) is simply given by the restriction of the trace τ to the
algebra generated by (X1, . . . , Xm), that is by the values

τX1 ,...,Xm(P ) := τ(P (X1, . . . , Xm)), P ∈ C〈X1, . . .Xm〉
where C〈X1, . . . Xm〉 denotes the set of polynomial functions of m non-
commutative variables.
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16.2 Space of laws of m non-commutative self-adjoint
variables

Following the above description, laws of m non-commutative self-adjoint vari-
ables can be seen as elements of the set M(m) of linear forms τ on the set
of polynomial functions of m non-commutative variables C〈X1, . . . Xm〉 fur-
nished with the involution

(Xi1Xi2 · · ·Xin)∗ = XinXin−1 · · ·Xi1

and such that:

1. Positivity τ(PP ∗) ≥ 0, for any P ∈ C〈X1, . . . Xm〉,
2. Traciality τ(PQ) = τ(QP ) for any P,Q ∈ C〈X1, . . . Xm〉,
3. Total mass τ(I) = 1.

This point of view is identical to the previous one. Indeed, by the Gelfand–
Neumark–Segal construction, being given µ ∈ M(m), we can construct a W ∗-
probability space (A, τ) and operators (X1, . . . , Xm) such that

µ = τX1,...,Xm . (16.1)

This construction can be summarized as follows. Consider the bilinear form
on C〈X1, . . .Xm〉2 given by

〈P,Q〉τ = τ(PQ∗).

We let H be the Hilbert space obtained as follows. We set

L2(τ) = C〈X1, . . . Xm〉||.||τ

to be the completion of C〈X1, . . .Xm〉 for the norm ||.||τ = 〈., .〉
1
2
τ . We then

separate L2(τ) by taking the quotient by the left ideal

Lµ = {F ∈ L2(τ) : ||F ||τ = 0}.

Then H = L2(τ)/Lµ is a Hilbert space with scalar product 〈., .〉τ . The non-
commutative polynomials C〈X1, . . .Xm〉 act by left multiplication on L2(τ)
and we can consider the completion of these multiplication operators for the
semi-norms {〈P, .Q〉H ;P,Q ∈ L2(τ)}, which forms a von Neumann algebra A
equipped with a tracial state τ satisfying (16.1). In this sense, we can think
about A as the set of bounded measurable functions L∞(τ). The topology
under consideration is usually in free probability the C〈X1, . . .Xm〉-* topology
that is {τXn

1 ,...,Xn
m
}n∈N converges to τX1,...,Xm iff for every P ∈ C〈X1, . . .Xm〉,

lim
n→∞

τXn
1 ,...,Xn

m
(P ) = τX1,...,Xm(P ).
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If (Xn
1 , . . . , X

n
m)n∈N are non-commutative variables whose law τXn

1 ,...,Xn
m

con-
verges to τX1,...,Xm , then we shall also say that (Xn

1 , . . . , X
n
m)n∈N converges

in law (or in distribution) to (X1, . . . , Xm).
Such a topology is reasonable when one deals with uniformly bounded

non-commutative variables. In fact, if we consider for R ∈ R+,

M(m)
R := {µ ∈ M(m) : µ(X2p

i ) ≤ Rp, ∀p ∈ N, 1 ≤ i ≤ m},

then M(m)
R , equipped with this C〈X1, . . . Xm〉-* topology, is a Polish space (i.e

a complete metric space). In fact, M(m)
R is compact by the Banach–Alaoglu

theorem. A distance is for instance given by

d(µ, ν) =
∑

n≥0

1

2n
|µ(Pn) − ν(Pn)|

where {Pn}n∈N is a dense sequence of polynomials with operator norm
bounded by one when evaluated at any set of self-adjoint operators with op-
erator norms bounded by R.

This notion is the generalization of laws ofm real-valued variables bounded
by a given finite constantR, in which case the C〈X1, . . . Xm〉-* topology driven
by polynomial functions is the same as the standard weak topology. Actually,

it is not hard to check that M(1)
R = P([−R,R]). However, it may be useful to

consider more general topologies, compatible with the existence of unbounded
operators, as might be encountered for instance when considering the devi-
ations of large random matrices. One way to do that is to change the set
of test functions (as one does in the case m = 1 where bounded continuous
test functions are often chosen to define the standard weak topology). In [55],
the set of test functions was chosen to be the complex vector space CCm

st (C)
generated by the Stieltjes functionals

STm(C) =







→
∏

1≤i≤n

(

zi −
m
∑

k=1

αk
iXk

)−1

; zi ∈ C\R, αk
i ∈ Q, n ∈ N







(16.2)
where

∏→
denotes the non-commutative product. It can be checked easily

that, with such type of test functions, M(m) is again a Polish space.
A particular important example of non-commutative laws is given by the

empirical distribution of matrices.

Definition 16.4. Let N ∈ N and consider m Hermitian matrices AN
1 , · · · ,

AN
m ∈ Hm

N with spectral radius ||AN
i ||∞ ≤ R, 1 ≤ i ≤ m. Then, the empirical

distribution of the matrices (AN
1 , . . . , A

N
m) is given by

LAN
1 ,...,AN

m
(P ) :=

1

N
Tr
(

P (AN
1 , . . . , A

N
m)
)

, ∀P ∈ C〈X1, · · ·Xm〉.
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Exercise 16.5. Show that LAN
1 ,...,AN

m
is an element of the set M(m)

R of non-

commutative laws. Moreover, if (AN
1 , . . . , A

N
m)N∈N is a sequence such that

lim
N→∞

LAN
1 ,...,AN

m
(P ) = τ(P ), ∀P ∈ C〈X1, · · ·Xm〉,

show that τ ∈ M(m)
R .

It is actually a long-standing question posed by A. Connes to know whether
all τ ∈ M(m) can be approximated in such a way. In the case m = 1, the
question amounts to asking if for all µ ∈ P([−R,R]), there exists a sequence
(λN

1 , . . . , λ
N
N )N∈N such that

lim
N→∞

1

N

N
∑

i=1

δλN
i

= µ.

This is well known to be true by the Birkhoff’s theorem (which is based on
the Krein–Milman theorem), but still an open question when m ≥ 2.

Bibliographical Notes. Introductory notes to free probability can be
found in [200, 203, 118, 202]. Basics on operator algebra theory are taken
from [167, 83].





17

Freeness

In this chapter we first define freeness as a non-commutative analog of in-
dependence. We then show how independent matrices, as their size goes to
infinity, converge to free variables.

17.1 Definition of freeness

Free probability is not only a theory of probability for non-commutative vari-
ables; it contains also the central notion of freeness, that is, the analog of
independence in standard probability.

Definition 17.1. The variables (X1, . . . , Xm) and (Y1, . . . , Yn) are said to be
free iff for any (Pi, Qi)1≤i≤p ∈ (C〈X1, . . . , Xm〉 × C〈X1, . . . , Xn〉)p

,

τ





→
∏

1≤i≤p

Pi(X1, . . . , Xm)Qi(Y1, . . . , Yn)



 = 0 (17.1)

as soon as

τ (Pi(X1, . . . , Xm)) = 0, τ (Qi(Y1, . . . , Yn)) = 0, ∀i ∈ {1, . . . , p}.

More generally, let (A, φ) be a non-commutative probability space and consider
unital subalgebras A1, . . . ,Am ⊂ A. Then, A1, . . . ,Am are free if and only if
for any (a1, . . . , an) ∈ A, aj ∈ Aij

φ(a1 · · · an) = 0

as soon as ij 6= ij+1 for 1 ≤ j ≤ n−1 and φ(ai) = 0 for all i ∈ {1, . . . , n−1}.

Observe that the assumption that τ(Qp(Y1, . . . , Yn)) = 0 can be removed by
linearity.



250 17 Freeness

Remark 17.2. (1) The notion of freeness defines uniquely the law of

{X1, . . . , Xm, Y1, . . . , Yn}

once the laws of (X1, . . . , Xm) and (Y1, . . . , Yn) are given (in fact, check that
every expectation of any polynomial is given uniquely by induction over the
degree of this polynomial).

(2) If X and Y are free variables with joint law τ , and P,Q ∈ C〈X〉
such that τ(P (X)) = 0 and τ(Q(Y )) = 0, it is clear that τ(P (X)Q(Y )) = 0
as it should for independent variables, but also τ(P (X)Q(Y )P (X)Q(Y )) = 0
which is very different from what happens with usual independent commutative
variables where µ(P (X)Q(Y )P (X)Q(Y )) = µ(P (X)2Q(Y )2) > 0.

(3)The above notion of freeness is related with the usual notion of freeness
in groups as follows. Let (x1, . . . , xm, y1, . . . , yn) be elements of a group. Then,
(x1, . . . , xm) is said to be free from (y1, . . . , yn) if any non-trivial words in
these elements is not the neutral element of the group, i.e., that for every
monomials P1, . . . , Pk ∈ C〈X1, . . . , Xm〉 and Q1, . . . , Qk ∈ C〈X1, . . . , Xn〉,
P1(x)Q1(y)P2(x) · · ·Qk(y) is not the neutral element as soon as the Qk(y)
and the Pi(x) are not the neutral element. If we consider, following example
16.3.3), the map that is one on trivial words and zero otherwise and extend
it by linearity to polynomials, we see that this defines a tracial state on the
operators of left multiplication by the elements of the group and that the two
notions of freeness coincide.

(4) We shall see below that examples of free variables naturally show up
when considering random matrices with size going to infinity.

17.2 Asymptotic freeness

Definition 17.3. Let (XN
1 , . . . , X

N
m )N≥0 and (Y N

1 , . . . , Y N
n )N≥0 be two fam-

ilies of N × N random Hermitian matrices on a probability space (Ω,P ).
(XN

1 , . . . , X
N
m )N≥0 and (Y N

1 , . . . , Y N
n )N≥0 are asymptotically free almost surely

(respectively in expectation) iff LXN
1 ,...,XN

m ,Y N
1 ,...,Y N

n
(Q) (respectively

E[LXN
1 ,···XN

m ,Y N
1 ,···Y N

n
(Q)]) converges for all polynomial Q to τ(Q) and τ sat-

isfies (17.1).

We claim that:

Lemma 17.4. Let (XN
1 , . . . , X

N
m )N∈N be m independent matrices taken from

the GUE. Then, (XN
1 , . . . , X

N
m−1)N∈N and (XN

m )N∈N are asymptotically free
almost surely (and in expectation).

Proof. By Theorem 8.4 with V = 0, LXN
1 ,···XN

m
converges almost surely and in

expectation as N goes to infinity. Moreover, the limit satisfies the Schwinger–
Dyson equation SD[0]

τ(XiP ) = τ ⊗ τ(∂iP ).
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We check by induction over the degree of P that SD[0] implies (17.1). Indeed,
(17.1) is true if the total degree of R =

∏→
PiQi is one by definition. Let us

assume this relation is true for any monomial R =
∏→

PjQj of degree less
than k with τ(Pj (X1, . . . , Xm−1)) = 0 and τ(Qj(Xm)) = 0 except possibly
for the first Pj . If now R′ = XiR for some i ≤ m − 1, the Schwinger–Dyson
equation SD[0] gives

τ(R′) =
∑

R=R1XiR2

τ(R1)τ(R2)

where R1 and R2 are polynomials of degree less than k so that all monomials in
R2 are centered, except possibly the first one. Thus, τ(R2) = 0 by induction
unless R2 = 1 in which case τ(R1) vanishes since by traciality it can be
written as τ(P ′

1R
′
1) with R′

1 an alternated product of centered monomials.
Hence, τ(R′) = 0. We can prove similarly that τ(Xm

∏→QjPj) vanishes.
This proves the induction. ut

We next show that Lemma 17.4 can be generalized to laws that are invari-
ant by multiplication by unitary matrices. Assume that the algebra generated
by (AN

1 , · · ·AN
m)N≥0 is closed under the involution ∗ and that the operator

norm of the matrix Ai
N is bounded independently of N . Finally, suppose that

lim
N→∞

LAN
1 ,...,AN

m
= µ.

Let UN
1 , . . . , U

N
m bem independent unitary matrices, independent of the Ai

N ’s,
following the Haar measure on U(N). Then:

Theorem 17.5. {AN
i }1≤i≤m and {UN

i , (U
N
i )−1}1≤i≤m are asymptotically free

almost surely and in expectation. Moreover, the variables {UN
i , (U

N
i )−1}1≤i≤m

are asymptotically free almost surely with limit law τ such that τ(Un
i ) = 1n=0

for all n ∈ Z. In particular, (UiAiU
−1
i )1≤i≤m are free variables under τ .

Exercise 17.6. Extend the theorem to the case where the Haar measure on
U(N) is replaced by the Haar measure on O(N) Hint: extend the proof below.

The proof we shall provide here follows the change of variable trick that
we used to analyze matrix models. It can be found in [199] (and is taken, in
the form below, from a work with B. Collins and E. Maurel Segala [66]).

Proof. 1. Corresponding Schwinger–Dyson equation. We denote by mN the
Haar measure on U(N). By definition, mN is invariant under left multipli-
cation by a unitary matrix. In particular, if P ∈ C〈Ai, Ui, U

−1
i , 1 ≤ i ≤ m〉,

we have for all kl ∈ {1, . . . , N}2,

∂t

∫

(

P (Ai, e
tBiUi, U

∗
i e

−tBi)
)

kl
dmN (U1) · · · dmN (Um) = 0

for any antihermitian matrices Bi (B∗
i = −Bi). Taking Bi null except for

i = i0 and Bi0 null except at the entries qr and rq, we find that
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∫

[∂i0P ]kr,ql(Ai, Ui, U
∗
i )dmN (U1) · · · dmN (Um) = 0

with ∂i the derivative that obeys Leibniz’s rule

∂i(PQ) = ∂iP × 1 ⊗Q+ P ⊗ 1 × ∂iQ (17.2)

so that
∂iUj = 1j=iUj ⊗ 1, ∂iU

∗
j = −1j=i1 ⊗ U∗

j (17.3)

and [A ⊗ B]kr,ql := AkrBql. Taking k = r and q = l and summing over
r, q gives

E

[

LAN
i ,UN

i ,(UN
i )∗,1≤i≤m ⊗ LAN

i ,UN
i ,(UN

i )∗,1≤i≤m(∂iP )
]

= 0.

Observe that LAN
i ,UN

i ,(UN
i )∗,1≤i≤m(P ) is a Lipschitz function of the unitary

matrices {UN
i , (U

N
i )∗}1≤i≤p with uniformly bounded constant since we

assumed that the AN
i ’s are uniformly bounded for the operator norm.

Thus, we can use the concentration result of Theorem 6.16 to deduce that
for all P ∈ C〈Ai, Ui, U

−1
i , 1 ≤ i ≤ m〉

lim
N→∞

E[LAN
i ,UN

i ,(UN
i )∗,1≤i≤m]⊗E[LAN

i ,UN
i ,(UN

i )∗,1≤i≤m](∂iP ) = 0. (17.4)

Observe that E[LAN
i ,UN

i ,(UN
i )∗,1≤i≤m] can be identified with the non-

commutative law of self-adjoint variables E[LAN
i ,V N

i ,W N
i ,1≤i≤m] where

V N
i = UN

i + (UN
i )∗ and WN

i = (UN
i − (UN

i )∗)/
√
−1 up to an obvious

change of variables. If A denotes a uniform bound on the spectral ra-
dius of the {AN

i }1≤i≤m, E[LAN
i ,V N

i ,W N
i ,1≤i≤m] belongs to the compact set

M(3m)
A∨2 . Thus, we can consider limit points of E[LAN

i ,V N
i ,W N

i ,1≤i≤m], and

therefore of E[LAN
i ,UN

i ,(UN
i )∗,,1≤i≤m]. If τ is such a limit point, we deduce

from (17.4) that it must satisfy the Schwinger–Dyson equation

τ ⊗ τ(∂iP ) = 0 (17.5)

for all i ∈ {1, . . . ,m} and P ∈ C〈Ai, Ui, U
−1
i , 1 ≤ i ≤ m〉. Note here that

we can bypass the concentration argument by using the change of vari-
able trick that shows that the above equation is satisfied almost surely
asymptotically (see [66]).

2. Uniqueness of the solution to (17.5).
Let τ be a tracial solution to (17.5) and P be a monomial. Note that
if P depends only on the Ai’s, τ(P ) = µ(P ) is uniquely determined. If
P belongs to C〈Ai, Ui, U

−1
i , 1 ≤ i ≤ m〉\C〈Ai, 1 ≤ i ≤ m〉, we can always

write τ(P ) = τ(QUi) or τ(P ) = τ(U−1
i Q) for some monomial Q. Let us

consider the first case (the second can then be deduced from the fact that

τ(U−1
i Q) = τ(Q∗Ui)). Then, we have
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∂i(QUi) = ∂iQ× 1 ⊗ Ui + (QUi) ⊗ 1

and so (17.5) gives

τ(QUi) = −τ ⊗ τ(∂iQ× 1⊗ Ui)

= −
∑

Q=Q1UiQ2

τ(Q1Ui)τ(Q2Ui) +
∑

Q=Q1U∗
i Q2

τ(Q1)τ(Q2)

where we used τ(U−1
i Q2Ui) = τ(Q2) by traciality. Each term in the

above right-hand side is the expectation under τ of a polynomial of de-
gree strictly smaller in Ui and U−1

i than QUi. Hence, this relation defines
uniquely τ by induction.

3. The solution is the law of free variables. It is enough to show by the previ-
ous point that if the algebra generated by {Ui, U

−1
i , 1 ≤ i ≤ m} is free from

the A′
is, then the corresponding tracial state on C〈Ai, Ui, U

−1
i , 1 ≤ i ≤ m〉

satisfies (17.5). So take P = Un1

i1
B1 · · ·Unp

ip
Bp with some Bk’s in the

algebra generated by (Ai, 1 ≤ i ≤ m). We wish to show that for all
i ∈ {1, . . . ,m},

µ⊗ µ(∂iP ) = 0.

By linearity, it is enough to prove this equality when µ(Bj) = 0 for all j.
Using repeatedly (17.2) and (17.3), we find that

∂iP =
∑

k:ik=i,nk>0

nk
∑

l=1

Un1

i1
B1 · · ·Bk−1U

l
i ⊗ Unk−l

i Bk · · ·Unp

ip
Bp

−
∑

k:ik=i,nk<0

nk−1
∑

l=0

Un1

i1
B1 · · ·Bk−1U

−l
i ⊗ Unk+l

i Bk · · ·Unp

ip
Bp

Taking the expectation on both sides, since µ(U i
j) = 0 and µ(Bj) = 0

for all i 6= 0 and j, we see that freeness implies that the right-hand side
vanishes (recall here that in the definition of freeness, two consecutive
elements have to be in free algebras but the first and the last element
can be in the same algebra). Thus, µ⊗µ(∂iP ) vanishes, which proves the
claim.
The last point of the theorem is a direct consequence of the asymptotic
freeness of the algebra which implies that for all Bi ∈ C〈Ai, 1 ≤ i ≤ m〉
such that µ(Bi) = τ(UjBiU

−1
j ) = 0

τ(B1Ui1B2U
−1
i1
B3 · · ·U−1

ip ) = 0

and therefore (UN
i A

N
i (UN

i )−1)1≤i≤m are asymptotically free.
ut
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17.3 The combinatorics of freeness

It is a natural question to wonder, if a, b are two free bounded variables in a
non-commutative probability space, what is the law of their sum a + b or of
their product ab. The study of this question is the object of this section. We
restrict ourselves to bounded variables.

17.3.1 Free cumulants

In practice, the notion of cumulants often appears to be easier to work with
to compute laws than the direct use of (17.1). We recall below the definition
of free cumulants that is based on non-crossing partitions.

Definition 17.7. • A partition of a the set S := {1, . . . , n} is a decomposi-
tion

π = {V1, . . . , Vr}
of S into disjoint and non empty sets Vi.

• The set of all partitions of S is denoted by P(S), and for short by P(n) if
S := {1, . . . , n}.

• The Vi, 1 ≤ i ≤ r, are called the blocks of the partition and we say that
p ∼π q if p, q belong to the same block of the partition π.

The central result of this section is that freeness is related with non-crossing
partitions:

Definition 17.8. • A partition π of {1, . . . , n} is said to be crossing if there
exists 1 ≤ p1 < q1 < p2 < q2 ≤ n with

p1 ∼π p2 6∼π q1 ∼π q2.

It is non- crossing otherwise.
• The set of non-crossing partitions of {1, . . . , n} is denoted by NC(n).
• We let ≤ be the partial order on NC(n); if π, π′ ∈ NC(n), π ≤ π′ iff

every block of π is included into a block of π′. For this partial order, 0n :=
{(1), . . . , (n)} (resp. 1n := {(1, . . . , n)}) is the“smallest” (resp.“largest”)
element of NC(n).

• We write NC(S1) ≡ NC(S2) iff S1 and S2 have the same number of
elements.

A pictural description of non-crossing versus crossing partitions was given
in Figure 1.4. In practice, the following recursive definition of non-crossing
partition shall be used.

Property 17.9. A partition π of S = {1, . . . , n} is non-crossing iff there is at
least one block V of π that is an interval (i.e., of the form {p, p+1, . . . , p+ q}
for some q ≥ 0 and 1 ≤ p ≤ p + q ≤ n) and the restriction of π to S\V is
non-crossing.
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Proof. If π is non-crossing, we consider the block V that contains 1. If it is
an interval, we are done, and otherwise we consider a block S ′ in S\V that is
contained in between the first and the last elements of V (here, elements of a
block are ordered) and whose first element is the smaller between the possible
choices of S′. Since the restriction of π to this block is non-crossing, we can
reiterate this procedure. Since the cardinality of elements of S ′ is strictly less
than the cardinality of S, the iteration of this decomposition will lead us to a
block W of the partition that is of the form {p, p+ 1, . . . , p+ q} with q ≥ 0.
Moreover, the restriction of π to S\W is non-crossing. Reciprocally, since the
restriction of π to an interval is non-crossing and we assumed π non-crossing
once restricted to S\V , π is non-crossing. ut

Definition 17.10. Let (A, φ) be a non-commutative probability space. The
free cumulants are defined as a collection of multi-linear functionals

kn : An → C (n ∈ N)

by the following system of equations:

φ(a1 · · ·an) =
∑

π∈NC(n)

kπ(a1, . . . , an)

with, if π = (V1, . . . , Vr) with Vi = {vi
1, · · · , . . . , vi

li
} for 1 ≤ i ≤ r,

kπ(a1, . . . , an) = kl1(av1
1
, . . . , av1

l1
)kl2(av2

1
, . . . , av2

l2
) · · · klr (avr

1
, . . . , avr

lr
).

Observe that the above system of equations is implicit but defines uniquely
the cumulants kn since

kn(a1, . . . , an) = φ(a1 · · · an) −
∑

π∈NC(n)
π 6=1n

kπ(a1, . . . , an)

where the last term in the right-hand side only depends on (kl, l ≤ n − 1).
This last definition of kn also shows its existence by induction over n (remark
that kπ is multilinear).

Example 17.11. • n = 1, k1(a1) = φ(a1).
• n = 2, φ(a1a2) = k2(a1, a2) + k1(a1)k1(a2) and so

k2(a1, a2) = φ(a1a2) − φ(a1)φ(a2).

• n = 3,

k3(a1, a2, a3) = φ(a1a2a3) − φ(a1)φ(a2a3) − φ(a1a3)φ(a2)

−φ(a1a2)φ(a3) + 2φ(a1)φ(a2)φ(a3).
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We now turn to the description of freeness in terms of cumulants.

Theorem 17.12. Let (A, φ) be a non-commutative probability space and con-
sider unital subalgebras A1, . . . ,Am ⊂ A. Then, A1, . . . ,Am are free if and
only if for all n ≥ 2 and for all ai ∈ Aj(i) with 1 ≤ j(1), . . . , j(n) ≤ m,

kn(a1, . . . , an) = 0 if there exists 1 ≤ l, k ≤ n with j(l) 6= j(k). (17.6)

Observe here that the description of freeness by cumulants does not require
any centering of the variables; all the questions of centering concern only the
cumulant k1. In fact, we have:

Property 17.13. Let (A, φ) be a non-commutative probability space and
a1,. . . , an be elements of A. Assume n ≥ 2. If there is i ∈ {1, . . . , n} so
that ai = 1, then

kn(a1, . . . , an) = 0.

As a consequence, for n ≥ 2, any a1, . . . , an ∈ A,

kn(a1, . . . , an) = kn(a1 − φ(a1), a2 − φ(a2), . . . , an − φ(an)).

Proof. We prove this result by induction over n ≥ 2. First, for n = 2 we
have, since k1(a) = φ(a)

φ(a1a2) = k2(a1, a2) + φ(a1)φ(a2)

and so if a1 = 1, we deduce, since φ(1) = 1, that

φ(a2) = φ(1a2) = k2(a1, a2) + φ(a2) ⇒ k2(a1, a2) = 0.

The same argument holds when a2 = 1. Let us assume that for p ≤ n − 1,
kp(a1, . . . , ap) = 0 if one of the ap is the neutral element. Consider the step n
with ai = 1. Then

φ(a1 · · ·an) = kn(a1, . . . , an) +
∑

π∈NC(n)
π 6=1n

kπ(a1, . . . , an) (17.7)

where by our induction hypothesis all the partitions π in the above sum where
the element i is not a block of the partition do not contribute. But then

∑

π∈NC(n)
π 6=1n

kπ(a1, . . . , an) =
∑

π∈NC(n−1)

kπ(a1, . . . , ai−1, ai+1, . . . , an)

= φ(a1 · · · ai−1ai+1 · · ·an) = φ(a1 · · · an)

which proves kn(a1, . . . , an) = 0 with (17.7). ut
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Proof of Theorem 17.12. Assume that the cumulants vanish when evalu-
ated at elements of different algebras A1, . . . ,Am and consider, for ai ∈ Aj(i),

φ((a1 − φ(a1)) · · · (an − φ(an))) =
∑

π∈NC(n)

kπ(a1, . . . , an).

By our hypothesis, kπ vanishes as soon as a block of π contains p, q ∈
{1, . . . , n} so that j(p) 6= j(q). Therefore, if we assume j(p) 6= j(p+1), we see
that the contribution in the above sum comes from partitions π whose blocks
cannot contain two nearest neighbors {p, p+1}. By Property 17.9, this implies
that π contains an interval of the form V = {p}. But then kπ also vanishes
since k1 = 0 by centering of the variables. Therefore, if for 1 ≤ p ≤ n − 1
j(p) 6= j(p+ 1), we get

φ((a1 − φ(a1)) · · · (an − φ(an))) = 0,

that is φ satisfies (17.1).
Reciprocally, let us assume that φ satisfies (17.1). We prove that (17.6)

is satisfied by induction over n. It is clear for n = 2 since then we saw that
k2(a1, a2) = φ(a1a2) − φ(a1)φ(a2). Let us assume it is true for p ≤ n − 1,
n ≥ 3.

We first prove that kn(a1, . . . , an) = 0 when ai ∈ Aj(i), 1 ≤ i ≤ n
with j(i) 6= j(i + 1) for all 1 ≤ i ≤ n − 1. Indeed, for any π ∈ NC(n),
π 6= 1n, kπ will vanish as soon as it contains two nearest neighbors by
our induction hypothesis. But again by property 17.9, this implies that
π contains a singleton. Thus kπ(a1 − φ(a1), . . . , an − φ(an)) = 0 since
k1(ai−φ(ai)) = 0 and since also φ((a1 −φ(a1)) · · · (an−φ(an)) vanish, we de-
duce that kn(a1−φ(a1), . . . , an−φ(an)) vanishes. Since kn does not depend on
the centering by the previous property, we have shown that kn(a1, . . . , an) = 0
when j(i) 6= j(i+ 1) for all 1 ≤ i ≤ n− 1, j(n) 6= j(1).

To prove that kn(a1, . . . , an) vanishes as soon as a couple of ai’s belong
to different subalgebras, we shall show how to come back to the situation of
alternating moments by the next lemma.

Lemma 17.14. Consider n ≥ 2, a1, . . . , an ∈ A and 1 ≤ p ≤ n− 1. Then,

kn−1(a1, . . . , ap−1, apap+1, ap+2, . . . , an)

= kn(a1, · · ·ap, ap+1, . . . , an)

+
∑

π∈NC(n)
]π=2,p6∼πp+1

kπ(a1, . . . , ap, ap+1, . . . , an)

where ]π = 2 means that π has exactly two blocks.

We complete the proof of the theorem before proving the lemma. We have
ai ∈ Aj(i) with some j(l) 6= j(p). If j(p) 6= j(p+ 1) for all 1 ≤ p ≤ n− 1 then
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we are done by the previous consideration. Otherwise, there is a p so that
j(p) = j(p+ 1). We can then use Lemma 17.14 to reduce the number of vari-
ables. By our induction hypothesis kn−1(a1, · · · , ap−1, apap+1, ap+2, . . . , an)
vanishes, but also kπ(a1, . . . , ap, ap+1, . . . , an) since π decomposes into two
blocks of size strictly smaller than n, one of which containing an element of
a subalgebra free with Aj(p). Therefore, kn(a1, · · · ap, ap+1, . . . , an) vanishes
and the theorem is proved. ut

Proof of Lemma 17.14. Again, we prove it by induction over n. For n = 2,
the equality reads

k1(a1a2) = k2(a1, a2) + k1(a1)k1(a2) ⇔ k2(a1, a2) = φ(a1a2) − φ(a1)φ(a2)

that we have already seen. We thus assume the equality true for p ≤ n− 1 for
some n ≥ 3. For π ∈ NC(n), let us denote by π|p=p+1 the partition obtained
by identifying p and p+ 1, namely if π = {V1, . . . , Vr} with p ∈ Vj , p+ 1 ∈ Vl,

π|p=p+1 = {V1, . . . , Vj ∪ Vl\{p+ 1}, . . . , Vr}.
Note that π|p=p+1 ∈ NC(n− 1). In terms of such a partition, the equality of
the lemma can be restated as

k1n−1(a1, . . . , apap+1, . . . , an) =
∑

π∈NC(n)
π|p=p+1=1n−1

kπ(a1, . . . , ap, ap+1, . . . , an)

Since we assumed that this equality is true for l < n, we deduce that for any
σ ∈ NC(n − 1), σ 6= 1n−1 so that the block containing apap+1 has length
strictly smaller than n− 1,

kσ(a1, . . . , apap+1, · · · , an) =
∑

π∈NC(n)
π|p=p+1=σ

kπ(a1, . . . , ap, ap+1, . . . , an).

Therefore, we have

k1n−1(a1, . . . , ap−1, apap+1, ap+2, . . . , an)

= φ(a1 · · ·an) −
∑

σ∈NC(n−1)
σ 6=1n

kσ(a1, . . . , apap+1, . . . , an)

= φ(a1 · · ·an) −
∑

σ∈NC(n−1)
σ 6=1n−1

∑

π∈NC(n)
π|p=p+1=σ

kπ(a1, . . . , ap, ap+1, . . . , an)

=
∑

σ∈NC(n)

kσ(a1, . . . , an) −
∑

π∈NC(n)
π|p=p+1 6=1n−1

kπ(a1, . . . , an)

=
∑

σ∈NC(n)
σ|p=p+1=1n−1

kσ(a1, . . . , an)
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which proves the claim. ut
Bibliographical notes. This section followed quite closely R. Speicher

[185]. Note that in classical probability, cumulants play also a similar role but
then partition can be crossing (e.g., Shiryaev [178, p. 290]).

We next exhibit a consequence of free independence, namely free harmonic
analysis. The problem of interest is to determine the law of a+b when a, b are
free. Since the law of (a, b) with a, b free is uniquely determined by the laws
µa of a and µb of b, the law of their sum is a function of µa and µb denoted
by µa + µb. There are several approaches to the problem; we shall present
the combinatorial approach based on free cumulants and refer the interested
reader to [159] for more details.

17.3.2 Free additive convolution

Definition 17.15. Let a, b be two operators in a non-commutative probability
space (A, φ) with law µa, µb respectively. If a, b are free, the law of a + b is
denoted by µa + µb.

We write for short kn(a) = kn(a, . . . , a) as the nth cumulant of the variable
a.

Lemma 17.16. Let a, b be two bounded operators in a non-commutative prob-
ability space (A, φ). If a and b are free, for all n ≥ 1

kn(a+ b) = kn(a) + kn(b).

Proof. The result is obvious for n = 1 by linearity of k1. Moreover, for all
n ≥ 2, by multilinearity of the cumulants,

kn(a+ b) =
∑

εi=0,1

kn(ε1a+ (1 − ε1)b, . . . , εna+ (1 − εn)b) = kn(a) + kn(b)

where the second line is a direct consequence of Theorem 17.12. ut

As a consequence, let us define the following generating function of cumu-
lants:

Definition 17.17. For a bounded operator a the formal power series

Ra(z) =
∑

n≥0

kn+1(a)z
n

is called the R-transform of the law µa of the operator a. We also write Rµa :=
Ra since R only depends on the law µa.

Then, the R-transform is to free probability what the log-Fourier transform
is to classical probability in the sense that it is linear for free convolution.
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Corollary 17.18. Let a, b be two bounded operators in a non-commutative
probability space (A, φ). If a and b are free,

Ra+b = Ra +Rb ⇔ R
µa + µb

= Rµa +Rµb
.

We next provide a more tractable definition of the R-transform in terms of
the Cauchy transform. Suppose that µ : C[X ] → C is a distribution with all
moments. Then we may define Gµ as the formal series

Gµ(z) =
∑

n≥0

µ(Xn)z−(n+1) . (17.8)

Let Kµ(z) be the formal inverse of Gµ, i.e., Gµ(Kµ(z)) = z. The formal power
series expansion of Kµ is

Kµ(z) =
1

z
+

∞
∑

n=1

Cnz
n−1 .

Then, we shall prove the following:

Lemma 17.19. Let µ be a compactly supported probability measure. For all
n ∈ N, Cn = kn+1. Therefore, Rµ(z) = Kµ(z) − 1/z.

Proof. To prove this lemma, we compare the generating function of the cu-
mulants as the formal power series

Ca(z) = 1 +

∞
∑

n=1

kn(a)zn

and the generating function of the moments as the formal power series

Ma(z) = 1 +

∞
∑

n=1

mn(a)zn

with mn(a) := µ(an). Then, we shall prove that

Ca(zMa(z)) = Ma(z). (17.9)

The rest of the proof is pure algebra since

Ga(z) := Gµa(z) = z−1Ma(z−1), Ra(z) := z−1(Ca(z) − 1)

then gives Ca(Ga(z)) = zGa(z) and so by composition by Ka

zRa(z) + 1 = Ca(z) = zKa(z).

This equality is formal and only proves kn+1 = Cn. We thus need to derive
(17.9). To do so, we show that
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mn(a) =
n
∑

s=1

∑

i1,...,is∈{0,1··· ,n−s}
i1+···+is=n−s

ks(a)mi1 (a) · · ·mis(a). (17.10)

Once (17.10) holds, (17.9) follows readily since

Ma(z) = 1 +

∞
∑

n=1

znmn(a)

= 1 +
∞
∑

n=1

n
∑

s=1

∑

i1,...,is∈{0,1··· ,n−s}
i1+···+is=n−s

ks(a)z
smi1(a)z

i1 · · ·mis(a)z
is

= 1 +
∞
∑

s=1

ks(z)z
s

( ∞
∑

i=0

zimi(a)

)s

= Ca(zMa(z)).

To prove (17.10), recall that by definition of the cumulants,

mn(a) =
∑

π∈NC(n)

kπ(a).

Let π = {V1, . . . , Vr} ∈ NC(n) be given, and let us fix its first block
V1 = (1, v2, . . . , vs) with s = |V1| ∈ {1, . . . , n}. Being given V1, since π is
non-crossing, we see that for any l ∈ {2, . . . , r}, there exists k ∈ {1, . . . , s} so
that the elements of Vl lies between vk and vk+1. Here vs+1 = n+ 1 by con-
vention. This means that π decomposes into V1 and at most s other partitions
π̃1, . . . , π̃s. Therefore

kπ = kskπ̃1 · · · kπ̃s .

If we denote by ik the number of elements in π̃k , we thus have proved that

mn(a) =

n
∑

s=1

ks(a)
∑

π̃k∈NC(ik),
i1+···+is=n−s

kπ̃1(a) · · · kπ̃s(a)

=
n
∑

s=1

ks(a)
∑

i1+···+is=n−s
ik≥0

mi1(a) · · ·mis(a)

where we used again the relation between cumulants and moments. The proof
is thus complete. ut

Example 17.20. Let νa = σ(x)dx be the standard semicircle, and note
that Gνa(z) = −Sνa(z). We saw in Corollary 1.12 that Gνa(1/

√
z) =

(1 −
√

1 − 4z)/2
√
z. Thus, Gνa(z) = (z+

−
√
z2 − 4)/2, and the correct choice

of the branch of the square-root, dictated by the fact that =z > 0 implies
=Gνa(z) < 0, leads to the formula
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Gνa(z) =
z −

√
z2 − 4

2
.

Thus,

z =
Kνa(z) −

√

K2
νa

(z) − 4

2

with solution Kνa(z) = z−1 + z. In particular, the R-transform of the semi-
circle is the linear function z, and summing two (freely independent) semi-
circles yields again a semicircle with a different variance. Indeed, repeating
the computation above, the R-transform of a semicircle with support [−α, α]
(or equivalently with covariance α2/2) is α2z/2. Note here that the linear-
ity of the R-transform is equivalent to kn(a) = 0 except if n = 2, and
k2(a) = α2/2 = φ(a2).

Exercise 17.21. Let µ = 1
2 (δ+1 + δ−1). Then, Gµ(z) = (z2 − 1)−1z and

Rµ(z) =

√
1 + 4z2 − 1

2z
.

Show that µ + µ is absolutely continuous with respect to the Lebesgue measure

and with density const./
√

4 − x2.

Bibliographical notes. In these notes, we only considered the R-transform
as formal series. It is, however, possible to see it as an analytic function once
restricted to an appropriate subset of the complex plane. The study of multi-
plicative convolution can be performed similarly, see, e.g., [159]. This section
closely follows the lecture notes of Roland Speicher [185]. Lots of refinements
of the relation between free cumulants and freeness can be found for instance
in the book by Nica and Speicher [159]. Here, we only considered free convolu-
tion of bounded operators; the generalization holds for unbounded operators
and can be found in [30]. Our last example is a particularly simple example
of infinite divisibility; the theory of free infinite divisibility parallels the clas-
sical one (in particular, a Levy–Khitchine formula does exist to characterize
them) (see cf. [30],[20]). Related with free convolution come natural questions
such as the regularizing effect of free convolution. A detailed study of free
convolution by a semi-circular variable was done by P. Biane [34].
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Free entropy

Free entropy was defined by Voiculescu as a generalization of classical entropy
to the non-commutative context. There are several definitions of free entropy;
we shall concentrate on two of them. The first is the so-called microstates
entropy that measures a volume of matrices with empirical distribution ap-
proximating a given law. The second, called the microstates-free entropy, is
defined via a non-commutative version of Fisher information. The classical
analog of these definitions is, on one hand, the definition of the entropy of a
measure µ as the volume of points whose empirical distribution approximates
µ, and, on the other hand, the well-known entropy

∫

dµ
dx log dµ

dxdx. In this clas-
sical setting, Sanov’s theorem shows that these two entropies are equal. The
free analog statement is still open but we shall give in this section bounds to
compare the microstates and the microstates-free entropies. The ideas come
from [55, 56, 37] but we shall try to simplify the proof to hopefully make it
more accessible to non-probabilists (the original proof uses Malliavin calculus
but we shall here give an elementary version of the few properties of Malli-
avin calculus we need). In the following, we consider only laws of self-adjoint
variables (i.e., A∗

i = Ai for 1 ≤ i ≤ m). We do not lose generality since any
operator can be decomposed as the sum of two self-adjoint operators.

Definition 18.1. Let τ ∈ Mm. Let R ∈ R+, ε > 0 and k,N ∈ N. We then
define the microstate

ΓN (τ ; ε, k, R) = {A1, . . . , Am ∈ Hm
N : ‖Ai‖∞ ≤ R,

|LA1,...,Am(Xi1 · · ·Xip) − τ(Xi1 · · ·Xip)| ≤ ε

for all ij ∈ {1, . . . ,m}, p ≤ k}.

We then define the microstates entropy of τ) by

χ(τ) = lim sup
ε→0,L→∞

k→∞

lim sup
N→∞

1

N2
logµ⊗m

N (ΓN (τ ; ε, k, L)) .
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Remark 18.2. • Voiculescu’s original definition χoriginal of the entropy

consists in taking the Lebesgue measure over Hm
N rather than the Gaussian

measure µ⊗m
N . However, both definitions are equivalent up to a quadratic

weight since as soon as k ≥ 2, the Gaussian weight is almost constant on
a small microstate. Hence, we have (see [56])

χ(τ) = χoriginal(τ) −
1

2

m
∑

i=1

τ(X2
i ) −mc

with

c = lim
N→∞

1

N2
log

∫

HN

e−
N
2 Tr(A2)dA = sup

µ∈P(R)

{

Σ(µ) − 1

2
µ(x2)

}

.

• It was proved by Belinschi and Bercovici [23] that in the definition of χ,
one does not need to take L going to infinity but rather any L fixed greater
than R if τ ∈ Mm

R . For the same reason, χ can be defined as the asymptotic
volume of ΓN (τ ; ε, k,∞).

• The classical analog is, if γ is the standard Gaussian law, to take a prob-
ability measure µ on R and define, if d is a distance on P(R) compatible
with the weak topology,

S(µ) = lim sup
ε→∞

lim sup
N→∞

1

N2
log γ⊗N

(

d(
1

N

N
∑

i=1

δxi , µ) < ε

)

.

the main difference is here that we take bounded continuous test functions,
instead of polynomials, and so do not need the cutoff ∩i{‖Ai‖∞ ≤ L}. We
shall later on also adopt this point of view in the proofs, to avoid dealing
with the cutoff.

• It is an open problem whether one can replace the limsup by a liminf in
the definition of χ without changing its value. This question can be seen to
be equivalent to the convergence of N−2 log

∫

‖Ai‖∞≤R e
Tr⊗Tr(V )dµ⊗m

N as N

goes to infinity for any polynomial V in C〈X1, . . . , Xm〉⊗2 and all R ∈ R+

large enough (see Property 18.3).

Hereafter, when no confusion is possible, LN will write for short LA1,...,Am

with A1, . . . , Am generic Hermitian N ×N matrices.
There is a dual definition to the microstates entropy χ, namely:

Property 18.3. Let F ∈ C〈X1, . . . , Xm〉 ⊗ C〈X1, . . . , Xm〉 and define, for
L ∈ R+, its Legendre transform by

ΛL(F ) = lim sup
N→∞

1

N2
log

∫

‖Ai‖∞≤L

eN2LN⊗LN(F )dµ⊗m
N .

Then, if τ ∈ Mm
R is such that χ(τ) > −∞, for any L > R,

χ(τ) = inf
F
{−τ ⊗ τ(F ) + ΛL(F )}.
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Proof. Clearly, for all F ∈ C〈X1, . . . , Xm〉 ⊗ C〈X1, . . . , Xm〉,

µ⊗m
N (ΓN (τ ; ε, k, L))

= µ⊗m
N

(

1ΓN (τ ;ε,k,L)e
N2LN⊗LN(F )−N2LN⊗LN(F )

)

≤ e−N2(τ⊗τ(F )+δ(F,ε))µ⊗m
N

(

1ΓN (τ ;ε,k,L)e
N2LN⊗LN(F )

)

(18.1)

≤ e−N2(τ⊗τ(F )+δ(F,ε))µ⊗m
N

(

1maxi‖Ai‖∞≤Le
N2LN⊗LN(F )

)

(18.2)

where we assumed in (18.1) that k is larger than the degree of all monomials
in F so that δ(F, ε) goes to zero with ε. Taking the logarithm and the large
N limit and then the small ε limit (together with the remark of Belinschi and
Bercovici) we conclude that for L sufficiently large,

χ(τ) ≤ −τ ⊗ τ(F ) + ΛL(F ),

which gives the upper bound by optimizing over F . For the lower bound,
remark that we basically need to show that the inequalities in (18.1) and
(18.2) are almost equalities on the large deviation scale for some F . The
candidate for F will be given as a multiple of

F :=
k
∑

`=1

(m+ 1)−`
m
∑

i1,...,i`=1

(Xi1 · · ·Xi`
− τ(Xi1 · · ·Xi`

))

⊗ (Xi1 · · ·Xi`
− τ(Xi1 · · ·Xi`

))

so that

µ⊗ µ(F ) =
k
∑

`=1

(m+ 1)−`
m
∑

i1,...,i`=1

(µ(Xi1 · · ·Xi`
) − τ(Xi1 · · ·Xi`

))2 .

Note that for matrices bounded by L, A1, . . . , Am ∈ ΓN (τ, ε, k, L) if

0 ≤ LA1,...,Am ⊗ LA1,...,Am(F ) ≤ (m+ 1)−kε2

so that for all L ≥ 0, if we set FN := LN ⊗ LN (F ),

lim
ε↓0

lim sup
N→∞

1

N2
logµ⊗m

N (ΓN (τ ; ε, k, L))

≥ lim
ε↓0

lim sup
N→∞

1

N2
logµ⊗m

N (maxi‖Ai‖∞ ≤ L, FN ≤ ε) .

(18.3)

But, since FN ≥ 0, for any γ > 0,



266 18 Free entropy

µ⊗m
N (maxi‖Ai‖∞ ≤ L, FN ≤ ε) ≥ µ⊗m

N

(

1maxi‖Ai‖∞≤L,FN≤εe
−γN2FN

)

= µ⊗m
N

(

1maxi‖Ai‖∞≤Le
−γN2FN

)

− µ⊗m
N

(

1maxi‖Ai‖∞≤L,FN>εe
−γN2FN

)

=: I1
N − I2

N

For the first term, for any ε′, k′ and L we have

I1
N ≥ µ⊗m

N

(

1ΓN (τ ;ε′,k′,L)e
−γN2FN

)

≥ e−γN2(m+1)(ε′)2µ⊗m
N (ΓN (τ ; ε′, k′, L)) .

Therefore, for L large enough (but finite according to [23])

lim sup
N→∞

1

N2
log I1

N ≥ χ(τ) > −∞.

On the other hand, I2
N ≤ e−γN2ε is negligible with respect to I1

N if γε > −χ(τ).
Thus, we conclude by (18.3) that

lim
ε↓0

lim sup
N→∞

1

N2
logµ⊗m

N (ΓN (τ ; ε, k, L)) ≥ lim sup
N→∞

1

N2
log I1

N = ΛL(−γF )

(18.4)
and therefore that, with G = −γF ,

lim
ε↓0

lim sup
N→∞

1

N2
log µ⊗m

N (ΓN (τ ; ε, k, L)) ≥ −τ ⊗ τ(G) + ΛL(G)

≥ inf
F
{−τ ⊗ τ(F ) + ΛL(F )}.

We finally take the limit k, L going to infinity to conclude. ut
Remark 18.4. In the classical case, it is enough to take a linear function of
LN. This in particular implies that the rate function (corresponding to −χ) is
convex. This cannot be the case in the non-commutative case since Voiculescu
(see [198]) proved that if χ(τ1) > −∞ and χ(τ2) > −∞, χ(ατ1 +(1−α)τ2) =
−∞ for all α ∈]0, 1[.

Let us now introduce the microstates-free entropy. Its definition is based
on the notion of free Fisher information which is given, for a tracial state τ ,
by

Φ∗(τ) = 2

m
∑

i=1

sup
P∈C〈X1,...,Xm〉

{

τ ⊗ τ(∂iP ) − 1

2
τ(P 2)

}

with ∂i the non-commutative derivative defined in section 7.2.2. Then, we
define the microstates-free entropy χ∗ by

χ∗(τ) = −1

2

∫ 1

0

Φ∗(τ
tX+

√
t(1−t)S

)dt

with S an m-dimensional semicircular law, free from X .



18 Free entropy 267

Theorem 18.5. There exists χ∗∗ ≤ 0 so that for all τ ∈ Mm
R ,

χ∗∗(τ) ≤ χ(τ) ≤ χ∗(τ).

Remark 18.6. Many questions around microstates-free entropy remain open
and important. It would be very interesting to show that the limsup in its
definition can be replaced by liminf. The two bounds above still hold in fact
if we perform this change. It would be great to prove that χ = χ∗ at least on
χ < ∞. It is not clear at all that χ∗∗ = χ∗ in general (since this amounts to
saying that any law can be achieved (at least approximatively) as the marginal
at time one of a very smooth process) but should be expected for instance for
laws such as those encountered in Part III).

The idea is to try to compute the Legendre transforms Λ∞(F ) for F in

C〈X1, . . . , Xm〉⊗2. However, this is not easy directly. We shall follow a stan-
dard path of thoughts in large deviation theory and consider the problem in
a bigger space; namely instead of random Wigner matrices, we shall consider
Hermitian Brownian motions (which, at time one, have the same law than
Gaussian Wigner matrices) and generalize the ideas of Part V to the multi-
matrix setting. We then study the deviations of the empirical distributions of
m independent Hermitian Brownian motions. It is simply defined as a linear
form on the set of polynomials of the indeterminates (X

ij

tj
, 1 ≤ j ≤ n) for

any choices of times (tj , 1 ≤ j ≤ n). It might be possible to argue that we
can use the polynomial topology, but it is in fact easier to use a topology of
bounded functions at this point, since it is easier for us to estimate Laplace
transforms without cutoff, a cutoff that is necessary in general to insure that
the polynomial topology is good. The space of test functions we shall use is
the set of Stieltjes functionals as introduced in (16.2). To go from processes
with continuous-time parameters to finite-time marginals, a standard way is
to consider continuous processes and to make sure that large deviations hold
in this space of continuous processes. A final point is that changing the topol-
ogy (from polynomials to Stieltjes functionals) does not change the entropy of
laws in Mm

R , as was proved in Lemma 7.1 of [37]. We next describe the setting
of continuous processes and show how Laplace transforms of time marginals
can be computed.

1. Space of laws of continuous processes. We let F be the space of functions
on processes indexed by t ∈ [0, 1] such that F ∈ F iff there exists n ∈ N,
t1, . . . , tn ∈ [0, 1]n, i1, . . . , in ∈ {1, . . . ,m}n and S ∈ STn(C) such that

F (X1
. , . . . , X

m
. ) = T (X i1

t1 , . . . , X
in
tn

).

STn(C) contains the multiplicative neutral element 1 for all n ∈ N and is
equipped with the involution





→
∏

1≤i≤p

(zi −
m
∑

k=1

αk
iXk)−1





∗

=

→
∏

p≤i≤1

(z̄i −
m
∑

k=1

αk
iXk)−1
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and so F is equipped with its natural extension.
We let MP be the subset of linear forms τ on F such that

τ(FG) = τ(GF ) τ(FF ∗) ≥ 0 τ(1) = 1.

We endow MP with its weak topology. MP is a metric space; a distance
can for instance be given in the spirit of Levy’s distance

d(τ, ν) =
∑

k≥0

1

2k
|τ(Pk) − ν(Pk)|

with Pk a countable family of uniformly bounded functions dense in F
(for instance by restricting the parameters αj

i to take rational values, as
well as the complex parameters).
Note that if we restrict τ ∈ MP to F = (z −∑n

i=1 αiX
ji

ti
)−1 with some

fixed αi but varying z, then this retriction is a linear form on the set
of functionals (z − .)−1, z ∈ C\R. By the GNS construction, since τ is
a tracial state, Y =

∑n
i=1 αiX

ji

ti
can be seen as the law of a self-adjoint

operator on a C∗-algebra. Therefore, τ |Y can be seen as a positive measure
on the real line (by Riesz’s theorem). Since we also have τ(1) = 1, τ |Y
is a probability measure on the real line, it is the spectral measure of Y .
Note in particular that for every τ ∈ MP , any z ∈ C\R and αi ∈ R

∥

∥

∥

∥

∥

∥

(

z −
n
∑

i=1

αiX
ji

ti

)−1
∥

∥

∥

∥

∥

∥

τ

∞

= lim
n→∞



τ(





(

z −
n
∑

i=1

αiX
ji

ti

)−1(

z̄ −
n
∑

i=1

αiX
ji

ti

)−1




n

)





1
2n

≤ 1

|=(z)| .

Hence, by non-commutative Hölder inequality Theorem 19.5, for all τ ∈
MP , all zi ∈ C\R, all αk

i ∈ R,

∣

∣

∣

∣

∣

∣

τ





→
∏

1≤i≤p

(zi −
m
∑

k=1

αk
i Xk)−1)





∣

∣

∣

∣

∣

∣

≤
∏

1≤i≤p

1

|=(zi)|
.

We let MP
c be the set of laws of continuous processes, i.e., the set of

τ ∈ MP such that for all, n ∈ N, i1, . . . , in ∈ {1, . . . ,m}n and T ∈ STn(C)
such that

t1, . . . , tn ∈ [0, 1]n → τ
(

T (X i1
t1 , . . . , X

in
tn

)
)

is continuous. Note that for all n ∈ N, ST n(C) is countable, and therefore
by the Arzela–Ascoli theorem, compact subsets of MP

c are for example
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∩n≥0 ∩p≥0

{

τ ∈ MP
c : sup

|ti−si|≤ηn
p

maxi1,...,in |fτ,Tn

t1,...,tn
− fτ,Tn

s1,...,sn
| ≤ εpn

}

with fτ,T
t1,...,tn

= τ
(

Tn(X i1
t1 , . . . , X

in
tn

)
)

, {Tn}n∈N is some sequence that is
dense in the countable space ∪n≥0ST

n(C), and εpn goes to zero as p goes
to infinity for all n while ηn

p > 0.

We let LP
N be the element of MP given, for F ∈ F , by

LP
N(F ) =

1

N
Tr(F (H1

N , . . . , H
m
N ))

with H1
N , . . . , H

m
N m independent Hermitian Brownian motions (and de-

note PN the law of one Hermitian Brownian motion).
2. Exponential tightness. We next prove:

Lemma 18.7. For all L ∈ R+, there exists a compact set K(L) of MP
c

such that

lim sup
N→∞

1

N2
log P⊗m

N

(

LP
N ∈ K(L)c

)

≤ −L.

Proof. Note that for all T ∈ ST n(C), all τ ∈ MP ,

τ
(

T (X i1
t1 , . . . , X

in
tn

)
)

− τ
(

T (X i1
s1
, . . . , X in

sn
)
)

=

n
∑

j=1

∫ 1

0

dα τ
(

∂iT (αX i1
t1 + (1 − α)X i1

s1
, . . . ,

αX in
tn

+ (1 − α)X in
sn

)](X
ij

tj
−X ij

sj
)
)

dα

=
n
∑

j=1

∫ 1

0

τ
(

∂jT (αX i1
t1 + (1 − α)X i1

s1
, . . . ,

αX in
tn

+ (1 − α)X in
sn

)](X
ij

tj
−X ij

sj
)
)

dα

=

n
∑

j=1

∫ 1

0

τ
(

DjT (αX i1
t1 + (1 − α)X i1

s1
, . . . ,

αX in
tn

+ (1 − α)X in
sn

) × (X
ij

tj
−X ij

sj
)
)

dα

with ∂j (resp.Dj) the non-commutative derivative (resp. cyclic derivative)
with respect to the jth variable (see Section 7.2.2). Now, DjT (αX i1

t1 +

(1 − α)X i1
s1
, . . . , αX in

tn
+ (1 − α)X in

sn
belongs to F for any α ∈ [0, 1] and

is therefore uniformly bounded (independently of α and τ). Thus, there
exists a finite constant c, that depends only on T such that

|τ
(

T (X i1
t1 , . . . , X

in
tn

)
)

− τ
(

T (X i1
s1
, . . . , X in

sn
)
)

| ≤ c

n
∑

i=1

τ(|X ij

tj
−X ij

sj
|2) 1

2 .
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By the characterization of the compact sets of MP
c , it is therefore enough

to show that for all L > 0 and ε > 0, there exists η > 0 such that

PN



 sup
|t−s|≤η
0≤s≤t≤1

1

N
Tr((HN (t) −HN (s))2) ≥ ε



 ≤ e−N2L.

But

PN



 sup
|t−s|≤η
0≤s≤t≤1

1

N
Tr((HN (t) −HN (s))2) ≥ ε





≤ W⊗N2



 sup
|t−s|≤η
0≤s≤t≤1

1

N2

∑

1≤i,j≤N

((Bij(t) − Bij(s))
2) ≥ ε





≤ e−N2ελW(e
λ sup |t−s|≤η

0≤s≤t≤1

(Bij(t)−Bij(s))
2

)N2

where W is the Wiener law. Using the fact (see [137, theorem 4.1]) that
there exists α > 0 such that

W(eαδ− 1
4 sup|t−s|≤δ |B(t)−B(s)|) <∞

we see that we can take above λ = αη−
1
4 to conclude that if εη−

1
4 ≥ L,

PN



 sup
|t−s|≤η
0≤s≤t≤1

1

N
Tr((HN (t) −HN (s))2) ≥ ε



 ≤ e−N2(L+C)

for some finite constant C. ut

3. Statement of the large deviation result for processes. According to Lemma
18.7, the rate function for a large deviation principle for the law of LP

N

under P⊗m
N has to be infinite outside MP

c . For τ ∈ MP
c , we let τ t be

the law of (X i
s∧t + Si

s−t∨0, i ∈ {1, . . . ,m}, 0 ≤ s ≤ t) with X with
law τ , and S an m-dimensional free Brownian motion, free with X . For
F (X1, . . . , Xm) = T (Xt1 −Xt0 , · · ·Xtp −Xtp−1) ∈ F with T ∈ ST pm(C),
0 ≤ t0 ≤ t1 · · · ≤ tm ≤ 1 and s ∈ [0, 1], we let

DsF (X1, . . . , Xm) =

p
∑

i=1

1s∈[ti−1,ti]DiT

where Di is the cyclic gradient with respect to the ith variable (it is m
dimensional). Finally, for τ ∈ MP , we let τ(.|Bs) be the L2(τ) projection
over the algebra Bs generated by the set Fs of functions of F that only
depend on Xu, u ≤ s:
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τ(τ(P |Bs)Q) = τ(PQ) ∀P ∈ F , ∀Q ∈ Fs.

Then we have

Theorem 18.8. a) The law of LP
N under P⊗m

N satisfies a large deviation
upper bound for the weak F-topology in the scale N 2 with good rate
function

I(τ) = sup
t∈[0,1]

sup
F∈F

{

τ t(F ) − τ0(F ) − 1

2

∫ t

0

τ [|τs(DsF |Bs)|2]ds
}

.

b) If I(τ) <∞, there exists a map s→ Ks ∈ L2(Fs, τ)
m such that

i. infF∈F
∫ 1

0 τ [‖τs(DsF |Bs) −Ks‖2]ds = 0.
ii. For any P ∈ F any t ∈ [0, 1]

τ t(F ) = τ0(F ) +

∫ t

0

τ(τs(DsF |Bs).Ks)ds. (18.5)

Moreover, we then have

I(τ) =
1

2

∫ 1

0

τ(‖Ks‖2)ds.

c) When the infimum in b. i) above is achieved (i.e., there exists F ∈ F
such that Ks = τs(DsF |Bs)), τ is uniquely determined by (18.5) and
is the strong solution of the free stochastic differential equation

dXt = dSt +Kt(X)dt.

d) If τ is such that the infimum in b.i) above is achieved, the large devi-
ation lower bound is also given by I(τ), i.e

lim inf
ε→0

lim inf
N→∞

1

N2
log P⊗m

N

(

d(LP
N, τ) ≤ ε

)

≥ −I(τ)

where d is a Levy distance compatible with the weak F-topology.

If we now use the contraction principle we deduce:

Corollary 18.9. The law of LN = LHN
1 (1),···HN

m (1) under P⊗m
N satisfies a

large deviation upper bound with rate function

χ∗(µ) = − inf{I(τ); τ |X1
1 ,...,Xm

1
= µ}

and a large deviation lower bound with rate function

χ(µ) = − inf{I(τ); τ |X1
1 ,...,Xm

1
= µ,

τ is such that the infimum in b. i) is achieved }
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To complete the proof and identify χ∗ with Voiculescu’s original definition,
one can use an abstract argument (cf. [56]) to see that the infimum has
to be taken at the law of the free Brownian bridge:

dXt = dSt +
Xt −X

t− 1
dt.

Taking the previsible representation of the above process, we get that
Kt = τ(Xt−X

t−1 |Xt) = t−1Xt −J τt with J τt the conjuguate variable of the

law of Xt = tX +
√

t(1 − t)S. Plugging this result into the definition of I
shows that χ∗ is indeed the integral of the free Fisher information along
free Brownian motion paths.

4. Large deviation upper bound. In the classical case where one considers large
deviations for the empirical measure N−1

∑N
i=1 δBi

t ,t∈[0,1], that are solved
by Sanov’s theorem, it can be seen that deviations (i.e., deviations with
finite rate function) occur only along laws that are absolutely continuous
with respect to Wiener law. By Girsanov’s theorem, one knows that such
laws are obtained as weak solutions of the SDE

dXt = dBt + b(t, (Xs)s≤t)dt

for some drift b. These heuristics will extend, as we shall see, to the non-
commutative case (once one defines the right notion of weak solution to the
SDE). We now compute a few Laplace transforms of quantities depending
on a finite number of time marginals under LP

N. We shall give a pedestrian
way to understand the Clark–Ocone formula used in [37].
• First, let 0 = t0 ≤ t1 · · · ≤ tn−1 ≤ tn = 1 and let us consider T i

k ∈
ST k(C)sa for k ∈ {0, . . . , n−1}, i ∈ {1, . . . ,m}. Then, if we denote ∆kt =
tk+1 − tk, ∆kH

i
N = H i

N (tk+1) −H i
N (tk) and ∆kHN = (∆kH

i
N )1≤i≤m,

ΛN := E

[

exp
{

N

n−1
∑

k=0

m
∑

i=1

Tr

(

T i
k(∆lHN , l < k)∆kH

i
N − 1

2
T i

k(∆lHN , l < k)2∆kt

)

}

]

=

∫

∏ d∆kH
i
N√

2π∆kt
N2

∏

i,k

exp

{

− N

2∆k
Tr
(

(∆kH
i
N − T i

k(∆lHN , l < k)∆k)2
)

}

= 1 (18.6)

where we have used that since the above centering of the Gaussian vari-
ables only depends on the past, it can be considered as constant and
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therefore does not change the integral. Putting ∆kX
i = X i(tk+1)−X i(tk)

and

f(τ) =
n−1
∑

k=0

m
∑

i=1

(

τ

(

T i
k(∆lX, l < k)∆kX

i − 1

2
T i

k(∆lX, l < k)2)∆kt

))

we deduce that
E[eN2f(LP

N)] = ΛN = 1.

Hence, this simple computation already shows that considering processes

allows us to compute the Laplace transforms E[eN2f(LP
N)] for all functions

f as above.
However, the above computation is not sufficient to get a good upper
bound since for instance it does not allow to compute the Laplace trans-
form of LP

N((∆kX
i)2). To do such a computation, we shall need infinites-

imal calculus. Note that the upper bound that one would obtain by us-
ing only the previous functionals would allow to show already that the
laws with finite entropy are such that there exists a drift K so that
dXt−K(Xt)dt are the increments of a martingale. We could not, however,
deduce that it has to be a free Brownian motion without using differential
calculus (instead of finite variations).
• The idea to compute more general Laplace transforms is to generalize
(18.6) by constructing more martingales. Indeed, the fact that ΛN (T, t)
equals one can be seen as a consequence of the fact that

t→ exp
{

N2
n−1
∑

k=0

m
∑

i=1

(

LP
N

(

T i
k(∆lX, l < k)∆t

kX
i

− 1

2
T i

k(∆lX, l < k)2∆t
kt
))

}

is a martingale for the canonical filtration of the underlying Brownian
motions if ∆t

kX
i := X i

tk+1∧t −X i
tk∧t and ∆t

kt = tk+1 ∧ t− tk ∧ t. A simple
way to construct martingales is simply to consider

MF
t := E[Tr(F (HN

1 , . . . , H
N
m ))|Ft]

with F ∈ F (and Ft the canonical filtration of Brownian motion) and the
associated exponential martingale

EF
t = exp

{

NMF
t − N2

2
〈MF 〉t

}

.

Then, since F ∈ F is uniformly bounded, EF
t is a martingale imply-

ing that E[EF
t ] = E[EF

0 ] = 1. Now, we can always write, with HN =
(HN

1 , . . . , H
N
m ),

E[Tr(F (HN ))|Ft] = EH̃ [Tr(F (HN (s ∧ t) + H̃N (s− t))0≤s≤1)]
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with H̃N a Hermitian Brownian motion, independent from HN . Taking
F (X) = T (X i1

t1 , . . . , X
in
tn

) and applying Itô’s calculus, one finds that

MF
t = MF

0 +

∫ t

0

Tr
(

EH̃ [DsF (HN (s ∧ t) + H̃N (t− s))0≤s≤1].dH
N
s

)

.

Indeed, when one performs Itô’s calculus on HN (s) + H̃N (t − s) the
infinitesimal generator appears twice; once from HN (s) and once from
H̃N (t− s) and the two contributions cancel. This shows that

〈MF 〉t =
1

N

∫ t

0

Tr
(

‖EH̃ [DsF (HN (s ∧ t) + H̃N (s− t))0≤s≤1]‖2
)

ds

It was proved in [37] that for all t ∈ [0, 1],

Gt
F (LP

N) := E[N−1Tr(F (HN ))|Ft] − E[N−1Tr(F (HN ))]

− 1

2

∫ t

0

Tr
(

‖EH̃ [DsF (HN (s ∧ t) + H̃N (s− t))0≤s≤1]‖2
)

ds

is a continuous function of LP
N(actually of its resctriction to Bt measurable

functions). Furthermore, as LP
N goes to τ , Gt

F (LP
N) goes to

Gt
F (τ) = τ t(F ) − τ0(F ) − 1

2

∫ t

0

τ [|τs(DsF |Bs)|2]ds.

Therefore, since E[eN2Gt
F (LP

N)] = 1, we readily get the large deviation
upper bound by taking a distance d compatible with our topology and
picking an ε > 0 to get

P⊗m
N

(

d(LP
N, τ) < ε

)

= P⊗m
N

(

1d(LP
N

,τ)<εe
N2(Gt

F (LP
N)−Gt

F (LP
N))
)

≤ e−N2Gt
F (τ)+N2κ(ε)P⊗m

N

(

1d(LP
N

,τ)<εe
N2(Gt

F (LN))
)

≤ e−N2Gt
F (τ)+N2κ(ε)P⊗m

N

(

eN2(Gt
F (LP

N))
)

= e−N2Gt
F (τ)+N2κ(ε)

where κ(ε) goes to zero with ε. We finally can take the logarithm, divide
by N2, let N going to infinity, ε to zero and finally optimize over F to
conclude.
• Uniqueness of the solutions with smooth drift. The second point of
Theorem 18.8 is a consequence of Riesz’s theorem. Moreover, taking
F = (Xt −Xs)G(X) with G Bs measurable, we deduce that
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τ

((

Xt −Xs −
∫ t

s

Kudu

)

G(X)

)

= 0.

Hence

Ht = Xt −X0 −
∫ t

0

Kudu

is a free martingale. To show that it is a free Brownian motion, we use
a free version of Paul Lévy’s well-known theorem on the characterization
of Brownian motion as the unique martingale with continuous paths and
square bracket equal to t, and that may be of independent interest (see
[37, theorem 6.2])

Lemma 18.10. Let (Bs; s ∈ [0, 1]) be an increasing family of von Neu-
mann subalgebras, in a non-commutative probability space (A, τ), and let

(Zs = (Z1
s , . . . , Z

m
s ); s ∈ [0, 1])

be an m-tuple of self-adjoint processes adapted to (Bs; s ∈ [0, 1]), such that
Z is bounded, Z0 = 0, and for all s < t one has:
(a) τ(Zt|Bs) = Zs.
(b) τ(|Zt − Zs|4) ≤ K(t− s)2 for some constant K.
(c) For any l, p ∈ {1, . . . ,m}, and all A,B ∈ Bs, one has

τ(AZl
tBZ

p
t ) = τ(AZ l

sBZ
p
s ) + 1p=l(t− s)τ(A)τ(B) + o(t− s),

then Z is a free Brownian motion, i.e., for all s < t the elements Z l
t −

Zl
s; l ∈ {1, . . . ,m} are free with Bs, and have a semi-circular distribution

of covariance (t− s)Im.

Proof. Because of the invariance of the conditions under time translation,
it is enough to prove that Zt − Z0 is free with B0, and of semi-circular
distribution with covariance tIm. We can assume that Z0 = 0, and one
has for any i1, . . . in ∈ {1, . . . ,m},

τ(Zi1
t . . . Zin

t ) = τ((Zi1
s + (Zi1

t − Zi1
s )) . . . (Zin

s + (Zin
t − Zin

s ))).

From condition (a) we get τ(Z l
t − Zl

s|Bs) = 0, and expanding the above
product using (b) and (c) gives

τ(Zi1
t . . . Zin

t ) − τ(Zi1
s . . . Zin

s )

= (t− s)
∑

0≤k+p≤n−2

∑

ik=ip

τ(Zi1
s . . . Zik−1

s Z
ik+p+1
s . . . Zin

s )

τ(Zik+1
s . . . Z

ik+p−1
s ) + o(t− s)

where we have used non-commutative Hölder’s inequality in order to
bound the terms containing at least three (Z l

t − Zl
s) factors. It follows

that the quantities τ(Zi1
t . . . Zin

t ) satisfy a system of differential equations
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whose initial conditions are known. It is easy to see that this system has
a unique solution, resulting in the observation that there exists at most
one process (in distribution) satisfying (a), (b) and (c).
Since the free m-dimensional Brownian motion also satisfies (a), (b) and
(c), we conclude that Zt −Z0 is a free Brownian motion. For the freeness
property with respect to B0, we consider a quantity of the form

τ(A1Z
i1
t A2Z

i2
t . . . AnZ

in
t )

that again satisfies the same differential equation as when Zt is a free
Brownian motion free with B0. ut

In order to apply Theorem 18.10 to the process Y we have to check the
three conditions. First we apply (18.5) to P = (X l

t −X l
s)Qs, where Qs ∈

Bs ∩F . Although P does not belong to F one can again check that it is a
limit of a sequence of Pn in F , such that ∇sPn converges to ∇sP , so there
is no problem in applying formula (18.5). One has ∇k

uP = δkl1u∈[s,t]Qs +
W where τ̃u(W |Bs) = 0. We thus find that for all Qs ∈ Bs, one has

τ((X l
t −X l

s)Qs)

= τ̃0((X l
t −X l

s)Qs) +

∫ 1

0

τ(τ̃u(∇u[(X l
t −X l

s)Qs]|Bu).Ku)du

= τ

(∫ t

s

QsK
l
udu

)

from which we get that condition (a) is satisfied by Xt −
∫ t

0 Ksds.

We now apply (18.5) to P = (X l
t − X l

s)
4 (the same remark as above

applies). Since τ̃0((X l
t−X l

s)
4) = 2(t−s)2, ∇k

u[(X l
t−X l

s)
4] = 0 for u /∈ [s, t]

and ∇k
u[(X l

t −X l
s)

4] = 4δkl(X
l
t −X l

s)
3 for u ∈ [s, t], one has

τ((X l
t −X l

s)
4) = 2(t− s)2 +

∫ t

s

τ(τ̃u(4(X l
t −X l

s)
3|Bu)Kτ,l

u )du

Since Kτ,l
u is uniformly bounded in norm, using Hölder’s inequality and

Gronwall lemma, we get the bound (b).
Condition (c) can be checked in a similar way as condition (a).
We conclude that X is solution to the stochastic differential equation

Xt = St +

∫ t

0

Ksds

with Ks = τ(∇sK|Bs). Observing that for K ∈ Fm
[0,1], X → Ks(X) is

uniformly Lipschitz, e.g., there exists a finite constant C such that for all
s ∈ [0, 1],

||Ks(X) −Ks(Y )||∞ ≤ C sup
u≤s

||Xu − Yu||∞,
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we can use the usual Gronwall argument to prove the uniqueness of the
solution to this equation, establishing the uniqueness of τ .
•Large deviation lower bound. If τ is the law of the solution of

dXt = dSt + τ t(DtK|Bt)dt

for some K ∈ F , we know that the unique strong solution of

dXN
t = dHN

t + τ t(DtK|Ft)(X
N )dt

will converge weakly to τ . Moreover, this law is absolutely continuous with
respect to the law of the m-dimensional Hermitian Brownian motion HN

with density (see, e.g., (18.6))

dN = exp

{

N2

(

LP
N(K) − σ(K) − 1

2

∫ 1

0

LP
N(DtK|Ft)

2dt

)}

.

Since G1
K(LP

N) = N−2 log dN is a continuous function of LP
N, we get the

desired lower bound by the following chain of inequalities:

P⊗m
N

(

d(LP
N, τ) < ε

)

= P⊗m
N

(

1d(LP
N

,τ)<εe
N2(G1

K(LP
N)−G1

K(LP
N))
)

≥ e−N2G1
K(τ)−N2κ(ε)P⊗m

N

(

1d(LP
N

,τ)<εe
N2(G1

K(LP
N))
)

= e−N2G1
K(τ)−N2κ(ε)P⊗m

N

(

d(LP
N, τ) < ε

)

= e−N2G1
K(τ)−N2κ(ε) ≥ e−N2I(τ)−N2κ(ε)

with κ(ε) going to zero as ε goes to zero.

Bibliographical notes. A very nice introductory review on free entropy
was written by Voiculescu [201]. The results of this section were proved in
[37]. They were used in relation with the entropy dimension in [68, 156]. The
problem of proving that in the definition of entropy one can replace the lim
sup by a lim inf is still open, as well as the equality with the microstates-free
free entropy.
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19

Basics of matrices

19.1 Weyl’s and Lidskii’s inequalities

Theorem 19.1 (Weyl). Denote λ1(C) ≤ λ2(C) ≤ · · · ≤ λN (C) the (real)
eigenvalues of an N ×N Hermitian matrix C. Let A,B be N ×N Hermitian
matrices. Then, for any j ∈ {1, . . . , N},

λj(A) + λ1(B) ≤ λj(A+B) ≤ λj(A) + λN (B).

In particular,

|λj(A+B) − λj(A)| ≤
(

Tr(B2)
)

1
2 . (19.1)

Theorem 19.2 (Courant–Fischer).

Let A ∈ H(2)
N with ordered eigenvalues λ1(A) ≤ · · · ≤ λN (A). For k ∈

{1, . . . , N},

λk(A) := min
w1,...,wN−k∈CN

max x6=0,x∈CN

x⊥w1,...,wN−k

x∗Ax

x∗x
.

Proof. We can without loss of generality assume that A is diagonal up to
rotate the vectors w1, . . . , wN−k Then

max x6=0,x∈CN

x⊥w1,...,wN−k

x∗Ax

x∗x
= max ‖x‖2=1,x∈CN

x⊥w1,...,wN−k

N
∑

i=1

λi(A)|xi|2

≥ max‖x‖2=1,x∈CN ,xj=0,j≤k

x⊥w1,...,wN−k

N
∑

i=1

λi(A)|xi|2

≥ λk(A)

and equality holds when wi = uN−i+1 is the eigenvector corresponding to
the eigenvalue λN−i+1(A). Taking the minimum over the vectors wi thus
completes the proof. ut
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Proof of Weyl’s inequalities Theorem 19.1. Let (u1, . . . , uN−j) be the
eigenvectors of the N − j largest eigenvalues of A. Then, by Theorem 19.2,

λj(A+B) = min
w1,...,wN−j∈CN

max x6=0,x∈CN

x⊥u1,...,uN−j

x∗(A+B)x

x∗x

≤ max x6=0,x∈CN

x⊥u1,...,uN−j

x∗(A+B)x

x∗x

≤ max x6=0,x∈CN

x⊥u1,...,uN−j

x∗Ax

x∗x
+ maxx6=0

x∗Bx

x∗x

= λj(A) + λN (B)

Replacing A,B by −A,−B we obtain the second inequality.
ut

Theorem 19.3 (Lidskii). Let A ∈ H(2)
N , η ∈ {+1,−1} and z ∈ CN . We

order the eigenvalues of A+ ηzz∗ in increasing order. Then

λk(A+ ηzz∗) ≤ λk+1(A) ≤ λk+2(A+ ηzz∗).

Proof. Using the Courant–Fischer theorem one gets for k ≥ 2,

λk(A+ ηzz∗) := min
w1,...,wN−k∈CN

max x6=0,x∈CN

x⊥w1,...,wN−k

x∗(A+ ηzz∗)x

x∗x

≥ min
w1,...,wN−k∈CN

max x6=0,x∈CN

x⊥z,w1,...,wN−k

x∗Ax

x∗x

≥ min
w1,...,wN−k+1∈CN

max x6=0,x∈CN

x⊥w1,...,wN−k+1

x∗Ax

x∗x

= λk−1(A).

Replacing A′ = A+ ηzz∗, and η by −η we also have proved λk(A′ − ηzz∗) ≥
λk(A′), i.e., λk(A) ≥ λk−1(A+ ηzz∗). ut

One also has [33, Proposiion 28.2]:

Theorem 19.4 (Löwner). Let A,E ∈ H(2)
N .

N
∑

k=1

|λk(A+E) − λk(A)|2 ≤
N
∑

k=1

λk(E)2 . (19.2)
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19.2 Non-commutative Hölder inequality

The following can be found in [158].

Theorem 19.5 (Nelson). For any P1, . . . , Pq ∈ C〈X1, . . . , Xm〉, any matri-
ces A = (A1, . . . , Am) in MN any p1, . . . , pq ∈ [0, 1]q so that

∑

p−1
i = 1,

|Tr(P1(A) · · ·Pq(A))| ≤
q
∏

i=1

[Tr(|Pi(A)|qi )]
1
qi

with |P | =
√
PP ∗. This non-commutative Hölder inequality extends when Tr

is replaced by any tracial states.
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Basics of probability theory

20.1 Basic notions of large deviations

This appendix recalls basic definitions and main results of large deviations
theory. We refer the reader to [75] and [74] for a full treatment.

In what follows, X will be assumed to be a Polish space (that is a com-
plete separable metric space). We recall that a function f : X → R is lower
semicontinuous if the level sets {x : f(x) ≤ C} are closed for any constant C.

Definition 20.1. A sequence (µN )N∈N of probability measures on X satisfies
a large deviation principle with speed aN (going to infinity with N) and rate
function I iff

I : X → [0,∞] is lower semicontinuous. (20.1)

For any open set O ⊂ X, lim inf
N→∞

1

aN
logµN (O) ≥ − inf

O
I. (20.2)

For any closed set F ⊂ X, lim sup
N→∞

1

aN
logµN (F ) ≤ − inf

F
I. (20.3)

When it is clear from the context, we omit the reference to the speed or rate
function and simply say that the sequence {µN} satisfies the LDP. Also, if xN

are X-valued random variables distributed according to µN , we say that the
sequence {xN} satisfies the LDP if the sequence {µN} satisfies the LDP.

Definition 20.2. A sequence (µN )N∈N of probability measures on X satisfies
a weak large deviation principle if (20.1) and (20.2) hold, and in addition
(20.3) holds for all compact sets F ⊂ X.

The proof of a large deviation principle often proceeds first by the proof of
a weak large deviation principle, in conjuction with the so-called exponential
tightness property.

Definition 20.3. a. A sequence (µN )N∈N of probability measures on X is
exponentially tight iff there exists a sequence (KL)L∈N of compact sets such
that
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lim sup
L→∞

lim sup
N→∞

1

aN
logµN (Kc

L) = −∞.

b. A rate function I is good if the level sets {x ∈ X : I(x) ≤M} are compact
for all M ≥ 0.

The interest in these concepts lies in the following:

Theorem 20.4. a. ([74, Lemma 1.2.18]) If {µN} satisfies the weak LDP and
it is exponentially tight, then it satisfies the full LDP, and the rate function I
is good.
b. ([74, Exercise 4.1.10]) If {µN} satisfies the upper bound (20.3) with a good
rate function I, then it is exponentially tight.

A weak large deviation principle is itself equivalent to the estimation of the
probability of deviations towards small balls:

Theorem 20.5. [74, Theorem 4.1.11] Let A be a base of the topology of X.
For every A ∈ A, define

LA = − lim inf
N→∞

1

aN
logµN (A)

and
I(x) = sup

A∈A:x∈A
LA.

Suppose that for all x ∈ X,

I(x) = sup
A∈A:x∈A

{

− lim sup
N→∞

1

aN
logµN (A)

}

.

Then, µN satisfies a weak large deviation principle with rate function I.

Let d be the metric in X , and set B(x, δ) = {y ∈ X : d(y, x) < δ}.
Corollary 20.6. Assume that for all x ∈ X

−I(x) := lim sup
δ→0

lim sup
N→∞

1

aN
logµN (B(x, δ))

= lim inf
δ→0

lim inf
N→∞

1

aN
logµN (B(x, δ)).

Then, µN satisfies a weak large deviation principles with rate function I.

From a given large deviation principle one can deduce large deviation princi-
ple for other sequences of probability measures by using either the so-called
contraction principle or Laplace’s method.
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Theorem 20.7 (Contraction principle). [74, Theorem 4.2.1] Assume that
the sequence of probability measures (µN )N∈N on X satisfies a large deviation
principle with good rate function I. Then, for any function F : X → Y with
values in a Polish space Y which is continuous, the image (F]µN )N∈N ∈
M1(Y )N defined as F]µN (A) = µN

(

F−1(A)
)

also satisfies a large deviation
principle with the same speed and rate function given for any y ∈ Y by

J(y) = inf{I(x) : F (x) = y}.

Theorem 20.8 (Varadhan’s lemma). [74, Theorem 4.3.1] Assume that
(µN )N∈N satisfies a large deviation principle with good rate function I. Let
F : X → R be a bounded continuous function. Then,

lim
N→∞

1

aN
log

∫

eaNF (x)dµN (x) = sup
x∈X

{F (x) − I(x)}.

Moreover, the sequence

νN (dx) =
1

∫

eaNF (y)dµN (y)
eaNF (x)dµN (x) ∈M1(X)

satisfies a large deviation principle with good rate function

J(x) = I(x) − F (x) − sup
y∈X

{F (y) − I(y)}.

Large deviation principles are quite robust to exponential equivalence that we
now define.

Definition 20.9. Let (X, d) be a metric space. Let (µN )N∈N and (µ̃N )N∈N be
two sequences of probability measures on X. (µN )N∈N and (µ̃N )N∈N are said
to be exponentially equivalent if there exists probability spaces (Ω,BN , PN ) and
two families of random variables ZN , Z̃N on Ω with values in X with joint
distribution PN and marginals µN and µ̃N respectively so that for each δ > 0

lim sup
N→∞

PN

(

d(ZN , Z̃N ) > δ
)

= −∞.

We then have:

Lemma 20.10. [74, Theorem 4.2.13] If a large deviation principle for µN

holds with good rate function I and µ̃N is exponentially equivalent to µN ,
then a µ̃N satisfies a large deviation principle with the same rate function I.

P(Σ) possesses a useful criterion for compactness.

Theorem 20.11 (Prohorov). Let Σ be Polish, and let Γ ⊂ P(Σ). Then Γ
is compact iff Γ is tight.

Since P(Σ) is Polish, convergence may be decided by sequences.
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20.2 Basics of stochastic calculus

Definition 20.12 ([122], [168]). Let (Ω,F) be a measurable space.

• A filtration Ft, t ≥ 0 is a non-decreasing family of sub-σ-fields of F .
• A random time T is a stopping time of the filtration Ft, t ≥ 0 if the event

{T ≤ t} belongs to the σ-field Ft for all t ≥ 0.
• A process Xt, t ≥ 0 is adapted to the filtration Ft, t ≥ 0 if for all t ≥ 0 Xt

is an Ft-measurable random variable.
• Let {Xt,Ft, t ≥ 0} be an adapted process so that E[|Xt|] < ∞ for all

t ≥ 0. The process {Xt,Ft, t ≥ 0} is said to be a martingale if for every
0 ≤ s < t <∞,

E[Xt|Fs] = Xs.

• Let {Xt,Ft, t ≥ 0} be a martingale so that E[X2
t ] < ∞ for all t ≥ 0. The

martingale bracket (or the quadratic variation) 〈X〉 of X is the unique
adapted increasing process so that X2−〈X〉 is a martingale for the filtration
F .

Let {Xt,Ft, t ≥ 0} be a real-valued adapted process and let B be a Brow-

nian motion. Assume that E
∫ T

0
X2

t dt] <∞. Then,

∫ T

0

XtdBt := lim
n→∞

n−1
∑

k=0

XT k
n

(BT (k+1)
n

−BTk
n

)

exists, the convergence hold in L2 and the limit does not depend on the above
choice of the discretization of [0, T ] (see [122, section 3]). The limit is called
a stochastic integral.

One can therefore consider the problem of finding solutions to the integral
equation

Xt = X0 +

∫ t

0

σ(Xs)dBs +

∫ t

0

b(Xs)ds (20.4)

with a given X0, σ and b some functions on Rn, and B a n-dimensional
Brownian motion. This can be written under the differential form

dXs = σ(Xs)dBs + b(Xs)ds. (20.5)

There are at least two notions of solutions; the strong solutions and the weak
solutions.

Definition 20.13. [122, Definition 2.1] A strong solution of the stochastic
differential equation (20.5) on the given probability space (Ω,F) and with
respect to the fixed Brownian motion B and initial condition ξ is a process
{Xt, t ≥ 0} with continuous sample paths so that
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1. X is adapted to the filtration F given by

Gt = σ(Bs, s ≤ t;X0),N = {N ⊂ Ω, ∃G ∈ G∞ with N ⊂ G,P (G) = 0},
Ft = σ(Gt ∪ N ).

2. P (X0 = ξ) = 1.

3. P (
∫ t

0
(|bi(Xs)| + |σij(Xs)|2)ds <∞) = 1 for all i, j ≤ n.

4. (20.4) holds almost surely.

Definition 20.14. [122, Definition 3.1] A weak solution of the stochastic dif-
ferential equation (20.5) is a triple (X,B) and (Ω,F , P ) so that (Ω,F , P )
is a probability space equipped with a filtration F , X is a continuous adapted
process and B an n-dimensional Brownian motion. X satisfies (3) and (4) in
Definition 20.13.

There are also two notions of uniqueness:

Definition 20.15. [122, Definition 3.4]

• We say that strong uniqueness holds if two solutions with common prob-
ability space, common Brownian motion B and common initial condition
are almost surely equal at all times.

• We say that weak uniqueness, or uniqueness in the sense of probability,
holds if any two weak solutions have the same law.

Theorem 20.16. [122, Theorems 2.5 and 2.9]
Suppose that b and σ satisfy

‖b(t, x) − b(t, y)‖ + ‖σ(t, x) − σ(t, y)‖ ≤ K‖x− y‖,
‖b(t, x)‖2 + ‖σ(t, x)‖2 ≤ K2(1 + ‖x‖2),

for some finite constant K independent of t and ‖.‖ the Euclidean norm on
Rn, then there exists a unique strong solution to (20.5). Moreover, it satisfies

E[

∫ T

0

‖b(t,Xt)‖2dt] <∞

for all T ≥ 0.

Theorem 20.17. [122, Proposition 3.10]
Any two weak solutions (X i, Bi, Ωi,F i, P i)i=1,2 of (20.5) so that

E[

∫ T

0

‖b(t,X i
t)‖2dt] <∞

for all T <∞ and i = 1, 2 have the same law.
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Theorem 20.18 (Itô (1944), Kunita–Watanabe (1967)). [122, p. 149]
Let f : R → R be a function of class C2 and let X = {Xt,Ft; 0 ≤ t < ∞}

be a continuous semi-martingale with decomposition

Xt = X0 +Mt +At

where M is a local martingale and A the difference of continuous, adapted,
non-decreasing processes. Then, almost surely,

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dMs +

∫ t

0

f ′(Xs)dAs

+
1

2

∫ 2

0

f ′′(Xs)d < M >s, 0 ≤ t <∞.

We shall use the following well known results on martingales.

Theorem 20.19 (Burkholder–Davis–Gundy’s inequality). [122, p.
166] Let (Mt, t ≥ 0) be a continuous local martingale with bracket (At, t ≥ 0).
There exists universal constants λm, Λm so that for all m ∈ N

λmE(Am
T ) ≤ E(sup

t≤T
M2m

t ) ≤ ΛmE(Am
T ).

Theorem 20.20 (Novikov (1972)). [122, p. 199] Let {Xt,Ft, t ≥ 0} be an
adapted process with values in Rd such that

E[e
1
2

R T
0

Pd
i=1(X

i
t )

2dt] <∞

for all T ∈ R+. Then, if {Wt,Ft, t ≥ 0} is a d dimensional Brownian motion,

Mt = exp

{

∫ t

0

Xu.dWu − 1

2

∫ t

0

d
∑

i=1

(X i
u)2du

}

is a Ft-martingale.

Theorem 20.21 (Girsanov (1960)). [122, p. 191] Let {Xt,Ft, t ≥ 0} be
an adapted process with values in Rd such that

E[e
1
2

R

T
0

Pd
i=1(X

i
t )2dt] <∞.

Then, if {Wt,Ft, P, 0 ≤ t ≤ T} is a d dimensional Brownian motion,

W̄ i
t = W i

t −
∫ t

0

X i
sds, 0 ≤ t ≤ T

is a d-dimensional Brownian under the probability measure

P̄ = exp{
∫ T

0

Xu.dWu − 1

2

∫ T

0

d
∑

i=1

(X i
u)2du}P.
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Theorem 20.22. [122, p. 14] Let {Xt,Ft, 0 ≤ t < ∞} be a submartingale
whose every path is right-continuous. Then for any τ > 0, for any λ > 0

λP ( sup
0≤t≤τ

Xt ≥ λ) ≤ E[X+
τ ].

We shall use the following consequence:

Corollary 20.23. Let {Xt,Ft, t ≥ 0} be an adapted process with values in Rd

such that
∫ T

0

‖Xt‖2dt =

∫ T

0

d
∑

i=1

(X i
t)

2dt

is uniformly bounded by AT . Let {Wt,Ft, t ≥ 0} be a d-dimensional Brownian
motion. Then for any L > 0,

P

(

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

Xu.dWu

∣

∣

∣

∣

≥ L

)

≤ 2e
− L2

2AT .

Proof. We denote in short Yt =
∫ t

0 Xu.dWu and write for λ > 0,

P

(

sup
0≤t≤T

|Yt| ≥ A

)

≤ P

(

sup
0≤t≤T

eλYt ≥ eλA

)

+ P

(

sup
0≤t≤T

e−λYt ≥ eλA

)

≤ P

(

sup
0≤t≤T

eλYt−λ2

2

R t
0
‖Xu‖2du ≥ eλA−λ2AT

2

)

+P

(

sup
0≤t≤T

e−λYt−λ2

2

R

t
0
‖Xu‖2du ≥ eλA−λ2AT

2

)

.

By Theorem 20.20, Mt = e−λYt−λ2

2

R t
0
‖Xu‖2du is a non-negative martingale.

Thus, By Chebychev’s inequality and Doob’s inequality

P

(

sup
0≤t≤T

Mt ≥ eλA−λ2AT
2

)

≤ e−λA+
λ2AT

2 E[MT ]

= e−λA+
λ2AT

2

Optimizing with respect to λ completes the proof. ut

Theorem 20.24 (Rebolledo’s Theorem). Let n ∈ N, and let MN be a
sequence of continuous centered martingales with values in Rn with bracket
〈MN 〉 converging pointwise (i.e., for all t ≥ 0) in L1 towards a continuous
deterministic function φ(t). Then, for any T > 0, (MN (t), t ∈ [0, T ]) converges
in law as a continuous process from [0, T ] into Rn towards a Gaussian process
G with covariance

E[G(s)G(t)] = φ(t ∧ s).
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20.3 Proof of (2.3)

Put

V (i1, . . . , il) = [[ijn]kn=1]
l
j=1 , I =

l
⋃

j=1

{j} × {1, . . . , k} , A = [{ijn, ijn+1}](i,n)∈I .

We visualize A as a left-justified table of l rows. Let G′ = (V ′, E′) be any
spanning forest in G(i1, . . . , il), with c connected components. Since every
connected component of G′ is a tree, we have

|V | = |V ′| = c+ |E′|. (20.6)

Now let X = {Xin}(i,n)∈I be a table of the same “shape” as A, but with all
entries equal either to 0 or 1. We call X an edge-bounding table under the
following conditions:

• For all (i, n) ∈ I , if Xin = 1, then Ain ∈ E′.
• For each e ∈ E′ there exists distinct (i1, n1), (i2, n2) ∈ I such that Xi1n1 =

Xi2n2 = 1 and Ai1n1 = Ai2n2 = e.
• For each e ∈ E′ and index i ∈ {1, . . . , j}, if e appears in the ith row of A

then there exists (i, n) ∈ I such that Ain = e and Xin = 1.

For any edge-bounding table X the corresponding quantity 1
2

∑

(i,n)∈I Xin

bounds |E′| by the second required property. At least one edge-bounding table
exists, namely the table with a 1 in position (i, n) for each (i, n) ∈ I such that
Ain ∈ E′ and 0’s elsewhere. Now let X be an edge-bounding table such that
for some index i0 all the entries of X in the i0th row are equal to 1. Then the
graph G(i0) is a tree (since all edges of G(i0) could be kept in G′), and hence
every entry in the i0th row of A appears there an even number of times and a
fortiori at least twice. Now choose (i0, n0) ∈ I such that Ai0n0 ∈ E′ appears
in another row than i0. Let Y be the table obtained by replacing the entry 1 of
X in position (i0, n0) by the entry 0. Then Y is again an edge-bounding table.
Proceeding in this way we can find an edge-bounding table with 0 appearing

at least once in every row, and hence we have |E ′| ≤ [ |I|−l
2 ] = kl−l

2 . Together
with (20.6) and the definition of I , this completes the proof.
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aléatoires. Ann. Inst. H. Poincaré Probab. Statist. 37, 3 (2001), 373–402.

55. Cabanal Duvillard, T., and Guionnet, A. Large deviations upper bounds
for the laws of matrix-valued processes and non-communicative entropies. Ann.
Probab. 29, 3 (2001), 1205–1261.

56. Cabanal-Duvillard, T., and Guionnet, A. Discussions around
Voiculescu’s free entropies. Adv. Math. 174, 2 (2003), 167–226.

57. Caffarelli, L. A. Boundary regularity of maps with convex potentials.
Comm. Pure Appl. Math. 45, 9 (1992), 1141–1151.

58. Caffarelli, L. A. The regularity of mappings with a convex potential. J.
Amer. Math. Soc. 5, 1 (1992), 99–104.

59. Caffarelli, L. A. Monotonicity properties of optimal transportation and the
FKG and related inequalities. Comm. Math. Phys. 214, 3 (2000), 547–563.

60. Chadha, S., Mahoux, G., and Mehta, M. L. A method of integration over
matrix variables. II. J. Phys. A 14, 3 (1981), 579–586.

61. Chan, T. The Wigner semi-circle law and eigenvalues of matrix-valued diffu-
sions. Probab. Theory Related Fields 93, 2 (1992), 249–272.

62. Chassaing, P., and Schaeffer, G. Random planar lattices and integrated
superBrownian excursion. Probab. Theory Related Fields 128, 2 (2004), 161–
212.

63. Chatterjee, S. Concentration of Haar measures, with an application to ran-
dom matrices. J. Funct. Anal. 245, 2 (2007), 379–389.

64. Cizeau, P., and Bouchaud, J.-P. Theory of lévy matrices. Physical Review
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France

Benjamin GRAHAM University of Cambridge, UK

Katrin HOFMANN-CREDNER Ruhr Universität, Bochum, Germany

Manuela HUMMEL LMU, München, Germany
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Clermont-Ferrand, France



List of participants of the summer school 309
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Anthony Réveillac Stein estimation on the Wiener space

Alain Rouault Asymptotic properties of determinants
of some random matrices

Markus Ruschhaupt Simulation of matrices with
constraints by using moralised graphs

Pauline Sculli Counterparty default risk in affine
processes with jump decay

Frederic Utzet On the orthogonal polynomials
associated to a Lévy process
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