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Abstract. Consider an n × n Hermitian random matrix with, above the diagonal,
independent entries with α-stable symmetric distribution and 0 < α < 2. We establish
new bounds on the rate of convergence of the empirical spectral distribution of this
random matrix as n goes to infinity. When 1 < α < 2 and p > 2, we give vanishing
bounds on the Lp-norm of the eigenvectors normalized to have unit L2-norm. On the
contrary, when 0 < α < 2/3, we prove that these eigenvectors are localized.

1. Introduction

We consider an array (Xij)1≤i≤j of i.i.d. real random variables and set, for i > j,
Xij = Xji. Then, for each integer n ≥ 1, we may define the random symmetric matrix:

X = (Xij)1≤i,j≤n.

The eigenvalues of the matrix X are real and are denoted by λn(X) ≤ · · · ≤ λ1(X).
In the large n limit, the spectral properties of this matrix are now well understood as
soon as Xij has at least two finite moments see e.g. [?, ?, 4, 1, ?, ?] for reviews, or
[15, 12, 13, 18, 19] for recent results on universality. The starting point of this analysis is
the Wigner’s semi-circular law, which asserts that if the variance of Xij is normalized to
1, then the empirical spectral measure

1

n

n∑
i=1

δλi(X)/
√
n

converges almost surely for the weak convergence topology to the semi-circular law µ2

with support [−2, 2] and density f2(x) = 1
2π

√
4− x2. As already advertised, many more

properties of the spectrum are known. For example, if the entries are centered and have
a subexponential tail, then, see [10, 11], for any p > 2 and ε > 0,

max {‖v‖p : v eigenvector of X with ‖v‖2 = 1}

is O(n1/p−1/2+ε), where ‖v‖p = (
∑p

i=1 |vi|p)
1
p . This implies that the eigenvectors are

strongly delocalized.

When the second moment is no longer finite, much less is known and the picture is
different. Let 0 < α < 2 and assume for simplicity that

P(|X11| ≥ t) ∼t→∞ t−α. (1)

2000 Mathematics Subject Classification. 15B52 (60B20; 60F15; 60E07).
Key words and phrases. Random matrices; Stable distribution, Eigenvector delocalization; Wegner

estimate.
1



2 CHARLES BORDENAVE AND ALICE GUIONNET

Then, we are not anymore in the basin of attraction of Wigner’s semi-circular law: now
the empirical spectral measure

1

n

n∑
i=1

δλi(X)/n1/α

converges a.s. for the weak convergence topology to a new limit law µα, see [3] and also
[2], [5]. It is known that µα is symmetric, has full support, a bounded density fα which is
analytic outside a finite set of points. Moreover, fα(0) has an explicit expression and as
x goes to ±∞, fα(x) ∼ (α/2)|x|α2−1. Finally, as α goes to 2, µα converges for the weak
convergence topology to µ2. One of the difficulty of this type of random matrices is the
lack of an exactly solvable model as in the Gaussian Unitary Ensemble or the Gaussian
Orthogonal Ensemble in the finite variance case.

In the present paper, we give a rate of local convergence to µα and investigate the
behavior of the eigenvectors of X. In a fascinating article [7], Bouchaud and Cizeau
have made some prediction for the eigenvectors of X. They argue that the situation is
different for 0 < α < 1 and 1 < α < 2. They quantify the localized nature of a vector
v with ‖v‖2 = 1 by two scalars: ‖v‖4 and ‖v‖1. If ‖v‖4 = o(1) the vector is said to be
delocalized, if ‖v‖4 6= o(1) but ‖v‖1 � 1 then v is weakly delocalized (we might also say
weakly localized), while if ‖v‖1 = O(1) then the vector is localized. Now suppose that v is
an eigenvector of n−1/αX associated to an eigenvalue λ. For 1 < α < 2, we have proved
that all but o(n) of the eigenvectors were delocalized (this disproved the prediction of [7]).

For 0 < α < 1, Bouchaud and Cizeau predict that with high probability, if |λ| < Eα
then v is weakly delocalized, while |λ| > Eα, v is localized. It is reasonable to predict
that Eα goes to 0 as α ↓ 0 and goes to infinity as α ↑ 2. It is not clear whether this
threshold Eα depends on the choices of the norms L1 and L4 to quantify localization
and delocalization. We are far from proving the existence of such a threshold within the
spectrum. Nevertheless, for 0 < α < 2/3, we have proved that there exists Eα > 0 such
that if |λ| ≥ Eα then a localization occurs : the mass of v is carried by at most n1−δα

entries, for some δα > 0.

This heavy-tailed matrix model is in some sense similar to the adjacency matrix of
Erdős-Rényi graphs with parameter p/n since its entries are of order one only with prob-
ability of order 1/n. In the regime where p is going to infinity faster than n2/3, this
adjacency matrices were shown to belong to the university class of Wigner random ma-
trices [8],[9]. If pn/(log n)c goes to infinity for some constant c, the delocalization of
eigenvectors was also proved in these articles. In the related model of the adjacency
matrix of uniformly sampled d-regular graphs on n vertices, the delocalization of eigen-
vectors has been studied in Dumitriu and Pal [?] and Tran, Vu and Wang [?]. It was also
conjectured by Sarnak that as soon as d ≥ 3, this model also belongs to the university
class of Wigner random matrices.

1.1. Main results. Let us now be more precise. Throughout the paper, the array
(Xij)1≤i≤j will be real i.i.d. symmetric α-stable random variable such that for all t ∈ R,

E exp(itX11) = exp(−wα|t|α),

for some 0 < α < 2 and wα = π/(sin(πα/2)Γ(α)). With this choice, the random vari-
ables (Xij) are normalized in the sense that (1) holds. The assumption that the random
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variables follow an α-stable law should not be a crucial for our results, it will however
simplify substantially some proofs. We define the hermitian matrix

An = a−1
n X with an = n1/α.

The eigenvalues of the matrix A are denoted by λn(A) ≤ · · · ≤ λ1(A). The empirical
spectral measure of A is defined as

µA =
1

n

n∑
i=1

δλi(A) =
1

n

n∑
i=1

δλi(X)/n1/α .

The resolvent of A will be denoted by

R(z) = (A− z)−1,

where z ∈ C+ = {z ∈ C : Im(z) > 0}. The Cauchy-Stieltjes transform of µA is easily
recovered from the resolvent:

gµA(z) =

∫
1

x− z
µA(dx) =

1

n
tr(R(z)). (2)

From [3, 5], for any fixed interval I ⊂ R, a.s. as n→∞,

µAn(I)

|I|
− µα(I)

|I|
→ 0, (3)

where |I| denotes the length of the interval I. As in [12, 13], the opening move for
proving statements about the eigenvectors of A is to reinforce the convergence (3) for
small intervals whose length vanishes with n. We will express our main results in terms
of a scalar ρ depending on α:

ρ =


1
2

if 8
5
≤ α < 2

α
8−3α

if 1 < α < 8
5

α
2+3α

if 0 < α ≤ 1.

The scalar ρ depends continuously on α and is non-decreasing. Roughly speaking we are
able to prove that the convergence (3) holds for all intervals of size larger than n−ρ+o(1).
A precise statement is the following.

Theorem 1.1 (Local convergence of the empirical spectral distribution). Let 0 < α < 2.
There exists a finite set Eα ⊂ R such that if K ⊂ R\Eα is a compact set and δ > 0, the
following holds. There are constants c0, c1 > 0 such that for all integers n ≥ 1, if I ⊂ K
is an interval of length |I| ≥ c1n

−ρ( log n)2, then

|µA(I)− µα(I)| ≤ δ|I|,
with probability at least 1− 2 exp (−c0nδ

2|I|2).

In the forthcoming Theorem 3.5, we will give a slightly stronger form of Theorem 1.1: we
will allow the parameter δ to depend explicitly on n and |I| and the logarithmic correction
in front of n−ρ will be reinforced. The proof of Theorem 1.1 will be based on estimates
of the diagonal coefficients of the resolvent matrix R(z) as z = E + iη gets close to the
real axis with η = n−ρ+o(1). For technical reasons, we have only been able to establish (3)
for intervals outside the finite set Eα which contains 0. The same type of result should
hold for all sufficiently large intervals. In Proposition 2.1, we will give an upper bound
on µA(I) (i.e. a Wegner’s estimate) which will be valid for all intervals of size larger than



4 CHARLES BORDENAVE AND ALICE GUIONNET

n−(α+2)/4. The threshold ρ ≤ 1
2

may be optimal, eventhough for Wigner’s matrices it
is simply one, since the spectral measure of heavy tails random matrices fluctuates like
O(n−1/2) rather than like O(n−1) for Wigner’s matrices (see [?, ?]).

Theorem 1.1 will have the following corollary on the delocalization of the eigenvectors.

Theorem 1.2 (Delocalization of eigenvectors). Let 1 < α < 2. There exist a finite set
Eα ⊂ R and a constant c > 0 such that if K ⊂ R\Eα is a compact set, with probability
tending to 1,

max{‖vk‖∞ : 1 ≤ k ≤ n, λk(A) ∈ K} ≤ n−ρ(1− 1
α

)(log n)c, (4)

where v1, · · · , vn is an orthogonal basis of eigenvectors of A associated to the eigenvalues
λ1(A), · · · , λn(A).

Notice that for p > 2, ‖v‖p ≤ ‖v‖2/p
2 ‖v‖

1−2/p
∞ . Hence, Theorem 1.2 implies that the Lp-

norm of any eigenvector associated to an eigenvalue in K goes in probability to 0 as soon
as p > 2. Similarly, from ‖v‖2

2 ≤ ‖v‖1‖v‖∞, we have a lower bound of order nρ(1− 1
α

)+o(1)

on the L1-norm of the eigenvectors. Note that our estimate becomes trivial as α ↓ 1 and
give upper bound of order n−1/4+o(1) as α ↑ 2. For any κ > 0, in the proof of Theorem
1.2, we will see that by increasing suitably c, the probability that the event (4) holds is
at least 1− n−κ.

We now present our result on localization of eigenvectors. We are not able to prove
localization for all eigenvectors but only for ”typical” eigenvectors associated to an eigen-
value in a small interval. More precisely, we consider v1, · · · , vn an orthogonal basis of
eigenvectors of A associated to the eigenvalues λ1(A), · · · , λn(A). If I is an interval of
R, we define ΛI as the set of eigenvectors whose eigenvalues are in I. Then, if ΛI is not
empty, for 1 ≤ i ≤ n, set

WI(i) =
n

|ΛI |
∑
v∈ΛI

〈v, ei〉2,

where, throughout this paper,

|ΛI | = nµA(I) = NI (5)

is the cardinal of ΛI . WI(i)/n is the average amplitude of the i-th coordinate of eigenvec-
tors in ΛI . By construction, the average amplitude of WI is 1:

1

n

n∑
i=1

WI(i) = 1.

If the eigenvectors in ΛI are localized and I contains few eigenvalues, then we might
expect that for some i, WI(i) � 1, while for most of the others WI(i) = o(1). More
quantitatively, fix 0 < δ < 1 and assume that for some 0 < κ < 1 and 0 < ε < 1

1

n

n∑
i=1

WI(i)
κ ≤ ε,

then, setting J = {i : WI(i) ≥ (δ−1ε)−
1

1−κ}, we find

1

n

n∑
i∈J

WI(i) ≥ 1− δ.
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In particular, all but a proportion δ of the mass of WI is carried by a set J of cardinal at

most |J | ≤ n(δ−1ε)
1

1−κ . If ε goes to 0 with n, this indicates a localization phenomenon.
With this in mind, we can state our result.

Theorem 1.3 (Localization of eigenvectors). Let 0 < α < 2/3, 0 < κ < α/2 and ρ be as
above. There exists Eα,κ such that for any compact K ⊂ [−Eα,κ, Eα,κ]c, there are constants
c0, c1 > 0 and for all integers n ≥ 1, if I ⊂ K is an interval of length |I| ≥ n−ρ( log n)2,

1

n

n∑
i=1

WI(i)
α
2 ≤ c1|I|κ,

with probability at least 1− 2 exp (−c0n|I|4).

This result is interesting when I = [E − n−ρ+o(1), E + n−ρ+o(1)] is a small neighborhood
around some large E. Then it shows that for any 0 < κ < α/2, the mass of the eigenvectors
around E is concentrated around order n1−2ρκ/(2−α) entries as long as |E| is large enough.
The proof of Theorem 1.3 will be done by showing that

1

n

n∑
i=1

(ImR(E + iη)ii)
α
2 (6)

vanishes to 0 if η = n−ρ+o(1) even though that

1

n

n∑
i=1

ImR(E + iη)ii

stays bounded away from 0. This phenomenon will have an interpretation in terms of a
random self-adjoint operator introduced in [5] which is, in some sense, the limit of the
matrices A. We will prove that the imaginary part of its resolvent vanishes at E+iη, with
η = o(1) and |E| large enough, while its expectation does not, see Theorem 5.1. Note that
if 0 < η � n−1, then we necessarily have that for almost all E, ImR(E + iη)ii converges
to 0. The fact that our estimate |I| ≥ n−ρ gets worse as α goes to 0 is an artifact of
the proof : our rate of convergence of R(E + iη)ii to its limit gets worse as α gets small.
It is however intuitively clear that the localization should be stronger when α is smaller.
However, in the forthcoming Theorem 5.10, we will prove that, for any 0 < α < 2/3,

the expression (6) goes to 0 if η = n−
1
6 . Finally, it is worth to notice that computing

the fractional moments of the resolvent matrix as a way to prove localization is already
present in the literature on random Schrödinger operators, see e.g. [?].

The remainder of the paper is organized as follows. In Section 2 we establish general
upper bounds on NI defined by (5). Section 3 contains the proof of Theorem 1.1. Section
4 is devoted to the proof of Theorem 1.2. The arguments developped in these two sections
are based on ideas from the seminal work of Erdős, Schlein, Yau (see e.g. [10, 11, 12])
concerning Wigner’s matrices with enough moments, as well as on the analytic approach
of heavy tailed matrices as initiated in [3, 2]. However, there was a technical gap due to
the lack of concentration inequalities, as well as of simple loop equations, that hold for
finite second moment Wigner matrices. A few of the required new estimates due to the
specific nature of heavy tailed matrices are contained in the appendix on concentration
inequalities and stable laws. In Section 5 we prove Theorem 1.3, which is based on the
representation of the asymptotic spectral measure given in [5] and a new fixed point
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argument which allows to prove the vanishing of the imaginary part of the resolvent in
the regime α ∈ (0, 2/3).

The whole article is quite technical, but hopefully shall be useful for further local study
of the spectrum of random matrices which do not belong to the universality class of
Wigner’s semi-circle law.

2. Upper bound on the spectral counting measure

For η > 0 and E ∈ R, we set I = [E − η, E + η]. The goal of this section is to provide
a rough upper bound on NI when η is large enough, where NI was defined by (5). Let

γ =

(
1

2
+

1

α

)−1

. (7)

Proposition 2.1 (Upper bound on counting measure). Let 0 < α < 2. There exist

c, c′ > 0 depending only on α such that if η ≥ n−
α+2

4 , then, for all integers n, for all t ≥ c,

P (NI ≥ tnηγ) ≤ c exp(−c′t
2

2−α ) + 2n exp(−c′t
4

2+α ) .

This bound will later be refined in the forthcoming Proposition 3.6. The upper bound
on the eigenvalues counting measure implies an upper bound for the trace of the resolvent.

Corollary 2.2 (Trace of resolvent). Let 0 < α < 2 and z = E + iη ∈ C+. There exists

c > 0 depending only on α such that if η ≥ n−
α+2

4 , then, for all integers n,

EtrR(z)R∗(z) ≤ c(log n)
2+α

4 nη−
4

2+α .

Proof. By the spectral theorem

trR(z)R∗(z) =
n∑
j=1

|λj(A)− z|−2.

Let η be the imaginary part of z. Define I0 = [E − η, E + η] and for integer k ≥ 0,
Ik+1 = [E − 2k+1η, E + 2k+1η]\[E − 2kη, E + 2kη]. By construction, if λj(A) ∈ Ik then
|λj(A) − z|−2 ≤ 2−2k+1η−2. Therefore, if NIk = nµA(Ik) is the number of eigenvalues in
Ik, then

trR(z)R∗(z) ≤
∑
k≥0

2−2k+1η−2NIk . (8)

We write Ik = I+
k ∪ I

−
k , where I±k = R± ∩ Ik. To estimate E[NI±k

] we apply Proposition

2.1. Namely it yields that for each interval I of length η ≥ n−
α+2

4 , for any τ ≥ c

E[NI ] =

∫ ∞
0

P (NI ≥ t) dt

≤ τnηγ + nηγ
∫ ∞
τ

P (NI ≥ tnηγ) dt

≤ nηγ
(
τ +

∫ ∞
τ

(
exp(−c′t

2
2−α ) + 2n exp(−c′t

4
2+α )

))
dt

≤ nηγ
(
τ + c0(1 + n exp(−c′τ

4
2+α ))

)
,
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for some finite constant c0 > 0. Therefore, taking τ of order (log n)
2+α

4 , we deduce that
there exists some finite constant c1 > 0 such that

E[NI ] ≤ c1(log n)
2+α

4 nηγ .

Therefore, we deduce from (8) that

EtrR(z)R∗(z) ≤ 2c1(log n)
2+α

4

∑
k≥0

2−2kη−2n(η2k)γ ≤ 2c1(log n)
2+α

4 nη−
4

2+α

∑
k≥0

2−
4k

2+α .

�

The rest of this section is devoted to the proof of Proposition 2.1.

2.1. A geometric upper bound. In this paragraph, we recall a general upper bound
for NI that is due to Erdős-Schlein-Yau [12], namely if we let A(k) be the principal minor
matrix of A where the k-th row and column have been removed, W (k) be the vector space
generated by the eigenvectors of A(k) correponding to eigenvalues at distance greater than
η from E, we have

NI ≤ 4η2 a2
n

n∑
k=1

dist(Xk,W
(k))−2 . (9)

Let us prove (9). We start with the resolvent formula,

R(z)kk = −
(
z − a−1

n Xkk + a−2
n 〈Xk, R

(k)Xk〉
)−1

, (10)

where Xk = (Xk1, · · · , Xkk−1, Xkk+1, · · · , Xkn) ∈ Rn−1 and R(k) = (A(k) − z)−1.

Identifying the real and imaginary part, we get, using the fact that z and the eigenvalues
of R(k) are in C+,

ImR(z)kk ≤
(
Im
(
z − a−1

n Xkk + a−2
n 〈Xk, R

(k)Xk〉
))−1

≤ a2
n〈Xk, ImR

(k)Xk〉−1.

Let (λ
(k)
i )1≤i≤n−1 and (u

(k)
i )1≤i≤n−1 be the eigenvalues and eigenvectors of A(k). Choosing

z = E + iη, we have the spectral decomposition

ImR(k) =
n−1∑
i=1

η

(λ
(k)
i − E)2 + η2

u
(k)
i u

(k)
i

∗
.

If |λ(k)
i − E| ≤ η, then η

(λi−E)2+η2 ≥ 1/(2η). Therefore, we deduce

ImR(z)kk ≤ 2ηa2
n

(
n−1∑
i=1

1|λ(k)
i −E|≤η

〈Xk, u
(k)
i 〉2

)−1

.

We rewrite the above expression as

ImR(z)kk ≤ 2ηa2
ndist−2(Xk,W

(k)), (11)

where

W (k) = vect
{
u

(k)
i : 1 ≤ i ≤ n− 1, λ

(k)
i /∈ [E − η, E + η]

}
.
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Since I = [E − η, E + η], the inequalities (11) and

tr ImR(z) = n

∫
η

(E − λ)2 + η2
µA(dx) ≥ n

∫
I

η

(E − λ)2 + η2
µA(dx) ≥ NI

2η

give (9). We set

N
(k)
I = |{1 ≤ i ≤ n− 1 : λ

(k)
i ∈ I}| = n− 1− dim(W (k)) = (n− 1)µA(k)(I).

From Weyl interlacement theorem,

NI − 1 ≤ N
(k)
I = n− 1− dim(W (k)) ≤ NI + 1. (12)

2.2. Proof of Proposition 2.1. We note that up to increasing the constant c and 1/c′,

it is sufficient to prove the proposition only for all η ≥ c1n
−α+2

4 for some c1 (indeed,
NI′ ≤ NI if I ′ ⊂ I and if NI ≤ tn|I|γ then NI′ ≤ tn|I ′|γ(|I|/|I ′|)γ).

In the sequel we denote in short distk = dist(Xk,W
(k)). From (9)-(12), we write

NI ≤ 1NI≤btnηγctnη
γ + 4η2a2

n

n∑
k=1

dist−2
k 1

N
(k)
I ≥btnηγc

. (13)

We have dist2
k = 〈Xk, PkXk〉, where Pk is the orthogonal projection on W (k). We note that

Xk is independent of W (k). From Lemma B.1, there exists a positive α/2-stable random
variable Sk and a standard Gaussian vector Gk, independent from Sk, such that

dist2
k = ‖PkGk‖2

αSk.

Note that η ≥ cn−
α+2

4 is equivalent to nη
2γ
α ≥ c

2γ
α . By Corollary A.2 (applied to A = Pk),

there exists universal constants C, δ so that if N
(k)
I ≥ tc−γnηγ ≥ tn1−α

2 for t ≥ Ccγ, with
probability at least

1− 2 exp(−δn(tη)
2γ
α /2) ≥ 1− 2 exp(−c0t

4
2+α ) (14)

we have,

‖PkGk‖α ≥ δ (tnηγ)
1
α .

Hence, if Fn denotes the event that NI > btnηγc and for all k, ‖PkGk‖α ≥ δ (tnηγ)
1
α , we

have from (13)

NI1Fn ≤ 4η2δ−2 (tηγ)−
2
α

n∑
k=1

S−1
k .

With our choice of γ, 2− 2γ/α = γ, hence, with c1 = 4δ−2, we deduce

NI1Fn ≤ c1nη
γt−

2
α

(
1

n

n∑
k=1

S−1
k

)
.

The variables (Sk)1≤k≤n have the same distribution but are correlated. Nevertheless,
note that the function x 7→ exp(xδ) is convex on [bδ,+∞) with bδ = 0 if δ ≥ 1, and
bδ = (1/δ − 1)1/δ if 0 ≤ δ ≤ 1. Hence from the Jensen inequality,

exp

(
1

n

n∑
k=1

S−1
k

)δ

≤ exp

(
1

n

n∑
k=1

S−1
k ∨ bδ

)δ

≤ 1

n

n∑
k=1

exp(S−δ1 ∨ bδδ).
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In particular for every c2 > 0,

E exp

c2

(
1

n

n∑
k=1

S−1
k

) α
2−α
 ≤ c3E exp

{
c2

(
S
− α

2−α
1

)}
,

where c3 = exp(c2b
α/(2−α)
α/(2−α)). By Lemma B.3, for c2 small enough, the above is finite. Thus,

from the Markov inequality, for some constants c4, c5 > 0,

P (NI1Fn > tnηγ) ≤ P

(
1

n

n∑
k=1

S−1
k > c−1

1 t
2
α

)
≤ c4 exp(−c5t

2
2−α ).

Therefore, by (14), we deduce

P (NI > tnηγ) ≤ P ({NI > tnηγ} ∩ F c
n) + P (NI1Fn > tnηγ)

≤ 2n exp(−c0t
4

2+α ) + c4 exp(−c5t
2

2−α )

which completes the proof of the proposition.

3. Local convergence of the spectral measure

To prove the local convergence of the spectral measure, we shall prove that an observable
of the resolvent satisfies nearly a fixed point equation, which also entails an approximate
equation for the resolvent. Such an equation was already derived in [3, 2] but the error
terms are here carefully estimated. This step will be crucial to obtain, in the second part
of this section, a rate of convergence of the Stieltjes transform of the spectral measure
toward its limit. The range of convergence will be first derived roughly, and then improved
for α > 1 thanks to bootstraps arguments.

3.1. Approximate fixed point equation. The observables we shall be interested in
will be

Y (z) := E[(−iR(z)11)
α
2 ] and X(z) := E[−iR(z)11] . (15)

(For 1 ≤ k, ` ≤ n, we will write indifferently Rk`(z) or R(z)k`). For β ∈ [0, 2], we define
Kβ = {z ∈ C : | arg(z)| ≤ πβ

2
}. By construction −iR11(z) ∈ K1 for z ∈ C+, so that

Y (z) ∈ Kα/2 and X(z) ∈ K1. On Kα/2, we may define the entire functions

ϕα,z(x) =
1

Γ(α
2
)

∫ ∞
0

t
α
2
−1eitze−Γ(1−α

2
)t
α
2 xdt

and

ψα,z(x) =

∫ ∞
0

eitze−Γ(1−α
2

)t
α
2 xdt.

For further use, we define, with the notation of (10),

Mn(z) =
1

n− 1
Etr

{
R(1)(z)(R(1)(z))∗

}
. (16)

Note that, writing explicitly the dependence in n, R
(1)
n = (A

(1)
n − z)−1 and an

an−1
A

(1)
n has

the same distribution than An−1. We may thus apply Corollary 2.2 to R(1) (it can be
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checked the difference between an and an−1 is harmless). For some constant c > 0, we

therefore have the upper bound for all z = E + iη and η ≥ n−
α+2

4 ,

Mn(z) ≤ c(log n)
2+α

4 η−
4

2+α . (17)

The main result of this paragraph is the following approximate fixed point equations.

Proposition 3.1 (Approximate fixed point equation). Let 0 < α < 2 and z = E + iη ∈
C+. There exists c > 0 such that if n−

α+2
4 ≤ η ≤ 1 and

ε = η−α∧1n−
1
α∨1 +

(log n)1α=1

ηn
+

(
η−1

√
Mn(z)

n

)1∧α (
1 + (log n)11<α≤4/3 + (log n)210<α≤1

)
,

(18)
then, for any integer n ≥ 1,

|Y (z)− ϕα,z(Y (z))| ≤ cη−
α
2 ε+ cη−

α
2 n−

α
4 ,

and

|X(z)− ψα,z(Y (z))| ≤ cη−1ε+ cη−
α
2 n−

α
4 .

We note that we could use the bound (17) to get an explicit upper bound on ε. In the
forthcoming Proposition 3.6 we will however improve this bound for some range of η.

In the first step of the proof, we compare Y (z) with an expression which gets rid of the
off-diagonal terms of R(1) in (10). More precisely, with the notation of (10), we define

I(z) := E

((−iz) + a−2
n

n∑
k=2

X2
1k(−iR

(1)
kk )

)−α
2

 ∈ Kα/2,
and similarly,

J(z) := E

((−iz) + a−2
n

n∑
k=2

X2
1k(−iR

(1)
kk )

)−1
 ∈ K1.

We start with a technical lemma.

Lemma 3.2 (Off-diagonal terms). Let B be an hermitian matrix with resolvent G =
(B − z)−1. For any 0 < α < 2, there exists a constant c = c(α) > 0 such that for n ≥ 2,

P

(∣∣∣∣∣a−2
n

∑
2≤k 6=`≤n

X1kX1`Gk`

∣∣∣∣∣ ≥
√

tr(GG∗)

n2
t

)
≤ ct−α log (n (2 ∨ t)) log (2 ∨ t) ,

and if 1 < α < 2,

E

∣∣∣∣∣a−2
n

∑
2≤k 6=`≤n

X1kX1`Gk`

∣∣∣∣∣ ≤ c

√
tr(GG∗)

n2

(
1 + 11<α≤4/3 log n

)
.
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Proof. Let 0 < α ≤ 1. We use a decoupling technique : from [?, Theorem 3.4.1], there
exists a universal constant c > 0 such that

P

(∣∣∣∣∣a−2
n

∑
2≤k 6=`≤n

X1kX1`Gk`

∣∣∣∣∣ ≥ t

)
≤ cP

(∣∣∣∣∣a−2
n

∑
2≤k 6=`≤n

X1kX
′
1`Gk`

∣∣∣∣∣ ≥ t/c

)
(19)

≤ cP

(∣∣∣∣∣a−2
n

∑
2≤k 6=`≤n

X1kX
′
1`Re(Gk`)

∣∣∣∣∣ ≥ t/2c

)

+cP

(∣∣∣∣∣a−2
n

∑
2≤k 6=`≤n

X1kX
′
1`Im(Gk`)

∣∣∣∣∣ ≥ t/2c

)
,

where X ′1 is an independent copy of X1. From the stable property of X ′1, we deduce that

∑
2≤k 6=`≤n

X1kX
′
1`Re(Gk`)

d
= X ′11

(∑
`

∣∣∣∣∣∑
k 6=`

X1kRe(Gk`)

∣∣∣∣∣
α) 1

α

, (20)

and similarly for the imaginary part. From the stable property of X1,

∑
`

∣∣∣∣∣∑
k 6=`

X1kRe(Gk`)

∣∣∣∣∣
α

d
=
∑
`

|X̂`|α
∑
k 6=`

|Re(Gk`)|α, (21)

where (X̂`)` is a random vector whose marginal distribution is again the law of X11 (note

however that the entries of (X̂`)` are correlated). Let ρ` =
∑

k 6=` |Re(Gk`)|α and ρ =
∑

` ρ`.

For s ≥ 2 to be chosen later, we define Y` = X̂`1(|X̂`| ≤ san) and Y ′1 = X ′111(|X ′11| ≤ s).
It is straightforward to check that

E|Y`|α ≤ c log(sαn) and E|Y ′1 |α ≤ c log(s).

Hence, from (20)-(21)

P

|X ′11|

(∑
`

|X̂`|αρ`

) 1
α

≥ t

 ≤ P

|Y ′1 |
(∑

`

|Y`|αρ`

) 1
α

≥ t


+ P

(
max
`
|X̂`| ≥ san

)
+ P

(
|X̂ ′11| ≥ s

)
≤ cs−α +

cρ log(sαn) log(s)

tα
,

where we have used the Markov inequality and the union bound

P(max
`
|X̂`| ≥ san) ≤ nP(|X11| ≥ san) ≤ cs−α.

We choose s = 2 ∨ (t/ρ1/α), we find that

P

|X ′11|

(∑
`

|X̂`|αρ`

) 1
α

≥ tρ1/α

 ≤ c log((2 ∨ t)n) log(2 ∨ t)
tα

.
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The same statement holds for Im(G). To sum up, we deduce from (19) that

P

(∣∣∣∣∣a−2
n

∑
2≤k 6=`≤n

X1kX1`Gk`

∣∣∣∣∣ ≥ a−2
n ρ1/αt

)
≤ ct−α log (n (2 ∨ t)) log (2 ∨ t) .

Then, the first statement of the lemma follows Hölder’s inequality which asserts that

a−2
n ρ1/α ≤ n−

2
α

(∑
`

∑
k

|Gk`|α
) 1

α

≤ n−
2
α

(∑
`

∑
k

|Gk`|2
) 1

2

n
2
α
−1 =

√
tr(GG∗)

n2
, (22)

(recall that Gk` = G`k).

Now, assume α > 1. By integrating the above bound, we find easily

E

∣∣∣∣∣a−2
n

∑
2≤k 6=`≤n

X1kX1`Gk`

∣∣∣∣∣ =

∫ ∞
0

P

(∣∣∣∣∣a−2
n

∑
2≤k 6=`≤n

X1kX1`Gk`

∣∣∣∣∣ ≥ t

)
dt ≤ c

√
tr(GG∗)

n2
log n.

(In fact, with slightly more care, we may replace log n by (log n)
1
α log(log n)). It remains

to check that we can remove the term log n for α > 4/3. It will come easily from the
bound

P

(∣∣∣∣∣a−2
n

∑
2≤k 6=`≤n

X1kX1`Gk`

∣∣∣∣∣ ≥ t

)
≤ c

(
tr(GG∗)

n2t2

) α
4−α

. (23)

Let s ≥ 1 to be chosen later. We now set Yk = X1k1(|X1k| ≤ san)/an. We write∣∣∣∣∣ ∑
2≤k 6=`≤n

YkY`Gk`

∣∣∣∣∣
2

=
∑

k1 6=`1,k2 6=`2

Yk1Y`1Yk2Y`2Gk1`1G
∗
k2`2

.

The variables Yk are iid and by symmetry EY1 = EY 3
1 = 0. Hence, since Gk` = G`k,

taking expectation we obtain

E

∣∣∣∣∣ ∑
2≤k 6=`≤n

YkY`Gk`

∣∣∣∣∣
2

= 2
∑
k 6=`

E[Y 2
1 ]2Gk`G

∗
`k ≤ 2E[Y 2

1 ]2trGG∗.

It is routine to check that, for p > α, E[|Y1|p] ≤ c(p)sp−αn−1. Hence, arguing as above,
we find

P

(∣∣∣∣∣a−2
n

∑
2≤k 6=`≤n

X1kX1`Gk`

∣∣∣∣∣ ≥ t

)
≤ c

s2(2−α)trGG∗

n2t2
+ cs−α.

We conclude by choosing s = 1 ∨ (n2t2/trGG∗)1/(4−α). �

We may now compare I(z) and J(z) to Y (z) and X(z).

Lemma 3.3 (Diagonal approximation). Let 0 < α < 2 and z = E + iη ∈ C+. There
exists c > 0 such that if ε is given by (18) then

|Y (z)− I(z)| ≤ cη−
α
2 ε and |X(z)− J(z)| ≤ cη−1ε.
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Proof. Define

T (z) = −a−1
n X11 + a−2

n

∑
2≤k 6=`≤n

X1kX1`R
(1)
k` . (24)

We notice that for any, z, z′ ∈ C+ and α > 0,

|(iz)−α/2 − (iz′)−α/2| ≤ α

2
|z − z′|(Im(z) ∧ Im(z′))−α/2−1.

With the notation of (10), we also note that Im(
∑n

k=1 X
2
1kR

(1)
kk ) ≥ 0 and Im(−a−1

n X11 +
〈X1, R

(1)X1〉) ≥ 0. Hence, from (10), for any event Ω,

|Y (z)− I(z)| ≤ α

2
η−

α
2
−1E[|T (z)|1Ω] + η−

α
2 P(Ωc). (25)

Applying the same argument with X(z), J(z), we get

|Y (z)− I(z)| ≤ α

2
η−

α
2D(z), |X(z)− J(z)| ≤ η−1D(z)

with

D(z) = η−1E[|T (z)|1Ω] + P(Ωc). (26)

We may bound D(z) by using that by Lemma 3.2, since R(1) is independent of X(1), which
gives

P

(∣∣∣∣∣a−2
n

∑
2≤k 6=`≤n

X1kX1`Gk`

∣∣∣∣∣ ≥
√
Mn

n
t

)
≤ ct−α log (n (2 ∨ t)) log (2 ∨ t) . (27)

and for 1 < α < 2,

E

∣∣∣∣∣a−2
n

∑
2≤k 6=`≤n

X1kX1`Gk`

∣∣∣∣∣ ≤ c

√
Mn

n

(
1 + 11<α≤4/3 log n

)
. (28)

• Let us first assume that 1 < α < 2, then taking Ωc = ∅ in (25) and using (28), it
shows that for some constant c > 0,

D(z) ≤ cη−1

(
n−

1
α +

√
Mn

n

(
1 + 11<α≤4/3 log n

))
.

• Assume that 0 < α ≤ 1, we take in (26)

Ω =

{
a−1
n |X11| ≤ t ; a−2

n |
∑

1≤k 6=`≤n

X1kX1`R
(1)
k` | ≤ t

}
.

Then, we have

E[|T (z)|1Ω] ≤
∫ t

0

P(a−1
n |X11| ≥ y)dy +

∫ t

0

P(|a−2
n

∑
1≤k 6=`≤n

X1kX1`R
(1)
k` | ≥ y)dy.

Assume that 1/n ≤ t ≤ 1. Then, using (27), we find that E[|T (z)|1Ω] is bounded
up to multiplicative constant (depending on α) by

t1−α

n
+

log(n)

n
1α=1 +

(
Mn

n

)α
2

(log n)2 t1−α.
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(using (18) we may safely bound the terms log(tn/Mn) by log n). With t = η we
find

D(z) ≤ cη−αn−1 + c
1α=1(log n)

ηn
+ c

(
Mn

nη2

)α
2

(log n)2 .

This yields the claimed bounds. �

We next relate I and J with the functions ϕα,z and ψα,z by using the well known
identities

x−δ =
1

Γ(δ)

∫ ∞
0

tδ−1e−xtdt and xδ =
δ

Γ(1− δ)

∫ ∞
0

t−δ−1(1− e−xt)dt (29)

valid for x ∈ K1, δ > 0 and 0 < δ < 1 respectively. We get

I(z) =
1

Γ(α
2
)

∫ ∞
0

t
α
2
−1E exp

{
it

(
z + a−2

n

n∑
k=2

X2
1kR

(1)
kk

)}
dt .

We may apply Corollary B.2 to take the expectation over X1 and get

I(z) =
1

Γ(α
2
)

∫ ∞
0

t
α
2
−1eitzE exp

{
−wαα(2t)

α
2

1

n

n∑
k=2

(
−iR(1)

kk

)α
2 |gk|α

}
dt ,

= E

[
ϕα,z

(
1

n

n∑
k=2

(
−iR(1)

kk

)α
2 |gk|α

E[|gk|α]

)]
where wα > 0 was defined in the introduction and (gi)i≥1 are iid standard gaussian
variables. Similarly, we find that

J(z) =

∫ ∞
0

eitzE exp

{
−wαα(2t)

α
2

1

n

n∑
k=2

(
−iR(1)

kk

)α
2 |gk|α

}
dt (30)

= E

[
ψα,z

(
1

n

n∑
k=2

(
−iR(1)

kk

)α
2 |gk|α

E[|gk|α]

)]
. (31)

The next lemma due to Belinschi, Dembo and Guionnet [2] will be crucial in the sequel.

Lemma 3.4. [2, Lemma 3.6] For any z ∈ C+, the functions ϕα,z and ψα,z are Lipschitz
with constant c = c(α)|z|−α and c = c(α)|z|−α/2 on Kα/2. Moreover ϕα,z maps Kα/2 into
Kα/2 and ψα,z maps Kα/2 into K1.

Proof. The first statement follows from [2, Lemma 3.6] by a change of variable. For
the second, we note that if x ∈ Kα/2 then x = (−iw)α/2 with w ∈ C+ and from (29)

ϕα,z(x) = E(iz+iwS)−α/2 where S is non-negative α/2 stable law with Laplace transform,
for x > 0, E exp(−xS) = exp(−Γ(1 − α/2)xα/2). Similarly, ψα,z(x) = E(iz + iwS)−1. In
particular, ϕα,z(x) ∈ Kα/2 and ψα,z(x) ∈ Kα/2. �

We are now able to prove Proposition 3.1.
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Proof of Proposition 3.1. The point is that the Lipschitz constant in Lemma 3.4 depends

on |z| and not only Im(z). Hence since ρk :=
(
−iR(1)

kk

)α
2 ∈ Kα/2, using exchangeability,

we deduce that

|I(z)− ϕα,z(Eρ2)|

=

∣∣∣∣∣E
[
ϕα,z

(
1

n

n∑
k=2

(
−iR(1)

kk

)α
2 |gk|α

E[|gk|α]

)]
− ϕα,z

(
1

n− 1

n∑
k=2

E[
(
−iR(1)

kk

)α
2
]

)]

≤ cE

∣∣∣∣∣ 1

n− 1

n∑
k=2

ρk|gk|α − E
1

n− 1

n∑
k=2

ρk|gk|α
∣∣∣∣∣+

cE[|ρ2|]
n

≤ c

(
E

∣∣∣∣∣ 1

n− 1

n∑
k=2

ρk|gk|α −
1

n− 1

n∑
k=2

ρkE|gk|α
∣∣∣∣∣+ E

∣∣∣∣∣ 1

n− 1

n∑
k=2

ρk − E
1

n− 1

n∑
k=2

ρk

∣∣∣∣∣+
E[|ρ2|]
n

)
.

By the Cauchy-Schwarz inequality and Lemma C.4, we obtain

|I(z)− ϕα,z(Eρ2)| ≤ cn−1

√√√√E[
n∑
k=2

|ρk|2] + c

n−1

√√√√E[
n∑
k=2

|ρk|2]

2

+ cη−
α
2 n−

α
4 .

By applying the Jensen inequality, we also notice that since 0 < α ≤ 2,

E[
1

n− 1

n∑
k=2

|ρk|2] = E[
1

n− 1

n∑
k=2

|R(1)
kk |

α]

≤

(
E[

1

n− 1

n∑
k=2

|R(1)
kk |

2]

)α
2

≤
(
E[

1

n− 1
tr
{
R(1)R(1)∗

}
]

)α
2

= M
α
2
n .

Hence we obtain an error of

|I(z)− ϕα,z(Eρ2)| ≤ cn−
1
2M

α
4
n + cn−1M

α
2
n + cη−

α
2 n−

α
4 . (32)

In the forthcoming computations, we shall always consider η so that ε of (18) is smaller

than one so that n−1M
α
2
n vanishes and is neglectable compared to n−

1
2M

α
4
n . However

Eρ2 and Y (z) are close. More precisely, by equation (91) (in appendix) applied with
f(x) = (−ix)

α
2 we find that∣∣∣∣∣

n∑
i=1

(−iRkk)
α
2 −

n∑
i=2

(
−iR(1)

kk

)α
2

+ (−iz)
α
2

∣∣∣∣∣ ≤ 2n(nη)−
α
2 .

Taking the expectation, we get

|Eρ2 − Y (z)| ≤ c(nη)−
α
2 .

By Lemma 3.4, the function ϕα,z is Lipschitz for some constant c = c(α, |z|) on Kα/2. We
deduce from (32) that

|I(z)− ϕα,z(Y (z))| ≤ cn−
1
2M

α
4
n + cη−

α
2 n−

α
4 + c(nη)−

α
2

≤ c′η−
α

2+αn−
1
2 (log n)

α(2+α)
16 + 2cη−

α
2 n−

α
4 ,
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where we used the upper bound on Mn given by (17). We note finally that the first term
is always smaller for n large enough and η ≤ 1 than the second term. We have thus
proved that there exists c > 0, such that for all n−

α+2
4 ≤ η ≤ 1 and all integers,

|I(z)− ϕα,z(Y (z))| ≤ cη−
α
2 n−

α
4 .

The statement of Proposition 3.1 on Y (z) follows by applying Lemma 3.3: we find

|Y (z)− ϕα,z(Y (z))| ≤ cη−
α
2 n−

α
4 + |Y (z)− I(z)|

Finally, we observe that the bound on X(z) follows similarly from (30):

|X(z)− ψα,z(Y (z))| ≤ cη−
α
2 n−

α
4 + |X(z)− J(z)|.

We now use Lemma 3.3 and Proposition 3.1 is proved. �

3.2. Rate of convergence of the resolvent. We will now use Proposition 3.1 as the
stepping stone to obtain a quantitative rate of convergence of the spectral measure µA
toward its limit.

By Lemma 3.4, if z = E + iη and |z| is large enough, say E0, then ϕα,z and ψα,z are
Lipschitz with constant L < 1 and in particular, it has a unique fixed point

y(z) = ϕα,z(y(z)), y(z) ∈ Kα
2
.

From [3, Theorem 1.4], the empirical measure µA converges a.s. to a probability measure
µα (for the topology of weak convergence). The Cauchy-Stieltjes transform of the limit
measure µα is equal to

gµα(z) =

∫
µα(dx)

x− z
= iψα,z(y(z)).

The above identity characterizes the probability measure µα.

Theorem 3.5 (Convergence of Stieltjes transform). For all 0 < α < 2, there exists a
finite set Eα ⊂ R such that if K is a compact set with K ∩ Eα = ∅ the following holds for
some constant c = c(α,K).

(i) If 1 < α < 2 : for any integer n ≥ 1, z = E + iη with E ∈ I, c
√

logn
n
∨(

n−
α

8−3α (1 + 11<α<4/3(log n)
2α

8−3α )
)
≤ η ≤ 1,

|EgµA(z)− gµα(z)| ≤ cδ, (33)

where δ = η−
α
2 n−

α
4 + η−

8−3α
2α n−

1
2 (1 + 11<α<4/3 log n) + η−1 exp(−δnη2).

(ii) If 0 < α ≤ 1, the same statement holds with cn−
α

2+3α (log n)
4

2+3α ≤ η ≤ 1 and

δ = η−
α
2 n−

α
4 + η−

2+3α
2 n−

α
2 (log n)2.

Moreover for any interval I ⊂ K of length |I| ≥ η (1 ∨ δ| log(δ)|−1),

|EµA(I)− µα(I)| ≤ c|I|.

This result implies Theorem 1.1. Indeed the presence of the expectation of µA(I) instead
of µA(I) does not pose a problem due to Lemma C.1 in Appendix. We start the proof of
Theorem 3.5 with a weaker statement.

Proposition 3.6 (Convergence of Stieltjes transform : weak form). Statement (ii) of
Theorem 3.5 holds and
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(i’) If 1 < α < 2 and cn−1/5
(

1 + 11<α≤ 4
3
(log n)

2
5

)
≤ η ≤ 1 then (33) holds with

δ = η−
α
2 n−

α
4 + η−5/2n−1/2

(
1 + 11<α≤ 4

3
log n

)
.

Proof. Assume first that z = E + iη with |E| ≥ E0 and η ≤ 1. If we apply Lemma 3.4 to
ϕα,z we find

|Y (z)− y(z)| ≤ 1

1− L
|Y (z)− ϕα,z(Y (z))|.

Also, by exchangeability EgµA(z) = EG11(z) = iX(z). Hence applying Lemma 3.4 to
ψα,z, we deduce

|EgµA(z)− gµα(z)| ≤ |X(z)− ψα,z(Y (z))|+ L

1− L
|Y (z)− ϕα,z(Y (z))|. (34)

Also, the Cauchy-Weyl interlacing theorem implies that the same type of bounds holds
for the minor A(1) instead of A. Indeed applying Lemma C.2 to f(x) = (x−z)−1, we have

|gµA(z)− gµ
A(1)

(z)| ≤ 2(nη)−1.

We recall that µα has a bounded density (see [3, 2, 5]). Hence Im(gµα(z)) is uniformly

bounded. We get for any z = E + iη, |E| ≥ E0, η ≥ n−
α+2

4 ,

EIm(gµ
A(1)

(z)) ≤ Im(gµα(z)) +
∣∣∣Egµ

A(1)
(z)− gµα(z)

∣∣∣ ≤ c+
∣∣∣Egµ

A(1)
(z)− gµα(z)

∣∣∣ . (35)

On the other hand, the spectral theorem implies the important identity

Mn =
1

n− 1
Etr

{
R(1)(R(1))∗

}
= η−1EIm(gµ

A(1)
(z)).

Then, by (34),

ηMn ≤ 2(nη)−1 + c+ |X(z)− ψα,z(Y (z))|+ L

1− L
|Y (z)− ϕα,z(Y (z))|.

We first consider the case 1 < α < 2. Then, by Proposition 3.1, we obtain for η ≥
n−1/2α ≥ n−1/2,

ηMn ≤ c+ cη−2

√
Mn

n

(
1 + 11<α≤ 4

3
log n

)
.

By monotonicity, we find that ηMn is upper bounded by x∗ where x∗ is the unique fixed
point of

x = c+ cη−
5
2n−

1
2

(
1 + 11<α≤ 4

3
log n

)√
x.

It is easy to check that the unique fixed point of x = a+ bxβ, with a, b > 0 and 0 < β < 1

is upper bounded by κ(β)a if a ≥ b
1

1−β . We deduce that, for some constant c1 > 0 and all

n−1/5
(

1 + 11<α≤ 4
3
(log n)

2
5

)
≤ η ≤ 1,

ηMn ≤ c1.

So finally, from Proposition 3.1, we find that for all n−1/5
(

1 + 11<α≤ 4
3
(log n)

2
5

)
≤ η ≤ 1,

|EgµA(z)− gµα(z)| ≤ c2η
−α

2 n−
α
4 + c2η

−2n−
1
α + c2η

− 5
2n−

1
2

(
1 + 11<α≤ 4

3
log n

)
.

We notice that the middle term is negligible compared to the last for our range of η.
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Assume finally that 0 < α ≤ 1, then arguing as above for η ≥ n−1/2 ≥ n−1/2α,

ηMn ≤ c+ cη−1

(
Mn

nη2

)α
2

(log n)2. (36)

We deduce that, for some c1 > 0 and all n−
α

2+3α (log n)
4

2+3α ≤ η ≤ 1, ηMn ≤ c1. We find

that for all n−
α

2+3α (log n)
4

2+3α ≤ η ≤ 1,

|EgµA(z)− gµα(z)| ≤ c2η
−α

2 n−
α
4 + c2η

−1−αn−1(1 + (log n)1α=1) + c2n
−α

2 η−
2+3α

2 (log n)2.

Again the middle term is negligible compared to the first for our range of η.

We have proven the proposition if z = E + iη and |E| ≥ E0 is large enough. It
remains to prove the statement for all E outside of a finite set. It is proven in [2] that
ϕα,z(y) = cz−αg(y) where g is an entire function and c is a constant (both depends on
α). It follows that the set of z ∈ C such that ϕ′α,z(y(z)) = 1 is finite (for details see [2,
§5.3]). We define E ′α as the set of real E such that there exists 0 ≤ η ≤ E0 + 1 with
ϕ′α,E+iη(y(E + iη)) = 1. We set finally Eα = {0} ∪ E ′α. This set is finite. Let K be a
compact interval which does not intersect Eα. From the implicit function theorem, there
exist τ, c0 > 0 such that for t ≥ 0, 0 ≤ η ≤ E0 + 1, E ∈ K,

if |y − y(E + iη)| ≤ τ and |y − ϕα,E+iη(y)| ≤ t then |y − y(E + iη)| ≤ c0t. (37)

Therefore, we may use Lemma 3.4 and an alternative version of (34) : for any z = E+ iη
with E ∈ K and 0 ≤ η ≤ E0 + 1, if |Y (z)− y(z)| ≤ τ then

|EgµA(z)− gµα(z)| ≤ |X(z)− ψα,z(Y (z))|+ c0c(α)

|z|α2
|Y (z)− ϕα,z(Y (z))|. (38)

To apply Proposition 3.1, we shall use an inductive argument to insure that the hy-
pothesis |Y (z)− y(z)| ≤ τ is satisfied. We set for integer `, η0 = η, η`+1 = η` + τ

3
(1∧ η`)2

and z` = E + iη`. There exists k such that E0 ≤ ηk ≤ E0 + τ . Then ϕα,zk is a contraction
and the above argument proves that

|EgµA(zk)− gµα(zk)| ≤ cδ and |Y (zk)− y(zk)| ≤ cδ,

(note that δ is a pessimistic bound since Im(zk) is bounded away from 0). We notice
that it is sufficient to prove the statement of the proposition in the range, for 1 < α < 2,

κn−1/5
(

1 + 11<α≤ 4
3
(log n)

2
5α

)
≤ η ≤ 1 and for 0 < α ≤ 1, κn−

α
2+3α (log n)

4
2+3α , where

κ > 0 is any fixed constant. Hence, up to increasing κ, we may assume that scδ ≤ τ/3,
where s ≥ 1 is large number that will be chosen later on.

To obtain a priori bounds for Y (z)−y(z) and |EgµA(z)−gµα(z)| at z = zk−1 from those
at z = zk observe that for any probability measure µ on R and 0 ≤ β ≤ 1,

|gµ(E + iη`)
β − gµ(E + iη`+1)β| ≤ |η` − η`+1|

η1+β
`

≤ τ

3
. (39)

Using the above control with µ =
∑n

k=1〈vk, e1〉2δλk so that gµ(z) = R11(z) we deduce by
applying (39) with β = α/2 that

|(−iR11(E + iη`))
α
2 − (−iR11(E + iη`+1))

α
2 | ≤ τ

3
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and thus |Y (zk−1) − y(zk−1)| ≤ τ . We get a similar control for EgµA(zk−1) by applying
(39) with β = 1 so that

Mn(zk−1) ≤ η−1

(
τ

3
+ cδ + sup

`
Imgµα(z`)

)
≤ η−1(τ + sup

`
Imgµα(z`)) = c1η

−1.

Therefore, using Proposition 3.1, we find for some constant c′ > 0.

|Y (zk−1)− ϕα,zk−1
(Y (zk−1))| ∨ |X(zk−1)− ψα,zk−1

(Y (zk−1))| ≤ c′δ.

From what precedes, it implies that |Y (zk−1)−y(zk−1)| ≤ c0c
′δ. We choose s large enough

so that c′c0 ≤ sc, so that we have c′c0δ ≤ τ/3. Also, we may use (38). We find for some
new constant c′′,

|EgµA(zk)− gµα(zk)| ≤ c′′δ.

Finally, if s was also chosen large enough so that c′′ ≤ sc, then c′′δ ≤ τ/3, and we may
repeat the above argument down to ` = 0. �

When α ∈ (1, 2), a bootstrap argument allows to improve significantly Proposition 3.6.
The idea is, in the spirit of [12] that if the imaginary part of

〈
X,R(1)X

〉
is a priori bounded

below by something going to zero more slowly than η, then we can improve the result
of the key Lemma 3.3. Before moving to the proof, we state a classical deconvolution
lemma.

Lemma 3.7 (From Stieltjes transform to counting measure). Let L > 0, 0 < ε < 1, K
be an interval of R and µ be a probability measure on R. We assume that for some η > 0
and all E ∈ K, either

Imgµ(E + iη) ≤ L or µ
(

[E − η

2
, E +

η

2
]
)
≤ Lη.

Then, there exists a universal constant c such that for any interval I ⊂ K of size at least
η and such that dist(I,Kc) ≥ ε, we have∣∣∣∣µ(I)− 1

π

∫
I

Imgµ(E + iη)dE

∣∣∣∣ ≤ c(L ∨ ε−1)η log

(
1 +
|I|
η

)
.

Proof. Let us prove the first statement. We observe that

1

π
Im(gµ(y + iη)) =

1

π

∫
R

η

(y − x)2 + η2
µ(dx) = Pη ∗ µ(y),

where Pη is the Cauchy law with parameter η. We thus need to perform a classical
deconvolution. We may for example adapt Tao and Vu [19, Lemma 64] (see also e.g. [14,
p.15]). Define

F (y) =
1

π

∫
I

η

(y − x)2 + η2
dx = Pη(I − y).

In particular ∣∣∣∣µ(I)− 1

π

∫
I

Imgµ(E + iη)dE

∣∣∣∣ =

∣∣∣∣µ(I)−
∫
F (y)µ(dy)

∣∣∣∣ .
Now, the Cauchy law has density, Pη(t) = 1

π
η

η2+t2
. It follows that for {y ∈ I}, {y ∈

Ic, dist(y, I) ≤ |I|} and {y ∈ Ic, dist(y, I) ≥ |I|} we may use respectively the bounds

|F (y)− 1| ≤ c

1 + dist(y, Ic)η−1
, |F (y)| ≤ c

1 + dist(y, I)η−1
and |F (y)| ≤ c|I|η

dist(y, I)2
.
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We write if I = [a, b], I1 = Ic ∩ [a− |I|, b+ |I|] ∩K and I2 = Ic ∩ [a− |I|, b+ |I|]c ∩K,∣∣∣∣µ(I)− 1

π

∫
I

Imgµ(E + iη)dE

∣∣∣∣ ≤ ∫
I

c

1 + dist(y, Ic)η−1
µ(dy)

+

∫
I1

c

1 + dist(y, I)η−1
µ(dy)

+

∫
I2

c|I|η
dist(y, I)2

µ(dy)

+

∫
Kc

c

1 + dist(y, I)η−1
µ(dy).

However, by assumption if J = [E − η/2, E + η/2] is an interval of size η with E ∈ K,

L ≥ Imgµ(E + iη) =

∫
R

η

(y − x)2 + η2
µ(dx) ≥ 3

4η
µ(J).

We deduce that µ(J) ≤ 4L
3
η. Now, consider a partition P of R into intervals of size η. We

get from this last upper bound∫
I

c

1 + dist(y, Ic)η−1
µ(dy) ≤

∑
J∈P∩I

cµ(J)

1 + dist(J, Ic)
≤
|I|η−1∑
k=0

c′Lη

1 + k
≤ c′′Lη log(1 + |I|η−1).

The other terms are bounded similarly. �

Proof of Theorem 3.5. In view of Proposition 3.6 and Lemma 3.7 applied to EµA and µα,
it remains to prove statement (i) of Theorem 3.5. We thus assume in the sequel that
1 < α < 2. The proof is divided into five steps. Throughout the proof, we assume
that n ≥ 3 (without loss of generality) and we denote by E1[·] and P1(·) the conditional
expectation and probability given F1, the σ-algebra generated by the random variables
(Xij)i≥j≥2.

Step one : Lower bound on the Stieltjes transform. Let K = [a, b] be an interval which
does not intersect the finite set Eα, defined in Proposition 3.6. The limit spectral measure
µα has a positive density on R. In particular, there exists a constant c0 = c0(K0, α) > 0
such that for all 0 ≤ η ≤ 1 and x ∈ K,

Imgµα(x+ iη) ≥ c0.

Consequently, if there exists 0 ≤ η ≤ 1 such that for all x ∈ K,

|EgµA(x+ iη)− gµα(x+ iη)| ≤ c0

2
(40)

then

EImgµA(x+ iη) ≥ c0

2
.

Note that Proposition 3.6 already proves that (40) holds if n ≥ n0 is large enough and

η0 = n−ε,

for some ε > 0. By an inductive argument, we aim at proving that (40) holds for the
same constants n0 but for some η � η0.
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For some constant δ > 0 to be defined later on, we set for 1 < α < 2,

η∞ =

√
log n

2δn
∨
(
n−

α
8−3α (1 + 11<α<4/3(log n)

2α
8−3α )

)
.

Note that η∞ ≥ n−
α+2

4 for all n large enough (say again n0).

Step two : Start of the induction. We assume that (40) holds for some η1 ∈ [n−
α+2

4 , η0]
and that

|Y (x+ iη1)− y(x+ iη1)| ≤ τ

3
, (41)

where τ was defined in (37). Let 0 < τ ′ < τ to be chosen later on. We are going to prove
that (40)-(41) hold also for

η ∈
[
η1 − τ ′η2

1, η1

]
.

provided that η1 ≥ tη∞, n ≥ n0 and t large enough. As in the proof of Proposition 3.6,
cf. (39), if τ ′ is small enough, we note that (41) implies that

|Y (x+ iη)− y(x+ iη)| ≤ 2
|η − η1|2

η2
1

+ |Y (x+ iη1)− y(x+ iη1)| ≤ τ. (42)

First, by Weyl’s interlacing property (40) holds for A(1) with c0/2 replaced by c0/4 (η1 �
n−1). Also it follows by Jensen’s inequality that for z = x+ iη, with x ∈ K,

(
ImR

(1)
kk (z)

)α
2

=

(
n−1∑
i=1

η

(λ
(1)
i − x)2 + η2

〈v(1)
i , ek〉2

)α
2

≥
n−1∑
i=1

(
η

(λ
(1)
i − x)2 + η2

)α
2

〈v(1)
i , ek〉2

=
((

ImR(1)(z)
)α

2

)
kk

≥ η1−α
2

n−1∑
i=1

η

(λ
(1)
i − x)2 + η2

〈v(1)
i , ek〉2

= η1−α
2 ImR

(1)
kk (z),

where we have used the fact η/((λ
(1)
i − x)2 + η2) ≤ η−1 which implies (η/((λ

(1)
i − x)2 +

η2))1−α/2 ≤ ηα/2−1. Note also that

|ImR(1)
kk (z)− ImR

(1)
kk (E + iη1)| ≤ |η − η1|

η2
≤ τ ′

1− τ ′
.

Hence, if τ ′ is chosen small enough so that the above is less that c0/8, we find with
c1 = c0/16,

E
1

n− 1

n−1∑
k=1

(
ImR

(1)
kk (z)

)α
2 ≥ E

1

n− 1

n−1∑
k=1

((
ImR(1)(z)

)α
2

)
kk

≥ 2c1η
1−α

2 .
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Now, for bounding from below

1

n− 1

n−1∑
k=1

(
ImR

(1)
kk (z)

)α
2 ≥ 1

n− 1
tr
{

(ImR(1)(z))α/2
}
, (43)

we observe that by Lemma C.1, since xα/2 has total variation on [0, η−1] equal to η−α/2,
that

P
(

1

n− 1
tr
{

(ImR(1)(z))α/2
}
− E

1

n− 1
tr
{

(ImR(1)(z))α/2
}
≤ r

)
≤ exp

(
−(n− 1)r2ηα

2

)
.

Applying the above with r = c1η
1−α

2 shows that for some δ > 0,

P(Λ(z)c) ≤ e−δnη
2

,

where

Λ(z) :=

{
1

n− 1
tr
{(

ImR(1)(z)
)α

2

}
≥ c1η

1−α
2

}
.

Note that this probabilistic bound is non trivial only if η1 ≥ n−
1
2 ≥ n−

α+2
4 (recall that

1 < α < 2).

Step three : Gaussian concentration for quadratic forms. For any z = x + iη ∈ C+, we
may bound from below the imaginary part of

Q(z) = a−2
n

n∑
k=1

R
(1)
kk (z)X2

1k

on the event in Λ(z) ∈ F1. Indeed, as the ImR
(1)
kk , 1 ≤ k ≤ n − 1, are non negative, we

can use Lemma B.1 to see that conditionnaly on F1,

ImQ(z)
d
=

(
1

n− 1

n−1∑
k=1

(
ImR

(1)
kk (z)G2

k

)α
2

) 2
α

S = L(z)S, (44)

where the equality holds in law and S is a positive α/2-stable law whereas the Gk are
independent standard Gaussian variables, independent from S. Moreover, if Λ(z) holds
then from (43)

n−1∑
k=1

(
ImR

(1)
kk (z)

)α
2 ≥ c1(n− 1)η1−α

2 ≥ c1(n− 1)ηmax
k

(
ImR

(1)
kk (z)

)α
2
.

Hence by Corollary A.2, for some universal constants c, δ > 0, if Λ(z) ∈ F1 holds, then

P1

(
(
n∑
k=2

|
√

ImR
(1)
kk (z)Gk|α)

1
α ≤ δ((n− 1)η1−α

2 )1/α

)
≤ e−δnη

2
α

which yields

P1

(
L(z) ≤ δη

2
α
−1
)
≤ e−δnη

2
α . (45)

Finally, we observe similarly that by Lemma B.1,

Im(Q(z) + T (z)) = 〈X1, ImR
(1)X1〉

d
= L̃(z)S̃,
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where conditonnally on F1, S̃ is a positive α/2-stable law, independent of L̃(z). Moreover,
if η ≥ cn−

α
2 , the random variable L̃(z) satisfies if Λ(z) holds, the probabilistic bound

P1

(
L̃(z) ≤ δη

2
α
−1
)
≤ e−δnη

2
α .

We may thus summarize the last two steps by stating that if n−1/2 ≤ η1 ≤ 1 holds then

P (Π(z)c) ≤ 3 exp(−δnη2).

where z = x+ iη, x ∈ K and

Π(z) = Λ(z) ∩
{
L(z) ≥ δη

2
α
−1
}
∩
{
L̃(z) ≥ δη

2
α
−1
}
.

(recall that 1 < α < 2).

Step four : Improved convergence estimates. We next improve the results of Proposition
3.1 for our choice of z = x+ iη, x ∈ K. We write instead of (25)

|Y (z)− I(z)| ≤ α

2
(δη

2
α
−1)−

α
2
−1E

[
(S ∧ S̃)−

α
2
−1|T (z)|

]
+ η−

α
2 P(Π(z)c), (46)

|X(z)− J(z)| ≤ (δη
2
α
−1)−2E

[
(S ∧ S̃)−2|T (z)|

]
+ η−1P(Π(z)c). (47)

Then from Lemma 3.2 and (23), there exists p > 1 (depending on α) such that

(E|T (z)|p)
1
p ≤ c

(
n−

1
α +

√
Mn

n
(1 + 11<α≤4/3 log n)

)
.

From Hölder’s inequality and Lemma B.3, we deduce that for some new constant c > 0,

E
[
(S ∧ S̃)−2|T (z)|

]
≤ c

(
n−

1
α +

√
Mn

n
(1 + 11<α≤4/3 log n)

)
.

From (46)-(47), it follows that for n−1/2 ≤ η1 ≤ 1 and some new constant c > 0,

|Y (z)− I(z)| ∨ |X(z)− J(z)|

≤ cη−2( 2
α
−1)

(
n−

1
α +

√
Mn

n
(1 + 11<α<4/3 log n)

)
+ 3η−1 exp(−δnη2).

Note that η−2( 2
α
−1)n−

1
α ≤ 1 if η ≥ n−

1
2(2−α) ≥ n−1/2 while η−1 exp(−δnη2) ≤ 1 if

(2δn/ log n)−1/2 ≤ η . Note also that this last expression improves upon Lemma 3.3
and then Proposition 3.1 can be improved into

|Y (z)− ϕα,z(Y (z))| ∨ |X(z)− ψα,z(Y (z))| (48)

≤ cη−2( 2
α
−1)

(
n−

1
α +

√
Mn

n
(1 + 11<α≤4/3 log n)

)
+ cη−

α
2 n−

α
4 + cη−1 exp(−δnη2).

Then, by (42) we may use the bound (38). From (35), we thus obtain, for (2δn/ log n)−1/2 ≤
η1 ≤ 1,

ηMn(z) ≤ c+cη−2( 2
α
−1)

√
Mn

n
(1+11<α≤4/3 log n) = c+cη−

8−3α
2α n−

1
2

√
ηMn(1+11<α<4/3 log n).
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We deduce that, for some constant c > 0, if η∞ ≤ η1 ≤ 1,

ηMn ≤ c.

So finally, from (38)-(48), we find that for η∞ ≤ η1 ≤ 1,

|EgµA(z)− gµα(z)| (49)

≤ c3η
−α

2 n−
α
4 + c3η

− 8−3α
2α n−

1
2 (1 + 11<α≤4/3 log n) + c3η

−1 exp(−δnη2).

Step five : End of the induction. From (37)-(49), we deduce that if tη∞ ≤ η1 ≤ 1 and t
large enough, then

|EgµA(z)− gµα(z)| ≤ c0

2
and |Y (z)− y(z)| ≤ τ

3
.

We have thus proved that (40)-(41) holds also for our choice of η.

The argument is completed as follow. Let K = [a, b] be a compact interval that does
not intersect Eα. Starting for η0 = n−ε, by applying m times the induction, we deduce that
(40) holds for ηm = ηm−1−τ ′η2

m−1. Since this sequence vanishes as m goes to infinity, and,
for some m, we have tη∞ ≤ ηm < 2tη∞. We deduce that for all n large enough (say n0),
(49) holds for z = x+ iη, with tη∞ ≤ η ≤ 1 and K = [a, b]. The statement follows. �

4. Weak delocalization of eigenvectors

Following Erdős-Schlein-Yau [12], from local convergence of the empirical spectral dis-
tribution (Theorem 3.5), it is possible to deduce the delocalization of eigenvectors. Using
the union bound, Theorem 1.2 follows from the next proposition.

Proposition 4.1 (Delocalization of the eigenvectors). For any 1 < α < 2, there exist
δ, c > 0 and a finite set Eα ⊂ R such that if I is a compact interval with I ∩ Eα = ∅, then
for any unit eigenvector v with eigenvalue λ ∈ I and any 1 ≤ i ≤ n,

|〈v, ei〉| ≤st Zn−ρ(1− 1
α

)(log n)c,

where ρ is as in Theorem 1.1 and Z is a non-negative random variable whose law depends
on (α, I) and which satisfies

E exp(Zδ) <∞.

Proof. Let Eα be as in Theorem 1.1. The density of µα is uniformly lower bounded on I
by say 4ε > 0. We set

η = c1

(√
log n

n
∨
(
n−

α
8−3α (1 + 11<α<4/3(log n)

2α
8−3α )

))
,

where the constant c1 is large enough to guarantee that for any interval J of length at
least η in I we have |EµA(J)− µα(J)| ≤ 2ε|J |. Then, we partition the interval I = ∪`I`
into c2η

−1 intervals of length η. From what precedes we have for any 1 ≤ ` ≤ c2η
−1,

EµA(I`) > 2ε|I`|.
Now, by Lemma C.1, the event Fn that for all 1 ≤ ` ≤ c2η

−1,

µA(I`) > EµA(I`)− ε|I`| > ε|I`|,
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has probability at least 1− c2η
−1 exp(−nε2c2

3η
2/2) ≥ 1− c exp(−cnδ) for some constants

c, δ > 0.

Let v be a unit eigenvector and λ ∈ I such that Av = λv. Set vi = 〈v, ei〉. We recall
the formula

v2
1 = (1 + a−2

n 〈X1, (A
(1) − λ)−2X1〉)−1,

with X1 = (X12, · · · , X1n) ∈ Rn−1 and A(1) is the principal minor matrix of A where the
first row and column have been removed. We may now argue as in the proof of Proposition
2.1 : for some 1 ≤ ` ≤ c2η

−1, λ ∈ I`, and it follows

v2
1 ≤ a2

nc
2
3η

2

 ∑
i:λ

(1)
i ∈I`

〈X1, u
(1)
i 〉2


−1

,

where (λ
(1)
i , u

(1)
i ), 1 ≤ i ≤ n− 1 denotes the eigenvalues and an eigenvectors basis of A(1).

We rewrite the above expression as

v2
1 ≤ a2

nc
2
3η

2dist−2(X1,W
(1)) = a2

nc
2
3η

2〈X1, P1X1〉−1, (50)

where W (1) = vect
{
u

(1)
i : 1 ≤ i ≤ n− 1, λ

(1)
i /∈ I`

}
, and P1 is the orthogonal projection

on the orthogonal of W (1). The rank of P1 is equal to

N
(1)
I`

= |{1 ≤ i ≤ n− 1 : λ
(1)
i ∈ I`}| = n− 1− dim(W (1)).

From Weyl interlacement theorem, we get

nµA(I`)− 1 ≤ N
(1)
I`
≤ nµA(I`) + 1. (51)

From Lemma B.1, there exists a positive α/2-stable random variable S and a standard
Gaussian vector G such that

dist2(X1,W
(1))

d
= ‖P1G‖2

αS.

By Corollary A.2 and (51), if n is large enough, on the event Fn, with probability at least

1− 2 exp

(
−δ (εc3nη)

2
α

n
2
α
−1

)
≥ 1− 2 exp(−cnδ)

the lower bound

‖P1G‖α ≥ δ (εc3nη)
1
α

holds. Let us denote this enlarged event by F̄n. Hence, for some c > 0, on F̄n, we have
from (50)

v2
1 ≤ cη2(1−1/α)S−1.

In summary, we have shown that

|v1| ≤ cη1−1/αS−1/2 + 1F̄ cn ,
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where F̄ c
n has probability at most c exp(−cnδ), for some c > 1. For 0 < δ′ < 1, it yields,

E exp

{(
|v1|

cη1−1/α

)δ′}
≤ E exp

{
S−δ

′/2 + ηδ
′(1/α−1)1F̄ cn

}
≤

√
Ee2S−δ′/2Ee2ηδ

′(1/α−1)1F̄ cn

≤
√
Ee2S−δ′/2(1 + e2nδ

′/2ce−cnδ),

where we have used that η ≥ 1/n and α < 2. Using, Lemma B.3, if δ′ is small enough,
the above is uniformly bounded in n. This gives our statement for any δ′′ < δ′. �

5. Analysis of the limit recursive equation

We next turn to the analysis of the limiting equation describing the resolvent, in case
α < 1. Let H be the set of analytic functions h : C+ → C+ such that for all z ∈ C+,
|h(z)| ≤ Im(z)−1. We also consider the subset H0 of functions of H such that for all
z ∈ C+, h(−z̄) = −h̄(z) . For every n and 1 ≤ i ≤ n, the function z 7→ R(z)ii is in
H. It is proved in [5] that Rii converges weakly for the finite dimensional convergence to
the random variable R0 in H0 which is the unique solution of the recursive distributional
equation for all z ∈ C+,

R0(z)
d
= −

(
z +

∑
k≥1

ξkRk(z)

)−1

, (52)

where {ξk}k≥1 is a Poisson process on R+ of intensity measure α
2
x
α
2
−1dx, independent

of (Rk)k≥1, a sequence of independent copies of R0. In [5], R0(z) is shown to be the
resolvent at a vector of a random self-adjoint operator defined associated to Aldous’
Poisson Weighted Infinite Tree. We define C̄+ = {z ∈ C : Im(z) ≥ 0} = C+ ∪ R. In the
following statement, we establish a new property of this resolvent.

Theorem 5.1 (Unicity for the resolvent recursive equation). Let 0 < α < 2/3. There
exists Eα > 0 such that for any z ∈ C̄+ with |z| ≥ Eα, there is a unique random variable
R0(z) on C̄+ which satisfies the distributional equation (52) and E|R0(z)|α2 < +∞. More-
over, for any 0 < κ < α/2, there exists Eα,κ ≥ Eα and c > 0, such that for any z ∈ C+

with |z| ≥ Eα,κ,

EImR0(z)
α
2 ≤ c Im(z)κ.

In particular, if Im(z) = 0, R0(z) is a real random variable.

The main part of this section is devoted to the proof of Theorem 5.1. We will then
analyze its consequence on our random matrix and prove Theorem 1.3 in section 5.4. As
usual, it is based on a fixed point argument. However, as R0 is complex-valued, it is not
enough to get a fixed point argument for the moments of R0 as was done previously in
[3, 2]. Instead, we prove that moments of linear combinations of R0 and its conjuguate
satisfy a fixed point equation. We then show that this new fixed point equation is well
defined and for sufficiently large z, has a unique solution.
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5.1. Proof of Theorem 5.1. We shall give the proof of Theorem 5.1 in this section,
but postpone the proofs of technical lemmas to the next subsection. By construction
H(z) = −iR0(z) ∈ K1 as well as H̄(z) = iR̄0(z) ∈ K1 (recall that for β ∈ [0, 2] ,
Kβ = {z ∈ C : | arg(z)| ≤ πβ

2
}). For ease of notation, we define the bilinear form h.u for

h ∈ C and u ∈ K+
1 = K1 ∩ C̄+ given by

h.u = Re(u)h+ Im(u)h̄.

Note that if h ∈ K1 then h.u ∈ K1. We set

γz(u) = Γ(1− α

2
)E(H(z).u)

α
2 ∈ Kα/2.

We let Cα (resp. C ′α) denote the set of continuous functions g from K+
1 to Kα/2 (resp. C)

such that g(λu) = λα/2g(u), for all λ > 0. Then, for α/2 ≤ β ≤ 1, we introduce the norm

‖g‖β = max
u∈S1

+

|g(u)|+ max
u6=v∈S1

+

|g(u)− g(v)|
|u− v|β

(|i.u| ∧ |i.u|)β−
α
2

where S1
+ = {u ∈ K+

1 , |u| = 1}. We then define Hβ (resp. H′β) as the set of functions g
in Cα (resp. C ′α) such that ‖g‖β is finite. Note that ‖g‖β contains two parts : the infinite
norm and a weighted β-Hölder norm which get worse as the argument of u or v gets close
to π/4. Notice also that H′β is a real vector space and Hβ is a cone.

The starting point of our analysis is that γz belongs to Hβ.

Lemma 5.2 (Regularity of fractional moments). Let 0 < α < 2 and z ∈ C̄+,

- Let R0(z) be a solution of (52) such that E|R0(z)|α2 < +∞. Then for all 0 < β < 1,
all z ∈ C̄+\{0}, E|R0(z)|β ≤ c|Re(z)|−β for some constant c = c(α, β).

- Let H be a random variable in K1 such that E|H|α2 is finite. If we define for
u ∈ K+

1 , γ(u) = E(H.u)
α
2 , then γ ∈ Hβ for all α/2 ≤ β ≤ 1 and ‖γ‖β ≤ cE|H|α2

for some universal constant c > 0.

Let h ∈ K1 and g ∈ Hβ. We define formally the function given for u ∈ S1
+ by

Fh(g)(u) =

∫ π
2

0

dθ(sin 2θ)
α
2
−1

∫ ∞
0

dy y−
α
2
−1

∫ ∞
0

dr r
α
2
−1e−rh.e

iθ
(
e−r

α
2 g(eiθ) − e−yrh.ue−r

α
2 g(eiθ+yu)

)
.

We next see that F−iz is closely related to a fixed point equation satisfied by γz.

Lemma 5.3 (Fixed point equation for fractional moments). Let z ∈ C̄+, 0 < α < 2 and
R0(z) solution of (52) such that E|R0(z)|α2 < +∞. Then for all u ∈ K+

1 ,

γz(u) = cαF−iz(γz)(ǔ),

where
cα =

α

2
α
2 Γ(α/2)2Γ(1− α/2)

and ǔ = Im(u) + iRe(u).

To prove this lemma, we will properly define and study the function Fh at least for
some values of (h, α, β). We shall prove that

Lemma 5.4 (Domain of definition of Fh). Let h ∈ K1 with |h| ≥ 1, 0 < α < 1 and β
such that

α

2
< β < 1− α

2
.



28 CHARLES BORDENAVE AND ALICE GUIONNET

Then Fh defines a map from Hβ to H′β, and there exists a constant c = c(α) such that

‖Fh(g)‖β ≤ c|h|−
α
2 (‖g‖β + 1).

We could not prove unfortunately that Fh is a contraction for ‖.‖β but for a weaker
and less appealing norm on H′β which is given for ε > 0 by :

‖g‖β,ε = max
u∈S1

+

|g(u)||i.u|ε + max
u6=v∈S1

+

|g(u)− g(v)|
|u− v|β

(|i.u| ∧ |i.v|)β+ε .

It turns out that the map Fh is Lipschitz for this new norm if α is small enough.

Lemma 5.5 (Contraction property of Fh). Let h ∈ K1 with |h| ≥ 1, 0 < α < 2/3,
α/2 < β < 1 − α/2 and 0 < ε < (1 − 3α/2) ∧ (β − α/2). Then there exists a finite
constant c = c(α, β, ε) such that, for all f, g ∈ Hβ,

‖Fh(f)− Fh(g)‖β,ε ≤ c|h|−α(1 + ‖f‖β + ‖g‖β)‖f − g‖β,ε.

We can now turn to the proof of Theorem 5.1. To this end define the map Gz on Hβ

Gz : g 7→ (u 7→ cαF−iz(g)(ǔ)) . (53)

Then by Lemma 5.4, if |z| is large enough, any fixed point g of Gz satisfies ‖g‖β ≤ c0/2
for some constant c0 = c0(α, β). By Lemma 5.5, for any 0 < ε < 1 − 3α/2, if |z| ≥ Eα,ε
is large enough, Gz satisfies

‖Gz(f)−Gz(g)‖β,ε ≤
1 + ‖f‖β + ‖g‖β

1 + 2c0

‖f − g‖β,ε.

Thus, by Lemma 5.3, γz is the unique solution in Hβ of the fixed point equation γz =
Gz(γz). However, by Lemma 5.8 below, the law of R0(z) which satisfies (52) is uniquely
characterized by its fractional moments γz. Therefore, there is a unique solution to this
recursive distributional equation.

To prove the estimate on E[ImR0(z)α/2], we start by proving that ImR0(E) vanishes
almost surely. Indeed, we first note that when z = E 6= 0 is real, there is a real solution
of the fixed point equation γz = Gz(γz). Let us seek for a probability distribution PE
in R such that (52) holds. We recall that if yk are non-negative i.i.d. random variables,

independent of {ξk}k≥1, then
∑

k ykξk is equal in law to (Ey
α
2
1 )

2
α

∑
k ξk and S =

∑
k ξk is

a non-negative α/2-stable law. Thus, using the Poisson thinning property, by definition
PE has to be the law of

−
(
E + a2/αS − b2/αS ′

)−1

if S and S ′ are independent α/2-stable positive laws and a =
∫

max(x, 0)α/2dPE(x),

b =
∫

max(−x, 0)α/2dPE(x). We find the system of equations

a = E
(
(E + a2/αS − b2/αS ′)−1

)α/2
− ,

b = E
(
(E + a2/αS − b2/αS ′)−1

)α/2
+

,

(where we have used the notation (x)+ = max(x, 0), (x)− = max(−x, 0)). Notice that
aS − bS ′ is an α/2-stable variable, it has a bounded density. Hence, for any 0 < α < 2,
|E + aα/2S − bα/2S ′|−α/2 is perfectly integrable. Thus, by construction γ̃E(u) = Γ(1 −
α
2
)
∫

(−iu.x)
α
2 dPE(x) belongs toHβ and it is a fixed point of GE. This insures the existence

of a, b ≥ 0 and also the fact that PE is the law of R0(E) as soon as E is large enough so



EIGENVECTORS OF HEAVY-TAILED RANDOM MATRICES 29

that GE is a contraction. To consider γz with small imaginary part, we need the additional
lemma

Lemma 5.6 (Continuity of the maps Fh). Let 0 < α < 2/3, α/2 < β < 1 − α/2,
0 < ε ≤ β − α

2
and 0 < κ < α/2. There exists a constant c = c(α, β, κ) > 0, such that for

any h, k ∈ K1, |h|, |k| ≥ 1, and g ∈ Hβ

‖Fh(g)− Fk(g)‖β,ε ≤ c(|h| ∧ |k|)−
α
2
−κ|h− k|κ(1 + ‖g‖β).

Set z = E + iη with |E| ≥ Eα,ε and let 0 < κ < α/2. Then, by Lemma 5.6, we have

‖γE − γz‖β,ε = |GE(γE)−Gz(γz)| ≤ ‖GE(γE)−Gz(γE)‖β,ε + ‖Gz(γE)−Gz(γz)‖β,ε

≤ cE−
α
2
−κ(1 + c0)ηκ +

1

2
‖γE − γz‖β,ε.

Hence, for some c′ = c′(α, β, κ), we deduce

‖γE − γz‖β,ε ≤ c′ηκ.

Then, since γE(ei
π
4 ) = 0 as γE is real, for any u ∈ S1

+,

Γ(1− α

2
)EImR0(z)

α
2 = |γz(ei

π
4 )− γE(ei

π
4 )|

≤ |γz(ei
π
4 )− γz(u)|+ |γE(ei

π
4 )− γE(u)|+ |γz(u)− γE(u)|

≤ c|u− ei
π
4 |

α
2 + ‖γz − γE‖β,ε|i.u|−ε

≤ c′′|u− ei
π
4 |

α
2 + c′′ηκ|u− ei

π
4 |−ε.

Choosing u such that |u − eiπ4 | is of order η
2κ
α+2ε , we deduce that for all z = E + iη with

|E| ≥ Eα,ε, EImR0(z)
α
2 is bounded by η

κα
α+2ε up to a multiplicative constant. Since ε > 0

can be arbitrarily small, this concludes the proof of Theorem 5.1.

5.2. Proofs of technical lemmas. We collect in this part the proofs of a few technical
results used in the proof of Theorem 5.1.

5.2.1. Proof of Lemma 5.2 (Regularity of fractional moments). If Re(z) = E,

|R0(z)| ≤ |E −
∑

ξkRe(Rk(z))|−1

where
∑
ξkRe(Rk(z)) is equal in law to aS − bS ′ for two non-negative constants a, b and

two independent stable laws S, S ′. Assume for example that E > 0. By conditioning on
S ′ and integrating over S, we deduce from Lemma B.4 that there exists a finite constant
c = c(α, β) so that

E|R0(z)|β ≤ E|E − aS + bS ′|−β ≤ cE|E + bS ′|−β ≤ cE−β.

In particular, as η goes to 0, any limit point R0(E) of R0(E+iη), solution of (52), satisfies
the above inequality. The conclusion of the first point follows.

To prove the second point, we notice that it is straightforward that γ belongs to Cα.
Moreover, for any β ∈ [α

2
, 1], there exists a constant c = c(α, β) such that for any x, y in

K1,

|x
α
2 − y

α
2 | ≤ c|x− y|β (|x| ∧ |y|)

α
2
−β . (54)
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Also, we have, for u ∈ K+
1 and h ∈ K1,

|i.u||h| ≤ |h.u| ≤
√

2|u||h|. (55)

Indeed, if u = s + it, s, t ≥ 0, then |h.u|2 = Re(h)2(s + t)2 + Im(h)2(s − t)2. This last
expression is bounded from below by |h|2((s + t)2 ∧ (s − t)2) = |h|2(s − t)2 = |i.u|2|h|2.
While it is bounded from above by |h|2((s+ t)2 + (s− t)2) = 2|h|2|u|2.

Now, using Jensen inequality and (55), we find∣∣E(H.u)
α
2

∣∣ ≤ E
∣∣(H.u)

α
2

∣∣ ≤ (
√

2|u|)
α
2 E|H|

α
2 ,

whereas (54) and (55) imply∣∣E(H.u)
α
2 − E(H.v)

α
2

∣∣ ≤ E
∣∣(H.u)

α
2 − (H.v)

α
2

∣∣
≤ cE|H.(u− v)|β (|H.u| ∧ |H.v|)

α
2
−β

≤ c 2
β
2 |u− v|β (|i.u| ∧ |i.v|)

α
2
−β E|H|

α
2 .

This completes the proof with ‖γ‖β ≤
(√

2
α
2 + c2

β
2

)
E|H|α2 .

5.2.2. Proof of Lemma 5.3 (Fixed point equation for fractional moments). Write u =
u1 + iu2 and −iz = h ∈ K1. By definition

γz(u) = Γ
(

1− α

2

)
E
(

u1

h+
∑

k ξkHk

+
u2

h̄+
∑

k ξkH̄k

)α
2

= Γ
(

1− α

2

)
E

(
ǔ.h+

∑
k ξkȞk.u

|h+
∑

k ξkHk|2

)α
2

.

We use the formulas, for all w ∈ K1, γ > 0,

|w|−2γ = (w̄)−γ(w)−γ = Γ(γ)−2

∫
[0,∞)2

dxdy xγ−1yγ−1e−xw̄−yw

= Γ(γ)−221−γ
∫ π

2

0

dθ sin(2θ)γ−1

∫ ∞
0

dr r2γ−1e−re
iθ.w.

and for 0 < γ < 1,

wγ = γΓ(1− γ)−1

∫ ∞
0

dx x−γ−1(1− e−xw).

Formally, we find that γz(u) is equal to

cα

∫ π
2

0

dθ sin(2θ)
α
2
−1

∫ ∞
0

dx x−
α
2
−1

×
∫ ∞

0

dr rα−1E
(
e−re

iθ.h−
∑
k ξkre

iθ.Hk − e−(reiθ+xǔ).h−
∑
k ξk(reiθ+xǔ).Hk

)
.

If we perform the change of variable x = ry and apply Levy-Kintchine formula : we
obtain the stated formula. The exchange of expectation and integrals is then justified by
invoking Lemmas 5.2 and 5.4.
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5.2.3. A key auxiliary lemma. The next lemma will be used repeatedly.

Lemma 5.7 (Consequences of [2, Lemma 3.6]). Let 0 < α < 2, γ > 0 and 0 < κ ≤ 1,
there exists a constant c = c(α, γ) > 0 such that for all h ∈ K1 and x ∈ Kα

2
,∣∣∣∣∫ ∞

0

rγ−1e−rhe−r
α
2 xdr

∣∣∣∣ ≤ c|h|−γ. (56)

For all h, k ∈ K1 and x, y ∈ Kα
2
,∣∣∣∣ ∫ ∞

0

rγ−1e−rh
(
e−r

α
2 x − e−r

α
2 y
)
dr

∣∣∣∣ ≤ c|h|−γ−
α
2 |x− y|, (57)

and ∣∣∣∣ ∫ ∞
0

rγ−1e−r
α
2 x
(
e−rh − e−rk

)
dr

∣∣∣∣ ≤ c(|h| ∧ |k|)−γ−κ|h− k|κ. (58)

For all x1, x2, y1, y2 ∈ Kα
2
,∣∣∣∣ ∫ ∞

0

rγ−1e−rh
((
e−r

α
2 x1 − e−r

α
2 y1

)
−
(
e−r

α
2 x2 − e−r

α
2 y2

))
dr

∣∣∣∣ (59)

≤ c
(
|h|−γ−

α
2 |x1 − x2 − y1 + y2|+ |h|−γ−α(|x1 − x2|+ |y1 − y2|)(|x1 − y1|+ |x2 − y2|)

)
.

Moreover, for all h, k ∈ K1, x, y ∈ Kα
2
, for 0 < κ ≤ 1, we have∣∣∣∣ ∫ ∞

0

rγ−1
(
e−rh − e−rk

) (
e−r

α
2 x − e−r

α
2 y
)
dr

∣∣∣∣ ≤ c(|h| ∧ |k|)−γ−
α
2
−κ|h− k|κ|x− y|, (60)

and finally, for all 0 ≤ κ1, κ2 ≤ 1, h1, k1, h2, k2 ∈ K1, with N = |h1| ∧ |k1| ∧ |h2| ∧ |k2|,∣∣∣∣ ∫ ∞
0

rγ−1
(
e−rh1 − e−rh2 − e−rk1 + e−rk2

)
e−r

α
2 xdr

∣∣∣∣ (61)

≤ cN−γ−κ1|h1 − h2 − k1 + k2|κ1 + cN−γ−κ2−κ1(|h1 − h2|+ |k1 − k2|)κ2(|h1 − k1|+ |h2 − k2|)κ1 .

Proof. The bound (56) is [2, Lemma 3.6]. The bound (57) follows from (56) by taking
derivative and using the convexity of Kα

2
. For (58), assume for example that |h| ≤ |k|.

From (56), we may assume that |h− k| ≤ |h|/2. Then taking derivative, we find∣∣∣∣ ∫ ∞
0

rγ−1e−r
α
2 x
(
e−rh − e−rk

)
dr

∣∣∣∣ ≤ cN−γ−1|h− k|,

where N = min{|th+ (1− t)k| : 0 ≤ t ≤ 1}. Since |h− k| ≤ |h|/2 then N ≥ |h|/2 and∣∣∣∣ ∫ ∞
0

rγ−1e−r
α
2 x
(
e−rh − e−rk

)
dr

∣∣∣∣ ≤ c|h|−γ−1|h− k| ≤ c|h|−γ−κ|h− k|κ.

To prove (59), (60) and (61), we need to take derivatives and use the first inequalities.
Namely, for (59), we define the function on [0, 1],

ϕ(t) =

∫ ∞
0

rγ−1e−rh
(
e−r

α
2 x(t) − e−r

α
2 y(t)

)
dr,
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with x(t) = tx1 + (1− t)x2 and y(t) = ty1 + (1− t)y2. We are looking for an upper bound
on |ϕ(1)− ϕ(0)|. A straightforward computation yields

ϕ′(t) =

∫ ∞
0

rγ+α
2
−1e−rh

(
(x1 − x2)e−r

α
2 x(t) − (y1 − y2)e−r

α
2 y(t)

)
dr

= (x1 − x2)

∫ ∞
0

rγ+α
2
−1e−rh

(
e−r

α
2 x(t) − e−r

α
2 y(t)

)
dr

+(x1 − x2 − y1 + y2)

∫ ∞
0

rγ+α
2
−1e−rhe−r

α
2 y(t)dr.

By convexity, we note that x(t), y(t) are in Kα
2
. Hence using (56) and (57), we may upper

bound |ϕ′(t)|, up to a multiplicative constant, by

|h|−γ−α|x1 − x2||x(t)− y(t)|+ |h|−γ−
α
2 |x1 − x2 − y1 + y2|

≤ |h|−γ−α|x1 − x2||x1 − y1| ∨ |x2 − y2|+ |h|−γ−
α
2 |x1 − x2 − y1 + y2|.

This completes the proof of (59). For (60), we first first notice that splitting h and k
and arguing as for the proof of (58), it is sufficient to prove the statement for |h − k| ≤
(|h|∧ |k|)/2 and κ = 1. Then, with h(t) = th+(1− t)k, we consider this time the function

ψ(t) =

∫ ∞
0

rγ−1e−rh(t)
(
e−r

α
2 x − e−r

α
2 y
)
dr,

and take the derivative. We find that it is proportional to (h− k)(ϕ(1)− ϕ(0)) with the
previous function ϕ with γ replaced by γ+ 1 and x1 = x2 = x, y = y1 = y2. The bound is
therefore clear. The proof is identical for the third statement for κ1 = κ2 = 1. As above,
we then generalize it to any 0 ≤ κ1, κ2 ≤ 1 by using the rough bound given by (58). �

5.3. Properties of the map F .

Proof of Lemma 5.4. We start by proving that for all u ∈ S1
+, for h ∈ K1, |h| ≥ 1,

|Fh(g)(u)| ≤ c|h|−
α
2 (‖g‖β + 1). (62)

By Lemma 5.7, for h ∈ K1, the map on Kα
2

given by

x 7→
∫ ∞

0

dr r
α
2
−1e−rhe−r

α
2 x,

is bounded by c|h|−α/2 and Lipschitz with constant c|h|−α. Let T > 0 to be chosen later
on. From (55) and (56), for θ ∈ [0, π

2
] and h ∈ K1, u ∈ S+

1 , g : K1 → Kα
2
, we have∫ ∞

T

dy y−
α
2
−1

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1e−rh.e

iθ
(
e−r

α
2 g(eiθ) − e−yrh.ue−r

α
2 g(eiθ+yu)

)∣∣∣∣
≤
∫ ∞
T

dy y−
α
2
−1

(∣∣∣∣ ∫ ∞
0

dr r
α
2
−1e−rh.e

iθ

e−r
α
2 g(eiθ)

∣∣∣∣+

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1e−rh.(e

iθ+yu)e−r
α
2 g(eiθ+yu)

∣∣∣∣)
≤ c

∫ ∞
T

dy
y−

α
2
−1

|h|α2 |i.eiθ|α2
+ c

∫ ∞
T

dy
y−

α
2
−1

|h|α2 |i.(eiθ + yu)|α2

≤ c′|h|−
α
2

∣∣∣θ − π

4

∣∣∣−α2 T−α2 , (63)
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where we have used the fact that |i.eiθ| = | cos θ − sin θ| ≥ c|θ − π/4| and the control, for
any real t, δ, T > 0, any γ1 < γ2, γ1 6= 0, (here γ2 = −γ1 = α/2),∫ ∞
T

yγ1−1

|yt− δ|γ2
dy = |δ|γ1−γ2|t|−γ1

∫ ∞
T |t|
|δ|

xγ1−1

|x± 1|γ2
dx ≤ c(T γ1|δ|−γ21γ1<0 + |δ|γ1−γ2|t|−γ11γ1>0) ,

(64)
where the sign depends on whether or not t, δ have a different sign.

For the integration over y in the interval [0, T ], we find similarly by (57) that

A :=

∫ T

0

dy y−
α
2
−1

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1e−rh.e

iθ
(
e−r

α
2 g(eiθ) − e−r

α
2 g(eiθ+yu)

)∣∣∣∣
≤ c

∫ T

0

dy
y−

α
2
−1

|h|α|i.eiθ|α
|g(eiθ)− g(eiθ + yu)| .

Recalling that g(z) = |z|α2 g( z
|z|) and using (54)-(55) we find that there exist finite constants

C,C ′ so that for all z, z′ ∈ K+
1 ,

|g(z)− g(z′)| ≤ ‖g‖β

(∣∣|z|α2 − |z′|α2 ∣∣+ (|z| ∧ |z′|)
α
2

∣∣∣∣ z|z| − z′

|z′|

∣∣∣∣β (|i. z|z| | ∧ |i. z′|z′| |
)α

2
−β
)

≤ C‖g‖β
(
(|z| ∧ |z′|)

α
2
−β + (|i.z| ∧ |i.z′|)

α
2
−β) |z − z′|β

≤ C ′‖g‖β(|i.z| ∧ |i.z′|)
α
2
−β|z − z′|β. (65)

Using the fact that |eiθ + yu| ≥ 1 as u, eiθ ∈ S+
1 , y ≥ 0, we find with (55) that

A ≤ c|h|−α|i.eiθ|−α‖g‖β
(∫ T

0

dy
yβ−

α
2
−1

|i.(eiθ + yu)|β−α2
+

∫ T

0

dy
yβ−

α
2
−1

|i.eiθ|β−α2

)
≤ c′|h|−α|θ − π

4
|−β−

α
2 ‖g‖βT β−

α
2 , (66)

where we have used that β > α/2 to obtain a convergent integral.

In the integration over y on the interval [0, T ], we have left aside the term∫ T

0

dy y−
α
2
−1

∫ ∞
0

dr r
α
2
−1e−rh.e

iθ

e−r
α
2 g(eiθ+yu)

(
1− e−yrh.u

)
.

We shall use this time the third statement (58) of Lemma 5.7 with κ = 1. We choose
T = |i.eiθ|/2 so that for all y ∈ [0, T ] from (55)

|h.(eiθ + yu)| ≥ |h||i.eiθ| −
√

2|h|T ≥ (1− 1√
2

)|h||i.eiθ|.

For this choice of T , we get∫ T

0

dy y−
α
2
−1

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1e−rh.e

iθ

e−r
α
2 g(eiθ+yu)

(
1− e−yrh.u

)∣∣∣∣
≤ c

∫ T

0

dy
y−

α
2

|h|α2 |i.eiθ|α2 +1
≤ c′|h|−

α
2

∣∣∣θ − π

4

∣∣∣−α2−1

T 1−α
2 . (67)

Finally, using our choice of T , we deduce from (63),(66),(67) that∫ ∞
0

dy y−
α
2
−1

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1e−rh.e

iθ
(
e−r

α
2 g(eiθ) − e−yrh.ue−r

α
2 g(eiθ+yu)

)∣∣∣∣
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is bounded by c|h|−α2 |θ − π
4
|−α(1 + ‖g‖β) for |h| ≥ 1. We obtain (62) since

|θ − π

4
|−α(sin 2θ)

α
2
−1

is integrable over [0, π/2].

The proof of the lemma will be complete if we prove that for all u, v ∈ S+
1 ,

|Fh(g)(u)− Fh(g)(v)| ≤ c|u− v|β(|i.u| ∧ |i.v|)
α
2
−β(1 + ‖g‖β)|h|−

α
2 . (68)

To do so, we fix θ ∈ [0, π/2] and assume for example that |i.(eiθ + yu)| ≤ |i.(eiθ + yv)|.
We first use the Lipschitz bound (57), together with (65), and write∫ ∞

0

dy y−
α
2
−1

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1e−rh.e

iθ
(
e−yrh.ue−r

α
2 g(eiθ+yu) − e−yrh.ue−r

α
2 g(eiθ+yv)

)∣∣∣∣
≤ c

∫ ∞
0

dy
y−

α
2
−1

|h|α|i.(eiθ + yu)|α
|g(eiθ + yu)− g(eiθ + yv)|

≤ c|h|−α|u− v|β‖g‖β
∫ ∞

0

dy
yβ−

α
2
−1

|i.(eiθ + yu)|β+α
2

≤ c′|h|−α|u− v|β‖g‖β
∣∣∣θ − π

4

∣∣∣−α (|i.u| ∧ |i.v|)
α
2
−β, (69)

where we have used (64) with γ1 = β − α/2 > 0 and γ2 = κ > γ1.

Now, in our control of∫ ∞
0

dy y−
α
2
−1

∫ ∞
0

dr r
α
2
−1e−rh.e

iθ
(
e−yrh.ue−r

α
2 g(eiθ+yu) − e−yrh.ve−r

α
2 g(eiθ+yv)

)
we have so far left aside∫ ∞

0

dy y−
α
2
−1

∫ ∞
0

dr r
α
2
−1e−rh.(e

iθ+yu)e−r
α
2 g(eiθ+yv)

(
1− e−yrh.(v−u)

)
where |i.(eiθ + yu)| ≤ |i.(eiθ + yv)|. By (58) applied to κ = β,∣∣∣∣ ∫ ∞

0

dr r
α
2
−1e−rh.(e

iθ+yu)e−r
α
2 g(eiθ+yv)

(
1− e−yrh.(v−u)

)∣∣∣∣
is bounded up to multiplicative constant by

|h|−
α
2
−β|i.(eiθ + yu)|−

α
2
−βyβ|v − u|β.

Using again (64) with 0 < γ1 = β − α/2 < γ2 = β + α/2 yields∫ ∞
0

dy y−
α
2
−1

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1e−rh.(e

iθ+yu)e−r
α
2 g(eiθ+yv)

(
1− e−yrh.(v−u)

)∣∣∣∣
≤ c|h|−

α
2
−β|u− v|β|δ|−α[|i.u|

α
2
−β + |i.v|

α
2
−β] . (70)

We may conclude the proof of (68) by noticing that the bounds given by (69)-(70) and
mutliplied by (sin 2θ)

α
2
−1 are uniformly integrable on [0, π/2]. �

We can now build upon the proof of Lemma 5.4 to get proofs for Lemmas 5.5 and 5.6.
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Proof of Lemma 5.5. We shall now use the norm ‖.‖β,ε for which we have the following
analogue of (65): if 0 ≤ ε ≤ β − α

2
, for all z, z′ ∈ K+

1 ,

|f(z)| ≤ ‖f‖β,ε
|z|α2 +ε

|i.z|ε
(71)

|f(z)− f(z′)| ≤ C‖f‖β,ε
(|z| ∨ |z′|)α2 +ε

(|i.z| ∨ |i.z′|)β+ε
|z − z′|β. (72)

We start by showing that for any u ∈ S1
+,

|Fh(g)(u)− Fh(f)(u)| ≤ c|h|−α(1 + ‖f‖β + ‖g‖β)‖f − g‖β,ε|i.u|−ε. (73)

The proof is similar to the argument in Lemma 5.4. We notice that Fh(g)(u)− Fh(f)(u)
is equal to ∫ π

2

0

dθ(sin 2θ)
α
2
−1

∫ ∞
0

dy y−
α
2
−1

∫ ∞
0

dr r
α
2
−1Z(r, y, θ),

where, with gu = g(eiθ + yu), fu = f(eiθ + yu), hu = h.(eiθ + yu),

Z = e−rh0

(
e−r

α
2 g0 − e−r

α
2 f0

)
− e−rhu

(
e−r

α
2 gu − e−r

α
2 fu
)

=
(
e−rh0 − e−rhu

) (
e−r

α
2 gu − e−r

α
2 fu
)

+ e−rh0

(
e−r

α
2 g0 − e−r

α
2 f0 − e−r

α
2 gu + e−r

α
2 fu
)
.

We set δ = −i.eiθ and t = i.u. On the integration interval [T,∞) of y we use the first
form of Z and treat the two terms separately. As in Lemma 5.4, we use (57) and (71) to
find∫ ∞

T

dy y−
α
2
−1

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1
(
e−rh0

(
e−r

α
2 g0 − e−r

α
2 f0

)
− e−rhu

(
e−r

α
2 gu − e−r

α
2 fu
))∣∣∣∣

≤ c

∫ ∞
T

dy
y−

α
2
−1‖f − g‖β,ε
|h|α|δ|α+ε

+ c

∫ ∞
T

dy
y−

α
2
−1y

α
2

+ε ∨ 1‖f − g‖β,ε
|h|α|ty − δ|α+ε

≤ c′|h|−α‖f − g‖β,ε(T−
α
2 δ−ε−α + δ−α|t|−ε) .

The above computation requires the hypothesis ε > 0 to insure that the control of the
integrals hold following (64) with γ1 6= 0.

For the integration interval [0, T ) of y we use the second form of Z and choose T =
|i.eiθ|/2 = |δ|/2. We use (60), (71) and κ = α/2 + ε, we find∫ T

0

dy y−
α
2
−1

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1
(
e−rh0 − e−rhu

) (
e−r

α
2 gu − e−r

α
2 fu
)∣∣∣∣ ≤ c

∫ T

0

dy
yκ−

α
2
−1‖f − g‖β,ε

|h|α+κ|δ|α+κ+ε

≤ c′|h|−
3α
2
−ε|δ|−

3α
2
−ε‖f − g‖β,ε.

Similarly, by (59) and (71), (72) and (65), our choice of T gives∫ T

0

dy y−
α
2
−1

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1e−rh0

(
e−r

α
2 g0 − e−r

α
2 f0 − e−r

α
2 gu + e−r

α
2 fu
)∣∣∣∣

≤ c

∫ T

0

dy
yβ−

α
2
−1‖f − g‖β,ε|δ|−ε−β

|h|α|δ|α
+ c

∫ T

0

dy
yβ−

α
2
−1(‖f‖β + ‖g‖β)|δ|α2−β‖f − g‖β,ε|δ|−ε

|h| 3α2 |δ| 3α2

≤ c′|h|−α|δ|−
3α
2
−ε‖f − g‖β,ε + c′|h|−

3α
2 |δ|−

3
2
−ε(‖f‖β + ‖g‖β)‖f − g‖β,ε.

Since 3α/2 + ε < 1, we may integrate our bounds over θ and obtain (73).
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The proof of the lemma will be complete if we show that for any u 6= v ∈ S+
1 , with

|i.u| ≤ |i.v|,

|Fh(g)(u)− Fh(f)(u)− Fh(g)(v) + Fh(f)(v)| (74)

≤ c|h|−α(1 + ‖f‖β + ‖g‖β)‖f − g‖β,ε|i.u|−β−ε|u− v|β.

The proof is simpler than in the previous case as we do not need to consider separatly
the cases where y are small or large. We set δ = −i.eiθ, t = i.u, t′ = i.v, |t| ≤ |t′|. Using
(60) with κ = β and (71), we find∫ ∞

0

dy y−
α
2
−1

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1
(
e−rhv − e−rhu

) (
e−r

α
2 gu − e−r

α
2 fu
)∣∣∣∣

≤ c′|h|−α−β|u− v|β‖f − g‖β,ε(|δ|−
3α
2
−ε|t|

α
2
−β + |δ|−α|t|−β−ε).

Moreover, using again (59), (71), (72) and (65) we find∫ ∞
0

dy y−
α
2
−1

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1e−rhv

(
e−r

α
2 gv − e−r

α
2 fv − e−r

α
2 gu + e−r

α
2 fu
)∣∣∣∣

+ c

∫ ∞
0

dy
yβ−

α
2
−1|u− v|β|ty − δ|α2−β(‖f‖β + ‖g‖β)‖f − g‖β,ε(1 ∨ y

α
2

+ε)|ty − δ|−ε

|h| 3α2 |ty − δ| 3α2

≤ c′|h|−α|u− v|β(1 + ‖f‖β + ‖g‖β)‖f − g‖β,ε(|δ|−
3α
2
−ε|t|

α
2
−β + |δ|−α|t|−β−ε).

Now, by assumption, 3α/2 + ε < 1 and we may integrate our bounds over θ and obtain
(74). �

Proof of Lemma 5.6. The proof is very close to the previous one, and we simply outline
it. We assume for example |h| ≤ |k|. By Lemma 5.4, we can also assume that |h−k| ≤ |h|
and in particular |k| ≤ 2|h|. We first prove that for any u ∈ S1

+,

|Fh(g)(u)− Fk(g)(u)| ≤ c|h|−
α
2
−κ|h− k|κ(1 + ‖g‖β). (75)

The expression Fh(g)(u)− Fk(g)(u) is equal to∫ π
2

0

dθ(sin 2θ)
α
2
−1

∫ ∞
0

dy y−
α
2
−1

∫ ∞
0

dr r
α
2
−1Z(r, y, θ),

where, with gu = g(eiθ + yu), hu = h.(eiθ + yu), ku = k.(eiθ + yu),

Z = e−r
α
2 g0
(
e−rh0 − e−rk0

)
− e−r

α
2 gu
(
e−rhu − e−rku

)
=

(
e−r

α
2 g0 − e−r

α
2 gu
) (
e−rh0 − e−rk0

)
+ e−r

α
2 gu
(
e−rh0 − e−rk0 − e−rhu + e−rku

)
.

Let T > 0. We set δ = −i.eiθ and t = i.u. On the integration interval [T,∞) for y, we
use the first form of Z. Then, from (58) in Lemma 5.7, we find∫ ∞

T

dy y−
α
2
−1

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1
(
e−r

α
2 g0
(
e−rh0 − e−rk0

)
− e−r

α
2 gu
(
e−rhu − e−rku

))∣∣∣∣
≤ c

∫ ∞
T

dy
y−

α
2
−1|h− k|κ

|h|α2 +κ|δ|α2 +κ
+ c

∫ ∞
T

dy
y−

α
2
−1(1 ∨ yκ)|h− k|κ

|h|α2 +κ|ty − δ|α2 +κ

≤ c′|h|−
α
2
−κ|h− k|κ(|δ|−

α
2
−κT−

α
2 + |δ|−

α
2
−κT κ−

α
2 ),
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where we have used that κ < α/2. On the integration interval [0, T ) for y, we use the
second form of Z. We choose T = |i.eiθ|/2 = |δ|/2. For the first term, by (60) in Lemma
5.7, ∫ T

0

dy y−
α
2
−1

∣∣∣∣ ∫ ∞
0

dr r
α
2
−1
(
e−r

α
2 g0 − e−r

α
2 gu
) (
e−rh0 − e−rk0

)∣∣∣∣
≤ c

∫ T

0

dy
yβ−

α
2
−1|h− k|κ|δ|α2−β‖g‖β
|h|α+κ|δ|α+κ

≤ c′|h|−α−κ|δ|−α−κ|h− k|κ‖g‖β.

The second term is easily bounded by (61) with κ1 = κ and κ2 = 0. Integrating our
bounds over θ, we obtain (75). The proof that for all u 6= v ∈ S+

1 , with |i.u| ≤ |i.v|.

|Fh(g)(u)− Fk(g)(u)− Fh(g)(v) + Fk(g)(v)| (76)

≤ c|u− v|β|i.u|
α
2
−β−κ(1 + ‖g‖β)|h|−

α
2 |h− k|κ

is easier as it does not require to consider separatly small and large y; we leave it to the
reader. �

5.3.1. Computation of characteristic function. With the notation of proof of Theorem
5.1, we define for z ∈ C̄+, u ∈ K+

1 ,

χz(u) = E exp(−u.H(z)).

We note that the distribution of R0(z) is characterized by the value of χz on any open
neighborhood in K+

1 . The next lemma asserts that the distribution of R0(z) is also
characterized by the value of γz on K+

1 (that is on S1
+ by homogeneity).

Lemma 5.8 (From fractional moment to characteristic function). Let z ∈ C̄+, 0 < α < 2
and R0(z) solution of (52) such that E|R0(z)|α2 < +∞. For all u = u1 + iu2 ∈ K+

1 ,

χz(u) =

∫
R2

+

J1(s)J1(t)e
− (−iz)s2

4u1
− (iz̄)t2

4u2 e
−γz

(
s2

4u1
+i t

2

4u2

)
dsdt

−
∫ ∞

0

J1(s)e
− (−iz)s2

4u1 e
−Γ(1−α

2
)γz( s2

4u1
)
ds−

∫ ∞
0

J1(t)e
− (iz̄)t2

4u2 e
−Γ(1−α

2
)γz(i t

2

4u2
)
dt+ 1.

where J1(x) = x
2

∑
k≥0

(−x2/4)k

k!(k+1)!
is a Bessel function of the first kind.

Proof. We use the formulas for w ∈ K1,

1− e−w−1

=

∫ ∞
0

J1(s)e−
ws2

4 ds

(see [?]) and for z, z′ ∈ C,

e−z−z
′
= (1− e−z)(1− e−z′)− (1− e−z)− (1− e−z′) + 1.
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Then, it follows from (52) that

e−u1H−u2H̄ d
= exp

(
− u1

− iz +
∑

k≥1 ξkHk

− u2

iz̄ +
∑

k≥1 ξkH̄k

)
d
=

∫
R2

+

J1(s)J1(t)e
− (−iz)s2

4u1
− (iz̄)t2

4u2 e
−
∑
k ξk

(
Hks

2

4u1
+
H̄kt

2

4u2

)
dsdt

−
∫ ∞

0

J1(s)e
− (−iz)s2

4u1 e
−
∑
k ξk

Hks
2

4u1 ds−
∫ ∞

0

J1(t)e
− (iz̄)t2

4u2 e
−
∑
k ξk

H̄kt
2

4u2 dt+ 1.

Since J1 is bounded on R+, we may safely take expectation. The conclusion follows from
Levy-Khintchine formula. �

5.4. Proof of Theorem 1.3. We start with a simple lemma which relates WI(i) to the
diagonal of resolvent.

Lemma 5.9 (From eigenvectors to diagonal of resolvent). Let α > 0 and I = [E−η, E+η]
be an interval. Setting z = E + iη ∈ C+, we have

1

n

n∑
i=1

WI(i)
α
2 ≤

(
2nη

|ΛI |

)α
2 1

n

n∑
i=1

(ImR(z)ii)
α
2 .

Proof. From the spectral theorem, we have

ImR(z)ii ≥
∑
v∈ΛI

η〈v, ei〉2

(λi(A)− E)2 + η2
≥ 1

2η

∑
v∈ΛI

〈v, ei〉2 =
|ΛI |
2nη

WI(i).

It remains to sum the above inequality. �

At this stage, it should be clear that the proof of Theorem 1.3 will rely on Theorem
5.1 and on an extension of the previous fixed point argument to finite n system. The
bottleneck in the proof will be on the lower bound of |ΛI |/nη which in particular requires
according to Lemma 3.7 that µA(I) ≤ L|I|. This last control is difficult when α < 1 as
in this case n−1

∑n
i=1(ImR(z)ii)

α/2 goes to zero like ηα/2 so that arguments such as those
used in the proof of Theorem 3.5 do not hold. It will be responsible for the restrictive
condition η ≥ n−ρ+o(1) in the statement of Theorem 1.3. For completeness we will also
prove in this subsection a vanishing upper bound on

1

n

n∑
i=1

(ImR(z)ii)
α
2 ,

for η of order n−1/6 for all α > 0. More precisely, we have

Theorem 5.10 (Vanishing fractional moment for the resolvent). Let 0 < α < 2/3,

0 < ε < α2

2(4−α)
, ρ′ = 2+α

4(3+α)
and c0 = (2+α)2

16(3+α)
. There exist c1 = c1(α), c = c(α, ε) > 0 such

that if n ≥ 1, z = E + iη ∈ C+, |z| ≥ c, n−ρ
′
(log n)c0 ≤ η ≤ 1,

E
1

n

n∑
i=1

(ImR(z)ii)
α
2 ≤ cη−

α(3+α)
2+α n−

α
2

+c1ε + cη
α
2
−ε.
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Moreover, if n−ρ(log n)
4

2+3α ≤ η ≤ 1,

E
1

n

n∑
i=1

(ImR(z)ii)
α
2 ≤ cη

α
2
−ε.

Theorem 1.3 is a consequence of the second statement of Theorem 5.10 together with
Theorem 3.5, Lemma 5.9 and Lemma C.4 wich asserts that

P

(
1

n

n∑
i=1

(ImR(z)ii)
α
2 ≥ E

1

n

n∑
i=1

(ImR(z)ii)
α
2 + tη

α
2
−ε

)
≤ exp(−nη4− 4ε

α t
1
α ).

We consider for u ∈ K+
1 ,

γnz (u) := Γ(1− α

2
)E

[
1

n

n∑
k=1

(−iR(z)kk.u)
α
2

]
= Γ(1− α

2
)E
[
(−iR(z)11.u)

α
2

]
.

Lemma 5.11 (Bound on fractional moments of the resolvent). Let 0 < α/2 ≤ β <
2α/(4 − α) and ρ′, c0 as in Theorem 5.10. There exists c > 0 such that if n ≥ 1, z =
E + iη ∈ C+, |z| ≥ 1, η ≥ n−ρ

′
(log n)c0, then

‖γnz ‖β ≤ c. (77)

The proof of Theorem 5.10 provides also the local convergence of the fractional moments
γnz for the norm ‖.‖α

2
,ε. Indeed it is based again on an approximate fixed point argument

for these quantities.

Lemma 5.12 (Approximate fixed point for fractional moments of the resolvent). Let

0 < α < 2/3 and ρ′, c0 as in Theorem 5.10 and Gz as in (53). For all 0 < ε < α2

2(4−α)
, there

exists c = c(α, ε) > 0 such that if n ≥ 1, z = E + iη ∈ C+, |z| ≥ c, n−ρ
′
(log n)c0 ≤ η ≤ 1,

‖γnz −Gz(γ
n
z )‖α

2
+ε,ε ≤ cη−

α(3+α)
2+α n−

α
4 .

Moreover, if n−ρ(log n)
4

2+3α ≤ η ≤ 1,

‖γnz −Gz(γ
n
z )‖α

2
+ε,ε ≤ η−

5α
4 n−

α
4 .

We now check that the above two lemmas imply Theorem 5.10. Note in the proof below
that they also imply the convergence of γnz to γz for η ≥ n−ρ

′
(log n)c0 .

Proof of Theorem 5.10. We prove the first statement. Let 0 < ε < α2

2(4−α)
and δ =

η−
α(3+α)

2+α n−
α
4 . Now since ‖γnz ‖α2 +ε and ‖γz‖α

2
+ε are uniformly bounded, we have by Lemma

5.5 and Lemma 5.12,

‖γnz − γz‖α2 +ε,ε ≤ c|z|−α‖γnz − γz‖α2 +ε,ε + cδ

as long as |z| ≥ c with imaginary part n−ρ
′
(log n)c0 ≤ η ≤ 1. Hence, if |z| is large enough,

c|z|−α is less than 2 and it follows that

‖γnz − γz‖α2 +ε,ε ≤ 2cδ.



40 CHARLES BORDENAVE AND ALICE GUIONNET

Now, we may argue as in the proof of Theorem 5.1. By Theorem 5.1, for |z| large enough,
|γz(ei

π
4 )| ≤ c′η

α
2
−ε, for some constant c′ > 0. Then, for any u ∈ S1

+, using Lemma 5.11
and Lemma 5.2,

Γ(1− α

2
)EImR(z)

α
2
11 = |γnz (ei

π
4 )|

≤ |γnz (ei
π
4 )− γnz (u)|+ |γnz (u)− γz(u)|+ |γz(ei

π
4 )− γz(u)|+ |γz(ei

π
4 )|

≤ c′′|u− ei
π
4 |

α
2 + ‖γz − γnz ‖β,ε|i.u|−ε + |γz(ei

π
4 )|

≤ c′′|u− ei
π
4 |

α
2 + c′′δ|u− ei

π
4 |−ε + c′η

α
2
−ε.

Choosing u such that |u − eiπ4 | is of order δ
2

α+2ε , we deduce that for all z = E + iη with
|E| ≥ Eα,ε, EImR(z)

α
2 is bounded up to a multiplicative constant, by

η−
α(3+α)

2+α n−
α
4

+O(ε) + η
α
2
−ε.

Since ε > 0 can be arbitrarily small, this concludes the proof for the case n−ρ
′
(log n)c0 ≤

η ≤ 1. The proof for n−ρ(log n)
4

2+3α ≤ η ≤ 1 is identical : we find,

E
1

n

n∑
i=1

(ImR(z)ii)
α
2 ≤ cη−

5α
4 n−

α
4

+O(ε) + cη
α
2
−ε.

It remains to notice that for ε small enough, in our range of η, the second term dominates
the first term. �

Proof of Lemma 5.11. As in the proof of Lemma 5.2, it is sufficient to check that for some
constant c = c(α, β),

E|R11(E + iη)|β ≤ c|E|−β. (78)

As usual, from (10), we have

|R(z)11| =
∣∣(z − a−1

n X11 + a−2
n 〈X1, R

(1)X1〉
)∣∣−1

.

We first get rid of the non-diagonal term in the scalar product 〈X1, R
(1)X1〉. We perform

this as in the proof of Lemma 3.3. Using the definition (24) and (54) with α/2 = β, we
find ∣∣∣∣∣∣E|R(E + iη)11|β − E

∣∣∣∣∣z + a−2
n

n∑
i=2

R
(1)
ii X

2
1i

∣∣∣∣∣
−β
∣∣∣∣∣∣ ≤ cη−2βE|T (z)|β

In particular, since |z|−β ≤ |Re(z)|−β, we find

E|R(E + iη)11|β ≤ E

∣∣∣∣∣E + a−2
n

n∑
i=2

Re(R
(1)
ii )X2

1i

∣∣∣∣∣
−β

+ cη−2βE|T (z)|β

Now, we decompose the sum into a positive and a negative part
n∑
i=2

Re(R
(1)
ii )X2

1i =
n∑
i=2

(
Re(R

(1)
ii )
)

+
X2

1i −
n∑
i=2

(
Re(R

(1)
ii )
)
−
X2

1i.

Note that, conditioned on R(1), the two sums are independent. We invoke Lemma B.1

a−2
n

n∑
i=2

Re(R
(1)
ii )X2

1i
d
= aS − bS ′,
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where, conditioned on R(1), a, b, S, S ′ are independent non-negative random variables,
S, S ′ being α/2-stable random variables. Hence from what precedes,

E|R(E + iη)11|β ≤ E |E + aS − bS ′|−β + cη−2βE|T (z)|β.
Assume for example that E > 0. Let F be the filtration generated by (R(1), a, b, S) and
E′ = E[·|F ]. Using Lemma B.4 conditionnaly to F yields that for some constant c′ > 0,

E |E + aS − bS ′|−β = E
[
E′ |E + aS − bS ′|−β

]
≤ c′ E |E + aS|−β ≤ c′E−β.

If E < 0, we repeat the same argument with the filtration generated by (R(1), a, b, S ′).

Now, if 0 < β < 2α/(4− α), using the tail bound (23), we find

E|T (z)|β ≤ c

(
n−

β
α +

(
Mn

n

)β
2

)
. (79)

We now use the bound given by (17) on Mn which is valid for all η ≥ n−
α+2

4 ,

η−2βE|T (z)|β ≤ cη−2β− 2β
2+αn−

β
2 (log n)

β(2+α)
8 .

This concludes the proof of the lemma, since for η ≥ n−ρ
′
(log n)

(2+α)2

16(3+α) , the above expres-
sion is uniformly bounded. �

Note that in the proof of Lemma 5.11 we have used the bound (17) instead of the bound
Mn ≤ cη−1 given by the proof of Proposition 3.6 because it is valid for a wider range of η.

Proof of Lemma 5.12. Set h = −iz ∈ K1, Hk(h) = −iR(1)(ih)kk and define

Inh (u) = Γ
(

1− α

2

)
E

(h+ a−2
n

n∑
k=2

X2
1kHk

)−1

.u

α
2

= Γ
(

1− α

2

)
E

(
h.ǔ+ a−2

n

∑n
k=2X

2
1kHk(h).ǔ

|h+ a−2
n

∑n
k=2 X

2
1kHk|2

)α
2

,

where we recall that ǔ = Im(u) + iRe(u).

Step one : Diagonal approximation. In this first step, we generalize Lemma 3.3. We will
upper bound the expression ‖γnih − Inh‖β,ε. Using the definition (24), we find that for any
u ∈ S+

1 , with η = Re(h) > 0,

|γnih(u)− Inh (u)| ≤ cη−αE[|T (z)|
α
2 ],

where we have used (54) with β = α
2
. Using (79) for β = α/2, we deduce that

|γnih(u)− Inh (u)| ≤ cη−α

(
n−1/2 +

(
Mn

n

)α
4

)
.

Whereas using (17) to bound Mn, we find for n−
α+2

4 ≤ η ≤ 1 that

|γnih(u)− Inh (u)| ≤ cn−
α
4 η−

α(3+α)
2+α (log n)

α(2+α)
8 . (80)

To bound
∆n
h(u, v) := |γnih(u)− γnih(v)− Inh (u) + Inh (v)|
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we first observe that for x1, x2, y1, y2 ∈ K1, by using the standard interpolation trick, for
κ1, κ2, β ∈ [0, 1], we have if N = |x1| ∧ |x2| ∧ |y1| ∧ |y2|, and κ1 + κ2 ≥ α/2

|x
α
2
1 −x

α
2
2 −y

α
2
1 +y

α
2
2 | ≤ N

α
2
−κ1−κ2|x1−y1|κ1(|x1−x2|κ2 +|y1−y2|κ2)+N

α
2
−β|x1−x2−y1+y2|β.

We use this inequality with

xj =
h.ǔ+ a−2

n

∑n
k=2X

2
1kHk(h).ǔ− i(j − 1)T (z).ǔ

|h+ a−2
n

∑n
k=2X

2
1kHk − i(j − 1)T (h)|2

,

and in yj, v replaces u. For j ∈ {1, 2}, one can check that, withDj = (h+a−2
n

∑n
k=2X

2
1kHk−

i(j − 1)T (z))−1,

|xi − yi| ≤ |Di||u− v| , |x1 − x2| ∨ |y1 − y2| ≤ |D1||D2||T (z)|,
and

|x1 − x2 − y1 + y2| ≤ |D1||D2||u− v||T (z)| .
Moreover, using (55), we find N ≥ (|i.u| ∧ |i.v|)(|D1| ∧ |D2|). Recall finally that |D1| and
|D2| are bounded by η−1. Hence, choosing κ1 = β, κ2 = α

2
+ ε (with ε small enough so

that α
2

+ ε < 2α
4−α) we deduce that,

∆n
h(u, v) ≤ η−β−

α
2 (|i.u| ∧ |i.v|)−β−ε|u− v|βE[|T (z)|

α
2

+ε] + η−β−
α
2 |u− v|βE[|T (z)|β].

We naturally choose β = α
2

+ ε < 2α
4−α . From (23), T (z) ∈ Lβ and

E[|T (z)|β] ≤ cn−
β
α + c

(
Mn

n

)β
2

≤ c
(
η

4
2+αn(log n)−

2+α
4

)−β
2
,

where we have finally assumed that n−
2+α

4 ≤ η ≤ 1 and used (17). This gives for n−
2+α

4 ≤
η ≤ 1

‖γnih − Inh‖α2 +ε,ε ≤ cη−β−
α
2
− 2β

2+αn−
β
2 (log n)

β(2+α)
8

Now it easy to check that for η ≥ n−
2+α

2(4+α) , we have η−β−
α
2
− 2β

2+αn−
β
2 < η−

α(3+α)
2+α n−

α
4 . It

follows for n−ρ
′ ≤ η ≤ 1 and a new constant c > 0, depending on ε, that

‖γnih − Inh‖α2 +ε,ε ≤ cη−
α(3+α)

2+α n−
α
4 . (81)

If instead we assume that n−ρ(log n)
4

2+3α ≤ η ≤ 1, then, from the proof of Proposition
3.6, we may use the stronger bound Mn ≤ cη−1 if |z| large enough. We find instead

‖γnih − Inh‖α2 +ε,ε ≤ cη−
3β
2
−α

2 n−
β
2 ≤ cη−

5α
4 n−

α
4 . (82)

(where, for the last inequality, we have used the fact that η ≥ n−1/3 for n−ρ(log n)
4

2+3α ≤
η ≤ 1 and n large enough).

Step two : approximate fixed point equation. Next, we extend the proof of Proposition 3.1.
We denote by E1[·] and P1(·) the conditional expectation and probability given F1, the σ-
algebra generated by the random variables (Xij)i≥j≥2. We assume that α/2 < β < 1−α/2
and 0 < ε < 1− 3α/2. We first remark that by arguments similar to the proof of Lemma
5.3 and by Corollary B.2, we have

Inh (u) = E[Gz(Zn)(u)],

where, conditionned on F1, Zn(u) = κ
n

∑n
k=2(Hk.u)

α
2 |gk|α, gk are i.i.d standard nor-

mal variables and κ = Γ(1 − α/2)/E|g1|α. Note that, from Lemma 5.2, ‖Zn‖β ≤
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c
n

∑n
k=2 |Hk|

α
2 |gk|α which belongs to Lp for any p > 0. Therefore, we can use Lemma

5.5 and the Hölder inequality to insure that,

‖Inh−Gz(γ
n
z )‖β,ε ≤ c|h|−α

1 + ‖γnz ‖β + E

[(
κ

n

n∑
k=2

|Hk|
α
2 |gk|α

)p]1/p
E

[
‖γnz − Zn‖

q
β,ε

]1/q
,

(83)
where 1/p+ 1/q = 1 and

E[‖γnz − Zn‖
q
β,ε]

1/q ≤ E[‖E[Zn]− Zn‖qβ,ε]
1/q + ‖γnz − E[Zn]‖β,ε .

From the triangle inequality,

E[‖E[Zn]− Zn‖qβ,ε]
1/q ≤ E[‖E[Zn]− E1[Zn]‖qβ,ε]

1/q + E[‖E1[Zn]− Zn‖qβ,ε]
1/q.

But, using Lemma C.5 from the appendix,

E[‖E1[Zn]− Zn‖qβ,ε] ≤ E

∥∥∥∥∥ cn
n∑
k=2

(Hk.u)
α
2 (|gk|α − E|gk|α)

∥∥∥∥∥
q

β,ε

≤ c(q)(log n)
q
2 (ηαn)−

q
2 .

Similarly, by Lemma C.5,

E[‖E[Zn]−E1[Zn]‖qβ,ε] ≤ cqE

∥∥∥∥∥E 1

n

n∑
k=2

(Hk.u)
α
2 − 1

n

n∑
k=2

(Hk.u)
α
2

∥∥∥∥∥
q

β,ε

≤ c′(q)(log n)
qα
4 (η2n)−

qα
4 .

Whereas using (91) as we did in the proof of Proposition 3.1, we have, with c0 = 2Γ(1− α
2
),

‖γnz − EZn‖β,ε ≤ c0(nη)−
α
2 .

Hence, there exists a new constant c(q) such that

E
[
‖γnz − Zn‖

q
β,ε

]1/q ≤ c(q)(log n)
α
4 (η2n)−

α
4 .

Similarly, using the triangle inequality at the first line, (91) at the second line and the
Jensen inequality at the third,

E

[(
1

n

n∑
k=2

|Hk|
α
2 |gk|α

)p]1/p

≤ E

[(
1

n

n∑
k=2

|Hk|
α
2 E|gk|α

)p]1/p

+ E

[∣∣∣∣∣ 1n
n∑
k=2

|Hk|
α
2 (|gk|α − E|gk|α)

∣∣∣∣∣
p]1/p

≤ E|g1|αE

[(
1

n

n∑
k=2

|Rk|
α
2

)p]1/p

+ c0(nη)−
α
2 + c(p)1/p(ηαn)−

1
2

≤ E|g1|α
(

1

n

n∑
k=2

E|Rk|
pα
2

)1/p

+ c0(nη)−
α
2 + c(p)1/p(ηαn)−

1
2 .

We choose p > 1 such that pα/2 < 2α/(4 − α) and we finally use (78) and Lemma
5.11. Then, for our range of η, the right hand side of the above inequality is of order 1.
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Putting these estimates in (83), we find finally that for any α/2 < β < 2α/(4 − α), any
0 < ε < 1− 3α/2 and n−ρ

′
(log n)c0 ≤ η ≤ 1, there exists a constant c(α, β, ε) such that

‖Inh −Gz(γ
n
z )‖β,ε ≤ c|z|−α(log n)

α
4 (η2n)−

α
4 .

Putting this together with (81), this conclude our proof (the above term is negligible
compared to the right hand side of (81) or (82)). �

Appendix A. Concentration of Gaussian measure

In this paragraph, we recall a well-known concentration phenomenon of the Gaussian
measure. The following classical result is contained in Ledoux [16]. It is a consequence of
the Logarithmic Sobolev inequality for the Gaussian measure and the Herbst argument.

Theorem A.1 (Concentration of Gaussian measure). Let F be a 1-Lipschitz function on
the Euclidean space Rn and G be a standard Gaussian vector in Rn N(0, In), then for
every r ≥ 0,

P (F (G)− E[F (G)] ≥ r) ≤ e−
r2

2 ,

where mF is the median of F for N(0, In).

For p, q > 0, we define for x ∈ Rn

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

,

and for a matrix A

‖A‖p→q = sup
‖x‖p=1

‖Ax‖q.

(this is a norm for p, q ≥ 1) The usual operator norm is denoted by

‖A‖ = ‖A‖2→2 = sup
i
|si|

where the si’s are the singular values of A. Recall that if 0 < p ≤ 2,

‖In‖2→p = n
1
p
− 1

2 .

Corollary A.2. Let A be a n × n non-negative matrix, 0 ≤ p ≤ 2 and G be a standard
Gaussian vector in Rn N(0, I). There exist positive constants c, δ > 0 depending only on

p, such that if (trAp)
1
p ≥ c‖A‖n

1
p
− 1

2 then

‖AG‖p ≥ δ (trAp)
1
p ,

with probability at least

1− exp

−δ
(

(trAp)
1
p

‖A‖n
1
p
− 1

2

)2
 .

Proof. We first consider the case 1 ≤ p ≤ 2. We define F (x) = ‖Ax‖p. From the triangle
inequality (valid for all p ≥ 1)

|F (x)− F (y)| ≤ F (x− y) = ‖A(x− y)‖p ≤ ‖x− y‖2‖A‖2→p.
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Since ‖A‖2→p ≤ ‖A‖2→2‖In‖2→p, we deduce that F is Lipschitz with constant

σ = ‖A‖n
1
p
− 1

2 .

It follows by Theorem A.1 that for every r ≥ 0,

P (‖AG‖p − E‖AG‖p ≤ r) ≤ e
− r2

2‖A‖22→p ≤ e
− r2

2‖A‖2n2/p−1 . (84)

The corollary will follow by applying the above inequality to r = E‖AG‖p/2 and by
showing that, for some constant c0 > 0,

E‖AG‖p ≥ c0 (trAp)
1
p . (85)

From (84), for some c1 > 0,

E |‖AG‖p − E‖AG‖p|p ≤ (c1σ)p.

Hence

E‖AG‖p ≥
(
E‖AG‖pp

) 1
p − c1σ. (86)

Now, let (λk, uk)1≤k≤n be the eigenvalues and normalized eigenvectors of A. We note that

(AG)i
d
=

n∑
k=1

λk〈uk, ei〉Gk.

In particular, (AG)i has distribution N(0,
∑

k λ
2
k〈uk, ei〉2) and for some c2 > 0,

E‖AG‖pp =
n∑
i=1

E

∣∣∣∣∣
n∑
k=1

λk〈uk, ei〉Gk

∣∣∣∣∣
p

= c2

n∑
i=1

(
n∑
k=1

λ2
k〈uk, ei〉2

) p
2

.

For 0 < p ≤ 2 and
∑n

k=1〈uk, ei〉2 = 1 for all i ∈ {1, . . . , n}, we may use the Jensen
inequality:

E‖AG‖pp ≥ c2

n∑
i=1

n∑
k=1

λpk〈uk, ei〉
2 = c2trAp. (87)

Then, from (86) and the value of σ, we deduce that (85) holds with c0 = c
1/p
2 /2 if c is

chosen large enough so that c
1/p
2 c ≥ 2c1.

We next consider the case 0 ≤ p ≤ 1. We denote, for R = (κ
n
trAp)1/p with some positive

constant κ to be chosen later, φ a non-negative Lipschitz function which is lower bounded
uniformly by |x|p, is equal to |x|p on |x| ≥ R, and Lipschitz constant bounded by Rp−1.
In particular, the Rn → R+ function x 7→

∑
i φ(xi) is Lipschitz with constant bounded

by
√
nRp−1. It follows that the Rn → R+ function F (x) =

∑
i φ((Ax)i) is Lipschitz with

constant bounded by ‖A‖
√
nRp−1. Hence, by Theorem A.1, for any r > 0,

P

(
n∑
i=1

φ(〈AG, ei〉)− E
n∑
i=1

φ(〈AG, ei〉) ≤ −r

)
≤ e

− r2

2‖A‖2nR2p−2 .

Now, we observe that

‖AG‖pp ≥
n∑
i=1

φ(〈AG, ei〉)
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and also,

E
n∑
i=1

φ(〈AG, ei〉) ≥ E‖AG‖pp − κtr(Ap).

Therefore from (87), if we choose κ < c2/4,

E
n∑
i=1

φ(〈AG, ei〉) ≥
3c2

4
tr(Ap).

Finally, we set r = c2tr(Ap)/4 and conclude that

P
(
‖AG‖pp ≤

c2

2
tr(Ap)

)
≤ P

(
n∑
i=1

φ(〈AG, ei〉) ≤
c2

2
tr(Ap)

)
≤ e

−cn
(

tr(Ap)
n‖A‖p

) 2
p

.

�

Remark A.3. Consider the special case where A is the projector on a vector space W of
dimension d. Then Ap = A for all p > 0. Corollary A.2 gives a lower bound for ‖AG‖p of

order d
1
p when d ≥ cpn1−p/2. However, if (u1, · · · , ud) is an orthonormal basis of W such

that 〈uk, ei〉2 ≥ ε2/n then for p ≤ 1 we have a lower bound for ‖AG‖p of order εn
1
p
− 1

2d
1
2

which can be significantly larger. Hence, we expect that Corollary A.2 is sharp if W has
a localized basis and not sharp if W has a delocalized basis.

Appendix B. Stable distributions

In this paragraph, we give some properties of stable distributions.

Let σ > 0, 0 < α < 2 and β ∈ [−1, 1]. A real random variable X has α-stable
distribution Stabα(β, σ) if its Fourier transform is given for all t ∈ R, by

E exp(itX) = exp [−σα|t|α (1−iβ sgn(t)uα) ] (88)

where sgn(t) is the sign of t and uα = tan(πα/2) for all α except α = 1 in which case
u1 = −(2/π) log |t|.

If 0 < α < 1 and β = 1, the distribution Stabα(1, σ) has support R+ and its Laplace
transform is conveniently given for all t ∈ R+, by

E exp(−tX) = exp [−σαtαvα ] , (89)

with vα = 2
π

sin
(
πα
2

)
Γ(1− α)Γ(α).

Lemma B.1 (Decomposition of quadratic form). Let X = (Xi)1≤i≤n be iid symmetric
α-stable random variables with distribution Stabα(0, σ). Let A be a n×n positive definite
matrix, then

〈X,AX〉 d
= ‖A1/2G‖2

αS,

where G is a standard gaussian vector N(0, I) independent of S, a positive α/2-stable

Stabα
2
(1, 2σ2v

− 2
α

α
2

).
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Proof. We use the identity, for y ∈ Rn,

exp(−t
2

2
〈y, y〉) = E exp(it〈y, g〉).

Applied to y = A1/2X, we get, for t ≥ 0,

E exp(−t〈X,AX〉) = E exp(i
√

2t〈A1/2X,G〉) = E exp(i
√

2t〈X,A1/2G〉).

Then, since X is stable vector, 〈X,A1/2G〉 has distribution Stabα(0, σ‖A1/2G‖α). From
(88), it follows

E exp(−t〈X,AX〉) = E exp(−(2t)
α
2 σα‖A1/2G‖αα).

Then, we conclude by applying (89). �

Corollary B.2 (Sum of weighted squares). Let X = (Xk)1≤k≤n be iid symmetric α-stable
random variables with distribution Stabα(0, σ) and let (wk)1≤k≤n ∈ Cn

+. Then

E exp

(
i

n∑
k=1

wkX
2
k

)
= E exp

(
−(−2i)

α
2 σα

n∑
k=1

w
α
2
k |gk|

α

)
,

where G = (g1, · · · , gn) is a standard gaussian vector N(0, I).

Proof. We set ρk = −iwk, we shall prove that

E exp

(
−

n∑
k=1

ρkX
2
k

)
= E exp

(
−2

α
2 σα

n∑
k=1

ρ
α
2
k |gk|

α

)
. (90)

We write ρk = i(ak − bk) + ck, where ak, bk are the negative and positive parts of Re(wk)
and ck = Im(wk) > 0. We set ρk(t, s) = tak + sbk + ck, D = {z ∈ C : Re(z) > 0} = −iC+

and Dε = {z ∈ C : Re(z) > −ε, |Im(z)| < 2}, where 2ε = min(ck/(ak + bk)). Then, the
D2
ε → D function (t, s) 7→

∑n
k=1 ρk(t, s)X

2
k is analytic in each of its coordinates. Since the

function z 7→ exp(−z) is analytic and bounded on D, from Montel’s Theorem, we deduce
that the D2

ε → C function

ϕ : (t, s) 7→ E exp

(
−

n∑
k=1

ρk(t, s)X
2
k

)
is analytic in each of its coordinates in Dε. However, for s, t ∈ R+, we notice that
ρk(s, t) ∈ R+. Hence by Lemma B.1 applied to a diagonal matrix, we have

ϕ(t, s) = E exp

(
−2

α
2 σα

n∑
k=1

ρk(s, t)
α
2 |gk|α

)
.

The D → D function z 7→ zα/2 is analytic. We may thus again apply Montel theorem
and deduce that the right hand side of the above identity is analytic in (s, t) on D2

ε . So
finally, the above equality holds true for all (s, t) ∈ D2

ε . Applied to (s, t) = (i,−i), we
obtain precisely (90). �

The next lemma looks at the behavior of a positive stable random variable near 0.
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Lemma B.3 (Tail of inverse positive stable variable). Let σ > 0, 0 < α < 1 and S be a
positive α-stable Stabα(1, σ) random variable. There exists a positive constant c0(α) such

that for all 0 < c < σ
α

1−α c0(α),

E exp(cS−
α

1−α ) <∞,

while the above is infinite for c > σ
α

1−α c0(α).

Proof. From the identity, for m > 0, x > 0,

x−m =
1

Γ(m)

∫ ∞
0

tm−1e−xtdt,

we deduce that, for p ≥ 0,

exp(cx−p) =
∑
k≥0

ck

Γ(kp)Γ(k + 1)

∫ ∞
0

tkp−1e−xtdt .

In particular, from (89), with σ̂ = σv
1/α
α , and Fubini’s theorem,

E exp(cS−p) =
∑
k≥0

ck

Γ(kp)Γ(k + 1)

∫ ∞
0

tkp−1e−t
ασ̂αdt

= α−1
∑
k≥0

ckσ̂−kp
Γ(kp

α
)

Γ(kp)Γ(k + 1)
.

The conclusion follows easily from Stirling’s formula, Γ(x) ∼x→∞
√

2π
x

(
x
e

)x
. �

Lemma B.4 (Negative fractional moments of smooth random variable). Let α > 0 and
S be a real-valued random variable with law which has a uniformly bounded density on
[−1, 1] and is bounded by c|x|−α−1 on [−1, 1]c for some finite positive constant c. Then,
for any 0 < β < 1, there exists a finite constant C so that for any x ∈ R, any σ ≥ 0, we
have

E[|x− σS|−β] ≤ C|x|−β .

Proof. Let us first assume that σ ≥ 2|x|. If C is a bound on the density of the law of S
on [−1, 1], for T ≥ (2/σ)β,

E[|x− σS|−β] ≤ T +

∫ ∞
T

P
(
|x− σS| ≤ t−1/β

)
dt ≤ T + C(1− β)−1T 1− 1

β σ−1 .

Choosing T = (2/σ)β ≤ |x|−β provides the desired estimate. In the case σ ≤ 2|x| and
t−1/β ≤ |x|/2, we have

P
(
|x− σS| ≤ t−1/β

)
≤ C

(x
σ

)−α−1

t−
1
β σ−1

Therefore if σ ≤ 2|x| and T = (2/|x|)β,

E[|x−σS|−β] ≤ T +Cσαx−α−1(1−β)−1T 1− 1
β ≤ C ′|x|−β +C ′σα|x|−α−β ≤ C ′(1+2α)|x|−β ,

which completes the proof of the lemma. �
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Appendix C. Concentration of random matrices with independent rows

The total variation norm of f : R→ R is

‖f‖TV := sup
∑
k∈Z

|f(xk+1)− f(xk)|,

where the supremum runs over all sequences (xk)k∈Z such that xk+1 ≥ xk for any k ∈ Z.
If f = 1(−∞,s] for some real s then ‖f‖TV = 1, while if f has a derivative in L1(R), we get

‖f‖TV =

∫
|f ′(t)| dt.

Lemma C.1 (Concentration for spectral measures [6]). Let A be an n× n random Her-
mitian matrix. Let us assume that the vectors (Ai)1≤i≤n, where Ai := (Aij)1≤j≤i ∈ Ci, are
independent. Then for any f : R → C such that ‖f‖TV ≤ 1 and E|

∫
f dµA| < ∞, and

every t ≥ 0,

P
(∣∣∣∣∫ f dµA − E

∫
f dµA

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−nt

2

2

)
.

The next lemma is an easy consequence of Cauchy-Weyl interlacing Theorem. It is an
ingredient of the proof of Lemma C.1.

Lemma C.2 (Interlacing of eigenvalues). Let A be an n × n hermitian matrix and B a
principal minor of A. Then for any f : R→ C such that ‖f‖TV ≤ 1 and lim|x|→∞ f(x) =
0, ∣∣∣∣∣

n∑
i=1

f(λi(A))−
n−1∑
i=1

f(λi(B))

∣∣∣∣∣ ≤ 1.

The Lipschitz norm of f : C→ C is

‖f‖L = sup
x 6=y

|f(x)− f(y)|
|x− y|

.

Lemma C.3 (Concentration for the diagonal of the resolvent). Let A be an n×n random
Hermitian matrix and consider its resolvent matrix R(z) = (A − z)−1, z ∈ C+. Let us
assume that the vectors (Ai)1≤i≤n, where Ai := (Aij)1≤j≤i ∈ Ci, are independent. Then
for any f : C→ R such that ‖f‖L ≤ 1, and every t ≥ 0,

P

(∣∣∣∣∣ 1n
n∑
k=1

f(R(z)kk)− E
1

n

n∑
k=1

f(R(z)kk)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−nIm(z)2t2

8

)
.

Proof. The proof is close to the proof of Lemma C.1 as done in [6] and relies on the method
of bounded martingale difference. We start by showing that for every n×n deterministic
Hermitian matrices B and C and any measurable function f with ‖f‖L ≤ 1,∣∣∣∣∣ 1n

n∑
k=1

f(RB(z)kk)−
1

n

n∑
k=1

f(RC(z)kk)

∣∣∣∣∣ ≤ 2 (nIm(z))−1 rank(B − C), (91)
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where RB = (B − z)−1 and RC = (C − z)−1 are their resolvent matrices. Indeed, by
assumption ∣∣∣∣∣

n∑
k=1

f(RB(z)kk)−
n∑
k=1

f(RC(z)kk)

∣∣∣∣∣ ≤
n∑
k=1

|RB(z)kk −RC(z)kk| .

The resolvent identity asserts that

M := RB −RC = RB(C −B)RC .

It follows that r = rank(M) ≤ rank(B − C). We notice also that ‖M‖ ≤ 2Im(z)−1.
Hence, in the singular value decomposition of M = UDV , at most r entries of D =
diag(s1, · · · , sn) are non zero and they are bounded by ‖M‖. We denote by u1, · · · , ur
and v1, · · · , vr the associated orthonormal vectors so that

M =
r∑
i=1

siuiv
∗
i ,

and

|RB(z)kk −RC(z)kk| = |Mkk| =

∣∣∣∣∣
r∑
i=1

si〈ui, ek〉〈vi, ek〉

∣∣∣∣∣ ≤ ‖M‖
r∑
i=1

|〈ui, ek〉||〈vi, ek〉|.

We obtain from Cauchy-Schwarz,

1

n

n∑
k=1

|RB(z)kk −RC(z)kk| ≤ ‖M‖
r∑
i=1

√√√√ 1

n

n∑
k=1

|〈ui, ek〉|2

√√√√ 1

n

n∑
k=1

|〈vi, ek〉|2

= r‖M‖n−1.

Equation (91) is thus proved.

Next, for any x = (x1, . . . , xn) ∈ X := {(xi)1≤i≤n : xi ∈ Ci−1×R}, let B(x) be the n×n
Hermitian matrix given by B(x)ij = xi,j for 1 ≤ j ≤ i ≤ n and Rx(z) = (B(x) − z)−1.
We thus have R(z) = R(A1,...,An)(z). For all x ∈ X and x′i ∈ Ci−1 × R, the matrix

B(x1, . . . , xi−1, xi, xi+1, . . . , xn)−B(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

has only the i-th row and column possibly different from 0, and thus

rank (B(x1, . . . , xi−1, xi, xi+1, . . . , xn)−B(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)) ≤ 2.

Therefore from (91), we obtain, for every f : R→ R with ‖f‖L ≤ 1,∣∣∣∣∣ 1n
n∑
k=1

f(R(x1,...,xi−1,xi,xi+1,...,xn)(z)kk)−
1

n

n∑
k=1

f(R(x1,...,xi−1,x′i,xi+1,...,xn)(z)kk)

∣∣∣∣∣ ≤ 4 (nIm(z))−1 .

The desired result follows now from the Azuma–Hoeffding inequality, see e.g. [17, Lemma
1.2]. �

Lemma C.4 (Concentration for the diagonal of the resolvent). Let A be an n×n random
Hermitian matrix and consider its resolvent matrix R(z) = (A − z)−1, z ∈ C+. Let us
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assume that the vectors (Ai)1≤i≤n, where Ai := (Aij)1≤j≤i ∈ Ci, are independent. Then
for any γ ∈ [0, 1], there exists a positive constant c so that for every t ≥ 0,

P

(∣∣∣∣∣ 1n
n∑
k=1

(R(z)kk)
γ − E

1

n

n∑
k=1

(R(z)kk)
γ

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cnIm(z)2t

2
γ

)
. (92)

Proof. Let ε be a positive real number and φε : C → C be equal to one on |z| ≥ 2ε,
vanishing on |z| ≤ ε and growing linearly with the modulus in between. Thus, φε is
Lipschitz with constnat bounded by 1/ε. We decompose xγ as

xγ = xγφε(x) + xγ(1− φε(x)) .

By definition, xγ(1 − φε(x)) has modullus uniformly bounded above by (2ε)γ so that if
we choose ε > 0 so that (2ε)γ = t/4 then with f(x) = xγφε(x) we have

P

(∣∣∣∣∣ 1n
n∑
k=1

(R(z)kk)
γ − E

1

n

n∑
k=1

(R(z)kk)
γ

∣∣∣∣∣ ≥ t

)

≤ P

(∣∣∣∣∣ 1n
n∑
k=1

f(R(z)kk)− E
1

n

n∑
k=1

f(R(z)kk)

∣∣∣∣∣ ≥ t/2

)
.

On the other hand, f is Lipschitz with constant bounded by 2εγ−1 = 2
2
γ
−γt1−

1
γ . Hence,

Lemma C.3 yields

P

(∣∣∣∣∣ 1n
n∑
k=1

(R(z)kk)
γ − E

1

n

n∑
k=1

(R(z)kk)
γ

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− nIm(z)2t2

84
2
γ
−γt2(1− 1

γ
)

)

≤ 2 exp

(
−nIm(z)2t

2
γ

84
2
γ
−γ

)
.

This concludes the proof. �

We conclude this appendix by deviations inequalities for the norm ‖ · ‖β,ε introduced
in Section 5.

Lemma C.5 (Deviation of the β-norm). Let 0 < α ≤ 1, ε ≥ 0, α/2 < β < 1 and
assume that α/2 + β + ε ≤ 1. Let (gk), 1 ≤ k ≤ n, be iid standard Gaussian variable and
(hk), 1 ≤ k ≤ n ∈ K1 with |hk| ≤ η−1. Define, γ(u) = 1

n

∑n
k=1(hk.u)

α
2 (|gk|α − E|gk|α).

Then there exists constant c0, c1, such that for all t ≥ 1, all n ≥ 2,

P

(
‖γ‖β,ε ≥

t

(ηαn)
1
2

)
≤ c1n

2
α exp(−c0t

2).

Similarly, let A be an n× n random Hermitian matrix and consider its resolvent matrix
R(z) = (A − z)−1, z = E + iη ∈ C+. Let Hk = −iRkk(z) be as above and γ′(u) =
1
n

∑n
k=1(Hk.u)

α
2 − E 1

n

∑n
k=1(Hk.u)

α
2 , for all t ≥ 1, all n ≥ 2,

P
(
‖γ′‖β,ε ≥

t

(η2n)
α
4

)
≤ c1n exp(−c0t

4/α).
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Proof. Set L = 1
n

∑n
k=1 ||gk|α − E|gk|α|. We first use a net argument. For any u, v ∈ S1

+,
from (54), for some constant c = c(α).

|γ(u)− γ(v)|
|u− v|β

(|i.u| ∧ |i.v|)β−
α
2 ≤ cLη−

α
2 .

In particular, setting, for integer m and 1 ≤ k ≤ m, uk = ei2πk/m, we find

|γ(u)| ≤ cL(mη)−
α
2 + max

k
|γ(uk)|.

Notice also that if |u− v| ≤ 4/m, then, with β′ = α/2 + β + ε ≤ 1,

|γ(u)− γ(v)|
|u− v|β

(|i.u| ∧ |i.v|)β+ε ≤ cLη−
α
2 |u− v|β′(|i.u| ∧ |i.v|)α2−β′

|u− v|β
(|i.u| ∧ |i.v|)β+ε

≤ 4cL(mη)−
α
2 .

While if |u−v| ≥ 4/m, we denote by u∗ and v∗, the element of {uk : 1 ≤ k ≤ m} at distance
at most 1/m of u and v and with |i.u∗| ≥ |i.u|, |i.v∗| ≥ |i.v|. We get |u− v| ≥ 2|u∗ − v∗|
and

|γ(u)− γ(u∗)|
|u− v|β

(|i.u| ∧ |i.v|)β+ε ≤ cLη−
α
2 |u− u∗|β

′
(|i.u| ∧ |i.v|)α2−β′

|u− v|β
(|i.u| ∧ |i.v|)β+ε

≤ c′L(mη)−
α
2 .

We deduce that, for some constant c0 ≥ 1,

‖γ‖β,ε ≤ c0L(mη)−
α
2 + c0 max

k
|γ(uk)|+ c0 max

k 6=`

|γ(uk)− γ(u`)|
|uk − u`|β

(|i.uk| ∧ |i.u`|)β−
α
2 . (93)

On the other hand, since 0 < α ≤ 1, the random variable |gk|α is sub-gaussian. It follows
from Hoeffding’s inequality, that for any s ≥ 0,

P(L ≥ EL+ s) ≤ exp(−cns2),

and for any u, v ∈ S1
+,

P (|γ(u)| ≥ s) ≤ 2 exp(−cns2ηα) and

P
(
|γ(u)− γ(v)|
|u− v|β

(|i.u| ∧ |i.v|)β−
α
2 ≥ s

)
≤ 2 exp(−cns2ηα).

From the union bound, we get from (93),

P

(
‖γ‖β,ε ≥ c0

(
t

(ηαn)
1
2

+ (EL+ s)(mη)−
α
2

))
≤ exp(−cns2) +m2 exp(−ct2).

We take m = [n1/α((EL+ s))2/αt−2/α] and s = t, we find for all t ≥ 2/c0,

P

(
‖γ‖β,ε ≥

2c0t

(ηαn)
1
2

)
≤ c′n2/α exp(−ct2).

This prove the first statement. For the second statement, the proof is similar. First, the
above net argument gives that (93) holds for γ′ with L = 1. Also the proof of Lemma
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C.4 implies that for any u, v ∈ S1
+,

P (|γ′(u)| ≥ s) ≤ 2 exp(−cnη2s
4
α ) and

P
(
|γ′(u)− γ′(v)|
|u− v|β

(|i.u| ∧ |i.v|)β−
α
2 ≥ s

)
≤ 2 exp(−cnη2s

4
α ).

From the union bound, we deduce that for all s ≥ 0,

P
(
‖γ′‖β,ε ≥ c0

(
s− (mη)−

α
2

))
≤ m2 exp(−cnη2s

4
α ).

Taking s = t/(η2n)
α
4 and m =

√
nt−2/α(2c0)2/c0 , this concludes the proof. �
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work has benefitted from our discussions.

References

1. Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni, An introduction to random matrices, Cam-
bridge Studies in Advanced Mathematics, vol. 118, Cambridge University Press, Cambridge, 2010.
MR 2760897 (2011m:60016)

2. Serban Belinschi, Amir Dembo, and Alice Guionnet, Spectral measure of heavy tailed band and co-
variance random matrices, Comm. Math. Phys. 289 (2009), no. 3, 1023–1055.

3. Gérard Ben Arous and Alice Guionnet, The spectrum of heavy tailed random matrices, Comm. Math.
Phys. 278 (2008), no. 3, 715–751.

4. Gerard Ben Arous and Alice Guionnet, Wigner matrices, Handbook in Random matrix theory, edi-
tors: G. Akemann, J. Baik and P.Di Francesco, vol. Chapter 21, Oxford University Press, 2010.

5. Charles Bordenave, Pietro Caputo, and Djalil Chafai, Spectrum of large random reversible markov
chains - heavy-tailed weights on the complete graph, Ann. Probab. (to appear).

6. , Spectrum of non-hermitian heavy tailed random matrices, Comm. Math. Phys. (to appear).
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8. László Erdős, Antti Knowles, and Horng-Tzer Yau, Spectral statistics of erdo”s-rnyi graphs i: Local

semicircle law, (2011).
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