Corrections to "Statistical Mechanics and Random Matrices"

Alice Guionnet

Adress	:	UMPA
		Ecole Normale suprieure de Lyon,
		46 allée d'Italie, 69364 Lyon Cedex 07
		Tel: 01 72 72 84 21
e.mail	:	aguionne@umpa.ens-lyon.fr

I am very grateful to people who help me correcting these lectures notes. I thank in particular Florent Benaych-Georges and Ofer Zeitouni.

- In section 5.1, μ and μ_{Φ} are the same. Γ_1 is the carré du champ; it was defined page 54 and corresponds to the Euclidean norm of the gradient.
- The formula for the Harish-Chandra-Itzykson integral

$$I_N^{(2)}(A,B) = \int e^{N \operatorname{tr}(AUBU^*)} dU$$

p. 214 is missing a factor. In fact, with $A = \text{diag}(a_1, \ldots, a_N)$ and $B = \text{diag}(b_1, \ldots, b_N)$, and $\Delta(x)$ the Vandermonde determinant $\Delta(x) = \prod_{i < j} (x_i - x_j)$ we wrote

$$I_N^{(2)}(A,B) = \frac{\det(e^{a_i b_j})_{1 \le i,j \le N}}{\Delta(a)\Delta(b)}.$$

The true formula is

$$I_N^{(2)}(A,B) = \Delta(\rho) \times \frac{\det(e^{a_i b_j})_{1 \le i,j \le N}}{\Delta(a)\Delta(b)}$$

with $\rho_{ii} = i - 1$, $1 \le i \le N$. This additional term however does not give any contribution on the scale e^{N^2} and thus this error does not affect the rest of teh section.

• In Definition 20.9, $\limsup_{N\to\infty} P_N(d(Z_N, \tilde{Z}_N) > \delta) = -\infty$ should be replaced by $\limsup_{N\to\infty} a_N^{-1} \log P_N(d(Z_N, \tilde{Z}_N) > \delta) = -\infty.$