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Abstract

The non linear filtering problem consists in computing the conditional distributions
of a Markov signal process given its noisy observations. The dynamical structure of such
distributions can be modelled by a measure valued dynamical Markov process. Several
random particle approximations were recently suggested to approximate recursively in
time the so-called non linear filtering equations. We present an interacting particle
system approach and we develop large deviations principles for the empirical measures
of the particle systems. We end this paper extending the results to an interacting
particle system approach which includes branchings.
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1 Introduction

1.1 Background and motivations

The non linear filtering problem consists in computing the conditional distribution of
a signal given its noisy observation. Roughly speaking, a basic model for non linear
filtering problems is to assume that the signal is a time inhomogeneous Markov process
X with observations Y described by

Yn = hn(Xn) + Vn (1)
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where hn are some continuous functions and Vn a noise, which we will assume inde-
pendent of the signal Xn.

It was proven in a general setting by Kunita [25] and Stettner [31] that the law of
Xn given the observations (Yp, p ≤ n) obeys the so-called non linear filtering equations.
Basically, if ηn denotes the law of Xn given (Yp, p ≤ n), these equations are of the form

ηn = φ(n, ηn−1) ∀n ≥ 1 η0 = η (2)

where η is the law of the initial signal and φ(n, .) an application on the space of prob-
ability measures on the state space of the signal. φ(n, .) depends on the observations
(Yp, p ≤ n), on the laws of (Vp, p ≤ n) and on the transition probability kernels of the
signal process ( see Lemma 3.1 for its complete description ).

The study of equations of type (2) is far from being straightforward. Such equations
also occur in Statistical Physics and Biology (see [12],[35] and references therein). In
these frameworks, the dynamical system (2) usually describes the time evolution of the
density profiles of McKean-Vlasov stochastic processes with mean field drift functions.
It was proposed by McKean and Vlasov to approximate the corresponding equations by
mean field interacting particle systems. A crucial practical advantage of this situation
is that the dynamical structure of the non linear stochastic process can be used in the
design of an interacting particle system in which the mean field drift is replaced by
a natural interaction function. Such models are called in Physics Masters equations
and/or weakly interacting particle systems. They are now well understood (see [2],
[11], [12],[21], [35], [36] and references therein). Under rather general assumptions, it
was shown that the particle density profile (that is the random empirical measures of
the particle systems) converges towards the solution of (2) as the number of particles
is going to infinity. As a consequence, propagation of chaos occurs. To specify the rate
of this convergence, large deviations properties and fluctuations were studied.

Among the most exciting developments in Non Linear Filtering Theory are those
centered around the recently established connection with interacting and branching
particle systems. In non linear filtering problems the dynamical system (2) describes
the time evolution of the conditional distribution of the internal states in dynamical
systems when partial observations are made. In contrast to the situation described
above the conditional distributions cannot be viewed as the law of a finite dimensional
stochastic process which incorporates a mean field drift. We therefore have to find
a new strategy to define an interacting particle system which will approximate the
desired distributions. In the last decade several different stochastic particle approxi-
mations were suggested to approximate the so-called non linear filtering equation. The
evolution of this rapidly developing area of research may be seen quite directly through
the following chain of papers [6],[8],[9],[10],[13], [15] and [20]. In [16] and [17], general
particle systems which include branching and non linear interactions were described.
The laws of the empirical measures of these systems were shown to converge weakly to
the desired conditional distribution as the number of particles is growing.
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Several practical problems which have been solved using these methods are given
in [5], [6], [13], [14], signal processing and GPS/INS integration.

In the current work we develop large deviations for some of the particle approxi-
mations studied in [16] and [17] in which the interaction function only depends on the
empirical measure of the system. Such results provide the exact speed of convergence
of the algorithms we consider until a finite given time. The study of their long time
behavior is a rather different subject which we will hopefully investigate in another
paper.

1.2 Description of the model; Statement of some results

To describe precisely our model, let us introduce some notations. The signal Xn at
time n will take its values into a Polish space E. E is endowed with a Borel σ-field
B(E). We denote by M1(E) the space of all probability measures on E furnished with
the weak topology. We recall that the weak topology is generated by the bounded
continuous functions. We will denote Cb(E) the space of these functions.

The particle system (Ω, Fn, (ξn)n≥0, P ) under study will be a Markov process with
state space EN , where N ≥ 1 is the size of the system. The N -tuple of elements of E,
i.e. the points of the set EN , are called particle systems and will be mostly denoted
by the letters x, z.
Our dynamical system is then described by

P (ξ0 ∈ dx) =
N∏

p=1

η0(dx
p) P (ξn ∈ dx/ ξn−1 = z) =

N∏

p=1

φ

⎛

⎝n,
1

N

N∑

q=1

δzq

⎞

⎠ (dxp)

(3)

where dx
def
= dx1 × . . . × dxN . Our goal is to prove large deviation principles for the

law of the empirical distribution of the N -particle system (3)

ηN (ξ[0,n]) =
1

N

N∑

i=1

δ(ξi0,...,ξin) (4)

which is a random measure on the path space Σn = En+1. Our results will then
basically be stated under the following form.
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Theorem 1.1 If the functions (φ(n, .))n≥1 are ”good enough” then we have that

ηN (ξ[0,n]) −−−−−−−−→
N → ∞

η[0,n]
def
= η0 ⊗ . . .⊗ ηn a.s. (5)

In addition

1. The law (Qn
N )N≥1 of ηN (ξ[0,n]) satisfies a large deviation principle (LDP)

with rate function In which reads

(a) In : Σn → [0,∞] has compact level sets, that is {In ≤ M} is a compact subset
of Σn.

(b) For any closed set C ⊂ M1(Σn)

lim sup
N→∞

1

N
logQn

N (C) ≤ − inf
C

In. (6)

(c) For any open set A ⊂ M1(Σn)

lim inf
N→∞

1

N
logQn

N (A) ≥ − inf
A

In. (7)

2. In has a unique minimizer which is η[0,n].

The LDP precise the rate of the convergence (5). Let us give an explicit upper bound
for this rate. To do so, let us introduce a metric d on M1(Σn) compatible with the
weak topology :

d(µ, ν)
def
=
∑

m≥1

2−(m+1) |µfm − νfm| (8)

where (fm)m≥1 is a suitable sequence of uniformly continuous functions uniformly
bounded by 1 (theorem 6.6 pp. 47, Parthasarathy [29]). We consider the function
Φn : M1(Σn) → M1(Σn) so that

Φn(µ) = η0 ⊗ φ(1, T0µ)⊗ . . .⊗ φ(n, Tn−1µ) (9)

where Tkµ, 0 ≤ k ≤ n, is the k-marginal of µ. Clearly,

d(Φn(µ), µ) = 0 ⇐⇒ µ = η[0,n].

We will see that, thanks to the large deviation results proved in section 2, under
appropriate assumptions, for any ϵ > 0 there exists N(ϵ) ≥ 1 so that

∀N ≥ N(ϵ) P
(
d(ηN (ξ[0,n]),Φn

(
ηN (ξ[0,n])

)
) > ϵ

)
≤ e−

N ϵ2

4 .

The crucial point is now to specify the assumptions needed on the φ(n, .)’s for such
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result to hold. Throughout this paper, we shall weaken these hypotheses as much as we
can in order to include as many examples encountered in non linear filtering problems
as possible.

The paper has the following structure:
We will derive in section 2 large deviation principles for the particle system (3)

keeping in mind to weaken the assumptions on the functions φ(n, .)’s as much as we
can in order to apply it to non linear filtering particle systems. In subsection 2.1,
we consider the empirical measure on path space. In subsection 2.2, we considerably
weaken the hypotheses needed in the latter and get large deviation principles for the
time marginals.

The applications of the large deviation results obtained in section 2 to non linear
filtering problems will be explored in section 3.

We end this paper with some generalizations of the former large deviation results
to some random particle approximations which includes branchings and interactions.

2 LDP for Interacting Particle Systems

Our interest is in large deviation results for the laws of the empirical measures as-
sociated to our interacting particle systems (3). The study of the minimizers of the
rate functions governing these large deviations will in turn provide convergence of the
empirical trajectories towards η[0,n] and an exponential speed for this convergence. A
general formulation for studying such problems was given by Varadhan in [38] and by
Azencott in [1]. More recent developments can be found in Deuschel-Stroock [19] and
Dembo-Zeitouni [18].

Our developments will be mainly based on Laplace method, Gärtner-Ellis and Baldi
theorem.

2.1 LDP for the Empirical Measures on the Path Space

In this section, we focus on the empirical trajectories ηN (ξ[0,n]) ∈ M1(Σn) defined
by (4) until a given finite time n ∈ IN. With these notations, we can rewrite the
law QN

n of ηN (ξ[0,n]) for our particle system (3) as the probability so that, for any
F ∈ Cb(M1(Σn)),

QN
n F =

∫

ΣN
n

F (ηN (x)) φ(n, Tn−1η
N (x))⊗N (dxn) . . . φ(1, T0η

N (x))⊗N (dx1) η
⊗N
0 (dx0)

where φ(k, µ)⊗N , 1 ≤ k ≤ n, µ ∈ M1(E), is the N -fold product of the measure φ(k, µ).

To prove large deviations for {QN
n , N ≥ 1} we will always assume that
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(A) : For any time n ≥ 1 there exists a probability of reference λn ∈ M1(E) such that

∀µ ∈ M1(E) φ(n, µ) ∼ λn.

This condition might seem difficult to check in general but in fact covers many typical
examples of non linear filtering problems ( see section 3 ). It is obvious that the situ-
ation becomes considerably more involved when dispensing with this assumption. As
we will see in section 2.2, it turns out that a continuity assumption on the functions
φ(n, .) is sufficient to obtain an inductive LDP for the time marginals.

The main simplification due to assumption (A) is that each law QN
n is equivalent

to the distribution RN
n ∈ M1(M1(E)) given by

RN
n F =

∫

ΣN
n

F (ηN (x)) λ⊗N
0 (dx0) . . . λ

⊗N
n (dxn)

for any F ∈ Cb(M1(Σn)), with the convention λ0 = η0. We notice that the latter
formula can be written in the form

RN
n F =

∫

ΣN
n

F (ηN (x)) R⊗N
n (dx) with Rn = λ0 ⊗ . . .⊗ λn

It is also easily seen that

dQN
n

dRN
n

= exp (NFn) RN
n − a.s. (10)

where Fn : M1(Σn) → IR is the function defined by

Fn(µ) =
n∑

k=1

∫

E
log

dφ(k, Tk−1µ)

dλk
dTkµ =

∫

Σn

log
dΦn(µ)

dRn
dµ (11)

with the notation of (9). In a first stage for analysis it is reasonable to suppose that

(B) For any time n ≥ 1 the function (µ, ν) →
∫

log
dφ(n, ν)

dλn
dµ is bounded continuous.

If I(µ|ν) denotes the relative entropy of µ with respect to ν, that is the function

I(µ|ν) =
{ ∫

log dµ
dν dµ if µ << ν

+∞ otherwise,
,

Sanov’s theorem and Varadhan’s lemma yields

Theorem 2.1 Under (A) and (B), {QN
n , N ≥ 1} satisfies a LDP with good rate

function
In(µ) = I(µ|Φn(µ)).

η[0,n] is the unique minimizer of In.
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Indeed, Fn is bounded continuous under (B) so that {QN
n , N ≥ 1} satisfies a LDP with

good rate function In = I(.|Rn) − Fn according to Sanov’s theorem and Varadhan’s
lemma ( see [19] for instance ). From the definition of I( |Rn) and Fn, it is obvious
that In is also given by In(µ) = I(µ|Φn(µ)) from which it is easily seen that

In(µ) = 0 ⇐⇒ µ = η[0,n].

At this point it is appropriate to address a deficiency in the preceding result. An
approximatively equivalent condition of (B) is given by the two following assumptions

(C0) For any time n ≥ 1,

(x, ν) → log
dφ(n, ν)

dλn
(x)

is uniformly continuous w.r.t. x and continuous w.r.t. ν.

(C) For any time n ≥ 1 there exists a non negative real number an so that

∀(x, ν) ∈ E ×M1(E) a−1
n ≤

dφ(n, ν)

dλn
(x) ≤ an

A clear disadvantage of condition (C) is that it is in general not satisfied when E is
not compact and in particular in many non linear filtering problems. Yet we are going
to see that this condition can be relaxed considerably. The relevance of the foregoing
results will be illustrated in section 3 when applied to non linear filtering problems.
It is now convenient to introduce some additional notations. For any M > 0 we note
ψM : IR → IR the cut-off function given by

ψM (x) =

{
x if |x| ≤ M,
sign(x)M if |x| > M,

and FM
n : M1(Σn) → IR the function

FM
n (µ) =

n∑

k=1

∫

E
ψM

(
log

dφ(k, Tk−1µ)

dλk

)
dTkµ.

Under (C0) , FM
n is bounded continuous ( beware here that this statement requires the

uniform continuity ( and not only the continuity ) property of hypothesis (C0). Next
conditions relax assumption (C).
(C1) For any time n ≥ 0 and ϵ > 0 there exists a function Ln;ϵ, Ln;ϵ(M) goes to infinity
when M goes to infinity, so that

RN
n

(
e−NFn1I(|Fn−FM

n |>ϵ)

)
≤ e−NLn,ϵ(M).
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(C2) For any time n ≥ 0 and for any A ∈ B(M1(Σn)) we have

lim
M→∞

inf
A

(
I(.|Rn)− FM

n

)
= inf

A
(I(.|Rn)− Fn) .

Let us describe the main result of this section

Theorem 2.2 Assume that the functions φ(n, .), n ≥ 1, satisfy conditions (A), (C0),
(C1) and (C2). Then, for any n ≥ 0, {QN

n : N ≥ 1} satisfies a LDP with good rate
function In.

The proof is based on the ideas of Azencott and Varadhan and amounts to replace the
functions Fn ( which are a priori nor bounded nor continuous ) by the functions FM

n

to get the LDP up to a small error ϵ in the rate function by (C1) and then pass to the
limit M → ∞ by (C2) to let finally ϵ ↓ 0. We leave the details to the reader.

Conditions (C1) and (C2) are hard to work with. In practice we will check the
following more elegant conditions

(D1) For any time n ≥ 1, there exists constants cn < ∞, αn > 1 such that

RN
n

(
eαnNFn

)
≤ ecnN (12)

and, for every ϵ > 0 there exists a function Ln,ϵ, Ln;ϵ(M) goes to infinity when M goes
to infinity, so that

RN
n

(
|Fn − FM

n | > ϵ
)
≤ e−NLn,ϵ(M). (13)

(D2) For any time n ≥ 1, there exists constants δn > 0 Cn < ∞, Dn < ∞ and a
function ϵn, ϵn(M) is going to zero when M is going to infinity, such that for any
µ ∈ M1(Σn) and M ∈ IR ∪ {∞}

I(µ|Rn)− FM
n (µ) ≥ δn I(µ|Rn)− Cn

|Fn(µ)− FM
n (µ)| ≤ ϵn(M) (I(µ|Rn) +Dn)

Using Hölder’s inequality it can be checked directly that (D1) ⇒ (C1). On the other
hand, for any A ∈ B(M1(Σn)) and any integer number L we have

inf
A
{I(.|Rn)−FM

n } = inf

{

inf
A∩{I(.|Rn)≤L}

{I(.|Rn)− FM
n }; inf

A∩{I(.|Rn)≥L}
{I(.|Rn)− FM

n }
}

.

(14)
Let us first assume that infA In < ∞. Then, the second assumption of (D2) yields
∣∣∣∣∣ inf
A∩{I(.|Rn)≤L}

{I(.|Rn)− FM
n }− inf

A∩{I(.|Rn)≤L}
{I(.|Rn)− Fn}

∣∣∣∣∣ ≤ ϵn(M)(L+Dn). (15)
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On the other hand, the first assumption shows that, uniformly in M ,

inf
A∩{I(.|Rn)≥L}

{I(.|Rn)− FM
n } ≥ δnL− Cn.

Thus, for L and M large enough, it is clear that (14) implies

inf
A
{I(.|Rn)− FM

n } = inf
A∩{I(.|Rn)≤L}

{I(.|Rn)− FM
n }, inf

A
In = inf

A∩{I(.|Rn)≤L}
In

and therefore
∣∣∣∣infA

{I(.|Rn)− FM
n }− inf

A
{I(.|Rn)− Fn}

∣∣∣∣ ≤ ϵn(M)(L +Dn).

Also, if infA In = +∞, infA∩{I(.|Rn)≤L} In = +∞ for any integer number L and there-
fore (15) gives, for any integer number L,

inf
A
{I(.|Rn)− FM

n } = inf
A∩{I(.|Rn)≥L}

{I(.|Rn)− FM
n } ≥ δnL− Cn.

Letting L going to infinity implies

inf
A
{I(.|Rn)− FM

n } = +∞ = inf
A

In

which completes the proof of (D2) ⇒ (C2).
We end this section with an example of how the preceding theorem can be applied.
This corollary will be one of the key tools used in most of the applications of our results
to non linear filtering problems (cf section 3). It is quite remarkable that the weakening
of condition (B) is compensated by an exponential moment condition.

Corollary 2.3 Suppose the functions φ(n, .), n ≥ 1, satisfy (A) and (C0) and that
for any 1 ≤ k ≤ n, x ∈ E and µ ∈ M1(E)

∣∣∣∣log
dφ(k, µ)

dλk
(x)

∣∣∣∣ ≤ ϕ(x) + µ(ψ) (16)

for some non negative and B(E)-measurable functions ϕ and ψ. In addition, assume
that there exists constants α,β ∈]1,∞] and ϵ > 0 such that 1

α + 1
β < 1 and for any

1 ≤ k ≤ n ∫
exp (αϕ1+ϵ) dλk ∨

∫
exp (βψ1+ϵ) dλk < ∞ (17)

Then, {QN
n : N ≥ 1} satisfies the LDP with good rate function In.

Proof:
Recalling our discussion preceding the corollary we only have to check that (17) implies
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(D1) and (D2). For any n ≥ 1, choose and fix constants α,β > 1 and ϵ > 0 so that
(17) is satisfied. Define p, q > 1 and δ > 1 by

1

δ
=

1

α
+

1

β

1

p
= 1−

δ

β

1

q
= 1−

1

p

Let us now state some useful bounds which are needed in the sequel. From (16) we
find that for any µ ∈ M1(Σn) and n ≥ 1

|Fn(µ)| ∨ |FM
n (µ)| ≤

n∑

k=0

Tkµ(φ+ ψ) (18)

and

|Fn(µ)− FM
n (µ)| ≤

(
2

M

)ϵ n∑

k=0

Tkµ(φ
1+ϵ + ψ1+ϵ) (19)

The last inequality is a clear consequence of Hölder’s inequality and the fact that
(a+ b)1+ϵ ≤ 2ϵ(a1+ϵ + b1+ϵ) for any a, b ≥ 0 and |ψM (x)− x| ≤ |x| 1|x|>M .
Let us now establish the moment condition (12). Using (18) we have

1

N
logRN

n (eδNFn) ≤
n∑

k=0

log
∫

exp (δ(ϕ + ψ)) dλk

using Hölder’s inequality this shows that RN
n (eδNFn) ≤ exp (NCn) with

Cn =
n∑

k=0

log
{∫

exp (αϕ) dλk ∨
∫

exp (βψ) dλk

}

On the other hand we see from (19) that, for any positive δ,

RN
n (|Fn − FM

n | > δ) ≤ RN
n

({

µ :
n∑

k=0

Tkµ(φ
1+ϵ + ψ1+ϵ) >

(
M

2

)ϵ

ϵ

})

≤ exp (−Nδ2−ϵM ϵ)

(
n∏

k=0

∫
exp (φ1+ϵ + ψ1+ϵ)dλk

)N

Again using Hölder’s inequality and recalling that α > p and β > q one concludes

1

N
logRN

n (|Fn − FM
n | > δ) ≤ −Ln,δ(M)

with

Ln,δ(M) = δ2−ϵM ϵ −
n∑

k=0

log
(∫

exp (αϕ1+ϵ) dλk ∨
∫

exp (βψ1+ϵ) dλk

)
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Now we proceed to the proof of (D2). Taking into consideration the inequality (18) we
have for any µ ∈ M1(Σn) and M < ∞

|FM
n (µ)| ≤ µ(θn) with θn(x0, . . . , xn) =

n∑

k=0

ϕ(xk) + ψ(xk).

Using the well known property of the relative entropy

I(µ|ν) = sup
V ∈Cb(X )

(
µ(V )− ν(eV )

)
(20)

and the monotone convergence theorem it follows that

δ|FM
n (µ)| ≤ I(µ|Rn) + log

∫
exp (δθn) dRn.

Thus, we arrive at

I(µ|Rn)− FM
n (µ) ≥

(
1−

1

δ

)
I(µ|Rn)−

1

δ

n∑

k=0

log
∫

exp (δ(ϕ + ψ))dλk.

Now, by a further use of Hölder’s inequality one gets

I(µ|Rn)− FM
n (µ) ≥

(
1−

1

δ

)
I(µ|Rn)− C

with

C =
n∑

k=0

log
(∫

exp (αϕ)dλk ∨
∫

exp (βψ)dλk

)
.

By a method similar to that used above one can also establish that for any µ ∈ M1(Σn)

|Fn(µ)− FM
n (µ)| ≤

(
2

M

)ϵ

(I(µ|Rn) +D)

with

D =
n∑

k=0

log
(∫

exp (αϕ1+ϵ)dλk ∨
∫

exp (βψ1+ϵ)dλk

)
.

This ends the proof.

Before closing this section we examine how theorem 2.2 makes it possible to esti-
mate in a simple way the probability of the events Bn,ϵ := {µ : d(µ,Φn(µ)) < ϵ},
ϵ > 0. Under (C0), µ → Φn(µ) is continuous so that Bn,ϵ is open for the weak topol-
ogy. Recalling that d(µ,Φn(µ))) = 0 iff µ = η[0,n], we see that this event is an open
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neighborhood of η[0,n]. If we denote ∥.∥TV denotes the total variation norm then using
the well known inequalities

d(µ,Φn(µ)) ≤ ∥µ − Φn(µ)∥TV ≤ (2 I(µ|Φn(µ)))
1/2

and the large deviation upper bound one concludes that

lim sup
N→∞

1

N
logQN

n ({µ : d(µ,Φn(µ)) ≥ ϵ}) ≤ −
ϵ2

2

It follows that there exists N(ϵ) ≥ 1 such that for any N ≥ N(ϵ)

QN
n ({µ : d(µ,Φn (µ)) < ϵ) ≥ 1− exp−(

N ϵ2

4
)

2.2 LDP for the Particles Density Profiles

The large deviations results presented in section 2.1 rely entirely on the existence of a
family of reference distributions {λn : n ≥ 1} satisfying condition (A) and therefore
does not apply to some filtering problems (see section 3). To remove this assumption
we shall be dealing with the law PN

n , n ≥ 0, N ≥ 1, of the particle density profiles

ηN (ξn)
def
=

1

N

N∑

i=1

δξin .

We also can relax the continuity assumption (C0) into

(CW) : For any time n ≥ 1, φ(n, .) is continuous.

To insure an exponential tightness property we shall propose the following assump-
tion which is motivated for its applications in non linear filtering problems.
If, for any Markov transition M and any µ ∈ M1(E) we denote µM the probability so
that for any f ∈ Cb(E),

µMf =
∫

f(y)M(dy, x)µ(dx),

this hypothesis reads

(ET) : For any n ≥ 1, ϵ > 0 and for any Markov transition M on E, there exists
a Markov kernel M̃ and 0 < δ ≤ ϵ such that

µM̃(Ac) < δ =⇒ φ(n, µ)M(Ac) < ϵ

for any µ ∈ M1(E) and for any compact set A ⊂ E.
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Remark 2.4: Observe that condition (ET) holds if, for any n ≥ 1, there exists a Markov
transition Kn on E and a non negative constant c(n) so that

φ(n, µ)(Ac) ≤ c(n) µKn(A
c)

for any compact set A ⊂ E.

Proposition 2.5 Assume that condition (ET) holds. Then, for any L > 0 and n ≥ 0
we can find a compact set KL ⊂ M1(E) so that

P
(
ηN (ξn) ∈ Kc

L

)
≤ 4 e−N L (21)

Proof:

For every sequence of real numbers m = (ml)l≥1 satisfying liml→∞ml = ∞ and
ml ≥ 1 and, every sequence of compact subsets A = (Al)l≥1 of E we shall denote
C(A,m) the compact subset of M1(E) given by

C(A,m) = ∩l≥1G(Al,ml) G(Al,ml) =
{
ν ∈ M1(E) : ν(Ac

l ) ≤
1

ml

}
∀l ≥ 1

We shall need a modification of Azencott and Stroock lemma (see for instance lemma
6.13 pp. 125 [34]).

Lemma 2.6 For any L < ∞ and for any sequence of real numbers m = (ml)l≥1

satisfying liml→∞ml = ∞ and ml ≥ 1, l ≥ 1, there exists a sequence of real numbers
m̃ = (m̃l)l≥1 so that m̃l ≥ ml for any l ≥ 1, and

µM ∈ C(A, m̃) =⇒ µ⊗N

(
1

N

N∑

i=1

δxiM ∈ C(A,m)c
)

≤ 2 exp (−NL)

for any µ ∈ M1(E), any Markov transition M on E, any sequence of compact sets
A = (Al)l≥1 and any N ≥ 1.

Using this lemma we see that for any

• N ≥ 1,

• Markov kernel M on E,

• sequence of compact sets A = (Al)l≥1,

• sequence of real numbers m(0) = (ml(0))l≥1 satisfying

lim
l→∞

ml(0) = ∞ and ml(0) ≥ 1 ∀l ≥ 1

13



we have

P
(
ηN (ξn)M ∈ C(A,m(0))c

)

≤ P
(
{ηN (ξn)M ∈ C(A,m(0))c} ∩ {φ(n, ηN (ξn−1))M ∈ C(A,m(0))}

)

+P
(
φ(n, ηN (ξn−1))M ∈ C(A,m(0))c

)

≤ 2 e−N (n+1) L + P
(
φ(n, ηN (ξn−1))M ∈ C(A,m(0))c

)

for any sequence of real numbers m(0) = (ml(0))l≥1 chosen according to lemma 2.6.
Hence, using (ET) there exists a sequence of real numbers m(1) = (ml(1))l≥1 satisfying
ml(1) ≥ ml(0) for any l ≥ 1 and a Markov transition M! so that

P
(
ηN (ξn)M ∈ C(A,m(0))c

)
≤ 2 e−N (n+1) L + P

(
ηN (ξn−1)M1 ∈ C(A,m(1))c

)
(22)

Using repeatedly (22) one concludes

P
(
ηN (ξn) ∈ C(A,m(0))c

)
≤ 2

n−1∑

k=0

e−NL(n+1−k) + P
(
ηN (ξ0)Mn ∈ C(A,m(n))c

)

(23)
for some sequence of real numbers m(n) = (ml(n))l≥1 and a Markov transition Mn.
Since E is separable and complete η0M1 . . .Mn is tight. Then, for any sequence or
real numbers m̃ = (m̃l)l≥1 satisfying liml→∞m̃l = ∞ one can choose the sequence of
compact sets A = (Al)l≥1 so that

η0Mn ∈ C(A, m̃)

Using lemma 2.6 it follows that

P
(
ηN (ξ0)Mn ∈ C(A,m(n))c

)
≤ 2 e−NL

which, plugged in (23), gives a compact set KL = C(A,m(0)) ⊂ M1(E) such that

P
(
ηN (ξn) ∈ C(A,m(0))c

)
≤ 4 e−N L.

We are now in position to state the main result of this section

Theorem 2.7 Assume that conditions (CW) and (ET) hold. Then, for any n ≥ 1,
{PN

n : N ≥ 1} obeys a large deviation principle with good rate function Hn given by
{

Hn(µ) = inf
ν
{I (µ|φ(n, ν)) +Hn−1(ν)} n ≥ 1

H0(µ) = I(µ|η0)

In addition Hn(µ) = 0 iff µ = ηn, for any n ≥ 1.

14



Proof:
Hereafter we shall denote for n ≥ 1, ν1, · · · , νn ∈ M1(E)n, ν̄n = νn ⊗ · · · ⊗ ν1 and
Ψ(n, ν̄n−1) = φ(n, νn−1)⊗ · · ·⊗ φ(1, ν1)⊗ η0 ∈ M1(En).

Let us first show that Hn is a good rate function. Indeed, it is clearly non negative.
Moreover, by induction one finds that

Hn(µ) = inf
νn−1,···ν1∈M1(E)n−1

{I(µ ⊗ ν̄n−1|Ψ(n, ν̄n−1))}.

But, (µ, ν̄n−1) → I(µ ⊗ ν̄n−1|Ψ(n, ν̄n−1)) is a lower semi-continuous function since it
can be obtained as a supremum of continuous functions by the formula

I(µ⊗ ν̄n−1|Φ(n, ν̄n−1)) = sup
V ∈Cb(En)

{
∫

V dµ ⊗ ν̄n−1 − log
∫

eV dΨ(n, ν̄n−1)}

where we have observed that the last term in the above supremum is continuous by
assumption (CW). Hence, I is lower semi-continuous and since Hn is obtained by
contraction over the last marginal, so is Hn. The fact that Hn has compact level sets
with be a consequence of the exponential tightness assumed here and the proof of the
weak large deviation principle below (see Dembo-Zeitouni, Lemma 1.2.18). Finally, it
is clear that Hn admits ηn as a unique minimizer since I(µ⊗ ν̄n−1|Ψ(n, ν̄n−1)) vanishes
only at ηn ⊗ · · ·⊗ η0.

Let us now turn to the proof of the large deviation upper bound. We shall obtain
in fact a LDUB for the process (ηN (ξn), · · · , ηN (ξ0)) ∈ M1(E)n+1 with rate function
In+1(µ) = I(µ|Ψ(n + 1, µ̄n)). To this end we proceed by induction on the parameter
n ≥ 0. Consider first the case n = 0. The particle system ξ0 = (ξ10 , . . . , ξ

N
0 ) consists of

N i.i.d. variables with common law η0. Thus Sanov’s theorem tells us that the family
{PN

0 : N ≥ 1} obeys a LDUB with rate function H0(µ) = I(µ|η0). Assume that
{PN

n−1 : N ≥ 1} obeys a LDUB with rate function In−1 for some n ≥ 1.

To prove the result at time n, observe first that Proposition 2.5 insures that the
law of (ηN (ξn), · · · , ηN (ξ0)) is exponentially tight so that it is sufficient to prove the
weak large deviation upper bound.

Applying Chebyshev’s inequality, we conclude that for any µ1, · · · , µn−1 ∈ M1(E)n,
any V ∈ Cb(E), any δ > 0,

P
(
1d(ηN (ξj),µj)≤δ,1≤j≤n

)

= P
(
1d(ηN (ξj),µj)≤δ,1≤j≤n−1φ(n, η

N (ξn−1))
⊗N

(
eN
∫

V dηN (ξn)−N
∫

V dηN (ξn)
))

≤ e−N
∫

V dµn+Nϵ(δ)P
(
1d(ηN (ξj),µj)≤δ,1≤j≤n−1e

N log φ(n,ηN (ξn−1)(eV )
)

(24)

where ϵ(δ) is a function going to zero with δ.
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Now, for any bounded continuous function V on E, any µ0, · · · , µn−1 ∈ M1(E),

lim sup
δ→0

lim sup
N→∞

1

N
log P

(
1d(ηN (ξj),µj)≤δ,1≤j≤n−1e

N
∫

V dηN (ξn)
)

= lim sup
δ→0

lim sup
N→∞

1

N
log P

(
1d(ηN (ξj),µj)≤δ,1≤j≤n−1e

N log φ(n,ηN (ξn−1))(eV )
)

≤ − lim inf
δ→0

inf{In−1(ν̄n−1)− log φ(n, νn−1)(e
V ), d(νj , µj) ≤ δ, 1 ≤ j ≤ n− 1}

= −In−1(µ̄n−1)− log φ(n, µn−1)(e
V ) (25)

where we have used in the last line our induction hypothesis and the fact that µ →
log φ(n, µ)(eV ) is continuous to apply Laplace’s method. Taking the limit N going to
infinity and then δ to zero, we find, thanks to our induction hypothesis, (24) and (25),
that

lim sup
δ→0

lim sup
N→∞

1

N
logP

(
1d(ηN (ξj),µj)≤δ,1≤j≤n

)
≤ −

∫
V dµn+log φ(n, µn−1)(e

V )−In−1(µ̄n−1)

Taking the supremum over V and recalling that

I(µn|φ(n, µn−1)) = sup
V ∈Cb(E)

{
∫

V dµn − log φ(n, µn−1)(e
V )}

gives the weak large deviation upper bound with rate function
In−1(µ̄n−1) + I(µn|φ(n, µn−1)) = In(µ̄n) .

We finally obtain the large deviation upper bound for the law of ηN (ξn) for n ∈ IN
by the contraction principle.

Let us now turn to the lower bound. Again, we proceed by induction. At time
n = 0, Sanov’s theorem shows that the law of ηN (ξ0) satisfies a large deviation lower
bound with rate function H0(µ) = I(µ|η0). Let us assume that the result is true at
time n − 1, for some n ≥ 1. Let µ ∈ M1(E) be given. We need to prove that for any
δ > 0,

lim inf
N→∞

1

N
log P

(
d(ηN (ξn), µ) < δ

)
≥ −Hn(µ).

We can of course restrict ourselves to µ such that Hn(µ) < ∞. Let ϵ > 0 be given and
ν ∈ M1(E) such that

Hn(µ) ≥ I(µ|φ(n, ν)) +Hn−1(ν)− ϵ.
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A fortiori, since Hn(µ) < ∞ and Hn−1(ν) ≥ 0, I(µ|φ(n, ν)) ≤ Hn(µ) < ∞ so that µ
is absolutely continuous with respect to φ(n, ν), dµ = eV dφ(n, ν) with a measurable
function V such that

∫
eV dφ(n, ν) = 1.

Let us assume that V is bounded continuous. Then, for any δ′ > 0,

P
(
d(ηN (ξn), µ) < δ

)
≥ P

(
{d(ηN (ξn), µ) < δ} ∩ {d(ηN (ξn−1), ν) < δ′}

)

= P
(
1{d(ηN (ξn−1),ν)<δ′}φ(n, η

N (ξn−1))
⊗N

(
d(ηN (ξn), µ) < δ

))

≥ e−N
∫

V dµ+N log
∫

eV dφ(n,ν)−Nη

×P
(
1{d(ηN (ξn−1),ν)<δ′}φV (n, η

N (ξn−1))
⊗N

(
d(ηN (ξn), µ) < δ

))
(26)

where the last line is true for any η > 0 provided δ, δ′ are small enough (since we
assumed V bounded continuous) and we have used the notation

dφV (n, ν)(ξ) =
eV (ξ)dφ(n, ν)(ξ)∫

eV dφ(n, ν)
.

Now, for any given ν, the law of large numbers asserts that ηN (ξn) converges
towards φV (n, ν) almost surely under φV (n, ν)⊗N . Since ν → φ(n, ν) is continuous,
φV (n, ν ′) goes to φV (n, ν) = µ as ν ′ goes to ν. Hence, for any ν ′ such that {d(ν ′, ν) ≤ δ′}
with δ′ small enough,

lim
N→∞

φV (n, ν
′)⊗N

(
d(ηN (ξn), µ) < δ

)
= 1.

We deduce by bounded convergence theorem that for δ′ small enough,

lim
N→∞

P
(
1{d(ηN (ξn−1),ν)≤δ′}φ(n, η

N (ξn−1))⊗N
(
d(ηN (ξn), µ) ≤ δ

))

P (d(ηN (ξn−1), ν) < δ′)
= 1

Now, by our induction hypothesis,

lim inf
N→∞

1

N
log P

(
d(ηN (ξn−1), ν) < δ′

)
≥ −Hn−1(ν)

so that we obtain finally

lim inf
N→∞

1

N
log P

(
d(ηN (ξn−1), ν) ≤ δ′

)
≥ −Hn−1(ν)−N

∫
V dµ+N log

∫
eV dφ(n, ν)

= −Hn−1(ν)− I(µ|φ(n, ν)) ≥ −Hn(µ)− ϵ.

To deal with the general case, we remark that in exercise 6.2.20 of Dembo-Zeitouni, it
is shown that the continuous bounded away from zero and infinity densities are dense
in the level sets of the relative entropy

EL = {f ∈ L1(φ(n, ν)), f ≥ 0 φ(n, ν)a.s., I(f.dµ|φ(n, ν)) =
∫

f log fdφ(n, ν) ≤ L}

17



for any L ∈ IR+. Let µp = eVpdφ(n, ν), with bounded continuous functions Vp, be a
sequence in EHn(µ)−Hn−1(ν)+ϵ which converges to µ. For any δ > 0, for p large enough,

{α ∈ M1(E) : d(α, µp) <
δ

2
} ⊂ {α ∈ M1(E) : d(α, µ) < δ}

so that the previous result shows that

lim inf
N→∞

1

N
logP

(
{d(ηN (ξn−1), ν) ≤ δ′} ∩ {d(ηN (ξn), µ) ≤ δ}

)

≥ lim inf
N→∞

1

N
logP

(
{d(ηN (ξn−1), ν) ≤ δ′} ∩ {d(ηN (ξn), µp) ≤

δ

2
}
)

≥ −Hn−1(ν)− I(µp|φ(n, ν))
≥ −Hn(µ)− ϵ

where we have used in the last line the fact that µp ∈ EHn(µ)−Hn−1(ν)+ϵ. We can now
let ϵ going to zero to obtain the large deviation lower bound with rate Hn for the law
of ηN (ξn).

3 Applications to Non Linear Filtering

3.1 Introduction

The basic model for the general Non Linear Filtering problem consists of a time inho-
mogeneous Markov process X and a non linear observation Y with observation noise
V . Namely, let (X,Y ) be the Markov process taking values in E × IRd, d ≥ 1, and
defined by the system:

F(X/Y )

{
X = (Xn)n≥0

Yn = hn (Xn) + Vn n ≥ 0
(27)

where E is a locally compact and separable metric space, hn : E → IRd, d ≥ 1, are
bounded continuous functions and Vn are independent random variables with contin-
uous and positive density gn with respect to Lebesgue measure. The signal process X
that we consider is assumed to be a non-inhomogeneous and E-valued Markov process
with Feller transition probability kernel Kn, n ≥ 1, and initial probability measure ν,
on E. We will assume the observation noise V and X are independent.
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The classical filtering problem is concerned with estimating the distribution of Xn

conditionally to the observations up to time n. Namely,

πn(f)
def
= E(f(Xn)/Y0, . . . , Yn) (28)

for all f ∈ Cb(E). This problem has been extensively studied in the literature and,
with the notable exception of the linear-Gaussian situation or wider classes of mod-
els (Bènes filters [3]) optimal filters have no finitely recursive solution (Chaleyat-
Maurel/Michel [7]). Although Kalman filtering ([23],[26]) is a popular tool in handling
estimation problems its optimality heavily depends on linearity. When used for non
linear filtering (Extended Kalman Filter) its performance relies on and is limited by
the linearizations performed on the concerned model. The interacting particle systems
approach developed hereafter can be seen as a non linear filtering method which dis-
cards linearizations. More precisely these techniques use the non linear system model
itself in order to solve the filtering problem. The problem of assessing the distributions
(28) is of course related to that of recursively computing the conditional distributions
πn, n ≥ 0, which provides all statistical informations about the states variables Xn

obtainable from the observations (Y0, . . . , Yn), n ≥ 0. For a detailed discussion of the
filtering problem the reader is referred to the pioneering paper of Stratonovich [33]
and to the more rigorous studies of Shiryaev [32] and Kallianpur-Striebel [24]. More
recent developments can be found in Ocone [27] and Pardoux [28]. Some collateral
readings such as Kunita [25], Stettner [31], Michel [7] will be helpful in appreciating
the relevance of our approximations.

3.2 Formulation of the Non Linear Filtering Problem

Let us introduce the filtering model in such a way that the techniques of section 2 can
be applied. To this end it is convenient to study the distribution of the state process
Xn conditionally on the observation up to time (n− 1). Namely,

ηnf
def
= E (f(Xn)/Y0, . . . , Yn−1) ∀n ≥ 0 ∀f ∈ Cb(E)

with the convention η0 = ν. The following result shows that the dynamics structure
of the conditional distributions ηn, n ≥ 0, can be viewed as a special case of (2).

Lemma 3.1 (Kunita [25],Stettner [31])
Given a fixed observation record Y=y, (ηn)n≥0 is solution of the M1(E)-valued dynam-
ical system

ηn+1 = φn+1(yn, ηn) n ≥ 0 η0 = ν (29)

where yn ∈ IRd is the current observation and φn is the continuous function given by

φn+1(yn, η) = ψn(yn, η)Kn+1 (30)

19



with

ψn(yn, η)f
def
=

∫
f(x) gn(yn, x) η(dx)
∫

gn(yn, z) η(dz)
∀f ∈ Cb(E), η ∈ M1(E)

The equation (29) is usually called the non linear filtering equation. Even if it looks
innocent, it can rarely be solved analytically and its solving requires extensive calcu-
lations. To obtain a computionnally feasible solution some kind of approximation is
needed.

We observe that the recursion (30) involves two separate mechanisms. Namely, the
first one

µ(dx) 4→
gn(Yn, x)∫

gn(Yn, z) µ(dz)
µ(dx)

updates the distribution given the current observation. The second one

µ 4→ µKn

does not depends on the current observation. It is usually called the prediction.

3.3 Interacting Particle Systems Approximations

Recalling the description (3), and using the fact that

φn+1

(

Yn,
1

N

N∑

i=1

δzi

)

=

(
N∑

i=1

gn(Yn, zi)∑N
j=1 gn(Yn, zi)

δzi

)

Kn+1 (31)

the N -particle system associated to (29) is defined by

PY (ξn+1 ∈ dx/ ξn = z) =
N∏

j=1

N∑

i=1

gn(Yn, zi)
∑N

j=1 gn(Yn, zi)
Kn+1(z

i, dxj)

Thus, we see that the particles move according the following rules

1. Updating: When the observation Yn = yn is received, each particle examines
the system of particles ξn = (ξ1n, . . . , ξ

N
n ) and chooses randomly a site ξin with

probability
gn(yn, ξ

i
n)∑N

j=1 gn(yn, ξ
j
n)

2. Prediction: After the updating mechanism each particle evolves according the
transition probability kernel of the signal process.
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This particle approximation of the non linear filtering equation belongs to the
class of algorithms called genetic algorithms. These algorithms are based on the
genetic mechanisms which guide natural evolution: exploration/mutation and updat-
ing/selection. They were introduced by J.H. Holland [22] to handle global optimization
problems on a finite set.

3.4 Large Deviation for Interacting Particle Systems

In [17] we proposed some exponential bounds to prove that for a fixed observation
record Y=y, for every f ∈ Cb(E) and for every n ≥ 0, ηN (ξn)f converges P − a.s. to
ηnf as the size N of the systems is growing.
Our aim is now to show how the LDP developed in section 2 can be applied to obtain
the exact exponential rate of convergence of our random particle approximation.
We will use the following assumptions

(H0) : For any time n ≥ 1, Kn is Feller so that µ → µKn is continuous for the
weak topology. For any time n ≥ 0, hn is bounded continuous and gn is a positive
continuous function.

(H1) : For any time 1 ≤ k ≤ n there exists a reference probability measure λk ∈ M1(E),
α > 1, ϵ > 0 and a B(E)-measurable function ϕ so that

δxKk ∼ λk

In addition z → log dδxKk
dλk

(z) is Lipschitz, uniformly on the parameter x such that

∣∣∣∣log
dδxKk

dλk
(z)

∣∣∣∣ ≤ ϕ(z) and
∫

exp (αϕ1+ϵ) dλk < ∞ (32)

Let the condition (H0) be satisfied. Then, it is not hard to see that there exists positive
functions an : IRd → IR+ such that

an(y)
−1 ≤ gn(y, x) ≤ an(y) ∀(y, x) ∈ IRd × E (33)

We conclude that for any observation record Y = y, (φn+1(yn, .), n ≥ 0) satisfies (C).
Moreover, for any B(E)-measurable function f : E → IR+ and for every n ≥ 0, y ∈ IRd

and µ ∈ M1(E) we have

an(y)
−2 µKn+1f ≤ φn+1(y, µ)f ≤ an(y)

2 µKn+1f

Therefore one concludes easily that under (H0) theorem 2.7 applies without further
work. More precisely we have proved the following proposition
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Proposition 3.2 Assume that condition (H0) holds. Then, for any observation record
Y = y and n ≥ 0, the laws {PN

n : N ≥ 1}, of the particle density profiles

ηN (ξn) =
1

N

N∑

i=1

δξin N ≥ 1

satisfy a LDP with rate function Hn given by

⎧
⎪⎨

⎪⎩
Hn(µ) = sup

V ∈Cb(E)

(

µ(V ) + inf
ν∈M1(E)

(
Hn−1(ν)− log (ψn−1(yn−1, ν)Kne

V )
))

n ≥ 1

H0(µ) = I(µ|ν)

Hn(µ) = 0 iff µ = ηn, for any n ≥ 0.

Under condition (H1) we now study LDP for the law QN
n , n ≥ 0, N ≥ 1, of the

empirical distribution on path space

ηN (ξ[1,n]) =
1

N

N∑

i=1

δ(ξi1,...,ξin)

We see from (32) and (H0) that for any 1 ≤ k ≤ n, y ∈ IRd, µ ∈ M1(E) and z ∈ E

∣∣∣∣log
dφk(y, µ)

dλk
(z)

∣∣∣∣ ≤ ϕ(z)

¿From this and corollary 2.3 we have

Proposition 3.3 Let (H0) and (H1) be satisfied. Then, for any observation record
Y = y, {QN

n : N ≥ 1} obeys a LDP with rate function In(µ) = I(µ|Ψn(µ)) where

Ψn(µ) = ν ⊗ ψ0(y0, T0µ)K1 ⊗ . . .⊗ ψn−1(yn−1, Tn−1µ)Kn

and Tkµ, 0 ≤ k ≤ n is the k-th marginal of a given probability measure µ.

Remark 3.4: To see the strength of the preceding propositions, let us first quote that
(H0) only depends on the functions gn and hn ; the LDP results stated in proposition 3.2
does not depend on the form of the Feller signal process X.
In contrast to the latter, the condition (H1) depends on the transitions Markov kernels
Kn, n ≥ 1. As the preceding proposition shows, so long as (H1) holds, the law of the
empirical measure on path space satisfies a LDP. Moreover, referring to the remarks
preceding section 3, the rate functions Hn, n ≥ 0, are smaller than the corresponding
contractions of the rate functions In, n ≥ 0.
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We now turn to some applications of these propositions.

Example 1 As a typical example of non linear filtering problem assume the functions
hn : E → IRd, n ≥ 1, are bounded continuous and the densities gn given by

gn(v) =
1

((2π)d|Rn|)1/2
exp (−

1

2
v′ R−1

n v)

where Rn is a d× d symmetric positive matrix. This correspond to the situation where
the observations are given by

Yn = hn(Xn) + Vn ∀n ≥ 1 (34)

where (Vn)n≥1 is a sequence of IRd-valued and independent random variables with Gaus-
sian densities.
After some easy manipulations one gets the bounds (33) with

log an(y) =
1

2
∥R−1

n ∥ ∥hn∥2 + ∥R−1
n ∥ ∥hn∥ ∥y∥

where ∥hn∥ = supx∈E |hn(x)| and ∥R−1
n ∥ is the spectral radius of R−1

n .

Let us now investigate assumption (H1) through the following example

Example 2 Suppose that E = IRm, m ≥ 1 and Kn, n ≥ 1 are given by

Kn(x, dz) =
1

((2π)m|Qn|)1/2
exp (−

1

2
(z − bn(x))

′ Q−1
n (z − bn(x)))

where Q is a m×m symmetric non negative matrix and bn : IRm → IRm is a bounded
continuous function. This correspond to the situation where the signal process is given
by

Xn = bn(Xn) +Wn ∀n ≥ 1 (35)

where (Wn)n≥1 is a sequence of IRm-valued and independent random variables with
Gaussian densities.
It is not difficult to check that (H1) is satisfied with

λn(dz) =
1

((2π)m|Qn|)1/2
exp (−

1

2
z′ Q−1

n z) dz.

Indeed, we then find out that

log
dδxKn

dλn
= const.− bn(x)

′Q−1
n z

which insures the Lipschitz property as well as the growth property with

ϕ(z) =
1

2
∥bn∥2∥Q−1

n ∥+ ∥Q−1
n ∥ ∥bn∥ |z| ∀z ∈ IR.
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Thus, the Gaussian example satisfies (H1). Let us notice that it does not satisfies
condition (B) ( or even (C)). We discuss this hypothesis below.

Example 3 Let us suppose that E = IR and

Kn(x, dz) =
1√
2π

e−
1
2 (z−bn(x))2 dz (36)

where bn : IR → IR is a bounded B(E)-measurable function such that bn(0) = 0 and
bn(1) = −1. Then, hypothesis (C) is not satisfied.
Suppose Kn satisfies (C) for some bounded function ϕ. Clearly there exists an abso-
lutely continuous probability measure with density pn such that

∀x, z ∈ IR c−1
n pn(z) ≤ e−

1
2 (z−bn(x))2 ≤ cn pn(z)

for some positive constant cn. Using the fact that bn(1) = −1 we obtain

lim
z→∞

pn(z)e
z2

2 = 0

On the other hand bn(0) = 0 implies pn(z)e
z2

2 ≥ c−1
n which is absurd.

In fact, the failure of hypothesis (C) is linked in general with the non compactness of
E.
We have already pointed out that proposition 3.3 is a refinement of proposition 3.2. To
be more precise the exponential moment condition (H1) allows us to prove a LDP for
the empirical measure on the path space. Now, it is natural to examine some examples
where the condition (H1) is not met but still hypothesis (H0) is fulfilled.

Example 4 Let us suppose that E = IR and

Kn(x, dz) =

√
ϵn(x)

2π
exp

(
−
1

2
ϵn(x) z

2
)
dz

where ϵn : IR → IR is a continuous function such that

∀x ∈ IR ϵn(x) > 0 and lim
|x|→∞

ϵn(x) = 0.

It is not difficult to see that Kn satisfies (H0). On the other hand, let us assume
that Kn satisfies (H1) for some function ϕ. Since δxKn is absolutely continuous with
respect to Lebesgue measure for any x ∈ E, the probability measure λn described in
(H1) is absolutely continuous with respect to Lebesgue measure. Therefore, there exists
a probability density pn such that

∀x, z ∈ IR e−ϕ(z) pn(z) ≤
√
ϵn(x) exp

(
−
1

2
ϵn(x) z

2
)
≤ eϕ(z) pn(z).

Letting |x| → ∞ one gets e−ϕ(z)pn(z) = 0 for any z ∈ IR which is absurd since we also
assumed

∫
eϕ

1+ϵ(z)pn(z)dz < ∞.

24



Our interacting particle system approach is not restricted to non linear filtering problem
with Gaussian transitions Kn or with observations corrupted by Gaussian perturba-
tions. As a result we have a great freedom in the design and the physical construction
of the non linear filtering model.
It can be argued that in practice it is commonly assumed that the signal X and its
noisy observation Y are given by (35) and (34). Under such assumptions the synthesis
of the optimal filter is carried out recursively by the well known Kalman-Bucy filter.
More precisely, the conditional distributions are Gaussian and the structure of the op-
timal filter is determined by a recursion relation on the conditional means and on the
matrix of errors of observations.
In several practical problems the conditional distribution may have several different
modes and the conditional expectation is not meaningful. On the other hand the ob-
served signal process X has no reason to be “linear and Gaussian” and we have to find
a more realistic model.
We now present some examples of other kind of densities that can be handled in our
framework.

Example 5 Suppose that d = 1 and gn is a Cauchy density

gn(v) =
θn

π (v2 + θ2n)
θn > 0

In this situation the weight functions gn is given by

gn(y, x) =
y2 + θ2n

(y − hn(x))
2 + θ2n

∀(y, x) ∈ IR× E

Notice that
y2 + θ2n

y2 + θ2n + ∥hn∥2 + 2|y| ∥hn∥
≤ gn(y, x) ≤ 1 +

(
y

θn

)2

It follows that (33) holds with

an(y) = 1 +

((
y

θn

)2

∨
(|y|+ ∥hn∥)2

y2 + θ2n

)

Example 6 Suppose d = 1 and gn is a bilateral exponential density

gn(v) =
1

2
αn exp (−αn|v|) αn > 0

In this case the weight functions gn is given by

gn(y, x) = exp (αn (|y|− |y − hn(x)|))

Observe that

−∥hn∥ ≤ |y|− |y − hn(x)| ≤ ∥hn∥ ∀(y, x) ∈ IR× E

One concludes that (33) is satisfied with an(y) = exp (αn∥hn∥).
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Example 7 Suppose E = IR and Kn, n ≥ 1, are given by

Kn(x, dz) =
1

2
α exp (−α|z − b(x)|)dz α > 0 b ∈ Cb(IR)

This corresponds to the situation where the signal process X is given by

Xn = b(Xn−1) +Wn n ≥ 1

where (Wn)n≥1 is a sequence of IRm-valued and independent random variables with
bilateral exponential densities. Note that Kn may be written

Kn(x, dz) =
1

2
α exp (α(|z| − |z − b(x)|)) λn(dz) with λn(dz) =

1

2
α exp (−α|z|) dz

It follows that (H1) holds since | log δxKn

dλn
(z)| has Lipschitz norm 2α+ α∥b∥.

3.5 Large Deviations for Interacting and Branching Par-

ticle Systems

The interacting particle system approach described previously is the crudest of the
random particle methods introduced in [17]. The goal of this section is to study large
deviation of the particle density profiles associated to a branching refinement method.
As we shall see this algorithm is a clear extension of the genetic type algorithm de-
scribed in section 3.3.
The description of the branching particle particle system under study first appears
in [17]. It differs from the branching particle algorithms introduced by Crisan and
Lyons in [8], [9] and [10]. Intuitively speaking, our branching approach consists in
introducing at each mutations a fixed number of auxiliary branching particles but at
the end of the selection mechanism most of them are killed. Several numerical inves-
tigations have revealed that a clear benefit can be obtained by introducing auxiliary
branching particles. In [17] we proved that the corresponding particle density profiles
weakly converge to the desired conditional distribution as the size of the system is
growing but we let open the question whether or not much loss of performance is in-
curred by one of these algorithms.
The main purpose of this section is to study the LDP associated to such approxima-
tions and to compare its rate function with the rate function Hn which governs the
LDP associated to the interacting particle approach described in 3.3.
From such constructions we will show that its rate function is greater than the rate
function Hn.

Let us describe our new process. Let Y = y be a given sequence of observation records.
The idea is to replace the Mutation/Prediction transition by a branching mechanism.
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Namely, the system of particle is now described by the following Markov model

P[y](ζ0 ∈ dz) =
N1∏

p1=1

N2∏

p2=1

ν(dzp1,p2)

P[y](ζ̂n ∈ dx/ ζn = z) =
N1∏

p1=1

N1,N2∑

i1,i2=1

gn(yn, z
i1,i2)

∑N1,N2
j1,j2=1 gn(yn, zj1,j2)

δzi1,i2 (dx
p1)

P[y](ζn+1 ∈ dz/ζ̂n = x) =
N1∏

p1=1

N2∏

p2=1

Kn+1(x
p1 , dzp1,p2)

where dx (resp. dz) is an infinitesimal neighborhood of x = (x1, . . . , xN1) and z =
(zi1,i2)1≤i1≤N1,1≤i2≤N2 . Note that

φn+1

(
yn, η

N1,N2(ζn)
)
=

⎛

⎝
N1,N2∑

i1,i2=1

gn(yn, ζ
i1,i2
n )

∑N1,N2
j1,j2=1 gn(yn, ζ

j1,j2
n )

δ
ζ
i1,i2
n

⎞

⎠Kn+1

and

P[y](ζ̂n ∈ dx/ ζn = z) =
N1∏

p1=1

N1∑

i1=1

∑N2
k2=1 gn(yn, z

i1,k2)
∑N1,N2

j1,j2=1 gn(yn, z
j1,j2)

N2∑

i2=1

gn(yn, z
i1,i2)

∑N2
k2=1 gn(yn, z

i1,k2)
δzi1,i2 (dx

p1)

(37)
The evolution in time of the particle systems is now described as follows :

1. At the time n = 0 :
The particle system ζ0 =

(
ζ i1,i20 ; 1 ≤ i1 ≤ N2, 1 ≤ i2 ≤ N2

)
consists of N1N2

i.i.d. variables with the same distribution ν.

2. At the time n ≥ 1 :
At the time n, the particle system ζn =

(
ζ i1,i2n ; 1 ≤ i1 ≤ N1, 1 ≤ i2 ≤ N2

)
consists

of N1N2 particles.

(a) When the observation Yn = yn is received, each particle ζ̂ i1n , 1 ≤ i1 ≤ N1

chooses a sub-system of auxiliary particles (ζj1,1n , . . . , ζj1,N2
n ), 1 ≤ j1 ≤ N1,

at random with probability

∑N2
k=1 gn(yn, ζ

j1,k
n )

∑N1
i=1

∑N2
j=1 gn(yn, ζ

i,j
n )

and moves randomly to the site ζj1,j2n , 1 ≤ j2 ≤ N2, in the chosen sub-system
with probability

gn(yn, ζ
j1,j2
n )

∑N2
k=1 gn(yn, ζ

j1,k
n )

Therefore, the particle system ζ̂n consists of N1 particles.
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(b) In the branching mechanism each particle ζ̂ i1n , 1 ≤ i1 ≤ N1, branches inde-
pendently into a fixed number N2 of auxiliary i.i.d.particles with common
law Kn+1(ζ̂ i1n , .). Namely,

ζ̂ i1n ∈ E −−−−−−→ (ζ i1,1n+1, . . . , ζ
i1,N2
n+1 ) ∈ EN2 i.i.d. ∼ Kn+1(ζ̂

i1
n , .)

Therefore, at the time (n + 1) the particle system ζn+1 consists of N1N2

particles.

Remark 3.5: In view of the preceding description we see that the selection/updating
mechanism (a) is decomposed into two separate transitions. In the first one each
particle ζ̂ i1n , 1 ≤ i1 ≤ N1, chooses one of the N1 sub-systems

{(
ζj1,kn

)

1≤k≤N2
: 1 ≤ j1 ≤ N1

}

in accordance with the observation and the position of the N2 auxiliary particles.

When the sub-system
(
ζj1,kn

)

1≤k≤N2
, 1 ≤ j1 ≤ N1 is chosen the particle ζ̂ i1n moves

to a given site in this sub-system according to the distribution

N2∑

k=1

gn(yn, ζ
j1,k
n )

∑N2
l=1 gn(yn, ζ

j1,l
n )

δ
ζ
j1,k
n

We begin by noting that the latter transition can be written

gn(yn, x)
∫

gn(yn, z)
1

N2

N2∑

l=1

δ
ζ
j1,l
n

(dz)

1

N2

N2∑

k=1

δ
ζ
j1,k
n

(dx) (38)

By definition of the sub-system
(
ζj1,kn

)

1≤k≤N2
, with n ≥ 1, the empirical measure

1

N2

N2∑

k=1

δ
ζ
j1,k
n

(dx)

is a particle approximation of the probability measure Kn(ζ̂
j1
n−1, dx). Thus, intu-

itively speaking, (38) approximates

gn(yn, x)∫
gn(yn, z) Kn(ζ̂

j1
n−1, dz)

Kn(ζ̂
j1
n−1, dx)

which is the conditional distribution of Xn with respect to Yn = yn and Xn−1 =
ζ̂j1n−1. In other words the second transition in the mechanism (a) can be viewed as
a mutation for each particle in accordance with the observation. In this situation
we see that the particles track the unknown process by using mutations depending
on the observation records.
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Our next objective is to study large deviations upper bound for the laws PN1,N2
n of the

particle density profiles

ηN1,N2(ζn) =
1

N1N2

N1∑

i1=1

N2∑

i2=1

δ
ζ
i1,i2
n

The arguments are similar to those used to prove theorem 2.7. We will also work with
the condition (ET) page 12. If this condition takes place then, using the same line of
arguments as those used in the proof of proposition 2.5, one has the following result

Proposition 3.6 Assume that condition (H0) holds. Then for any L > 0, N2 ≥ 1
and n ≥ 0 we can find a compact set KL ⊂ M1(E) so that

P
(
ηN1,N2(ζn) ∈ Kc

L

)
≤ 4 e−N1 L. (39)

We state now the main result of this section

Theorem 3.7 Assume that (H0) and (H1) hold. Then, for any n ≥ 0 and N2 ≥ 1,
the family {PN1,N2

n : N1 ≥ 1} obeys a LDP with rate function HN2
n given by

⎧
⎪⎨

⎪⎩

HN2
n (µ) = supV ∈Cb(E)

(
µ(V ) + infη∈M1(E)

(
HN2

n−1(η)− logψn−1(yn−1, η)((Kne
V
N2 )N2)

))

HN2
0 (µ) = N2I(µ|ν).

Moreover, Hn ≤ HN2
n ≤ N2 Hn for any n ≥ 0, where Hn is the rate function introduced

in proposition 3.2.

Proof:
By definition of ζ0, for any N2 ≥ 1 {PN1,N2

0 : N1 ≥ 1} obeys a LDP with rate function

HN2
1 (µ) = sup

V ∈Cb(E)

(
µ(V )−N2 log ν

(
e

V
N2

))
= N2I(µ|ν)

Let us examine how to obtain a LDP at time n from a LDP at time (n− 1).
Assume that {PN1,N2

n−1 : N1 ≥ 1} obeys a LDP with rate function HN2
n−1(µ) for some

n ≥ 1.
By definition of the particle system ζn, one gets for every V ∈ Cb(E)

1

N1
logEy

(
exp

(
N1η

N1,N2(ζn)(V )
))

≤
1

N1
logEy

(
exp

(
N1F

N2
n (ηN1,N2(ζn−1))

))

with

FN2
n (η) = log

∫ (∫
e

V (z)
N2 Kn(x, dz)

)N2

ψn−1(yn−1, η)(dx)
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Under our assumptions we have FN2
n ∈ Cb(M1(E)). Thus, Varadhan’s lemma and the

induction hypothesis at rank (n− 1) imply that

lim
N1→∞

1

N1
logEy

(
exp

(
N1η

N1,N2(ζn)(V )
))

≤ ΛN2
n (V )

with
ΛN2
n (V )

def
= − inf

η∈M1(E)

(
HN2

n−1(η) − FN2
n (η)

)

Thus, according to Dembo-Zeitouni [18], for any N2 ≥ 1 the family of probability
measures {PN1,N2

n : N1 ≥ 1} obeys a LDP with rate function HN2
n with value at µ

inf
η∈M1(E)

(

HN2
n−1(η) + sup

V ∈Cb(E)

(

µ(V )− log
∫ (∫

e
V (z)
N2 Kn(x, dz)

)N2

ψn−1(yn−1, η)(dx)

))

A clear induction gives the last assertion. This completes the proof of the theorem.
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Probabilités de Saint Flour VIII-1978”, Edited by P.L. Hennequin. Lecture Notes
in Mathematics 774, Springer, Berlin, pp. 1-176.

[2] BEN AROUS, G., BRUNAUD, M. (1990). Methode de Laplace : Etude variation-
nelle des fluctuations de diffusions de type “champ moyen”. Stochastics 31-32,
79-144

[3] BENES B.E. (1981). Exact Finite-Dimensional Filters for Certain Diffusions with
Nonlinear Drift. Stochastics, Vol.5, pp 65-92.

[4] BILLINGSLEY P. (1968). Convergence of probability measures. Wiley, New York

[5] CARVALHO H. (1995), Filtrage optimal non linéaire du signal GPS NAVSTAR
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