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Introduction

During the last decade some important progress was achieved in the domain
of the infinite dimensional analysis involving applications of coercive inequali-
ties. In particular the understanding of the ergodicity problem for stochastic dy-
namics of large dimensional interacting systems has considerably improved. Be-
sides other things this contributed to better understanding the relations between
equilibrium description and out of equilibrium systems described by stochastic
dynamics which play a crucial role in statistical mechanics.

The intention of these lecture notes is to present a self consistent and rela-
tively complete introduction to this rapidly developing subject.

One can quickly introduce as follows the problem which we shall consider.
Given a Markov semi-group P; = e¢'* | ¢t > 0, defined on a space C(Q) of real-
valued continuous functions on a Polish space 2, one can ask the two following
questions ;

(I) Is there an invariant measure for P, that is a probability measure p on

Q2 so that for every f € C(Q)

p(Pef) = p(f)

where P;f denotes the image of f by P, and we denoted in short pu(g) =
[ 9(w)du(z).

(IT) If yes, does P f converge towards p and in which sense 7 More precisely,
can we find a norm || - || on () such that

1Bef = wf 1l < @A

with a semi-norm [||-||| defined on a dense subset of C(2) and a rate ¥(¢) —¢—00 0
independent of f. In general, || - || is either the uniform norm or the norm of
LP () for some p > 1.

Frequently, one can introduce P; so that a given measure p ( or a class of
measures ) is P; - invariant and then the question (IT) becomes crucial.

One such situation appears in statistical mechanics. In this case the state

space € one considers is often an infinite product Q = Mzd where M is a
finite set or a smooth compact finite dimensional Riemannian manifold. On
such a space, one is given an a priori family of conditional expectations Ex
indexed by the finite subsets X of Zd, where Ex integrates over the variables
(wi,i € X). Under some mild hypotheses, it can be shown that there exists
a probability measure g on €2, so-called Gibbs measure, characterized by the
Dobrushin-Lanford-Ruelle’s condition

u(Ex f) = p(f) (0.0.1)

for every finite subset X of Z? and f € C(£2). One can use these conditional
expectations to introduce a class of infinitesimal jump generators formally given

by
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LXf= 3" (Exyif - ), (0.0.2)
ieZ"

where X + j denotes the set {j + k, k € X} ( see [25, 47, 62] and the references
therein ). Naturally the measures u satisfying (0.0.1) are invariant for the
Pt(X) — etﬁ(x).

associated Markov semi-groups However, in general it is not

clear that the solutions of (0.0.1) are the only invariant measures of Pt(X)..
In [25], [47] and [62], one finds sufficient conditions so that P(X) is uniformly
ergodic and hence has a unique invariant measure. In this set up, the conditional
expectations (Ex,X € Zd) often depend on some parameters (such as the
temperature T or magnetic field h). As these parameters vary, the solutions
of equation (0.0.1) change as well as their properties. In [23] and later in [19]
constructive conditions were given to insure uniqueness of the solutions of (0.0.1)
in terms of the kernels Ey;3 and Py y; associated with the single point sets
{5}, i€ Zd) and the cubes with given finite size (Y +j,j € Zd), respectively.
These conditions are known as the uniqueness conditions of Dobrushin and
Dobrushin-Shlosman, respectively. In general, the second is valid in a broader
domain of values of the parameters.

Dobrushin-Shlosman’s uniqueness condition was used by Aizenman and Hol-
ley in [2] where they showed that a jump dynamics constructed as in (0.0.2) is
ergodic in the uniform norm with an exponential rate when the conditional
expectations Exyj, j € Zd, satisfy this condition. This result in particular
implies the ergodicity of the semi-group in L?(y) and the existence of a spectral
gap for the spectrum of the self-adjoint operator £(X) in L?(p). Moreover, as
the quadratic forms associated with the generators £(Y) constructed with other
finite sets Y are equivalent to that of £(X), all the corresponding dynamics are
ergodic in L2(p).

Unfortunately, for many interesting models describing systems in a neigh-
bourhood of a ”critical point”, the size of the cubes for which Dobrushin-
Shlosman’s condition is satisfied grows to infinity when one approaches the
critical point. In particular, Aizenman-Holley strategy fails even though one
can show that there exists a unique Gibbs measure satisfying (0.0.1). (In some
specific models such as ferromagnetic systems where the conditional expecta-
tions preserve monotonicity properties this strategy was extended in a clever
way in [70] (Part I).

To overcome these difficulties, a new clever strategy based on the use of
hypercontractivity property was introduced in [55] and [56]. The main idea is
to deduce the uniform ergodicity from L?(u) ergodicity and hypercontractivity.
To this end one first approximates the semi-group with another semi-group
in finite dimension. In finite dimension, one can bound uniform norms with
L? norms by using the ultracontractivity property of the semi-group realized
in a unit time. The price to pay for this is a large coefficient growing with
the dimension of the space which fortunately can be controlled thanks to the
hypercontractivity property.
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We recall that the hypercontractivity property allows us to bound the L? ()
norm of P f by the LI(u) norm of f for p = p(t) = 1+ (¢ — 1)e%t and a
constant ¢ € (0,00). It looks rather unusual since p can be, for large times,
much bigger than ¢. This property was introduced first in the constructive
quantum field theory (see [87] and [44]). Similarly to the contractivity property,
the hypercontractivity allows an equivalent infinitesimal description given by
the following logarithmic Sobolev inequality

u(s? og 1f1) < enl(F(=LF) + n(F*) log u(1?) (0.0.3)

with a constant ¢ € (0, c0) independent of a function f from the quadratic form
domain of £. The logarithmic Sobolev inequality was already formally consid-
ered in [36], but the equivalence of the hypercontractivity property and of (0.0.3)
was first proven in the seminal work [48] opening the door to further progress.
In this paper L. Gross proved also that the logarithmic Sobolev inequality has
a product property. He showed that this together with (0.0.3) for a uniform
measure on the two point set (proven in the same paper) imply the correspond-
ing inequality for a class of Gaussian measures. The first breakthrough which
tremendously increased the class of probability measures satisfying (0.0.3) was
due to Bakry and Emery who introduced in [6] a very nice sufficient condition.
Roughly speaking, this condition, when formulated in the context of a smooth
compact finite dimensional Riemannian manifold M, requires the positivity of
the Ricci curvature of M. When considered in the setting of a probability mea-
sure p(dz) = Z= e~V@)dx on IR, it necessitates that the smallest eigenvalue
of the Hessian of U is uniformly bounded below by a positive constant. One of
the first interesting applications of the Bakry-Emery condition was published in
[10] where it was used to establish the logarithmic Sobolev inequality for a wide
class of Gibbs measures on a product space over the unit sphere of dimension
N, N > 2, at high temperatures. Thus [10] provided the first non trivial class
of examples of neither product nor Gaussian measures in infinite dimension for
which (0.0.3) holds.

Afterwards, a new idea based on the specific structure of Gibbs measures was
introduced to deal with Riemannian manifolds with possibly negative Ricci cur-
vature as well as with discrete settings. In particular, in [103] and [104], Sobolev
inequality was proved for systems with short range interaction on (Sl)zd at high
temperature and {—1,41}% for any temperature. An extension of these results
to systems with long range interactions (of the same type as those studied in the
uniqueness theory of Dobrushin) on Riemannian manifolds at high temperature
appeared in [105].

Later these results were extended to a variety of directions described in a
rich literature including [70], [64], [60], [49] - [50], [11] - [12], [69], ..., [92]
- [95], [99], [100] - [101], [100], [3], [4], ..., [107] -[109] ...Besides the above
mentioned control of ergodicity of a hypercontractive Markov semi-group, one
of most interesting consequences of the research in this domain is the proof of
the equivalence of strong mixing property and the log-Sobolev inequality.

In view of the restricted time and space that we were given to present this
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area, we will not be able to consider many new and interesting developments of
this field, such as the extension to non-compact manifolds M (see [109] and more
recent works of Yoshida and Bodineau, Helffer), the study and the applications
of other coercivity inequalities (such as Nash’s inequalities (see [7])), the link
with isoperimetric’s inequalities, the extension to loop spaces (see [32]...), to
non-commutative spaces ([73]...)...

The contents of these notes are as follows.

We begin by introducing the objects under study : Markov semi-groups, their
infinitesimal construction via infinitesimal generators, invariant and reversible
measures.

The second chapter is devoted to L? ergodicity and the simplest coercivity
inequality — the spectral gap inequality. After some general discussion, we shall
show the stability of this property under perturbations, that is by change of the
initial measure by bounded densities, and tensorisation (product property).

In chapter 3, we consider classical Sobolev inequality and its consequences :
ultracontractivity property and the classical Nash inequality.

In chapter 4, we study the general properties of log-Sobolev inequalities
including stability by perturbation, product property, equivalence with hyper-
contractivity property and its implications concerning spectral gap inequality.
We also present the Bakry-Emery criterion and its equivalent forms in terms
of semi-groups. We finally give an example of an infinite dimensional system
defined by conditional expectations and discuss its log-Sobolev properties.

Our journey in statistical mechanics begins from chapter 5. The reader will-
ing to learn how to prove log-Sobolev inequality in infinite-dimensional settings
can go directly to this chapter. We begin by introducing the statistical me-
chanics framework of spin systems on a lattice. Then, we describe the general
strategy introduced in [104, 92, 93] to prove log-Sobolev inequalities for systems
with finite range interactions. It is based on a study of an auxiliary Markov
chain constructed as the convolution of conditional expectations on cubes of
given finite size as described in 5.2. In section 5.3, we restrict ourselves to
one-dimensional lattice whereas in sections 5.4 we consider higher dimensional
lattices. Under a strong mixing condition hypothesis, this Markov chain will
be shown to converge towards the underlying Gibbs measure, the log-Sobolev
inequality being then, in a certain sense, derived as a consequence of the prod-
uct property. In sections 5.3 and 5.4, we prove the key point of this strategy
called sweeping out relations. Our method is constructive in the sense that we
always consider finite volume expectations. Our formalism will always cover
both discrete and continuous settings, i.e. involving product spaces build upon
discrete sets as well as smooth compact connnected Riemannian manifolds.

In chapter 6, we apply the ideas of the previous chapter to a slightly different
context. We indeed show that the formalism developped in chapter 5 extends
naturally to the case where the measure p is not given a priori as a Gibbs
measure but is described as the stationary measure of a cellular automata. In
such a setting, one does not know in general even whether p is a Gibbs measure
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for some interaction. Moreover the transition matrix of the cellular automata
may not be evnen symmetric for u.

Another strategy to prove logarithmic Sobolev inequalities is to make a mar-
tingale expansion of relative entropy by considering, instead of Markov chains
constructed as convolutions of conditional expectations, conditional expecta-
tions on an increasing sequences of finite subsets of the lattice. This idea was
originally introduced in [64] for finite range interaction systems. We illustrate it
in chapter 7 where we study systems with long range interaction (though with
a strength decreasing in a sufficiently fast way with the distance between the
spins to insure that the potential satisfies Dobrushin’s uniqueness condition).
Again, sweeping out relations are the key of this approach.

In chapter 8, we apply the previous log-Sobolev inequalities to deduce er-
godic properties for the associated semi-group. We first present in section 8.1
a simple construction of these semi-groups which yields an exponential approx-
imation property. In section 8.2, we study the ergodic properties of these semi-
groups when log-Sobolev property is satisfied. In section 8.3, we describe the
equivalence theorem (see [93]) which establishes the correspondence between
properties of the Gibbs measure such as strong mixing, uniform analyticity and
other conditions introduced by Dobrushin and Shlosman and properties of the
dynamics such as hypercontractivity or L? ergodicity.

In chapter 9, we explore systems with random interactions and apply the
ideas of chapters 5-7 to study the ergodic properties of their dynamics at high
temperature.

Finally, we describe a few results concerning L? ergodicity of Markov semi-
groups at low temperature where strong mixing property fails.

We give a long but still very incomplete bibliography of the subject.

These lecture notes represent several attempts to try to understand and
organize the diverse evolutions of the subject. Part of this course was already
given by B. Zegarlinski in Bochum in 1992, who would like to thank S. Albeverio
for giving him the opportunity to spend a long, happy and fruitful period at
Ruhr. We could also continue this work during two semesters at Institut Henri
Poincaré of Paris where we had the pleasure to give courses. The second of
these courses gave birth to these lecture notes originally in French. We are
very grateful to the organizers of these two sessions, as well as to Institut Henri
Poincaré team. B. Zegarlinski wishes also to thank D. Stroock for their long
and fruitful collaboration. Finally, our collaboration was made possible thanks
to the financial help of the European Stochastic Analysis Network and EPSRC.



Chapter 1

Markov Semi-groups

This chapter reviews some classical facts from the theory of Markov semi-groups
which can be found for instance in [45] or [15]. We first recall the definition of
Markov semi-groups and generators, giving examples in exercises. We then in-
troduce the notions of invariant and reversible measures of Markov semi-groups.
At the end of the chapter, we briefly sketch the relation between Markov semi-
groups and Markov processes. For more extended treatment of the related
theory of Dirichlet forms and their links with Markov semi-groups the reader is

encouraged to look at [40], [65] and [77].

1.1 Markov Semi-groups and Generators

Definition 1.1 A family (P;)s>0 of linear operators on a Banach space (B, ||-||)
s called a semi-group iff it satisfies the following conditions

(1) Py = I, the identity on B.

(2) The map t — P; is continuous in the sense that for all f € B, t - Pif
is a continuous map from IRT into B.

(3) For any f € B and (t,s) € (IRT)?,
Pt-l-sf: PP f.

The space B under consideration in most cases will be the set C(Q) of real-valued
bounded continuous functions on a Polish space Q equipped with the uniform
norm. However, in some important cases one needs to consider a Banach space
given by a set of more regular functions, such as for example the set of uniformly
bounded continuous functions from a Polish space €2 into IR furnished with the
uniform norm. This is one of the reasons why we prefer to introduce a general
Banach space B setting. In the sequel, we always consider spaces of (nice)
real-valued functions. B will be equipped with a partial order >.

Definition 1.2 A semi-group (P;);>0 is Markov iff
(4) For anyt € R™,
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Pil= 1.
(5) Foranyt € IRT, P, preserve the positivity, i.e for any f € B andt € R,
F=>0 — Pf>0.
Properties (4) and (5) imply that, for any t € IRT, P, is contractive, that is
Definition 1.3 P, is contractive iff for any f € B,
P11 < 111 (1.11)
where || - || denotes the norm on B.

The notion of Markov semi-groups can be illustrated by the following exam-
ples

Exercise 1.4 e a) Let A be a non negative linear bounded operator, ||A|| <
1, so that, if 1 is the identity in B, A1 = 1. Let A > 0. Verify that

Pt — et)\(A—I) — Z ()\t) (A _ I)n

n!
n>0

ts a Markov semi-group on B. Here, we have denoted

||All = supsep 20 | FII7HAS]] with || -|| the norm on B.

e b) Let u be a probability measure on a Q equipped with the o - algebra F
and let m > 0. For any f € C(Q), we define

Pf(w) = e ™ fw) + (1= e ™)u(f).

Verify that (P;)i>0 is a Markov semi-group on C(Q) equipped with the
uniform topology.

e ¢) (d-dimensional Brownian motion) For f € C(Rd) and w € R | we set

P = g [ 10 S

Show that (P;)s>o is a Markov semi-group on the space CU(QQ) of uniformly
continuous functions equipped with the uniform topology.

e d) (Brownian motion on the circle) If Q@ = S', one can represent any
continuous function on by its Fourier expansion

f(x) = Z anen®.
nEZ
We then let , '
P.f(x) = Z e q,,e"T.
nEZ

Verify that (P;)i>0 is a Markov semi-group on C(Q) endowed with the
uniform topology.
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e ¢) (Poisson Process) Let A\ € RY, Q = IRY. For any f € C(Rd) and
z e R, we define
_ (At)k
Pf(z)=e?>" A

k>0

Show that (P;)¢>0 is a Markov semi-group on the set CU(Q) endowed with
the uniform topology.

o f) (Ornstein-Uhlenbeck’s Process) If Q = IR, prove that

_
€ 2

Vo

Pf(a) = ] Fete + /T2y Ly

defines a Markov process on C(2).

Definition 1.5 The infinitesimal generator L of a semi-group P; is defined by
the formula
1
=lim-—(P — 1T 1.1.2
Lf=lim (P - 1)f (1.1.2)

for any function f for which the limit makes sense. The domain D(L) of L is
the set of functions of C(QY) for which the limit (1.1.2) exists.

Exercise 1.6 In the examples given in exercise 1.4, show that the infinitesimal
generators are given, in the same order, by

o a) Lf = AA—D)f, D(L) = B.
o b) Lf = uf - £, D(L) = C(Q).

e ¢) In the case d = 1 to simplify, Lf = (1/2)f", D(L) is the set of twice
continuously differentiable functions [ such that ' and " are uniformly
bounded continuous.

Hints : Show that

(o] (0] )\
gx(z) == )\/ e MP, f(x)dt = / \/;f(y) exp{—V2A|z — y|}dy
0 —o00
by using the identity

&0 2 T o
/ exp —{y* + — }dy = ge ?
0 Y

for all ¢ > 0. Deduce that 2X(gx — f) = g5. On the other hand, prove that
g €D(L) and

L(gx) = Agr = f).
Using the above identity, deduce that Lgx = (1/2)gy and conclude by
letting A go to infinity and using that L is closed (see below).
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o d) Lf = (1/2)f", D(L) is the set of twice continuously differentiable func-

tions.
e ¢) For A € RT, show that Lf(z) = A(f(z — A) — f(z)). D(L) = CU(RQ).
o f) Lf(z) = f"(z)—=zf'(z), D(L) = C3(IR), the set of 3 times continuously
differentiable functions on IR with bounded derivatives (see [5]).

The following theorem characterizes the infinitesimal generators :

Theorem 1.7 (Hille-Yoshida’s theorem for Markov semi-groups) A linear op-
erator L is the infinitesimal generator of a Markov semi-group (Py,t € R+) on

B iff
e 1eD(L) and LA=0.
e D(L) is dense in B.

L s closed.

For any A > 0, (A — L) is invertible. Its inverse (A — £)~1 is bounded
with

1
sup [|(AT = £)7 1] < 5
[r11<1

and preserves positivity (i.e for all f >0, (Al —L)"'f >0) .

Remark 1.8: Recall that an operator £ is closed iff for any sequence f,, of D(L)
converging (in the sense of the topology inherited from the norm || - || on B)
towards a function f and such that Lf,, converges, then

lim £f, = L.
n—00

Proof of theorem 1.7 Necessary condition.
The first point is a direct consequence of (4) of definition (1.2) and of the
definition of the generator. To show the second point, we shall see that

Dy := {%/Ot dsP.f, fel(Q),t> 0} C D(L). (1.1.3)

Since P f is continuous for any f € B, Dg is dense in B which completes the
proof of this point.
To prove (1.1.3), note that for any 7 € IR*, we have

1 t 1 T+t 1 t
—(PT—I)/ dsP,f = —/ dsP,f — —/ dsPf  (1.1.4)
T 0 T T Jo

T

1 T4+ 1 T
—/ dsPsf—/ dsPsf
T Jt T Jo
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by property (3) of definition 1.1. Then (2) of definition 1.1 gives the convergence
of the right hand side of (1.1.4) so that we obtain

t
z/ dsP,f = P.f — f, (1.1.5)
0

resulting with (1.1.3). Remark as well that from (1.1.4), we also deduce by
letting 7 going to zero that for any f € D(L),

t t
E/O dsPsf:Ptf—f:/O dsP,Cf. (1.1.6)

To show that £ is closed, let us take a sequence f,, in D(L) converging to a
function f and such that, for some g € B,

lim £f, =g.
n— 00
By (1.1.5), we obtain that

t t
Pifn — fn :E/O dsP, f, :/0 dsP,Lf,. (1.1.7)

Hence, letting n go to infinity,we obtain P, f — f = fot dsPsg. Dividing by ¢ and
taking ¢ | 0, we conclude that £Lf = g for every f € D(L).
To finish the proof, let us consider the resolvent R(A, L) of the operator £
defined by
R\ L) =W\ —£L£)7 !

and show that -
R()\,ﬁ)f:/ dse P, f. (1.1.8)
0

In fact, if one considers the semi-group ﬁs = e~ P, with generator (£ — AI),
we obtain, according to (1.1.5) that

t
(E—)J)/O dse ™ P,f =e MP,f— f

for any bounded continuous function f. Taking the limit as ¢ — oo and using
that £ is closed, we conclude that, for any bounded continuous function f,

fooo dse=** P, f belongs to D(L) and

(E—)J)/OOO dse ™ P f = —f. (1.1.9)

Consequently, (£ — AI) is bijective and (1.1.8) is satisfied. In particular, since
P; is contractive,

o 1
sup ||R<A,£)f||g/ dse—r = L
[1f]1=1 0 A
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R(A, L) is thus a bounded operator. Also, it is clear from (1.1.8) that R(A, £)
preserves positivity.

Sufficient condition.
For any A > 0, we introduce the Yoshida approximation £ of £

Ly =LA = L)~ =X 2T = L)~ = AL (1.1.10)
Since ]
A=) < 5. (1.1.11)

L is a bounded operator and we can define a family of operators P* by

o~ 17 2 -1
Pt)\ — etﬁ; = Z gﬁn — 6—t)\16t)\ (M =-L) ) (1112)

n=0

P* is a Markov semi-group for any A > 0 ( see exercise 1.4.a)). It remains
to show that P} converges towards P; as A goes to infinity and then that P
possesses all the properties of a Markov semi- group. To begin with, notice that

for any f in the domain D(L) of L,
Ah—>nolo£>‘f:£f' (1.1.13)
Indeed, the identity
MM -t - =-L0) =1 (1.1.14)

holds on D(L). The second term goes to zero as A goes to infinity so that we
find
lim AM - L) 'g=yg (1.1.15)

A= 00

for every g € D(L), and hence for any g € D(L) = B. Since £ is closed, we
deduce that £, converges towards £ as A goes to infinity. We can now show
that P} converges towards P; as A — co. In fact, for any couple (A1, Az) of
positive real numbers and any f € D(L), we have the interpolation formula

1
einf — etbra f = t/ dsetCEntU=)Cn) (o) £y Vf (1.1.16)
0

since £y, are £y, bounded commuting operators. We can see as above that the
semi-group @Q; := e!(*31+{1=5)L52) ig contractive as s € [0,1] and conclude that

let€xsf — e fl] <t (£, = £2) 1l (1.1.17)

Thus, the convergence of the £’s implies that of the P}’s. Let P; be the linear
operator defined by
P, = lim P} (1.1.18)

A—r00
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on D(L). Tt is clear that the semi-group properties, contractivity property,
positivity properties as well as conservation of unit property of the semi-groups
P? can be extended to P. Hence P is a Markov semi-group. Also, for any
f € D(L), we obtain by interpolation

t t
Pif = f= lim (P> = I)f = lim dstﬁ,\f:/ dsP,Lf. (1.1.19)
0 0 0

A—r 00

so that P is continuous with generator £ on D(L). By condition (4) of the
theorem, the resolvent of the semi-group corresponds to that of £ on B so that
L is the generator of P. o

Exercise 1.9 Show that the generators L with domains D(L) defined in exercise
1.6 are infinitesimal generators of Markov semi-groups by using Hille- Yoshida’s
theorem.

Exercise 1.10 Show that for any integer number n, D(L") is dense in B.
Hint : Generalize (1.1.5).

1.2 Invariant Measures of a semi-group

We recall that

Definition 1.11 Let (P;);>0 be a Markov semi-group. A probability measure p
on (Q, X)) is invariant with respect to the semi-group (P;)r>o iff for any f € C(Q)
and anyt > 0

u(Pif) = (). (1.2.20)
The set of invariant measures for a semi-group (Py)y>o will be denoted hereafter

J=J(P).

Remark 1.12: Note that a semi-group may have no invariant probability measure
(consider for instance the semi-group associated with the Brownian motion).
The invariant probability measures are also characterized by

Property 1.13 u on (Q,X) is invariant with respect to the semi-group (Py)i>o

iff for any f € D(L),
u(Lf) = 0. (1.2.21)

Proof : By (1.2.20), we obtain for any ¢

Wl (P = Df] =0,

Taking the limit ¢ — 0, we deduce (1.2.21). Reciprocally, since we already
noticed that

t
(H—szﬁAdﬁw,
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by integrating both sides with respect to u, we get that (1.2.21) implies (1.2.20)
for every bounded continuous function since we saw in (1.1.5) that fot dsPf
belongs to D(L). o
The semi-group (P;);>o0 has been defined until now on the Banach space B,
which a’ priori is a subspace of C(£2). In fact, we can extend it as shown in

Property 1.14 Let p € J(P) with respect to a Markov semi-group (P;)¢>o.
(Pt)e>o can be extended to any LP(p) forp > 1.

Proof : The operators P; being linear, positive and with total mass P;1 = 1,
we have by Jensen’s inequality for any p > 1 and any f € B,

|PefIP < B fIP. (1.2.22)
Integrating both sides with respect to u € J, we deduce that

ulPLEP < ul£1P. (1.2.23)

Thus, Hahn-Banach’s theorem (see [83], theorem 5.16) shows that we can extend
P, to LP(p).
o

Definition 1.15 A Markov semi-group {P;,t > 0} is L(u) ergodic for ¢ €
11, 00[ and p € J(Py) iff for any function f € L4 (p),

lim [ (P.f —puf)4dp =0.

t—o0

A Markov semi-group {P;,t > 0} is uniformly ergodic iff J(P;) is reduced to a
unique probability measure and

Jim [P — pflo = 0.

In the rest of this course our goal will be to develop tools to study the ergodic
properties of Markov semi-groups. We shall often consider semi-groups P and
measures p satisfying the following property stronger than invariance.

Definition 1.16 A probability measure p on (Q,X) is reversible for a Markov
semi-group { Py, t > 0} iff for any (f,g9) € B and time t > 0,

u(gPef) = u(fPeg). (1.2.24)

FEquivalently, one says that (P;);>o satisfies the detailed balance condition for
the probability measure p.

The set of reversible measures of a Markov semi-group {P;,t > 0} will be

denoted Jo(P;). Clearly
Jo(P) C T (Pr)
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since we can take ¢ = I and that P, = 1I. (1.2.24) shows more precisely
that the semi-group P; obtained as the extension of P; in L%(u) (as indicated in
property 1.14) is self adjoint in L?(u). We can associate to P; a closed infinitesi-
mal generator £ (see the proof of Hille-Yoshida’s theorem) which coincides with
the infinitesimal generator of P on its domain. Then, it is not hard to see that
condition (1.2.24) is equivalent to

u(gLf) = n(fLy) (1.2.25)

for any f, g in the domain of £. In other words, since £ is closed, £ is self-adjoint

in L2(u).

Exercise 1.17 Verify that the probability measure p is invariant but not re-
versible for the generator L in the two following examples

o Let (Q,%, p) be a probability space and (E1, Eq) two different conditional
expectations, E1 = pu( |A1) et Eq = pu( |A2), A1 # As. We define, if T
denotes the identity in L?(y), the operator £ in L*(p) by

ﬁ == E1E2 — 1.
e ToU € Cl(le), we associate the following Gibbs measure on IR
1
u(dz) = 7 exp{—U(z1, .., 4) }de1..d2g.

provided that 0 < Z < oco. For a function «a € Cl(Bd, Bd), consider the
operator on Cl(le) defined by

Lf(z)=a- -Vf(z)= Z ;i ()0, f ().

i=1
If
div(e) = a - VU,
check that p is invariant for £. However, it is not reversible in general.
Exercise 1.18 Show that the standard Gaussian law on IR is reversible for the
Ornstein- Uhlenbeck semi-group generated by L = A — x0,. More generally,
let A be a finite subset of Z* and Q = IR™. Let U be a continuously differ-

entiable function on Q diverging to infinity in a sufficiently fast way so that
Zp = [exp{—U(z)}duy is finite. Let u be the probability measure

1
pu(dz) = 70 exp{—U(z)}dzx.
A
Consider the generator on Cg(lRlAl) defined by

L= (Ai-gVi)

1EA
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where V; (resp. A;) denotes the derivation (resp. the Laplacian ) acting on the
1-th coordinate. Here the g;’s are bounded Lipschitz functions. Give sufficient
conditions on the g;’s so that u is reversible for the semi-group associated with

L.
Exercise 1.19 Let A be a finite subset of Z* and Q = {—1,+1}A. Let
L= Z i ()0
iEA
with 0; f = f(o') = f(o) if

J

i:{+0'j di#i

G- ifj=i,
Consider the probability measure p on Q of the form
u(f) = G Vel f(o)
ZOEQ e ) ozeg:z

Give sufficient conditions on the ¢; so that p is reversible for the semi-group
associated with L.

Exercise 1.20 Let A be a finite subset of Z%. Consider X C Z% a finite subset
of Z*. Set

X+i={j+ije X}
Let p be a probability measure on a probability space Q@ = M for a Polish space
M. Let E%_H be the sigma-algebra generated by (x;)je(x4iyenn- We denote

Exyi = p( [¥x4i)

the conditional expectation of p knowing (%;);e(x +i)ena- Let L be the generator
given, for f € L%*(p), by

Lf(z) = Z(Ex+i — 1) f(x).

1EA

Show that p s reversible for the semi-group associated with L.

1.3 Markov Processes

The notion of Markov Semi-group is intimately related with that of Markov Pro-
cesses. In this section we recall some aspects of such processes and in particular
their links with Markov Semi-groups.

We define the Markov property as follows.
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Definition 1.21 Let (Q, F, (F)i>0, IP) be a probability space; an adapted pro-
cess X = {X; : Q— R",t>0,}, n € IN, will be said to be Markov with respect
to (Ft) iff for all measurable bounded set T and any times s,1t,

P(X, € T|F,) = IP(X; € T|X,).

Exercise 1.22 Show that the Brownian motion, or more generally any process
with independent increments, is a Markov process.

In the sequel, we denote for any = € Q,
IP°(X; €l) := P(X; € T| X0 = z)

the law of the Markov process with initial condition z.
Later on, homogeneous Markov processes will be of interest to us. They are
described as follows

Definition 1.23 Let (Q,F, (F:), IP) be a probability space. A Markov process
X ={X:,t > 0} with respect to (F;) will be said to be homogeneous iff for every
bounded measurable set G and any times s, t,u > 0,

P(Xt € F|X5) = P(Xt+u € F|Xs+u)

Exercise 1.24 Show that Brownian motion B, is an homogeneous Markov pro-
cess with respect to its natural filtration F; = 0(X;,s < 1).

If we denote by IP® the law of a homogeneous Markov process starting from
z € Q, we can define a family (P;);>¢ of linear operators on the space of bounded
measurable functions by

Pf(z) = / F(X0)dIP*.

(P;)¢>0 is then a Markov semi-group.
We can reformulate the homogeneous Markov property as follows

Property 1.25 Let (Q,F, (F:), IP) be a probability space. A process
X ={X;,t > 0} is a homogeneous Markouv process iff for any bounded measur-
able set I and any times s,t

P*(X, € T|F) = (P lIr)(X,) IP* —as

A proof may be found in [57], p. 75.

Notice that the notion of Markov semi-group is in fact equivalent to the
definition of Feller-Markov processes defined below. This point is illustrated in
the following exercises.
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Exercise 1.26 Let (Q, F, (F:), IP) be a probability space and X = {X;,t > 0}
a Feller-Markov process (i.e a homogeneous Markov process such that for any
bounded continuous function f, P.f is bounded continuous). Show that the
operator family (P;);>o is a Markov semi-group on (C(Q), || - ||eo). Conversely,
any Markov semi-group on (C(2), ||-||c) defines a unique Feller-Markov process.
Hint : For the second point,

a) Use Riesz ’s theorem to see that for any time t and any x € Q, there exist
a unique probability E(t, z,dy) so that for any f € D(L),

P(f)() = / F(W)E(t, «, dy).

b) Let A be the algebra of cylinder functions on C(IRT,Q), that is the algebra
of functions of the form

PE) = f&s - 6,)

for some finite integer number p and times (t1,..,t,). Define , for a probability

measure p, a normalized linear functional E* on A such that, for ' as above,
E#(F) is equal to

/f(yh SYp)(dy)E(ty, yo, dyr ) E(ta —t1, y1, dys). . E(t, —tp_1,yp—1,dy,).

The Stone-Weierstrass theorem implies that A is dense in C(lR+, Q). Conclude
by Riesz’s theorem that there is a unique probability measure P* on this space
such that for any F € A,

[ reire =),
Show that (E%, x € Q) is the law of a Markouv process.

Since we saw that the Feller-Markov semi-groups and homogeneous Markov
processes are in bijection, the Hille-Yoshida theorem establishes a bijection be-
tween Markov processes and infinitesimal generators. This connection may in
fact be made more directly by following Stroock and Varadhan [96] who intro-
duced the notion of martingale problems.

To associate a generator to a Markov process, we define

Definition 1.27 Let L be an infinitesimal generator. A probability measure IP
on C(R+, Q) is said to be solution of the martingale problem for L with initial
condition n iff
1.
Ple € C(R*,Q) 1 & =) = 1.

2. If we denote by x the canonical process under P, f(x:) — fot Lf(xs)ds is
a martingale under IP for the canonical filtration

Fi = o(zy,u <1).
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We then have the following theorem (see Proposition 4.2 in [57])

Theorem 1.28 Let £ be an infinitesimal generator. Let (E",n € Q) be the
unique Feller-Markov process associated to L. Then, for every (n € Q), E" is
the unique solution of the martingale problem for L with initial condition 1.

Finally, let us give as an exercise the following example of Markov process

Exercise 1.29 Let (hi)i<i<aq be continuously differentiable Lipschitz functions
on IRY. Show that the stochastic differential system

dzt = hi(x,)dt +dB! 1 <i<d,

with a d-dimensional Brownian motion (B',1 < i < d), admits a unique strong
solution which is a Markov process. Describe the generator of its associated
Markov semi-group.

For further informations on Markov processes the reader may like to consult the

books [57] and [76].



Chapter 2

Spectral gap inequalities
and L? ergodicity

Before considering Sobolev inequalities and entering the heart of the matter, we
study the L? ergodicity of semi-groups satisfying the detailed balance condition
with respect to some probability measure u. As we already mentioned in the
last section, this property allows us to consider their infinitesimal generators as
self-adjoint operators in L?(u) so that the study of these operators in that space
is rather natural.

Let £ be an infinitesimal generator. Let p be a probability measure on (2, X)
and (P):>0 a Markov semi-group satisfying the detailed balance condition with
respect to . We define

Definition 2.1 A probability measure p € Jo(L) satisfies the spectral gap in-
equality iff there exists a positive real number m such that

mu(f — pf)® < p(f(=£)f) (2.0.1)

for any function f € L?(u) N D(L) such that the right hand side of (2.0.1) is
finite. The largest positive real number m satisfying (2.0.1) is called the spectral
gap of the self-adjoint operator L.

The corresponding Dirichlet form is given on elements of the domain of the
generator by

E(f,9) = n(f(=L)g)
It can as well be defined by the carré du champ

Li(f, f) = 5 (LF* = 2fLf) .

N | —

Indeed, for any u € Jo(L), we have

E(f, f) = n(T(f, 1))

14
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The operator carré du champ is non negative since

L (B~ (Pf)?) 2 0

Li(f, f) :ltig)lﬂ

by Cauchy-Schwarz’s inequality. It will play an important role latter.

Example 2.2 Let A be a finite subset of Z°.
o Let @ = (S92 = {z = (z;)ien, 7 € S Vi € A} with S41 the unit
sphere in IR®. Consider the Langevin dynamics generator

L= (A= ViU Vi)
1€EA
for some function U € C}(Q). Then
Li(f, ) = (Vi)
i€EA
o IfQ ={—1,+1}* and we consider the Glauber dynamics generator
L= Z Ciai
I€EA
for some functions ¢; > 0, then
Li(f, )= ei(d:f)*.
1€EA

Exercise 2.3 1) Let (2,3, u) be a probability space . Let L be a generator
with domain L'(u) given by Lf = pf — f. Then, show that p € Jo(L) satisfies
a spectral gap inequality with m = 1.

2)IfQ={-1,41} and p = pd_1 + (1 — p)d41 for some p € (0,1), we define
the generator L on the set of measurable functions by Lf = ¢(o)(f(—0) — f(o))
for some non negative function c. Choose ¢ so that p € Jo(L) and show that u
satisfies a spectral gap inequality.

The spectral gap property is equivalent with the notion of L? ergodicity of
the semi-groups

Property 2.4 p € Jy(P:) satisfies a spectral gap inequality with constant m iff
for any t > 0 and any function f € L?(u)

p(Pef — pf)? < e ™ u(f — puf)*.

Proof : Note that if f is a centered function, [ fdu =0, then f; = P.f is also
centered since g is invariant. Hence, (2.0.1), applied to f; = P.f, gives

—0ipu(Pef)? > 2mp( P f)?
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and so, as Py = I,

p(Pef)? < e 2™ pu(f?). (2.0.2)
Conversely, if f € D(L) satisfies (2.0.2), then t — e™ p(P.f —pf)? is decreasing.
Hence,

d
S (RS — pf)? <0,

In £ = 0, we deduce the spectral gap inequality.
o
The notion of spectral gap inequality can easily be extended in infinite di-
mension. In fact, we have the following product property

Theorem 2.5 Let (p;)i=1,2 be two probability measures on (Q;, X;)i=1,2 satis-
fying the spectral gap inequality with coefficients (m;)i=1,2 for some generators
(Li)iz1,2. Let Q = Q1 x Qo be equipped with the product c-algebra. For any
function f on , we note

fl,w('r):f('r:w) fZ,w(x):f(w:'r)
and extend (L;)i=1,2 to functions on Q by
Lif(x1,22) = Lifi e, (21) Lof(x1,22) = Lafo e, (22).

Then, if L = L1+ L2 and m = min(my, ms), the product law py ® po satisfies
the spectral gap inequality with constant m

mpy @ pa(f —p1 @ ,U2f)2 < @ pa(f(=L)f)) (2.0.3)

for any measurable function f for which the right hand side is finite.
Proof : Integrating with respect to one variable, we obtain

1 @ pa(f — 1 @ paf)? = po [pa (f — pa £)?] + pa(pa f — 2 @ paf)?.
Applying spectral gap inequality for g1 and ps, we deduce

1@ pa(f = @ paf)? <m™Hn @ po (F(=La) f + pa f(=L2)p f) -
On the other hand, f — T'1(f, f) is convex since

1
[i(f, (@) = lim P (f = Pif (2))(2):
Thus,

po (prf(=L2)prf) = p2 (FfQ(/ilf,/hf)) < pi1 @ pa (Ff2 (f, f))

which finishes the proof.
o
Further, the spectral gap property is preserved when we perturb a measure
by a bounded density.
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Property 2.6 Let pu be a probability measure on a space (Q,X) satisfying the
spectral gap inequality for the generator L with constant m. Let U be a bounded
measurable function and consider the probability measure v given by

v= Ee_Ud,u

Z = /e_Ud,u.

Then v satisfies the spectral gap inequality for the generator L with constant
—208¢(U)
e .

with

m

Proof : This property is clear once one notices that, if osc(U) = sup U —inf U,
for every measurable set A,

e_OSC(U),u(A) <v(4) < eOSC(U)H(A). (2.0.4)

Indeed, one then obtains, with the additional observation that for every constant

CJ V(f_yf)zgy(f_c)za

v(f—vf)? < v(f—pf)?
< 5 p(f — uf)?
£OSC(U)
< ()
£208C(U)
< ——— (S, f)
m

o
In fact, this property can be improved when one considers finite volume
Gibbs measures with short range interaction. We then have (see [86] or [106])

Property 2.7 Let (2,2, u) be a probability space and assume that p satisfies
a spectral gap inequality with constant m for the carré du champ I'y. Let A =
[-L, L] x [-1,004Y for some (I,L) € (IN*)?, | < L. Let U be a real valued
bounded continuous function on Q. We denote by w € QA the boundary
condition . Let

Hi(x)= Y Ulwz)+ > Ui, wj)
i,j€AJi—jl=1 i€AJEAC |i—j|=1
and set

1 w
A () = e B4 ().
Z5
Then, if T'1 = Diea ['i, there exists a finite constant ¢ (depending on U ) so that
d—1 —
HA(f = 3 F)? < Al pX (T (f, f))

for any measurable function f such that the above right hand side is finite.
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Remark that the previous property would only yield in this example

H(f = p$ F)? < e Bk (D1, 1)),

Hence, property 2.7 is a real improvement when L is large. It already points
out that in dimension 1, the spectral gap is bounded below by the inverse of
the volume of A. In fact, we shall see later that it is of order one, a fact linked
with absence of phase transition for systems with finite range interactions on
one dimensional lattice. Property 2.7 is optimal (modulo the multiplication by
the volume of A in the right hand side and the choice of the constant) in such
a generality (see the lower bound proved by Thomas [98] at low temperatures).

Proof : Let us choose a lexicographic order in A and denote by {7y, .., i, ...}
the points in A in this order. We choose it so that (illc)lsksll\la the first coordi-
nate of (ix)1<gp<|a|, increases slowly, that is that we fill in the faces of volume
19=1 of A with coordinate i' one after the other. Set I = {iy,..,ix}.

We shall proceed by interpolation : note first that

1 (f — ps )2 // F(@iy, o 2ipy) = F(Fiy, o Fapy,)” i (2)dpc (3).

WI'itil’lg, with Apf(l‘, 3:) = f(‘lll y o Lips 5ip+1" i:i|A|)_f(ri1a 5 rip+175ip+2"§§i|/§|)7

|Al-

f(;l‘il, "aIi|A|) - f(‘iiln ":Ei|A|) = Z Apf(gja%/):
p=0

and using Jensen’s inequality we obtain

[A]-
B3 (f — u3 )2 <A Z )22 (A, f(2, 7). (2.0.5)

p=0

In each term of the right hand side, only the variable at the i,4,-th site can
differ. Notice as well that the points of J; = {ipm,m > p+cgl® '} and of
J7 = {im,m < p— cql? 1} are at distance larger than one from i,4; for
some well chosen finite constant c4. Consequently, bounding the density of uf
uniformly on the {z;,, [k—p| < cql?1}, we get, if S, = {ix € A; [k—p| < cal® 1},
that for any function # > 0,

T L I I
Heredps, (2,1 € Sp) = du®!% ! (z;,i € S,) and

L PH g 815

d 0 o}
lu']; ZJ;

with the convention that for ¢ = 4+ or —,

HJ; = Z U(l‘“l‘])

i,j€Jg |i—j|=1
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i, From the above bound, we obtain that
~ e 141 ~
()% (A f (. ) < 0 M0 (40 g, ©10,)° (A, f(,5))* . (206)

Using the spectral gap inequality for p, we deduce that
w ~ 1 4. a1
(H3)%2 (Bp f(2,7))" < —etea WS s, @ Sy (DU (£.5)) (2.07)

with I"{H acting on the #,41-th variable.
To find back our initial probability measure, we input by force the potential

to find

ebeal® U] oo

()% (Apf (e, 3))? < us (01 (s ). (2.0.8)
Thanks to (2.0.5) and (2.0.8), we can conclude that
|A|—1

Mcx(f _ ,u‘j{f)2 < %eGCdld_IHUHw Z M‘X (Fll+1(f, f)) . (2.0.9)
=0

<&

Exercise 2.8 Generalize the last property to the case where the interaction has
finite range, (but not necessarily of nearest neighbours type), and the interaction
inmhomogeneous, that is that the Hamiltonian is given by

Hi(x)= Y Ux(x)

XeEX:XNA#D

for a family X of finite subsets of Z° with uniformly bounded diameters and a
family (Ux)xex of local functions so that, for any X € X, Ux (z) only depends
on (i € X).

The next exercise gives a link between the spectral gap inequality and the con-
centration of measure phenomenon

Exercise 2.9 ([62]) If u satisfies a spectral gap inequality with constant m on
IR® for a carré du champ T satisfying the Leibnitz rule

Fl(f:gh) = Fl(fag)h+ Fl(f: h)ga

then for all f € D(L), and t sufficiently small so that

t2
L iirs, il <1

we have
12

,uetf < CO”St’e;IIFl(f,f)Ilmetuf.
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Hint : Write

and apply the spectral gap inequality to p(e
1sfies the Leibnitz rule,

2

)= tzetfl“l(f,f).

if
2

i(e=,e

i
2

Proceed inductively.

We shall continue our discussion on the carré du champ and Leibnitz rule when
studying Bakry-Emery criterion.

In the next exercise, we suggest proofs of the spectral gap inequality in a
few simple cases.

Exercise 2.10 o Q =10, a] for some positive real number a. For f € C?(Q)
such that f(a) = f(0) = 0, we set
d2
T da?

If p is the normalized Lebesque measure on €2, then L s self-adjoint in
L?(p) and the spectral gap inequality is satisfied with m > (1/a?). Hint :
Use integration by parts formula.

o Let @ = {—1,41} and p be the Bernouilli law pd_1 + (1 — p)dy1. Let
Lf(x) = f(—x) — v(f). Show that the spectral gap inequality is satisfied
with m = 1.

For further general informations about spectral gap inequality, the reader can
read [51] and references therein. Even though one most often try to bound the
spectral gap constant from below, it can be useful also to obtain upper bounds.
We then recommend to read [14]. Finally, we remind the reader that in forth-
coming chapter 5 we shall be interested in the logarithmic Sobolev inequalities
which imply spectral gap inequalities. Nevertheless, in most cases we shall con-
sider, one can obtain directly (and by similar methods) lower bounds for the
spectral gap constant.

To obtain a stronger control on the asymptotic behaviour of F;f than the
L? ergodicity studied above, we shall need contractivity inequalities. It is the
role played by Sobolev inequalities.



Chapter 3

Classical Sobolev
inequalities and
Ultracontractivity

In this chapter, we study classical Sobolev inequalities and their links with
uniform ergodicity of Markov semi-groups. We shall see that classical Sobolev
inequalities is equivalent to Nash’s inequalities, which are themselves equivalent
to the ultracontractivity of the associated semi-groups. This last property en-
tails the uniform ergodicity of the semi-groups. Unfortunately, we shall see that
in general these inequalities cannot be true in infinite dimension ( see exercise
3.7). Tt is one of the main motivations to study log-Sobolev inequalities which
satisfy a product property and therefore can hold in infinite dimension.

Definition 3.1 A probability measure p € Jo(P:) satisfies a classical Sobolev
inequality iff for some p €]2,0[ and two finite constants (a,b) € [0,c0[?, we
have

1f1ls < auls(f, f) + buf? (3.0.1)
for any measurable function f such that pT1(f, f) and ||f]|2 are finite and, in
the case where b =0, so that [ fdu = 0.

In the next exercise, we describe some classes of probability measures for which
a Sobolev inequality holds.

Exercise 3.2 o Let O C R be a bounded conver open subset of IR® and 7
be the normalized Lebesgue measure on . Show that p satisfies a classical
Sobolev inequality restricted to the functions which vanish on the boundary

of O.
Hint : For d > 2 use Taylor’s formula to write

s =11

1
d

/ &f(.l‘lc [e] yi)dyi

21
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for any function f which vanishes outside O and any point (z},1 < i < d)
with coordinates outside of O. Multiply all Taylor’s formulas and rise
to the power p = (1/d — 1). Integrate with respect to the d dimensional
Lebesgue measure, use inductively Holder inequality and the geometric -
arithmetic mean inequality to arrive at an useful inequality. By substitut-
ing to this inequality a power of the absolute value of a sufficiently smooth
local function one can obtain a family of useful inequalities including the
desired one (with optimal exponent).

e Show that, if p satisfies a Sobolev inequality, any probability measure v <K
w such that there exists A € [1, 00| for which
1 d
<<
AT dp —
also satisfies a Sobolev inequality.

Note that when one considers a probability measure u on the entire real line IR,
it was shown in [79] that if a probability measure p has a tail like e~ for a
and e strictly positive real numbers, then p satisfies a Sobolev inequality. This
result is false when € = 0 since the heat semi-group on IR is not ultracontractive;
( the latter as we shall see is equivalent to a Sobolev inequality ).
Setting
[ flleo = sup{u(fg), llgll = 1},

we shall see that

Theorem 3.3 Ifu € Jo(P:) satisfies a Sobolev inequality, there exists a positive
real number v and a finite constant ¢ such that for any f € L(u)

12 = i lloe < el + 011 = ufll (3.0.2)

In particular, if b = 0, P, converges to u with a polynomual rate.
Moreover, if p satisfies both the spectral gap inequality and the Sobolev in-
equality, there exists a finite constant ¢’ so that for any f € L?(u)

[P f = uflleo < c'e™™|f = ufl]2. (3.0.3)

Let us point out that the above control is not really uniform on the entire
space but with probability one with respect to u. However, if y is compactly
supported and is absolutely continuous with respect to the uniform measure on
the underlying space, the theorem implies uniform ergodicity.

Theorem 3.3 relates Classical Sobolev inequalities with a contractivity prop-
erty of the associated semi-groups as follows. To prove it, let us recall the
standard notation

Definition 3.4 For (p,q) € [1,c0[?,
[1Pellgp = sup{[[Peflp : f € C(Q),[|fllg = 1, u(f) = 0}

where ||f|lq = ([ fqd,u)% . This definition extends to the case p = co.
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With this definition, the first point of the theorem is equivalent to

Property 3.5 Under the hypotheses of theorem 3.3, there exists a positive con-
stant v and a finite constant ¢ so that
a

Pill1 0o <
1Pl oo < el

+6)7

This property is itself equivalent to

Lemma 3.6 Under the hypotheses of theorem 3.3, there exists a positive con-
stant ¥ and a finite constant ¢ so that

" N
P, <¢(— + b)Y
1Pe]]1,2 < €( +0)

Indeed, it is clear that property 3.5 implies

a
P, < || P|]1.00 < e(=— + )"
1Pl2 < 1Pl < el +)

so that the lemma is verified. Conversely, the semi-group property implies that

1P ls,00 < 1P 121 P oo (3.0.4)
But, by duality,
[Pell2,c0 = sup{p(feg),|fll2=1.llgllh = 1}
= sup{u(gsf), [Ifll2= 1, gl = 1}

= |[Pellr,2

which gives with (3.0.4) the desired equivalence.
Proof of Lemma 3.6 [106]

To prove the lemma, we first remark that the Sobolev inequality implies the
following classical Nash inequality

1f1l2 < (auT (£, £) + bus) 211 F1I7 (3.0.5)

with a = %1% and f = 1 — a. This inequality is in fact directly derived via

Holder ’s inequality
vt1

1
A2 < [ A1

for every couple (u, v) of conjugate exponents between one and infinity, by taking

v+ 1 = p. Using (3.0.5) with f; we get
[1:ll2 < (@uTs(fe, £2) + bus*) 2 |1 1f (3.0.6)

To estimate I'y (ft, ft), note first that the spectral theorem allows us to write

Pt:/ e MdEL
0
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with {Ef, X > 0} the projections on the eigenspaces of £ in L?(u) (see Bourbaki,
théorie spectrale or [78] ). With these notations

pli(fe, fr) = —p(PfLPf)
- /,\e—wd(ng, Fra(u-

Noticing that for any real number u

1
we~ 24 < —
ue S5,
we deduce
1 1
WA £ < g [ ABEE s = 5oanr?). (30.7)

Plugging this result into (3.0.6) and noticing that u|P;f|? < u|f]? for ¢ > 1,
we deduce that for any ¢t > 0,

a

L+ 03I (3.08)

| fell2 < (

Choosing tg = t/2, we obtain by induction

ad a % ﬁz a™
< —+b n20 3.0.9
Il < IT (57 +2) "Il (3.0.9)
Since
a a
b) <2"(— + b
(262%_‘— )_ (26t+ )
we deduce that
2 < 92z ™" (L )T B
17013 < 22020 (G2 4 8) TSI (3.0.10)
The lemma is established.
o

To complete the proof of theorem 3.3, it is enough to notice that, when the
spectral gap inequality holds,

Pef = 1flloo < |Pill2,col|Pe—1f — pufll2 < ce ™ || f = puf]l2-

o

Unfortunately, classical Sobolev inequality is not satisfied in infinite dimen-
sion in the sense that it does not satisfies a product property as the spectral
gap inequality.



3.0 CLASSICAL SOBOLEV INEQUALITIES AND ULTRACONTRACTIVITY 25

Exercise 3.7 Let P, = ¢'* be a Markov semi-group on C(Q). Let u € Jo(P:)
satisfying the Sobolev inequality

u(fP)7 < apli(f, f) + buf?.

For any integer number n, we define a semi-group PP = ¢'*" with

Lr :iﬁi

if L; acts on the i-th variable. Show that for sufficiently large integer number
n, one cannot have

pE (P < ap® T (f, £) + bu®" £

for all functions f for which the right hand side s finite.
Hint : Assume the above equality true and obtain a contradiction by taking
for some g € D(L),

n

£w) = [Lgw)-

i=1

We saw that if p € Jo(P;) satisfies a Sobolev inequality, P; is ultracontrac-
tive, that is that for sufficiently large times ¢

|1Pell2,00 < 00.

This property was the key point to obtain uniform ergodicity. In fact, such a
property can be obtained directly when the state space is a compact Riemaniann
manifold as one can see by doing the following exercise.

Exercise 3.8 Let 8! be the unit circle in IR>. Let A CC Z* and Uyp be a twice
continuously bounded differentiable function on S' x S'. Set

HA(.Z‘) = Z UA(‘J}Z',.Z‘J').
i,jEAi—j]=1
We consider the semi-group associated with
I€EA
where A; = (I/Q)d‘i—z et V; = ﬁ on 8! fori e A.

Show by use of Girsanov formula ( see theorem 5.1 in [57] ) that there exists
a finite constant ¢ which only depends on Uy so that for any function f > 0,

P f < ectlAl / f() Hpt(l‘i, dy;).

1EA
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Here, p; 1s the semi-group assoctated with the Laplacian on the circle. Show
that there exists, for any t > 0, a finite constant ¢; such that

sup pe (x4, dy;) < ceM(dy;)

with A the uniform measure on the circle. Conclude that there exists a finite

constant ¢’ so that ,
[[Pel[1,00 < (ce) e AL

Finally, let us point out that Nash’s inequality is equivalent to the control
we obtained for || P;||1,2. Indeed, we have

Exercise 3.9 Let u € Jo(P;) and assume that there exists y,a,b > 0 such that

a
P < (— + b)".
I t||1,2_(26t+ )

Then, there exists A, B > 0 such that
1112 < (AuL2(F, £) + Buf?) =1 117

witha=v(y+1) and B =1- a.
Hint : Note that for all t > 0,

Fel13 > 1F113 = 2tuT (S, f)

and deduce from the hypothesis that

1715 < 20u02 (1, 1) + (55 + D211

Conclude by optimization over the time parameter t.
In the set up of finite Markov chains, Diaconis and Saloff-Coste [21] gave

simple proofs of Nash’s inequalities. In [7], generalized log-Nash and Nash
inequalities were introduced.



Chapter 4

Logarithmic Sobolev
inequalities and
Hypercontractivity

We begin this chapter by describing the equivalence theorem of Gross contained
in his seminal work [48] which inspired intensive interest and development in
logarithmic Sobolev Inequalities. Then, we study the properties of logarithmic
Sobolev Inequalities, such as its stability by product (see property 4.4) and its
stability by perturbation (see property 4.6 and exercise 4.7). We then compare
logarithmic Sobolev inequality with spectral gap inequality, showing in partic-
ular that logarithmic Sobolev inequality implies spectral gap inequality (see
theorem 4.9). Finally, we discuss Bakry-Emery criterion, giving the examples
of probability measures satisfying logarithmic Sobolev inequality.

Let P, = e'* be a Markov semi-group and u € Jy(P;). Given p €]1, o[ and
a constant ¢ €]0, co[, we define

g(t) == q(t,p,c) =1+ (p—1)e*, te R*.

Theorem 4.1 [Gross’ Integration Lemma] Let ¢ €]0,00[ and d €]0,00[. The
following statements are equivalent :

(1)

f
[1£1]2
for all non negative functions for which the right hand side is finite.
(ii) For any q € [2, 0],

u(F?10g =) < euln (£, 1) + dlI 1113 (4.0.1)

f 2c 4 . 2d
91 —_—ull 2 2) 4+ — g 4.0.2

for all non negative functions for which the right hand side is finite.

27
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(iii) Inequality (4.0.2) for some ¢ > 1.
(iv) For all p €]1,00[ and p < q < q(t,p, ¢), we have

1Plng < ex (245 - 1)) (4.03)

(v) For all q € 2,00, t € R,

1P:lz.q < exp (2d(% . 5)) (4.0.4)

Properties (i)-(v) imply
(vi) For allt € RT and any non negative function f such that ||f||; = 1 we
have

—2t

) (4.0.5)

Sp(t) = ufilog fi < €™ Sp(0) +2d(1 —e
forallt € RT.

Inequality (4.0.1) is called the logarithmic Sobolev (or in short log-Sobolev)
inequality.

Constants (¢, d), ¢ € (0,00) and d € [0, 00), such that (i) is satisfied will be
called log-Sobolev coeflicients.

Remark 4.2: If additionally

p((Lf)log f) = —4pT1(f7, f7) (4.0.6)
then (vi) is equivalent to (i)-(v). (4.0.6) is in particular satisfied when T'; satisfies
the Leibnitz rule (see 4.13).

Exercise 4.3
e Show that Sobolev inequality tmplies logarithmic Sobolev inequality.
Hint : write
2 2 2
! 2 ! 5 log ! 7|
I1£112 A1z 1A

and use Jensen’s inequality together with Sobolev inequality .

u| fPlog | = 117113

e Prove the logarithmic Sobolev inequality for a Bernoulli law p = %(5(1 + %(5;,,
with (a,b) € IR?, by a direct computation (see [48]). The generalization to
u=pdg+ (1 —p)oy for p € (0,1) can be found for instance in [85].

Note that the theorem shows that the logarithmic Sobolev inequality with
d = 0 implies that the associated semi-group is hypercontractive. In this sit-
uation one shows that the spectral gap inequality is satisfied, see theorem 4.9
below.
Proof : The equivalence between (i)’q (ii) and (iii) is easily obtained by sub-

stitution (For (i)—(ii), we take f = g2, (ii) can be clearly reduced to (iii) and
(iii)—(i) by taking f = g7).
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Let us show that (ii) implies (iv). To do so, we remark that

1

__0u(®) () ()
O logl|fellgey = — 0 log pu f™ + (O u(f1 deq(t) log fr)
= —zt(qt()? log Mftq(t) + _(t) 1fq(t) #((@Q(t))ftq(t) log f:
qlt)p g
+a(t) 107N Lf) (4.0.7)
_du() < o), I cq(t) a()-1 )

where 1n the last line we used that
2
Oeq(t) = —(q(t) = 1).

Consider now more closely the last term in the bracket on the right hand side
of (4.0.7). By definition, for any ¢ > 1 and any non negative function g,

ulg?~'Ly) = liml(yq‘l(Pr—l)g)

70T

= —lim o [ uda) P, d3) " @) - 07 @) o) - 9(@)
< ~H2 Dt L [ ()P, dB) (63 ) - gF@) (408)
= —4(qq;1)uF1(g%,y%)-

In (4.0.8), we used the following inequality satisfied for any non negative (z, y)

(2% —y¥)’ < 4(qq_ =)=y,
(4.0.7) and (4.0.8) yield
0; log ||ft||q(t)
q(f)j% (1t 108 ) = 2t ) @
Under hypothesis (ii), we deduce that
Orq(t)

O log || fillqq) < 2d 200

and hence, since ¢(0) = p,

=Y

1
[1fllacey < [1felly exp{2d( — —os
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Finally, for any given ¢ < ¢(¢), we can find a tg <t such that ¢ = ¢(¢g). Using

the definition of the semi-group and its contractivity property in any L?, p > 1,
we obtain

1 1
1Felle = 1fellyeoy = WPfe-tollyen) < 1l fomeallpexp2d (=)
1 1
111y expf2a (= ))

INA

which extends the property to any ¢ < ¢(t).
To show that (iv) implies (i), we note first that (iv) induces that for any non
negative function

r(t) :t — exp{—?d(% — ﬁ

is decreasing. Indeed, it implies that for all s, > 0,

) HISe g

or(t+s)

IN

1
exp{~2d( - (HS))}II Pillatey.ater| 1 F1lace)
)31l

IN

1
exp{—?d(}—? — m

Consequently, log ¢ (t) is differentiable and also decreasing. We thus obtain

1 1 _ 3tq
O log || fillqer) < 3t{2d<}—? - m)} = qu_g(t)'

Going back to (4.0.7), we deduce

cq -1 nr
lo FTOLf) < 2d(1).
(e ) + g g e) s
Taking ¢ = 0 and p = 2, we have

2d
p(f*log )<C#F1(f,f)+?||f||§-

||f||

Finally, to show that (iv) implies (vi), we differentiate with respect to the
time variable the following function

Ye(t) = e S¢(t)
defined with a non negative f from the domain of the generator. Assuming that
[Ift]lr = If]]l1 = 1, we find

2t 2 2t
3t675f(t)22605f( )—|—ec (Lfilog fr). (4.0.10)
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To estimate the last term, we note that for any function F' € D(L),

-1

(e tog ) = lim - [ n(d)Pr (0, dB) () - F(@)(log F) ~ log F(@)).
T— T

Since for any non negative z, y,

(logz — logy)(z —y) > (;7:% — y%)2,

gives

pl(LF)logF] < —4uly(F%, F3). (4.0.11)

We deduce from (4.0.10) and (4.0.11) that

detSplt) < 2% (5500~ 2en(a(7E 1)) (4.0.12)

and, if logarithmic Sobolev inequality is satisfied,

2t 4d 2

(vi) follows from the integration with respect to the time variable.

4.1 Properties of logarithmic Sobolev inequal-
ity

We begin by showing that, similarly to the spectral gap inequality, the logarith-

mic Sobolev inequality has the product property.

Theorem 4.4 Let (1;);=12 be two probability measures on probability spaces
satisfying the logarithmic Sobolev inequality with coefficients (c;, d;)i=1 2 for the
infinitesimal generators (L;,i = 1,2). Let L be the generator on the product
space Q1 X Qs defined as in property 2.5 and 'y its carré du champ. Then, the
product probability measure p1 ® po satisfies

m@m(ﬂlogﬁ) < ep @ Uy () +dm @ pnf?  (4.114)

with ¢ = max(cp,ca) (4.1.15)
d = di+ds (4.1.16)
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for any non negative function f for which the right hand side of (4.1.14) is fi-
nite. Consequently, if u is a probability measure satisfying a logarithmic Sobolev
mequality with a coefficient ¢ < oo and d = 0, then the product probability mea-
sure u®" satisfies the logarithmic Sobolev inequality with the same coefficient c
for any integer number n.

Exercise 4.5 (Gross) Deduce from exercise 4.3 and property 4.4 that the Gaus-
sian law satisfies a logarithmic Sobolev inequality (see [48]).
Hint : Use the central limit theorem.

Proof : Let f be a bounded measurable function on ©Q; x Q5 in the domain of
L. Then, using the logarithmic Sobolev inequality for the probability measure
141, we obtain

f? f?
17113 m(f?)

< i (201M1F1,1(f, F) 4 2dipn (F7) + pa (£7) log

)+ p1(f?)log

p @ pa(f?log

) = po (ul(ﬂ log (%) )

p1 @ pa(f?)
p1(f?) )

p1 @ pa(f?)

Applying the logarithmic Sobolev inequality to ¢ = /p1(f?) and Cauchy-
Schwarz’s inequality, we deduce

f2
IF113

1 ® po(f? log ) < 2cip0 @ i (f, f) + 2cop2T1 2(g, 9)

+2(dy + da)pz @ pa (f°).

We can estimate the last term of the above inequality by noticing that
pal1a(9,9) = palia(Vpa (), Vi (£2))
.1 - ) 2
= tim o= [ () Prafe, @) (Vi) - Vin(P)@)

7l0 2T

< liml / a(d) Py o (w0, ) dpas (1) (f (. 1) — F(@, 7))’

7l0 2T

= /Ll®/$2 (Fl,Z(f: f))

where the last inequality is due to Cauchy-Schwarz’s inequality. We hence have
shown that

f2
p1 @ po(f* log W)

2c1p12 @ pr L1 1 (f, ) + 2c2p2 @ pa (L1 2(f, £)) + 2(dy + da)pa @ pa(f?)
2max(cy, ca)pz @ L1 (f, F) + 2(dy + da)pa @ p1 (f?)

[VANVAN
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which was the announced statement.

Logarithmic Sobolev inequality is also stable under perturbation.

Property 4.6 Let U be a bounded measurable function on a probability space
(Q2,%, p). Assume that p satisfies the logarithmic Sobolev inequality with coeffi-
cients (c,d) for an infinitesimal generator L. Then

1
duy = —e Ydu with Zy = /e_Ud,u
Zy

satisfies the logarithmic Sobolev inequality for the same generator L with coeffi-

cients bounded above by (cegOSC(U), de'gOSC(U)) with osc(U) =supU —inf U.
Proof : The proof is based on the formula

2 f2 : 2 f2 2
u(f logﬁ)zgguc” log(%-) — f +t)

which is easily checked. Moreover,

o(t,x) = f2(13) log(fT(x)) — fz(l‘) +t=t(z(t,x)logz(t,z) — z(t,x) + 1),

with z(t,z) = (f%(z)/t), is clearly non negative. Hence, we can use (2.0.4) to
deduce

2 2
o (£ 108 ) < (2 tog L) < €W (eu(y (1, ) + da(£7))
po f nf
(4.1.17)
By further use of (2.0.4), we finish the proof of the lemma.
o

We recall that for a finite volume Gibbs measure with finite range interaction
we could improve the estimate of property 2.6 for the spectral gap inequality .
In the next exercise, we propose to generalize this result to logarithmic Sobolev
inequality in the discrete case.

Exercise 4.7 Let v be the uniform measure on {—1,+1} and A = [-L, L] x
[1,0% 1 for (I,L) € (IN)2, I < L. Let U(z,y) be a function on {—1,+1}? and

set
HY(x)= > Ulwa)+ > Ulzi,w;).
i,jEA |i—j|=1 i€A,jEAC |i—j|=1
Let 1
dp (z) = ——e PHE @) g @A (),
Z%

Then, with T1(f, ) = ;e 2 (8: )% if 0if(0) = f(o1, ..0i-1, —0i, 041, ..) — f(0),
prove that there exist two constants (¢, C) € (0, 00) depending only on U so that
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for every w € Q, Y satisfies logarithmic Sobolev inequality for the carré du
champ Ty with coefficient bounded by C’|A|26dd_1.

Hint : Choose a lexicographic order (i;,j € {1,..,|A|}) of A as in property
2.7. Denoting Ay = {i;,j < k} and, for a non negative bounded function f,
Julw) = p}, [, fo=f, write

[Al-1

w I\ w fr
1 (f log E f)) = kZ:jo S HA s (fk log ka) :

A

Using the previous proof and the product property 4.4, show that there exists a
finite constant C such that

w fk -1
iuAk_H (fk log fk+1 < €Cl uAk+1 (aik+1 fk)2

Remark that there exists a finite constant D such that

(aik+1fk)2(w) < Q”Xk |aik+1f|2 + D/ka (f - EAk f)2
and conclude by property 2.7.

The next exercise links the logarithmic Sobolev inequality with a property of
concentration of measure

Exercise 4.8 (see e.g. [61], [1]) Let (Q, X, u) be a probability space with a
probability measure p satisfying the logarithmic Sobolev inequality with coeffi-
cients (¢,0) for a carré du champ Ty satisfying Leibnitz rule. Show that for any
z > 0, any measurable function f satisfying ||T1(f, f)]lec < 00,

(f—N(f))) < er.

p(e?

Hint : Show that
0.3 10g [y < SIN(7 D)l
by applying the logarithmic Sobolev inequality to g = /.

For other connections between logarithmic Sobolev inequalities and concentra-
tion of measure phenomenon, we refer the reader to [8] and [61].

4.2 Logarithmic Sobolev and Spectral Gap in-
equalities

We have the following relationship between logarithmic Sobolev inequality and
spectral gap inequality.
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Theorem 4.9 If p is a probability measure satisfying the logarithmic Sobolev
inequality with coefficients (c,0), then u satisfies the spectral gap inequality with
a coefficient

1
m> —.
¢
Conversely, if p satisfies logarithmic Sobolev inequality with coefficients (¢, d) as
well as a spectral gap inequality with coefficient m, then p satisfies logarithmic
Sobolev inequality with coefficients (¢/,0) with
d+1
d<c+ L
This result can be found in [81], (see also [20] or [106]).

Proof : The first result is obtained as follows. Let f € D(L) be a bounded
measurable function centered with respect to p. For e sufficiently small, 1 4 ¢f
is a positive bounded function. Hence, applying logarithmic Sobolev inequality,
we obtain

p(l+ef)*log(1+€f)® < 2ee’u(Tr(f, ) + n(l +ef)* log u(1 +f)*. (4.2.18)

By Taylor’s expansion and identifying the first order terms (in €?), we get
p(14ef)*log(l + ef)? = 32uf? + O(e?)

and
p(1+ef) log u(1 4+ ef)? =~ uf? + O(e?)
so that
pf? < ep(Ti(f, f)).

To prove the second point, it is enough to notice that for any measurable function

£

L e LI s g
() S U = o by ol sl 219

The statement is then obtained by using both the logarithmic Sobolev inequality
and the spectral gap inequality in the right hand side. To show (4.2.19), note
first that for uf # 0 it is equivalent to the following inequality

p(f? log

(1 + 16)? log (11“;71:@2) <216 log 67 + 247 (4.2.20)
with
t:||f—uf||2 6= f—nuf
nf I[f = nufll2

We shall use the following observations concerning ¢ ;

puo =0, pu(¢?) = 1. (4.2.21)
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Up to replacement ¢ by —¢, we can and do assume that ¢ > 0. We shall bound
the second derivative of

1+ tg)?
F(t) = pu((1 +t¢)*log %).
Using (4.2.21), we find
1+1t¢)?
F(1) = u(26(1+ 16) log U1
and then Lt )2 i
F//(t) = ,u(2¢2 log %) +4— 1

Using Jensen’s inequality applied to the probability measure p(¢?.), we remark

that
2 (1+t9)? 5 (1+t)? _
# <¢ log ¢2<1+t2)) < logu <¢ ¢2<1+t2>) =0

and since we assumed ¢ > 0, we get
F"(t) < 2u¢°log ¢® + 4.

Integrating twice with the initial conditions F'(0) = F'(0) = 0 gives the result.
Note here that F may not be differentiable. Applying the same arguments

with
[62 4+ (1 +t¢)?

1412442
for some non negative real number §, one can show that

Fs(t) = p([6* + (14 t¢)*] log )

Fy(t) < 2u6° log ¢” + 4(1 + 6°)
and conclude as above with further use of dominated convergence theorem.
o

Exercise 4.10 In the set up of property 4.6 and with additional assumption
that the carré du champ U1(f, f) is equal to |V f|?, show that if py satisfies
a spectral gap inequality with coefficient m, py satisfies a logarithmic Sobolev
inequality with coefficients (c¢’,0) with

1 1
¢ < e(l4 Z2lIVUleo) + — ((elIVUIIS + 1) + d +[[U]|eo) -

Compare this result with the one obtained by property 4.6.

Hint : Denoting py = %, and being given a function f € D(L) centered
with respect to p, apply logarithmic Sobolev inequality under p to the function
g=p*f to find

<f210g ”Uf2)<(c+3||log ||) (T3 (. ) +
KU w7 ) < 1 pulle ) po (F1(f,

Vp% 2 c 1
(cl e ||oo+§||v10gp5||oo+d) no (f)
pU
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4.3 Bakry-Emery Criterion

We shall assume in this section that the carré du champ I'y of the generator
under study satisfies the Leibnitz rule

This rule was already encountered previously but we shall now describe it
more precisely. First, let us consider the following examples.

Example 4.11 Consider the Brownian motion on the real line IR or on the
unit circle S, £L = A, and show that

Li(f, ) = VP

satisfies Leibnitz rule. More generally, consider the operator

L= Z ai]ﬁi@j— Z ﬁj@j

1<ij<d 1<j<d

with a positive definite matriz A = (ai;)i; with real valued entries and some
vector (B;); and show that

Ti(f,f) =D aij(0:)(9; f)
¥
satisfies Leibnitz rule.
On the other hand, Leibnitz rule may not be satisfied if the state space Q2

is discrete ; take Q = {—1,41} and L = 0 to be the discrete derivative ;
df(c) = f(—o) — f(o). Then, show that

Uy(f,f) = f(=0) = f(o)?

does not satisfy Leibnitz rule.

More generally, considering a measurable space (Q, X)), a family of probability
measures (V*)weq on (2, X), and the generators Lf(w) = v¥ f— f(w), show that
Letbnitz rule fails.

Necessary and sufficient conditions for a semi-group to have a generator satis-
fying Leibnitz rule can be found in [58] and [80].
One of the consequence of Leibnitz rule is the following fact.

Lemma 4.12 Assume that I'1 satisfies the Leibnitz rule. Then, for any entire
function v on IR, we have

Ti(g,vof) =Ti(g, flv'of
for any functions (f,g) € D(L).
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Proof : Since for any monomial function ", n € IV, one easily check

Fl(g;fn) = nrl(gaf)fn_l

the result is straightforward for entire functions. o
We notice also the following interesting fact.

Property 4.13 Assume that I'y satisfies the Leibnitz rule. Then, the last con-
dition (vi) of Gross’s theorem [{8] is equivalent to the others.

Proof : It is sufficient to show that, for any non negative function f, we have,
thanks to the previous lemma,

pl(Lf)log fl = —u(T1(f,log f)) = —4uT (F5, f7).

Plugging this equality in the proof of Gross’s theorem [48] yields the result. o
Hereafter, we shall consider so called the carré du champ itéré , (or simply
Gamma two), given, for f in the domain of £, by

d
%E (Pe(To(f, f) = To(Pef, Pef)) le=o0

Lo (f, f)

We shall define the Bakry-Emery condition by

Definition 4.14 We say that Bakry-Emery’s condition ( denoted (BE) ) is
satisfied if there exists a positive constant ¢ > 0 such that

Ca(f, ) 2 T04(7 ) (43.22)
for any function f for which T1(f, f) and Ta(f, f) are well defined.
We have the following characterization of Bakry-Emery’s criterion (see [106])
Theorem 4.15 Condition (BE) is satisfied iff for any t > 0,
Ty (Pf, Pif) < e <RI (f, f) (4.3.23)
for any function f so that T1(f, f) and Ta(f, f) are well defined.

Proof : Let us assume that (4.3.23) is satisfied. Then, for any ¢t > 0, we have

0 < 1 (ERDG) - (R A)
e_%t

- %Ptrl(f:f)‘i‘%(Ptrl(f,f)—rl(Ptf,Ptf)) (4.3.24)
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Taking the limit ¢ | 0, we deduce, according to the definition of I'; that

0 < —2T3(f, ) + 205(7, f)

that is condition (BE).
Conversely, if condition (BE) is satisfied, for any ¢ > 0 and s € [0,¢], the
function
F:s—es*P_,T'1(P.f, P.f)

is decreasing. In fact,

%F(s) = egsPt—s <%F1(Psfa Psf) _L:Fl(Psf: Psf) +2F1(£Psfa Psf))

26%5Pt—s <%F1(Psf: Psf) - F2(P3f’ Psf)) S 0.

In particular, F(t) < F(0), that is

€%tF1(Ptf, P.f) < BI(f, f)
that is (4.3.23).

The main application of Bakry-Emery’s criterion is the following

Theorem 4.16 Let £ be the generator of a Markov semi-group P, t € IRT with
carré du champ Ty satisfying Leibnitz rule. Let p € Jo(P;) so that Py is weakly
ergodic, i.e

tli}’& Pif(w) = uf H—a.s. (4.3.25)

for any bounded continuous function f. Then, Bakry-Emery’s criterion implies
that p satisfies logarithmic Sobolev inequality.

Proof : Let f be a positive bounded continuous function so that uf = 1. We
set fp = P f and let

Sy (t) = p(filog ft).
Under the weak ergodic hypothesis, we have

tl_l)HO}D Sy (t)=0.
Hence,
o0 d (e}
S¢(0) = —/ thSf )= / dtul'y(fe,log fi). (4.3.26)
0 0

Next using the fact that P, is symmetric together with the Schwartz inequality,
we get

pl'1(fe,log fi) = ul'y (f, Pr(log fi)) < (4.3.27)
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< <uw) ’ (ufT1(P;log fr, Prlog ft))%

Applying to the last term our condition equivalent to (BE) with the function
log f;, we obtain

1
2

(ufT1 (P log fi, Prlog ;) < (,ufe_%tPtFl(log ft,logft)) (4.3.28)

=<' (ufeT'1(log ft,logft))% = (/Jrl(ft’bgft))%

where in the last stage we have used symmetry of the semigroup and the Leibnitz
rule for T';. The inequalities (4.3.27) and (4.3.28) imply the following bound

WL (fr.log f,) < ”ijf) — 4 Fury (f3, ) (4.3.29)

Using this one arrives at

S50 [ ae Eara (7 1) = 2eumi ()
0
which completes the proof. o

One can also show that

Proposition 4.17 If (BE) is satisfied,

P(flog f) < 2¢(1 — e )PT1(f%, f%) + P.f log P.f
for any function f for which the right hand side is well defined.

The proof of this proposition is very similar to the previous one. It is given by
Bakry and Emery, [6], Proposition 5.
Let us give a few examples where (BE) is fulfilled.

Exercise 4.18 e Let U be a twice continuously differentiable function so that

7 = fe_U(x)dr 1s well define and finite. Set
plde) = 27 e V@ gy,

Let L = A—=U'(z).0y. Show that, if U" is uniformly bounded below by a positive
constant, Bakry-Emery criterion holds.
e Let pg be the Gaussian measure on IR" with covariance

G ={Gij}1<ij<n. Given U € C?(IR") such that
0< pgle™?) < o0,
we define

_ na(fe™)
polf) = pa(el)
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Let L be the Markov generator given by

Lf=Af— Zm,f

and, with M = G~1,
Bi = 0:U + Y Mija;.
J

Then, py 1is reversible for £. Show that

Li(f, f) = [VfI?

and
Do(f, 1) = (100,00, f1” + (0w, 8:)00.f - 0x, ) -
¥
Prove that, if we denote N(x) the matriz with entries 0,,0,,U, and if for all
z, the smallest eigenvalue of the symmetric matriz M + N (z) is bounded below
by (1/¢), then Ty satisfies (BE) with coefficient ¢. In particular, p satisfies
logarithmic Sobolev inequality with coefficient ¢ for the carré du champ T';.

The interest of Bakry-Emery criterion is also to obtain log-Sobolev inequalities
in smooth compact Riemaniann manifolds. We send the reader to the original
article [6], as well as to the more recent paper [13], for such applications.

d
Exercise 4.19 Q = RZ . For a finite subset A of Z°, a constant m #+0, we
denote p2? the Gaussian measure on R* with covariance

G=(-A +m?)~!

where AS2 is the discrete Laplacian with Dirichlet boundary conditions. In other
words, if we denote xp = (2;)ien and ir j for |i—jl =1, w € Q,

AW 1 1 m2
pe C(dea) = Z—g‘\eXp{_E ' Z (132 - 'Tj)z BN Zl‘?}dl‘A
1EAIR] iEA
with ¥|pe = w|pe. Let V be a bounded below C*(IR™) function and set
UA(‘J:A) = Z V(J:Z)
iEA

For instance, for A >0, V(z) = Az* + az?. We can then define

1

OAw — oA w

Hy“(dea) = g g (dea).
ZN

Following the previous example, see that if, for some ¢ > 0,

A m? 4+ D(x) > -1

Q| =
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with D the diagonal matriz D;;(z) = 6;; V" (x;) and the inequality is understood
in the sense of quadratic forms, then ,ugA’w satisfies the logarithmic Sobolev

mnequality with coefficient bounded by c. Moreover, if the following limit exists

@ = lim ,uiA’w ,
INY A
p satisfies also logarithmic Sobolev inequality with coefficient bounded by c.

Let us remark that such a measure may not be unique and that then the
logarithmic Sobolev inequality is satisfied by any such limit. The proof of the
existence of a limit is in general not easy. We note that for any A C Z* and
Ag C A, the conditional expectation ,uiA’w knowing ¥ip¢, the o-algebra generated
by {z;,i € A§}, is independent of A and is defined by 4, (ﬂiﬁ“""(.)) (ezxercise).

One can use this idea to define the infinite volume measure as follows.

Let a family of conditional expectations (E{,w € QA C Zd) be given so
that

(1)E{1=1 VYweQ, VACZ*

(2) w = EX(f) is ©ac measurable for any bounded measurable function f.

(3)[fA1 C Ao, then EA; C EA; and

LEA f=E}, T

The Gibbs measures in infinite volume p associated with the specification
(BE¥,w e Q,AC Zd) are described as the solutions of the equation (DLR)

pEy = p.
This equation may have several solutions.

To be more precise, let us consider the case where U = 0. Denote E (F1XAe)
the conditional expectation of pug with respect to Xpe. The family of these con-
ditional expectation is called local specification. We can consider the Gibbs mea-
sure associated with this local specification. It is not hard to check that

Eo o (f12ac) = & (F(+02Y) (4.3.30)
where
G122 (i) = 0 VieA
9.hi) =w;  VieAl
Consequently, if ¢ is a global solution of
Gl =0,

any probability measure

pao(f) = pa(f(-+9))

have the same conditional expectations. Hence, they define Gibbs measures in
infinite volume with the same local specification. All these measures satisfy the
logarithmic Sobolev inequality with the same coefficient.



Chapter 5

Logarithmic Sobolev
inequalities for spins
systems on a lattice

This chapter will be concerned with logarithmic Sobolev inequalities for Gibbs
measures. We begin by describing the statistical mechanics context in which we
shall work. In particular, we define local specifications and the associated Gibbs
measures. We introduce as well some Markov semi-groups, (via their genera-
tors), satisfying the detailed balance condition with respect to a Gibbs measure.
Then, we present a general strategy to prove logarithmic Sobolev inequalities for
a given Gibbs measure with Dirichlet forms of relevant generators. The applica-
tion of this strategy requires to check four general conditions. In section 5.3 we
show that they are satisfied for all one dimensional systems with bounded finite
range potential. For ”geometric” reasons, this case is slightly easier to handle
than the higher dimensional case. In section 5.4, assuming some mixing condi-
tion, we show that the requirements of the general stratedy listed in section 5.2
hold for systems with bounded finite range potential in dimension d > 2. The
proof is similar to that of section 5.3, except that one needs an extra argument
taking into account the mixing condition (based on the so-called sweeping out
relations defined in paragraph 5.4.1).

5.1 Notation and definitions, statistical mechan-
ics

In this chapter, we shall consider random variables, (in applications representing
spins or particles and therefore frequently called by these names), with values
in a Polish space M. We shall assume that either M is a finite set, (frequently
being simply given as a two point set M = {+1,—1}), or a finite dimensional
smooth (compact) connected Riemaniann manifold. These two cases will be

43
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called discrete and continuous settings respectively. In most of the proofs, we
will consider in more detail the discrete case which is usually more complicated
to deal with, (mainly because the discrete derivative used there does not satisfy
the Leibnitz rule). The spins will be ”located” on the lattice 7%, for some
positive integer number d € IN*. We equipp Z* with a distance d(z,y) =
maxi<i<d |2 — y;i| for (z,y) in Z%. The notation A CC Z* will be used to say

that A is a finite subset of Z¢. Let Q = MZd be the state space. For A CC Z°,
we shall denote by
o Q— MA

the projection defined by

or: Q0 - MA

w=(wj)iezs = oalw) =(wj)jea

In particular, a projection o; corresponding to single point set {i} is called a spin
at site i. For A C Z%, we shall denote by X5 the smallest o-algebra for which all
the spins {o;,7 € A} are X x-measurable. We shall say that a function f on € is
localized in A if it is ¥ x-measurable. We denote by Af (or alternatively A(f))
the smallest subset of Z¢ for which f is localized in A;. Later on, a function f
for which the cardinality of A; is finite will be called a local function.

Let ¢ = (¢X)Xch be a potential with finite range R, that is a family

((bX)XCZd of continuous functions on Q so that for all X C Z¢, ¢x is localized
in X and ¢x = 0 if the diameter of X is greater than R. We shall assume
hereafter that

ol =sup > [léx]leo < o0 (5.1.1)
i€l xiex
The energy Uy in a finite volume A CC Z? is then well defined by
Un= Y ox. (5.1.2)

XNA#D

Let v be the uniform measure on M and let

VA(dU'A) = ®iEAV(dUi)~

We can define a local Gibbs measure in a finite volume A and with boundary
conditions w € Q by

50Ac:w @ VA (e_UAf)
60Ach Qv (6_UA) .

Frequently it will be convenient to use the following notation

Eyf(w) = EX/f.

“f= (5.1.3)
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We shall call local specification the family of local Gibbs measures
{EX}ACCZd,wEQ'

By p, we shall denote a Gibbs measure in infinite volume associated to the
local specification {E‘;{}Acczd e that is a solution of the (DLR) equation,

(DLR being a shorthand for Dobrushin, Landford and Ruelle), which is given
by
WELT = uf (5.14)

for all local bounded measurable function f and all A cC Z°.

For an introduction to the theory of Gibbs measures the reader may like
to look at the classical reference [75]. Concerning the uniqueness versus non
uniqueness problem (a phase transition phenomenon) the literature is very wide;
the reader may consult [90] and [41] for more detailed discussion and further
guide to the literature. We note that, except in the last chapter of these notes, we
will only be concerned with Gibbs measures for which log-Sobolev inequalities
hold for all local Gibbs measures with uniformly bounded coefficients. This
entails the uniqueness of the infinite volume Gibbs measure.

The Markov generators under study will be defined as follows. In the con-
tinuous setting where we consider a smooth connected Riemaniann manifold
M equipped with the Laplace-Baltrami operator A and a gradient V, for any
i€ Z%, we set A; and V; to be the corresponding operators acting on the 7t?
variable w;. We shall then consider the operator defined on the set of local twice
continuously differentiable functions by

Lf= Z (AZ — VZ-UA.Vi)f
iceZ?

with A any finite subset of Z? so that d(A°, Af) > R.

In the discrete setting, for any finite subset X C Zd, we introduce a generator
by means of the local Gibbs measures as follows

L= 3" Lxyif
i€z’

with
Lxtjf(w) =Exy;f— flw)

for any j € Z% and f any integrable local function.

It is not hard to see that p is reversible for such operators. Moreover, £
(resp. £X)) is non positive and with dense domain in L?(g) for any Gibbs
measure y satisfying (5.1.4) for the specification (E,, A CC Zd). Consequently,
the semi-group P; = e'“ (or P, = em(x)) is symmetric and leaves p invariant.
We shall call in the sequel the standard Dirichlet form the quantity

E(f, 1) = ulVIP
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with
VP = Y Vil
jeZ’

where in the discrete setting, we denote Vf = (0o, f)jEZd with

80jf:/f(ak,k7éj, &)dv(5) — (o).

We shall denote, whenever it makes sense,

A= > IVifll%
ice 2’

and say that a function f is of class C iff ||| f||| is well defined and finite. £(f, f)

is clearly well defined for any function f of class C'.

Exercise 5.1 Show that if ® is a bounded potential with finite range, for any
X CC Zd, the operator LX) has a quadratic form ,uI‘(lx)(f, f) equivalent to
the standard Dirichlet form, that is that there exists two constants cx and Cx,
0<cex <Cx < o0, so that

ex€(f, ) < ulO(f, 1) < CxE(S, ).

5.2 Strategy to prove the logarithmic Sobolev
inequality
To prove logarithmic Sobolev inequality for the Gibbs measure p, the idea is

to use the local Gibbs measures to define an auxiliary Markov chain on (£2, %)
with transition matrix E satisfying the following conditions

(Ci)
HEf =pf
for any bounded measurable function f.

(Cii) There exists a positive finite constant ¢ so that
1 (E(f log /) — (Ef) log(Ef)) < 26|V f3[*.
(Ciii) There exists A € (0,1) so that

plV(Ef) 3> < Al VFE[2

(Civ) Denoting for any bounded measurable function f, (f")neﬂ\f the se-
quence of measurable functions given by fo = f and f, = E(fn—-1),
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Jim fo =u(f) g —as.

Before proving that a construction of such transition matrix E is possible
and giving a sufficient condition for this, we first show that conditions (C) imply
that the Gibbs measure p satisfies a logarithmic Sobolev inequality .

To this end for a fixed non negative function f we consider the sequence (f,,)
given by

fo = [, fan=Ef,_1.

We notice that by using (Ci), we have

I
wf

and hence by induction

(Ef)
nf

(r1og L) = (81108 1) = (B 08(E) + 4 (BN 105 T ) 5.25)

N-1

3 (B (falogfa) - <Efn)log<Efn)>+u<leogﬁ—f;> (5.2.6)

p(f log

On the other hand, by (Cii),

1 (E (falog fo) — (Efa) log(Ef,)) < 2eu|V £ [*. (5.2.7)
Applying (Ciii), we obtain by induction that

IV ER P S AV I < Al W FE P (5.2.8)
Combining (5.2.6), (5.2.7) and (5.2.8), we get for any N € IN,

(1o 22) < IO 4wl og 7). (5.29)

Finally, hypothesis (Civ) implies that the last term on the right hand side of
the inequality (5.2.9) goes to zero as N goes to infinity. Indeed, the convexity
of # — zlogw together with Jensen’s inequality imply that u(fy log i—f;‘,) > 0.
Since we also have that for any € > 0, any f > 0 which is not identically null,

fvlog f“‘ +E is uniformly bounded, the monotone convergence theorem implies
that
Nt € +¢€
lim sup p(fn log f—) < limsup p(fn logf ) = u(f) log('uf )

which allows us to conclude by letting e going to zero.
Hence, we proved that p satisfies a logarithmic Sobolev inequality with

coefficient bounded by ¢ = %
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5.3 Logarithmic Sobolev inequality in dimen-
sion 1 ; an example

Log-Sobolev inequalities on the one dimensional lattice were first studied for
discrete spins in [56]. In that paper a bound on logarithmic Sobolev inequality
coefficients (logarithmically growing in the dimension of the configuration space
bounds) were obtained and used to prove a form of ergodicity of the associated
semi-group (although in general not an exponential decay in the uniform norm
). A first proof of logarithmic Sobolev inequality on infinite the one dimensional
lattice was obtained in [104].

In this section we give a new proof of that result (with improved estimates
on logarithmic Sobolev inequality coefficients).

Theorem 5.2 Assume d = 1 and consider the local Gibbs measures on =
{-1, I}Z constructed with a potential ® with finite range R as in (5.1.3). Then,
the unique Gibbs measure p on Q solving the corresponding (5.1.4) satisfies the
logarithmic Sobolev inequality .

Consequently, logarithmic Sobolev inequality is satisfied (with possibly different
coefficients) for any quadratic form associated with the generator LX) for any

finite subset X CC Z (see exercise 5.1). The semi-groups Pt(X) = €™ are
thus hypercontractive (and therefore, as we shall see later, uniformly ergodic).

In dimension greater or equal to 2, such a result is obtained in general only
under some additional mixing conditions that will be considered in the next
section.

5.3.1 Construction of the auxiliary Markov chain

Let
Ag =1[0,2(L + R)]

with R the range of the interaction. L is an integer number the value of which
will be properly chosen later. For k € Z, set

Ar = Ao + 2k(L + 2R).
With such a choice, we have
dist(Ag, Ak41) = 2R. (5.3.10)
For I = 0 or 1, we shall denote
I, = UkeZ{Ak +I!(L+2R)}.

In this manner, we have constructed two sets (each composed with disjoint sets
at a distance greater or equal to 2R), the union of which covers the whole lattice.

Z=TyUT;. (5.3.11)
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The goal of this construction is to compare the coefficient of the log-Sobolev
inequality satisfied by g with the maximum of those satisfied by (E‘lﬂl {1=0,1)

[

I =Ep, = ®kEXk+l(L+2R)’ =01

with properly chosen L (sufficiently large).

The coefficient in the inequality corresponding to E{ can easily be estimated
thanks to the product property and the estimates of the log-Sobolev coefficients
for local Gibbs measures.

We define a Markov chain on (£2,X) by the transition matrix

EY = EYE;

By definition E preserves the unit and positivity. Moreover, E preserves the set
of cylindrical functions.

5.3.2 Checking of conditions (C)

Condition (Ci) is clearly satisfied by E since, by property of local Gibbs mea-
sures,

HE Eof = pEyf = pf.
Conditions (Cii), (Ciii) and (Civ) result from conditions (a) and (b) of the
following auxiliary lemma.

Lemma 5.3

(a) For any finite subset A of Z, there exist non negative constants By (A)
and By (A) so that for any i € Z, we have

I Vi(Eaf)?)* < Bi(A)p|Vif 2 |* + Ba(A)u|Vaf? |

for any non negative function f for which the right hand side is finite. Moreover,
for any l € IN,

Bi(l) = sup Bi(A) < oo, Bs(l) = sup Ba(A) < co.
AJA|< AJA|<

(b) There exists Lo € IN and a constant A € (0, 1), satisfying
Amax{RBi(l), R*By(l)} < 1

forl = 2(L+ R), with L > Lg, such that for any finite A CC Z of size | and
any A C A for which dist(A,A°) > L — R, for any i € Z, we have

uIVi(BAS) [ < Al Vafe|®
for any differentiable ¥, | ~-measurable function f >0

We shall first show that
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Proof of (Cii) assuming lemma 5.3 (a)

Remark that

W[E(flog f) — (Ef)log(Ef)] = u[Eo(flog Eiéf)] 4 H[Eo(f) log EE(T“})]
(5.3.12)

Since, for any w € Q, E¢ (resp. EY) is a product measure, the product property
of logarithmic Sobolev inequality , (theorem 4.4), shows that Ef (resp. EY)
satisfies a logarithmic Sobolev inequality with coefficient bounded above by

co=sup sup c(E}, ).
wEQ ARET UL,

In particular,

Eo(flogE%f) < 2¢0Eo|Vr, 52 (5.3.13)
and
E, [Eo(f)log%] < 2e0E4|Vr, (Bof) 7| (5.3.14)

Moreover, by definition of Eq, we have

Ve (Bof)2 P = D IVi(Eof):P = D IVi(Eof)?|* (5.3.15)

i€l i€l \Tg

Since the range of the interaction is finite, it is not hard to see that for any
i € I'1\Tg, there exists a subset A®) of Ty with length larger or equal to [ =
2(L + R) so that |V;Eqf| = |ViEoEA f| < Eo|ViE) f|. Then, we have

ulVi(Bof)2? < ulVi(Epe )52 (5.3.16)

Assuming (a) of the lemma and setting for short By = By ({) and By = Bs(l),
we deduce from (5.3.14) the following bound

20 3 (BunlVilh) P + BoplVae () H17)

i€l \To

= 20B1 Y plVi(£)FP+2c0RB: Y plVi(f)F% (5.3.17)
i€\l i€l

IN
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Plugging (5.3.13) and (5.3.17) in (5.3.12), we conclude that
HE(flogf) — (Bf)log(Bf)] < 2B Y ulVi(/)*[
itel1\Ig

+2¢o(1 + RBa) Z ,U|vi(f)%|2
i€lg
(5.3.18)

which gives (Cii) with ¢ = ¢omax{B;,1+ RBs}.

Proof of (Ciii) assuming lemma 5.3 (a) and (b)

Let us notice first that Eqf is Yp,\r, measurable and that Ef = E;(Eof) is
Yr.\r, measurable. By our choice of I'g and I'y,

diSt(Fl\Fo, Fo\rl) =L

and
pIVro(Bf) 2= Y p|Vi(BiEof) 2| (5.3.19)
1€\,

For any i € [o\I'y, following the arguments of (5.3.16) and denoting by A the
corresponding subset of I'y with diameter [ = 2(L + R), we deduce that
uIVi(E1Eof) 3| < ulVi(Bro Eof) 3" (5.3.20)

Since A1) is at a distance smaller or equal to R of i € To\T1, the function Ep, f
is localized in a subset of I['1\Ty at distance greater or equal to L of i. Thus, if
L > Ly for suitable Ly > 0, we can apply lemma (b) to obtain

U V(B Eof) 7> < Ap|Vae (Bof)7 % (5.3.21)

Introducing for any j € A® the sets AU) C T, (in a similar way as A(i)), we
have

ulV;i(Eof) 21> < ulVi(Epa f)2]%.
We deduce from (5.3.21) by lemma (a) that
VBB /) 2P <ABy D ulVi(N)EPHARBy Y ulVan (). (5.3.22)
JEAW JEAG)
By (5.3.20) and (5.3.22), and since the diameters of AY) and A®) are equal to
! = 2(L + R), we conclude that
pIVo(EN) 2P SARBL Y plVi)3[P + AR By Y ulVi(f) 5|7, (5.3.23)
i€\ To ielg

Hence, (Ciii) holds with
A < ARmax{Bi, RB>}.
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Proof of (Civ) assuming lemma 5.3 (a) and (b)

According to theorem 4.9, Ey and E; satisfy a spectral gap inequality with
coefficient bounded below by (1/¢g) so that

2uEr, (Er, f — Er, Er, f)* 4+ 2uEr, (f — Er, f)°
2¢o (u(IVr,Ero fI°) + Vo fI?) < KulVFI? (5.3.24)

u(f—Ef)? <
<

with the constant K obtained from lemma 5.3 (a). Now, if fo = f and fo41 =
Ef,, we deduce from (Ciii) that

IV EE P < MV P < AV fE P
which converges towards zero as n goes to infinity. Hence, (5.3.24) implies that

the sequences (f, —p1fn), ¢ v and (|an% ), v converges p-almost surely by the
Borel-Cantelli lemma. The limit of f, — u(fn) = fo — p(f) is therefore constant,
and hence identically zero.

Proof of Lemma 5.3(a)

Let us recall first that, if v is the uniform Bernoulli law on {—1, 1},

1
ViF = vyF —F=g(I;F —F)

with T; F := F(w(j)) where

W) { —Wwg for k = j,

+wg otherwise.

We have the following discrete analogue of Leibnitz rule

Vi(FG) = FV;G+ (V;F)T;G. (5.3.25)
In particular,
V;(F?) = 24;(F)V,;F (5.3.26)
with )
Aj(F) = S(F + T3 F).

1
2

Consequently, to estimate V;(Ea f) 2, we have to find a bound of the form

|V;(Eaf)| < 24; ((EAf)%) x desired terms.

Let us recall that
—Ua

€
EArf= ith = —F.
Af = valpaf) with pa va(e—Ua)
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Hence, we have that for any j € A°,

ViExf = valVjpaf]
v [(ViF)Tipa + FVjpal
(TyEA)V; ]+ Ealf(py ' Vipa)] (5.3.27)

In the first term of (5.3.27), one of the boundary conditions is inverted. To
estimate this term, we use the discrete Leibnitz rule V;(f) = QAj(f%)ij% to
obtain by Cauchy-Schwarz ’s inequality

(GEAV P <2 (GEDA;(F)?) (GEDIVFED) . (5.3.28)
We note that
6—2VjUA
Pr Tipa = Bae-2V:0a] = eHIVatall=, (5.3.29)
A 7

for any non negative measurable function F
(T;Ep)(F) < llViUsll=g, F.

Thus, we can bound the first term on the right hand side of (5.3.28) by

1
2

(TyEA) () * + (TEA)(T3 1))
2617500l 45 (B £) ] (5.3.30)

2 (LB (45(F3))

IN

IN

This last inequality together with (5.3.28) yields
(TiEA)(V; )] < 261750l 4, [(BA )] (BalW,F22) T (5.3.31)

To estimate the second term in the right hand side of (5.3.27), we first notice
that Ex(py 'V pa) = 0 and henceforth

Ex (fo}! JPA) =Ex [(f —Eaf)py' Vjpa] (5.3.32)
= 5 [ [U©) = @) Vinalo) - 5V io (@) dEA(0)dEA ().
We immediately obtain the following bound
[EA(fP3"Vipa)l < (5.3.33)
<sup |73 Vipa(0) = 43 Vipa@)l5 [ [15(0) = FG)aEA(0)dEAD).

g,0
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Moreover,

) ) N 1 e—2ViUa(o) e—2V5UA(9)
P Vinn() =3 Vi@ = G e T g e
0,0 g,0 A 7

< MlViUalle (5.3.34)

Furthermore Cauchy-Schwarz’s inequality shows that for any f > 0

( [ [0~ f(&>|dEA<a)dEA<&))
E2°[(V/F(0) + VI EL (Vo) - VD)

AEA[fIEA[(VF — EavV/ )7
16(A;/EA[)*Eal(V/F — EaV/F)?] (5.3.35)

INIA A

where the last inequality is trivial. Finally, we saw in property 2.7 that there
exists a finite constant C' so that for any A CC Z,

EAl(VF(0) = EvV)*] < CIA[EA[VAS ] (5.3.36)
iFrom (5.3.33)-(5.3.36), we deduce
[EA(FPx"Vipa)l <
< 20/CIA NV VAl (A BA[f]7) Ba | VA 7] (5.3.37)
Plugging this estimate into (5.3.27) and using (5.3.31), we obtain

< AVl (EA|vjf%|2) Y 4 /Ol (EA|vAf%|2) 15.3.38)

This ends the proof of lemma 5.3 (a) with the constants

Bi(A) = 2sup SVl By (A) = 2C|Alsup SVl
J J

Proof of Lemma 5.3 (b)

The proof of this second property relies on several facts already developed in
the course of the preceding proof. In fact, going back to equation (5.3.27) of
the previous proof but with f being Ex—measurable with a set A C A such that

dist(A,A°) > L > R,
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we find out that the first term on the right hand side of (5.3.27) is equal to zero.
Hence, we need only to improve the estimate of the second term.

To this end, let us remark that, if R is the range of the interaction, for j at
positive distance smaller than R from A, pglvij is ¥ ,-measurable for

Ay = {i;dist(i,0A) < R}.
Thus, we can replace the estimates (5.3.33)-(5.3.35) by the following bound

|EAlfpy ' Vipal | :|EA[(f—EAf)EA\XPX1VjPA]|

< 4 (4EN?) Vary (B, 107 Vi) (BaVF - EaV/P?)”

with the notation VarxG =sup = _~ |G(w)— G(@)].
wxe=wxe
Moreover, if f is localized in A, denoting by E, + the restriction of E4 to

Yr, we have
EA(f7 —Eaf?)’ =E, (f? —E, 5/?)” <m(A)'EA|V3f7[*  (5.3.39)
with m(/ﬁ{)_1 < C|K|, according to property 2.7. Hence, we obtain that
Vi (BAf)?|? < AEA|VASE[? (5.3.40)

where

5= ¢ (Varg(B, 103" Vip0)) - m(B)~"

In dimension d = 1, we have the following estimate

Varg(E, 7(py ' Vipa)) < e MIAIN-RC(9), (5.3.41)

EA\X
for a finite constant C'(®) which only depends on the potential ®. This result
is standard (see [41] and [84]) and is given as an exercise below.

As a consequence, since Bj(!) and Bs(l) grow at most polynomially with
! = 2(L + R) according to the previous estimates, we can choose L large enough
so that

%maX{RBl(l),Rsz(l)}sup{ (VarX(EA\K(pxlvij)))2 . m(K)_l} <1

where the supremum runs over all the sets (A, K) such that A C A, |A| < 2(L+R)
and d(A,A°) > L — R. The proof of the second point of lemma 5.3 is thus
complete. o

Exercise 5.4 Proof of estimate (5.3.41). Hints : Assume that f is localized in
Ao = [ao, bo] and let A = [a, b] be so that Ag C A. Note that, by anti-symmetry
properties, if ANA(f) = 0,

“f - Eif= / EX (dz) © EX (dy) (f(z) — f(»))
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= [ Bi(d) @ B () (657 (2.0) (@) - )
with

~ e~ Wal(eaowne)—Wa(yaowne) _ o—Wa(yaswae)—Wa(zaowse)

GV (z,y) =

e—Walzaowne)=Walyaowac) 4 o—Walyaowac)—Wa(zaowae)

where Wy = ZXnA;ﬁ@,XnAc;s@ ®x,
Consider an increasing sequence of subsets Ay = [a,b)], | =1, - k so that

biy1 =b+ R+ 1< by. Denote fi = En, f, Gi = G4, and show by induction

that .
« f—E% f=E% ©E%, ((H Gl) (f- f))
=1

to deduce

2
X, () —EX, (Nl < [T 1IGH|oo Var(£).
=1
Show that when the state space is finite and the potential ® uniformly bounded,
sup, ||Gil|eo < e M for a constant M > 0.

5.4 Logarithmic Sobolev inequalities in dimen-
sion d > 2

In dimension d > 2, log-Sobolev inequalities for local Gibbs measures with
constant bounded independently of the volume can be obtained when some
mixing conditions are satisfied. This last property gives a spatial decorrelation
which roughly allows to approximate the system by a system of particles which
are interacting only in cubes of finite size for which one can prove logarithmic
Sobolev inequality .

This rough idea was developed in different ways in the literature ; the reader
may look at [64], [69], [92] and [104]. Here we present a formalism quite close
to the one developed in [92] and which is based on the strategy described in the
beginning of this chapter. It will clearly rely on a key intermediate property
characterized by what we shall call sweeping out relations. (One should realize
that our strategy does not rely on an a priori spectral gap property of the Gibbs
measure as described in [94].)

In order to illustrate the general considerations above, we will begin by
describing what are the so-called sweeping out relations and show how they
lead to log-Sobolev inequalities. Later we shall show how these relations can be
deduced from strong mixing hypotheses.

We shall again restrict ourselves to the setting introduced at the beginning
of this chapter where we are given a local specification (£, A CC Zd) described
by a finite range potential ®. Later we also consider the case where the range
of the interaction is infinite.



5.4 LoOG-SOBOLEV INEQUALITIES IN DIMENSION d > 2 57

5.4.1 Sweeping out relations

We shall say in the following that sweeping out relations are satisfied for a finite
subset Xy of Z%if
For any set A = {j + X} for some j € Z*, there exist constants oty e (0, 00),

ij
such that for any i € Zd\A so that dist(i,A) < R,

+ ) az('jA) (EiEAQj|vjf%|2)5
jeAU{i}

Nl

(Qi|vi(EAf)%|2)% <alM (Equ'|Vz‘f%|2)

(5.4.42)
with

olM) < Deeli-il (5.4.43)

where D,e € (0,00) are finite constants which are independent of i,j and A.
Here, in the discrete setting ¢; = v;(x;) where v; is an isomorphic copy of the
uniform measure on the finite set M (acting on the particle z; at site i), whereas
in the continuous setting q; equal to the identity.

Let us note that in the following, we shall always restrict ourselves to cubes
X, and shall subdivide large subsets A C Z% (or even z° itself) in small cells of
the type {j + Xo,j € Zd}. In this way, we shall obtain bounds on log-Sobolev
coefficients for Ey (or u) in terms of the log-Sobolev coefficients of the local
Gibbs measures {E'XD_H-,j € Zd} when the sweeping out relations are satisfied
for Xg. The strategy is then to optimize on the choice of Xy. The fact that
we choose homogeneous partitions is of course irrelevant, except that it helps
to write the formulae more easily.

5.4.2 Proof of logarithmic Sobolev inequalities assuming
sweeping out relations

We assume in this part that the sweeping out relations are satisfied. M shall be
either a connected compact and smooth Riemannian manifold of finite dimen-
sion or a finite set.

To obtain log-Sobolev inequalities, we shall follow the strategy of section 5.2
and first define a suitable auxiliary Markov chain II, analogous to the chain E
studied in the last section.

To this end, for an integer number L € IN, for k € Z%, we denote by
Xi = k+([0,2(L + R)])¢, the translation by the vector k of the cube Xy =
[0,2(L + R)]¢ containing the origin. Later on it will be convenient to represent

s € IN as follows s = Z,Ilwdvﬁl) 2!=1 with a family {Vs}ts=0, 2a_1 C {0, 1}
We denote 7; = {k € Z% k€ (L+2R)vs + (2(L +2R)Z)?} and T = U?d:_ol’Ts.
Set

U= J{Xe - ke T}

['s is the union of disjoint cubes of shape X at distance greater to 2R of each
other. Let us also remark that U< <pa_1T's covers Z*. Tt is important to note
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that, by construction, for any i € Z“, there exists an s € {0,...,29— 1} and a
cube in X; C T, such that ¢ € X and d(i, X;) > (L/2).
Setting IF; = ®x, cr.Ex,, we shall consider in the following

H(f)(w) = E5a_y (- - B (E ). (5.4.44)

We shall assume hereafter that the local Gibbs measures E%, satisfy a log-
Sobolev inequality with coefficient ¢ € (0, c0) independent of k € z°,

%, flog f — B, flogEY, f < 2¢ B, |V %] (5.4.45)

for any non negative function f of class C*'. This assumption is naturally satisfied
when the local specification is defined by a finite range potential ® according
to property 4.6; the constant ¢ is then bounded by 0064”@”(2(L+R))d if ¢g is the
log-Sobolev constant for the uniform measure v (see also exercise after 4.6).
Our goal is to prove that when sweeping out relations hold, IT satisfies the
conditions (Ci)-(Civ) of section 5.2. By definition of the local Gibbs measures
Ex,, it is clear that (Ci) is true. Hence, we need to consider conditions (Cii)
and (Ciii);
Proof of properties (Cii) and (Ciii) assuming the sweeping out rela-
tions
In this part, we shall prove that

Lemma 5.5 If Xg satisfies the sweeping out relations (5.4.42), there exist finite
constants A € (0,00) and ¢ € (0,00) such that
IV (ILf)2 P < AT [V (5.4.46)

and

IIf log f — (TLIf) log(I1f) < 2¢ TI |V f2]°. (5.4.47)
Moreover, if there exists Ly > 0 such that for any L > Lg, anyv € T,

o) < peeli=il (5.4.48)

with constants D, e € (0,00) independent of L, v € T, € Y sothatd(i,Y) < R
and of j € X U {i}, then we can choose L sufficiently large so that (5.4.46) is
satisfied with A € (0,1). Consequently, if for n € IN, we define inductively
nvf=M"f(w) = " f(w), I°f = f, we have for any w € L,

1" flog f — (II™* f) log(II™“ f) < Qﬁnnﬂw% 2 (5.4.49)

Remark 5.6: The constants (A, ¢) can be chosen as follows. Setting

XiGi Xigi
NP D S U P
’ F€X (Ui} 7 iezd



5.4 LoOG-SOBOLEV INEQUALITIES IN DIMENSION d > 2 59

were for s € {0,...,2¢ 1}

) 3 3 (Xei) . (X)) (X (i, —2))
Pijy Yjrje IR B
J1€Xp(iyVUi\Ts—2  Js—2€Xy(,_,)Udis—3\I1

k3
Ui

with Xk being the cube of I';_; at distance less than or equal to R from j;
for{ =0,...,5s— 1. Then we can choose
c=2% sup A
s€{0,...,2d-1}
with
A = b2e2d+lll‘1>||as77(8)’

with appropriately chosen constant b dependent only on M, and choose A =
2\(24-1)
In a few cases encountered for instance in random media, (considered in Chapter

9), the decay (5.4.48) of the coefficients az(-;»\) appearing in the sweeping out
relations for the local Gibbs measure E, is satisfied only for points (i, j) at a
distance greater or equal to some typical length {(A) depending on A. For the
study of such situations in Chapter 9, it will be useful to make the following
exercise.

Exercise 5.7 Let us assume that for any cube Ay, = [~ L, L%, the decay (5.4.48)

of the coefficients ozl(-;-\) appearing in the sweeping out relations for the local Gibbs
measure is satisfied only for cubes Yo C Ap of side greater or equal to a func-
tion d(L) of L. Show that Ey, satisfies a logarithmic Sobolev inequality with
coefficient bounded by C’d(L)MeCd(L)d_1 for two finite constants (¢,C') € (0,00).
Show in particular that if d(L) = AlogL for some finite constant A, the log-
Sobolev constant increases at most polynomially with the length of the side of
the cube A in dimension 2.

Hints : Use cubes of sides of length of order d(L) to construct II, the bound
on log-Sobolev constants obtained in exercise 4.7 for the local Gibbs measures of
these cubes and the above controls.

Proof of lemma 5.5.
Let f be a differentiable function of L!(y). Denoting f_; = f and fi =
Er,Er,_, - -Ep,f for k=0,...,2¢ — 1, we first notice that

I“flogf — (/) log(M*f) = Y [, - [zEf log

s=0,...,24-1

fs—l :|
Es fs—l .
(5.4.50)
According to the hypothesis (5.4.45) and the product property of theorem 4.4,
Er, satisfies, for k = {0,...,2¢9 — 1}, a logarithmic Sobolev inequality with
coefficient bounded above by ¢. Consequently, we deduce from (5.4.50) that

M flogf — Mflog ¥ <20 Y. (s (BVe SE 1))
5=0,...,2d—1

(5.4.51)
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The sweeping out relations are now going to be useful to control the gradient
terms in the right hand side of (5.4.51). To this end, let us observe that for
any ¢ € 'y, we have the following two possibilities ; either ¢ € I'y_; and then
Vifs_1 is null, or there exists a unique X = Xy Cls—180 that ¢ € X,f(i) and
d(i, Xr(s)) < R. In this second case, we use lemma 5.10 (see the next section)
which tells us that

1

|vifs§—1|2 = |vl (EFS_1\X)€(1) lEXk(l)fs—Z) ’ |2 (5452)

< b Er, \x,.%|Vi (lEXk(,) fom2)® P

with a finite constant b, equal to one in the continuous setting or when |M| = 2,
and otherwise bounded by 1/|M|. We can now deduce from the sweeping out
relations and from Holder’s inequality that

1 X 1
i|Vi(Ex,,, )7 < a- <aﬁi KBy, 6l VSt (5.4.53)

X
+ Z ( k())E Exk()qJIV 13 |2)
JEXk(iyUii}

where
a—sup a( k()+ Z an())
jexu{i}

With (5.4.52), we thus obtain that

(i)

IV ff P < e Br,_\x,, )< x VEx, ¢l Vi fs o+ (5.4.54)

X
+ Z ( k())E EXk()q]|v fs 2|2>
JEXk(iyu{i}

for any s > 1. We can reinterpret this last result in the following form

1 X 1
Vi P <ba |3 (1= 6)E; +8i) al " B _1g|V, £,
jEXk(l)Ui
(5.4.55)

Repeating inductively the above arguments, we find for s > 2

Vifi P <Y 3y al o Kron) (5 4 56)

J1€XUiNTe—2 J2€X 4 Ui \Ts—s
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(1= 85, ) By, + 8ijy) IBy—1 B _9q;,|V i, f2 5]

where, since ji € Xp(;)U{i}, we did not need to write the term (1 —d;,;,)E;, +
dj,5.- By induction, we arrive at the bound

Ba_y - BVif e, P <62~ S gl g v, £3 (5.4.57)
Jjez¢
with
(s) — (X)) (Xegar)) (Xk(is—2)
NijT = > > g Y Yea g
J1EX(iyVi\Is—2 Js—2€ Xy, _,)Yis—3\I'1
(5.4.58)
and where Xp;y C sy forl=0,...,5s -1
Noticing that
1 d 1
Tg;|V, /7> < 1w, r2 ) (5.4.59)
and summing over all the i € Ty in (5.4.57), we conclude that for 1 < s < 2¢—1,
Bya_y - By|Vp,f2 |2 < b2~ 12120l [y £} 2 (5.4.60)
with
') =sup > pls).
7 iezd

With (5.4.50) and (5.4.51), we obtain (5.4.47).
To prove (5.4.46), let us come back to (5.4.55) and note that for s = 2¢ — 1,
we inductively obtain

Vi <Y S )y

J1EXk(iyUi\Is—2 j2€Xp(5)Uir\Is—s Js—2€Xk(;,_,)Uis—3\T'1

(5.4.61)
X Xk(iy (X js—z) 1
agjlk())ag'lfg( ))"‘%_Z(j Y1 = 654, By, + 04, ) Tgs |V £2 2

Since de:OI‘s = 7%, for any j we can find an s € {0,...,2¢— 1} so that j € T,

d+1
62

EilLg; |V f5]? < e21100I0g; v, 5% < 210w, 5 (5.4.62)
where we used (5.4.59) to obtain the last bound. Summing up over all the
i € Z°, we deduce (5.4.46) from (5.4.61).

Finally, to prove the second part of the lemma, we remark that under the
additional assumption (5.4.43), n can be chosen as small as one wishes as long as
L is chosen large enough. Indeed, by construction, for any j € Z?, there exists
r€{0,...,29—1} and a cube X; C I, so that for any j € X, d(j, Xg) > L/2.
Henceforth, in any path Wi; = {i = jo, j1 € Xp)Ui\ls, ..., 5t € Xgg_)Udi—1\
Lsgyo-o,Js € Xigj,_) Uds—1 \To,J = js }, there is at least one couple of points
(Ji—1,J1) at distance greater or equal to L/2. This in particular implies that in
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(Xk@y_1))

—e-L/2
Ji—1,41 S De - We

the sum defining of 172-2;_1, there is at least one term o
hence obtain the bound

(3

Zn(;d_l) < a2 "2pe=eLl2 (5.4.63)

Since, under hypothesis (5.4.48), « is clearly bounded independently of L, we
can choose L sufficiently large so that A < 1.

Finally, the last part of the lemma can be proved following (5.2.6)-(5.2.9)
but without bothering about the limiting Gibbs measure .

o

Proof of condition (Civ) when the sweeping out relations are satisfied

To show that IT” converges, as n goes to infinity, towards a measure u, we are
going to prove that (IT™* f,n € IN) is a Cauchy sequence for any continuously
differentiable function f localized in a finite subset of Z%, uniformly in w € Q.
This in turn implies the weak convergence of II" towards a unique measure p.
Indeed, given a finite subset A of Z% and considering the set Fx of continuous
functions f localized in A, we note that Fj is separable as Ml is compact
since M is. Thus, we can consider a countable subset (f;,i € IN) of F5 dense in
Fa. By the standard diagonalization procedure, we see that if (II"™* f;, n € IN)
is Cauchy for any ¢ € IV, uniformly in w € Q, (II™*f;,i € IN) converges
simultaneously along some subsequence. The limit then defines a probability
measure. By the property of local Gibbs measures, p is independent of the choice
of the finite set A so that we can define p on the set Q of all configurations.
Finally, uniqueness of u can be deduced from the uniformity of the convergence
with respect to boundary conditions. Hence, we need to prove that, in view
of (5.4.46 ), (II"* f,n € IN) is a Cauchy sequence for any f € Fx, A CC 7.
We can of course restrict ourselves to non negative functions f. Let n,m € IN,
n < m and a non negative function f € Fa be given. Then we have

" f(w) — T f(w)]

IN

/Hm‘”’”(d&)m”f(w) I f(@)] (5.4.64)
sup [IT" f(w) — II* £(&)| < [|[TI* 7.

w,w

IN

Moreover, by construction of IT, II" f is localized in a set A, so that |A,| <
[diam(A) + n2(L + R)]¢. Thus, we deduce that

" fl1| < |An|'||f5||oo'_SEuAp [[Vi (II" f) 2 [[oo
(5.4.65)
<AL 2 oo - 11 D0 IV (@A) 2 PlIE < N2 AL 17 loo - IV F2 P12
1€EA,
where in the last line we made an inductive use of (5.4.46). Since the volume of
A, increases at most polynomially in n, we conclude that, when A < 1, |||TI” f|||
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goes to zero when n goes to infinity, which gives with the help of (5.4.64) the
desired result.

5.4.3 Proof of sweeping out relations

In this section, we relate the sweeping out relations, (used in the previous part
to prove logarithmic Sobolev inequality ), to strong mixing conditions satisfied
by local Gibbs measures. We first describe these mixing conditions and show
that they are equivalent to decay of correlations properties. Then, we prove
that they imply that sweeping out relations hold. At the end of this section,
we prove that mixing conditions are necessary to obtain logarithmic Sobolev
inequality for local Gibbs measures with uniformly bounded constants. Thus,
this last result holds iff mixing conditions are satisfied. We shall finally see that
mixing conditions are satisfied in some situations such as for example a high
temperature regime.

Strong mixing conditions

For a subset Y C Z?, we denote by |||f]||y a semi-norm of f given by

e
i€Y
Here, when M is a connected smooth Riemannian manifold, V;f denotes as
usual the gradient operator acting on the variable at i, and, in case M is a finite
set, Vif = vif — f. If Y = Z%, we use a short notation |||f|||z« = ||| f]||- In the
following, we shall measure the variations of a function f with respect to the
coordinates wy = (w; : 1 €Y) by

Vary (f) = sup |f(wy) — f(@y)].
Wyc=Wyc
IfY = {j}, we simplify the notation as Vary(f) = Var;(f). We remark that
Vary (f) < 2||f||co and that the variation of f is related to the triple semi-norm
by

Vary (f) < all|fllly (5.4.66)

with, in the discrete setting, ¢ < 2 and in the continuous setting, a < sy =
Sup, yem 1nf Lz y, with l;  the length of a geodesic containing z and y and the
infimum being taken on the set of these geodesics.

Exercise 5.8 Prove (5.4.66).

Hints : Proceed by interpolation between w and & by a sequence w*) (forjx €Y,
k=1,...,|Y]| a lexicographical order in'Y') such that each term of this sequence
only differs from the previous by one coordinate to deduce that

Vary (f) < Z Var;, (f).

k=1,...|Y]|
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Prove the result for Y = {j} and conclude.

With the above notations, we consider the following mixing conditions :

Strong Mixing Condition (SMC):
There exists a constant € € (0,00) such that for any X C Z?, and any cube
Y C X¢,

Vary (Ex f) < RO(Y)e™s4 M) 7] (5.4.67)

with a finite constant C(Y') depending only on the size of Y.

Let us point out that we shall only use in the sequel (SMC)for sets X defined
as the union of a finite number of sets obtained by translation of a given cube
Yo. As we will show below this condition is equivalent to the following strong
decay of correlations property

Strong Decay of Correlations (SDC):
There exists a constant £ € (0,00) such that for any functions f, g with
finite triple norm on Z® and, for any boundary conditions w € , we have

B4 (g, D] < Ae™ 482 g] |- |11 (5.4.68)

for a constant A € (0, 00) depending only on min(|X N Af|, | X N Agl).
We have the following property.

Theorem 5.9 The strong mizing condition (SMC) is equivalent to the strong
decay of correlations (SDC).

Proof : Let us first prove that (SDC)=— (SMC). Fix Y C Z% aset X C Y€,
two elements (w,@) € Q so that wy. = Wye and a function f localized in
Ay C X. Since, by definition, the local Gibbs measures (E%,w € Q) are all
equivalent to vx, we can write

B$(f) — B¥(f) = B% (€, 23 f) (5.4.69)
with
fp= A
“dEY

and E);((g,f) = E);((gf) - Eg‘);(f)Eg"; (9). In the case where the range of the
interaction is finite (say R), one easily sees that d(Y,A({ ~)¢) < R so that the

w,w
triangle inequality implies

d(As.A(E, ) > d(Ay,Y) - R,

Applying (SDC) to (5.4.69) and using the last remark, we deduce that

B () = B3 ()] < Cem=@AD|| ]| (5.4.70)
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with
C = AcRlle_ <l

(SMC)= (SDC) Conversely, for any functions (f, g) on Q such that Ay N X
and Ay N X are disjoint, we have

(0. ) = B5 (B, (0). ) = £ 5% © B¢ ((Bxa, (0) = Byn, @) - ).

Consequently, if (SMC) is satisfied, we obtain

|E% (g, 1)

IN

Vary,nx (Ex\a, (9) - Vara,ax (f) (5.4.71)
Aem= AN X A0 X g1 ]| £11)

IN

with A < 2C. o

Study of sweeping out relations

We shall in this paragraph show that (SMC) results with sweeping out rela-
tions. In fact, we show in lemma 5.11 that inequality (5.4.42) holds with the

coefficients (aE;\)) described in (5.4.80) and (5.4.81) respectively. We estimate
these coefficients at the end of the paragraph and show that mixing conditions
result with the decay (5.4.43) of these coefficients, second condition for sweeping
out relations to hold. To prove lemma 5.11, a key ingredient is the following
estimate.

Lemma 5.10 Let (©,A) be two subsets of Z° such that dist(©,A) > R. Set
Eour = Ee ® Ex. Then, for any i € Z* such that dist(i, A) < R, we have
Vi(Boun/)H| < b (Bog:IVi(EAN)F?)” (5.4.72)

with b < |M|2z if [M| < oo and b = 1 in the case [M| = 2 or if M is a smooth
connected Riemannian manifold.

Proof : Let f be a measurable function of L'(E,) and F = E f. Let us first
consider the discrete setting. We then have

IVi(Eouaf) 2| = |Vi(Ee F)?| = |vi(Ee F)* — (Ee F)?| (5.4.73)

and so, as v; is the uniform measure on M,

1

IVi(Bounf) 5] < IMJF (vilui(Be F)* — (Bo F)?[?) " (5.4.74)

Moreover, Minkowski’s and Cauchy-Schwarz’s inequalities imply
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1 1 1 ~ 1 ~ 1\2
vil(BoF)! — (BeF)}? = Zwiod ((E@F)z—(EGF)z) (5.4.75)

1 1 ~1 2
§I/i®’lji <E@ (FE—FE) )

Since dist(i,0) > R, Eg is independent of the coordinate w;, and we have

INA

1 . 1 ~1\ 2 1 1 1
—V; QY <E@ (F5 — FE) ) = E@I/Z'(F5 — ViF5)2 = E@I/i|viF5|2.

2
Putting (5.4.73)-(5.4.75) together, we obtain the desired estimate.
In the case where M| = 2, we can improve this bound in the following way ;

we observe that

1 1 1 1 1
IVi(Bour f)*| = [Vi(Ee I')?| = S [(Ee flu=+1)* — (BeFlu,=-1)%] (5.4.76)

1

1 N R \ L
<3 (Ee(Flf‘)z:+1 - F|Zl:_1)2) = (E@|VZ»F5|2)

. 1 1 . : .
with |V;Fz|? = 14|V;F2|% In the continuous case, the same estimate is true
since

=

IVi(Bouaf)?| =

1|[EeV,F| |EgF3V,;F3 1
_| [S] 1|:| S} . | S(E®|VZF2|2)
2 (Eel')2 (Ee )3
thanks to Cauchy-Schwarz’s inequality.
o
By mx,y we shall denote the best constant in the spectral gap inequality
satisfied by the measure EX|E(X\y)c~ Let (Egg,X cC Zd) be the Gibbs mea-

sures constructed with the potential {®xdyigxy, X CC Z"}, that is the Gibbs
measures where the interaction with the spin at 7 has been removed. We shall
denote

A= dE?\lle
' dEA|s,

£

Finally, for any X C A and 7 € A°, we introduce a constant 77%\(), given in the

discrete setting by

"E)A() = Varpanx (Eayx(&ia)) (5.4.77)
and in the continuous setting, if the potential Uy is Vzd—almost surely differen-
tiable, by

77%\() = Varanx (Eavx (|ViUal)) . (5.4.78)
(A)

By definition, n;5’ will be zero for any other couple (i, X).
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Lemma 5.11 Let A CC Z% and F be a measurable function. Let i € A°.
e In the continuous setting, assuming that F' is almost surely differentiable, we
have

1
2

=

IVi(EAF)?| < (EA|V P} ) + > N (EiEA|VjF%|2) (5.4.79)

]EAF nA
with

9 \ %
Z(JAJ_<—) . (5.4.80)

ma,j

e In the discrete setting, the following estimate s satisfied

(yl|v (EF)?| ) < e3MRpnn (EAVZ|V P} ) (5.4.81)

M| \? A 1
+2 <¥) 6H<I>H772(,A)FnA Z (E Eav;|V;F3 |)

m
AAFP FEANAR

Proof : Here we shall only focus on the discrete setting, the proof in the con-
tinuous being slightly easier and following almost the same lines.
Writing

(BaF)* = By P)} + ((BAF)? — (BY F)?) (5.4.82)

and applying the same arguments as in (5.4.75), we obtain

1
2

(yi|vi(EAF)%|2)% < (%m@’ﬁi ((E?\’F)%—(EO’F)%)Z) (5.4.83)
)
))"

We can estimate the first term in the right hand side of (5.4.83) by using
Minkowski’ s inequality so that

W=

1 -~ 1 1
+ <§VZ» ® 7 ((EAF)E — (B F) 5

1 . 1 1
¥ <§1/i ® 7 ((EAF)E — (B} F) 5

1 1 1 2 % 1 ~1 2 %
(5;/2»@32» ((E?{F)E —(EO’F)E) ) < (—VZ'®DZ'E?\’ (F‘—F‘) )

[l
/N
=
O
S
<]
ﬁ
v
—_
Ot
N
(o e}
g
N
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Moreover, by definition of &; o, we notice that for any non negative function G,

we have
E}G EAG+Ep (64— 1)G

EAG+Ep (Eaagéin —1)G (5.4.85)

(1+ Varanas (Eavag(&4))) EAG = (1 + n§?A)G)EAG.

IN

Using this remark with G = 1;|V;F2|?, we deduce from (5.4.84) and (5.4.85)
that

. A =~ 1y7) 2 3 Lo b
(514' o7 ((BY F)F - (BY F)¥) ) < [+, ] (Bawil i3 ?)

(5.4.86)

which provides the desired estimate of the first term in the right hand side of

(5.4.83). The other terms only depend on the difference (EAF)% - (E?{F)é that
we are going to study. To this end, let us note that

|Ea(§ia —1)F|
(EQXF)7 + (EpF)2

|(EYF)% — (EpF)%| = (5.4.87)

The above numerator can be bounded above by noticing that

1 ~ ~ N ~
|EA(&a — 1) F |§EA @ Ep ((EA\AF&,A —Eaaq&a)(F = F19~|4~88)
1 X )
< 5772(,[\A)FEA @EA|F - P,

with E, is a copy of E5. Moreover, further computations give

1 ~ ~ 1 1 ~ 1 ~ 1 2
SEAGEAF—F| < (BaF)} <§EA®EA(F5 —F5)2) (5.4.89)

1
2

< L )%(EAF)%<EA|VAQAFF%|2) .

MA AR

INA

Inequalities (5.4.87) - (5.4.89) give the following control

1 1 1 H 19\ 2
(ESF)? — (ExF)?| < <m) 1N, (BalVanac FEF) . (5.4.90)
yAAF

Thanks to (5.4.90), we obtain the following bound for the second term in the
right hand side of (5.4.83)

1
2

1 - 1 1\ 2 1 1
(5%' ® i ((EAF)2 - (E%’F)Q) ) <— z(AA)F (ViEA|VAnAFF2|2)
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ellell (A) 19\ 3
<\, (BiEAIVanr P (5.4.91)
my A,
Hell|Ar|7 /ar i
€ 1 2
< #WZ(AA)F > (Ez’EAVjoFE |2) :
My Ay JEANAF
Similarly, we estimate the third term in the right hand side of (5.4.83) and, with
(5.4.83), (5.4.86) and (5.4.91), conclude that

1
2

< {1 + 77<AA)F}_ (EAVZ-|VZ-F%|2) (5.4.92)

W=

(ui|VZ»(EAF)%|2)

M) \E e e
+2 <m lely & > (EiEAVj|ij2|2)
OE JEANAF

that is the desired result in the discrete setting.

o
For further use, we present here the following lemma
Lemma 5.12 For any A C Z¢
may > mg e Al Y] (5.4.93)

with mg the spectral gap for the product measure Vo

The proof is a direct consequence of property 2.6. In fact, in finite range inter-
action models, this result can be improved as seen in property 2.7. The main
interest of lemma 5.12 is that the estimate of ma y there is independent of A.

We can now establish sweeping out relations.

Theorem 5.13 (Sweeping out relations)
For any finite subset A of Z° which can be represented as the union of a fi-
nite numbers of cubes obtained by translation of the same cube Yy, there exist
constants al(-;»\) € (0,00), so that for any i € A°, dist(i,A) < R, we have
(Vilvi(EAf)%F) T <alM (EAWWJ%F) 4+ Z az(';'\) (EiEAVj|vjf%|2) ’
jeEAU{i}

(5.4.94)

If we additionnaly assume that the strong mizing condition (SMC )is satisfied,
then

oM < Deeli-il (5.4.95)

for constants D, e € (0,00) independent of i € A®, d(i,A) < R and j € AU {i},
but eventually depending on the size of Y.
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We notice that the dependence of D and € on the size of Y} is not essential since
the sets A can be as large as one wishes, for a given size of Yj.

Proof': The idea of the proofis to apply inductively lemma5.11 and the uniform
bound of lemma 5.12.

Let us assume that A is defined as the union of a family of disjoint cubes
{Ye = Yo+ Loy}, y» € Z¢ with k =1,..., N, for an integer number N, and a
cube Yy with diameter Lg. Let us remark that for any cube {Yy, k € {1,...,N}},
lemma 5.11 implies

1
2

=

(mIvs®an?)” = (wIVi(BaBayy ) P) (5.4.96)

(2) i

e2Mi vy (EAVZ'|Vi(EA\Yk f) 3 |2) ’

IN

+Cniy, 2 (EiEAVﬂVj(EA\ka)%IZ) i
J€EYK

with C = 2(|M|/my v,)7ell®ll. Using lemma 5.12, we know that

C < A= 2(|M|/mo)? el ®IN0+2L5)

In order to bound the first term on the right hand side of (5.4.96), we apply

inductively this relation. It will soon appear that the optimal sequence of cubes

{Yi,k € {1,...,N}} one can choose is to order them in decreasing order of

their distance to i. We hence let (k;,l < j < N) be a lexicographical order

on {1,...,N} such that j — d(i,Y:) is decreasing and let AL = UZ:[ Yii -
(A9

i
1Y,

To simplify the notations, we set 7
i
i

=71l and Ykzl = }/i,l; i,l € {1,...,N}.
Using repeatedly (5.4.96), we obtain

(l/ile'(EXf)%F)% < DALY (Exl/i|vif%|2)% (5.4.97)
N 1
+Y Amin Y (EiEAlevj(EAif)%|2)2~
=1 JEY:

To bound the second term in the above inequality,

e we apply, for j € Y;; so that d(j,A}) > R, lemma 5.10 (with © = Al and
A=0).

e We notice that for the j € Y;; so that d(j, Al) < R, we can write a bound
for Al similar to that obtained in (5.4.97),

N-t (2

(levj(EA’lf)%F)% < ¢t Lz iy (Exujlvjf%F) (5.4.98)

=
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N-1 1
DIERIADY (EiEAijlvj(EA;ﬂf)%F)Q

=1 J2€Y50,

where this time (k’lj2,1 < ly < N —1) is a lexicographical order on (ki,,m €

{l,...,N}) so that [ — d(j,Ykljz) is decreasing, A;.”“? - UN—I v

la=1 klj2 and we set

(AP (2
}/jvb = Ykljg’ 77‘7-71;1',12 = 77‘]'712'
Applying these two arguments inductively, we finally arrive at

1
2

(wI:(Bx 1) 52) F<a (Exwlvis? IQ)% + 3ol (BiBxy |V £3F)
JEA

(5.4.99)
with

Q(A) S 6%21:1 m (54100)

and

(A) n (A) (As) (An) (A)
aj) < Z E A Wyilyiys vy max{b,rinea}xxa“ 1 (5.4.101)
1<n<N Y} VS Y

219+t n

(A _ (A)

where we have denoted 7y jy = max;ex 1,y and where the sum holds over

all the random walks (Y}, Y ... Y!) on the cubes in A such that d(i,Y]) =
maxlSkSN d(l, Yk) and

dYi,Yi_))= max  d(Yi_1,Y) (5.4.102)
YEA\ULZIY

=1"p

and j € Y,!. Further, Ay = A\ Ug;llYpf.

Now, assuming that condition (SMC) is satisfied, we see that by definition
of the coefficients 172(7/}2 there exist two constants C, e € (0,00) such that for any
AC Z% any X C Z% and i € Z°,

772(/;2 < Cle—ed(i,X)

and hence

In particular, if d(Y{,Yi_;) > Do = (2/¢) (||®||(1+ 2LE) + 5 log 2(|M|/m)),

A —(e Yy
Angt) < Cem (e /DAY, (5.4.103)

We then conclude that o
alM < Cpe=Crli=il (5.4.104)

ij
for constants Cy, Cy € (0,00) depending only on Lg. The proof is complete.
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5.4.4 Comments on the strong mixing assumptions

To complete this section, we comment here on the mixing conditions we assumed
to prove the logarithmic Sobolev inequality . We shall see that they are optimal
with respect to our strategy in the sense that when IT satisfies condition (Ciii),
some strong mixing property will be satisfied. We shall also show how to check
that (SDC)(and hence (SMC)) is satisfied in high temperature models.

Optimality of strong mixing assumption

Let us consider the symmetric transfer matrix

T=I'II

with II as in section 5.4.2. Its adjoint IT* is given by a similar formula but with
the conditional expectations coming in reverse order. It is clear that by using
the same argument as in the last paragraph 5.4.3, and assuming (SMC), one
finds the following analogous of property (5.4.46) for T

IV (TF) 2 < A2V r3) (5.4.105)

with a constant A € (0, 1). We shall see that this bound implies itself the strong
mixing assumption. For further use, we recall we have the following estimate of
the variance of TV f, for N € IV,

1 - 2
w(TN TN ) = §u®ﬁ(TNf—TNf)

20 (1 ) oo SV (TV9) - (5.4.106)

IN

If £ is localized in A(f), then by construction of T, the function T¥ f is localized
in the set Ay = {i : d(i,A(f)) < 4d(L + R)N} satisfying [Ax| < CN? with a
constant C' < (4d(L + R) + D(f))d if D(f) is the diameter of A(f). We obtain

in particular that

1
2

SV e <OV (I (TN P I1) T (5410)

Thus, applying (5.4.105) with (5.4.106)-(5.4.107), we arrive at the following
bound

TV [TV ) < oo - ONOY (V73 1) (5.4.108)

Since T is self-adjoint with non negative eigenvalues, its spectral radius (see
Bourbaki, [9], p. 15) is given by
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sup lim (u(TV ;T )7 < A3 (5.4.109)
fecl N—=co
and so
u(TN £ TV F) < AV u(f; f). (5.4.110)

Let us now assume that we are given two functions f and g localized in two
disjoint sets A(f) and A(g). Denoting N = [d(A(f), A(g))/C], and assuming N
even (up to replace it by N + 1) we see that

A(TFf)NA(TTg) =0

so that T%(fg) = T%(f)T%(g). In particular, as p is invariant for T,

1

u(f:9) = I(T% [T% )] < (WTE [ T5)) (W(T%g: )" (G411

<V (u(F ) (nlg:9))?

Since (u(f; f))% < C|||f1]| for a finite constant C, we conclude that we also have

u(f:9)] < C2eMIEEHAD NN 1] ]| (5.4112)

with )

Similar arguments can be developed in any finite volume (by modifying T ac-
cordingly) so that the strong mixing condition is indeed equivalent with condi-

tion (5.4.105).

Proof of (SMC)in the high temperature models

Here, we consider local Gibbs measures (E{, A CC 7% w e Q) defined by a finite
range potential ®. We shall assume that ||®|| is sufficiently small (corresponding
to the high temperature situations) and shall show that the strong decay of
correlation property (or equivalently the strong mixing property) is satisfied.
We follow here the papers [59] and [31].

On A CC Z?, let us consider a lexicographical order (7i,i=1,...,]A]) and

set
Vi=> ax
*
where the sum is taken over all the finite subsets X with non empty intersection
with A, containing j; but not (jx, k < ¢). With such a definition,

|Al

UM@:E:W@)
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Up to replace Up by Up — [ Updry, we may always assume that the energy Up
is centered with respect to the product measure vy. Then, Jensen’s inequality
implies that the partition function Z¥ is bounded below by 1.

Let f and g be two bounded measurable functions localized respectively in
A(f) and A(g). We are going to prove that, if ||®|| is sufficiently small, there
exists a constant € > 0 so that

E{(f;9) < e IAOAM | 7] |lg]l]- (5.4.113)
To this end, let us first notice that

1 _ ~
EX(f;9) = ﬁ/(f Plo = De U Tndua(e)dva(®).  (5.4.114)
2(23)
Denoting z% = e Vi-Vi _ 1, we can write
~ [A|
e_UA_UA:H (zh +1) = ZHZA
i=1 i kei

where the sum i goes over all the subsets of {1,...,|A|}. Observe that the

(2,4 € {1,...,N}) are localized into sets of radius bounded by the range of
the interaction R. Hence, introducing this decomposition into the right hand
side of (5.4.114), we see that only the i’ such that the (jg, k € i) make a path of
points in A at distance less or equal to R joining A(f) and A(g) will contribute.
Denote Wy (1) a(g) the set of these paths. We then have, since Z§ > 1,

|EX(f;9) S% > /If—ﬂlg—§|H|zﬁ|dyA(x)dyA(z) (5.4.115)

IEWa().a09) kei

According to (5.4.66), we have |7= 71 < al||£|||. Moreover, the following uniform
bound
241 < & = 2|1

holds. Further, we observe that, in any dimension d, we can find a finite constant
Cg4,r depending on the number of neighbours of a point in Z* and of the range
R so that

Wair) |<C A(f),A(9))

Hence, we conclude according to (5.4.115) that
B (£39)] < a*Cylg MMV gRAND A 71| g

which gives the announced statement if(F%CdyR < 1, that is if ||®]| is sufficiently
small.



Chapter 6

Logarithmic Sobolev
inequalities and cellular
automata

In this part, we introduce and study cellular automata. This approach to obtain
log-Sobolev inequalities for measures possibly non related to a given potential
was introduced by one of the authors (as an extension of the result for finite con-
volutions contained in [103]). It was later studied by G. Gielis ([42]) who used
an idea based on disagreement of percolation to cover an extended high tem-
perature domain. Here we shall use cellular automata to establish logarithmic
Sobolev inequality for dynamical systems with possibly infinite range of inter-
action. The transition probability of a parallel cellular automata is described
by a product probability ; if C is a countable set, we consider the transition
probability on Q = MC given by

PHW) = [ 1(@) Siee 1t (a3 (6.0.1)

where (p¥, ¢ € C) are probability measures on M which are absolutely continuous
with respect to the uniform measure

Py (dw;) = pf (@i)vi(dw;).

As before, we shall concentrate on the case where M 1is a finite set, the contin-
uous setting being easier to analyze. The operator P given by (6.0.1) can be
considered as the transition matrix of a Markov chain.

Let (P™* n € IN*) be the family of transition probability measures defined
by induction as follows P"+tL«@ f = P(P™ f)(w), PO f = f(w). We shall show
that, under some conditions specified later, the following logarithmic Sobolev
inequality is satified with a constant ¢ € (0,00) independent of n € IN* and
w € Q

75
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P (flog f) — P™ flog P™e f < e P™¥|Vf3 |2 (6.0.2)

We shall see that under proper assumptions P™* converges as n goes to infin-
ity towards a probability measure g on Q, the limit being independent of the
configuration w € Q. This limit law p will also satisfy a logarithmic Sobolev
inequality . The limiting probability measure has a priori no link with the
Gibbs measures introduced in the previous chapter. Also, we point out that the
transition matrix P is in general not symmetric in L? ().

We begin with the following central proposition

Proposition 6.1 Suppose that

Pk

Py

A = supsup H sup < o0 (6.0.3)

Yww g W{i}e =W ye

[ee]

and
sup max Z&] , Z{fﬂ < o0 (6.0.4)
! jec jec
with the notation

Py

2

W{z}c IW{l}c

Then, there erxists a constant X € (0, 00) such that for any non negative function
f, we have
[V(PHZI? < APV S| (6.0.6)
Remark 6.2: The constant A can be chosen for example as follows
2
A=b"Atcosupmax | Y &, & (6.0.7)
' jec jec

with b < |[M|z if [M| > 3 and b = 1 if M has cardinality 2 or is a Riemannian

manifold. The constant ¢y can be chosen equal to sup; ,, ||p;‘)||oo |l (p;f’)_1 [0 -
Proof of Proposition 6.1. For any i € C and any non negative function f,
we can show as in (5.4.72) that

Vi(PHEP <O wlViPNEE =0 w (PHE (PN)?) (6.0.8)
The right hand side of this last inequality can be rewritten as

(Pf)2(w) + (Pf)= (@)

v; ((Pf)%; (Pf)%) = %/W(dwi)@@w(d@i) <
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with the notation & = Wiiye © w;. Using a lexicographic order {j; € C}lien, we
obtain

Piw) = PFE) =Y P (v S — i S) (6.0.10)
IEN
where Py =P, ~= Q@51 Pf. Qs> p;{. With the notation (6.0.5), we have

IS~ v S| = Ip;»i(%; )< 2 gllo (159D (5 (7% 78))

gt

W=

1
2

AR AN (6.0.11)

INA

with a constant co < sup; ||p;"||oo |l (p;f’)_l [|oc. We now deduce from (6.0.10)
and (6.0.11) that

1
2

[P1w) = PI@) < 3023 il (P1 & 95 (1) (P 95197 2F)

leEN
(6.0.12)
Now, if
A =sup sup H sup Pie ,
U ow,wes keC w{l}C:Z{,}c Pf 00
let us observe that for any [ € N, and all w,& € Q, we have
AN PF(w) <P @pf Flw,@) <A-PF(w) (6.0.13)

so that we can estimate the right hand side of (6.0.9) by
2

Z{Q%Af&j} (Plvjf%IZ)% (w) (6.0.14)

jec

IN

( Pflw) = PF®) )
(Pf)%(w)+ (PF)5(&)

IN

24%¢, E&] Zgijp|vjf%|2(w)

jec Jjec
where - we recall - that w and & only differ at the site i. Inserting this result in

(6.0.9) and using (6.0.8), we obtain

IVi(PEP < B | A% ) & Zfiy’/w(dwi)mvjﬁﬁ
jec | jec
b2 A4COZ£ij Zfijp|vjf%|2 (6.0.15)

jec | jec

IN
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which gives, after summation over the i € C,

[V(Pf)7|* < [ b2A%co sup max D i > & PIVFE? (6.0.16)

jec jec

which finishes the proof of the proposition. o
Proposition 6.1 will be the key ingredient in the proof of the following theorem.

Theorem 6.3 Assume A of (6.0.6) is strictly smaller than one. Then there
exists ¢ € (0,00) so that

P (Flog f) — P™ flog P™ f < ¢ P |V f3 2 (6.0.17)

for any n € IN and w € Q, and every non negative differentiable function f.
Consequently, the probability measure p = lim,_, o, P™Y satisfies the logarith-
mic Sobolev inequality with the same constant.

Proof. For a non negative differentiable function f, we set f, = Pf,—_1 with
the convention fy = f.

P fa_1log fao1 — P fa1logP fa1 <CoPY|IVF2 |2 (6.0.18)

By proposition 6.1, we find that

P fr_110g foo1 — P foo1 logP¥ faoy < 260N L PY |V 32, (6.0.19)

Thus, we deduce, as in section 5.2 (see (5.2.5) and (5.2.6)), (6.0.17) from (6.0.19)
with ¢ = (¢p/1—A) when A < 1. To prove the second part of the theorem, let us
remark that using (6.0.10), for any (w,&) € Q? so that wy;jje = Ty, we have

wi_pe Pi
|PYf—PYf| = ZPZ (le ((% - 1)lef)) ‘ (6.0.20)
l Pj
and therefore _
[Pef = PSS AY &GPIV,I. (6.0.21)
Jjec
Now, for any n,m € IN, n > m, we see that
[P f —Pmf| < sup [P™ f(w) — P™ f(w)]. (6.0.22)
It is not hard to see that
P flw) = P (@) < D NIVP™ flleo = NP7 (6.0.23)

1eC
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Since (6.0.21) implies that for any ¢, [[ViP flloc < A} ; &ij]|V;flleo, we deduce
that

m

IP™ flll < Asng&j A1 (6.0.24)
J

which, under our hypotheses, converges towards zero as m — oo. Hence, we
have shown that (P”f)ne]N is a Cal.ld.ly sequence, uniformly with respect 1.30
the boundary conditions w € Q. This is sufficient to guarantee, as we saw in
part 5.4, that (Pn)nelN converges towards a unique probability measure p.
o
In the last part of this chapter, we discuss the case where the cellular au-
tomata is described by a potential. In other words, if for a potential ® of possibly
infinite range of interaction and a subset C of 7%, we set U; = ZchC:Xaj Py,
then we define the transition matrix Pg by (6.0.1) with p; = e=Yi /ye=Yi.
To study the ergodic properties of Pg, we shall try to find natural conditions
under which the assumptions of the last proposition are satisfied. With the same
notation as above, let us first note that for any wy;je = &y;ye, we have

Pl <expl2 Y Varx(®x) (6.0.25)
P51l oo XCCC:X3i,k
In this case, we see that
A <exp (2 sup Z | X] - VarX(CDX)) < H®ls; (6.0.26)
" Xcceixsi
and that
&i<2 > Varx(®x)exp |2 > Varx(®x)|. (6.0.27)
XCCe:X3i,k XCce:X3ik

Here, we used the notation
@l =sup > X[ ]|®x]eo- (6.0.28)
€29 xcczd: X3i

We shall assume in the sequel that ® = {®x}xccz¢ belongs to the Banach

space By of potential with finite || - ||g, norm. Then,
sup max Z&J , Zé’ﬂ < 2.52”(I>”B2||'1>||B2 (6.0.29)
' jec jec

Using the previous proposition, we can hence write down the following result.
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Theorem 6.4 Assume that the cellular automata Pg is described by a potential
® € Bs. If||®||B, < Bo € (0, 0), for a sufficiently small 5y € (0,00), then there
exrists a unique invariant measure u for the semi-group P = Pg satisfying for
some constant € > 0 and for any differentiable function f,

[[P*f = uflloe < eI S]] (6.0.30)

Moreover, there exists a finite constant ¢ € (0,00) such that

pflog f/uf < 2ep|VF3|? (6.0.31)

for any non negative function for which the above right hand side is finite.

Remark 6.5: The reader interested in the ergodicity questions of the cellular
automata may like to consult for example [67], [42] and [43] and the references
therein. It is interesting to note that the question whether the limiting proba-
bility measure of a cellular automata is a Gibbs measure or not has not been
addressed in the general setting of a potential & € Bs.



Chapter 7

Logarithmic Sobolev
inequalities for spin systems
with long range interaction,
Martingale expansion.

We now come back to a spin system described by a potential

® = {®x } xccze as introduced in chapter 5. However, we remove the assump-
tion of finite range of the interaction to extend the previous results to ® € By,
that is satisfying

|®llB,=sup > [X][[@x]e < 0.
€2 ycczd Xai

We shall prove that when the uniqueness condition of Dobrushin is fulfilled, the
unique Gibbs measure in infinite volume satisfies a logarithmic Sobolev inequal-
ity. To this end, we shall first recall a few facts from the uniqueness theory
of Dobrushin ([24], [38], [88], [41]). Then, to prove the logarithmic Sobolev
inequality, we follow an approach based on martingale expansion introduced in
[64]. To simplify the notations, we restrict ourselves to the case M = {—1,+1}.

7.0.5 Long range interaction systems

Given a family of probability kernels {Ex = Ej ¢ }xcz« on a probability space £
equipped with a o-algebra X, the interaction matrix Cy;, k,I € Z% of Dobrushin
is defined by N

Cri = sup sup |EZ(A) — E (A4)] (7.0.1)

w,;eﬂ:w{l}c I;{l}c

where the supremum is taken over all Y-measurable sets A.
Hereafter, we shall assume that the following condition is satisfied

81
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Dobrushin’s uniqueness condition

sup Z Cy <1 (7.0.2)

k leZd

Let us recall the very nice result due to H. Follmer [38]

Theorem 7.1 Assume Dobrushin’s uniqueness condition holds. Then, for any
A C Z% and w € Q,we have

|EX(f; 9)l < Z Varg(f) Dyt Vari(g) (7.0.3)
k€A
with
D= Ch. (7.0.4)
n=0

Remark 7.2: One can see as in section 5.4.4 that Dobrushin uniqueness condition
is satisfied when for a sufficiently small positive real number 3,

1®[|B, < Bo

but that this condition is not necessary ( see [88], [41] for examples of possibly
large potentials and for some other types of potentials see [74] , [35] ). Theorem

7.1 shows that the local Gibbs measures satisfy a property of decay of correla-
tions, the crucial step to obtain a logarithmic Sobolev inequality in the previous
parts. In order to use it to prove a logarithmic Sobolev inequality, we shall first
prove an auxiliary lemma which shall be essential to get sweeping out relations.
To this end, let us denote as in section 5.4.3,

dERY e~ Uaw®)-Uaw))

&ia(w)

(7.0.5)

with w(zig\i = wga\; and wgi) = —w;, then

Lemma 7.3 If Dobrushin uniqueness condition holds, for any A CC Z% and
all i € A°, j € A, the quantity

ni; = sup Var;(Epy;&ia) (7.0.6)
ACCZ?

satisfies

sup max Z ij Z nji | < oo. (7.0.7)

jezd j€ezd
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Proof : To estimate the quantities Var;(Ea\;&i a), let us remark that

w@

[EX\ ;6 — EX\; &ial < TER\; (64565 a\;) |+ Var(& ). (7.0.8)

Using theorem 7.1, we obtain

|EX\; (Eiai&av) | < E Vary (€ A) Dt Var (€ a\;j)- (7.0.9)
k€A

Consequently, to bound (7.0.9) as well as the second term in the right hand
side of (7.0.8), we have to bound Varg(€; a). To this end, let us go back to the
explicit definition (7.0.5), to obtain

Varg (&i,4) < HZX/ZK“) H Vark(e—{UA(w“))_UA(w)}) < Cig (7.0.10)

where we have set

6@'1@ = 262||q>|| Z VarX('1>X).
X34,k

To use this bound, we note first that Cix is summablein i or k. In fact, changing
the order of summation according to Fubini’s theorem for non negative variables
and since Vary (®x) < 2||®x||co, We get

S Y Ga= Y03 Varx (@) <230 1X] [0l < 212,
keZd keZe X3tk X3
(7.0.11)
with the right hand side finite with our hypothesis. We can thus bound (7.0.9)
as follows B B
IEX\; (&ia5&5a\) | < Z Cik DriCj. (7.0.12)
kEA\]
Since under the Dobrushin uniqueness condition, the family Dpg; is summable
with respect to k,! according to theorem 7.1, we deduce from (7.0.10) and
(7.0.11) that the right hand side of (7.0.12) is also summable over i and j.
Combining this remark with the bounds (7.0.8) and (7.0.9) completes the proof.
o

Lemma 7.3 is the key to the following theorem.

Theorem 7.4 Assume that the Dobrushin uniqueness condition is satisfied for
a system with potential ® € By. Then, there exists a constant ¢ € (0,00) such
that for any A C Z¢ and w € Q, we have

% flog (#) < cEY|VAfE? (7.0.13)

for any non negative function f such that the right hand side is well defined.
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E. Laroche [60] proved a similar result for exponentially fast decreasing inter-
actions. (Also, note that the method used in [70] proves similar results for
exponentially decaying interactions.) Here we present a proof based on lemma
7.3 and a martingale expansion of relative entropy, (introduced in [64]).
Proof : Let us consider a lexicographical order {ix, k= 1,.., N = |A|} of A and
set Ay = {i1}, Ay = Ay U {ing1}. Let E, = E,_, and, for a non negative
measurable function f, set f, = E, f, fo = f. We then deduce from lemma 7.5
applied with cubes reduced to single point sets that

ENflog

N
/ o2

< Enx|V;, [?2 7.0.14
ENf_Conz::l NIVi il ( )
with ¢p the smallest constant in the log-Sobolev inequalities satisfied by all
the local Gibbs measures restricted to a single spin o algebra related to points
{ig,1 < k < N}, uniformly with respect to boundary conditions. Applying
lemma 7.3 and proceeding as in section 5.4.3, it is not difficult to see that there

exist non negative coefficients az(-;»\) so that for any n € {1,.., N},

i An 19\ %
Vi Baf)21< >0 o) (BIV31P) (7.0.15)
jEAnU{in+1}
with
Yij = sup al(-;-\) (7.0.16)
Accz?

satisfying

7 = sup max Z Yij, Z vii | < oo. (7.0.17)

jezd jez
It is then easy to deduce from (7.0.14) that

Ey flog Ef

<o VEn|Va,f2 % (7.0.18)
NS

Indeed, inequality (7.0.15) gives

Vi (E.f)7? < Sooal | ST &BEIV P (7.009)
JEA,U{I} JjEA UL}
< v D BV
j€AL

so that
N ) N
ZEvaYnan—ﬂz 'YE' Z vi; En|V;f2|? (7.0.20)
n=1 n=1 jeA,u{i}

¥ Y ENIV i =y En|Vay f2)%
JEAN

IN

IN
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(7.0.15) thus implies the desired estimate. o

7.0.6 Martingale expansions

In this section we present a different useful way of organizing the proofs using a
martingale expansion of relative entropy (introduced first in [64]; see also [70]).
We consider spin variables with values in a finite set or a smooth connected
Riemaniann manifold M. Let Lo € 2IN and Yy = Yy + Lo - yx be the translation
of the cube Yy = [~Lo/2, Lo/2]? centered at the origin by the vector Loy,
ys € Z°. The vectors (yx, k € IN) are ordered according to a lexicographic
order compatible with the distance d(-, ) on Z*. We define a sequence of finite
subsets of Z* by A1 = Y1 and Apy1 = ApUY,41. Wedenote in short E, = E, .
For a continuously differentiable function f, we set fo = fand foy1 = Enq1fn =
E,+1f. We then have the following

Lemma 7.5 There exists a constant ¢q € (0,00) depending only on the size of
Yy such that for any N € IN and any continuously differentiable non negative
function f, we have

N
En flog EyF S ;ENWynff_lF. (7.0.21)
Proof : Let us first notice that
fn—l fn—l
E, | fn_1l =E, n_1log ——— .0.22
<f ! Og Enfn—l Y f ! Og En,Ynfn—l (70 )

with E, y, the restriction of E,, to the o-algebra Yy, . According to lemma 7.6
below, at any point w € €, the measure E{  satisfies a logarithmic Sobolev
inequality with a constant ¢g € (0,00) indépendent of w € Q and n € INV.
Consequently, we get

fn—l
Enfn—l

Using this inequality with (7.0.22), we obtain lemma 7.5. It thus remains to
prove the

E, (fn_llog ) < coEn|Vy, £ (7.0.23)

Lemma 7.6 Let cy x be the constant in the logarithmic Sobolev inequality for
the restriction Ex|X(x\v)e of Ex to the o-algebra ¥ x\y)e. Then, for any
continuously differentiable non negative function f localized in a set’ Y C X, we
have

Ex flog <cyx Ex|Vyfi| (7.0.24)

Exf
with
0< cy,x < G-t (7.0.25)

if cg 1s the constant in the logarithmic Sobolev inequality for the probability
measure v.
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This lemma is a direct consequence of property 4.6. Indeed, the probability
measure E% is absolutely continuous with respect to the probability measure
E%y = E% (€YY ) JE4 (YY) = 8y Quy ®ﬁ‘)‘)(\y if vy is the product probability

. . . ~ dE% .
measure on (z;,7 € Y). The corresponding density p¥ x (Fy) = dEuA satisfies
X,Y

el < py x (@y) < et2llelY] (7.0.26)

so that property 4.6 provides the desired estimate.



Chapter 8

Markov semi-group in
infinite volume, ergodic
properties

In this chapter, we study Markov semi-groups acting on functions of infinitely

many variables of MZd. We first construct them as limits of semi-groups de-
scribed in section 5.1 with localized potentials. This construction is important
to insure that such semi-groups are Feller continuous, but also to be able to
approximate them by Markov semi-group in finite volume (see the exponential
approximation property of theorem 8.2) which are easier to study. Such a con-
struction can be found in the literature in [60] (for the continuous setting) and
[62], [94] (for the discrete setting); see also the references given there. We then
study the uniform ergodicity of these infinite volume semi-groups when the cor-
responding Gibbs measure satisfies a logarithmic Sobolev inequality. We show
that they converge uniformly towards this Gibbs measure with an exponential
rate. This result is actually part of the so-called equivalence theorem which
states equivalence between such a uniform convergence of the semi-groups with
a logarithmic Sobolev property of the Gibbs measure, but also with other prop-
erties of the Gibbs measure such as spectral gap inequality. We discuss this
theorem in the last section of this chapter.

8.1 Construction of Markov semi-groups in in-
finite volume

In this section, we present a construction of Markov semi-groups in infinite
volume when M is a finite set (the continuous setting being left as an exercise
to the reader).

Let @ = MZ" be the configuration set and {E%} be a local

XccZt wen
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rd
specification constructed with the product measure pg = v®Z" and ainteraction

potential ® with finite range. We shall use the notations of the chapter 5 (see
section 5.1).

We can easily define, for X cC %%, finite volume semi-groups by their

generators
La= Y. Lx4
JX+jCA
with
Lx+jf =Exy;f— T
We denote by Pt(A) the corresponding semi-group.

Exercise 8.1 Show that for any subset A the operator L, formally given above
1s well defined on the space of functions f for which the following semi-norm s
finite
1A= D2 1V5fll
i€z
were V;f=f—v;f.

The goal of this section is to prove the following result

Theorem 8.2 For any local function f, the following limit in the uniform norm
erists
Pf = lim PNy
XY A

and defines a Feller-continuous Markov semi-group on C().

Moreover, we have the following exponential approrimation property : for
any A € IR, there erists a constant B € [1, o0) depending only on A such that
if A C Z% is sufficiently large, contains A(f) and dist(A(f), A°) > Bt, then

NP.f = P floo < e 21117111 (8.1.1)

Proof :
We will show that for any couple (A1, As) € (Zd)2, Ay C As so that As\Aq
is a cube of a given size, the semi-groups P! := P(A1) and P? .= P{A2) gatisfy

[P = PP flleo < e AN|IA1I] (8.1.2)
if
dist(A(f), A2\A1) > Bt
for a finite constant B depending only on A for

_ dist(A(f), A2\A4)
R + diam(X)
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with the square bracket denoting the entire part.
To prove this estimate, note that

t d t
P f-Plf = /dSEPtl_SPff:/ dsPL (Lo — L1)P2f (8.1.3)
0 0

where we have denoted in short £; := L4, for i =1, 2.
iFrom (8.1.3), we immediately deduce that

t
IP2f = PMflle < / ds||(L2 — £1)P?f|oc
0

IN

t
co/ ds > [IViP flloo (8.1.4)
0

FEAN\A,
with a finite constant Cy depending only on the size of A3\ A and the interaction

.

We are hence naturally interested in the quantities V; ﬁsf for a finite volume

semi-group P. We present below a simple study of these quantities.

Let us first remark that

t
- - d ~ ~
vjptf—Pthf = / dSEPt—sijsf
0

t
_ / dsB,_,[V;, [)B.f (8.1.5)
0

with [V}, E] = ij— Evj. We also point out that, due to the local structure
of the generator, we have

V;, L] = > [V}, Lx ikl (8.1.6)
k:d(k,j)<R+diamx
Moreover, one can easily see that for any smooth function F', we have
V5 CxailFlle < 30 anllViFlle (8.1.7)

le{jlUX+k

for uniformly bounded constants a;;. We deduce from (8.1.5), (8.1.6) and (8.1.7)
that

t
19,8 f1l0 < 11V f]1eo + / ds 3" Ditl|ViPf||ee (8.1.8)
0 !

with a matrix D with uniformly bounded coefficients such that

D=0 if d(],l) > R—I—dlam(X)
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Since V;f = 0 if j does not belong to A(f), we can use (8.1.8) inductively to
conclude that

1ViPuflleo < 37— 37 DNV e (8.1.9)
n=N; T

where o
% = [ gl

and DJ(?) is the jI'* entry of the matrix D™ the n-th power of the matrix D. We
can estimate these coefficients by noting that if C' is a finite constant satisfying

c
Dit < BiR T dam(x) + 112

for any (jl), we have

DY <cm.
As a consequence,
~ . tOo)Ni
;20 < 30 St < L e (8110
n=N; ’ J°

Observing that for any n € IN*,

nl > e logn—2n
and choosing B € (0, c0) such that
C
2 —log B + logC + B <24

we conclude that for

dist(A2\A1, A(f)) > Bt
R+ diam(X) -

N =inf N; =
J

we have

IV Peflloo < e AN | 7. (8.1.11)

Using (8.1.11) with P = P%in (8.1.4), we deduce that for any sequence
{PA4) § € IN} of Markov semi-groups such that the A;’s are a Van Hove se-
quence (i.e are constructed by addition of the translation of a given cube),
{PA)f i e IN} is Cauchy for any local function f. Hence, the limit

Pf = lim PMF
XY A
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exists for any local function f. Furthermore, if A = Ay, we have

1Pf = PV flle < ST NIRM Y F — P fl
n=N

1€y > VP flle

<
n=N jeEA\An_1
< tCoem YT T A IA
n=N jeEA\Apn_1
< e At (CO|A0|ZLd‘1e‘AL)|||f||| (8.1.12)

L=N

with the notation

_ [dist(Ax\An—1, A(S))
Nn = [ R+ diam(X) ] '

This last estimate completes the proof of the exponential approximation. As
a consequence, since in finite volume P is strongly continuous, the same is
true for P. Since the local functions are dense in C(2), P extends naturally to
a Feller-continuous Markov semi-group with generator

L= Lxyj.

jeZ*

Exercise 8.3 Generalize theorem 8.2 to the continuous case, i.e. to the case
where M is a smooth connected Riemannian manifold and L has the form

La = Z (Al + VZHAVZ)
iceZ®

where Hy = )y ®x. Hint : Follow the arguments of the proof of theorem
8.2.

Exercise 8.4 In the case where the potential ® is not of finite range, but sat-
1sfies
|®llB, = sup Y |X]-[|®x]lu < o0
ieZ" X3i
show that the following exponential approrimation property holds ; for any A > 0
and any & > 0, there exists a finite constant C so that

A _
1P = P flloo < eI 111]

provided that
d(A, A(f)¢) > Ce*.
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8.2 Uniform ergodicity of Markov semi-groups
in infinite volume

In this section, we summarize the main links between the log-Sobolev inequal-
ity and the uniform ergodicity of Markov semi-groups in infinite volume, (see
[55],[56] and [92]-[95]).

Again, we are given a local specification {E% }

rd
form product measure py = v®Z" and a finite range interaction potential ®.

Then, the following relations are satisfied

XcCZ wea defined by a uni-

Theorem 8.5 Assume that we can define a Gibbs measure p in infinite volume
and that it satisfies the logarithmic Sobolev inequality with a coefficient c.

In finite volume, assume that there exists a finite constant C1 such that for
any non negative function f, any A CC Z°,

1P flleo < c“MEALS]. (8.2.13)
Moreover, assume that the finite volume exponential approrimation s satisfied,
that is that for any local function f, any A € RT
A _
1Pf = P lleo < e 111 (8.2.14)
provided that for sufficiently large A,
dist(A(f),A°) > Bt

for a finite constant B depending only on A.
Then, for any 6 € (0,1), there exist a finite constant C(0,A(f)) and a
positive real number m € [1/¢, o0 such that for anyt > 0,

I1Pef = nflleo < CO, M) IIFII]

Remark 8.6: If {Ex, X CC Zd} satisfy a classical Nash inequality with con-
stants growing at most exponentially with the volume, (8.2.13) is satisfied ac-
cording to theorem 3.3.

Proof : Let us first note that the following decomposition holds

\Pof —pf| <[PV F—uf) + 1PN F = Pf). (8.2.15)

The second term will be estimated by the exponential approximation property.
For the first term on the right hand side of (8.2.15), we note that, by Hélder’s
inequality, for any ¢ > 1,

IPNF—ufl = PPN - ph)l
< 1PMIPAF = ufes
cy1al H
< 5 (BalP) - uf1?) (8.2.16)
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where we used hypothesis (8.2.13). Moreover, by definition of Pt(A), for any time
t, Pt(A)f — uf is ¥pr measurable if f is when A® = {i d(i,A) < R}. Hence,
(using the assumption that the potential ® is bounded and of finite range), we
can find a finite constant C5 so that

ExlP2)f — uf|* < SN (PR f — uf)e.
Noting as well that

(6P = uf17)* <UIPLU = Poiflloo + (ulPoaf = pf19)5 (8.2.17)

we deduce from (8.2.16) that

C1]A|+C3|0A]

1PN = pfllee < e {lPiaf = uf10F +11PA) = Poaflles }

PN f — Poflloo. (8.2.18)

By the exponential approximation property, we conclude that if f is a local
function and A is chosen sufficiently large, so that A(f) C A and its diameter is
of order t > 1,

ct (1)1

PN —pflle < e 7 (u(Pioaf — uf)?)

ct (1)1

+em e ISl

Q=

for a finite constant C7. If moreover y satisfies a logarithmic Sobolev inequality
with a coefficient ¢ < oo, let us recall that theorem 4.1 implies that for any
2(1—6)t—2

6 e (0,1) suchthatqﬁq(%,?,c):l—}—e <,

(U Pecrf — pf|9)s < (w(Poef — pf)?)* < e ™| f = ufll2
where m is the spectral gap of £ which is bounded below by ¢=! (see theorem
ct(t1)1d-1
4.9). With such a choice of ¢, the factor e a is uniformly bounded in ¢
and we obtain the desired estimate.

Exercise 8.7 Eztend the theorem to the case where ® € Bs.

8.3 Equivalence Theorem

We consider a local specification {E4 }

rd
po = v®Z" and an interaction potential ® = (¢x) « with finite range R.
When needed, we shall indicate more explicitly the potential defining the local
specification by the following notation {E{ 4}

ACC wen defined by a product measure

ACCZ wesr



94 8.MARKOV SEMI-GROUP IN INFINITE VOLUME, ERGODIC PROPERTIES

For A CC Z°, we shall denote Pt(A’w) = et¥ae the Markov semi-group
generated by

/CA,w = 6wAc (Z /Cz)

1EA
that is the semi-group acting on the variables {o;,7 € A} and with fixed bound-
ary conditions. There, we used the notation

(Ouwne £i) F(@) = Egiy f(@angite 0 waen{ite) — f(@a o wae)
in the discrete case and
(6wAC£Z)f((.AJ) = (Al —_ szz ((.AJA [e] wAc).Vi)f(qu (¢} (.JAC)

in the continuous setting.

Now, we present the result from [92] relating mixing conditions and ergod-
icity.
Theorem 8.8 The following conditions are equivalent

(i) Strong mizing conditions

There exists M € (0,00) such that for any A CC Z°, any w € Q, and any
local functions f and g localized in A,

[EX(f,9)] < e MIADAGD | 7[]]]]1g]1].

(ii) Complete analyticity condition :
For any n € IN and any potentials {{x, k = 1,..,n} with finite range, the
map

(21,..,2n) = EX,<1>+Z:=1 zwk(f)

is analytic in a neighborhood N{|zx| < €} of the origin for some ¢ independent
of A CC Z%, w € Q and of the local function f.

(iil) Uniform spectral gap inequality :
There exists a constant m € (0,00) such that for any A CC Z°, and all
w € Q,

m B3 (f - ERf)* <ER(VIP)

for any function f for which the right hand side of the above inequality is well
defined and finite.

(iv) Uniform logarithmic Sobolev inequality :
There ezists a constant ¢ € (0,00) such that for any A CC 7%, and all
w € Q,

B} (flog = —) < cEX(IV/S])

J
EXf
for any non negative function f for which the right hand side of the above
mequality s well defined and finite.
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Remarks :

1) The equivalence between (i) and (ii) is due to Dobrushin and Shlosman
[19] who proved the equivalence between some 14 conditions encountered in
statistical mechanics. The proof of the equivalence with (iii) and (iv) was given
first in [92].

2) Similar assumptions remain equivalent if one replaces the sequence of
finite sets by a Van Hove sequence. In this setting, the equivalence between (i)
and (ii) is due to E. Olivieri and P. Picco [72], the others to S.Lu and H.T. Yau
[64] as well as F.Martinelli and E. Olivieri [70]. These results allow to extend
the domain of validity of logarithmic Sobolev inequalities to a larger class of
potentials.

3) The implication (iv) gives (iii) was already seen and is a direct consequence
of the definition of logarithmic Sobolev inequality . The converse implication
is in general rather unusual. It is intimately related to the assumption that the
Spectral Gap inequalities are assumed to be obtained uniformly with respect to
the finite sets A and the boundary conditions.

4) The implication (i) gives (iv) can be proved as discussed in details in the
previous chapters.

5) The fact that (iii) implies (i) is due to the exponential approximation
property. Indeed, we have

EX(f.9) = EX(f9) - EX(HEL(9)

Using the exponential approximation property, we get

P pg — P PR gl < e At 1119

as long as

d(A(f), Alg)) ~ Bt
for some B = B(A) € (0,00). As a consequence,
[ER (P, P g) 4+ e~ 1A gl

(B2 (P97 - B3 1) B (PN g — BRg)?)

IEX(f,9)l

INA

1
2

+ e Al

IN

Using the spectral gap inequality, we obtain (i).



Chapter 9

Disordered systems ;
uniform ergodicity in the
high temperature regime

The simplest example of disordered systems we consider is described by the
following formal Hamiltonian

H(O’) = Z Ji]'O'Z' c0j

li—l=1

with the spins o; in {—1,+1} for the Ising type models, and for continuous
models such as the rotator, the spins take on values in a smooth manifold such
as an N-dimensional sphere. (For example if N = 2, one has the representation

0i.05 = cos(¢; — ¢;)

with ¢; € [0, 27].)

In this chapter, the J;; will be taken at random. It is assumed that the J;;
are independent and identically distributed.

One can easily imagine that in such systems on the infinite lattice 7z, large
regions will have strong couplings. Thus the interaction in such regions will be
of low temperature type. However, if the inverse of the temperature 3, (used
to scale the Hamiltonian in the formal expresion for the Gibbs measure), is
sufficiently small, ”most” of the spins in the system will effectivelly interact
weakly. The system is therefore mostly of the type studied previously, but
exhibits with probability one (with respect to the realization of the couplings)
large regions of strong interaction. As a consequence of this general picture, the
Glauber dynamics should still converge at high temperature towards the unique
Gibbs measure but its convergence will be slowed down due to these regions
with strong couplings.

96
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To illustrate these ideas, we shall first describe the proof given in [104] of
the absence of spectral gap at any temperature for models in which the J;; can
be as large as one wishes with positive probability.

Secondly, we shall bound almost surely the growth of constant in logarithmic
Sobolev inequality for local Gibbs measures in dimension 2 as a function of
the volume and deduce a stretched exponential decay of the dynamics towards
equilibrium (that is a decay with rate going to zero as the exponential of —t?
for some 0 € (0, 1)).

9.1 Absence of spectral gap for disordered fer-
romagnetic Ising model

Here, we restrict ourselves to the Ising model

Zd
o €{—1,+1}, Q={-1,+41}* .

We shall also assume d > 2, We consider the Hamiltonian given, for any A CC
', by

w j— w —
HA(O'):HA(J,O'):— E JijO'iU'j—l— E JijO'Z'(.Jj.
li—jl=1,,j€A li—j|=14€A,jEA"

where the couplings (J) = (Ji;, (4,7) € Zd) are independent identically dis-
tributed real valued random variables on a probability space (J, By, IP). We
denote by IE the expectation under P. We shall assume that IE[|J;;|] is finite.
We can associate to Hf the local Gibbs measure Ef j on {-1, +1}* given by

E{ 5(doa) = e PHR @ qud N (5 )

AJ

with

1
d,uo(o') — 5(602—1 + 50:+1)~

In case when the couplings (J) can take with positive probability values as small
as one wishes, that is (/P(|Ji;| < €) > 0 for any € > 0), and [EJ;; = 0, for any
8 > 0 one can define with [P-probability one a unique Gibbs measure py in
infinite volume as a limit of the local Gibbs measures Ef ; (see [39], [26], [31]).
Indeed, with [P-probability one, the couplings J;;) will be as small as needed
in aset Ct = {i € Z%i1| + lia| + .. + |ia| € [L,L + 1]} with [ as large as
one wishes provided L is large enough (as a consequence of the Borel-Cantelli
lemma). Thus, the expectation under EX s C'lL C A, of functions localized in
the sphere S;, = {i € Z9,|i1| + |ia| + .. + |ia| < L} will weakly depend on the
boundary conditions w (with a correction going to zero exponentially with !
growing to infinity). Consequently, with IP-probability one, one can construct
a Gibbs measure in infinite volume and it is unique. [This phenomenon is even
more sharp when one deals with couplings (J) which can be null with positive
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probability; as soon as one can draw a closed loop surrounding the origin of null
couplings, the expectation inside this loop is independent of the spins outside it
and therefore does not depend on the choice of the local Gibbs measure E4 as
soon as A contains this loop.]

Despite this decay of correlations and uniqueness of Gibbs measures, we
will show that the generators of the corresponding Glauber dynamics have no
spectral gap. To this end, let us consider the Glauber dynamics generated by

Lif= > (B f— 1)
ieZ’
The construction of the associated infinite volume semi-group P? can be done
in a similar way as in nonrandom case considered before, (see [49]). We shall
see that the following result is true.

Theorem 9.1 For any 5 > 0, if
P(J; >J) >0 et P(|Jij|<a) >0 (9.1.1)

for a sufficiently large J > 0 and a constant a > 0 sufficiently small (depending
on f3), with IP-probability one,

it 12 CEIUN) (9.1.2)
Py (f = paf)? -

e.g. the generator L3 has no spectral gap IP-almost surely.

Proof : Let us consider the configurations of the couplings (J) such that, if we
denote Ay = [—L, L]%, (J) is in the set

Pois, ={V(i,J) Ck+AL Ji; > J and Vi€ Ay, j€dAL, |Ji| <a}
with k € Z%. Here,
kE+AL=1{G,j)=k+ (), j) € AL}

We claim that, for any L € IN, with IP-probability one, (J) belongs to ngAL
for some point k of the lattice. Indeed, P(ijfAL) = P(P;{’La) is strictly positive

according to our hypotheses for any L € IN and k € Z*. Consequently, Borel-
Cantelli’s lemma implies that for any L € IV,

lP( U P,ijL) =1

ke Z*

We can assume without loss of generality that k is the origin and thus assume
that (J) € Py".

For such a configuration of the couplings, we shall compare the restriction of
the Gibbs measure puy to X, with the measure E?\L,J with Dirichlet boundary

conditions (e.g. w = 09A% at the boundary of Ay).
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In fact, for any function f localized in Ay, we have

pa (2:00:6)%) < SaploAl EOAL,J (>:(0:)?)
7 S .
pa (f —waf) E}, , (f—/i?\yjf)

(9.1.3)

Moreover, in Ay, if §J is large enough, we can use the results of Thomas [98].
We then find a constant a > 0 such that

inf E?\L,J (Ei(aif)2)

—JBa|dAL]
juf — - 5 < C1(J)e . (9.1.4)
B, (/- B3,.47)
(9.1.3) and (9.1.4) imply that
lnf IU‘J (_Ej(f)f) < 6(6a—JQ)ﬁ|8AL|. (91.5)

Ay (f—paf)? —

Since L can be taken as large as desired, we conclude that when 6a < Jea,

o 13 (L (f)S)

=0 Pa.s. (9.1.6)
P puy (f —paf)”

o

Absence of spectral gap was also proved for the rotator model in [49] where
the spins take on values in a unit circle and the interaction is described by the
potential

(9.1.7)

&y = { Jiicos(ei — ;) i X = {if}

0 otherwise
with the (J;;) taking again arbitrarily large and small values with positive prob-
ability. Thomas’s estimates need then to be replaced, in order to estimate the
spectral gap of the generator in the low temperature regions, by the use of

Ginibre’s inequalities [33].

9.2 Upper bound for the constant of logarith-
mic Sobolev inequality in finite volume and
uniform ergodicity, d=2

In this section, we prove an upper bound for the constant in logarithmic Sobolev
inequality in finite volume in dimension 2 and show that it implies the uniform
ergodicity for the dynamics of the corresponding infinite system. We describe
the strategy developed in [49]. It relies on the controls obtained in [93],[94]
and [95] and described in chapter 5. Under some additional but physically
quite general assumptions, sharper results were obtained later by Cesi, Maes
and Martinelli [11] giving optimal controls in any dimension. These results
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show that if the tail of the random variables (J;;, (¢,7) € Zd) decreases faster
than exponentially, the log-Sobolev constant ¢(A) for the local Gibbs measure
localized in A decreases very slowly and more precisely, when A = [—L, L]¢,

d—1
d

¢(A) < exp ef(loglog L)~ (log L) P.a.s.

However, when the tail of the random variables (J;;, (7, ) € Zd) is exponential,
¢(A) decreases only polynomially with the volume. In this setting, the estimate
obtained in [49] is on the right scale.

We restrict ourselves here to the discrete setting, the generalization to the
continuous setting being straightforward and given in sufficient detail in [49]. We

shall denote by Q = MZ" the configuration space with a finite set M. (JJ, By, IP)
will denote the probability space on which the external random coupling live.
The Hamiltonian of the system is given by a potential ® = ((I)X)XEZd of real-
valued measurable functions on J/ x Q such that
- For any X C Z%, the function ®x (J,-) is continuous and Y x measurable.
- For any i € Z°, we have

S 11®x (@, )l < o0

]

-The family {®x(-,w), X € Z%} of random variables is mutually indepen-
dent. Moreover, the random variables ®x (-, Tjw) et ®x (-, w) are identically
distributed.

Furthermore, we shall assume that the interaction is of finite range, that is
there exists a finite positive real number R such that ®x = 0 when diam(X) >
R, IP-almost surely.

The Hamiltonian of the system in finite volume A is then given by

H{(o)= > ®x(J,0p0wse)
XNA#D

where o o wpe is the configuration described by o inside the cube A and by w
outside A.

Remark 9.2: In the previous section, we considered the particular case (but
most commonly studied) where

<I>X(J,O') = JijO'iO'j

if X ={4,j} when |i —j| =1 and ®x = 0 otherwise.
We associate to @ the local specification (E‘;{VJ,A cC Zd) as before. We
consider the dynamics generated by

Lf=Y {Bixf -/}

for a finite set X of Z¢. The construction, for IP almost all J, of the semi-group
P7 in infinite volume can be achieved as in chapter 8.1. We then obtain the
following exponential approximation property.
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Theorem 9.3 Assume that ® = {®x }xer is a finite range potential such that

sup sup IE[||V;éx|[%] < oo
X ijez
for a finite real number K > d. Then, the limit

Plf= lim P}Af
NV A
exists IP-almost surely. Moreover, for any cube A, any A € Rt and any local
function f, we have

1P f = P12 flleo < e D)1 (92.8)
provided that d(f, A°) > L for a constant L = L(A(f), R,J) almost surely finite
and d(f, A°)'=% > Ctfor a finite constant C € IRT depending on J, A(f), A and
for some § € (0,1).

9.2.1 Bound on the log-Sobolev constant

The basic idea to control the log-Sobolev constant is to show that a decay of
correlation property is satisfied by the local Gibbs measures E} j but that it
will depend on the size |A| of the finite volumes under consideration. More
precisely, we prove the following

Property 9.4 Let Ay = [—L,L]%.
Assume that
(H1) For any & € IR, we have

Bexp{¢[|®V)(3, )|} < o0 (9.2.9)
with N
12T, )= D [8x(T, )] |oo-
X€EF
X373

(H2) There exists Jy > 0 sufficiently small so that
p1 = S;p P{||®x]|lcc > Jo} (9.2.10)

belongs to (0, p%(2, R)) with p%(2, R) a universal critical percolation exponent.

If (H1) and (H2) are satisfied, there exist a finite constant ro > 0 and «a
constant M € (0,00) such that for almost all J, L sufficiently large, for any
A C A, and any w € MIAzl

EX 5(f.9) < e MIADAGD || 1] []]g]1]

for any functions (f, g) localized in A such that
d(A(f),A(g)) > rolog L.

Moreover, rg goes to zero when p1 goes to zero.
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Using the result of exercise 5.7, one deduces from this property the following
almost-sure bound on the log-Sobolev constants.

Theorem 9.5 Let A, = [-L,L]? for L € IN. If (H1) and (H2) are satisfied,
there exists a finite constant cy > 0 such that IP almost surely, for L sufficiently
large (L > L(J) with L(J) being IP-a.s. finite)

C(EXL,J) < exp{co(log L)d_l}.
Moreover, cq goes to zero when py does.

To complete our proof, we shall prove property 9.4. The proof is in fact a
slight generalization of the computation presented in section 5.4.4. To simplify
the notation, we assume R = 1, the generalization being given in details in [49].
Let us notice, following [31], that

S (f,g) < et™PreaXxgexloxl= S I s (9211

YEW(f,9) {i.jt€v

with W(f, g) the set of paths in A connecting A(f) and A(g) and
| ._{€4J°—1if|¢ij|§J0
ZZ,J - .

1 otherwise.
Under (H1), we know by Chebychev’s inequality that for any € > 0, there exists
a finite constant C. such that

€
P(sup Z ox!|loo > Zlogn) < Cen™2
T€An X jex

Hence, for any € > 0, any sufficiently large n

sup 3 Il <

T€An X jex

ilogn (9.2.12)

almost surely, by the Borel-Cantelli lemma.

Moreover, according to Kesten [59] , if

. il <
Aj(r) = inf card({¢, j} E’Y. ||¢ illeo < Jo)
YEW(f,9),d(A(f),Alg)) 2T card({i,7} € 7)

and if
p1 = Ell|¢ijlle > Jo] < p2(2,1),
there exists ro(p1) > 0, 7o(p1) = 0 when p; — 0, such that for any n > 0,
PL) U inf (3 (rologn) > n}] = 1.
nEW”ZkJE "

With (9.2.11) and (9.2.12), we conclude that almost surely, for any n and all
A C A, we have

EX 5(f,9) < const.(e*”0 — 1)1 A A 7)) ||g]]
provided that d(A(f), A(g)) > rologn.
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9.2.2 Ergodicity in infinite volume

We shall deduce from theorem 9.5 a stretched exponential decay towards equi-
librium of the Markov semi-group in infinite volume. We follow the steps of
chapter 8.2. The theorem states as follows.

Theorem 9.6 Assume that conditions (H 1) and (H 2) are satisfied withp; > 0
sufficiently small. Then, there exists 0 € (0, 1) such that for every local function
f, with IP-probability one, we have

1P F = na(N)lleo < CAS), T)e (I (9.2.13)
for any t > T(A(f),J) and with almost surely finite positive random variables
C(A(F), 3) and T(A(f), ).

Proof : Let a local function f be given. Assume ng large enough so that
A(f) C Apn, = [—no, +n0)%. Let Jy C JJ be a measurable set with IP-probability
one such that the conclusions of property 9.4 and theorem 9.3 are satisfied on
Jy. Choosing L sufficiently large, we know that for such configurations of the
disorder, the conclusions of theorem 9.5 are satisfied. We thus have that

|PtJf(W) — pafl
P f(w) = BS o S+ 1B = B flloo + lpaf — ES 4, f]
P f(w) = Bg ST e+ e MO (9.2.14)

A IA

if d(A(f),AS)=" > Bt and E%An is the Gibbs measure in finite volume with
free boundary conditions. We saw above that, with the result of theorem 9.5,
28t
we have for any § € (0,1) and ¢ = 1+ en |
PP fw) —ES ,, f] < ePlliHranlle/a (Eg,AJPtJ’A"f(') - Eg,Anﬂq) ‘

(8—1)t

< 2HsaLllola,

(9.2.15)

We thus obtain that for n sufficiently large such that d(A(f), AS)1=7 > Bt, or

. 1
in other words for n of order t7=7,

=1

Gone _M(n—no
1P f(w) —paf] < eMamallelaeT50m 4 em ) £ || 4 e M0m=mo) | 1)
(9.2.16)

nl™"

Clearly, this bound can only help us if CL (that is ) goes to infinity with n.
In particular, if this ratio goes to infinity faster than logarithmically with n, we
almost surely have

Jim |y, oo /2 = 0.
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When d = 2, we have

cnzng

with ¢ going to zero as p; goes to zero. Consequently, when [ is sufficiently
small, choosing n'~" & Bt, we obtain

|Pf(w) —nafl < eIl
(9.2.17)

with a constant ¢g > 0 and
oo izn=¢
L=
Since we took ¢ = n!'="/B’ with n > N(J) and an almost surely finite random
variable N (J), this result is obtained for ¢ > T'(J), with an almost surely finite
random time 7T'(J). o



Chapter 10

Low temperature regime :
L? ergodicity in infinite
volume

At low temperature, it frequently happens that there are several coexisting
phases. (For classical references to this phenomenon, we refer to [90], [41] and
[84].) For example, let us consider the ferromagnetic Ising model given by the
interaction Hamiltonian

HY (o) =— Z o0 — Z oiwj

li—jl=1i,5€A li—jl=1,j€A°

and

EX () = Zi / F(0)e PR @) dyy

with v the product measure on the spins (o;,7 € A) with marginal law v =
(1/2)(d41 + 0-1). Onme knows that for sufficiently large #’s the following two
limits exist and are different,

. + o+ . -
AI;I%GI El =u™, AlTu%d E,=un

where + (resp. —) means that the spins at the boundary of the set A take

all the value 4+1 (resp. —1). In such a setting, one cannot hope anymore the

infinite volume semi-group to be uniformly ergodic. However, one can look for

L? ergodicity. For instance, it is expected that for ferromagnetic Ising model in

dimension 2, there exists a positive constant ¢ such that for any local function

f
P (Pof — p )% < e VHIfII

with € = 4+ or — (see Fisher and Huse [37]).

105
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F. Martinelli [68] has shown that for any local function f and any M € IR*,
there exists a finite constant ¢(A(f), M) such that for all times ¢ > 1,

pH(Pef = ut )2 < e(A(), My M1
His proof relies on the spectral gap estimate
Ef (f(-C
m*(AL) = inf —AL U f)fL > emoL)L
fEX, (f-E},f)

if A = [=L,L]? and limp_ o, o(L) = 0. If m°(Az) denotes the spectral gap
constant with free boundary conditions, he also proved that

(10.0.1)

1
FTTO 3L logm®(AL) = —75 (10.0.2)

where 73 > 0 is the surface tension.

For related results on this subject, one can read [98] and [53].

We shall discuss hereafter the proof of (10.0.1) and (10.0.2), as well as that
of the L?(u*)- ergodicity of the semi-group in infinite volume.

10.1 Spectral gap estimate

10.1.1 Strategy

The strategy we propose below slightly differs from that originally proposed by
F. Martinelli relying on a clever use of auxiliary bloc dynamics. Here, we may
as well consider other auxiliary dynamics. However, both approaches are more
or less equivalent and require the same kind of basic estimates.

We shall denote by p a probability measure and will present a general scheme
to establish a spectral gap inequality for g with respect to a Dirichlet form £.

The basic idea is to decouple the difficulties by introducing auxiliary opera-
tors. In fact, we see that if 7 is an operator in L?(p), for any function f € L?(u),
the triangle inequality yields

Wf = wflle < |If = 7flle + |7 f = ufllo- (10.1.3)

Let us now assume that m was chosen so that there exists § > 0 such that for
every bounded measurable function f,

llrf = uflloe < (1= B)IF = 1S lleo- (10.1.4)

Then, if 7 is self-adjoint in L?(p), we have

llmf — uflls < (1= )1 = fll: (10.1.5)
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since (see [71] or [9])

sup

= sup
s I =pflla n—eo

s |1f = pflleo

Hence, we deduce from (10.1.3) and (10.1.5) that

Wﬁ—uﬂb_lml( IWW—uﬂb);.

1f = uflls < S11f = 7flls. (10.1.6)

To obtain the desired result for the Dirichlet form under consideration, we need
the following additional property

p(f —nf)* <CE(f, f) (10.1.7)

for a finite constant C'. Then, we conclude that

plr - uf)? < SE( 5 (10,18

We recall that F. Martinelli [69], (following an idea of Holley), applied the
above strategy with the specific choice of

1 n
/L:EXa ﬂ-:gZEX,

i=1

for subsets A; of A with possibly non empty intersection. Such the m generates
the so-called bloc spin flip dynamics.

The next exercise shows how it can be used to control the spectral gap in
the high temperature regime.

Exercise 10.1 [ See [69](Thm 4.5) ]

Let A, = [-L,L)* C Z". We assume in this exercise that the interaction is
of finite range and that the local Gibbs measure EY on X satisfies the mizing
condition

Va?"ij‘{f < Ce—Md(Y,XﬂAf)“fHOO

for finite constants (C, M) > 0 (see section 5.4.3 for the notations ). As a
consequence, there exists a unique Gibbs measure p in infinite volume for the
local specification (EX, A C Zd).

Show that if for any L € IN, we set

2

Ev . (8; 1)?
my = inf inf inf Z+A;’J(ZZ( )
maxigi<a(kj—ki)<L;c7? f Ez’+AK,J(fa f)
with Ag = [k1, k] X - - x [kq, k}}], there exist two finite constants c, ¢’ such that

m(2L) > (1 — \/Lz)m(L +VLlogL). (10.1.9)
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Show that for p € (1,2), we can find Ly € IN so that m(Lg) > m > 0 and
pL > 2=YL 4 ¢/LlogL) for L > Lo, to conclude that there erxists a positive
constant m’ such that for all n € IN, m(Lop™) > m’ > 0. Conclude.

Hint: Proceed by induction; Consider a set R = k+]];<;<4l0,0] withl; <L
for 1 < i < d, with, to simplify the notations k = 0 and Iy > 1o > .. > g,
Iy > VL. Let, fork,n € IN, kn <11/2, Ay = [0,11/2 4 nk] x [0,15] x - -- x [0,14]
and Az = [l1/2 4+ (n — D)k, 1] x [0,{3] x -+ x [0,{4]. Notice that, under our
hypotheses and since d(A(Ea,f),0A1) = d(A(En, f),0A2) =k, fori=0,1,

EA i Eaos f — Exflloe < e ¥||f — Erfllco.

Let m = %(EA1 + En,). Show that for any integer number p > 2

1 -
177 = Br flleo < 55 (14 ™) [|f = Ex fllo

Deduce that since

1
2

< 3BR (B (= Baf)F 4 JBr (B~ B)?),

1
2

(Ex(xf — f)?)
we have

1
2

<(1- e_Mk)_1 max{m(Al)_l, m(A2)_1}

< E=r(Y_@:*+ Y. (@:0?)
( )

IER 1€EALINAL

(Er(f —Erf)’)

2

Summing overn € {1,...,ng}, bound (ER(f — quf)2)% in terms of m(A?) ™! i =
1,2 and proceed by induction to bound similarly max{m(A;)~t, m(As)~1} to ar-
rive at

m(L) > (1 —e M54 4 ng )= %m(271 L 4 nok).

Choose wisely M and ng to conclude.

10.1.2 Spectral gap estimate

In the high temperature regime and in dimension 2, we choose, (compare [69]),
/LIEI, 7I'IEA1 ~~~EAn_1EAnEAn_1..EA1
with, for i € {1,...,n = 2[2L/[eL]]} and € > 0
A =leL](i—1)/2—L;[eL](i—1)/2+ [eL] — L] x [0, L].

Following the strategy stated below, we need to bound ||f — 7 f]||2 in terms
of the Dirichlet form and 7 f — pf uniformly. For the first term, the triangular
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inequality and local Gibbs measures property imply that

B=

- 2
W—rflls < 2% (Ej\' (Ea, - Ea,_ —En,Ea o u)f) )
i=1

< QZ(EX (f—EAlf)2)5. (10.1.10)
i=1
Moreover, property 2.7 shows that there exists a constant ¢(3) < oo such that

Ex, (f —Ea )’ < OBy | Y (050)°

JEA;

Consequently, we obtain

2]%

I1f =7 fll2

INA

9e5c(B)el Z E[|Va.f
i=1

1
2

< AleLlnec@ L (EX[|VAF?]) . (10.1.11)

Moreover, F. Martinelli proved that for the ferromagnetic Ising model (see [69],
p. 68) the following bound is true

Property 10.2 For any € > 0, L sufficiently large,
7 f —Ef flloo < e™[If = EX flloo

Consequently, for this model, we deduce that for any ¢ > 0

8L o
Ef(f-Eff) < Pt @eLpt [3°0;0)7 ] (10.1.12)
JEA

which gives the desired estimate on the spectral gap.
Property 10.2 relies on the precise knowledge of the fluctuations of the in-
terface between the phases of +1 spins and —1 spins in dimension 2 (see [27])

which allows to see that the restriction of E[(J’L-]F;[Fdf‘;]) to the o-algebra generated
by (oi,i € [0, L] x [0,] — M\/E]) depends very weakly on the boundary condi-
tions w. Here, (4,4, +,w) denotes the boundary conditions where all the spins
on the sides at north, south and west are equal to +1 whereas they take the
configuration w on the east side. This observation allows roughly speaking to
see that En, Ex, f ~ Ex,ua, for overlapping sets Ay = [kq, k1 + L] x [k, k} + L],
Ay = [ka, ka + L] x [kh, k4 + L] with intersection of the form Ay N Ay = [k, k +
M~/L]N[l,1+ L], and by induction that 7f ~ uf.
In case of free boundary conditions, F. Martinelli [69] proved that
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Property 10.3 For any ¢ > 0,
|7 f = ER flleo < (1= e7Pra0H1EEED) | £ — B f]|o

which in turn implies that

8L
E)(f —ESf)2 < T€C(ﬁ)6L+ﬁrﬂ(1+146)(2L+1)EX Z(ajf)2/\ (10.1.13)
JEA

and gives a lower bound on the spectral gap. F. Martinelli has also shown that
the bound (10.1.13) is on the right scale by bounding above the spectral gap by
choosing, in its definition as an infimum on test functions, the test function

falo) = Hzier»o - HZlEA“KO'

10.2 L? ergodicity in infinite volume

We obtained in the previous section spectral gap lower bounds in finite volume

decreasing with the volume faster than |A|~™ '2. Following the remarks we did
when we studied the ergodicity for disordered systems, the method employed
there is in this case useless. In fact, one does not know in general how to deduce
ergodicity in infinite volume from such estimates. This is due to the lack of
balance between the finite volume approximation of the semi-group, which says
that we can approximate P f by PtA"f for n of order ¢, and the spectral gap
estimate which provides an exponential decay to equilibrium of PtA"f with the
speed my,t, which is going to zero when n is of order .

Fortunately, in ferromagnetic models, the finite volume approximation of the
semi-group can be avoided. We briefly describe the arguments used in this case
restricting ourselves to the discrete spins and considering a generator

£r =Y B s — ) = Y ao)ns

K3

with
1

ci(o) =
1467 i

and '
0if = f(e) - f(o).
Then, it is not hard to see that for any configuration (o, 7) such that o; < 5
for any 7 and any j € Z<,
ci(o) <cj(n) ifo;=n=-1

and
cj(0) 2 ¢j(n)  ifoj =mn; =+1.
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Thus, the more spins with state 41 will be contained in a given configuration,
the higher the probability that the Glauber dynamics will turn the spins into the
state 4+1. This heuristic can be characterized by the construction of a coupling

(see [86]) p’g’nl(d(r, o') of Pi(n) and Pi(n')( that is a probability measure on
the product space Q? with marginals P;(n) and P:(n')) such that, with p}""
probability one, if for any j € Z2, n; < 773», then

o) SolG)  Vie LA —as.

Also, one can construct a coupling r?’+’A of Pi(n) with the semi—grouthA”L(—}—l)@
HjeAc do ;=41 such that

ai(j) < o (4) Vj e Zd,pg’-hA —a.s.

Similarly, one can couple Pi(n), P:(n') and PtA’+(—|—1) ® HjeAc do,=41, the pro-
cess representing the last marginal then dominating the two others. In partic-
ular, for any ¢t > 0,

P,(c0 = +1)(n) < PMF (o0 = +1)(+1). (10.2.14)

This property is the key point to overcome the finite volume approximation of
Markov semi-groups.

Note that this kind of property also exists for continuous models when,
roughly speaking, the potential is convex (see [50]).

We shall use it to show that
Property 10.4 For any function f, any M € R, and all t > 1,
pH(Pf =t )2 <= MIA1

d
Proof : Let us first notice that, on the discrete set {—1,—}—1}% , the local
functions can be decomposed into sums of monomial functions of the type

f(ff): HUz’

i€X
for finite sets X C Z°.
For such a function, we have
1
W —pt )P = out @ pt(Pif(n) = Pf(n)

1 /

= Futeut(pl" (I] e:t) = [ ei())”

ieX i€X
< XYt @ ut(p" |oi(t) — ol(D)))?
i€X
= AXY ut et ()" [oi(t) # ol(t)])
1€X

< AXPut @ pt (el [oo(t) # ob(t)])
(10.2.15)
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with p?’nl a coupling between P;(n) and P;(n’). Here we used the invariance by
translation of u*. Therefore we only need to prove the estimate for f(o) = oq.
According to the last remark, we have for any finite cube A,

St © ut (17 oolt) # (1))

pt @ pt (] oo(t) # oh(t)])

pt @ pt (PMY (00 = +1)(+) — Pi(oo = +1)(n))
PMFoo(n) — ut Pioo
PtA’+0'o(+) — N+UO

29 (B (P (00) — Bf00)?)

20IA=mA) 4 Etoo ity (10.2.16)

1
2

+Efoo—putaog

INA

INA

where we used the definition of the spectral gap constant and introduced by
”force” the Gibbs measure Ef. Finally, let us recall that (see [27]), if A =
[_La L]2a

|[Efoo — utog| < et

Thus, by the estimate on the spectral gap inequality obtained in the last section,
yHBf—ptf)? < alx)? (62“2—8"“(”“ + e—L) . (10.2.17)

Optimizing on L, we take L = [M logt] for M € IR showing that we can find
a finite constant C'(M) so that

pHPS =t ) < CONIXPEM, (10.2.18)
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