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Abstract. We define matrix models that converge to the generating functions
of a wide variety of loop models with fugacity taken in sets with an accumu-
lation point. The latter can also be seen as moments of a non-commutative
law on a subfactor planar algebra. We apply this construction to compute the
generating functions of the Potts model on a random planar map.

1. Introduction

Loop models naturally appear in a wide variety of statistical models as the
boundaries of random regions. For example, it is well-known that the Potts
model on a planar map is equivalent to a loop model. This loop model can be
viewed as living on a 4-valent planar map, where the vertices, represented by
two nonintersecting strings, can be of two types depending on the shading of the
regions delimited by the strings: and . We are interested in summing

over all planar maps (in a sense that will be made precise below) obtained by
gluing these strings together while respecting the shading (i.e., making the planar
map bicolored).

In this paper, we consider such loop models where vertices can be chosen in a
much more general class. Let us consider the most basic case where the vertices
are given by Temperley–Lieb elements. A Temperley–Lieb element consists of
an outside box all of whose 2k boundary points are connected by non-crossing
strings inside of the box, with a boundary point marked by a ∗ on one side of
the boundary and a black-white shading so that two regions whose boundaries
intersect are shaded differently.
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∗

Clearly, as for the Potts model, given any family of Temperley–Lieb elements,
one can try to enumerate the number of connected planar diagrams that can be
built on them while respecting the shading.

In this paper we undertake to construct matrix models for such loop models.
More precisely, consider the real-valued functional given by

(1) trt(S) =
∞∑

n1,...,nk=0

k∏

i=1

tni

i

ni!

∑

P∈P (n1,...,nk,S)

δ# loops in P

where P (n1, . . . , nk, S) is the set of connected diagrams (tangles) built on

(1) ni Temperley–Lieb elements Si, 1 ≤ i ≤ k,
(2) one Temperley–Lieb element tangle S,

by joining their boundary points so that

(1) the diagram can be embedded in the sphere so that the strings do not
intersect,

(2) the shading is compatible in the sense that two boundary points can only
be matched by a string if the shading is the same on each side of the string
in both tangles.

Note that since each element of Temperley–Lieb algebra comes with a marked
boundary point, the sum runs over all possible matchings of these marked points
irrespective of symmetries. The loop parameter δ is often called fugacity.

We shall prove the following result.

Theorem 1. Let δ ∈ {2 cos(π
n
)}n≥3 ∪ [2,∞[ and let S, S1, . . . , Sk be k fixed

Temperley–Lieb elements. Then for ti, 1 ≤ i ≤ k, small enough real numbers,
trt can be built as a limit of matrix models.

Matrix models for loop models were already constructed in the physics litera-
ture in a wide variety of cases. In fact, for integer δ, the construction of the matrix
model follows from the seminal work of ’t Hooft [28] and Brézin–Itzykson–Parisi–
Zuber [5]. Indeed, these works have shown that the (formal) limits of traces of
words of random matrices can be interpreted as generating functions for planar
diagrams. This idea can be used for loop models by embedding Temperley–Lieb
elements into the set of polynomials in δ non-commutative variables. To con-
sider non-integer values of δ, we follow Jones’ idea to generalize this embedding
to non-commutative variables labeled by the edges of a bipartite graph, whose
adjacency matrix possesses the eigenvalue δ. In subfactor theory, this embedding
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corresponds to an embedding of a subfactor planar algebra into a graph planar
algebra. Note that similar constructions have been used for statistical lattice
models [27] and even for matrix models [21, 22, 23] in a somewhat similar (but
less general) construction than ours.

While this construction of trt allows to compute it in some cases, see section 3,
it is also a way to prove that trt is a tracial state on Temperley–Lieb algebra in
the following sense. Namely, let us denote by TLk,± the set of Temperley–Lieb
elements with k strings and ± = + (resp. −) if ∗ belongs to a white (resp. black)
region. If S ∈ TLk,+ and T ∈ TLn,+, we can define the product S ∧ T ∈ TLk+n,+

given by the tangle which puts the element of TLk,+ entirely to the left of the
element of TLn,+, see [12, Section 2].

∗
∧

∗
=

∗

An involution from TLn,+ into TLn,+ is defined by S∗ = ϕ(S) where ϕ is an
orientation-reversing diffeomorphism. We denote by Gr0(TL) the ∗-algebra gen-
erated by the above multiplication and involution. We then have the following
consequence of Theorem 1.

Corollary 2. Let δ ∈ {2 cos(π
n
)}n≥3 ∪ [2,∞[ and S1, . . . , Sk be fixed Temperley–

Lieb elements. Then for ti, 1 ≤ i ≤ k, small enough real numbers, trt is a tracial
state on Gr0(TL), that is for any S, T ∈ Gr0(TL)

trt (S ∧ T ) = trt (T ∧ S) , trt (SS∗) ≥ 0 .

In fact, it is possible to define trt on a wider class of algebras, namely the
so-called subfactor planar algebras. These algebras have the particularity that
their elements can be composed by means of planar diagrams (usually called in
this context planar tangles) so as to give a picture made of loops. It is therefore
the natural setting in which to pick the vertices of loop models. We shall define
subfactor planar algebras in the next section but the reader can meanwhile think
of them as the Temperley–Lieb algebra. In the case where t = 0, three of us
studied tr0 in such a generality. In [12], we defined the trace tr0 on an arbitrary
subfactor planar algebra. In the case where this subfactor planar algebra is just
the Temperley–Lieb algebra with fugacity δ,

tr0(S) =
∑

T∈TLn,ǫ

δ#loops in 〈S,T 〉

where 〈S, T 〉 is obtained by drawing the two Temperley–Lieb diagrams in front
of each other and joining their boundary points by straight lines, thus obtaining
a collection of loops.
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∗

∗

One of the results of [12] is that

Theorem 3. tr0 is a tracial state on any subfactor planar algebra, as a limit of
matrix models.

The fact that tr0 is a tracial state is not obvious but could also be derived by a
combinatorial approach in [20]; such an approach is not yet developed for trt, t 6=
0. We shall not study the properties of the von Neumann algebra associated to
trt by the GNS construction as in [12, 13] when t = 0 in this paper and leave this
question for future research.

Also in the case of a subfactor planar algebra, loops are assigned a fugacity δ
and the definition (1) of trt can be extended, with S, S1, . . . , Sk elements of this
algebra. We can not prove that trt is a tracial state in such a generality but
obtain the following result.

Theorem 4. Let P be a finite-depth subfactor planar algebra and let S1, . . . , Sk

be elements of P . Then, for t small enough, trt is a tracial state on P , as a limit
of matrix models.

We refer the reader to [26, 9, 19] for the definition of finite-depth subfactor
planar algebra. This class in any case includes any planar algebra with fugacity δ
in the set {2 cos(π

n
)}n≥3. However, our restriction is quite simple to understand.

As we already pointed out above, our construction relies on an embedding of the
subfactor planar algebra in a graph planar algebra. The finite depth condition
implies that the graph attached to this subfactor planar algebra is finite [19], and
as a result our random matrix construction requires only finitely many random
matrices. On the contrary, we need to be able to define the joint law of infinitely
many random matrices to construct the matrix model for infinite depth subfactor
planar algebra, which we can do only when we can prove that the correlations of
the matrices decay sufficiently fast. This is the case for Temperley–Lieb algebra
with fugacity δ ≥ 2 and the graph A∞, see section 2.5.2. Thus, Theorem 4 also
holds for this infinite depth planar algebra.
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We finally would like to mention that even though trt is not a state for other
values of the fugacity, it is tracial for a much wider range of parameters by analytic
continuation. Indeed, at least for small paramaters t, trt depends analytically on
δ. This remark is important as it allows to extend equalities (and in particular
formulas for trt or the traciality property) from a set with an accumulation point
such as δ ∈ {2 cos(π

n
)}n≥3 to all δ’s for the ti’s small enough. To simplify the

notations, we state (in Appendix A, Lemma 22) the following lemma.

Lemma 5. Let S, S1, . . . , Sk be elements of a planar algebra. For a positive real
number C, denote

BC = {(δ, t1, . . . , tk) ∈ C
k+1; max

1≤i≤k
|δti| < C}.

Then, for C small enough, the function

tr(S) : (δ, t) → trt(S) =

∞∑

n1,...,nk=0

nk∏

i=1

tni

i

ni!

∑

P∈P (n1,...,nk,S)

δ# loops in P

is well defined and analytic in BC.

We next consider two classical loop models, and show that we can indeed use
the matrix models we have constructed to compute partition functions of the loop
models. Since the fugacity can take its value at least in the set {2 cos(π/n)}n≥3,
this allows to determine these partition functions for any fugacity by analytic-
ity. The first model we consider one where the potential is constructed with
Temperley–Lieb elements with non nested strings and black inside (that is de-
pending only on a cup shaded black inside with the notations of [12])

In section 3.1, see Lemma 15, we identify the law of cup (the element made with
only one string and black inside) under trt as a probability measure minimizing
a certain entropy, whose Cauchy–Stieltjes functional can be computed.

The second model we consider is the one mentioned in the opening paragraph,
built on two Temperley–Lieb elements with two strings and opposite shading
S1 = and S2 = . We study the law of cup under trt:
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We show in section 3.3 that the generating function of cup under trt is related
with the Cauchy–Stieljes transform of an auxiliary model which shows up thanks
to the Hubbard–Stratonovitch transformation, see Proposition 16. We then solve
this auxiliary model based on the remark that it depends only on the eigenvalues
of the matrices involved. Therefore, standard large deviations techiques [2] can
be used and the asymptotics of this model are described by a variational formula,
see Proposition 17. We finally study the optimizer of this variational formula and
show that its Stieljes transform can, up to a reparametrization, be expressed as
a ratio of theta functions, see Proposition 20. We summarize below our main
results on the Potts model.

Theorem 6. Let trt be the tracial state built on the two TL elements S1 and S2

with two strings and opposite shading. Assume that t1, t2 are small enough. Let
Bn be the tangle with n non nested strings and black shading inside and put for
small γ

C(γ, A, B) =
∑

n≥0

γntrt(Bn).

• There exists an auxiliary probability measure ν+ on the real line so that

if we let M(z) =
∫ ∑

n≥0 znxndν+(x), γ(z) =
√

8t1z
1−z2M(z)

is invertible on a

neighborhood of the origin, with inverse z(γ), and

C(γ, A, B) =
αz(γ)

γ
M(z(γ)).

• There exists another auxiliary probability measure ν− on the real line so
that (ν+, ν−) is the unique minimizer of

∑

ǫ=±

(
1

2

∫
x2dνǫ(x) − Σ(νǫ)

)
+ δ

∫∫
log |1 + αx + βy|dν+(x)dν−(y)

with Σ the free entropy Σ(µ) =
∫∫

log |x − y|dµ(x)dµ(y).
• There exists a1 < a2 < b1 < b2 so that ν+ (resp. ν−) is supported on

[−a2/
√

8t1,−a1/
√

8t1] (resp. [(b1 − 1)/
√

8t2, (b2 − 1)/
√

8t2]). Moreover if
we set

u(z) :=
i

2

√
(b1 − a1)(b2 − a2)

∫ z

b2

dz′√
(z′ − a1)(z′ − a2)(z′ − b1)(z′ − b2)
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and let z(u) be its inverse,

ω+(u) =

∫
1

z(u) +
√

8t1x
dν+(x) =

1√
8t1

M(
z(u)√

8t1
),

then, if q is such that δ = q + q−1, q = eiπν,

ω+(u) =
1

q − q−1
[(ϕ+(u) − ϕ+(−u)) + R(z(u))]

with, if Θ is the theta function given by (34),

ϕ+(u) = c+
Θ(u − u∞ − 2νK)

Θ(u − u∞)
+ c−

Θ(u + u∞ − 2νK)

Θ(u + u∞)

and

R(z) =
2q

1 − q2

z√
8t1

+
q2 + 1

1 − q2

(z − 1)√
8t2

.

The constants a1, a2, b1, b2, u∞, C+, c−, K are defined by implicit equations.
If δ = 2 cos(π

n
), ν is an integer and ω+ satisfies an algebraic equation.

Whereas the matrix model for the first model is well-known, the matrix model
for the second one has only been solved in some special cases in the literature,
such as the O(n) model [8, 25, 24, 10, 4] which corresponds to the case where
the shading is neglected, that is t1 = t2. Moreover, matrix models are usually
provided for δ integer, whereas our approach allows a general construction of the
matrix model for all the values of δ above, a set which accumulates at 2. As
mentioned earlier, our construction is closely related to Pasquier’s [27], though
the latter is in a slightly different context, namely that of statistical models on
the square lattice (whereas there is no underlying lattice in our construction; it is
in some sense random). See also [21, 22, 23] for another application of Pasquier’s
construction in the context of matrix models. Moreover, the enumeration problem
corresponding to our second matrix model was recently considered in [3] in an
equivalent formulation, namely the Potts model; we shall comment on the exact
relation to our work in section 3.

2. From planar algebras to matrix models

In this section, we introduce the loop matrix models and prove Theorems 1 and
4. The matrix models depends on a bipartite graph which shows up in Jones’s
subfactor theory (see [19] and references therein). We first recall the definition
of a subfactor planar algebra and the construction of the planar algebra from a
bipartite graph. The example that the reader can keep in mind is the Temperley–
Lieb algebra.

We then define a family of random matrices associated to a bipartite graph
whose adjacency matrix has eigenvalue δ corresponding to some Perron-Frobenius
vector µ.
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We next consider the case of a finite graph and introduce the Gibbs measure
associated to trt and prove Theorem 4 for planar subalgebras of graph planar
algebras. Finally, we extend our construction to certain infinite graphs.

2.1. Planar algebras. We first recall some generalities on planar algebras. The
reader is referred to [17] or [12] for a more extensive introduction.

Recall [17] that a planar algebra is a collection of vector spaces P = {P±
k }

endowed with an action of planar tangles.
A planar tangle is a drawing consisting of an output disk D0 and some number

of input disks D1, . . . , Dk in the interior of D (k ≥ 0). Each disk has an even
number of marked boundary points. On each disk, one of the boundary segments
is marked and called the initial segment. The boundary points are joined by
strings drawn in the interior of D0 and outside all D1, . . . , Dk; in addition there
may be some number of closed strings not connected to any of the Di’s. All of
the strings are non-crossing. Lastly, some of the regions between the strings are
supposed to be shaded, so that each string lies between a shaded and an unshaded
region. Planar tangles can be composed by gluing the output disk of one tangle
into an input disk of another tangle so as to match up the initial segments. In
doing so, one must ensure that the numbers of boundary points and the shadings
match.

The main axiom of a planar algebra is the existence, for each tangle T with
disks D0, . . . , Dk as above, so that Dj has 2bj boundary points, of a multilinear
map MT : P σ1

b1
× · · · × P σn

bk
→ P σ0

b0
, where σj = + if the initial segment of

Dj is adjacent to a white region, and σj = − otherwise. The maps MT are
supposed to be compatible with the operation of composition of tangles and
invariant under isotopy. Moreover, the vector spaces {P±

k } are equipped with an
involution compatible with MT in the sense that MT (f ∗) = Mϕ(T )(ϕ◦f)∗ for any
orientation reversing diffeomorphism ϕ.

A subfactor planar algebra is a planar algebra so that dim(P σ
0 ) = 1. As a

consequence we can define a sesquilinear form on each P±
n by

〈A, B〉 = A B∗...∗ ∗

where the outside region is shaded according to ±. We also require that 〈 , 〉 is
positive definite and MT1 = MT2 where T1 and T2 are the following two 0-tangles:

T
∗

= T
∗



LOOP MODELS, RANDOM MATRICES AND PLANAR ALGEBRAS 9

Once P0,± have been identified with the scalars there is a canonical scalar δ
associated with a subfactor planar algebra with the property that the multilinear
map associated to any tangle containing a closed string is equal to δ times the
multilinear map of the same tangle with the closed string removed. By positivity
of the scalar product, δ has to be positive and in fact it is well-known that the
possible values of δ form the set {2 cos(π/n) : n = 3, 4, 5, . . .} ∪ [2,∞) [16].

2.1.1. Example 1: Temperley–Lieb algebra TL. It is not hard to see that the
Temperley–Lieb algebra is a planar algebra. Indeed, given a planar tangle T and
some elements B1, . . . , Bk ∈ TL one can glue these elements into the input disks
of T . Next, one can remove all closed strings by replacing each closed string by
the factor δ. What results is another TL tangle, which is the result of applying the
map MT to B1, . . . , Bk. Clearly, MT is invariant by isotopy and P±

0 has dimension
one. Finally, the canonical scalar product is positive definite according to [17].
One way to prove it is by verifying that the map of TL into a graph planar
algebra is a planar algebra map. It thus takes the canonical bilinear form on TL
to the canonical bilinear form on a graph planar algebra, where non-negativity
can be verified directly. We will write TL(δ) when we wish to emphasize the loop
parameter (fugacity) δ.

2.1.2. Example 2: The planar algebra of two stitched Temperley–Lieb algebras.
Later in the paper, we will use (in addition to the Temperley–Lieb algebra) the
stitched planar algebra P = TL(δ1) c TL(δ2). This will be needed in order to
realize the so-called O(n, m) model in physics.

The n-th graded component of Pn of P is given by

P±
n =

⊕

π

(TL c TL)±π

where the sum is over all partitions π of {1, 2, . . . , 2n} into two subsets of even
sizes 2(pπ) and 2(qπ) and (TL c TL)±π = TL±

pπ
⊗ TL±

qπ
. Graphically, one can

view Pn as the span of the collection of isotopy classes of tangles obtained by
superimposing an arbitrary TL tangle colored red with an arbitrary TL tangle
colored black, in such a way that the strings of the red and the black TL tangles
are allowed to only intersect transversally, and so that the resulting tangle has a
total of 2n boundary points (counted regardless of color). The partition π then
corresponds to the colorings of the boundary points of the resulting diagram. We
assume that the checkerboard coloring of the two superimposed TL diagrams are
retained and are independently superimposed.

The isotopies need not preserve the intersections of the red and black strings,
but must preserve the partition π. We also assume that one of the boundary
regions is marked “first” (it could be of either color). Two different isotopy
classes of diagrams, T and S, are presented below (black strings are indicated by
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solid lines and red by dotted lines, and the four possible shadings of regions are
indicated by , , , ):

T = = S =

The planar algebra structure of Pn is defined as follows. Given a planar tangle
T and diagrams A1, . . . , Ak in P, the result MT (A1, . . . , Ak) is obtained by gluing
the diagrams A1, . . . , Ak into the input disks of T and suming over all possible
ways of extending the colorings and shadings of the Ai’s to the resulting tangle.
The construction of P is a particular case of a more general construction P1

c P2,
which is possible for any pair of planar algebras P1,P2. This construction is
presented in Appendix C.

2.2. On the planar algebra of a graph. As in [12], we shall use the construc-
tion of planar algebras from bipartite graphs, as introduced in [18]. The key
ingredient here is the fact that every subfactor planar algebra (in particular, TL)
embeds into a graph planar algebra. This makes it possible to “coordinatize”
planar algebras.

We first fix notations.
Let Γ = (V, E) be a bipartite graph with vertices V = V− ∪ V+ so that any

edge is either from V+ to V− or V− to V+. We denote by E+ (resp. by E−) the set
of (oriented) edges starting in V+ (resp. V−). Thus E = E+ ∪ E−. We let µ be
a fixed Perron Frobenius eigenvector with eigenvalue δ for the adjacency matrix
of Γ. The vector µ has positive entries. If e ∈ E, we denote by eo the edge with
opposite orientation. We denote by L the set of loops on Γ, L+ (resp. L−) the
set of loops starting in V+ (resp. V−) (so L = L+ ∪ L−). We denote by L(v) the
set of loops starting at v ∈ V . We finally let P Γ = ∪n,±P Γ

n,± where P Γ
n,± is the

vector space of bounded functions on loops on Γ of length 2n starting and ending
in V+ for the plus sign and V− for the minus sign. In the following, s(e) (resp.
t(e)) is the starting (resp. target) vertex of an edge e (note that several edges
can have the same starting and ending points).

Example 7. Consider the graph with one vertex in V+, one vertex in V− and
n edges between them. In this case, δ = n is an integer, and the eigenvector µ
is identically equal to 1. The TL algebra embeds into the planar algebra of this
graph for integer fugacity δ.

We next describe the action of planar tangles on P Γ. Let T be a planar tangle
with k input disks and let L1, . . . , Lk be loops on Γ. To define the planar algebra
structure, we must exhibit MT (L1, . . . , Lk) as an element of the planar algebra,
i.e., we must prescribe its value on a loop L. The value

MT (L1, . . . , Lk)(L)



LOOP MODELS, RANDOM MATRICES AND PLANAR ALGEBRAS 11

is computed as follows. First, label the marked points on the input disks of
T with the edges comprising the loops L1, . . . , Lk, clockwise starting from the
marked vertex (and the beginning of Lj). Next, label the marked points on
the output disk of T with the edges of L, clockwise starting from the marked
vertex. As a result, we obtain a labeled tangle, and we’ll set MT (L1, . . . , Lk)(L)
equal to the value of this labeled tangle which we compute as follows. First, we
remove all closed loops in the tangle T (let us say, p loops total) and multiply
MT (L1, . . . , Lk)(L) by δp. We’ll again denote the tangle with removed interior
loops by T .

Next, we isotope the tangle in such a way that each input disk becomes a
rectangle whose top is horizontal, and so that all strings emanate from the top
(in this way, the marked initial segment comprises the sides and bottom of the
rectangle). Put

σ(e) =

√
µ(t(e))

µ(s(e))
, e ∈ E.

Then the value MT (L1, . . . , Lk)(L) is zero unless each string connects points which
are labeled by opposite edges. Otherwise,

(2) MT (L1, . . . , Lk) =
∏

strings s

σ(es)
−θs/π

where es is the start of s and θs =
∫

s
dθ is the total winding angle of the string

s. Here dθ stands for the 1-form ydx − xdy on the coordinate plane. (Note that
the choice of which edge is selected as the start of a string s is irrelevant: if s′ is
the string s traversed backwards, then we get a non-zero value for the tangle iff
es′ = eo

s; note that σ(eo) = σ(e)−1 and θs′ = −θs.)
We note the identities (thick lines indicate an arbitrary number of parallel

strings, e and f are two arbitrary edges, and x, y, z, w are arbitrary paths on
graphs so that xey and zfw are loops, and all planar algebra elements are ar-
ranged so that the marked initial segment is at top-left):

e f = δe=foσ(e)

x y z we f
= δe=foσ(e)σ(z)−1

x w z y

where σ(z) =
∏

σ(zj) if z = z1 . . . zl. (The last operation can be though of as
replacing the string connecting e and f by a “tunnel” joining the two planar
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algebra elements:

x y z w

followed by an isotopy “straightening” the resulting picture).
Using these operations, any labeled tangle can be simplified leaving only strings

connecting the outer disk to inner disks. Each of these remaining strings can be
removed by contributing a certain multiplicative factor according to (2).

2.2.1. Example 1 continued: Temperley–Lieb algebra inside the planar algebra of
a bipartite graph. A particular case of the planar algebra axiom is the natural
embedding from TL(k,±) into a linear span of loops, following [12]. Indeed,
Temperley–Lieb tangles are tangles with no input disks, and thus produce ele-
ments in any planar algebra.

Suppose that we are given a box B with 2k boundary points (arranged so
that all boundary points are at the top and ∗ is at position 0 from the top-left).
Assume also that there are k non-crossing curves inside B which connect pairs
of boundary points together. Let π be the associated non-crossing pairing. We
let LB be the set of loops in Γ so that w ∈ LB iff w = e1 · · · e2k with

• en = eo
ℓ if {n, ℓ} is a block of the partition π (which is denoted n

π∼ ℓ)
• s(e1) ∈ V+ (resp. in V−) if B ∈ TL(k, +) (resp. B ∈ TL(k,−)).

For e ∈ E, σ(e) :=
√

µ(t(e))
µ(s(e))

and for w ∈ LB, we define the weight

σB(w) = σ(ei1) · · ·σ(ein) if eik = eo
jk

whenever ik
π∼ jk and ik < jk,

We then associate to the Temperley–Lieb tangle B the element of wB ∈ P Γ

whose value on a loop L is zero unless L ∈ LB and for L ∈ LB,

wB(L) = MB(L) = σB(L).

To be consistent with [12] we denote by Gr0P
Γ the set of such linear combi-

nations in the linear span of L. B → MB is thus an algebra embedding from
Gr0(TL) into Gr0P

Γ.

2.2.2. Example 2 continued: The planar algebra of two stitched Temperley–Lieb
algebras realized inside a graph planar algebra. Let P = TL(δ1) c TL(δ2) as in
§2.1.2. We’ll realize P inside a graph planar algebra. Let Γr, Γb be two graphs so
that the associated planar algebras contain TL(δr) and TL(δb), respectively. We
can thus choose Γx to be A∞ if δx ≥ 2 and otherwise An for some n (related to
δx). By appendix C, P embeds into the graph planar algebra of Γ.
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Let Γ = Γr×Γb. More precisely, the vertices of Γ are pairs (vr, vb) with vx ∈ Γx,
x ∈ {b, r}. The pair (vr, vb) is even iff either both vr, vb are even or both are odd;
the pair (vr, vb) is odd otherwise. The edges of Γ are of two kinds: the red edges,
consisting of pairs (e, v) with e an edge in Γr and v a vertex in Γb; this is an edge
from (s(e), v) to (t(e), v); and black edges, consisting of pairs (f, w) with f an
edge in Γb and w a vertex in Γr; this edge goes from (w, s(f)) to (w, t(f)). For
an edge in Γ, e = (f, w), put u(e) = f (which is in Γr or Γb according to whether
e is red or black). Note that Γ is a bi-partite graph, since each edge in Γ changes
the parity of one of the components of a vertex (vr, vb). By Appendix C, Γ is the
principal graph of P.

Let µ be the Perron-Frobenius eigenvector for Γ, given at a vertex (v, w) by
the product of the eigenvectors of Γr and Γb. For e and edge of Γ, put σ(e) =
(µ(t(e))/µ(s(e)))1/2. Let c(x) be the color of the x-th boundary point of T .

Let T ∈ Pn be a diagram, and let

RT = {(x, y) : boundary points x and y are connected in T}.
The embedding of P into the graph planar algebra of Γ is given by sending T to
the function fT ∈ PΓ given by:

fT (e1 · · · e2n) =
∏

(x,y)∈RT
x<y

σ(e)δe has same color as c(x) δu(ex)=u(ey)o ,

for any loop e1 · · · e2n in Γ.

2.3. Random matrices associated with a graph. In the sequel, we fix a
graph Γ with an eigenvalue δ and a Perron-Frobenius eigenvector µ as in the
previous part. For e ∈ E+, XM

e is a [Ms(e)]× [Mt(e)] matrix with i.i.d entries with

variance (Ms(e)Mt(e))
− 1

2 for some integer numbers (Mv, v ∈ V ) so that

lim
M→∞

Mv

M
= µ(v).

We put Xeo = X∗
e and for a matrix (Anm,e, 1 ≤ n ≤ M(s(e)), 1 ≤ m ≤

M(t(e)), e ∈ E) we define the states:

tr(A) =
∑

v∈V

1

M

∑

1≤n≤Mv

Ann, vv TrV (A) =
∑

v∈V

µ(v)
∑

1≤n≤Mv

Ann, vv

and denote, for a word w = e1 · · · ek, Xw = Xe1 · · ·Xek
. In order that Xw is a

square matrix, we shall assume that w is a loop. We denote

dvX
N
w =

{
XN

w if w = e1 · · · en and s(e1) = v
0 otherwise.

The center-valued trace Tr0 on Gr0P
Γ is given by the equation, for x = e1 · · · e2k

Tr0(x)(v) = 1s(e1)=v〈x, Tk〉
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with Tk =
∑

B∈TL(k)
wB the sum of all TL diagrams with k strings and where

for two loops x, y on Γ, 〈x, y〉 = δx=y. Thus Tr0(x) is a complex-valued function
on the set of vertices of the graph.

We have the following theorem from [12, Proposition 2]

Theorem 8. Let v ∈ V and w = e1e2 · · · ek ∈ L(v). Then

(3) Tr0(w)(v) = lim
M→∞

1

µ(v)
E[tr(XM

w )]

In the case where x = wT for some subfactor planar algebra element T , Tr0(wT ) =
C(T )1 is constant and C(T ) = tr0(T ).

Note that in [12], we had an additional dimension N so that XM,N
e converges

to a matrix with free variables entries as N goes to infinity. This is however not
needed since M goes to infinity.

Note that our random matrix model has the following interpretation. Con-
sider the graph planar algebra P Γ, and let x be an element labeled by some
loop e1, . . . , e2n. One can instead label the tangle by our random matrices
Xe1, . . . , Xe2n

. In this case, the equations (2) governing the action of planar
tangles on P Γ can be summarized as follows: whenever a string connects two
points labeled by random matrices X and Y , the string can be removed at the
cost of a multiplicative factor given by the expected value E(Tr0(XY )(v)), where
v is the start of the edge corresponding to X.

We shall give a new proof of Theorem 8 based on the so-called Schwinger–Dyson
equation.

Theorem 9. For t = (t1, · · · , tk) ∈ R
k small enough, there exists a probability

measure µM
t on (Xe, e ∈ E) so that for v ∈ V and w = e1e2 · · · ek ∈ L(v), there

exists a limit

(4) Trt(w)(v) = lim
M→∞

1

µ(v)

∫
[tr(XM

w )]dµM
t .

In the case where x = wT for some Temperley–Lieb diagram T (or, more gener-
ally, T comes from a subfactor planar algebra inside PΓ), Trt(wT ) = Ct(T )1 is
constant and Ct(T ) = trt(T ) is given by (1).

In the next subsections we shall prove this theorem.

2.4. The case of finite graphs. For δ = 2 cos(π
n
), n ≥ 3 (or, more generally, if

the planar algebra under consideration is finite-depth), the graph Γ can be chosen
to be finite. This is the case for TL(δ) if δ = 2 cos( π

n+1
); in this case the graph is

An the graph with n vertices and n− 1 edges. Another such example is the case
of the graph with two vertices joined by n edges (see e.g. [18, Examples 4.1 and
4.4]). We study the finite-graph case first.
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2.4.1. Definition of the matrix models. Let P ⊂ PΓ be a subfactor planar alge-
bra realized inside a graph planar algebra. We consider the law µM of |E+|
independent Ms(e) × Mt(e) matrices with i.i.d Gaussian entries with variance

(Ms(e)Mt(e))
− 1

2 . We denote ‖M‖∞ the spectral norm of a matrix M (that is

the spectral radius of
√

MM∗), XM = (XM
e )e∈E+ the collection of these matrices

and ‖XM‖∞ := maxe∈E+ ‖XM
e ‖∞. We set, for given elements B1, . . . , Bk ∈ P,

real numbers t1, . . . , tk and some K > 2,

µM,K
t (dXM) :=

1‖XM‖∞≤K

ZM,K
t

e
Pk

i=1 tiMTrV (XM
Bi

)µM(dXM)

where we denoted in short XB = XwB
=
∑

w∈LB
σB(w)Xw.

Example 10. Consider the TL algebra for δ ∈ {2 cos(π
n
), n ≥ 3}. Then TL can

be embedded into the graph planar algebra PΓ where Γ = An. We can consider
the following potentials:

• Let B be the element of TL given by the tangle with only one string:

We can either see it as a cup with black inside and white outside or with
the opposite shading, both leading to the same potential in the matrix
model

TrV


∑

v∈V+

∑

e′:s(e)=v

σ(e)XeX
∗
e


 = Mtr



∑

v∈V+
s(e)=v

√
µ(v)µ(t(e))XeX

∗
e




= TrV


∑

v∈V−

∑

s(e)=v

σ(e)XeX
∗
e


 .

• Let B be the element of TL given by a tangle with two strings, two white
regions and one black:

Then, it is given by

wB =
∑

e∈E+

∑

f∈E−

σ(e)σ(f)XeXfX
∗
f X∗

e
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with contribution to the potential

TrV (
∑

e∈E+

∑

f∈E−

σ(e)σ(f)XeXfX
∗
fX

∗
e ) = TrV


(
∑

e∈E−

σ(e)XeX
∗
e )2




where it is understood that products which make no sense give no contri-
bution. Inverting the shading amounts to exchanging E+ and E−.

The main result of this section is

Proposition 11. Let K > 2. Then, there exists t(K) > 0 so that for max1≤i≤k |ti| ≤
t(K), for any loop w ∈ L(v) there exists a limit

Trt(Xw)(v) =
1

µ(v)
lim

M→∞
µM,K

t (tr(Xw)).

Moreover, Trt(XB)(v) = trt(B) for element B ∈ PΓ and any vertex v.

The convergence of the matrix model is a small generalization of [14, Theorem
3.5] (where only Hermitian random matrices where considered), whereas the iden-
tification of the limit is based on the analysis of the so-called Schwinger–Dyson
(or loop) equations. Note that in most papers in the physics literature, the cutoff
K < ∞ is not taken, leading sometimes to diverging integrals. The advantage of
adding this cutoff is that all integrals are well defined and moreover for small ti’s,
the Gibbs measure µM,K

t has a strictly log-concave density, providing many in-
teresting properties which allow to put on a firm mathematical ground the above
convergence. In fact, we can remove the cutoff in case the density is strictly
log-concave. K has to be chosen strictly greater than 2 (the edge of the support
of the semi-circle law, which is greater or equal to that of the Pastur-Marchenko)
so that the limit does not depend on it for t small enough. We start by recalling
these properties and sketching the proof of [14, Theorem 3.5].

2.4.2. Convexity assumption and consequences. In the sequel, given an element
of the planar algebra W =

∑k
i=1 tiBi, with Bi ∈ PΓ delta functions along loops

Bi, we shall denote by W̃ the polynomial in the Xe’s given by

W̃ =
k∑

i=1

ti
∑

v∈V

µ(v)dvX
M
Bi

so that TrV (
∑

tiX
M
Bi

) = Mtr(W̃ ). As in [14], we shall assume that the map from
the set of |E+| Hermitian matrices into R given by

(5) (XM
e )e∈E+ → Mtr(−W̃ +

1

2

∑

e∈E

√
µ(s(e))µ(t(e)(XM

e )(XM
e )∗)
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is strictly convex (with Hessian bounded below by c for some c > 0 independent
of M) on {‖XM‖∞ ≤ K}. This is always true for t sufficiently small, depending

on K, with c going to m = min{
√

µ(t(e))µ(s(e)), e ∈ E+} > 0 as t goes to zero.
As a consequence of strict convexity, we have concentration inequalities under

µM,K
t , see [11, Section 6.3] namely for any w ∈ L,

(6) µM,K
t

(∣∣∣tr(XM
w ) − µM,K

t

(
tr(XM

w )
)∣∣∣

2
)

≤ C(w, K)

(M)2
.

We also have Brascamp-Lieb inequalities, see [11, Section 6.5], and so by compar-
ison to the Gaussian law for which we know that the spectral radius is bounded
with overwhelming probability, we can prove that there exists ℓ(c) (which only
depends on c) so that

µM,K
t

(
max
e∈E

‖XM
e ‖∞ ≥ ℓ(c)

)
≤ e−δ(c)M

for some δ(c) > 0. We assume we have chosen K > ℓ(c). In particular the family

{µM,K
t (tr(XM

w )), w ∈ L} is tight. We will denote µt a limit point. We next show
any limit point satisfies the so-called Schwinger–Dyson equation and that this
equation as a unique solution when the ti’s are small.

2.4.3. Schwinger–Dyson (or loop) equations. Let us fix e ∈ E and P = Xw with
w a path from t(e) to s(e). By using and integration by parts and concentration
inequalities, we obtain (see [11, Section 8.1] or [14, Theorem 3.1]), that

lim
M→∞

(
µM

t (tr((
√

µ(s(e))µ(t(e))XM
e − DeoW̃ )P )) − µM

t (tr) ⊗ µM
t (tr) (∂eoP )

)
= 0,

where
∂eXw =

∑

w=w1ew2

Xw1 ⊗ Xw2 DeXw =
∑

w=w1ew2

Xw2w1.

Let τ be a limit point of µM
t tr. Thus τ satisfies the Schwinger–Dyson equation:

for every path from t(e) to s(e),

(7) τ
(
(
√

µ(s(e))µ(t(e))Xe − DeoW̃ )Xw

)
− τ ⊗ τ (∂eoXw) = 0

Using the map from PΓ that sends g1, . . . , gn to Xg1 . . .Xgn
we can use τ to

define a collection of linear maps from PΓ with values in PΓ, which we will for
now denote by Tr′i,j . By definition, if P ∈ PΓ is the delta function on the loop
a1, a2, . . . , ai, e1, . . . , ej, b1, . . . , br, then

Tr′i,j(P ) = δs(b1)=t(ai)

{
1

µ(s(e1))
τ(Xe1 . . .Xej

)

}
Q

where Q is the delta function supported on the loop a1 . . . aib1 . . . br.
Then the Schwinger–Dyson equation is an equation on these linear maps. We

will use the following graphical notation for the result of Tri,j applied to the delta
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function supported at the loop a1, . . . , ai, e1, · · · , ej , b1, . . . , bt,∈ PΓ (we supress
i, j since they can be read off from the numbers of the various strings):

(8)

A
a1

···
ai bt

···
b1e1 e2

···
ej

Tr′

Lemma 12. The Schwinger–Dyson equation (7) is equivalent to the following
diagrammatic equation:

Tr′

=
∑

i odd

Tr′ Tr′

i

(9)

+
∑

i even

Tr′

W
i

Here we use the following conventions. Thick lines indicate an arbitrary number

of strings. Also, given x* ∈ PΓ we’ll set

x = x*
.

where by convention there is an arbitrary fixed number (same in all diagrams) of
strings between the marked initial segment of x and the last string that is bent
around x on the left.
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Proof. Consider e, f, g, e1, . . . , en ∈ E(Γ) so that the paths e1, e2, . . . , ek, g and e, f
form loops. Consider the following planar operation applied to P = e1, . . . , ek, g
and e, f (more precisely, P is the element of PΓ which is the delta function on
the loop e1, . . . , ek, g, etc.):

(10)
e1 e2 ek−1 ek

···

g f

e
= δf=goσ(g)

e1 e2 ek−1 ek e

···

Let e1 . . . ek g an . . . a1 and e f be two loops in Γ. Consider the following equation:

e1···ek

a1···an

Tr′

e

fg

=
∑

i odd

Tr′ Tr′

e

f

a1···an

e1···ei−1 ei+1···ekei

g
(11)

+
∑

i even

Tr′

W
e1···ek

a1···an

i

e

f

g

It is easily seen (by noticing that g and f are arbitrary subject to t(f) = s(g))
that (11) is equivalent to (9).

Next, note that both sides of (11) are zero unless the region containing the
point at infinity in all diagrams is labeled by v = t(e) (so in particular t(a1) =
s(an) = v). Consider now the three diagrams comprising equation (11). Put

R = δf=goσ(g)a1 . . . an.
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The diagram in the upper-left corner is exactly

Q1 =
1

µ(t(e))
τ(e1 . . . eke)R.

Consider now the diagram in the upper-right corner. The term in the summation
is zero unless ei = eo. In particular, the region to the right of the string emanating
from ei can be labeled by s(e) and the region to the right of the string emanating
from ek can be labeled t(e). By definition of Tr′, we then get that this diagram
is equal to

Q2 =
1

µ(t(e))

1

µ(s(e))
τ ⊗ τ

(
∑

i odd

e1 . . . ei−1 ⊗ ei+1 . . . ek

)
σ(e)−1R.

Note that we can actually replace the sum over odd i by the sum over all i, since
τ(e1 . . . ei−1) = 0 unless i is odd.

Assume first that W is the delta function supported on the loop g1 . . . gs. Let
us now consider for i even the diagram

Di = W
g1, . . . , gi−1 gi+1, . . . , gsgi

Since all strings emanating from gi+1, . . . , gs make a 360o rotation in the drawing,
according to (2)

Di = σ(gi+1)
2 · · ·σ(gs)

2D′
i

where

D′
i =

gi+1, . . . , gs g1, . . . , gi−1 gi

To see this, we can compare the results of glueing all strings of Di to some
diagrams B1, . . . , Bk versus the results of glueing the corresponding strings of D′

i

to the same diagrams. As we apply (2) to remove strings, the strings starting
from Di associated to gj , i + 1 ≤ j ≤ s contribute an extra factor of σ(gj)

2 as
compared to their contribution if they were to start from D′

i.
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Using this and noting that W̃ = µ(s(g1))W = µ(t(gs))W , the value of the
bottom diagram in (11) is

Q3 =
1

µ(s(e))

∑

i even

1

µ(t(gs))
σ(gi+1)

2 . . . σ(gs)
2

× τ(e1 . . . ekgi+1 . . . gsg1 . . . gi−1)δeo=gi
σ(e)−1R

=
1

µ(s(e))

∑

i even

1

µ(s(gi))
τ(e1 . . . ekgi+1 . . . gsg1 . . . gi−1)δeo=gi

σ(e)−1R

=
1

µ(s(e))

1

µ(t(e))
τ(e1 . . . ekDeoW )σ(e)−1R

By linearlity, the same equation holds for arbitrary W .
Now, (11) is equivalent to saying that

Q1 = Q2 + Q3.

Let us multiply each Qi by the factor α = µ(t(e))3/2µ(s(e))1/2. Then:

αQ1 = (µ(t(e))µ(s(e))1/2τ(e1 . . . eke)R.

Similarly,

αQ2 = µ(t(e))3/2−1µ(s(e))1/2−1σ(e)−1τ ⊗ τ

(
∑

i odd

e1 . . . ei−1 ⊗ ei+1 . . . ek

)
R

= τ ⊗ τ

(
∑

i odd

e1 . . . ei−1 ⊗ ei+1 . . . ek

)
R

Finally,

αQ3 = µ(s(e))1/2−1µ(t(e))3/2−2σ(e)−1

(
1

µ(t(e)
τ(e1 . . . ekDeoW )

)
R

= τ(e1 . . . ekDeoW )R.

Since e, f, a1, . . . , an are arbitrary, we see that (11) is just a multiple of (7). �

Lemma 13. For any c > 0 and K > ℓ(c), there exists t(c, K) so that when
|ti| ≤ t(c, K) for all i ∈ {1, . . . , k}, there exists a unique solution to (7) so that
µ(|Xe|2p) ≤ Kp for all e ∈ E+ and p ∈ N.

Proof. The proof follows the arguments of [14, Section 2.4] that we however repeat
for further uses. Existence is already guaranteed. To prove uniqueness we assume
we have two solutions µ1 and µ2 and let

δ(n) = sup
w∈L,|w|≤n

|µ1(Xw) − µ2(Xw)|
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with |w| the number of letters in the word w. Then, (7) implies that, if we let

m = min(µ(s(e))µ(t(e)))
1
2 > 0,

(12) δ(n + 1) ≤ 2m−1
n−1∑

p=1

δ(p)Kn−1−p + A(t)δ(n + D − 1)

with D the degree of W and if De0W =
∑

i ti
∑ke

i

j=1 qe
ij with some monomials qe

ij

with degree at most D − 1, then

A(t) = max
e

(µ(s(e))µ(t(e)))−
1
2

∑

i

|ti|ke
i

For γ < 1/K, the sum ∆(γ) =
∑

p≥1 γpδ(p) is finite and satisfies

∆(γ) ≤ γ2

1 − γK
∆(γ) + A(t)γ−D+2∆(γ).

We then choose t small enough so that

γ2

1 − γL
+ A(t)γ−D+2 < 1

for some γ ∈]0, L−1[, which guarantees that ∆(γ) = 0 and therefore δ(n) = 0 for
all n ≥ 0. �

In the next section we study Schwinger–Dyson equations for laws on P Γ and
P .

2.4.4. Proof of Theorem 8 in the finite graph case. In the case t = 0, we deduce
Theorem 8. Equation (9) implies, for t = 0

P

Tr′

=
∑

i odd P

Tr′ Tr′

i

This equation clearly has a unique solution, since it defines the maps Tr′i,j recur-
sively in terms of Tr′i,j′ with j < j′. We claim that in fact Tr′ij = (Tr0)ij . Recall
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that Tr0 is given by

Tr0 =
P

∑
TL

where
∑

TL stands for the sum of all TL diagrams. If we follow the rightmost
top string of P , it will be connected to one of the other vertical strings of P (and,
for parity reasons, it will be an odd string). From this we see that Tr0 satisfies
the same recursive relation as Tr′. �

2.5. Proof of Proposition 11. Let us now consider the case t 6= 0. Then Tr′i,j
satisfy the equation

P

Tr′

=
∑

i odd
P

Tr′ Tr′

i

(13)

+
∑

i even

Tr′

P W
i

(14)

We claim that Tr′ = Trt (recall that Trt(P ) is a function on the set of vertices
on the graph described in Proposition 11). To see the equality, one can argue as
in Lemma 13 that for sufficiently small ti’s, there is at most one solution to this
equation. On the other hand, Trt clearly satisfies the same recursive equation: it
expresses the fact that the rightmost top string of P must either come back to
P , or be connected to a copy of the potential W . Thus Tr′ = Trt.

�
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2.5.1. Free energy. We recap here how to get from the convergence of the tracial
state that of the free energy

F M
t =

1

M2
log ZM

t =
1

M2
log

∫
e

Pk
i=1 tiMTrV (XM

Bi
)
µM,L

0 (dXM)

To that end we observe that, by differentiating with respect to α, since F M
0 = 0,

F M
t =

k∑

i=1

ti

∫ 1

0

∫ (
1

M
TrV (XM

Bi
)

)
dµM

αtdα

=

k∑

i=1

ti
∑

v

µ(v)2

∫ 1

0

∫ (
1

µ(v)
tr(dvX

M
Bi

)

)
dµM

αtdα.

Thus, by Proposition 11, for |ti| ≤ t(c, L)
∫ (

1
µ(v)

tr(dvX
M
Bi

)
)

dµM
αt converges to

trαt(Bi) and therefore by bounded convergence theorem, we get

lim
M→∞

F M
t =

k∑

i=1

ti
∑

v

µ(v)2
∑

ni≥0

∏

j

1

nj !

∫ 1

0

∏
(αtj)

nj+1j=iδ♯loopsdα,

=

(
∑

v

µ(v)2

)
∑

P

ni≥1

∏

j

1

nj !
t
nj

j δ♯loops.

2.5.2. The case of A∞ and TL for δ ≥ 2. The previous construction only allows
a countable set of values of δ’s (which however contains all the possible δ < 2 and
accumulates at 2). To get all possible values of δ, we need to consider infinite
graphs. However, our construction below relies heavily on the fact that the
entries of the eigenvector µ go to infinity exponentially fast with their distance
to a distinguished vertex of the graph. We will therefore restrict ourselves to
the graph A∞ for which we shall prove that this property holds. Since not all
subfactor planar algebras can be embedded into the graph planar algebra of A∞,
we shall restrict ourselves to Temperley–Lieb algebra TL in this section. Thus it is
enough to consider the infinite graph A∞ since this graph possesses an eigenvalue
δ for any possible δ ≥ 2 with an eigenvector with positive entries. We let µ be
the corresponding eigenvector and denote by n ∈ N the vertices of A∞. Noting
that by definition for n ≥ 3

µ(n − 1) + µ(n + 1) = δµ(n)

we see that µ(n) ≈ δn as n goes to infinity. We let, as in the finite graph
case, µM be the law of the independent Ms(e) × Mt(e) matrices with covariance

1/M
√

µ(s(e))µ(t(e)) for e ∈ E+ (which is now infinite). Edges far from the origin
will have variance decreasing exponentially fast with the distance to the origin
(recall that δ > 1). To construct the law on the infinite graph, we let Σn be the
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sigma-algebra generated by the XM
e for e ∈ En, the set of edges with distance

less than n from the origin. The idea is to consider the Gibbs measure indexed
by infinite graphs as the limit of the conditional expectation with respect to Σn.
And more precisely, if we let

X̃n
B =

∑

e1···e2k∈LB
∀ℓ,eℓ∈En

{∏
δeip=eo

jp
σ(eip)

}
(e1 · · · e2k)

and let V n =
∑

tiX̃
n
Bi , W n so that MtrW n = TrV V n be the corresponding

approximation of W

dµM,K,n
t (dXM) =

∏
e∈Vn

1‖Xe‖∞≤K

ZM,K,n
V

eMTrV (V n)dµM
0 |Σn

(dXM).

We shall prove

Proposition 14. Let K > 2. Then, there exists t(K) > 0 so that for max1≤i≤k |ti| ≤
t(K), for any vertex v for any loop w ∈ L(v) there exists a limit

νt(Xw) =
1

µ(v)
lim

n→∞
lim

M→∞
µM,K,n

t (tr(Xw))

which does not depend on v. Moreover, νt(dvXB) = trt(B) for any Temperley–
Lieb tangle B and any vertex v. Finally,

lim
n→∞

lim
M→∞

1

M2
∑

v∈Vn
µ(v)2

log ZM,K,n
t =

∑
P

ni≥1

∏ 1

nj!
t
nj

j δ♯loops

Proof. In fact, due again to strict convexity, the negative of the Hessian of the
log-density of µM,K,n

t is bounded below independently of n on ‖XM‖∞ ≤ K. In

fact, because (µ(s(e))µ(t(e))
1
2 is at least of order δn if s(e) ∈ Ec

n, we can choose
t small enough so that this Hessian is bounded below by the diagonal matrix
which takes the value Cδn for v ∈ En+1\En with some positive constant C. This
is enough to guarantee Brascamp-Lieb inequalities and concentration of measure
which do not depend on the dimension and in particular on n. In particular

µM,K,n
t ( max

e∈Ek+1\Ek

‖XM
e ‖∞ ≥ ℓδ−k/2) ≤ e−ηM

for some ℓ < ∞ and η > 0. Moreover, we can apply concentration inequalities
and use the fact that X̃n

B is a Lipschitz function of the entries with Lipschitz

norm of order M− 1
2 with overwhelming probability because of the above control

(since δ > 1 we obtain absolutely converging sequences) to see that (6) still holds

under µM,K,n
t , with a constant C(w, K) independent of n. Therefore, by the same

arguments, we obtain the convergence of µM,K,n
t (tr(X̃n

w)), for any loop w as M go
to infinity. The limit satisfies a Schwinger–Dyson equation which has a unique
solution, exactly as in Lemma 13, again because the controls are uniform in n,
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the range of t for which we have uniqueness does not depend on n. Note that
this equation is the same for µn

t and µm
t provided we consider only words w and

edges e in En ∩ Em. Define

δ(k) := max
|w|≤k

|µn(w) − µm(w)|

we obtain that δ(k) satisfies (12) for k ≤ n ∧ m. For larger k we just bound the
additional term uniformly by A(t)KD−2+k. We then find that

∆(γ) ≤ γ2

m(1 − Kγ)
∆(γ) + A(t)γ2−D∆(γ) +

∑

k≥m∧n

A(t)KD−2+kγk−1

yielding, if (C ′)−1 = 1− γ2

m(1−Kγ)
−A(t)γ2−D is positive (which is always possible

if t is small enough for some γ ∈ (0, K−1)),

∆(γ) ≤ C ′
∑

p≥m∧n

A(t)KD−2+kγk−1 ≈ C ′′(γK)n∧m

which goes to zero as n ∧ m goes to infinity. This shows that µn
t converges as n

goes to infinity. The limit satisfies Schwinger–Dyson equation with appropriate
δ and therefore corresponds, when restricted to P , with trt. The statement on
the free energy is derived as in the previous subsection. �

3. Combinatorics of a few models

In this section, we actually compute the generating functions of a few loop
models we have just constructed.

3.1. The cup matrix model. We consider the case of the matrix model with
tangles Bn = cupn obtained by drawing n non nested strings in a white tangle
with black inside. With k finite and fixed, we thus consider the law trt correspond-
ing to the tangles (B1, . . . , Bk) and the coefficients (t1, . . . , tk). By Propositions
11 and 14, Bn is represented in P Γ by (

∑
e∈E+

σ(e)XeX
∗
e )n, e.g.

B2 =

X(w,v)

X(v,u)

X(v,w)

X(u,v)

u
v

w
, B3 =

u w

x

v

X(w,v)X(v,u)

X(u,v)

X(v,x) X(x,v)

X(v,w) , etc

and the associated Gibbs measure is, by Example 10,

dµM,K
t (XM) =

1‖XM‖≤K

ZM,K
t

e
M

Pn
i=1 tiTrV ((

P

e∈E+
σ(e)XeX∗

e )i)
dµM(XM).

Note that

TrV ((
∑

e∈E+

σ(e)XeX
∗
e )i) = M

∑

v∈V+

µ(v)tr((
∑

s(e)=v

σ(e)XeX
∗
e )i)
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so that the families (Xe, s(e) = v), v ∈ V+, are independent. Since we eval-
uate the above expression at words in Zv = (

∑
e:s(e)=v σ(e)XeX

∗
e ) for a given

v we may as well consider the law of Zv for a fixed v. Recalling that Xe has

variance
√

Ms(e)Mt(e)
−1

, we find that Zv =
∑

e:s(e)=v σ(e)XeX
∗
e = YvY

∗
v with a

Mv × (
∑

e:s(e)=v Mt(e)) matrix Yv with i.i.d. centered Gaussian entries with co-

variance M−1
v . The law of the eigenvalues (λ1, · · · , λµ(v)M ) of such a matrix is

asymptotically equivalent (since we can again by Brascamp–Lieb inequality re-
move the cutoff on XM and transform it as a cutoff on Zv for some K ′ large
enough) to

dµM,K ′

t (λ) =
1

ZM,K ′

t

∏

i6=j

|λi − λj|

∏

i

λ
P

e:s(e)=v Mt(e)

i eMv

PMv
i=1(

Pk
n=1 tnλn

i −λi)
∏

1λi∈[0,K ′]dλi.

Since (
∑

e:s(e)=v Mt(e))/Mv converges as M goes to infinity to δ, it is classical [1,

Theorem 2.6.1] to prove a large deviation principle for the law of the empirical

measure of the λi under µM,K ′

t from which one easily derives the convergence of
the empirical measure. Therefore we deduce that

Lemma 15. For all K > 2, and t = (t1, . . . , tk) small enough, all n ≥ 0, all
v ∈ V+,

trt(Bn) = lim
M→∞

1

µ(v)
µM,K

t (tr(dvXBk
)) = νt(x

n)(15)

with νt the only probability measure on [−K, K] which maximizes, with P (x) =∑k
n=1 tnx

n,

It(ν) := Σ(ν) + δ

∫
log |x|dν(x) +

∫
P (x)dν(x) −

∫
xdν(x)

where Σ is the free entropy

Σ(µ) =

∫∫
log |x − y|dν(x)dν(y).

We can obtain an equation for νt by writing that It(νt) ≥ It(ν
ǫ
t ) with νǫ

t the law
of x + ǫh(x) under νt and h a smooth real-valued function. Expressing that the
linear term in ǫ must vanish and ultimately taking h(x) = (z − x)−1 we deduce
that νt is solution of the Schwinger–Dyson type equation

(∫
1

z − x
dνt(x)

)2

+ δ

∫
1

x(z − x)
dνt(x) +

∫
P ′(x) − 1

z − x
dνt(x) = 0
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which yields with Gt(z) =
∫

1
z−x

dνt(x), Q(z) =
∫ P ′(x)−P ′(z)

z−x
dνt(x), and c =

δ
∫

x−1dνt(x),

Gt(z)2 +

(
δ

z
+ P ′(z) − 1

)
Gt(z) + Q(z) +

c

z
= 0

so that

Gt(z) =
1

2z

(
z(1 − P ′(z)) − δ −

√
(z(P ′(z) − 1) + δ)2 − 4z(zQ(z) − c)

)
.

It can be shown that for t small enough, νt has connected support and deduce a
formula for Gt, see e.g. [5]. Indeed, according to [1, Lemma 2.6.2], for small ti’s,
νt is characterized by the fact that a certain strictly concave function is smaller
than some constant outside of its support and equal to it at the boundary of
the support; this is only possible if the support is connected. Since Gt must
be analytic outside the support [a, b] of νt, the formula for Gt can be uniquely
determined by the fact that there exists a polynomial R with degree k − 1, and
a < b so that

(z(P ′(z) − 1) + δ)2 − 4z(zQ(z) − c) = (z − a)(b − z)R(z)2

3.2. The O(n, m) model. Consider the potential

V =

considered in the planar algebra of two stitched Temperley–Lieb algebras (see
§2.1.2) and and recall the notation of §2.2.2.

In the finite-depth case, the random matrix model is given by considering block
matrices indexed by pairs (e, v) where e is an edge in Γr and v is a vertex in Γb

or e is an edge in Γb and v is a vertex in Γr with the potential of the form
∑

e∈Γr
v black vertex

σ(e)X(e,v)X
∗
(e,v) +

∑

e∈Γb
v red vertex

σ(e)X(e,v)X
∗
(e,v)

+β
∑

e∈Γr

∑

f∈Γb

σ(e)σ(f)X(e,s(f))X(f,t(e))X
∗
(e,t(f))X

∗
(f,s(e)).

If δr = n and δb = m, we can choose Γr (resp., Γb) to be the graph with one
odd vertex and n (resp., m) even vertices, with exactly one edge between the odd
vertex and every even vertex. the resulting combinatorics is exactly the same as
of the O(n, m) model with the potential

β

n∑

i=1

m∑

j=1

XiYjX
†
i Y

†
j
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which was studied for instance in [7], in connection with the problem of enumer-
ating meanders.

3.3. The double cup matrix model. The potential is a linear combination
of two tangles; the tangle with two cups with black inside (with coefficient A)
and the tangle with two cups with white inside (with coefficient B respectively).
We denote by V the element of the planar algebra associated to it, namely (see
Example 10):

V = A


∑

e∈E−

σ(e)XeX
∗
e




2

+ B


∑

e∈E+

σ(e)XeX
∗
e




2

.

Diagramatically, this corresponds to tangles of the form

X(v,u)

X(u,v)=X∗
(v,u)

X(w,v)=X∗
(v,w)

X(v,w)

u
v

w

X(v,u)

X(u,v)=X∗
(v,u)

X(w,v)=X∗
(v,w)

X(v,w)

u
v

w

where the only difference between the two pictures is that on the left, v ∈ V+ and
u, w ∈ V−, and vice versa on the right.

The associated Gibbs measure µM,K
t (dXM) is given by

1‖XM‖≤K

ZM,K
t

etM2
P

v∈V (A1v∈V−
+B1v∈V+

)µ(v)tr(
P

e:s(e)=v σ(e)XeX∗
e )

2

µM(dXM)

To analyze the asymptotics of this measure, we shall first perform a Hubbard–
Stratonovitch transformation and then study the resulting Gibbs measure. We
first relate this measure with our problem. For the sake of simplicity, we restrict
ourselves to δ’s corresponding to finite graphs, and even further to the graphs An

with n vertices and n − 1 edges. This is enough to characterize the generating
functions by analyticity (since the index δ corresponding to these graphs has
an accumulation point at 2). In fact the restriction to finite graphs allows us
to avoid dealing with a Gibbs measure on infinitely many matrices whereas the
restriction to An ensures the uniqueness of the minimizers of the entropy described
in Proposition 17, and therefore their characterization.

3.3.1. The partition function and an auxiliary matrix model. Let us first consider
the partition function

ZM,K
t =

∫
1‖XM‖≤KetM2

P

v∈V (A1v∈V−
+B1v∈V+

)µ(v)tr(
P

e:s(e)=v σ(e)XeX∗
e )

2

µM(dXM)

and introduce independent Mv ×Mv matrices Gv from the GUE with covariance
1/Mv. Then, assuming tA, tB positive and putting α(v) =

√
8tA if v ∈ V−,
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α(v) =
√

8tB if v ∈ V+, µ(v)′ = µ(v)
√

Mv(µ(v)M)−1 (which approximately
equals µ(v)), we get

ZM,K
t =

∫
1‖XM‖≤Ke−

M2

2

P

v∈V α(v)µ(v)′tr(Gv

P

e:s(e)=v σ(e)XeX∗
e )µM(dXM , dGM).

Note that again for α(v) small enough, the integral has a strictly log-concave
density and therefore Brascamp-Lieb inequalities show that the matrices Gv are
also bounded with large probability and so there exists K ′ large enough so that,
we have

ZM,K
t ∼

∫
1‖GM‖≤K ′e−

M2

2

P

v∈V α(v)µ(v)′tr(Gv

P

e:s(e)=v σ(e)XeX∗
e )µM(dXM , dGM)

where we used the standard notation AM ∼ BM , for two sequences AM , BM , for
a shorthand for AMB−1

M converges to one as M goes to infinity. Diagramatically
this corresponds to the following “breaking” of the tangles:

X(v,u)

X(u,v)

X(w,v)

X(v,w)

X(v,u)

X(u,v)

X(w,v)

X(v,w)

Gv Gv

X(v,u)

X(u,v)

X(w,v)

X(v,w)

X(v,u)

X(u,v)

X(w,v)

X(v,w)

Gv Gv

We next integrate over the matrices XM , recalling that the entries of Xe have
covariance (Ms(e)Mt(e))

−1/2. Up to a constant, this provides the term
∏

e∈E+

e−M2tr⊗tr(log(I+α(s(e))′I⊗Gs(e)+α(t(e))′Gt(e)⊗I))

where we noticed that
∫

e−γx2
dx =

√
2πγ− 1

2 and the matrices Xe have complex
entries (so each term appears twice). Here α(s(e))′α(s(e))−1 = α(t(e))′α(t(e))−1 =
(µ(t(e))′/µ(t(e)))1/2 is approximately equal to one. We can finally diagonalize the
matrices Gv to get

ZM,K
t ∼

∫ ∏

v∈V

1|λv|≤K ′∆(λv)dλv exp

[
−
∑

v∈V

Mv

2

Mv∑

i=1

(λv
i )

2

]

·
∏

e∈E+

exp


−

∑

1≤i≤Ms(e)
1≤j≤Mt(e)

log(1 + α(s(e))λ
s(e)
i + α(t(e))λ

t(e)
j )




with λv = (λv
1, . . . , λ

v
Mv

) the eigenvalues of Gv and ∆(λv) =
∏

1≤i6=j≤Mv
|λv

i − λv
j |.

The asymptotics of 1
M2 log ZM,K

t can be obtained via the global asymptotics of
the eigenvalues (λv, v ∈ V ), that is the convergence

lim
M→∞

E[
1

Mv

Mv∑

i=1

(λv
i )

p] =

∫
xpdνν(x) p ∈ N, v ∈ V±.
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under the associated Gibbs measure P M,K
t (dλ) given by

1|λv|≤K ′

ZM,K
t

∏

v∈V

∆(λv)dλv
∏

e∈E+

exp


−

Ms(e)∑

i=1

Mt(e)∑

j=1

log(1 + α(s(e))λ
s(e)
i + α(t(e))λ

t(e)
j )




· exp

[
−
∑

v∈V

Mv

2

Mv∑

i=1

(λv
i )

2

]
.

In the sequel, we shall prove not only this convergence but the existence of two
probaility measures ν− and ν+ so that

(16)

∫
xpdνv(x) =

∫
xpdν±(x) p ∈ N, v ∈ V± .

Before attacking this question, let us summarize what information the auxiliary
probability measure P M,K

t and (16) tells us about our original question. Recall
that trt is the tracial states constructed with the two tangles with two strings
and opposite shading. We claim that ν± gives the law of a cup under trt in the
following sense.

Proposition 16. Assume (16) and recall that α =
√

8tA. Let Bn be the tangle
with n non nested strings and black shading inside and put for small z

C(z, A, B) =
∑

n≥0

zntrt(Bn)

and M(z) =
∫ ∑

n≥0 znxndν+(x). Then, γ(z) =
√

8tAz
1−z2M(z)

is invertible from a

neighborhood of the origin into a neighborhood of the origin, with inverse z(γ)
and

C(γ, A, B) =
αz(γ)

γ
M(z(γ)) =

α

γz(γ)

(
1 − αz(γ)

γ

)
.

Proof. Observe first that P M,K
t is the law of the eigenvalues of (GM

v , v ∈ V ) under

νM,K
t (dXM , dGM) =

1‖GM‖≤K ′

ZM,K
t

e−
M2

2

P

v∈V α(v)tr(Gv

P

(vt)∈E σ(e)XvtX∗
vt)µM(dXM , dGM).

Adapting the previous considerations we see that Gv

∑
e:s(e)=v σ(e)XeX

∗
e corre-

spond to an element of a planar algebra with one string and one strip, the strip
being in the white shading iff v ∈ V−, both being independent in the sense that
they can not be glued together, and the strips requiring to be coupled with an-
other strip corresponding to the same vertex, the weight being one. We can also
show the convergence (in a small parameters regime) of the law νM,K

t restricted
to the planar algebra generated by elements with non-crossing strings and strips.
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We denote the limit by τt. trt corresponds to the case where we restrict our-
selves to elements with only strings (since then expectation over the strips, that
is the Gaussian variables can be taken) whereas ν± corresponds to restricting
ourselves to element with strips only (inside a white or a black shading). To
relate both states let us consider the expectation of an element Bn,p with n non
nested cups with black shading inside, followed by p strips in the white region.
Let C(p, n, ℓ, k) be the number of possible configurations build above this tangle
with ℓ (resp. k) tangles with one string and one strip in the white (resp. black)
shaded region. We get an induction relation by gluing the first strip which yields
for p ≥ 1,

C(p, n, ℓ, k) =

p−2∑

p1=0

∑

ℓ1≤ℓ

∑

k1≤k

Ck1
k Cℓ1

ℓ C(p1, 0, ℓ1, k1)C(p − p1 − 2, n, ℓ − ℓ1, k − k1)

+ℓC(p − 1, n + 1, ℓ − 1, k).

n p

ℓ

k

The first term appears when the strip is glued with another strip of the tangle
whereas the second one shows up when it is glued with a strip of an element with
a strip and a string with the right shading.

We let

C(z, γ, α, β) =
∑ zpγnαℓβk

ℓ!k!
C(p, n, ℓ, k)

and conclude from the induction relation that

C(z, γ, α, β)−C(0, γ, α, β) = z2C(z, 0, α, β)C(z, γ, α, β)+
αz

γ
(C(z, γ, α, β)−C(z, 0, α, β))

which gives:

C(z, γ, α, β) =
γC(0, γ, α, β)− αzC(z, 0, α, β)

γ − αz − γz2C(z, 0, α, β)

Since C(z, γ, α, β) is analytic in z, γ small enough, we deduce that if the denom-
inator vanishes so that

γ = (1 − z2C(z, 0, α, β))−1αz =: γ(z)
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then the numerator must vanish too. Therefore, with z(γ) the inverse of γ(z)
(which exists by the implicit function theorem in a neighborhood of the origin)
we deduce

C(0, γ, α, β) =
αz(γ)

γ
C(z(γ), 0, α, β).

Since if we choose α =
√

2tA, β =
√

2tB, we have C(0, γ, α, β) = C(γ, A, B) and
C(z, 0, α, β) = M(z), we have proved the proposition. �

3.4. Solving the auxiliary matrix model. We study in this section the law
P M,K

t and prove (16).

3.4.1. Large deviation estimates and limit points. Using standard large deviation
theory [1, Section 2.6], and putting

Σ(µ, ν) :=

∫∫
log |x − y|dµ(x)dν(y), Σ(µ) := Σ(µ, µ) ,

we deduce that

Proposition 17. Set α =
√

8tA and β =
√

8tB. The law of the spectral measures
( 1

Mv

∑Mv

i=1 δλv
i
, v ∈ V ) of the matrices Gv, v ∈ V under P M,K

t satisfies a large

deviation principle in the scale M2 and with good rate function

It(νv, v ∈ V ) :=
1

2

∑

v∈V

µ(v)2

∫
x2dνv(x) −

∑

v∈V

µ(v)2Σ(νv)

+
∑

e∈E+

µ(t(e))µ(s(e))

∫
log(1 + α(s(e))x + α(t(e))y)dνs(e)(x)dνt(e)(y).

Take Γ = An, n ≥ 1. Then, It achieves its minimal value at a unique point so
that νv = ν± if v ∈ V± with (ν+, ν−) the unique minimizer of

S(ν+, ν−) =
∑

ǫ=±

(
1

2

∫
x2dνǫ(x) − Σ(νǫ)

)
+ δ

∫∫
log |1 + αx + βy|dν+(x)dν−(y).

In particular, for any p ≥ 0, we have

lim
M→∞

E[
1

Mv

Mv∑

i=1

(λv
i )

p] =

∫
xpdν±(x) if v ∈ V±

Remark 18. By large deviation techniques as in [2], it is easy to check that
(ν+, ν−) is also the limit of the spectral measures of the two Hermitian M × M
random matrices G+, G− with joint law given by

1‖G±‖≤K ′

ZM,δ
e−δM2tr⊗tr log(I+αI⊗G++βG−⊗I)e−

M2

2
tr(G2

++G2
−)dG+dG−

when K ′ is large enough. This last formula is easily obtained for integer values of
δ starting from the graphical rules of the double cup matrix model, and usually
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in the physics literature such expressions are then analytically continued to δ non
integer.

Proof of Proposition 17. The first point is to show the uniqueness of the
minimizers of It. We let ν̃v be the law of −αx (resp. 1 + βy) under νv for v ∈ V+

(resp. v ∈ V−). Then, we have to minimize

It(νv, v ∈ V ) := H(ν̃v, v ∈ V ) + L(ν̃v, v ∈ V )

with, for probability measures pv, v ∈ V on the real line,

H(pv, v ∈ V ) :=
∑

e∈E+

µ(t(e))µ(s(e))Σ(ps(e), pt(e)) −
∑

v∈V

µ(v)2Σ(pv)

and

L(pv, v ∈ V ) :=
1

2

∑

v∈E−

(
µ(v)

α
)2

∫
x2dpv(x) +

∑

v∈E+

(
µ(v)

β
)2

∫
(1 − x)2 dpv(x).

Since It is a good rate function, it has compact level sets (see the case V = {0} in
[2]) and therefore It achieves its maximal value. We next prove that its maximizer
is unique. Note that L is linear in the measures. We shall prove that H is strictly
convex. Indeed, put

d(v) = ♯{e ∈ E+ : s(e) = v} + ♯{e ∈ E+ : t(e) = v}
and observe that when Γ ⊂ A∞ the degree d(v) of each vertex is bounded by one
(for the boundary points) or by two. Therefore, the quadratic form

Q(x) =
∑

v∈V

x2
v −

∑

e∈E+

xs(e)xt(e) =
1

2

∑

e∈E+

(xs(e) − xt(e))
2 +

∑

v∈V

x2
v(1 − d(v)

2
)

is positive definite. We let (γi, vi) be the eigenvalues and eigenvectors of the
corresponding matrix in R+∗ × R|V | and write

H(pv, v ∈ V ) = −
∑

i

γiΣ(
∑

u∈V

vi(u)µ(u)pu).

Finally Σ is strictly log-concave on the set of real valued measures with fixed
mass, as it was proved in [2] on the set of probability measures. Applying it to
the measure pi =

∑
u∈V µ(u)vi(u)pu with given mass

∑
u∈V vi(u)µ(u) and using

that the γi’s are positive, we deduce that H is strictly convex. Therefore, It (and
by the same argument S) achieves its minimal value at a unique point (νv, v ∈ V )
(resp. (ν+, ν−)). We next show that it has to be νv = ν± if v ∈ V±. In fact, the
infimum of It is characterized by the fact that for all v ∈ V +, the function fv(x)
given by

2µ(v)

∫
log |x − y|dνv(y) −

∑

e:s(e)=v

µ(t(e))

∫
log(1 + αx + βy)dνt(e)(y) − µ(v)

2
x2
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is constant on the support of νv and non positive outside. We have the same
equation for v ∈ E− with α and β exchanged. The same characterization holds
for ν+ which is such that the function f+ given by

−δ

∫
log(1 + αx + βy)dν−(y) + 2

∫
log |x − y|dν+(y) − x2

2
is constant on the support of ν+ and non positive outside (and again a similar
equation for ν− with α and β exchanged). Putting νv = ν± for v ∈ V±, we find
that fv = µ(v)f± as

∑
e:s(e)=v µ(t) = δµ(v), and therefore is indeed constant on

the support of νv and non positive outside. Thus νv = ν± for v ∈ V± is a solution,
and by the first part the unique solution. �

3.4.2. Properties of the minimizers of the rate function. We can give the following
characterization of the minimizer (ν+, ν−) of S.

Lemma 19. Let α =
√

8tA and β =
√

8tB. There exists t0 > 0 so that for
|t| ≤ t0,

• ν± has a connected support S± included in [−2−A(t), 2+A(t)] with A(t)
going to zero as t goes to zero.

• There exist functions (f±, g±) which are analytic in a neighborhood of S±
and so that for z ∈ C

(17) G±(z) =

∫
1

z − x
dν±(x) = f±(z) −

√
g±(z)

with the branch of the square root chosen on R
−. Moreover g± is real

on the real line and S± = {x : g±(x) < 0}. We define G±(z + i0) and
G±(z− i0) as the limit of G± when z goes to an element of S± from above
or from below.

• For all x ∈ S± we have with α+ = α, α− = β,

(18) δ
α±
α∓

G∓(
1 − α±x

α∓
) + x = G±(x + i0) + G±(x − i0).

• There exists at most one solution to (18) so that G± are the Cauchy–
Stieltjes transform of probability measures ν± supported by [−3, 3].

Proof. The fact that the support of ν− and ν+ is connected is a consequence of
Remark 18 and [15, Theorem 4.4 and Theorem 4.2] which asserts that the limiting
measures ν± have connected supports when the potential is strictly locally convex,
which is the case when t is small enough (note here that the potential is not a
polynomial, however it expands in absolutely converging power series when t is
small enough and x, y are bounded by K ′ so that we can apply the techniques
from [15] to represent the measures as the law of an element of the C∗ algebra
generated by the free Brownian motion). Another way to see this is to notice
that the function f+ is strictly concave outside of the support and continuous on
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the support where it takes only one constant value; hence the support can not
be disconnected. The fact that the support is bounded is a direct consequence of
Brascamp-Lieb inequalities.

To deduce the second point, we obtain an equation on (ν+, ν−) by writing

S(νζ
+, νζ

−) ≥ S(ν+, ν−)

with νζ
± the law of x+ζh±(x) for bounded continuous functions h± on R. Writing

that the linear term in ζ must vanish results with the equation

(19)
∑

ǫ=±

(∫
xhǫ(x)dνǫ(x) −

∫∫
hǫ(x) − hǫ(y)

x − y
dνǫ(x)dνǫ(y)

)

= −δ

∫
αh+(x) + βh−(y)

1 + αx + βy
dν+(x)dν−(y).

Taking h+(x) = −β
α
(z + 1+αx

β
)−1 and h−(x) = (z−x)−1 we get that, with m(z) =

G+(−(1 + βz)/α),

β2

α2
m(z)2 + G−(z)2 + δ

β

α
m(z)G−(z) − zG−(z) + 1 +

β2

α2
(1 − (1 +

βz

α
)m(z)) = 0

which gives

G−(z) =
1

2
(b(z) −

√
b(z)2 − 4a(z))

with the cut of the square root on R− and

b(z) = z − δ
β

α
m(z), a(z) =

β2

α2
m(z)2 + 1 +

β2

α2
(1 − (1 +

βz

α
)m(z)).

But, for small t, when z is in the neighborhood of S−, −(1 + βz)/α is in the
neighborhood of −1/α which is far from the support S+. Hence, a(z) and b(z)
are analytic in the neighborhood of S− and also take real values. This completes
the proof of the second point.

For the third point, it is enough to take h+ = 0 or h− = 0 in (19) with the
remark that∫ ∫

h(x) − h(y)

x − y
dν±(x)dν±(y) =

∫
h(x)[G±(x + i0) + G±(x − i0)]dν±(x)

and use the continuity of G± above and below the cut due to the previous point
to obtain the desired equations almost surely and then everywhere.

For the last point, since (18) is equivalent to (19), we show the uniqueness of
the solution by taking h+(x) = (z − x)−1 to deduce that

−1 + zG±(z) − G±(z)2 = δα±

∫
1

z − x
α∓G∓(−1 + α±x

α∓
)dν±(x) =: ǫ±(z)
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so that for z sufficiently large

G±(z) =
1

2
(z −

√
z2 − ǫ±(z))

where we have taken the usual determination of the square root as ǫ±(z) is small
since α∓G∓(−1+α±x

α∓
) is uniformly close to one for x ∈ S± and t small. Therefore,

if we have two solutions G and G̃, we find that there exists M(t) finite so that
for t small,

sup
z∈R

|z|≥M(t)

|G±(z) − G̃±(z)| ≤ 1

2
sup
z∈R

|z|≥M(t)

|G∓(z) − G̃∓(z)|

which results with G∓(z) = G̃∓(z) for z large enough and real, and then for all
z in the complement of S± by analyticity. �

3.4.3. Characterization of the minimizers of the rate function. In this section we
completely characterize the measures (ν+, ν−) by their Cauchy–Stieltjes trans-
form. To simplify the notations, we let ν̃+ and ν̃− be the law of −αx and 1 + βx
under ν+ and ν− respectively. By Lemma 19, for t small enough, ν̃+ and ν̃− have
disjoint connected supports [a1, a2] and [b1, b2] around the origin and the unity
respectively. Our study will be restricted to this case, which therefore include
small t’s but eventually a larger class of parameters. We will first proceed by a
reparametrization of the Cauchy–Stieltjes transforms of ν̃+ and ν̃− , which will
allow to obtain very simple equations, and then solve these equations.

• Parametrization. Consider the standard parameterization of the elliptic
curve y2 = (z − a1)(z − a2)(z − b1)(z − b2):

(20) u(z) =
i

2

√
(b1 − a1)(b2 − a2)

∫ z

b2

dz′√
(z′ − a1)(z′ − a2)(z′ − b1)(z′ − b2)

where the path of integration avoids the segment [a1, b2] (for z ∈ [a2, b1], we
choose to come from the upper half plane, though this choice is irrelevant, see
the comment below on 2K-periodicity), and the square root in the denominator
is defined as having cuts [a1, a2] and [b1, b2] and such that at infinity it behaves
like z2.

The image of z ∈ C ∪ {∞} − ([a1, a2] ∪ [b1, b2]) 7→ u(z) = (Re u(z), Im u(z))
is a rectangle of the form [−K, K[×]0, iK ′[, where K and K ′ are usually called
quarter-periods (though they will be half-periods in what follows). Now, note
that crossing the line [a2, b1] corresponds to u → u + 2K. Since all the functions
of z we shall consider are smooth when one crosses this line, they can be made
into periodic functions on the strip 0 < Im u < K ′. The map z 7→ u(z) is then an
analytic isomorphism from the Riemann sphere C∪{∞} minus the two segments
[a1, a2] and [b1, b2] to R/2KZ×]0, iK ′[. If one extends the map to the cuts [a1, a2]
and [b1, b2], then the result depends on whether one approaches them from the
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upper or lower half-plane, and they get sent to Im u = K ′ et Im u = 0 as described
on the figure. More precisely, if a ∈]a1, a2[, then u(a+ i0)+u(a− i0) = 2iK ′ (the
two images of a are symmetric w.r.t. iK ′ on the line Im u = K ′), and similarly if
b ∈]b1, b2[, then u(b + i0) + u(b − i0) = 0.

z

a1 a2 b1 b2

u

−K +K

iK ′ − K iK ′ + K
iK ′

0

u∞

The inverse map z(u) can be expressed in terms of Jacobi’s elliptic function
sn, and can be deduced from the following identity:

sn2(u, k2) =
a1 − b1

b2 − b1

b2 − z

a1 − z

with k2 = (b2−b1)(a2−a1)
(b2−a2)(b1−a1)

. Note finally that

lim
z→∞

u(z) =
i

2

∫ +∞

b2

√
(b1 − a1)(b2 − a2)dx√

(x − a1)(x − a2)(x − b1)(x − b2)
=: u∞ ∈ iR

is a pole of z(u). It is a simple pole as one easily sees that for z large u(z) ∼
u∞ + z−1

z
+ o(1/z) with a non vanishing constant z−1. Moreover, z(u) is analytic

everywhere else in [−K; K]× [0, iK ′] by the implicit function theorem, and, once
analytically continued to the whole complex plane, is even and elliptic (doubly
periodic), with poles at ±u∞ (mod 2K, 2iK ′).

• Resolvents. We let ω± be the reparametrization of the Cauchy–Stieltjes
transform of ν̃+ and ν̃− respectively;

ω±(u) =

∫
1

z(u) − x
dν̃±(x)

The functions ω±(u) are analytic in the strip 0 < Im u < iK ′, and according to the
second point (17) of Lemma 19, they can in fact be analytically continued to some
neighborhood of the closed strip 0 ≤ Im u ≤ iK ′. Indeed, if 0 < |Reu(z)| < K
the mapping z 7→ u(z) is invertible around z and the extension in the z variable
translates directly into the u variable. If z = a1, a2 (resp. b1, b2 for G−), one has
according to (17) (with a more detailed study of g± which shows that for t small
enough g′

± does not vanish in a neighborhood of S±), G±(z) ∝ (z − z′)1/2 as
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z′ → z; but this matches the behavior of u(z) in (20), so once again ω±(u) is a
well-defined analytic function in the neighborhood of 0, iK ′,±K, iK ′ ± K.

By (18), we have

ω+(u) + ω+(2iK ′ − u) − δω−(u) = P+(u) Im u = K ′(21)

ω−(u) + ω−(−u) − δω+(u) = P−(u) Im u = 0(22)

where P+(u) = z(u)/α and P−(u) = (z(u) − 1)/β. P± are even elliptic functions
(with periods 2K, 2iK ′).

We also have the following additional conditions:

ω+(u) = ω+(−u) Im u = 0(23)

ω−(u) = ω−(2iK ′ − u) Im u = K ′(24)

expressing the fact that the Cauchy–Stieltjes transform of ν̃+ is analytic in a
neighborhood of [b1, b2], so its values at z ± i0, z ∈ [b1, b2] should be equal; and
similarly for ν̃−.

Now these equations can be repeatedly used to extend ω± to the whole com-
plex plane: for example u → 2iK ′ − u maps the strip 0 ≤ Im u ≤ K ′ to the
strip K ′ ≤ Im u ≤ 2K ′, so we can use Eq. (21) as a definition of ω+ in this new
strip and equation (21) precisely ensure that the two definitions coincide at their
common boundary Im u = K ′; and so on. This way we obtain meromorphic func-
tions ω±(u) defined on the whole complex plane, and by uniqueness of analytic
functions that coincide on a set with accumulation points, we deduce that the
above equations are true for all u:

ω+(u + 2K) = ω+(u)(25)

ω−(u + 2K) = ω−(u)(26)

ω+(u) = ω+(−u)(27)

ω−(u) = ω−(2iK ′ − u)(28)

ω+(u) + ω+(2iK ′ − u) − δω−(u) = P+(u)(29)

ω−(u) + ω−(−u) − δω+(u) = P−(u)(30)

Furthermore, these functions must possess a zero at u∞ := u(z = ∞) and a
prescribed derivative at u∞.

• General solution of the saddle point equations. Now we have a well-
posed analytic problem, which can be solved explicitly. Set δ = q+q−1. If |δ| < 2,
q is not real and has modulus one, e.g. if δ = 2 cos(π/n), q = eiπ/n. If δ > 2, q is
real and can be chosen in ]0, 1[. Set

ϕ±(u) = q±1ω+(u) − ω−(u) − R±(u)
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where R±(u) = 1
1−q±2 (q

±1P+(u) + q±2P−(u)). Then the equations can be recom-

bined into:

ϕ±(u + 2K) = ϕ±(u)(31)

ϕ±(u + 2iK ′) = q±2ϕ±(u)(32)

where the first point is a direct consequence of (25) and (26), whereas the sec-
ond is obtained by multiplying (29) by q± and (30) by q±2 and adding the two
corresponding equations. Moreover, (27) and (30) implies that

(33) ϕ±(−u) = −ϕ∓(u).

Thus we may consider ϕ+ only. Furthermore we know that the only poles of ϕ±
in the fundamental domain [−K; K] × [−iK ′; iK ′] are at ±u∞ i.e. z → ∞; they
appear because of the inhomogeneous terms R±, which have such poles. We can
therefore express ϕ+(u) in terms of θ functions. Define Θ to be the rescaled θ1

function, or explicitly

(34) Θ(u) = 2

∞∑

n=0

e−(n+1/2)2πK ′/K sin(2n + 1)
πu

2K

which satisfies

Θ(u + 2K) = −Θ(u)

Θ(u + 2iK ′) = −eπ(K ′−iu)/KΘ(u)

and with a unique simple zero at u = 0 (mod 2K, 2iK ′).
Then we have

Proposition 20. Write q = eiπν with ν real if δ < 2 and purely imaginary if
δ > 2. Then,

(35) ϕ+(u) = c+
Θ(u − u∞ − 2νK)

Θ(u − u∞)
+ c−

Θ(u + u∞ − 2νK)

Θ(u + u∞)

where

c± = ∓z−1
Θ′(0)

Θ(2νK)

1

q − 1/q
(α−1 + q±1β−1)

if z(u) = z−1/(u − u∞) + O(1) as u goes to u∞.

Proof. This can be viewed as a consequence of the Riemann–Roch theorem, but
we give here an elementary proof.

If δ > 2, let us first rule out the possibility that q2 = e−2πnK ′/K for some
integer number n. Indeed then e−niπu/Kϕ+(u) is also elliptic and therefore the
sum of its residues vanishes. But the latter is given by e−niπu∞/K(α−1 + qβ−1) +
eniπu∞/K(α−1+q−1β−1) which can not vanish. Thus, q2 6= e−2πnK ′/K and therefore
Θ(2νK) 6= 0 (which allows in particular to define c± above).
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Next, let ϕ̃+ denote the right hand side of (35) and observe that by the prop-
erties of the functions Θ, ϕ̃+ satisfies (32) and (31).

The formula for c± is obtained by requiring that ϕ̃+ have the same residues at
u ∼ ±u∞ as our solution ϕ+. Indeed, Θ(u) ∼ Θ′(0)u as u goes to zero so that
(35) shows that

ϕ̃+(u) ∼u→u∞ c+
Θ(2νK)

Θ′(0)(u − u∞)
+ O(1)

whereas both ω+ and ω− go to zero and

R+(u) ∼ 1

1 − q2
(α−1q + β−1q2)z(u) ≈ 1

z−1(1 − q2)(u − u∞)
.

The formula ϕ+ = qω+−ω−−R+ allows to conclude. The same reasoning works
as u → −u∞ by using ϕ+(−u) = −ϕ−(u).

Let us finally show that f := ϕ+ − ϕ̃+ must vanish. Indeed f is holomorphic
and therefore g := f ′/f is holomorphic except where f vanishes, where it has
only simple poles, with non-negative residues. But since f satisfies (32) and (31),
g is elliptic and therefore the sum of its residues vanishes. Hence, the residues
of g vanish, and therefore by Liouville’s Theorem, g is constant, resulting with
f(u) = eγu for some constant γ. But then (32) implies that γ = iπn/K and
q2 = e−2πnK ′/K , which we excluded earlier.

�

Finally, we need to fix the parameters a1, a2, b1, b2.
The first way is to notice that G±(z) is an analytic function in α, β, z in

a neighborhood of the origin as, by Remark 18, it is the Stieltjes function of
the limiting spectral measure of a matrix model with strictly log-concave den-
sity which, even though not polynomial, expands as a power series, see [15].
The coefficients of these series can be computed recursively by the Schwinger–
Dyson equation. Finally, by (17), the boundary of the support [a1, a2] are deter-
mined by g+(ai) = 0, i = 1, 2 which shows that there is a polynomial P so that
P (ai, G+(ai), α, β) = 0. The implicit function theorem then implies that ai is an
analytic function of α, β for i = 1, 2 whose expansion can be deduced from the
expansion of G+. The same applies for b1, b2.

The second way to determine these boundary points uses the explicit formula
in terms of θ functions and the reparametrization of the problem in terms of
p := exp(−πK ′/K) and of

κ := pe−2iπu∞/K

Note that because (a1, a2, b1, b2) expand analytically in α, β, so do (K, K ′, u∞)
with u∞ =

∑
n+m≥−1 un,mβnαm, K = u(b1) =

∑
n+m≥−1 Kn,mβnαm and K ′ =

−iu(a1) =
∑

n+m≥0 K ′
n,mβnαm. As a consequence, (p, κ) also expand in terms of

(α, β), with κ ∼
√

α/β and p ∼
√

αβ when α, β are small but α/β of order one.
Again by the implicit function theorem, we can invert this expansion and obtain



42 A. GUIONNET, V. F. R. JONES, D. SHLYAKHTENKO, AND P. ZINN-JUSTIN

α, β as a power series in (p, κ), and therefore also (a1, a2, b1, b2), z−1 and z(u).
We can then identify the expansion of (q − q−1)ω+ and ϕ+ + R+ −ϕ−R− around
u∞ to compute ω+ recursively. In appendix A, we provide the first few orders of
the power series expansion of some quantities as a function of p and κ, and their
diagrammatic meaning.

Proposition 21. If δ = 2 cos(π/n), n ≥ 3, G± satisfy an algebraic equation.

Proof. Observe that since q = eiπ/n, by equations (31,32), ϕ± are elliptic with
periods (2K, 2niK ′), and therefore so are ω±. The function z(u) is also elliptic
with these periods. But a fundamental theorem of elliptic functions [29, section
20.54] states that two elliptic functions with the same periods are related by an
algebraic equation: there exist two polynomials P± so that

P±(ω±(u), z(u)) = 0 .

Composing with u(z) shows the existence of an algebraic relation.
We can in fact determine the degree of P± by a slightly more explicit construc-

tion of these polynomials; we find it is at most 2n − 2 in z and 2n in ω. �

This is to be compared with Theorem 15 of [3]. Indeed, their generating series
M(q, ν, t, w, z; x, y) is closely related to our G±(z; α, β; δ). The correspondence of
parameters goes as follows: q = δ2, ν = 1 + δ α/β; among the three parameters
t, w, z, one is redundant and if z is set to 1 one has t = β, but w is fixed
to be w = 1/δ (w and z are parameters weighing in our language white and
black regions between tangles; note that introducing an extra paramater in our
matrix model to let w vary is possible and would make no difference in the exact
solution presented so far, so that Prop. 21 would still hold). x, y are “boundary”
parameters similar to our parameter z, in the sense that they give a weight to
a particular edge (or vertex, or face) of the planar map. However they are not
exactly the same, and therefore direct identification of our generating series is
not possible; only specific identities can be written, such as

1

α

∫
x dν̃+(x) = M(δ2, 1 + δ α/β, β, 1/δ, 1; 1, 1)

where the left hand side is the 1/z2 term in the z → ∞ expansion of G+(z), and
the right hand side is the generating series of [3] with certain specializations of
its parameters.

Appendix A. Analyticity of tr

Let P be a planar algebra. Let S1, . . . , Sk and S be elements of this planar
algebra and set for complex parameters t1, . . . , tk, and a fugacity δ ∈ C,

(36) trt,δ(S) =

∞∑

n1,...,nk=0

nk∏

i=1

tni

i

ni!

∑

P∈P (n1,...,nk,S)

δ# loops in P
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where we sum over all admissible planar maps built on S1, . . . , Sk, S. Then we
state that

Lemma 22. There exists a positive constant B so that for all t1, . . . , tk, δ ∈
Ck+1 so that max1≤i≤k |δ|

1
2 |ti| < B, trt,δ(S) is a well defined absolutely converging

series, and therefore t, δ → trt,δ(S) is analytic on this set.

Indeed, the number of loops is bounded by the number of elements S1, . . . , Sk, S
given by n1 + · · ·+nk +1 times their maximal number of boundary points divided
by two. Therefore, the coefficients of the series are simply bounded by

C(n1, . . . , nk) := |δ| 12
k∏

i=1

(|ti||δ|
1
2 )ni

ni!

and the sum can be enlarged to all planar maps that can be built over ni (resp.
one) vertices with degree given by the number of boundary points of Si, 1 ≤ i ≤ k
(resp. S). It is well known, see e.g. [14, p. 255], that the number of such

maps grows as
∏k

i=1 ni!A
n1+···+nk for some finite constant A. Hence, trt,δ(S) is

an absolutely converging series on max1≤i≤k |ti||δ|
1
2 A < 1, domain on which it is

analytic.
Note that it is expected that as one increases the ti, one should eventually

reach a hypersurface of singularities which signals the boundary of the analyticity
region in the variables t = (t1, . . . , tk). This singularity is usually present in
matrix models and is explained by the proliferation of planar maps: typically the
number of planar maps grows exponentially with its number of vertices and this
produces a finite radius of convergence of the corresponding generating series.
This is certainly what happens in the cases studied in section 3. The model of
3.1 is closely related to the so-called one-matrix-model, whose possible “critical
behaviors” (i.e., types of singularities) are well-known [6]. No exact solution is
known for the model of 3.2, but a conjecture on its critical exponent is proposed
in [7]. Finally, it is expected that the model of 3.3 has a critical behavior of the
type of the O(n) model on the line A = B, and that of pure gravity on other
lines of constant ratio A/B 6= 1. It would be interesting to find an interpretation
of these critical behaviors in the present context, i.e. in terms of properties of trt.

Appendix B. First few diagrams of the double cup matrix model

The parameters a1, a2, b1, b2 of the auxiliarly model of sect. 3.4 can, as already
mentioned, be fixed by appropriate expansion of ω+(u) around ±u∞. In practice,
the resulting equations reduce to first degree equations on the condition that one
solves them parametrically in terms of the elliptic nome p := exp(−πK ′/K) and
of u∞. All other quantities can then be obtained in the same parameterization.
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As a check, we shall here write the first few orders of the expansion for small
α, β. The correct scaling as α, β → 0 at fixed ratio is to keep the quantity

κ := pe−2iπu∞/K

fixed while sending p to zero, so that α/β ∼ κ2 and αβ ∼ p2. We find the
following expansions:

α =κ
[
p − (κ(3δ + 2) + κ−1(2δ + 6))p2

+
(
(8δ2 + 5δ + 3)κ2 + (8δ2 + 45δ + 24) + (5δ2 + 12δ + 17)κ−2

)
p3 + O(p4)

]

β =κ−1
[
p − (κ−1(3δ + 2) + κ(2δ + 6))p2

+
(
(8δ2 + 5δ + 3)κ−2 + (8δ2 + 45δ + 24) + (5δ2 + 12δ + 17)κ2

)
p3 + O(p4)

]

a1 =κ
[
−2p1/2 + δp + 2((3 + δ)κ−2 + (1 + δ)κ2)p3/2 + O(p2)

]

a2 =κ
[
2p1/2 + δp − 2((3 + δ)κ−2 + (1 + δ)κ2)p3/2 + O(p2)

]

b1 =1 − κ−1
[
2p1/2 + δp − 2((1 + δ)κ−2 + (3 + δ)κ2)p3/2 + O(p2)

]

b2 =1 − κ−1
[
−2p1/2 + δp + 2((1 + δ)κ−2 + (3 + δ)κ2)p3/2 + O(p2)

]
∫

x dν̃+(x) =κ
[
δp − δ(κ(2δ + 1) + κ−1(δ + 5))p2

+ δ
(
κ2(4δ2 + 1) + 3δ2 + 24δ + 1 + κ−2(2δ2 + 4δ + 11)

)
p3 + O(p4)

]

∫
x2 dν̃+(x) =κ

[
p + (κ(δ2 − 2δ − 2) − 2κ−1(3 + δ))p2

+ (κ2(−4δ3 + 3δ2 + 3δ + 3) + (−2δ3 − 4δ2 + 36δ + 24) + κ−2(5δ2 + 12δ + 17))p3 + O(p4

(the expansions of a1, a2, b1, b2 are only given up to order p3/2 because of issues
of space).

Inverting the first two expansions and inserting the result in the last two yields

1

α

∫
x dν̃+(x) = δ + δ(1 + δ)(α + β) + δ((2 + 5δ + 2δ2)α2 + (6 + 8δ + 4δ2)αβ + (2 + 5δ + 2δ2)β2) + ·

1

α2

(∫
x2 dν̃+(x) − α

)
= δ(1 + δ) + δ(2 + 5δ + 2δ2)α + δ(3 + 4δ + 2δ2)β + · · ·
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According to Prop. 16,
∫

x dν̃+(x)/α corresponds diagramatically to:

1

α

∫
x dν̃+(x)

= δ + αδ + βδ + αδ2 + βδ2

+ α2δ2




+ + + +




+ α2δ




+




+ α2δ3




+




+ · · ·
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Similarly, we have:

1

α2

(∫
x2dν̃+(x) − α

)

= δ + δ2 + αδ




+




+ αδ2




+ + +

+




+ αδ3




+




+ βδ




+ +




+ βδ2




+ + +




+ βδ3




+




+ · · ·
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Appendix C. The stitching of two planar algebras.

Let P = P±
n and Q = Q±

n be two subfactor planar algebras (assumed spherical
for simplicity). We define a new subfactor planar algebra

P c Q = (P c Q)±n

which will not be irreducible even if both P and Q are.
The vector spaces of P c Q are defined as follows. Fix the even number 2n

and consider the possible partititions π of {1, 2, 3, ..., 2n} into two subsets of even
sizes 2(pπ) and 2(qπ), whose elements we call of type P and Q respectively. Then

(P c Q)±n =
⊕

π

(P c Q)±π with (P c Q)±π = P±
pπ

⊗ Q±
qπ

.

To define the action of planar tangles on P c Q we use the notion of a string-
coloring. Given a planar tangle T with discs Di as in section 2.1, a string-colouring
σ of T is an assignment of P or Q to every string of T so that if one removes all
the strings of either color, one gets two planar tangles T σ

P and T σ
Q when one takes

as initial segments, with shading, the intervals containing the initial segments of
T . In particular there must be an even number of strings of each color incident
to every disc of T , but this is not a sufficient condition for the shadings to be
coherent.

A string-coloring σ of T defines:

(a) a partition πσ of the boundary points for each disc (numbered from 1
to 2bj starting at the first boundary point after the initial segment in
clockwise order)into P and Q points, and

(b) two planar tangles T σ
P and T σ

Q by removing all the strings of the other
color and taking as initial segments for discs the ones containing the initial
segments of T . The shadings of T σ

P and T σ
Q are determined by that of the

initial segment of the outside boundary of T .

By multilinearity it suffices to define the action ZT of a planar tangle T , with
k internal discs, on a k−tuple (x1, x2, ..., xk) of elements of P c Q where xi =∑

π vπ
i ⊗ wπ

i with vi ∈ P±
pπ

and wiQ
±
qπ

.

Suppose such an element xi of (P c Q)±bi
is assigned to each Di, then we define

MT (x1, x2, ..., xk) =
∑

σ

MT σ
P
(vπσ

1 , vπσ

2 , ..., vπσ

k ) ⊗ MT σ
Q
(wπσ

i , wπσ

2 , ..., wπσ

k )

where σ runs over all the string-colorings of T .
It is clear that this action is compatible with the gluings.
The ∗-structure on P c Q is derived in the obvious way from those of P and

Q.
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Notes. (i) Another way to describe the action is as follows: suppose elements
vi ⊗wi ∈ (P c Q)±πi

are assigned to the internal discs Di of T . Then the value of
MT is zero unless the colouring of the boundary points implied by the πi extends
to a string colouring of T and then this value is the sum over all such extensions
σ of MT σ

P
(v1, v2, ...vk) ⊗ MT σ

Q
(w1, w2, ..., wk). If there are strings connecting the

outside boundary of T to itself this element will lie in more than one direct
summand of (P c Q)±n .

(ii) It is clear from (i) that the loop parameter of P c Q is the sum of the loop
parameters of P and Q respectively.

(iii) Positive definiteness of the inner product is also clear from (i)-the various
(P c Q)π are orthogonal and in each one the inner product is just the tensor
product inner product for P±

pπ
⊗ Q±

qπ
.

(iv) It is the exponential generating functions for P and Q that behaves well
under this operation.

(v) For the inductive limit algebra structure of P c Q a complete set of cen-
trally orthogonal minimal projections is given by the tensor products of such sets
of projections for P and Q. Thus the vertices of the principal graph of P c Q
is the Cartesian product of the vertices of the principal graphs of P and Q and
(p, q) is adjacent to (p′, q′) iff p is adjacent to p′ or q is adjacent to q′ but not
both. For instance if P has principal graph A3 and Q has principal graph A4,
then that of P c Q is:

A4

A3

(vi) We see that in the loop basis description off P c Q, from each vertex of a
loop one may choose to travel on the principal graph of P or that of Q.

(vii) If we were dealing with unshaded planar algebras we would simply remove
the restrictions on the parity of the numbers of boundary points and the partitions
π.

(viii) A TL basis diagram in P c Q consists of a sum over all planar partitions
of the boundary points into P points and Q points with that basis diagram
regarded as a tensor product of its P part and its Q part.
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