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USES OF FREE PROBABILITY IN RANDOM MATRIX THEORY
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This article gives a short introduction to free probability theory and emphasizes its role as
a natural framework to study random matrices with size going to infinity. We motivate
the uses of free probability by a few applications, taken from joint works with Jones,
Khrishnapur, Maurel-Segala, Shlyakhtenko and Zeitouni. The first concerns the study
of non-normal matrices; we show that the empirical measure of the eigenvalues of non-
normal random matrices whose law is invariant by conjugation converges and that the
limit can be described by the so-called R-diagonal operators, which are random variables
taken from free probability. This in particular generalizes the single ring theorem of
Feinberg and Zee [1]. The second application deals with the topological expansion of
Brézin, Itzykson, Parisi and Zuber [2]. We show that such expansion can be turned into an
asymptotic expansion and that the limit can be constructed by ’free’ Langevin dynamics.
In particular, the convergence holds also in non-perturbative but convex situations.
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1. Introduction

Large random matrices were first studied in theoretical physics by Wigner, in con-

nection with quantum mechanics, as a model for the energy level of large nuclei. In

an independent development in the early 1970s, Hugh Montgomery showed that,

assuming the Riemann Hypothesis, and modulo some technicalities, the pair cor-

relation function for the spacings between the (normalized) zeros of the Riemann

zeta function on the critical line behaves like the pair correlation function for the

(normalized) eigenvalues of a random matrix. At about the same time, G. ’t Hooft

and Brézin, Itzykson, Parisi and Zuber, showed that Gaussian random matrix inte-

grals are generating functions for the enumeration of graphs embedded into surfaces

which are sorted by their genus (the so-called topological expansion). Since that time

an extraordinary variety of mathematical, physical and engineering systems have

been related with Random Matrix Theory; it has emerged as an interdisciplinary

scientific activity par excellence.

In this review, we shall concentrate on the global asymptotics of the spectrum of

large random matrices, for instance reflected by the asymptotics of the (normalized)

trace of powers of these matrices. We will argue that such asymptotics can be

described in great generality in the framework of free probability and therefore that

this theory is extremely useful to study large random matrices. We will illustrate

this point by two problems from theoretical physics. The first concerns the study
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of the spectrum of non-normal large random matrices which appears in several

areas of physics [3–10]. It was shown by Feinberg and Zee [1] that the spectral

distribution of certain ensembles of random non-normal converges to a radially

symmetric deterministic measure whose support is a single ring. This result came

as a big surprise because the support of the singular values of these ensembles can be

as diconnected as wished. This question is related with the law of non-commutative

variables called ’R-diagonal operators’ in free probability. Relying on a study of

such operators by Haagerup and Larsen [11], we can generalize and prove rigorously

Feinberg and Zee’s result. Another range of applications of free probability concerns

the first order of the topological expansion of Brézin, Itzykson, Parisi and Zuber

which relates the asymptotics of matrix integrals with the enumeration of planar

graphs. Indeed, again the limit can be described in terms of free variables, which

in turns allows us to prove that the topological expansion can be turned into an

asymptotic expansion, that it holds in non-perturbative but convex situations and

finally, under such convexity hypothesis, that it has some properties, such as the

connectivity of the support of the limiting matrices.

Free probability emerged in the eighties when Voiculescu realized that certain

questions appearing in operator algebra theory could be phrased in probabilis-

tic terms. Of course, such a probability theory should be concerned with non-

commutative random variables, as is non-commutative probability theory. However,

free probability theory differs from the latter by the notion of freeness. Similarly

to the classical notion of independence, freeness is defined by certain relations be-

tween traces of words. These two components are the basis for a probability theory

for noncommutative variables where many concepts taken from probability theory

such as the notions of laws, convolution, convergence in law, independence, central

limit theorem, Brownian motion, entropy, and more can be naturally defined. For

instance, the law of one self-adjoint variable is simply given by the traces of its

powers (which generalizes the definition through moments of compactly supported

probability measures on the real line), and the joint law of several self-adjoint non-

commutative variables is defined by the collection of traces of words in these vari-

ables. The joint law of free variables is defined by the law of each of them and a

condition on the joint moments which defines them uniquely from the moments of

the marginals. Convergence in law just means that the trace of any word in the

noncommutative variables converges towards the right limit.

About ten years later, Voiculescu showed that free probability is the right frame-

work to consider the asymptotics of random matrices as their size go to infinity.

More specifically, he proved that an m-tuple of random matrices whose eigenvectors

are genuinely independent, namely with a covariance matrix following independent

unitary Haar distributed random matrices, converges to an m-tuple of free random

variables. From that point, many concepts from standard probability theory could

be brought to free probability, once suitably transposed through random matrices.

Hence, in some manner, many concepts in free probability are inspired from random

matrices. But free probability also developed on its own, or in relation with operator
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algebra theory, and provide now the natural framework to study the asymptotics of

random matrices. We shall in the next section describe more precisely the basics of

free probability.

2. Free probability theory

2.1. Basics of free probability

Free probability is a non-commutative probability theory with a notion of freeness

very analogous to independence in classical probability theory. Variables in such

a theory include finite size random matrices but also ’matrices with size going to

infinity’. This notion represents the weak limit of matrices sequences. Namely m

N × N Hermitian matrices (MN
1 , · · · ,MN

m ) converge to (M1, · · · ,Mm) iff for all

polynomial P

lim
N→∞

1

N
Tr
(

P (MN
1 , · · · ,MN

m )
)

=: τ (P (M1, . . . .Mm)).

The limit τ , when it exists, is just a linear form on the set of polynomials. It is

analogous to a classical expectation. Indeed, because it is obtained as the limit

of traces of matrices, it satisfies, for all polynomials P,Q in m non-commutative

variables,

τ(PQ) = τ(QP ) τ(PP ∗) ≥ 0 τ(I) = 1.

The second and third properties generalize the properties of positivity and mass

of the classical expectation. τ is called a tracial state. As in classical probability,

one likes to think about expectation of random variables and of laws of random

variables. In fact, τ can be seen as the law of non-commutative variables in the

sense that, if the matrices (MN
i , N ≥ 0, 1 ≤ i ≤ m) are uniformly bounded for the

operator norm by some constant R, one can construct a Hilbert space H with scalar

product 〈·, ·〉, a vector ζ ∈ H and bounded linear operators (M1, . . . ,Mm) on H so

that for all polynomial P ,

τ(P ) = 〈P (M1, . . . ,Mm)ζ, ζ〉. (1)

This construction of H and (M1, . . . ,Mm) is called the Gelfand-Naimark-Seigal

construction. Note that in the case where m = 1, Riesz’s theorem asserts that τ is

a classical probability measure on [−R,R]. One way to construct M1 as a bounded

operator on a Hilbert space is to take H = L2(τ), once quotiented by the left ideal

{h ≥ 0, τ(h) = 0}, and to put M1 to be the left multiplication by x, so that for all

h ∈ L2(τ), M1h(x) = xh(x).

In the sequel, τ will be a linear form on the set of polynomials and we will

assume that we have constructed a Hilbert space H so that (1) holds and our

random variables all live in B(H).

Definition 2.1. X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) ∈ (B(H), τ) are free iff

for all polynomials P1, . . . , Pℓ and Q1, . . . , Qℓ so that τ(Pi(X)) = 0 and τ(Qi(Y)) =
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0 for all i, we have

τ (P1(X)Q1(Y) · · ·Pℓ(X)Qℓ(Y)) = 0.

Note that the joint law (τ(P (X,Y)), P ) is uniquely determined by the collection of

the marginals τ(P (X)) and τ(Q(Y)), where Q,P runs over the set of polynomials

in X or Y.

The notion of freeness we just defined is related with the classical notion of

freeness in groups. Indeed, let G be a group with generators g1, . . . , gm, a neutral

element e and define

τ(g) = 1g=e, for g ∈ G.

Then we claim that g1, . . . , gm are free under τ iff they are free in the group G. In-

deed, g1, . . . , gm are free inG iff it is not possible that a non trivial word in g1, . . . , gm

is trivial. But a non trivial word is just a word which can be reduced into a product

P1(gi1) · · ·Pk(gik
) of words in the gi, ik+1 6= ik. Because each of the word Pi in gi is

not trivial, τ(Pi) = 0 and then we see that the condition that P1(gi1) · · ·Pk(gik
) is

not the neutral element exactly means that τ(P1(gi1) · · ·Pk(gik
)) = 0 which is the

freeness condition.

Next we show that freeness also appears when one considers random matrices

with ’independent’ basis of eigenvectors, asymptotically when the size of the matri-

ces goes to infinity. Let (UN
1 , . . . , U

N
m ) be N × N independent matrices following

the Haar measure on the unitary group and AN
1 , . . . , A

N
m deterministic Hermitian

matrices with spectral measures µ̂N
k = 1

N

∑N
j=1 δλN

i
(AN

k
) which converge to µi for

1 ≤ i ≤ m in moments, that is

lim
N→∞

1

N
Tr(AN

i )k = lim
N→∞

1

N

N
∑

j=1

(λj(A
N
i ))k =

∫

xkdµi(x).

Then, Voiculescu [12]

Theorem 2.1 (Voiculescu 91’). Let XN
i = UN

i A
N
i (UN

i )∗. For any polynomial

P in m non-commutative variables,

lim
N→∞

1

N
Tr
(

P (XN
1 , . . . , Xm)

)

= τ (P (X1, . . . , Xm)) a.s .

with (X1, . . . , Xm) free and with marginal distribution (µi)1≤i≤m.

When (random) matrices converge and their limit are free, we say that they are

asymptotically free. In fact, Theorem 2.1 applies to many standard matrix mod-

els, such as for instance the classical Gaussian ensembles. Indeed, the ensemble of

Hermitian N ×N matrices with independent Gaussian entries with covariance N−1

taken from the GUE is by definition invariant under unitary conjugation; hence a

matrix taken from the GUE can be written as XN = UNAN (UN )∗ where AN is

the diagonal matrix with entries given by the eigenvalues of XN and UN an in-

dependent matrix following the Haar measure on the unitary group. By Wigner’s

theorem [13]
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Theorem 2.2 (Wigner 58’). For all integer number d

lim
N→∞

1

N
Tr
(

(XN )d
)

=

{

0 if d is odd,

C d
2
otherwise,

a.s.

where Cp denote the Catalan numbers. Moreover, the right hand side is also equal

to
∫

xddσ(x) with σ the semicircle law given by

dσ(x) = (2π)−11|x|≤2

√

4 − x2dx.

In particular, if one considers m independent matrices taken from the GUE, they

will be asymptotically free. More precisely

Corollary 2.1. m independent matrices taken from the GUE (XN
1 , . . . , X

N
m ) con-

verge to m free semicircle variables.

This corollary in fact generalizes to independent matrices with independent cen-

tered entries with finite moments and covariance N−1, see [14, Theorem 5.4.2].

From Theorem 2.2 and its corollary, it is no surprise that freeness can be used

to describe many asymptotics of random matrix problems. Reciprocally, it is clear

that probability theory can be brought to the non-commutative setting by applying

probability concepts to random matrices and then taking the large N limit. We next

show how a few classical notions of probability theory generalize in free probability.

2.2. Free Brownian motion

Following Corollary 2.1, we are going to define the free Brownian motion as the limit

of the Hermitian Brownian motion. {HN
t , t ≥ 0}, the Hermitian Brownian motion, is

a N×N Hermitian matrix valued process whose entries are i.i.d. complex Brownian
motions.

HN
t (kℓ) =

Bt(kℓ) + iB̃t(kℓ)√
2N

k < ℓ, HN
t (kk) =

Bt(kk)√
N

.

It is not hard to check that for allN×N Hermitian matrixA such thatN−1Tr(A2) =

1, {Tr(AHN
t ), t ≥ 0} follows a real Brownian motion.

From Corollary 2.1, and the scaling property of Brownian motion, we deduce

Corollary 2.2. For all t1, . . . , tp ∈ R
+, the following limit exists

lim
N→∞

E[
1

N
Tr(HN

t1
· · ·HN

tp
)] =: τ(St1 · · ·Stp

)

(St, t ≥ 0) is a continuous process with values in B(H) with free increments dis-

tributed according to the appropriately rescaled semicircle law.

This result is a direct consequence of Corollary 2.1 since the increments of the

Hermitian Brownian motion are independent matrices distributed according to the

GUE. One of the great application of the classical Brownian motion is based on its
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relation with the heat equation which governs its density, which allowed to get a new

insight on the latter. Such a connection can be performed thanks to Itô’s calculus

which shows that the small variation of a function evaluated at the Brownian motion

after a small time increment is given by the sum of the derivative of this function

(multiplied by the increment of the Brownian motion) and the second derivative

of this function (multiplied by the time increment). The last term reflects the lack

of smoothness of the Brownian motion and provides the heat equation motion. A

similar calculus holds with the free Brownian motion, but this time the additional

term is given by a second order non-commutative differential, which differs from the

Laplacian. For instance, if one evaluates the trace vk(t) := τ((St)
k) of monomials

in the free Brownian, it satisfies the Smoluchowski’s type equation

∂tvk(t) =
k

2

k−2
∑

p=0

vp(t)vk−2−p(t)

The differential calculus of the free Brownian motion can also be generalized to

consider differential equation driven by the free Brownian motion.

Let K : B(H)m → B(H)m be a bounded Lipschitz function on B(H)m

max
1≤i≤m

‖Ki(X) −Ki(Y )‖B(H) ≤ ‖K‖L max
1≤i≤m

‖Xi − Yi‖B(H) ∧ 1 .

Assume also that Ki(X1, . . . , Xm) is self-adjoint for any m-tuple (X1, . . . , Xm) of

self-adjoint elements of B(H). Then, for any X0 ∈ B(H)m, there exists a unique

solution X. to

X i
t = X i

0 + Si
t +

∫ t

0

Ki(Xs)ds

with (S1, . . . , Sm) m free free Brownian motions. Note again that Xt can be seen to

be the limit of the N ×N Hermitian matrices so that X0 is the limit of the N ×N

Hermitian matrices XN
0 and XN

. is the unique strong solution to the Langevin

dynamics

XN,i
t = XN,i

0 +HN,i
t +

∫ t

0

Ki(XN
s )ds

with i.i.d Hermitian Brownian motions {HN,i, 1 ≤ i ≤ m}.
In the case where m = 1, K is just a bounded Lipschitz function on R and if we

let τt be the spectral distribution of Xt (recall that τt is the probability measure

on R so that τt(x
k) = τ(Xk

t )), Itô’s calculus now gives, for any bounded twice

continuously differentiable function f ,

∂t

∫

f(x)dτt(x) =
1

2

∫ ∫

f ′(x) − f ′(y)

x− y
dτt(x)dτt(y) +

∫

f ′(y)K(y)dτt(y).
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2.3. Free convolution

Functional analysis can also be developped in free probability theory. For instance

one can wonder what is the distribution of A + B, A and B being free variables

with a prescribed distribution. This is, by Theorem 2.1, the limit of the spectral

measure of AN +UNBNU
∗
N when N goes to infinity. A similar question can be asked

about the distribution of the product AB, A and B being free variables. Because

AB is not self-adjoint, the moments of AB do not give the spectral measure of AB

but in fact those of A
1
2BA

1
2 when A ≥ 0. Indeed, µ((A

1
2BA

1
2 )n) equals µ((AB)n)

since µ is tracial and the spectral measure of A
1
2BA

1
2 is given by its moments since

it is self-adjoint. Hence, the law of AB describes the asymptotics of the spectral

measure of A
1
2

NUNBNU
∗
NA

1
2

N as N goes to infinity and the spectral measure of AN

(resp. BN ) converges to µA (resp. µB) and UN independent unitary.

The law ofA+B (resp.AB) is denoted µA⊞µB (resp. µA⊠µB). These probability

measures are described by the R-transform and the S-transform respectively, which

play the same role as a log-Fourier transform for the standard convolution. For

example, we put

SC(z) :=
1 + z

z
m−1

C (z)

if mC(z) =
∑

n≥1 µC(xn)zn. SC is well defined at list when µC(x) 6= 0 since then

m−1
C exists at list in a neighborhood of the origin by the implicit function theorem.

Moreover, the knowledge of SC on a set with accumulation points defines uniquely

mC and therefore the law µC . It is then known [14, Lemma 5.3.30] that, at list for

small z’s,

S
A

1
2 BA

1
2
(z) = SA(z)SB(z) .

Free probability theory offers many other interesting developments [14–17].

3. Single ring theorem

This section deals with one application of free probability results to the analysis

of large non-normal random matrices. We consider the ensemble of random, non-

Normal N ×N matrices with law

dPN (XN ) =
1

ZN

e−NTr(V (XN X∗
N ))dXN

where dXN =
∏

1≤i,j≤N dRe(XN (ij))dℑ(XN (ij)) is the Lebesgue measure on the

set of N ×N matrices with complex entries. V is a polynomial going to infinity at

infinity so that ZN is finite for each N . We consider the eigenvalues {λN
i }1≤i≤N

of XN and their empirical measure L
V
N = 1

N

∑N
i=1 δλN

i
. The following theorem was

proved, albeit not entirely rigorously, by Feinberg and Zee [1].

Theorem 3.1 (Feinberg-Zee 97’). Assume V is a polynomial. Then: LV
N con-

verges to a deterministic, rotationally invariant µV whose support consists of a
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single ring: there exists constants 0 ≤ a < b <∞ so that

supp(µV ) = {reiθ : a ≤ r ≤ b, θ ∈ [0, 2π[}.

If V (x) = gx2 +mx, phase transition occurs when the support changes from a

disc to an annulus.

This result is rather surprising since one could imagine a priori that if the potential

presents sufficiently deep attracting wells, the eigenvalues of XN should concentrate

in these wells so that the support of the limiting spectral measure should be dis-

connected. This is true when one considers the singular values of XN , that is the

eigenvalues of
√

XNX∗
N . Let σ

N
1 ≥ σN

2 ≥ · · · ≥ σN
N ≥ 0 denote the singular values

of XN . Their joint distribution is

1

ZN

∏

i<j

[(σN
i − σN

j )(σN
i + σN

j )]2e−N
∑N

i=1
V ((σN

i )2)
N
∏

i=1

σN
i dσ

N
i

One easily deduces (see e.g. [14, Section 2.6]) the convergence of the empirical

measure of the singular values to the probability measure σV which minimizes

µ →
∫

V (x2)dµ(x) −
∫

log |x2 − y2|dµ(x)dµ(y)

on the set of probability measures on the half line R
+. If V has k sufficiently deep

wells, it is easy to show that the support of this minimizer will consist of at list k

intervals!

The surprising connectivity of the support of non-normal operators whose singu-

lar values have a very disconnected support was already observed in free probabil-

ity by Haagerup and Larsen [11]. Indeed, note that under the Feinberg-Zee model,

XN = UNDNVN with DN a real diagonal matrix with converging spectral distri-

bution (DN = diag(σN )) and independent UN , VN , unitary matrices following Haar

distribution. It is natural to wonder what can be said about the convergence of the

empirical measure LXN
= 1

N

∑N
i=1 δλN

i
of the eigenvalues of XN = UNDNVN when

DN is a real diagonal matrix with converging spectral distribution and independent

Haar distributed matrices UN , VN , independent of DN .

A similar question was considered in the framework of free probability. Indeed,

Nica and Speicher [17] defined the so-called R-diagonal operators, which are oper-

ators which can be decomposed as R = UD with D Hermitian and U unitary, U

and D being free. Note that the distribution of the eigenvalues of UDV and UD is

the same if U, V are two free unitary variables. The distribution of such operators

was studied by Haagerup and Larsen [11].

Theorem 3.2 (Haagerup-Larsen 00’). Take XD := UDV or UD, U, V,D free,

D self-adjoint with law µD, U, V unitaries. The Brown measure (continuous ana-

logue of the spectral measure) of XD is rotation invariant and radially supported
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on an annulus

µXD
(B(0, f(t))) = t

where f(t) = 1/
√

SD2(t− 1).

supp(µXD
) = {reiθ, r ∈ [(µD(x−2))−

1
2 , (µD(x2))

1
2 ], θ ∈ [0, 2π[}

The Brown measure of a non-normal operator X is given as follows. For z ∈ C\R,

let νz be the spectral measure of (z −X)(z −X)∗. Since (z −X)(z −X)∗ is self-

adjoint, νz can easily be computed from its moments for instance. Then, the Brown

measure of X is the compactly supported probability measure µX on C so that for

any smooth compactly supported function ψ
∫

ψ(z)dµX(z) =
1

4π

∫

C

∆ψ(z)

∫

log |x|dνz(x)dz.

One way to see that the Brown measure is related to our problem is the Green

formula which reads, if (λN
i )1≤i≤N are the eigenvalues of XN ,

N
∑

i=1

ψ(λN
i ) =

1

2π

∫

C

∆ψ(z) log |
N
∏

i=1

(z − λN
i )|dz (2)

=
1

4π

∫

C

∆ψ(z)

(

N
∑

i=1

log |z − λN
i |2
)

dz

=
N

4π

∫

C

∆ψ(z)

∫

log |x|dL(z−XN )(z−XN )∗(x)dz

where L(z−XN )(z−XN )∗(x) is the spectral measure of the self-adjoint operator (z −
XN )(z−XN)∗. Taking XN = UNDNVN , we know by Theorem 2.1 that the spectral

measures of the Hermitian matrices (z − XN)(z − XN)∗ converge to the law of

(z−UDV )(z−UDV )∗. Hence, we expect N−1
∑N

i=1 δλN
i
to converge to the Brown

measure of UDV , U,D free unitary variables, free with D. This is the content of

the following theorem [18]

Theorem 3.3 (G., Krishnapur, Zeitouni ’09). Take XN = UNDNVN . As-

sume some technical conditions on DN and that LDN
= 1

N

∑

δDN (ii) converges

to a probability measure µD on R+ so that for some κ, κ′ > 0, all z ∈ C+ so that

ℑz ≥ N−κ′

,
∣

∣

∣

∣

∣

1

N

N
∑

i=1

1

z −DN (ii)
−
∫

1

z − x
dµD(x)

∣

∣

∣

∣

∣

≤ 1

Nκ|ℑz| .

Then LXN
= 1

N

∑

δλN
i
converges weakly to µXD

in probability, i.e for any bounded

continuous function f on C, N−1
∑N

i=1 f(λN
i ) converges to

∫

f(z)dµXD
(z) in prob-

ability.
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As a corollary of Theorem 3.3, we prove the the Feinberg-Zee “single ring theo-

rem”.

Corollary 3.1. Let V denote a polynomial with positive leading coefficient. Let the

n-by-n complex matrix Xn be distributed according to the law

dPn(X) =
1

Zn

exp(−nTr V (XX∗))dX ,

where Zn is a normalization constant and dX the Lebesgue measure on n-by-n

complex matrices. Then, the spectral measure LXn
of Xn with law Pn converges

weakly in probability to µXD
as in Theorem 3.3 with Θ = σV .

The proof of theorem 3.3 is not straightforward since Theorem 2.1 only guarantees

the weak convergence of L(z−XN )(z−XN )∗(x) whereas log |x| is not bounded. Hence,
a complete proof requires to control the small eigenvalues of (z−XN)(z−XN )∗. Such

a problem was also encountered in the case of a N×N matrix XN with i.i.d entries.

When the entries are Gaussian, Ginibre [19] proved that the spectral measure of XN

converges in probability to the so-called circular law, that is the uniform measure

on the disk with radius one. Extending this result to non Gaussian entries happened

to be a difficult task. The idea to use the Green formula (2) is due to Girko [20],

who however did not address the difficulties related with the unboundedness of

the logarithm. The circular law was proved under some conditions by Bai [21] and

finally, in full generality, by Gotze and Tikhomirov [22] and Tao and Vu [23], by

dealing with this question.

4. Enumeration of maps

The uses of matrix integrals as generating functions for the enumeration of graphs

in physics and the so-called topological expansion are diverse. Let us give a few

examples: the enumeration of triangulations following Brézin, Itzykson, Parisi and

Zuber, the enumeration of meanders (Di Francesco et al), the study of loop config-

urations and the O(n) model (Eynard, Kostov . . .), the application to knots theory

(Zuber, Zinn Justin . . .), the relation with algebraic geometry and topological string

theory (the famous Dijkgraaf-Vafa conjecture states that Gromov-Witten invariants

generating functions should be matrix integrals), Harer and Zagier (1986) in their

article on the Euler characteristic of the moduli space of curves, and the famous

work of Kontsevich. It became a cornerstone in free probability when Voiculescu

(1984) found out that the combinatorics of moments of several independent matrices

are, when their size goes to infinity, the same as the combinatorics of free variables.

Since then, random matrices and their combinatorics appeared as a central tool in

free probability (see e.g. the recent book of Nica and Speicher [17]). In this section,

we shall precise some elements of the relation between these two fields. Let us first

recall the key result of Brézin, Itzykson, Parisi and Zuber [2].
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Theorem 4.1 (Brézin, Itzykson, Parisi and Zuber 78’). Let

V (X1, . . . , Xm) =
∑

βiqi(X1, . . . , Xm) + 1
2

∑

X2
i with words (qi)1≤i≤n and

dµN
V (X1, . . . , Xm) = (ZN

V )−1e−NTr(V (X1,...,Xm))dX1 · · ·dXm.

For any monomial P , we have as a formal expansion in βi and N
∫

[
1

N
Tr(P (X1, . . . , Xm))]dµN

V =
∑

g≥0

1

N2g
τβ,g(P ) (3)

with, for some integer numbers Mg((1, P ), (ki, qi)),

τβ,g(P ) =
∑

k1,...,kn≥0

p
∏

i=1

(−βi)
ki

ki!
Mg((1, P ), (ki, qi))

The integer numberMg((1, P ), (ki, qi)) is the number of certain graphs that we now

describe.

First, let us define what is a polygon of type q for a word q in m letters

(Xi, 1 ≤ i ≤ m). It is a polygon drawn on the sphere with one marked side and

colored sides constructed as follows. We associate to each index i, 1 ≤ i ≤ m, a

color (called ’color i’) and to each letter Xi, 1 ≤ i ≤ m a side with color i. A

polygon of type q = Xi1 · · ·Xik
is a polygon embedded in the sphere by drawing

the sides corresponding to the letters of q successively; following the orientation of

the sphere, we first draw a side with color i1, then of color i2 until the end where

the loose end of the side of color ik is glued with the loose end of the side with color

i1. Mg((ki, qi)1≤i≤p) is the number of coverings (also called maps) of a surface with

genus g by ki polygons of type qi, 1 ≤ i ≤ p where only sides of the same color can be

glued together. The counting is done for labelled sides. Such enumeration question

is highly non trivial, in particular when polygons are colored. They are related at

criticality with statistical models on Z2 by the Knizhnik-Polyakov-Zamolodchikov

relation [24].

In their seminal article [2], Brézin, Itzykson, Parisi and Zuber used their result

to count some planar maps, that is coverings of the sphere, by estimating the related

matrix integrals. This assumes that the largeN limit can be taken in (3). This point

was justified recently in a series of papers [25–30].

Theorem 4.2. Let V =
∑

βiqi(X1, . . . , Xm) + 1
2

∑

X2
i with words (qi)1≤i≤n and

dµN
V (X1, . . . , Xm) = (ZN

V )−1e−NTr(V (X1,...,Xm))dX1 · · ·dXm.

For any ℓ > 0, if the βi’s are small enough and V strictly convex, then for any

word P ,

∫

[
1

N
Tr(P (X1, . . . , Xm))]dµN

V =

ℓ
∑

g=0

1

N2g
τβ,g(P ) + o(

1

N2ℓ
) (4)
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with, for interesting integer numbers Mg((1, P ), (ki, qi)),

τβ,g(P ) =
∑

k1,...,kn≥0

p
∏

i=1

(−βi)
ki

ki!
Mg((1, P ), (ki, qi))

Here, V is strictly convex iff there exists c > 0 so that for any p × p Hermitian

matrices X1, . . . , Xm, any p ∈ N, TrV (X1, . . . , Xm) is real and

Hess(TrV (X1, . . . , Xm)) ≥ cI.

(4) implies in particular that the free energy 1
N2 logZN

V converges as N goes to

infinity under the hypotheses of the theorem. We prove below, by using free proba-

bility ideas, that such a convergence extends to the case where V is strictly convex

or even “locally strictly convex” provided we add a cutoff. If V is just some poly-

nomial going to infinity at infinity so that the free energy is well defined, it is still

an open problem to establish this convergence. The idea to extend the convergence

to this convex situation is to use dynamics and type of Monte-Carlo approxima-

tion argument. More precisely, in strictly convex situations, it is well known that

Langevin dynamics converge as time goes to infinity to their unique equilibrium

measure, whatever is their initial distribution. This is true at the level of large ma-

trices but also at the free probability limit. The idea is thus to approximate Gibbs

measures by their dynamics, use that they converge to the free dynamics as dimen-

sion goes to infinity, and then that the free dynamics are close to their equilibrium

state when time is large. In other words, we want to show that the diagram below

is approximately commutative

XN
t = HN

t − 1

2

∫ t

0

DV (XN
s )ds →t→ ∞ → µN

V

↓ ↓
N → ∞ N → ∞

↓ ↓

Xt = St −
1

2

∫ t

0

DV (Xs)ds →t→ ∞ → τβ,0

Of course, this approach can only be valid because the above approximations hold

uniformly, with constants depending only on the convexity of the potential.

We say that V is locally strictly convex iff ∃c > 0

Hess(TrV (X1, . . . , Xm)) ≥ cI

on the set of self-adjoint operators X1, . . . , Xm (in a C
∗ algebra) so that ‖Xi‖∞ ≤

L(c) for some L(c). We let

dµN,L
V (X1, . . . , Xm) = (ZN,L

V )−1
1‖Xi‖∞≤Le

−NTr(V (X1,...,Xm))dX1 · · · dXm.

We then can prove [31]
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Theorem 4.3. If V = 1
2

∑

X2
i +

∑

βiqi is “locally strictly convex”, for L large

enough (but finite if V is not globally strictly convex),

lim
N→∞

∫

1

N
Tr(P (X1, . . . , Xm))dµN,L

V = τβ,0(P )

with τβ,0(P ) the analytic extension of the generating function for the enumeration

of coverings of the sphere.

The key step to prove this theorem is to show the convergence of the free dynamics

to the tracial state τβ,0, which in turns also gives some non trivial properties of the

latter.

Theorem 4.4. Let V = 1
2

∑

X2
i +

∑

βiqi be “locally strictly convex”, and Xt be

the solution of

X i
t = Si

t −
1

2

∫ t

0

DiV (Xs)ds.

Then

• τ(P (Xt)) converges, as t→ ∞, to τβ,0(P (X)).

• For small βi’s,

τβ,0(P ) =
∑

k1,...,kn≥0

p
∏

i=1

(−βi)
ki

ki!
M0((1, P ), (ki, qi))

and teh above series converges absolutely. τβ,0(P ) extends as an analytic func-

tion on the domain of local strict convexity of the potential.

• Xi has a connected spectrum under τβ,0 , and in fact more precisely any poly-

nomial P (X1, . . . , Xm) of X1, . . . , Xm under τβ,0 is an operator with connected

spectrum.

The last point is an amazing application of operator algebra theory. Indeed, we show

that τβ,0 is the law of the solution of the free diffusion as time goes to infinity and

in fact that the convergence holds for the operator norm. This in turn guarantees

that this limit belongs to the C∗-algebra constructed with the free increments of

the free Brownian motion. The result follows since it is well known [32] that such

C∗-algebra does not contain a projection.

The fact that τβ,0 can be constructed as a limit of matrix models or free dynamics

can also be used

• to compute τβ,0(P ) (see the enumeration of triangulations [2]),

• to show that some generating functions of combinatorial numbers are tracial
states.

We next consider the second application. Even though this point can also be proved

by combinatorial arguments, constructing matrix models for these enumeration

questions often appear to be a short cut to prove that generating functions of



November 16, 2009 10:4 WSPC - Proceedings Trim Size: 9.75in x 6.5in ICMP09proc

119

interesting numbers are indeed tracial state. The goal of this application is to con-

struct II1 factors, and more precisely towers of factors with prescribed index. Recall

that factors are von Neumann algebras (that is weakly closed algebras of bounded

operators on a Hilbert space equipped with an involution and a neutral element)

with a trivial center. They are of said to be of type II1 if they are equipped with

a tracial state. A tower of factors is a sequence of factors (Mn)n≥0 which are em-

bedded in each other (Mn ⊂Mn+1). The index [Mn;Mn+1] measures somehow the

’size’ of Mn+1 with respect to Mn as follows. It can be seen that Mn+1 is generated

by Mn and a projection en+1 and then for all x ∈ Mn, tr(xen+1) = λtr(x) with

λ = 1/[Mn;Mn+1]. It was shown by Jones [33] that the index can only take the

values {4 cos2 π/n, n = 3, 4, · · · } ∪ [4,∞). With Jones and Shlyakhtenko we have

constructed a tower of subfactors for any possible values of the index, based on

planar algebra structure (and in fact mainly Temperley-Lieb algebras). Temperley-

Lieb elements are boxes containing non-intersecting strings. We can endow this set

with the multiplication given by simply drawing the drawings next to each other

We also endow this algebra by the involution which is given by taking the symmetric

picture of the element. We denote S.R the drawing obtained, for two Temperley-

Lieb diagrams S,R with the same number of boundary points, by drawing these

two diagrams in front of each other and gluing the boundary points pairwise by

straight lines.

S

T

S.T =

We then obtain a collection of non intersecting loops (two in the above picture).

We then consider the trace given by

τ(S) =
∑

R∈TL

δ# loops in S.R

where the exponent in δ is the number of loops in the drawing defined by S.R and

we sum over all Temperley-Lieb diagrams R with the same number of boundary

points than S. The next result proves [34] that if we take the weak completion of
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the resulting algebra we obtain a factor. Moreover, we can construct a tower by

considering the kth multiplication to be given by gluing by embedded arches the k

nearest neighbouring boundary points of the two elements and defining similarly a

trace by summing over Temperley-Lieb elements except for the k boundary points

at the two extremes which are glued by embedded arches.

Theorem 4.5 (G-Jones-Shlyakhtenko 07’). Take

δ ∈ I := {2 cos(π
n
)}n≥4∪]2,∞[

- τ is a tracial state.

- The corresponding von Neumann algebra is a factor. A tower of factors with

index δ2 can be built.

The fact that τ is a tracial state was first proved by using matrix models [34] but

then a combinatorial proof was given [35]. The matrix models approach follows the

idea of the planar algebra of a graph [36]. In fact, the idea to get the construction

for integer values of δ is to use the embedding from Temperley-Lieb diagrams into

the set of polynomials in δ variables as follows. Suppose that we are given a box B

with 2k boundary points. Assume also that there are k non-crossing curves inside B

which connect pairs of boundary points together, hence yielding a Temperley-Lieb

element. Let π be the associated non-crossing pairing of {1, . . . , 2k} and denote
p ≈ ℓ if (p, ℓ) is a block of π. We associate to B the non commutative polynomial

PB(X1, . . . , Xn) :=
∑

1≤i1,...,i2k≤n

iℓ=ipifℓ≈p

Xi1 · · ·Xi2k
.

Taking the (Xi, 1 ≤ i ≤ n) to be independent GUE matrices and letting the size

going to infinity, we know that the expectation of the renormalized trace of polyno-

mials in (X1, . . . , Xn) converge to the number of non crossing pairings of the letters

that can be build above this polynomial so that only all pairing contain only the

same letter. By symmetry, it is not hard to see that when summing over all these

graphs, each loop will come δ times, hence yielding the trace τ . For more general δ’s,

one has to sum over the vertices of a graph whose adjacency matrix has eigenvalue

δ [34, 36].

This approach can be generalized as follows. Let S1, . . . , Sn be Temperley-Lieb

elements. Let β1, . . . , βn be small real numbers and for any Temperley-Lieb element

S, define

Trβ(S) =
∑

ni≥0

∑ ∏

1≤i≤n

βni

i

ni!
δ♯loops

where we sum over all connected planar diagrams build over ni diagrams Si and

one diagram S by matching the boundary points of these diagrams and we count

the number of loops of the full picture. Then, we can prove

Theorem 4.6 (G-Jones-Shlyakhtenko 09’).

Take δ ∈ I := {2 cos(π
n
)}n≥4∪]2,∞[. Trβ is a tracial state, as a limit of matrix

(or free probability) models.
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The construction is made by considering, instead of independent Gaussian random

matrices, random matrices interacting via a potential chosen appropriately.

5. Conclusion

In this review, we tried to advertise free probability theory to the physicists com-

munity. Indeed, it is particularly convenient to describe the asymptotics of random

matrices with genuinely independent random eigenvectors which are given by free

operators. Hence, many of such limits have already been studied in free probability,

cf. the so-called R-diagonal operators which describe the limit of non-normal ma-

trices. Moreover, because free probability has developed many powerful tools from

classical probability, it can give new ideas to study random matrices, cf. Monte-

Carlo type of ideas to generate a Gibbs measure by Langevin dynamics, which in

turn allows to study several matrix models in non-perturbative situations. The rela-

tion between free probability theory and operator algebra theory, equipped with the

classical notion of freeness, is also very important to analyze the asymptotics of ran-

dom matrices, cf. the connectivity of the support of the spectral measure of random

matrices interacting via a convex potential. Vice versa, the relation between ran-

dom matrices and combinatorics developed by the so-called topological expansion

allows to get more insight in operator algebra, cf. the construction of the tower of

factors. Of course, there are much more applications and developments around these

themes and we refer the readers to review articles and books [14–17]. To conclude,

we would like however to point out that the range of applications of free probability

mainly concerns random matrices whose eigenvectors are approximately uniformly

distributed on the sphere (which correspond to Haar distributed eigenvectors). This

is well known to be the case for instance for Wigner matrices with independent en-

tries with high enough moments, which have “delocalized” eigenvectors. When the

entries have no second moment, the asymptotic distribution is different [37–39], the

eigenvectors more localized [40] and it is not clear how to interpret the limit in the

free probability context.
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