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1. Introduction
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In these lecture notes, we wish to show how classical ideas and tools from statistical mechanics
can be used in the framework of random matrices. The lecture that is more specific to random
matrices is Lecture 2 where we show how the eigenvalues of complex Gaussian matrices have a
determinantal law and where we relate their statistics with Fredholm determinants. The other
lectures are based on the following ideas from probability and statistical mechanics;

• In Lecture 1, we use the method of moments to show the convergence of the spectral
measure of random matrices. This type of techniques is quite popular in random matrices
theory since random matrices are often modeled through their entries, the joint law of the
eigenvalues being in general not explicit (whereas a moment under the spectral measure
of a matrix is the trace of a power of the matrix, and therefore an explicit function of the
entries). We shall show some generalizations of these techniques.

• In Lecture 3, we use concentration theory to obtain concentration inequalities for
matrix quantities such as the spectral measure or the largest eigenvalue.

• In Lecture 4, we study natural Gibbs measures for random matrices. These Gibbs
measures can be seen as small perturbations of the law of independent Gaussian matrices.
Because we are typically in a “high temperature regime”, uniqueness of saddle points and
concentration inequalities will be the key tools of the proofs.

• In Lecture 5, we shall use dynamics to improve the results of the last section and
obtain non-perturbative results, as well as study the previous saddle points. This analysis
takes place in the natural ’limiting setting’ of large random matrices provided by free
probability; we, however, reduced the ’free’ part of the theory to its minimum in these
notes.

Even though the ideas and techniques developed in these notes are often borrowed from stan-
dard probability or statistical mechanics, the motivations behind the results we shall obtain are
quite specific. In the next section, we shall review some of the typical motivations and questions
in the field.

2. Motivations

Large random matrices have been studied since the thirties when Wishart [105] considered them
to analyze some statistical problems. Since then, random matrices appeared in various fields of
mathematics. Let us briefly summarize some of them and the mathematical questions they raised.

(1) Large random matrices and statistics: In 1928, Wishart [105] considered matrices of

the form YN,M = XN,M (XN,M )∗ with anN×M matrix XN,M with random entries. Typ-
ically, the matrix XN,M is made of independent equidistributed vectors {X1, · · · , XN}
in CM with covariance matrix Σ, (Σ)ij = E[X1

i X
1
j ] for 1 ≤ i, j ≤ M . Such random vec-

tors naturally appear in multivariate analysis context where XN,M is a data matrix the
column vectors of which represent an observation of a vector in CM . In such a setup, one
would like to find the effective dimension of the system, that is the smallest dimension
with which one can encode all the variations of the data. Such a principal components
analysis is based on the study of the eigenvalues and eigenvectors of the covariance ma-
trix YN,M . A central question in this domain is also to estimate the matrix Σ from the
observation of XN,M . When M is much smaller than N , it is rather clear that Σ can

well be estimated by the empirical sums Σ̂ij := N−1
∑N

i=1X
`
iX

`
j according to the law

of large numbers. Moreover, the eigenvalues of the random matrix XN,M have a few
large eigenvalues and many small ones, suggesting that the variations of the data takes
mainly place in the eigenspace corresponding to these few large eigenvalues (see below
the figure, kindly provided by N. El Karoui, representing the eigenvalues of YN,M when
XN,M is Gaussian with covariance matrix Σ). It used to be reasonable to assume that
N/M was large. However, the case where N/M is of order one is nowadays commonly
considered; it corresponds to the cases where either the number of observations is rather
small or when the dimension of the observation is very large. In this case, the picture is
much less transparent and the above estimator Σ̂ is biased. Moreover, the spectrum is
much more continuous (see the figure below, provided by N. El Karoui) and analysis in
principal components need deeper thoughts.
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Tests can for instance be done by observing the k largest eigenvalues, to decide
whether the distribution of the eigenvalues can resemble the distribution of the eigenvalues
of a matrix YN,M with the XN,M (ij) independent equidistributed Gaussian variables, see
[67] (corresponding to Σ being a multiple of the identity). Hence, the study of the local
properties of the spectrum as well as the related eigenvectors is particularly interesting
(see [39, 99] and references therein).

Similar questions on random matrices arise in finance to model portfolio optimization
(see e.g. the work of Bouchaud et al [86]). In the same spirit, random matrices appear in
problems related with telecommunications and more precisely with the analysis of cellular
phones data where a very large number of customers have to be treated simultaneously.
The problem is to retrieve the signal from a noised observation, often assuming that the
observation is a linear function of the signal (see [99] and references therein).

The smallest eigenvalue of YN,M is as well of great interest, for instance because
when it is sufficiently apart from the origin, the spectral measure (or Brown measure)
of XN,M is then intimately related with the moments of XN,M , a fact that was used in
[8, 95] to prove its convergence to the circular law.

In this setting, the main questions concern local properties of the spectrum (such
as the study of the large N,M behavior of the spectral radius of YN,M , see [67], of its
smallest eigenvalue [8, 95], the asymptotic behavior of the k largest eigenvalues etc),
or the form of the eigenvectors of YN,M , but also macroscopic questions concerning the
estimation of Σ.

(2) Large random matrices and quantum mechanics: Wigner, in 1951 [104], suggested
to approximate the Hamiltonians of highly excited nuclei by large random matrices. The
basic idea is that there are so many phenomena going on in such systems that they can



ALICE GUIONNET, RANDOM MATRICES 9

not be analyzed exactly and only a statistical approach becomes reasonable. The random
matrices should be chosen as randomly as possible within the known physical restrictions
of the model. For instance, Wigner considered Hermitian (since the Hamiltonian has
to be Hermitian) matrices with i.i.d entries (modulo the symmetry constraint). In the
case where the system is invariant by time inversion, one can consider real symmetric
matrices etc... As Dyson pointed out, the general idea is to choose the most random
model within the imposed symmetries and to check if the theoretical predictions agree
with the experiment, a disagreement pointing out that an important symmetry of the
problem has been neglected.

It turned out that experiments agreed exceptionally well with these models ; for
instance, it was shown that the energy states of the atom of hydrogen submitted to
a strong magnetic field can be compared with the eigenvalues of a symmetric matrix
with i.i.d Gaussian entries (the so-called GOE). The book [47] summarizes a few similar
experiments as well as the history of random matrices in quantum mechanics.

In quantum mechanics, the eigenvalues of the Hamiltonian represent the energy states
of the system. It is therefore important to study, following Wigner, the spectral distri-
bution of the random matrix under study, but even more important, is its spacing distri-
bution which represents the energy gaps. Such questions were addressed in the reference
book of M.L. Mehta [79]. In the last fifteen years, a rigorous treatment of these questions
was given around the work of C. Tracy et H. Widom [97, 96] . It is also important to
make sure that the results obtained do not depend on the details of the large random
matrix models such as the law of the entries ; this important field of investigation is
often referred to as universality. An important effort of investigation was made in the
last ten years in this direction for instance in [91, 64, 98, 81]... For instance, it is now
known [88] that a real symmetric matrix with independent equidistributed entries with
36th moment finite has a largest eigenvalue with Tracy-Widom fluctuations whereas if
these entries have not a finite fourth moments, the largest eigenvalue does not converge
anymore to the edge of the limiting spectral measure and has a Frechet limit distribution
[93, 6]. It is conjectured that this behaviour really only depends on the existence of the
moment of order four.

(3) Large random matrices and Riemann Zeta function: The Riemann Zeta function
is given by

ζ(s) =

∞
∑

n=1

n−s

with Re(s) > 1 and can be analytically continued to the complex plane. The study of
the zeroes of this function in the strip 0 ≤ Re(s) < 1 furnishes one of the most famous
open problems. It is well known that ζ has trivial zeroes at −2,−4,−6.... and that its
zeroes are distributed symmetrically with respect to the line Re(s) = 2−1. The Riemann
conjecture is that all the non trivial zeroes are located on this line. It was suggested by
Hilbert and Polya that these zeroes might be related to the eigenvalues of a Hermitian
operator, a fact that would immediately imply that they are aligned. To comfort this
idea, H. Montgomery (1972), assuming the Riemann conjecture, studied the number
of zeroes of the zeta function in Re(s) = 2−1 up to a distance T of the real axis. His
result suggests a striking similarity with corresponding statistics of the distribution of the
eigenvalues of random Hermitian or unitary matrices when T is large (in fact the spacing
distribution seems to be given by a determinantal law with Sine kernel, as is the case for
the eigenvalues of Wigner matrices in the bulk). Since then, an extensive literature was
devoted to understand this relation (see e.g. [70]). It was in particular discovered by
Keating et al [71] that moments of characteristic polynomials of random matrices play
a key role in predicting the asymptotic behavior of moments of L functions computed
to a height T on the critical line, as T goes to infinity. This discovery introduces the
idea that not only the zeroes of the zeta functions should be related with the eigenvalues
of a random matrix, but the functions themselves behave like random (characteristic)
polynomials. In a similar spirit, it was shown that (pseudo)moments of the characteristic
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polynomial of unitary matrices is related with (pseudo)moments of the Riemann zeta
functions and the enumeration of (pseudo)magic squares [32, 33].

In somewhat the same direction, there is numerical evidence that the eigenvalues
distribution of large Wigner matrices is also related with the large eigenvalues of the
Laplacian in some bounded domain such as the cardioid. This is related to quantum
chaos since these eigenvalues describe the long time behavior of the classical ray dynamics
in this domain (i.e the billiard dynamics).

(4) Large random matrices and free probability: Free probability is a probability theory
in a non-commutative framework. Probability measures are replaced by tracial states on
von Neumann algebras. Free probability also contains the central notion of freeness
which can be seen as a non-commutative analogue of the notion of independence. At the
algebraic level, it can be related with the usual notion of freeness for groups. This is
why free probability could be well suited to solve important questions in von Neumann
algebras, such as the question of isomorphism between free group factors. Even though
this goal is not yet achieved, let us quote a few results on von Neumann algebras that
were proved thanks to free probability machinery [44, 45, 102].

In the 1990’s, Voiculescu [101] proved that large random matrices are asymptotically
free as their size goes to infinity. Hence, large random matrices became a source for
constructing many non-commutative laws, with nice properties with respect to freeness.
Thus, free probability can be considered as the natural asymptotic framework to consider
large random matrices as their size goes to infinity. Conversely, if one believes that any
tracial state could be approximated by the empirical distribution of large matrices (a
notion that we shall define more precisely later), which would answer to a well known
question of A. Connes in the affirmative, then any tracial state could be obtained as such
a limit.

In this context, one often studies the asymptotic behavior of traces of polynomial
functions of several random matrices with size going to infinity, trying to deduce from
this limit either intuition or results concerning tracial states. For instance, free probability
and large random matrices can be used to construct counter examples to some operator
algebra questions [58].

(5) Combinatorics, enumeration of maps and matrix models: It is well known that
the evaluation of the expectation of traces of random matrices possesses a combinatorial
nature. For instance, if one considers an N ×N symmetric or Hermitian matrix XN with
i.i.d centered entries with covariance N−1, Wigner’s theorem asserts that E[N−1Tr(Xp

N )]
converges toward 0 if p is odd and toward the Catalan number C p

2
if p is even. Cp is the

number of non crossing partitions of {1, · · · , 2p} and arises very often in combinatorics.
This idea was pushed forward by J. Harer and D. Zagier [60] who computed exactly
moments of the trace of Xp

N to enumerate maps with given number of vertices and genus,
and then in the seminal article of Kontsevich [73].

This approach of combinatorial problems by using large random matrices is inherited
from theoretical physics and takes its inspiration in the seminal work of ’t Hooft [94]. In
this article, ’t Hooft showed that Gauge theory with local Gauge group U(N) simplifies in
the limit N going to infinity. More precisely, such a theory is often described in quantum
field theory by some integral over complicated spaces such as connections (integrals that
rarely make proper mathematical sense). It is then customary in quantum field theory to
give a meaning to these integrals by performing a formal expansion of all terms that are
not quadratic in order to obtain integrals under a Gaussian law. Because of Wick calculus,
or equivalently Feynman diagrams, Gaussian expectation can in general be written as a
generating function of some graphs (see Lecture 4). ’t Hooft discussion shows that if the
original system is invariant under the action of U(N) with N as large as wished, then
such expansion should only depend on planar graphs. Each correction to this infinite N
limit should depend of graphs with a given genus.

This point of view was specified in [26] to the case where the integral is perfectly well
defined as an integral over complex Gaussian Wigner matrices (whose law is invariant
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under the action of the unitary group); they considered matrix integrals such as

ZN (P ) = E[eNTr(P (X1
N ,··· ,Xk

N ))]

with a polynomial function P and independent copies Xi
N of an N × N matrix XN

with complex Gaussian entries and law invariant under the action of the unitary group
(in fact they considered the special case where k = 1 and P is a quartic polynomial).
Then, one can see that if P =

∑

tiqi with some (complex) parameters ti and some
monomials qi, logZN (P ) expands formally (as a function of the parameters ti) and in
fact the coefficients of this formal expansion enumerate certain maps. The formal proof
follows from Feynmann diagrams expansion. This relation is nicely summarized in an
article by A. Zvonkin [107] and we shall describe it more precisely in Lecture 4. One-
matrix integrals can be used to enumerate various maps of arbitrary genus, and several
matrix integrals can serve to consider the case where the edges of these maps are colored,
i.e can take different states. For example, two-matrix integrals can therefore serve to
define an Ising model on random graphs.

Matrix models were also used in physics to construct string theory models. According
to the last remark, since string theory concerns maps with arbitrary genus, matrix models
have to be considered at criticality and with temperature parameters well tuned with the
dimension in order to have any relevance in this domain (the so-called double scaling
limit).

This subject had also a great revival in connection with Gromov-Witten invariants.
In fact, some of these invariants were shown to be connected with matrix integrals, for
instance in the seminal work of Kontsevich [73] who proved that some generating function
of some intersection numbers of stable classes of the moduli space of algebraic curves is
given by a matrix integral as above. According to Witten, such relations should hold in
a much larger generality (we refer also to works of Marino, Vafa, Dijkgraaf etc). In con-
nection with this approach, A. Okounkov and coauthors proved that a discrete analogue
of matrix models, provided for instance by tiling models, are related with some other
Gromov-Witten invariants.

In this domain, one tries to estimate integrals such as ZN(P ), and, more precisely,
to obtain the full expansion of logZN (P ) in terms of the dimension. This follows on the
formal level by Feynman diagrams techniques. A large dimension expansion (meaning
where issues on the convergence of series are addressed) was obtained rigorously for one-
matrix models by use of Riemann-Hilbert problem techniques by J. Mc Laughlin and N.
Ercolani [40] and for several-matrix models by E. Maurel Segala and myself. We shall
review this topic in Lecture 4.

Another interest in the relation between random matrices and the enumeration of
interesting combinatorial objects comes from numbers theory. This is one of the moti-
vations of the article of Diaconis and Gamburd [36] relating the enumeration of magic
squares and moments of the secular coefficients of a matrix following the Haar measure
on the unitary group (see [32]).

Another question is to use the representation of the combinatorial problem in terms
of matrix models to actually solve or analyze this problem. First order asymptotics for
a few several-matrix models could be obtained by orthogonal polynomial methods by M.
L. Mehta [79, 30] and by large deviations techniques in [48]. We shall discuss this issue
in Lecture 4. The physics literature on the subject is much more consistent as can be
seen on the arxiv (see work by B. Eynard, P. Di Francesco, V. Kazakov, I. Kostov, M.
Staudacher, P. Zinn Justi, J.B Zuber etc).

(6) Large random matrices, random partitions and determinantal laws: The laws
of the eigenvalues of complex Gaussian matrices have a determinantal form [79], i.e.,
the law of the eigenvalues (λ1, · · · , λN ) of a Wigner matrix with complex Gaussian en-
tries (also called the GUE) is absolutely continuous with respect to Lebesgue measure
and the interaction between the eigenvalues described by the square of a Vandermonde
determinant ∆.

Because ∆ is a determinant, specific techniques can be used to study for instance the
law of the top eigenvalue or the spacing distribution in the bulk or next to the top (cf. [96],
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and Lecture 2). Such laws appear actually in diverse contexts such as random partitions
[80, 21], tilling problems [66], longest increasing subsequence [9, 65], directed polymers
and the totally asymmetric simple exclusion process [63]. Extension of this connection
allowed recently to study the totally asymmetric exclusion process with various initial
conditions [20, 19]. These relations are often based on bijections with pairs of Young
tableaux. Recently, it was shown [84] that the zeroes of random analytic functions also
have a determinantal form. More examples will be given in Y. Peres course.

In fact, determinantal laws appear naturally when non-intersecting paths are in-
volved. Indeed, following [69](see also Gessel-Viennot in a discrete setting [46]), if kT

is the transition probability of a homogeneous continuous Markov process, and PN
T the

distribution of N independent copies XN
t = (x1(t), · · · , xN (t)) of this process, then for

any X = (x0, · · · , xN ), x1 < x2 < · · · < xN , Y = (y0, · · · , yN ), y1 < y2 < · · · < yN ,

P (XN (0) = X,XN(T ) = Y |∀t ≥ 0, x1(t) ≤ x2(t) ≤ · · ·xN (t))

(1) = C(x)det
(

(kT (xi, yj)) 1≤i≤N

1≤j≤N

)

with

C(x)−1 =

∫

det
(

(kT (xi, yj)) 1≤i≤N

1≤j≤N

)

dy.

This might provide an additional motivation to study determinantal laws.
In this set of problems, one often meets the problem of analyzing the asymptotics of

the largest particles and/or spacing distribution.

3. The different scales; typical results

As we have seen in the previous section, according to the different settings, one can be interested
to study the spectrum of random matrices at different scales. In what follows (λ1 ≤ λ2 · · · ≤ λN )
denotes the N eigenvalues of a Hermitian random matrix XN .

3.1. Macroscopic regime

A typical question is to study empirical quantities in the eigenvalues such as the spectral measure

LN :=
1

N

N
∑

i=1

δλi
.

If XN is a Wigner matrix, that is a symmetric or Hermitian matrix such that XN
ij = yij/

√
N for

i ≤ j, with (yij , i ≤ j) an infinite triangular array of independent equidistributed random variables
with law µ, we shall see in section 1 the following result due to Wigner [104]. If µ(x2) = 1, LN

converges almost surely towards σ the semi-circular law

σ(dx) =
1

π
1[−2,2]

√

4 − x2dx.

Convergence of a probability measure in these lecture notes will always be understood in the sense
of weak convergence, that is µn converges towards µ iff µn(f) converges to µ(f) for all bounded
continuous functions.

Such a theorem can be refined in many ways; by proving a central limit limit theorem (see e.g.
[62, 4]), concentration inequalities (see Lecture 3) or a large deviation principle (see [10]). Such
results have been proved under more and more restrictive hypothesis; central limit theorem requires
a finite fourth moment for µ (see e.g. [4, 89]), concentration inequalities need sub-Gaussian, sub
-exponential or compactly supported laws µ and the large deviation result has only been proved for
Gaussian laws, based on an explicit formula for the joint law of the eigenvalues which only exists
in this case (see Lecture 2).

This theorem can be generalized also to other random matrices or to more general observ-
ables. For instance, if one considers Wishart matrices YN,M = XN,M (XN,M )∗ and denotes LN

the empirical measure of the eigenvalues of YN,M , if the entries of XN,M are independent and
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equidistributed, it is well known (see e.g. [76, 7]) that LN converges, if M/N goes to y ∈ [0, 1], to
the Marchenko-Pastur law

πy(dx) =
1

2xyπ

√

4y − (x− y − 1)21[(1−√
y)2,(1+

√
y)2]dx.

Other random matrices appear in different context; band matrices where the entries are inde-
pendent but their covariance depends on the indices, sparse matrices where entries may be zero
with some probability, circular matrices XN,N where all the entries are independent (leading to a
complex spectrum)(see [8]).

My point of view, borrowed from free probability, is that such questions can very often be
rephrased in terms of the Wigner matrices XN provided we consider it jointly with some other
matrices. Namely, instead of considering only the spectral measure of a matrix, it is natural to
consider it together with a bunch say (∆N

i , 1 ≤ i ≤ m) of deterministic matrices and to wonder
when 1

N Tr(P (DN
i , 1 ≤ i ≤ m,XN )) converges as N goes to infinity for some polynomial P in

these matrices. One can recover like this most classical ensembles quoted above. For instance, take
DN

1 (ij) = 1i=j1i≤[αN ] to be the projection on the first [αN ] indices. Then, with 1 denoting the
identity matrix

ZN = DN
1 XN (1 −DN

1 ) + (1 −DN
1 )XNDN

1 =

(

0 XN−[αN ],[αN ]

(XN−[αN ],[αN ])∗ 0

)

with XN−[αN ],[αN ] the corner (XN )1≤i≤[αN ],[αN ]+1≤j≤N of the matrix XN . Then,

(ZN )2 =

(

XN−[αN ],[αN ](XN−[αN ],[αN ])∗ 0
0 (XN−[αN ],[αN ])∗XN−[αN ],[αN ]

)

has the eigenvalues of the Wishart matrix XN−[αN ],[αN ](XN−[αN ],[αN ])∗ with multiplicity 2 plus
N −2[αN ] null eigenvalues (if α ≥ 1/2 so that N − [αN ] ≤ [αN ] ). Many other classical ensembles
can be derived in this way. Adopting this point of view is often fruitful because it allows to
decipher some general structure such as freeness (see Lectures 1 and 5) which at the end simplifies
the analysis of the convergence of moments for instance. The backdraw is that you consider
more general objects than the empirical measure of the eigenvalues (which eventually converges
towards a probability measure), namely the trace of polynomials in random matrices, which possibly
converges towards a linear functional on polynomials, called a tracial state. Analysis of such objects
may then require free probability tools.

Exercise 0.1. The idea of this exercise is to see that also band matrices can often be decomposed
as functions of a Wigner matrix and diagonal matrices.

Take σ(x, y) :=
∫

fs(x)fs(y)dp(s) for some probability measure p on a probability space (Ω, P )
and bounded continuous functions (fs, s ∈ Ω) on [0, 1]. Show that the band matrix with en-

tries σ( i
N ,

j
N )Xij can be written as

∫

DN
s XNDN

s dp(s) with DN
s the diagonal matrix with entries

(fs(
i
N ), 1 ≤ i ≤ N) on the diagonal.

3.2. Microscopic regime

At the opposite, one would like to study what happens at a very microscopic regime, for instance
study the consecutive spacing distribution ∆i := λi+1 − λi. This can be done for instance when
the matrix XN is a Gaussian complex Wigner matrix. Then, as we already noticed, the joint law
of the eigenvalue is a determinantal law

dP (λ1, · · · , λN ) = Z−1
N ∆(λ)2e−

N
2

PN
i=1 λ2

i

∏

dλi

with ∆(λ) the Vandermonde determinant. Then, it was proved [96] that the spacing distribution
around the origin converges to the Sine kernel law, i.e., that for any compact set A

(2) lim
N→∞

P [NλN
i 6∈ A, i = 1, . . . , N ] = 1 +

∞
∑

k=1

(−1)k

k!

∫

A . . .
∫

A detk
i,j=1

1
π

sin(xi−xj)
xi−xj

∏k
j=1 dxj .
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A similar result holds for the spacing distribution inside the bulk (namely around any point within
(−2, 2)). The picture changes at the boundary where one gets

lim
N→∞

P

[

N2/3
(

λN
i − 2

)

6∈ [t, t′], i = 1, · · · , N
]

= 1 +

∞
∑

k=1

(−1)k

k!

∫ t′

t

· · ·
∫ t′

t

k

det
i,j=1

A (xi, xj)

k
∏

j=1

dxj

with A the Airy kernel defined by

A(x, y) :=
Ai(x)Ai′(y) −Ai′(x)Ai(y)

x− y

if Ai denotes the Airy function.
We shall show the general structure of the proof of this sort of analysis in part 2 via Fredholm

determinants (see also the more recent process approach discussed by Ramirez, Rider and Virag
[87]).

3.3. Mesoscopic regime

It is also natural to wonder what happens in the intermediate scales, for instance how many
eigenvalues fall into a set AN = [N−αa,N−αb] for α ∈ (0, 1). Based also on the determinantal
structure of the law it is possible to show that if a < 0 < b,

∑N
i=1 1λi∈AN

− E[
∑N

i=1 1λi∈AN
]

E

[

(

∑N
i=1 1λi∈AN

− E[
∑N

i=1 1λi∈AN
]
)2
]

1
2

converges in law towards a standard Gaussian variable as N goes to infinity.
We shall not discuss this scaling at all in these notes (such a result can be derived by determi-

nantal law analysis).
Acknowledgments: I am particularly grateful to UC Berkeley, and in particular to D.

Voiculescu and V. Jones, who welcomed me during spring 2007 when I wrote these lecture notes.
My visit was supported in part by funds from NSF Grants DMS-0405778, DMS-0605166 and DMS-
0079945. I also wishes to thank S. Sheffield and T. Spencer for inviting me to give these lectures.
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In this lecture, we shall analyse moments of large random matrices and describe the fine
combinatorics needed to evaluate them. This analysis will be used to study the spectral measure
and the largest eigenvalue of Wigner’s matrices.

1. Wigner’s theorem

We consider in this section an N × N matrix XN with real or complex entries such that
(

XN
ij , 1 ≤ i ≤ j ≤ N

)

are independent and XN is self-adjoint; XN
ij = X̄N

ji . We assume further
that

E[XN
ij ] = 0, lim

N→∞
max

1≤i,j≤N
|NE[|XN

ij |2] − 1| = 0.

We shall show that the eigenvalues (λ1, · · · , λN ) of XN satisfy the almost sure convergence

(3) lim
N→∞

1

N

N
∑

i=1

f(λi) =

∫

f(x)dσ(x)

where f is a bounded continuous function or a polynomial function, when the entries have some
finite moments properties. σ is the semi-circular law

σ(dx) =
1

2π

√

4 − x21|x|≤2dx.

We shall prove this convergence for polynomial functions and rely on the fact that for all k ∈ N,
∫

xkdσ(x) is null when k is odd and given by the Catalan number Ck/2 when k is even. Deducing
(3) from convergence of moments is done in section 1.5.

1.4. Wigner’s theorem

In this section, we use the same notation for complex and for real entries since both cases will be
treated at once and yield the same result. The aim of this section is to prove

Theorem 1.1. [Wigner’s theorem [104]] Assume that for all k ∈ N,

(4) Bk := sup
N∈N

sup
ij∈{1,··· ,N}2

E[|
√
NXN

ij |k] <∞.

Then,

lim
N→∞

1

N
Tr
(

(XN )k
)

=

{

0 if k is odd,
C k

2
otherwise,

where the convergence holds in expectation and almost surely. (Ck)k≥0 are the Catalan numbers;

Ck =

(

2k
k

)

k + 1
.

The Catalan number Ck will appear here as the number of non-crossing pair partitions of 2k
elements. Namely, recall that a partition of the (ordered) set S := {1, · · · , n} is a decomposition

π = {V1, · · · , Vr}
such that Vi ∩ Vj = ∅ if i 6= j and ∪Vi = S. The Vi, 1 ≤ i ≤ r are called the blocks of the partition
and we say that p ∼π q if p, q belong to the same block of the partition π. A partition is said to
be a pair partition if each of its block has exactly two elements. A partition π of {1, · · · , n} is said
to be crossing if there exist 1 ≤ p1 < q1 < p2 < q2 ≤ n with

p1 ∼π p2 6∼π q1 ∼π q2.

It is non-crossing otherwise. We give as an exercise to the reader to prove that Ck as given in the
theorem is exactly the number of non-crossing pair partitions of {1, 2, · · · , 2k}.
Proof. We start the proof by showing the convergence in expectation, for which the strategy
is simply to expand the trace over the matrix in terms of its entries. We then use some (easy)
combinatorics on trees to find out the main contributing term in this expansion. The almost sure
convergence is obtained by estimating the covariance of the considered random variables.



ALICE GUIONNET, RANDOM MATRICES 17

(1) Expanding the expectation.

Setting YN =
√
NXN , we have

E

[

1

N
Tr
(

(XN )k
)

]

=

N
∑

i1,··· ,ik=1

N−k
2
−1

E[Yi1i2Yi2i3 · · ·Yiki1 ](5)

where Yij , 1 ≤ i, j ≤ N, denote the entries of YN (which may eventually depend on N).
We denote i = (i1, · · · , ik) and set

P (i) := E[Yi1i2Yi2i3 · · ·Yiki1 ].

By (4) and Hölder’s inequality, P (i) is bounded by Bk, independently of i and N . Since
the random variables (Yij , i ≤ j) are independent and centered, P (i) equals zero unless
for any pair (ip, ip+1), p ∈ {1, · · · , k}, there exists l 6= p such that (ip, ip+1) = (il, il+1)
or (il+1, il). Here, we used the convention ik+1 = i1. To find more precisely which set of
indices contributes to the first order in the right hand side of (5), we next provide some
combinatorial insight into the sum over the indices.

(2) Connected graphs and trees.
V (i) = {i1, · · · , ik} will be called the vertices. An edge is a pair (i, j) with i, j ∈

{1, · · · , N}2. At this point, edges are directed in the sense that we distinguish (i, j) from
(j, i) when j 6= i and we shall precise later when we consider undirected edges. We denote
by E(i) the collection of the k edges (ep)

k
p=1 = (ip, ip+1)

k
p=1 .

We consider the graph G(i) = (V (i), E(i)). G(i) is connected since there exists an
edge between any two consecutive vertices. Note that G(i) may contain loops (i.e., cycles,
for instance edges of type (i, i)) and multiple undirected edges.

The skeleton G̃(i) of G(i) is the graph G̃(i) =
(

Ṽ (i), Ẽ(i)
)

where vertices in V (i)

appears only once, edges in E(i) are undirected and appear at most once.

In other words, G̃(i) is the graph G(i) where multiplicities and orientation have been
erased. It is connected, as is G(i).

i1 = i21

i5 = i10

i9 = i11

i14

i13 = i15 = i17 = i19

i4 = i6

i2 = i8 = i12 = i20
i16 = i18

i3 = i7

Figure 1. Figure of G(i) (in dash) versus G̃(i) (in bold), |Ẽ(i)| = 9, |Ṽ (i)| = 9

We now state and prove a well known inequality concerning undirected connected
graphs G = (V,E). If we let, for a discrete finite set A, |A| be the number of its distinct
elements, we have the following inequality

(6) |V | ≤ |E| + 1.

Let us prove this inequality as well as the fact that equality implies that G is a tree.
This relation is straightforward when |V | = 1 and can be proved by induction as follows.
Assume |V | = n and consider one vertex v of V . This vertex is contained in l ≥ 1 edges of
E that we denote (e1, · · · , el). The graph G then decomposes into (v, e1, · · · , el) and r ≤ l
undirected connected graphs (G1, · · · , Gr). We denote Gj = (Vj , Ej) for j ∈ {1, · · · , r}.
We have

|V | − 1 =
r
∑

j=1

|Vj |, |E| − l =
r
∑

j=1

|Ej |.
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Applying the induction hypothesis to the graphs (Gj)1≤j≤r gives

|V | − 1 ≤
r
∑

i=1

(|Ej | + 1)

= |E| + r − l ≤ |E|(7)

which proves (6). In the case where |V | = |E|+1, we claim that G is a tree, namely does
not have loop. In fact, for the equality to hold, we need to have equalities when performing
the previous decomposition of the graph, a decomposition that can be reproduced until
all vertices have been considered. If the graph contains a loop, the first time that we erase
a vertex of this loop when performing this decomposition, we will create one connected
component less than the number of edges we erased and so a strict inequality occurs in
the right hand side of (7) (i.e., r < l).

(3) Convergence in expectation.
Since we noticed that P (i) equals zero unless each edge in E(i) is repeated at list

twice, we have that

|Ẽ(i)| ≤ 2−1|E(i)| =
k

2
,

and so by (6) applied to the skeleton G̃(i) we find

|Ṽ (i)| ≤ [
k

2
] + 1

where [x] is the integer part of x. Thus, since the indices are chosen in {1, · · · , N}, there

are at most N [ k
2 ]+1 indices that contribute to the sum (5) and so we have

∣

∣

∣

∣

E

[

1

N
Tr
(

(XN )k
)

]∣

∣

∣

∣

≤ BkN
[ k
2 ]− k

2 .

where we used (4). In particular, if k is odd,

lim
N→∞

E

[

1

N
Tr
(

(XN )k
)

]

= 0.

If k is even, the only indices that will contribute to the first order asymptotics in the sum
are those such that

|Ṽ (i)| =
k

2
+ 1,

since the other indices will be such that |Ṽ (i)| ≤ k
2 and so will contribute at most by a

term N
k
2BkN

− k
2−1 = O(N−1). By the previous considerations, when |Ṽ (i)| = k

2 + 1, we
have that
(a) G̃(i) is a tree,

(b) |Ẽ(i)| = 2−1|E(i)| = k
2 and so each edge in E(i) appears exactly twice.

We can explore G(i) by following the path P of edges i1 → i2 → i3 · · · → ik → i1. Since

G̃(i) is a tree, G(i) appears as a fat tree where each edge of G̃(i) is repeated exactly
twice. We then see that each pair of directed edges corresponding to the same undirected
edge in Ẽ(i) is of the form {(ip, ip+1), (ip+1, ip)} (since otherwise the path of edges has

to form a loop to return to i0). Therefore, for these indices, P (i) =
∏

e∈Ẽ(i)E[|
√
NXN

e |2]
converges uniformly to one by hypothesis.

Finally, observe that G(i) gives a pair partition of the edges of the path P (since each
undirected edges have to appear exactly twice) and that this partition is non crossing (as
can be seen by unfolding the path keeping track of the pairing between edges by drawing
an arc between paired edges). Therefore we have proved

lim
N→∞

E

[

1

N
Tr
(

(XN )k
)

]

= ]{ non-crossing pair partitions of k edges }.
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(4) Almost sure convergence.
To prove the almost sure convergence, we estimate the variance and then use Borel

Cantelli’s lemma. The variance is given by

Var((XN )k) := E

[

1

N2

(

Tr
(

(XN )k
))2
]

− E

[

1

N
Tr
(

(XN )k
)

]2

=
1

N2+k

N
∑

i1, . . . , ik = 1
i′1, . . . , i

′
k = 1

[P (i, i′) − P (i)P (i′)]

with

P (i, i′) := E[Yi1i2Yi2i3 · · ·Yiki1Yi′1i′2
· · ·Yi′

k
i′1

].

We denote G(i, i′) the graph with vertices V (i, i′) = {i1, · · · , ik, i′1, · · · , i′k} and edges
E(i, i′) = {(ip, ip+1)1≤p≤k, (i

′
p, i

′
p+1)1≤p≤k}. For i, i′ to contribute to the sum, G(i, i′)

must be connected. Indeed, if E(i)∩E(i′) = ∅, P (i, i′) = P (i)P (i′). Moreover, as before,

each edge must appear at least twice to give a non zero contribution so that |Ẽ(i, i′)| ≤ k.

Therefore, we are in the same situation as before, and if G̃(i, i′) = (Ṽ (i, i′), Ẽ(i, i′)) denotes
the skeleton of G(i, i′), we have the relation

(8) |Ṽ (i, i′)| ≤ |Ẽ(i, i′)| + 1 ≤ k + 1.

This already shows that the variance is at most of order N−1 (since P (i, i′)−P (i)P (i′) is
bounded uniformly, independently of (i, i′) and N), but we need a slightly better bound
to prove the almost sure convergence. To improve our bound let us show that the case
where |Ṽ (i, i′)| = |Ẽ(i, i′)|+1 = k+1 can not occur. In this case, we have seen that G̃(i, i′)
must be a tree since then equality holds in (8). Also, |Ẽ(i, i′)| = k implies that each edge
appears with multiplicity exactly equals to 2. For any contributing set of indices i, i′,
G̃(i, i′)∩G(i) and G̃(i, i′)∩G(i′) must share at least one edge (i.e., one edge must appear
with multiplicity one in each of this subgraph) since otherwise P (i, i′) = P (i)P (i′). This

is a contradiction. Indeed, if we explore G̃(i, i′) by following the path i1 → i2 → · · · → i1,
we see that either each (non-oriented) visited edge appears twice, which is impossible if

G̃(i, i′) ∩ G(i) and G̃(i, i′) ∩ G(i′) share one edge, or it this path makes a loop, which is

also impossible since G̃(i, i′) is a tree. Therefore, we conclude that for all contributing
indices,

|Ṽ (i, i′)| ≤ k

which implies

Var((XN )k) ≤ pkN
−2

with pk a uniform bound on P (i, i′) − P (i)P (i′). Applying Chebychev’s inequality gives
for any δ > 0

P

(∣

∣

∣

∣

1

N
Tr
(

(XN )k
)

− E

[

1

N
Tr
(

(XN )k
)

]∣

∣

∣

∣

> δ

)

≤ pk

δ2N2
,

and so Borel-Cantelli’s lemma implies

lim
N→∞

∣

∣

∣

∣

1

N
Tr
(

(XN )k
)

− E

[

1

N
Tr
(

(XN )k
)

]∣

∣

∣

∣

= 0 a.s.

The proof of the theorem is complete.

�

Exercise 1.2. Take for L ∈ N, XN,L the N ×N self-adjoint matrix such that

XN,L
ij = (2L)−

1
2 1|i−j|≤LXij
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with (Xij , 1 ≤ i ≤ j ≤ N) independent centered random variables having all moments finite and
E[X2

ij ] = 1. The purpose of this exercise is to show that for all k ∈ N,

lim
L→∞

lim
N→∞

E[
1

N
Tr((XN,L)k)] = Ck/2

with Cx null if x is not integer. Moreover, if L(N) ∈ N is a sequence going to infinity with N so
that L(N)/N goes to zero, prove that

lim
N→∞

E[
1

N
Tr((XN,L(N))k)] = Ck/2.

If L(N) = [αN ], one can also prove the convergence of the moments of XN,L(N). Show that this
limit can not be given by the Catalan numbers Ck/2 by considering the case k = 2.

Hint: Show that for k ≥ 2

E[
1

N
Tr((XN,L)k)] = (2L)−k/2

∑

|i2−[ N
2

]|≤L,

|ip+1−ip|≤L,p≥2

E[X[ N
2 ]i2

· · ·Xik[ N
2 ]] +O(N−1).

Then prove that the contributing indices to the above sum correspond to the case where G(0, i2, ·, ik)

is a tree with k/2 vertices and show that being given a tree there are approximately (2L)
k
2 possible

choices of indices i2, · · · , ik.
1.5. To learn more

1.5.1. Catalan numbers. We can also define the Catalan numbers as the number of (oriented)
rooted trees. Actually, Catalan numbers count many other combinatorial objects, such as non-
crossing partitions or Dick paths. We shall see that they also give the moments of the semi-circular
law.

Let us recall that a graph is given by a set of vertices (or nodes) V = {i1, · · · , ik} and a set of
edges (ei)i∈I . An edge is a couple e = (ij1 , ij2) for some j1, j2 ∈ {1, · · · , k}2. An edge is directed if
(i1, i2) and (i2, i1) are distinct when i1 6= i2, which amounts to write edges as directed arrows. It is
undirected otherwise. A cycle (or loop) is a collection of distinct undirected edges ei = (vi, vi+1),
1 ≤ i ≤ p such that v1 = vp+1 for some p ≥ 1.

A tree is a connected graph with no loops (or cycles).
We will say that a tree is oriented if it is drawn (or embedded) into the plane; it then inherits

the orientation of the plane. A tree is rooted if we specify one oriented edge, called the root. Note
that if each edge of an oriented tree is seen as a double (or fat) edge, the connected path drawn
from these double edges surrounding the tree inherits the orientation of the plane (see Figure 2).
A root on this oriented tree then specifies a starting point in this path.

Figure 2. Embedding rooted trees into the plane

Definition 1.3. We denote Ck the number of rooted oriented trees with k edges.

Exercise 1.4. Show that C2 = 2 and C3 = 5 by drawing the corresponding graphs.

Exercise 1.5. A Dick path of length 2n is a path starting and ending at the origin, with increments
+1 or −1, and that stays above the non negative real axis. Prove that there exists a bijection between
the set of rooted oriented trees with n edges and the set of Dick paths of length 2n.

Hint: Define the walk as the walk around the tree of Figure 2, count +1 when you arrive to an
edge that was not visited, −1 otherwise
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The following property of the Catalan numbers will be useful later

Property 1.6. The standard semicircle law is given by

σ(dx) =
1

2π

√

4 − x21|x|≤2dx.

Then for all k ≥ 0,

m2k = Ck.

A proof can be given following the exercises below.

Exercise 1.7. Show that with the convention C0 = 1, for all k ≥ 1

(9) Ck =
k−1
∑

l=0

Ck−l−1Cl.

Exercise 1.8. For all k ≥ 0, Ck ≤ 22k and

Ck =

(

2k
k

)

k + 1
.

Count Dick paths or use the induction relation of (9) to compute the generating function S(z) =
∑

n≥0 z
nCn

Exercise 1.9. Prove Property 1.6 by deriving an explicit formula for the mk’s.

1.5.2. Weak convergence of the spectral measure. We now consider weak convergence of the spectral
measure rather than convergence in moments and then weaken the hypothesis on the entries.

Theorem 1.10. Let (λi)1≤i≤N be the N (real) eigenvalues of XN and define

LXN :=
1

N

N
∑

i=1

δλi

to be the spectral measure of XN . LXN belongs to the set P(R) of probability measures on R.
Assume that (4) holds for all k ∈ N. Then, for any bounded continuous function f ,

lim
N→∞

∫

f(x)dLXN (x) =

∫

f(x)dσ(x) a.s.

Proof. By Weierstrass’ theorem, we can find for any B > 2 and δ > 0, a polynomial Pδ such
that gδ := f − Pδ satisfies

sup
|x|≤B

|gδ(x)| ≤ δ.

Using the previous convergence in moments, one shows that for any q ∈ N,

|
∫

|x|≥B

gδ(x)dLXN (x)| ≤ C

∫

|x|≥B

(1 + |x|p)dLXN (x) ≤ CB−p−2q

∫

[1 + x2(p+q)]dLXN (x)

is as small as wished when N goes to infinity and B > 2 since the right hand side is then bounded
by B−p−2q22(p+q+1) (since σ is supported in [−2, 2]) that goes to zero as p goes to infinity. Con-
sequently,

∣

∣

∣

∣

∫

f(x)d(LXN (x) − σ(x))

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Pδ(x)d(LXN (x) − σ(x))

∣

∣

∣

∣

+δ +

∣

∣

∣

∣

∣

∫

|x|≥B

(f − Pδ)(x)dLXN (x)

∣

∣

∣

∣

∣

(10)

goes to zero as N goes to infinity. �
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1.5.3. Relaxation over the number of finite moments. In this section, we relax the assumptions on
the moments of the entries while keeping the hypothesis that (XN

ij )1≤i≤j≤N are independent. The
generalization of Wigner’s theorem to possibly mildly dependent entries can be found for instance
in [24]. A nice, simple, but finally optimal way to relax the assumption that the entries of

√
NXN

possess all their moments, relies on the following observation.

Lemma 1.11. Let A, B be N ×N Hermitian matrices, with eigenvalues λ1(A) ≥ λ2(A) ≥ . . . ≥
λN (A) and λ1(B) ≥ λ2(B) ≥ . . . ≥ λN (B). Then,

N
∑

i=1

|λi(A) − λi(B)|2 ≤ Tr(A−B)2 .

The proof is left to the reader; an idea is to observe that this inequality means that the
maximum over matrices A,B with a given spectrum of the right hand side is achieved when the two
matrices have the same basis of eigenvectors and more precisely the k-th eigenvector correspond
to the k-th largest eigenvalues of the matrices. This fact can be shown by induction over the
dimension N of the matrices (see [13, 3]).

Corollary 1.12. Assume that {
√
NXN

ij , i ≤ j} are independent, equidistributed with law µ such

that µ(x) = 0, µ(x2) = 1. Then, for any bounded continuous function f

lim
N→∞

∫

f(x)dLXN (x) =

∫

f(x)dσ(x) a.s.

The proof is left to the reader; it amounts to approximate the original matrix
√
NXN by a

matrix
√
NYN with bounded entries in such a way that 1

N Tr(XN −YN )2 goes to zero as N goes
to infinity and then use Lemma 1.11.
Remark. When the entries are not equidistributed, the convergence in probability can be proved
when {

√
NXN

ij , i ≤ j} are uniformly integrable. The almost sure convergence can be proved when
moments of order four are uniformly bounded for instance.
Remark Let us remark that if

√
NXN(ij) has no moments of order 2, then the theorem is not

valid anymore (see the heuristics of Cizeau-Bouchaud [31] and rigorous studies in [106, 11] ). Even
though under some assumptions the spectral measure of the matrix XN , once properly normalized,
converges, its limit is not the semicircle law but a heavy tailed law with unbounded support.
1.5.4. Relaxation of the hypothesis on the centering of the entries. A last generalization concerns
the hypothesis on the mean of the variables

√
NXN

ij which, as we shall see, is irrelevant in the

statement of Corollary 1.12. More precisely, we shall prove that (proof originated from [57])

Lemma 1.13. Let XN , Y N be N×N Hermitian matrices for N ∈ N such that YN has rank r(N).
Assume that N−1r(N) converges to zero as N goes to infinity. Then, for any bounded continuous
function f with compact support,

lim sup
N→∞

|
∫

f(x)dLXN +YN (x) −
∫

f(x)dLXN (x)| = 0.

Proof. We first prove the statement for bounded increasing functions. To this end, we shall
first prove that for any Hermitian matrix ZN , any e ∈ CN , λ ∈ R, and for any bounded measurable
increasing function f ,

(11)

∣

∣

∣

∣

∫

f(x)dLZN (x) −
∫

f(x)dLZN +λee∗(x)

∣

∣

∣

∣

≤ 2

N
‖f‖∞.

We denote λN
1 ≤ λN

2 · · · ≤ λN
N (resp. ηN

1 ≤ ηN
2 · · · ≤ ηN

N ) the eigenvalues of ZN (resp. ZN + λee∗).
By the following theorem due to Lidskii

Theorem 1.14. [Lidskii] Let A ∈ H(2)
N and z ∈ C

N . We order the eigenvalues of A+
−zz

∗ in
increasing order. Then

λk(A
+

−zz
∗) ≤ λk+1(A) ≤ λk+2(A

+

−zz
∗).

As a consequence, the eigenvalues λi and ηi are interlaced;

λN
1 ≤ ηN

2 ≤ λN
3 · · · ≤ λN

2[ N−1
2 ]+1

≤ ηN
2[ N

2 ].
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ηN
1 ≤ λN

2 ≤ ηN
3 · · · ≤ ηN

2[ N−1
2 ]+1

≤ λN
2[ N

2 ]
.

Therefore, if f is an increasing function,

N
∑

i=1

f(λN
i ) ≤

N
∑

i=2

f(ηN
i ) +

1

N
‖f‖∞ ≤

N
∑

i=1

f(ηN
i ) +

2

N
‖f‖∞

but also

N
∑

i=1

f(λN
i ) = f(λN

1 ) +

N
∑

i=2

f(λN
i ) ≥ f(λN

1 ) +

N
∑

i=2

f(ηN
i−1) = f(λN

1 ) − f(ηN
i ) +

N
∑

i=1

f(ηN
i )

These two bounds prove (11). We leave the reader extend this result from YN = λee∗ with rank
1 to YN with rank r(N).

�

By Corollary 1.12 and Lemma 1.13, we find that

Corollary 1.15. Assume that the matrix
(

E[XN
ij ]
)

1≤i,j≤N
has rank r(N) so that N−1r(N) goes

to zero as N goes to infinity, and that the variables
√
N(XN

ij − E[XN
ij ]) satisfy the hypotheses of

Corollary 1.12 and have covariance 1. Then, for any bounded continuous function f ,

lim
N→∞

∫

f(x)dLXN (x) =

∫

f(x)dσ(x) a.s.

This result holds in particular if E[XN
ij ] = xN is independent of i, j ∈ {1, · · · , N}2, in which case

r(N) = 1. It extends to the case where E[XN
ij ] = xN1i6=j + yN1i=j with yN going to zero as N goes

to infinity.

The last comment is simply due to the fact that
∫

f(x)d(LXN − LXN−yN I goes to zero by

Lemma 1.11 when yN goes to zero.

2. Words in several independent Wigner matrices

In this section, we consider m independent Wigner N×N matrices {XN,`, 1 ≤ ` ≤ m} with real or
complex entries. In other words, the XN,` are self-adjoint random matrices with independent entries
(

XN,`
ij , 1 ≤ i ≤ j ≤ N

)

above the diagonal that are centered and with variance one. Moreover, the
(

XN,`
ij , 1 ≤ i ≤ j ≤ N

)

1≤`≤m
are independent. We shall generalize Theorem 1.17 to the case where

one considers words in several matrices, that is show that N−1Tr
(

XN,`1XN,`2 · · ·XN,`k
)

converges
for all choices of `i ∈ {1, · · · ,m} and give a combinatorial interpretation of the limit. We generalize
Theorem 1.1 to the context of several matrices as a first step towards part 4. Let us first describe
the combinatorial objects that we shall need.

2.6. Partitions of colored elements

Because we now have m different matrices, the partitions that will naturally show up are partitions
of elements with m different colors; in the following, each ` ∈ {1, · · · ,m} will be assigned a color,
said ’color `’. Also, because matrices do not commute, the order of the elements is important. This
leads us to the following definition.

Definition 1.16. Let q(X1, · · · , Xm) = X`1X`2 · · ·X`k
be a monomial in m non-commutative

indeterminates.
We define the set S(q) associated with q as the set of k colored points on the real line so that

the first point has color `1, the second one has color `2 till the last one that has color `k.
NP (q) is the set of non-crossing pair partitions of S(q) such that two points of S(q) can not

be in the same block if they have different colors.

Note that S defines a bijection between non-commutative monomials and set of colored points
on the real line (i.e., ordered set of points).
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2.7. Voiculescu’s theorem

The aim of this section is to prove that if {XN,`, 1 ≤ ` ≤ m} are m independent Wigner matrices
such that

E[XN,`
ij ] = 0, ∀1 ≤ i, j ≤ N, 1 ≤ ` ≤ m, lim

N→∞
max

1≤i,j≤N
|NE[|XN,`

ij |2] − 1| = 0

Theorem 1.17. [Voiculescu [101]] Assume that for all k ∈ N,

(12) Bk := sup
1≤`≤m

sup
N∈N

sup
ij∈{1,··· ,N}2

E[|
√
NXN,`

ij |k] <∞.

Then, for any `j ∈ {1, · · · ,m}, 1 ≤ j ≤ k,

lim
N→∞

1

N
Tr
(

XN,`1XN,`2 · · ·XN,`k
)

= σm(X`1 · · ·X`k
)

where the convergence holds in expectation and almost surely. σm(X`1 · · ·X`k
) is the number

|NP (X`1 · · ·X`k
)| of non-crossing pair partitions of S(X`1 · · ·X`k

).

Remark 1.18. σm, once extended by linearity to all polynomials, is called the law of m free
semi-circular variables.

Proof. The proof is very close to that of Theorem 1.1 and is left to the reader. The only point is
to notice that the main contribution is again given by indices described by non-crossing partitions
but that now these partitions come with a weight given by a product of covariances that vanishes
when edges of different colors have been paired.

Exercise 1.19. The next exercise concerns a special case of what is called ’Asymptotic freeness’
and was proved in greater generality by D. Voiculescu.

Let (XN
ij , 1 ≤ i ≤ j ≤ N) be independent real variables and consider XN the self-adjoint matrix

with this entries. Assume

E[XN
ij ] = 0 E[(

√
NXN

ij )2] = 1 ∀i ≤ j.

Assume that for all k ∈ N,

(13) Bk = sup
N∈N

sup
ij∈{1,··· ,N}2

E[|
√
NXN

ij |k] <∞

Let DN be a deterministic diagonal matrix such that

sup
N∈N

max
i≤j

|DN
ii | <∞ lim

N→∞

1

N
Tr((DN )k) = mk for all k ∈ N

Show that

(1)

lim
N→∞

E[
1

N
Tr(DN (XN )k)] = Ck/2m1

(2) Prove that

lim
N→∞

E[
1

N
Tr((DN )l1(XN )k1(DN )l2(XN )k2 )]

= Ck1/2Ck2/2(ml1+l2 −ml1ml2) + C(k1+k2)/2ml1ml2

(3) (more difficult)Prove in general that

E[
1

N
Tr

(

(DN )l1 − 1

N
Tr(DN )l1

)(

(XN )k1 − E[
1

N
Tr(XN )k1 ]

)

· · ·
(

(DN )lp − 1

N
Tr(DN )lp

)(

(XN )kp − E[
1

N
Tr(XN )kp ]

)

]

goes to zero as N goes to infinity for any integer numbers l1, · · · , lp, k1, · · · , kp.

Hint: Expand the trace in terms of a weighted sum over the indices and show that the main
contribution comes from indices whose associated graph is a tree. Conditioning on the tree, average
out the quantities in the DN and conclude (be careful that the DN ’s can come with the same indices
but show then that the main contribution comes from independent entries of the (XN )k

ii)’s because
of the tree structure).
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3. Estimates on the largest eigenvalue of Wigner matrices

In this section, we derive estimates on the largest eigenvalue of a Wigner matrix with real entries

XN
ij =

Yij√
N

with (Yij , 1 ≤ i ≤ j ≤ N) independent equidistributed centered random variables with marginal
distribution P . The idea is to improve the moments estimates of the previous section.

We shall assume that P is a symmetric law (see the recent article [82] for a relaxation of this
hypothesis);

P (−Y ∈ .) = P (Y ∈ .).

We take the normalization E[Y 2] = 1. Further we make the common assumption that there exists
a finite constant c such that for all k ∈ N,

E[Y 2k] ≤ (ck)k.

We follow the article of S. Sinäı and A. Soshnikov [90] to prove the following result :

Theorem 1.20. [S. Sinäı - A. Soshnikov [90]] For all ε > 0, all N ∈ N, there exists a finite
function o(s,N) such that limN→∞ sup

Nε≤s≤N
1
2
−ε o(s,N) = 0 and

(14) E[Tr((XN )2s)] =
N22s

√
πs3

(1 + o(s,N)).

In particular, for all ε > 0, if we let λmax(XN) denote the spectral radius of XN ,

lim
N→∞

P (|λmax(XN ) − 2| ≥ ε) = 0.

A previous result of the same nature (but under weaker hypothesis (the symmetry hypothesis
of the distribution of the entries being removed) under which the moments estimate (14) holds for
a smaller range of s), was proved by Komlós and Füredi [43]. A later result of Soshnikov [92]

improves the range of s under which (14) holds to s of order less than n
2
3 , a result that captures

the fluctuations of λmax(XN). We emphasize here that the proof below heavily depends on the
assumption that the distribution of the entries is symmetric.
Proof. Let us first derive the convergence in probability from the moment estimates. First, note
that

P (λmax(XN ) ≤ 2 − ε) ≤ P (

∫

f(x)dLXN = 0)

for all functions f supported on ]2− ε,∞[. Taking f bounded continuous. null on ]−∞, 2− ε] and
strictly positive in [2− ε/2, 2], we see that P (

∫

f(x)dLXN = 0) goes to zero by Theorem 1.10. For
the upper bound on λmax(XN), we shall use Chebychev’s inequality and the moment estimates
(14) as follows.

P (λmax(XN ) ≥ 2 + ε) ≤ 1

(2 + ε)2s
E[λmax(XN )2s] ≤ 1

(2 + ε)2s
E[Tr((XN )2s)]

≤ N22s

(2 + ε)2s
√
πs3

(1 + o(s,N))

where the right hand side goes to zero with N when s = N ε for some ε > 0.
The proof of (14) is based on the expansion of the moments as in the proof of Theorem 1.1

and a good control on the graphs given by the indices that contribute to the resulting sum. The
main point is to show that when s is much smaller than

√
N , these graphs are still trees. The

interested reader can find the proof in the original article or in [49]. �
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Gaussian Wigner matrices and Fredholm determinants
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In this lecture, we shall consider the case where the entries of the matrix XN,β are real or
complex Gaussian variables. Moreover, since the results will depend upon the fact that the entries
are real or complex, we now make the difference in the notations. We consider N ×N self-adjoint
random matrices with entries

XN,β
kl =

gkl + i(β − 1)g̃kl√
β

1 ≤ k < l ≤ N, XN,β
kk =

√

2

β
gkk, 1 ≤ k ≤ N

where the (gkl, g̃kl, k ≤ l) are independent equidistributed centered Gaussian variables with vari-
ance 1. (XN,2, N ∈ N) is commonly referred to as the Gaussian Unitary Ensemble (GUE) and
(XN,1, N ∈ N) as the Gaussian Orthogonal Ensemble (GOE) since they can be characterized
by the fact that their laws are invariant under the action of the unitary and orthogonal group

respectively (see [79]). We denote P
(β)
N the law of XN,β.

The goal of this lecture will be to show that
- the law of the eigenvalues of the (GUE) is a determinantal law,
- the eigenvalues statistics are described by a Fredholm determinant,
- this description permits to derive the asymptotics of local statistics (see (2) and (3)).

Note here that the eigenvalues are not normalized and so the previous lecture implies that
1
N

∑N
i=1 δλi(X

N,β)√
N

converges as N goes to infinity (here (λi(X
N,β), 1 ≤ i ≤ N) denotes the eigen-

values of the matrix XN,β). We denote P
(β)
N the law of XN,β. H(β)

N denotes the set of symmetric
(resp. Hermitian) matrices when β = 1 (resp. β = 2).

The content of this lecture is borrowed from a book in progress with G. Anderson and O.
Zeitouni [3]. We shall only sketch here the arguments and refer the interested reader to this book
for details.

1. Joint law of the eigenvalues

Lemma 2.1. Let X ∈ H(β)
N be random with law P

(β)
N . The joint distribution of the eigenvalues

λ1(X) ≤ · · · ≤ λN (X), has density with respect to Lebesgue measure proportional to

(15) 1x1≤···≤xN

∏

1≤i<j≤N

|xi − xj |β
N
∏

i=1

e−βx2
i /4.

We denote P(β)
N the unordered law of the eigenvalues;

∫

f({xi}1≤i≤N )dP(β)
N (x1, · · · , xN ) =

1

N !

∑

σ∈SN

∫

f({λσ(i)(X)}1≤i≤N )dP
(β)
N (X)

with SN the set of permutations of {1, · · · , N}.

We shall not prove in details this lemma here but emphasize the ideas of a proof in the case
β = 1. It is simply to write the decomposition X = UDU∗, with the eigenvalues matrix D that is
diagonal and with real entries, and with eigenvectors matrix U (that is a unitary matrix). Suppose
this map was a bijection (which it is not, at least at the matrices that do not possess all distinct
eigenvalues) and that one can parametrize the orthonormal basis of eigenvectors by βN(N − 1)/2
parameters in a smooth way (which one cannot in general). Then, it is easy to deduce from the
formula X = UDU∗ that the Jacobian of this change of variables will depend polynomially on
the entries of D and will be of degree βN(N − 1)/2 in these variables. Since the bijection must
break down when Dii = Djj for some i 6= j, the Jacobian must vanish on that set. When β = 1,
this imposes that the polynomial must be proportional to

∏

1≤i<j≤N (xi − xj). Further degree and

symmetry considerations allow to generalize this to β = 2. We refer the reader to [3] for a full
proof, which shows that the set of matrices for which the above manipulations are not permitted
has Lebesgue measure zero.
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2. Joint law of the eigenvalues and determinantal law

We now restrict our attention to the case β = 2 and show that the law P(2)
N is a determinantal law.

More precisely, we let P(2)
p,N be the distribution of p unordered eigenvalues of the GUE;P(2)

p,N is the

probability measure on R
p so that for any f ∈ Cb(R

p),
∫

f(θ1, · · · , θp)dP(2)
p,N (θ1, · · · , θp) =

∫

f(θ1, · · · , θp)dP(2)
N (θ1, · · · , θN )

2.8. Hermite polynomials

We now introduce the Hermite polynomials and associated normalized harmonic oscillator wave-
function.

Definition 2.2.
a) The nth Hermite polynomial hn(x) is defined as

hn(x) := (−1)nex2/2 d
n

dxn
e−x2/2.

b) The nth normalized harmonic oscillator wave-function is the function

ψn(x) =
e−x2/4hn(x)
√√

2π n!
.

For our needs, the most important property of the harmonic oscillator wave-function are their
orthogonality relations

(16)

∫

ψk(x)ψ`(x)dx = δk`

that we leave as an exercise.

2.9. Determinantal structure

We are finally ready to describe the determinantal structure of P(2)
p,N .

Lemma 2.3. For any p ≤ N , the law P(2)
p,N is absolutely continuous with respect to Lebesgue

measure, with density

ρ
(2)
p,N(θ1, · · · , θp) =

(N − p)!

N !

p

det
k,l=1

K(N)(θk, θl) ,

where

(17) K(N)(x, y) =

N−1
∑

k=0

ψk(x)ψk(y) .

Proof. Lemma 2.1 shows that ρ
(2)
p,N exists and equals, if xi = θi for i ≤ p and ζi for i > p, to

(18) ρ
(2)
p,N(θ1, · · · , θp) = CN,p

∫

∏

1≤i<j≤N

|xi − xj |2
N
∏

i=1

e−x2
i /2

N
∏

i=p+1

dζi

for some constant CN,p. The fundamental remark is that this density depends on the Vandermonde
determinant

(19)
∏

1≤i<j≤N

(xj − xi) =
N

det
i,j=1

xj−1
i =

N

det
i,j=1

hj−1(xi)

where we used in the last equality that the Hermite polynomials are monic.
We first consider the case p = N . Then,

ρ
(2)
N,N(θ1, · · · , θN ) = CN,N

(

N

det
i,j=1

hj−1(θi)

)2 N
∏

i=1

e−θ2
i /2(20)

= C̃N,N

(

N

det
i,j=1

ψj−1(θi)

)2

= C̃N,N

N

det
i,j=1

K(N)(θi, θj) ,
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where in the last equality we used the formula det(AB) = det(A) det(B). Here,

C̃N,N =

N−1
∏

k=0

(
√

2πk!)CN,N

is given by the inverse of

∫ (

N

det
i,j=1

ψj−1(θi)

)2
∏

dθi =
∑

σ,σ′

ε(σ)ε(σ′)
N
∏

i=1

∫

ψσ(i)−1(θi)ψσ′(i)−1(θi)dθi

=
∑

σ,σ′

1σ=σ′ = N !

For p < N , using (18) and (19), we find that for some constant C̃N,p, with xi = θi if i ≤ p and ζi
otherwise,

ρ
(2)
p,N (θ1, · · · , θp) = C̃N,p

∫

(
N

det
i,j=1

ψj−1(xi))
2

N
∏

i=p+1

dζi

= C̃N,p

∑

σ,τ∈SN

ε(σ)ε(τ)

∫ N
∏

j=1

ψσ(j)−1(xj)ψτ(j)−1(xj)

N
∏

i=p+1

dζi .

Therefore, letting S(p, ν) denote those bijections τ, σ of {1, · · · , p} into {ν1, · · · , νp}, we get

ρ
(2)
p,N (θ1, · · · , θp)

= C̃N,p

∑

1≤ν1<...<νp≤N

∑

σ,τ∈S(p,ν)

ε(σ)ε(τ)

p
∏

i=1

ψσ(i)−1(θi)ψτ(i)−1(θi)

= C̃N,p

∑

1≤ν1<...<νp≤N

(

p

det
i,j=1

ψνj−1(θi)

)2

,(21)

where in the first equality we used the orthogonality of the family {ψj} to conclude that the
contribution comes only from permutations of SN so that τ(i) = σ(i) for i > p, and we put
{ν1, · · · , νp} = {τ(1), · · · , τ(p)} = {σ(1), · · · , σ(p)}.

We next need the following generalization of the formula det(AB) = det(A) det(B) given by
the Cauchy-Binet Theorem;

Theorem 2.4 (Cauchy-Binet Theorem). Suppose A is an m by k matrix, B a k by n matrix, C =
AB, and, with r ≤ min{m, k, n}, set I = {i1, . . . , ir} ⊂ {1, . . . ,m}, J = {j1, . . . , jr} ⊂ {1, . . . , n}.
Then, letting Kr,k denote all subsets of {1, . . . , k} of cardinality r,

(22) detCI,J =
∑

K∈Kr,k

detAI,K detBK,J .

Using this theorem with A = B∗ and Ai,j = ψνj−1(θi), we get from (21) that

ρ
(2)
p,N(θ1, · · · , θp) = C̃N,p

p

det
i,j=1

(K(N)(θi, θj)).

To compute C̃N,p, note that by integrating both sides of (21), we obtain

(23) 1 = C̃N,p

∑

1≤ν1<...<νp≤N

∫ (

p

det
i,j=1

ψνj−1(θi)

)2

dθ1 · · ·dθp = C̃N,p

∑

1≤ν1<...<νp≤N

p!

so that C̃N,p = (N − p)!/N !. �
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3. Determinantal structure and Fredholm determinants

Now we arrive at the main point, on which the study of the local properties of the GUE is based.

Lemma 2.5. For any measurable subset A of R,

(24) P
(2)
N (∩N

i=1{λi ∈ A}) = 1 +

∞
∑

k=1

(−1)k

k!

∫

Ac

· · ·
∫

Ac

k

det
i,j=1

K(N)(xi, xj)

k
∏

i=1

dxi.

The last expression appearing in (24) is a Fredholm determinant.
Proof. By using in the first equality Lemmas 2.3, and the orthogonality relations of the harmonic
functions in the second equality, we have

P [λi ∈ A, i = 1, . . . , N ] =
1

N !

∫

A

· · ·
∫

A

(
N−1

det
i,j=0

ψi(xj))
2
∏

dxi

=
1

N !

∑

σ∈SN

ε(σ)

∫

A

· · ·
∫

A

N−1

det
i,j=0

(ψi(xj))
∏

ψi(xσ(i))dxi

=
1

N !

∑

σ∈SN

∫

A

· · ·
∫

A

N−1

det
i,j=0

(

ψi(xσ(j))
)

∏

ψi(xσ(i))dxi

=

∫

A

· · ·
∫

A

N−1

det
i,j=0

(ψi(xj)))

n
∏

i=1

ψi(xi)
∏

dxi

=
N−1

det
i,j=0

∫

A

ψi(x)ψj(x)dx =
N−1

det
i,j=0

(

δij −
∫

Ac

ψi(x)ψj(x)dx

)

= 1 +

N
∑

k=1

(−1)k
∑

0≤ν1<···<νk≤N−1

k

det
i,j=1

(∫

Ac

ψνi
(x)ψνj

(x)dx

)

,

Therefore,

P [λi ∈ A, i = 1, . . . , N ](25)

= 1 +

N
∑

k=1

(−1)k

k!

∫

Ac

· · ·
∫

Ac

∑

0≤ν1<...<νk≤N−1

(

k

det
i,j=1

ψνi
(xj)

)2 k
∏

i=1

dxi

= 1 +

N
∑

k=1

(−1)k

k!

∫

Ac

· · ·
∫

Ac

k

det
i,j=1

K(N)(xi, xj)

k
∏

i=1

dxi

= 1 +

∞
∑

k=1

(−1)k

k!

∫

Ac

· · ·
∫

Ac

k

det
i,j=1

K(N)(xi, xj)

k
∏

i=1

dxi ,(26)

where we used the Cauchy-Binet Theorem 2.4 and the last step is trivial since the determinant
detk

i,j=1K
(N)(xi, xj) has to vanish identically for k > N because the rank of {K(N)(xi, xj)}k

i,j=1

is at most N (for instance because {K(N)(xi, xj)}k
i,j=1 can be seen as the product of two N × k

matrices). �

4. Fredholm determinant and asymptotics

Let us denote, for a Borel set A and a symmetric function K on R×R, the Fredholm determinant

∆(A,K) := 1 +

∞
∑

k=1

(−1)k

k!

∫

A

· · ·
∫

A

k

det
i,j=1

K(xi, xj)

k
∏

i=1

dxi

Then, we claim (and leave as an exercise, see below) that

Lemma 2.6. For any compact set A, if Kn is a sequence that converges uniformly towards K on
A as n goes to infinity, ∆(A,Kn) converges towards ∆(A,K).
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As a consequence, if we take A = N− 1
2B with a compact set B, we see that the spacing

distribution in the bulk announced in (2) is a consequence of the (uniform on compact) convergence

(27) lim
N→∞

1√
N
K(N)(

x√
N
,
y√
N

) =
sin(x− y)

π(x − y)
.

Similarly, if we take A = 2 +N− 2
3 [t, t′], we find that the probability (3) that there is no eigenvalue

in A can be obtained from the asymptotics

lim
N→∞

1

N
1
6

K(N)(2
√
N +

x

N
1
6

, 2
√
N +

y

N
1
6

) =
Ai(x)Ai′(y) −Ai′(x)Ai(y)

x− y

if Ai denotes the Airy function.
Such asymptotics are obtained thanks to the formula (left as an exercise)

(28) K(N)(x, y) =
√
N
ψN (x)ψN−1(y) − ψN−1(x)ψN (y)

x− y

and the associated asymptotics of the harmonic functions ψN and ψN−1. We propose below to
derive the asymptotics (27) as an exercise. The limit at the edge and the Airy kernel is a more
challenging exercise that requires saddle point analysis that we did not dare to leave as an exercise.
The interested reader can find a full treatment in [3].

Exercise 2.7. (Proof of Lemma 2.6) Let A be a compact subset of R and denote ‖K‖A =
sup(x,y)∈A×A |K(x, y)| <∞. Let Ki be functions on A×A.

-Prove that for any xi, yi ∈ A, any n ∈ N,

(29)

∣

∣

∣

∣

n

det
i,j=1

Ki(xi, yj)

∣

∣

∣

∣

≤ nn/2
n
∏

i=1

‖Ki‖A.

Hint: use Hadamard inequality: For any column vectors v1, . . . , vn of length n with complex entries,
it holds that

det
[

v1 . . . vn

]

≤
n
∏

i=1

√

v̄i
T vi

-Prove that for any xi, yi ∈ A,
∣

∣

∣

∣

n

det
i,j=1

K1(xi, yj) −
n

det
i,j=1

K2(xi, yj)

∣

∣

∣

∣

≤ n1+n/2‖K1 −K2‖A · max(‖K1‖A, ‖K2‖A)n−1

-Conclude that K → ∆(A,K) is Lipschitz for ‖ · ‖A on the set of functions {K : ‖K‖A ≤M}.
Exercise 2.8. (Proof of (28)) Prove that

N−1
∑

k=0

1

k!
hk(x)hk(y) =

√
N

hN (x)hN−1(y) − hN−1(x)hN (y)

(N − 1)!(x− y)

Hint - Multiply both sides by (x− y)F (x, y) and integrate with respect to x, y on both sides.
- To prove the equality of the two sides for F (x, y) = hp(x)h`(y), show that hp+1(x) = xhp(x)−

h′
p(x), h′

p(x) = php−1(x),
∫

fhk(x)dx = 0 for all polynomial f of degree < k,
∫

hk(x)hp(x)e
− x2

2 dx =√
2π1k=pk!.

-Conclude.

Exercise 2.9. (Proof of (27)) It is enough to obtain the asymptotics of Ψν(t) := N
1
4ψν( t√

N
) for

ν −N finite. The goal of this exercise is to show that

lim
N→∞

Ψν(t) =
1√
π

cos(t− πν

2
).

-Prove that

Ψν(t) =
(2π)1/4Cν,Ne

t2/(4N)N1/4+ν/2

√
ν!

∫

(ξe−ξ2/2)Ne−iξtξν−Ndξ
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with Cν,n = iν
√
n/(2π). Hint: observe that ∂N

x e
− x2

2 = ∂N
x

∫

eiξxe−
ξ2

2 dξ.
-Use Laplace method (observe here that the complex part is of order one and so the integral

will concentrate on the optimizers of |ξ|e−ξ2/2).

Exercise 2.10. Let X2k
. be a random walk starting at X2k

0 = 2k such that ∆X2k
n := X2k

n+1 −X2k
n

are independent equidistributed Bernoulli variables, equal to +1 with probability p and −1 with
probability 1−p. We let KT be the associated transition kernel (KT (x, y) = P (XT = y∩X0 = y)).

We consider N random walks X2k, 1 ≤ k ≤ N .
Show that for any sequence x1 < x2 · · · < xN ,

P ({X2k
T = xk∀1 ≤ k ≤ N} ∩X2k

n < X2k+2
n ∀ 0 ≤ n ≤ T, ∀ k) = det(KT (2k, xl)k,l)

Hint: Expand the right hand side has a sum over permutations and paths. Show that intersecting
paths have a null contribution (use the fact that paths that cross intersect and that intersecting
paths come by pairs, with final data exchanged by a permutation)(i.e., the reflexion principle).





3

Wigner matrices and concentration inequalities
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Concentration inequalities came up to be a very powerful tool in probability theory. They
provide a general framework to control the probability of deviations of smooth functions of random
variables from their mean or their median. We begin this section by providing some general
framework where concentration inequalities can be obtained. We first consider the case where the
underlying measure satisfies a log-Sobolev inequality; we show how to prove this inequality in a
simple context and then how it implies concentration inequalities. We then review a few other
contexts where concentration inequalities hold. To apply these techniques to random matrices, we
show that certain functions of the eigenvalues of matrices, such as

∫

f(x)dLXN (x) = 1
N Tr(f(XN ))

with f Lipschitz, are smooth functions of the entries of the matrix so that concentration inequalities
hold as soon as the joint law of the entries satisfies one of the conditions seen in the first two
sections of this lecture. As a consequence, we will see that if the entries of XN satisfy a log-
Sobolev inequality, ZN

f := N(
∫

f(x)dLXN (x) − E[
∫

f(x)dLXN (x)]) has a sub-Gaussian tail for all
N and for all Lipschitz function f . Another useful a priori control is provided by Brascamp-Lieb
inequalities; we shall apply them in the context of random matrices at the end of this lecture.
The interest of such inequalities is that they provide bounds on probabilities of deviations from
the mean that do not depend on the dimension. They can be used to show laws of large numbers
(reducing the proof of the almost sure convergence to the prove of the convergence in expectation)
or to ease the proof of central limit theorems (since it implies that ZN

f has a sub-Gaussian tail

independent of N , and thus provides tightness arguments for free).
In this section, we denote by 〈·, ·〉 the Euclidean scalar product on RM (or CM ), 〈x, y〉 =

∑M
i=1 xiyi (〈x, y〉 :=

∑M
i=1 xiy

∗
i ), and by || · ||2 the associated norm ||x||22 := 〈x, x〉.

1. Concentration inequalities and logarithmic Sobolev inequalities

We first derive concentration inequalities based on the logarithmic Sobolev inequality and then
give some generic and classical examples of laws that satisfy this inequality.

1.10. Concentration inequalities for laws that satisfy logarithmic Sobolev inequalities

Throughout this section an integer number N will be fixed.

Definition 3.1. A probability measure P on R
N is said to satisfy the logarithmic Sobolev inequality

(LSI) with constant c if, for any differentiable function f : RN → R,

(30)

∫

f2 log
f2

∫

f2dP
dP ≤ 2c

∫

‖∇f‖2
2dP.

Here, ‖∇f‖2
2 =

∑N
i=1(∂xi

f)2

The interest in the logarithmic Sobolev inequality, in the context of concentration inequalities,
lies in the following argument, that among other things, shows that LSI implies sub-Gaussian tails.
This fact and a general study of logarithmic Sobolev inequalities may be found in [54] or [74]. The
Gaussian law, and any probability measure ν absolutely continuous with respect to the Lebesgue
measure satisfying the Bobkov and Götze [18] condition (including ν(dx) = Z−1e−|x|αdx for α ≥ 2,
where Z =

∫

e−|x|αdx), as well as any distribution absolutely continuous with respect to such laws
possessing a bounded above and below density, satisfies the LSI [74], [54, Property 4.6].

Lemma 3.2 (Herbst). Assume that P satisfies the LSI on RN with constant c. Let G be a Lipschitz
function on RN , with Lipschitz constant |G|L. Then, for all λ ∈ R, we have

(31) EP [eλ(G−EP (G))] ≤ ecλ2|G|2L/2,

and so for all δ > 0

(32) P (|G− EP (G)| ≥ δ) ≤ 2e−δ2/2c|G|2L .

Proof of Lemma 3.2. Note first that (32) follows from (31). Indeed, by Chebychev’s inequality,
for any λ > 0,

P (|G− EPG| ≥ δ) ≤ e−λδEP [eλ|G−EP G|]

≤ e−λδ(EP [eλ(G−EP G)] + EP [e−λ(G−EP G)])

≤ 2e−λδec|G|2Lλ2/2.
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Optimizing with respect to λ (by taking λ = δ/c|G|2L) yields the bound (32).
Turning to the proof of (31), we assume that G is a bounded differentiable function such that

|| ||∇G||22||∞ := sup
x∈RN

N
∑

i=1

(∂xi
G(x))2 <∞.

We leave the generalization to the reader (see also [3] or [5]). Define

Xλ = logEP e
2λ(G−EP G) .

Then, taking f = eλ(G−EP G) in (30), some algebra reveals that for λ > 0,

d

dλ

(

Xλ

λ

)

≤ 2c|| ||∇G||22||∞ .

Now, because G− EP (G) is centered,

lim
λ→0+

Xλ

λ
= 0

and hence integrating with respect to λ yields Xλ ≤ 2c|| ||∇G||22||∞λ2 , first for λ ≥ 0 and then for
any λ ∈ R by considering the function −G instead of G. This completes the proof of (31) in case
G is bounded and differentiable. �

1.11. A few laws that satisfy a log-Sobolev inequality

In the sequel, we shall be interested in laws of variables that are either independent or in interaction
via a potential. We shall give sufficient conditions to ensure that a log-Sobolev inequality is satisfied.

• Laws of independent variables.
One of the most important properties of the log-Sobolev inequality is the product

property (we leave again the proof as an exercise)

Lemma 3.3. Let (µi)i=1,2 be two probability measures on RN and RM , respectively,
satisfying the logarithmic Sobolev inequalities with coefficients (ci)i=1,2. Then, the product
probability measure µ1 ⊗ µ2 on RM+N satisfies the logarithmic Sobolev inequality with
coefficient max(c1, c2).

Consequently, if µ is a probability measure on RM satisfying a logarithmic Sobolev
inequality with a coefficient c <∞, then the product probability measure µ⊗n satisfies the
logarithmic Sobolev inequality with the same coefficient c for any integer number n.

• Log-Sobolev inequalities for variables in convex interaction.
We follow below [5] chapter 5 and [54] chapter 4, which we recommend for more

details. Let dx denote the Lebesgue measure on R and Φ be a smooth function (at least
twice continuously differentiable) from RN into R going to infinity fast enough so that
the probability measure

µΦ(dx) :=
1

Z
e−Φ(x1,··· ,xN )dx1 · · · dxN

is well defined. Then, Bakry and Emery showed that if Φ is strictly convex, µΦ satisfies
a log-Sobolev inequality. Namely,

Theorem 3.4. Let I denote the identity in the space of N × N matrices. If for all
x ∈ R

N ,

Hess(Φ)(x) =
(

(∂xi
∂xj

Φ)(x)
)

1≤i,j≤N
≥ 1

c
I

in the sense of the partial order on self-adjoint operators, then (BE) is satisfied and µΦ

satisfies the logarithmic Sobolev inequality with constant c.
In particular, if µ is the law of N independent Gaussian variables with covariance

bounded above by c, then µ satisfies the logarithmic Sobolev inequality with constant c.
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1.12. Local concentration inequalities

In many instances we shall encounter later, we will need to control the concentration of functions
that are only locally Lipschitz, for instance polynomial functions. To this end we state (and prove)
the following lemma. Let (X, d) be a metric space and set for f : X → R

|f |L := sup
x,y∈X

|f(x) − f(y)|
d(x, y)

.

Denote, for a subset B of X , d(x,B) = infy∈B d(x, y). Then

Lemma 3.5. Assume that a probability measure µ on (X, d) satisfies a concentration inequality;
for all δ > 0, for all f : X → R,

µ(|f − µ(f)| ≥ δ) ≤ e
−g( δ

|f|L
)

for some increasing function g on R+. Let B be a subset of X and let f : B → R such that

|f |BL := sup
x,y∈B

|f(x) − f(y)|
d(x, y)

is finite. Then, with δ(f) := µ
(

1Bc(supx∈B |f(x)| + |f |BLd(x,B))
)

, we have

µ({|f − µ(f1B)| ≥ δ + δ(f)} ∩B) ≤ e
−g( δ

|f|BL
)

Proof. It is enough to define a Lipschitz function f̃ on X , whose Lipschitz constant |f̃ |L is

bounded above by |f |BL and so that f̃ = f on B. We just set

f̃(x) = sup
y∈B

{f(y) − |f |BLd(x, y)}.

Note that, if x ∈ B, since f(y) − f(x) − |f |BLd(x, y) ≤ 0, the above supremum is taken at y = x

and f̃(x) = f(x). Applying the concentration inequality to f̃ yields the result (the constant δ(f)

accounts for the centering with respect to µ(f̃) rather than µ(f1B)). �

Exercise 3.6. The goal of this exercise is to obtain a concentration of measure inequality under a
measure µ on RN that satisfies the spectral gap inequality

µ(f2) − (µ(f))2 ≤ 1

m
µ(‖∇f‖2

2)

for all differentiable function f .

(1) Take u(t) = µ(et(f−µ(f))) with a bounded differentiable function f . Show that

u(2t) ≤ u(t)2 +
t2

m
‖‖∇f‖2

2‖∞u(2t).

Conclude that for t2 = m/2‖‖∇f‖2
2‖∞,

u(2t) ≤ 2u(t)2.

Iterating, deduce that for this same t,

u(2t) ≤
∞
∏

i=0

(1 − 1

2

1

4i
)−1 := K

(2) Deduce that

µ(|f − µ(f)| ≥ δ) ≤ 2Ke
− mδ

‖‖∇f‖2‖∞ .

Show that in particular µ must have sub-exponential tail.
(3) Show that if µ satisfies a LSI with constant c then µ satisfies a spectral gap inequality

with constant m = 1/c. Hint: take f = 1 + εg in the LSI with ε going to zero.

Exercise 3.7. The goal of this exercise is to obtain a concentration of measure inequality under
a measure µ on RN that has only a second moment. We take P a measure on Rn such that
L := maxi

∫

(xi −
∫

xidP )2dP . Show that for any Lipschitz function f : Rn → R,

E[(f − E(f))2] ≤ L

n
∑

i=1

‖∂if‖2
∞.
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Apply this result with f(x1, · · · , xn) = 1
n

∑n
i=1 f(xi) for f Lipschitz.

Hint: Write the martingale decomposition f − E[f ] =
∑n

i=1(E[f |Fi] − E[f |Fi−1]) with Fi the
σ algebra generated by (x1, · · · , xi) and observe that E[(E[f |Fi] − E[f |Fi−1])

2] ≤ L‖∂if‖2
∞.

2. Smoothness and convexity of the eigenvalues of a matrix and of traces of matrices

We shall not follow [55] where smoothness and convexity were mainly proved by hand for smooth
functions of the empirical measure and for the largest eigenvalue. We will rather, as in [3], rely on
Weyl and Lidskii inequalities that we now recall. We recall that we will denote, for B ∈ MN (C),
‖B‖2 its Euclidean norm;

‖B‖2 :=





N
∑

i,j=1

|Bij |2




1
2

.

Theorem 3.8 (Lidskii). Let A ∈ H(2)
N and z ∈ CN . We order the eigenvalues of A+

−zz
∗ in

increasing order. Then

λk(A
+

−zz
∗) ≤ λk+1(A) ≤ λk+2(A

+

−zz
∗).

Theorem 3.9 (Weyl). Let A,E ∈ H(2)
N . Then,

(33)

N
∑

k=1

|λk(A+ E) − λk(A)|2 ≤
N
∑

k=1

λk(E)2 .

We denote λ1(A) ≤ λ2(A) ≤ · · · ≤ λN (A) the eigenvalues of A ∈ H(2)
N . Then for all k ∈

{1, · · · , N},
|λk(A+ E) − λk(A)| ≤ ‖E‖2.

In other words, for all k ∈ {1, · · · , N},
(Aij)1≤i≤j≤N ∈ C

N(N+1)/2 → λk(A)

is Lipschitz with constant one. The same holds for the spectral radius λmax(A) = max1≤i≤N |λi(A)|.
From Theorem 3.9, we deduce the following.

Lemma 3.10. For all Lipschitz functions f with Lipschitz constant |f |L, the function

(Aij)1≤i≤j≤N ∈ C
N(N+1)/2 →

N
∑

k=1

f(λk(A))

is Lipschitz with respect to the Euclidean norm with a constant bounded above by
√
N |f |L. When

f is continuously differentiable we have

lim
ε→0

ε−1

(

N
∑

k=1

f(λk(A + εB)) −
N
∑

k=1

f(λk(A))

)

= Tr(f ′(A)B).

Proof. The first inequality is a direct consequence of Theorem 3.9 and entails the same control
on λmax(A). For the second we only need to use Cauchy-Schwarz’s inequality;

∣

∣

∣

∣

∣

N
∑

i=1

f(λi(A)) −
N
∑

i=1

f(λi(A + B))

∣

∣

∣

∣

∣

≤ |f |L
N
∑

i=1

|λi(A) − λi(A + B)|

≤
√
N |f |L

(

N
∑

i=1

|λi(A) − λi(A + B)|2
)

1
2

≤
√
N |f |L‖B‖2

where we used Theorem 3.9 in the last line. For the last point, we check it for f(x) = xk where
the result is clear since

(34) Tr((A + εB)k) = Tr(Ak) + εkTr(Ak−1B) +O(ε2)
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and complete the argument by density of the polynomials. �

We can think of
∑N

i=1 f(λi(A)) as Tr(f(A)). Then, the second part of the previous Lemma
can be extended to several matrices as follows.

Lemma 3.11. Let P be a polynomial in m-non commutative indeterminates. For 1 ≤ i ≤ m, we
denote Di the cyclic derivative with respect to the ith variable given, if P is a monomial, by

DiP (X1, · · · , Xm) =
∑

P=P1XiP2

P2(X1, · · · , Xm)P1(X1, · · · , Xm)

where the sum runs over all decompositions of P into P1XiP2 for some monomials P1 and P2. Di

is extended linearly to polynomials. Then, for all (A1, · · · ,Am) and (B1, · · · ,Bm) ∈ H(2)
N ,

lim
ε→0

ε−1 (Tr(P (A1 + εB1, · · · ,Am + εBm)) − Tr(P (A1, · · · ,Am)))

=

m
∑

i=1

Tr(DiP (A1, · · · ,Am)Bi).

In particular, if (A1, · · · ,Am) belong to the subset ΛN
M of elements of H(2)

N with spectral radius
bounded by M <∞,

((Ak)ij) 1≤i≤j≤N

1≤k≤m

∈ C
N(N+1)m/2,Ak ∈ H(2)

N ∩ ΛN
M → Tr(P (A1, · · · ,Am))

is Lipschitz with a Lipschitz norm bounded by
√
NC(P,M) for a constant C(P,M) that depends

only on M and P . If P is a monomial of degree d, one can take C(P,M) = dMd−1.

Proof. We can assume without loss of generality that P is a monomial. The first equality is
due to the simple expansion

Tr(P (A1 + εB1, · · · ,Am + εBm)) − Tr(P (A1, · · · ,Am))

= ε

m
∑

i=1

∑

P=P1XiP2

Tr(P1(A1, · · · ,Am)BiP2(A1, · · · ,Am)) +O(ε2)

together with the trace property Tr(AB) = Tr(BA).
For the estimate on the Lipschitz norm, observe that if P is a monomial containing di times

the letter Xi,
∑m

i=1 di = d and DiP is the sum of exactly di monomials of degree d − 1. Hence,

DiP (A1, · · · ,Am) has spectral radius bounded by diM
d−1 when (A1, · · · ,Am) are Hermitian

matrices in ΛN
M . Hence, by Cauchy-Schwarz’s inequality, we obtain

|
m
∑

i=1

Tr(DiP (A1, · · · ,Am)Bi)| ≤
(

m
∑

i=1

Tr(|DiP (A1, · · · ,Am)|2)
)

1
2
(

m
∑

i=1

Tr(B2
i )

)
1
2

≤
(

N

m
∑

i=1

d2
iM

2(d−1)

)
1
2
(

m
∑

i=1

‖Bi‖2
2

)
1
2

≤
√
NdMd−1

(

m
∑

i=1

‖Bi‖2
2

)
1
2

.

�

Exercise 3.12. Prove that when m = 1, D1P (x) = P ′(x).

We now prove the following result originally due to Klein

Lemma 3.13 (Klein’s lemma). Let f : R → R be a convex function. Then, if A is the N × N
Hermitian matrix with entries (Aij)1≤i≤j≤N on and above the diagonal,

ψf : (Aij)1≤i≤j≤N ∈ C
N →

N
∑

i=1

f(λi(A))

is convex. Moreover, if f is twice continuously differentiable with f ′′(x) ≥ c for all x, ψf is twice
continuously differentiable with Hessian bounded below by cI.
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Proof. We give a proof below, that also provides a lower bound of the Hessian of ψf . The
smoothness of ψf is clear when f is a polynomial since then ψf ((Aij)1≤i≤j≤N ) is a polynomial
function in the entries. Let us compute its second derivative when f(x) = xp. Expanding (34) one
step further gives

Tr((A + εB)k) = Tr(Ak) + ε

p−1
∑

k=0

Tr(AkBAp−1−k)

+ε2
∑

0≤k+l≤p−2

Tr(AkBAlBAp−2−k−l) +O(ε3)

= Tr(Ak) + εpTr(Ap−1B) +
ε2

2
p

∑

0≤l≤p−2

Tr(AlBAp−2−lB) +O(ε3).(35)

A compact way to write this formula is by defining, for two real numbers x, y,

gf (x, y) :=
f ′(x) − f ′(y)

x− y

and setting for a matrix A with eigenvalues λi(A) and eigenvector ei, 1 ≤ i ≤ N ,

gf (A,A) =
N
∑

i,j=1

gf (λi(A), λj(A))eie
∗
i ⊗ eje

∗
j .

Since gxp(x, y) = p
∑p−1

r=0 x
ryp−1−r, the last term in the r.h.s. of (35) reads

(36) p
∑

0≤l≤p−1

Tr(AlBAp−2−lB) = 〈gxp(A,A),B ⊗ B〉

where for B,C,D,E ∈MN(C), 〈B⊗C,D⊗E〉 := 〈B,D〉2〈C,E〉2 with 〈B,D〉2 =
∑N

i,j=1 BijD̄ij .

In particular, 〈eie
∗
i ⊗ eje

∗
j ,B ⊗ B〉 = | < ei, Bej > |2 with < u,Bv >=

∑N
i,j=1 uiv̄jBij . By (35)

and (36), for any Hermitian matrix X,

Hess(Tr(Ap))[X,X ] = 〈gxp(A,A), X ⊗X〉

=

N
∑

r,m=1

gxp(λr(A), λm(A))| < er, Xem > |2

Now gf (A,A) makes sense for any twice continuously differentiable function f and by density of
the polynomials in the set of twice continuously differentiable function f , we can conclude that
ψf is twice continuously differentiable too. Moreover, for any twice continuously differentiable
function f ,

Hess(Tr(f(A)))[X,X ] =
N
∑

r,m=1

gf(λr(A), λm(A))| < er, Xem > |2.

Since gf ≥ c when f ′′ ≥ c we finally have proved

Hess(Tr(f(A)))[X,X] ≥ cTr(XX∗).

The proof is thus complete. �

Let us also notice that

Lemma 3.14. Assume λ1(A) ≤ λ2(A) · · · ≤ λN (A). The functions

A ∈ H(2)
N → λ1(A) and A ∈ H(2)

N → λN (A)

are convex. For any norm ‖ · ‖ on M(2)
N , (Aij)1≤i,j≤N → ‖A‖ is convex.
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Proof. The first result is clear since we have already seen that λN (A+B) ≤ λN (A)+λN (B).
Since for α ∈ R, λi(αA) = αλi(A), we conclude that A → λN (A) is convex. The same result
holds for λ1 (by changing the sign A → −A). The convexity of (Aij)1≤i,j≤N → ‖A‖ is due to the
definition of the norm. �

3. Concentration inequalities for random matrices

3.13. Concentration inequalities for the eigenvalues of random matrices

We consider a Hermitian random matrix AN whose real or complex entries have joint law µN . We
can now state the following theorems.

Theorem 3.15. Suppose there exists c > 0 so that either
• (H1) there exists a strictly convex twice continuously differentiable function V : R → R,

V ′′(x) ≥ 1
c > 0, so that

µN (dAN ) = Z−1
N e−NTr(V (AN ))dAN

with dAN =
∏

1≤i≤j≤N d<(Aij)
∏

1≤i<j≤N d=(Aij) for complex entries or dAN =
∏

1≤i≤j≤N dAij

for real entries.
• (H2) AN = XN/

√
N with (XN

ij , 1 ≤ i ≤ j ≤ N) independent, XN
ij with law µN

ij , that are
probability measures on C or on R, all of them satisfying the log Sobolev inequality with constant
c <∞. Then:

(1) For any Lipschitz function f on R, for any δ > 0,

µN
(

|LAN (f) − µN [LAN (f)]| ≥ δ
)

≤ 2e
− 1

4c|f|2L
N2δ2

.

(2) For any k ∈ {1, · · · , N},

µN
(

|λk(AN ) − µN (λk(AN ))| ≥ δ
)

≤ 2e−
1
4c

Nδ2

.

The same bound holds for the spectral radius λmax(A
N ).

In particular, these results hold when the Xij are independent Gaussian variables with bounded
above variances.

Note that the same result holds when the entries of X are real.
Proof of Theorem 3.15. For (H1), the assumption V ′′(x) ≥ 1

c implies, by Lemma 3.13, that

AN → NTr(V (AN )) is twice continuously differentiable with Hessian bounded below by N
c . The

second case uses the product property of Lemma 3.3 which implies that ⊗i≤jµ
N
ij satisfies the log

Sobolev inequality with constant c. Hence the law µN of A = X/
√
N satisfies the log Sobolev

inequality with constant c/N .
Thus, to complete the proof of the first result of the theorem, we only need to recall that by

Lemma 3.10, G(AN
ij , 1 ≤ i ≤ j ≤ N) = Tr(f(AN )) is Lipschitz with constant bounded by

√
N |f |L

whereasAN
ij , 1 ≤ i ≤ j ≤ N → λk(A) is Lipschitz with constant one. For the second, we use Lemma

3.14. �

Exercise 3.16. State the concentration result when the µN
ij only satisfy Poincaré inequality.

Exercise 3.17. If A is not Hermitian but have all entries with a joint law of type µN as above,
show that the law of the spectral radius of A concentrates.

Observe that the speed of the concentration we obtained for Tr(f(XN )) is optimal (since it
agrees with the speed of the central limit theorem). It is also optimal in view of the large deviation

principle [10] which proves that indeed deviations probabilities are of order e−N2

. However, it does

not capture the true scale of the fluctuations of λmax(A
N ) that are of order N− 1

3 . Improvements
of concentration inequalities in that direction were obtained by M. Ledoux [75].

We emphasize that Theorem 3.15 applies also when the variance of XN
ij depends on i, j. For

instance, it includes the case where XN
ij = aN

ijY
N
ij with Y N

ij i.i.d. with law P satisfying the log-
Sobolev inequality and aij uniformly bounded (since if P satisfies the log-Sobolev inequality with
constant c, the law of ax under P satisfies it also with a constant bounded by a2c).
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3.14. Concentration inequalities for traces of several random matrices

The previous Theorems also extend to the setting of several random matrices. If we wish to consider
polynomial functions of these matrices, we can use local concentration results (see Lemma 3.5). We
do not need to assume the random matrices independent if they interact via a convex potential.

Let V be a polynomial in m non-commutative indeterminates. Assume that for any N ∈ N,

φN
V : ((Ak)ij) i≤j

1≤k≤m

,A1, · · · ,Am ∈ H(2)
N → TrV (A1, · · · , Am)

is real valued and convex. Let c be a positive real.

dµN,β
V (A1, · · · , Am) :=

1

ZN
V

e−NTr(V (A1,··· ,Am))dµN,β
c (A1) · · ·dµN,β

c (Am)

with µN,β
c the law of a N × N Wigner matrix with complex (β = 2) or real (β = 1) Gaussian

entries with covariance 1/cN , that is the law of the self-adjoint N ×N matrix A with entries with
law

µN,2
c (dA) =

1

Zc
N

e−
cN
2

PN
i,j=1 |Aij |2

∏

i≤j

d<Aij

∏

i≤j

d=Aij

and

µN,1(dA) =
1

Zc
N

e−
cN
4

PN
i,j=1 A2

ij

∏

i≤j

dAij

∏

i≤j

d=Aij .

We then have the following corollary.

Corollary 3.18. Let µN,β
V be as above. Then

(1) For any Lipschitz function f of the entries of the matrices Ai, 1 ≤ i ≤ m, for any δ > 0,

µN,β
V (|f − µN,β

V (f)| > δ) ≤ 2e
− Ncδ

2|f|L .

(2) Let M be a positive real, denote ΛN
M = {Ai ∈ H(2)

N ; max1≤i≤mλmax(Ai) ≤ M} and P be
a monomial of degree d ∈ N. Then, for any δ > 0

µN,β
V

(

{|Tr(P ({Xi}1≤i≤m)) − µN,β
V (Tr(P ({Xi}1≤i≤m)1ΛN

M
))| > δ + δ(M,N)} ∩ ΛN

M

)

≤ 2e
− cδ2

d2M2(d−1)

with

δ(M,N) ≤MdµN,β
V

(

(1 + d‖A‖2)1(ΛN
M

)c

)

.

Proof. By our assumption, the law µN,β
V of the entries of (X1, · · · , Xm) is absolutly continuous

with respect to Lebesgue measure. The Hessian of the logarithm of the density is bounded above by

−NcI. Hence, by Corollary 3.4, µN,β
V satisfies a log Sobolev inequality with constant 1/Nc and thus

by Lemma 3.2 we find that µN,β
V satisfies the first statement of the Corollary. We finally conclude

by using Lemma 3.5 and the fact that X1, · · · , Xm → Tr(P (X1, · · · , Xm)) is locally Lipschitz by
Lemma 3.11. �

4. Brascamp-Lieb inequalities; Applications to random matrices

We introduce Brascamp-Lieb inequalities and show how they can be used to obtain a priori controls
for random matrices quantities such as the spectral radius. Such controls will be particularly useful
in the next lecture.

4.15. Brascamp-Lieb inequalities

The Brascamp-Lieb inequalities we shall be interested in allow to compare the expectation of
convex functions under a Gaussian law and under a law with a log-concave density with respect to
this Gaussian law. It states as follows.

Theorem 3.19. [Brascamp-Lieb[25], Hargé [61], Theorem 1.1]Let n ∈ N. Let g be a convex
function on Rn and f a log-concave function on Rn. Let γ be a Gaussian measure on Rn. We
suppose that all the following integrals are well defined, then:

∫

g(x+ l −m)
f(x)dγ(x)
∫

fdγ
≤
∫

gdγ
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where

l =

∫

xdγ, m =

∫

x
f(x)dγ(x)
∫

fdγ
.

This theorem was proved by Brascamp and Lieb [25] (Theorem 7, g(x) = |x1|α), by Caffarelli
[29] (Corollary 6, g(x) = g(x1)) and then for a general convex function g by Hargé [61].

4.16. Applications of Brascamp-Lieb inequalities to random matrices

We apply now Brascamp-Lieb inequalities to the setting of random matrices. To this end, we must
restrict ourselves to random matrices with entries following a law that is absolutely continuous
with respect to Lebesgue measure and with strictly log-concave density. We restrict ourselves to
the case of m N ×N Hermitian (or symmetric) random matrices with entries following the law

dµN,β
V (A1, · · · , Am) :=

1

ZN
V

e−NTr(V (A1,··· ,Am))dµN,β
c (A1) · · · dµN,β

c (Am)

with µN,β
c the law of a N × N Wigner matrix with complex (β = 2) or real (β = 1) Gaussian

entries with covariance 1/cN . We assume that V is convex in the sense that for any N ∈ N,

{<(Ak)ij , i ≤ j,=(Ak)ij , i < j}1≤k≤m → Tr(V (A1, · · · , Am))

is real valued and convex.
This hypothesis covers the case where V (A1, · · · , Am) =

∑k
i=1 Vi(

∑m
j=1 α

i
jAj) when αi

j are
real variables and Vi are convex functions on R by Klein’s Lemma 3.13.

Theorem 3.19 implies that for all convex function g on (R)βmN(N−1)/2+mN ,

(37)

∫

g(A− M)dµN,β
V (A) ≤

∫

g(A)

m
∏

i=1

dµN,β
c (Ai)

where M =
∫

AdµN,β
V (A) is the m-tuple of deterministic matrices (Mk)ij =

∫

(Ak)ijdµ
N,β
V (A).

In (37), g(A) is a shorthand for a function of the (real and imaginary parts of the) entries of the
matrices A = (A1, · · · , Am).

By different choices of the function g we shall now obtain some a priori bounds on the random
matrices (A1, · · · , Am) with law µN,β

c .

Lemma 3.20. For c > 0, there exists C0 = C0(c, V (0), DiV (0), c(V ), d) finite such that for all
i ∈ {1, · · · ,m}, all n ∈ N,

lim sup
N

µN
V (

1

N
Tr(X2n

i )) ≤ Cn
0 .

Moreover, C0 depends continuously on V (0), DiV (0), σm(V (X1√
c
, · · · , Xm√

c
) and in particular is uni-

formly bounded when these quantities are.

Note that this lemma shows that, for i ∈ {1, · · · ,m}, the spectral measure of Ai is asymptot-
ically contained in the compact set [−√

C0,
√
C0]. σm is the law of m semi-circular variables as

already met in Theorem 1.17. Observe that since for any monomial q = A`1 · · ·A`k, σm(q(X/
√
c))

is bounded by (2/
√
c)k, σm(V (X1√

c
, · · · , Xm√

c
)) is finite for all polynomial V (and locally bounded in

the parameters of V ).
Proof. Let k be in {1, · · · ,m}. As A→ Tr(A4d

k ) is convex by Klein’s lemma 3.13, Brascamp-Lieb
inequality (37) implies that

(38) µN
V (

1

N
Tr(Ak −Mk)4d) ≤ µN,β

c (
1

N
Tr(Ak)4d) = µN,β

c (LAk
(x4d))

where Mk = µN
V (Ak) stands for the matrix with entries

∫

(Ak)ijdµ
N
V (dA). Thus, since

µN,β
c (LAk

(x4d)) converges by Wigner theorem 1.1 towards c−2dC2d ≤ (c−14)2d with C2d the Cata-
lan number, we only need to control Mk := µN

V (Ak). First observe that for all k the law of Ak is
invariant under the multiplication by unitary matrices so that for all unitary matrices U ,

(39) Mk = µN
V [Ak] = UµN

V [Ak]U∗ ⇒ Mk = µN
V (

1

N
Tr(Ak))I.

Let us bound µN
V ( 1

N Tr(Ak)). Jensen’s inequality implies

ZV
N≥e−N2µN,β

c ( 1
N

Tr(V ))
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and so

lim inf
N→∞

1

N2
logZV

N ≥ − lim sup
N→∞

µN,β
c (

1

N
Tr(V )).

According to Theorem 1.17, µN,β
c ( 1

N Tr(V )) converges as N goes to infinity for any polynomial

function V . Thus, for N sufficiently large, if C(V ) = 2|σm(q(X/
√
c))|, ZV

N≥e−N2C(V ).
We now use the convexity of V , to find that for all N ,

Tr (V (A))≥Tr(V (0) +

m
∑

i=1

DiV (0)Ai)

with Di the cyclic derivative introduced in Lemma 3.11. By Chebychev’s inequality, we therefore
obtain, for all λ ≥ 0,

µN
V (|LAk

(x)| > y) ≤ µN
V (

1

N
Tr(Ak) ≥ y) + µN

V (− 1

N
Tr(Ak) ≥ y)

≤ eN2(C(V )−V (0)−λy)
(

µN,β
c (e−NTr(

Pm
i=1 DiV (0)Ai−λAk)) + µN,β

c (e−NTr(
Pm

i=1 DiV (0)Ai+λAk))
)

= eN2(C(V )−V (0)−λy)e
N
2c

P

` 6=k Tr(DiV (0)2)(e
N
2c

Tr((DkV (0)−λ)2) + e
N
2c

Tr((DkV (0)+λ)2)).

Optimizing with respect to λ shows that there exists B = B(V )

µN
V (|LAk

(x)|≥y) ≤ eBN2−N2c
4 y2

so that for N large enough,

µN
V (|LAk

(x)|) =

∫

µN
V (|LAk

(x)|≥y) dy

≤ 4
√
c−1B +

∫

y≥4
√

c−1B

e−
N2c

4 (y2−4 B
c

)dy ≤ 8
√
Bc−1.(40)

This completes the proof with (38). �

Let us derive some other useful properties due to Brascamp-Lieb inequality. We first obtain an
estimate on the spectral radius λN

max(A), defined as the maximum of the spectral radius of A1,. . . ,
Am under the law µN

V .

Lemma 3.21. Under the same hypothesis than in the previous lemma, there exists α = α(c) > 0
and M0 = M0(V ) <∞ such that for all M≥M0 and all integer N ,

µN
V (λN

max
(A) > M) ≤ e−αMN .

Moreover, M0(V ) is uniformly bounded when V (0), DiV (0) and c(V ) are.

Proof. Since the spectral radius λN
max(A) is a convex function of the entries, we can apply

Brascamp-Lieb inequality (37) and Theorem 3.15 (applied with a quadratic potential V ) to obtain
an exponential bound on λN

max(A−M) with M = E[A]. But, by (39) and (40), λN
max(M) is bounded

independently of N and therefore, λN
max(A) ∈ [λN

max(A) − |λN
max(M)|, λN

max(A) + |λN
max(M)|] also

satisfies an exponential bound. �

Lemma 3.22. If c > 0, ε ∈]0, 1
2 [, then there exists C = C(c, ε) <∞ such that for all d ≤ N

1
2−ε,

µN
V (|λN

max
(A)|d) ≤ Cd.

Note that this control could be generalized to d ≤ N2/3−ε. by using the refinements obtained
by Soshnikov, Theorem 2 p.17 in [92] but we shall not need it here.
Proof. Since A → λN

max(A) is convex, we can again use Brascamp-Lieb inequalities as well as the
uniform bound on M = µN

V (A) to conclude with Theorem 1.20. �
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4.17. Coupling concentration inequalities and Brascamp-Lieb inequalities

We next turn to concentration inequalities for trace of polynomials on the set

ΛN
M = {A ∈ Hm

N : λN
max(A) = max1≤i≤m(λN

max(Ai)) ≤M} ⊂ R
N2m.

We let
δ̃N (P ) := Tr(P (A1, · · · , Am)) − µN

V (Tr(P (A1, · · · , Am))) .

Then, we have the following by Corollary 3.18.

Lemma 3.23. For all N in N, all M > 0, there exists a finite constant C(P,M) and ε(P,M,N)
such that for any ε > 0,

µN
V

(

{|δ̃N(P )|≥ε+ ε(P,M,N)} ∩ ΛN
M

)

≤ 2e−
cε2

2C(P,M) .

If P is a monomial of degree d we can choose

C(P,M) ≤ d2M2(d−1)

and there exists M0 <∞ so that for M ≥M0, all ε ∈]0, 1
2 [, and all monomial P of degree smaller

than N1/2−ε,
ε(P,M,N) ≤ 3dN(CM)d+1e−

α
2 NM

with C the constant of Lemma 3.22.

For later purposes, we give a control on the variance of L, that can be easily derived from the
previous lemma and the estimate on µN

V ((ΛN
M )c) given in Lemma 3.21.

Lemma 3.24. For any c > 0 and ε ∈]0, 1
2 [, there exists B,C,M0 > 0 such that for all t ∈ Bη,c ,

all M≥M0, and monomial P of degree less than N
1
2−ε,

(41) µN
V

(

(δ̃N (P ))2
)

≤ BC(P,M) + C2dN4e−
αMN

2 .

Moreover, the constants C,M0, B depend continuously on V (0), DiV (0) and c(V ).

Exercise 3.25. The goal of this exercise is to give a new proof of Wigner’s theorem in the case
where the entries are independent Gaussian variables, by using concentration inequalities. This
can be viewed as a warm up towards the next lecture. So we let XN be a N × N symmetric
matrix such that XN (ij), i < j are i.i.d N(0, 1/N)(real centered gaussian with covariance 1/N) and
XN(ii), 1 ≤ i ≤ N are independent, independent from XN(ij), i < j and N(0, 2/N) distributed.

(1) Show that for every differentiable function f that goes to infinity more slowly than eN x2

2 ,
∫ ∞

−∞
xf(x)e−N x2

2 dx = N−1

∫ ∞

−∞
f ′(x)e−N x2

2 dx.

This is also known as Stein ’s Lemma.
(2) Show that for every z ∈ C+ = {z : =(z) > 0}, any indices i, j, k, l

∂Xij
[(z −XN)−1]kl = [(z −XN )−1∆ij(z −XN)−1]kl

with ∆ij the matrix with null entries except at (ij) and (ji) where the entries equal one.
(3) Let z ∈ C+ = {z : =(z) > 0}. Show that

E[Tr(
XN

z −XN
)] =

1

N
E[Tr((z −XN )−1)Tr((z −XN )−1) + Tr((z −XN )−2)].

Hint: Write

E[Tr(
XN

z −XN
)] =

∑

ij

E[X(ij)[(z −XN )−1]ji]

apply Stein’s Lemma and the previous formula.
(4) Using

E[Tr(
z

z −XN
)] = N + E[Tr(

XN

z −XN
)]

deduce that

zE[
1

N
Tr(

1

z −XN
)] = 1 + E[(

1

N
Tr((z −XN )−1))2 +

1

N2
Tr((z −XN )−2)].
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(5) Let z with positive imaginary part. Deduce from the fact that XN is symmetric that

|Tr((z −XN )−2)| ≤ N/|=z|2

and that X(ij), 1 ≤ i ≤ j ≤ N → Tr((z −XN )−1) is Lipschitz. Deduce by concentration
inequalities that

|E[(
1

N
Tr((z −XN )−1))2] − E[(

1

N
Tr((z −XN )−1))]2| ≤ constant

N |=(z)|2 .

(6) Show that {E[( 1
N Tr((z − XN )−1))], N ∈ N} is a tight sequence and that its limit points

G(z) satisfy
zG(z) = 1 +G(z)2.

(7) Arguing that G(z) must be small for =z large, prove that

G(z) =
1

2
(z −

√

z2 − 4).

The rest of the exercise shows that this is sufficient to show that the empirical measure
LXN

converges almost surely and in expectation, that the Stieljes transform of the limit
is given by G(z) and that it is indeed the semi-circular law.

(8) We first show that for all z ∈ C+, GN (z) := E[( 1
N Tr((z − XN )−1))] converges towards

G(z) as above. Show by Arzela-Ascoli theorem that for any ε > 0, {z : =z > ε →
GN (z)}N∈N are tight as a sequence of bounded continuous functions. Consider a limit
point. Argue that it is analytic (observe that the GN are analytic and uniformly bounded)
and so uniquely defined by the previous point. Conclude.

(9) Show that

G(z) =

∫

1

z − x
dσ(x)

with σ the semi-circle distribution with covariance one.
(10) Use Cauchy formula to show that for any analytic function f in a strip ({z : |=z| < ε})

around the real line which goes to zero at infinity,

lim
N→∞

E[

∫

f(x)dLXN
(x)] =

∫

fdσ(x).

Hint: Cauchy formula says that f(x) = π−1
∫

γ
(x − y)−1f(y)dy for a contour γ included

in the strip of analyticity of f so that x belongs to the interior of the set delimited by γ.
Conclude by density that the same convergence holds for any bounded continuous function
that vanishes outside a compact.

(11) Extend the previous result to all bounded continuous functions.
(12) Use concentration inequalities to obtain almost sure convergence of LXN

.





4

Matrix models
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In this lecture, we shall be interested in laws of interacting matrices of the form

dµN
V (X1, · · · , Xm) :=

1

ZN
V

e−NTr(V (X1,··· ,Xm))dµN (X1) · · · dµN (Xm)

where ZN
V is the normalizing constant

ZN
V =

∫

e−NTr(V (X1,··· ,Xm))dµN (X1) · · ·dµN (Xm)

and V is a polynomial in m non-commutative indeterminates;

V (X1, · · · , Xm) =

n
∑

i=1

tiqi(X1, · · · , Xm)

with qi non-commutative monomials;

qi(X1, · · · , Xm) = Xji
1
· · ·Xji

ri

for some jk
l ∈ {1, · · · ,m}, ri ≥ 1. Moreover, dµN (X) denotes the standard law of the GUE, i.e

under dµN (X), X is a N ×N Hermitian matrix such that

Xkl = X̄lk =
gkl + ig̃kl√

2N
, k < l, Xkk =

gkk√
N

with independent centered standard Gaussian variables (gkl, g̃kl)k≤l. In other words

dµN (X) = Z−1
N 1

X∈H(2)
N

e−
N
2 Tr(X2)

∏

1≤i≤j≤N

d<(Xij)
∏

1≤i<j≤N

d=(Xij).

Let us denote C〈X1, · · · , Xm〉 the set of polynomials in m non-commutative indeterminates and,
for P ∈ C〈X1, · · · , Xm〉,

L̂N (P ) := LX1,··· ,Xm
(P ) =

1

N
Tr (P (X1, · · · , Xm))

When V is null, we have seen in Lecture 2 that for all P ∈ C〈X1, · · · , Xm〉, L̂N (P ) converges
as N goes to infinity. Moreover the limit σm(P ) is such that if P is a monomial, σm(P ) is the
number of non crossing partitions of a set of points with m colors, or equivalently the number of
planar map with one star of type P . In this part, we shall generalize such a type of result to the
case where V is not null but ‘small’ and ‘nice’ in a sense to precise.

This lecture is motivated by the work of Brézin, Itzykson, Parisi and Zuber [26] and large
developments that occurred thereafter in theoretical physics [35]. They in fact noticed that if
V =

∑n
i=1 tiqi with fixed monomials qi of m non-commutative indeterminates, and if we see

ZN
V = ZN

t as a function of t = (t1, · · · , tn)

(42) logZN
t :=

∑

g≥0

N2−2gFg(t)

where

Fg(t) :=
∑

k1,··· ,kn∈Nk\{0,··· ,0}

k
∏

i=1

(−ti)ki

ki!
Mg((qi, ki)1≤i≤k)

is a generating of integer numbers Mg((qi, ki)1≤i≤k) that count certain graphs called maps. A
map is a connected oriented diagram that is embedded into a surface. Its genus g is by definition
the genus of a surface in which it can be embedded in such a way that edges do not cross and the
faces of the graph (that are defined by following the boundary of the graph) are homeomorphic
to a disc. The vertices of the maps we shall consider will have the structure of a star; a star of
type q, for some monomial q = X`1 · · ·X`k

, is a vertex with valence deg(q) and oriented colored
half-edges with one marked half edge of color `1, the second of color `2 etc until the last one
of color `k. Mg((qi, ki)1≤i≤k) is then the number of maps with ki stars of type qi, 1 ≤ i ≤ n.
Observe that a star of type q is in bijection with the set S(q) of ordered colored points introduced
in Definition 1.16. When V 6= 0, the numbers of interest will depend on several such sets that
will have matching among each other (the total graph being connected). To describe this global
picture, it is thus prettier to draw the set S(q) as ordered dots on a circle or, as we do here, as end
points of half-edges of a vertex.
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The equality (42) obtained by ’t Hooft [94] (in a more general context) and then by Brezin,
Parisi, Itzykson and Zuber [26] was only formal, i.e means that all the derivatives on both sides
of the equality coincide at t = 0. This result can then be deduced from Wick formula which gives
the expression of arbitrary moments of Gaussian variables (see section 2).

Adding to V a term t q for some monomial q and identifying the first order derivative with
respect to t at t = 0 we derive from (42)

(43) µN
V (L̂N (q)) =

∑

g≥0

N−2g
∑

k1,··· ,kn∈Nk

k
∏

i=1

(−ti)ki

ki!
Mg((qi, ki)1≤i≤k, (q, 1)).

Expansions such as (42) and (43) where first introduced by ’t Hooft [94] to compute integrals such
as the one in the left hand side of (43). When a few years later, Brezin, Parisi, Itzykson and
Zuber [26] specialized the work of ’t Hooft to matrix integrals as in (43) they already study the the
natural reverse question of computing the numbers Mg((qi, ki)1≤i≤k) by studying the associated
integrals over matrices encountered a large success in theoretical physics (see e.g. the review papers
[35]). In the course of doing so, one would like for instance to compute limN→∞N−2 logZN

t and
claim that this limit has to be equal to F0(t). There is here the belief that one can interchange
derivatives and limit, a claim that we shall study in this lecture.

In fact, the formal limit can be straightened into a large N expansion in the sense that for all
integer number n, for sufficiently small ti’s , (43) can be turned into the large N expansion

(44) µN
V [L̂N (P )] =

n
∑

p=0

1

N2p
σV

p (P ) + o(N−2n)

where σV
g (q) =

∑

k1,··· ,kn∈Nk

∏k
i=1

(−ti)
ki

ki!
Mg((qi, ki)1≤i≤k, (q, 1)) for monomial functions q.

This requires of course that V satisfies some additional hypothesis, for instance insuring that
ZV

N is finite. A natural hypothesis is to assume that Tr(V (X1, · · · , Xm)) is a convex function of
the entries. Such an assumption can be relaxed by adding a cutoff to the integral but we shall not
consider this issue in these notes.

Observe that (44) can be compared to cluster type expansion; recall for instance that Dobrushin
[37] proved that if we consider the Ising model V (s) =

∑

i≈j sisj with i, j in some box Λ, si ∈
{+1,−1}, and i ≈ j meaning that i and j are nearest neighbours on the lattice,

Zβ
Λ =

1

|Λ| log
∑

si={+1,−1}
i∈Λ

eβV (s)

expands analytically as a function of β in the vicinity of the origin. Moreover, the radius of
convergence does not depend on Λ. The main difference with (44) is that in the case of large
random matrices, the expansion is analytic with a radius of convergence that does not depend on
N only if we cut the expansion at some n (in particular the full series diverges in general).

(44)’s type of expansion have been first derived in the context of one matrix in [2, 1, 40]. The
methods however used orthogonal polynomials techniques, which are not available in general in the
context of several matrices. For several matrices, it was proved in the series of papers [50, 52, 77]
(the expansion up to n = 0 being derived in [50], up to n = 1 in [52] and the full expansion in
[77]). This lecture summarizes the results from [50] that concerns only the first order expansion.

1. Combinatorics of maps and non-commutative polynomials

In this section, we introduce the set up of this lecture, namely non-commutative polynomials and
non-commutative laws such as the ’empirical distribution’ of matrices A1, · · · , Am simply given as
the complex valued linear functional on the set of polynomials which associates to a polynomial
the normalized trace of the polynomial evaluated at A1, · · · , Am. We will then describe precisely
the combinatorial objects related with matrix integrals. Introducing the bijection between non-
commutative monomials and graphical objects such as ’stars’ or ordered sets of colored point, we
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will show how natural operations such as derivatives on monomials have their graphical interpre-
tation. This will be our basis to show that some differential equations for non-commutative laws
can be interpreted in terms of induction relations for map enumeration.

1.18. Non-commutative polynomials

We denote by C〈X1, · · · , Xm〉 the set of complex polynomials in the non-commutative unknowns
X1,. . . ,Xm. Let ∗ denote the linear involution such that for all complex z and all monomials

(45) (zXi1 . . . Xip
)∗ = zXip

. . . Xi1 .

We will say that a polynomial P is self-adjoint if P = P ∗ and denote C〈X1, · · · , Xm〉sa the set of
self-adjoint elements of C〈X1, · · · , Xm〉.

The potential V will be later on assumed to be self-adjoint. This means that

V (A) =

n
∑

j=1

tjqi =

n
∑

j=1

t̄jq
∗
j =

n
∑

j=1

<(tj)
qj + q∗j

2
+

n
∑

j=1

=(tj)
qj − q∗j

2i
.

Note that the parameters (tj = <(tj)+i=(tj), 1 ≤ j ≤ n) may a priori be complex. This hypothesis

guarantees that Tr(V (A)) is real for all A = (A1, · · · , Am) in the set H(2)
N of N × N Hermitian

matrices.
In the sequel, the monomials (qi)1≤i≤n will be fixed and we will consider V = Vt =

∑n
i=1 tiqi

as the parameters ti vary in such a way that V stays self-adjoint.
1.18.1. Convexity. We shall assume also that V satisfies some convexity property. Namely, we will
say that V is convex if V is self-adjoint and for any N ∈ N

φN
V : (H(2)

N )m ' RN2m −→ R

(A1, · · · , Am) −→ Tr(V (A1, · · · , Am))

is a convex function of the entries of the Hermitian matrices A1, · · · , Am.
While it may not be the optimal hypothesis, convexity provides many simple arguments. Note

that as we add a Gaussian potential 1
2

∑m
i=1X

2
i to V we can relax the hypothesis a little.

Definition 4.1. We say that V is c-convex if c > 0 and V + 1−c
2

∑m
1 X2

i is convex. In other
words, the Hessian of

φN,c
V : (R)N2m −→ R

(<(Ak(ij)),=(Ak(ij)))1≤k≤m
1≤i≤j≤N −→ Tr(V (A1, · · · , Am) + 1−c

2

∑m
k=1A

2
i )

is non-negative. Here, for k ∈ {1, · · · ,m}, Ak is the Hermitian matrix with entries
√

2
−1

(Ak(pq)+
iAk(qp)) above the diagonal and Aii on the diagonal.

An example is

V =

n
∑

i=1

Pi

(

m
∑

k=1

αi
kAk

)

+

n
∑

k,l=1

βk,lAkAl

with convex real polynomials Pi in one unknown, real parameters αi
k and, for all l,

∑

k |βk,l|≤(1−c).
This is due to Klein’s Lemma 3.13.

Note that when V is c-convex, µN
V has a log-concave density with respect to Lebesgue measure

so that many results from the previous lecture will apply, in particular concentration inequalities
and Brascamp-Lieb inequalities.

In the rest of this lecture, we shall assume that V is c-convex for some c > 0 fixed. Arbitrary
potentials could be considered as far as first order asymptotics are considered in [51], at the price of
adding a cutoff. In fact, adding a cutoff and choosing the parameters ti’s small enough (depending
possibly on this cutoff), forces the interaction to be convex so that most of the machinery we are
going to describe will apply also in this context. We choose here to restrict ourselves to convex
potentials. Since V = Vt with t varying but fixed monomials, we will let Uc = {t : Vt is c-convex} ⊂
Cn.
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1.18.2. Non-commutative derivatives. First, for 1≤i≤m, let us define the non-commutative deriva-
tives ∂i with respect to the variable Xi. They are linear maps from C〈X1, · · · , Xm〉 to
C〈X1, · · · , Xm〉⊗2 given by the Leibniz rule

∂iPQ = ∂iP × (1 ⊗Q) + (P ⊗ 1) × ∂iQ

and ∂iXj = 1i=j1⊗1. Here, × is the multiplication on C〈X1, · · · , Xm〉⊗2; P⊗Q×R⊗S = PR⊗QS.
So, for a monomial P , the following holds

∂iP =
∑

P=RXiS

R⊗ S

where the sum runs over all possible monomials R,S so that P decomposes into RXiS.

Exercise 4.2. Show that when m = 1,

∂1X
k =

k−1
∑

j=0

Xj ⊗Xk−1−j .

Identifying C[X ] ⊗ C[X ] with C[X,Y ] we thus have

∂1P (X,Y ) =
P (X) − P (Y )

X − Y
.

Notice that ∂i arises naturally when considering derivatives of polynomials in matrices since
for any N ×N Hermitian matrices (X1, · · · , Xm), any polynomial P , P (X1, · · · , Xm) is an N ×N
matrix and for any indices p ∈ {1, · · · ,m}, i, j.k, ` ∈ {1, · · · , N}

∂Xp(ij)(P (X1, · · · , Xm))k` = [∂pP ]kj,i`

where (A⊗B)kj,i` = AkjBi`.
We can iterate the non-commutative derivatives; for instance

∂2
i : C〈X1, · · · , Xm〉 → C〈X1, · · · , Xm〉 ⊗ C〈X1, · · · , Xm〉 ⊗ C〈X1, · · · , Xm〉

is given for a monomial function P by

∂2
i P = 2

∑

P=RXiSXiQ

R⊗ S ⊗Q.

We denote by ] : C〈X1, · · · , Xm〉⊗2×C〈X1, · · · , Xm〉 → C〈X1, · · · , Xm〉 the map P ⊗Q]R = PRQ
and generalize this notation to P⊗Q⊗R](S, V ) = PSQV R. So ∂iP]R corresponds to the derivative
of P with respect to Xi in the direction R, and similarly 2−1[D2

iP](R,S)+D2
iP](S,R)] the second

derivative of P with respect to Xi in the directions R,S.
We also define the so-called cyclic derivative Di. If m is the map m(A⊗B) = BA, let us define

Di = m ◦ ∂i. For a monomial P , DiP can be expressed as

DiP =
∑

P=RXiS

SR.

Note that we have for any N × N Hermitian matrices (X1, · · · , Xm), any polynomial P ,
P (X1, · · · , Xm) is an N ×N matrix and for any indices p ∈ {1, · · · ,m}, i, j.k, ` ∈ {1, · · · , N}
(46) ∂Xp(ij)Tr(P (X1, · · · , Xm)) = [DpP ]ij

as was already noticed in Lemma 3.11.

Exercise 4.3. Show that when m = 1, D1P = P ′.

1.18.3. Non-commutative laws. For (A1, · · · , Am) ∈ (H(2)
N )m, let us define the linear form LA1,··· ,Am

from C〈X1, · · · , Xm〉 into C by

LA1,··· ,Am
(P ) =

1

N
Tr (P (A1, · · · , Am))

where Tr is the standard trace Tr(A) =
∑N

i=1 Aii. When the matrices A1, · · · , Am are generic

and distributed according to µN
V , we will drop the subscripts A1, · · · , Am and write in short L̂N =

LA1,··· ,Am
. We denote

L̄N
t (P ) := µN

Vt
[L̂N (P )].
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L̂N , L̄N
t will be seen as elements of the algebraic dual C〈X1, · · · , Xm〉∗ of C〈X1, · · · , Xm〉 equipped

with the involution ∗; we shall call in these notes non-commutative laws elements of
C〈X1, · · · , Xm〉∗; this is a very weak point of view that, however, is sufficient for our purpose.
The name ‘law’ at least is justified when m = 1, in which case LA = LA is the spectral measure of
the matrix A, and hence a probability measure on R, whereas the non-commutativity is clear when
m ≥ 2. There are much deeper reasons for this name when considering C∗-algebras and positivity,
and we refer the reader to [103] or [3]. C〈X1, · · · , Xm〉∗ is equipped with its weak topology.

Definition 4.4. A sequence (µn)n∈N in C〈X1, · · · , Xm〉∗ converges weakly towards µ ∈
C〈X1, · · · , Xm〉∗ iff for any P ∈ C〈X1, · · · , Xm〉,

lim
n→∞

µn(P ) = µ(P ).

The following two lemmas are trivial; I however remind them to the reader to possibly reduce
uneasiness related with the non-commutative setting.

Lemma 4.5. Let C(`1, · · · , `r), `i ∈ {1, · · · ,m}, r ∈ N, be finite non-negative constants and

K(C) = {µ ∈ C〈X1, · · · , Xm〉∗; |µ(X`1 · · ·X`r
)| ≤ C(`1, · · · , `r)∀`i ∈ {1, · · · ,m}, r ∈ N}.

Then, any sequence (µn)n∈N in K(C) is sequentially compact, i.e. has a subsequence (µφ(n))n∈N

that converges weakly.

Proof. Since µn(X`1 · · ·X`r
) ∈ C is uniformly bounded, it has converging subsequences. By a

diagonalization procedure, since the set of monomials is countable, we can ensure that for a subse-
quence (φ(n), n ∈ N), the terms µφ(n)(X`1 · · ·X`r

), `i ∈ {1, · · · ,m}, r ∈ N converge simultaneously.
The limit defines an element of C〈X1, · · · , Xm〉∗ by linearity. �

Corollary 4.6. Let C(`1, · · · , `r), `i ∈ {1, · · · ,m}, r ∈ N, be finite non negative constants and
(µn)n∈N a sequence in K(C) that has a unique limit point. Then (µn)n∈N converges towards this
limit point.

Proof. Otherwise we could choose a subsequence that stays at positive distance of this limit
point, but extracting again a converging subsequence gives a contradiction. Note as well that any
limit point will belong automatically to C〈X1, · · · , Xm〉∗. �

Remark 4.7. The laws L̂N , L̄N
t are more than only linear forms on C〈X1, · · · , Xm〉; they satisfy

also the properties that define tracial states, namely

µ(PP ∗) ≥ 0, µ(PQ) = µ(QP ), µ(1) = 1

for all polynomial functions P,Q. Since these conditions are closed for the weak topology, we
see that any limit point of L̂N , L̄N

t will as well satisfy these properties. A linear functional on
C〈X1, · · · , Xm〉 that satisfies such conditions are called tracial states. This leads to the notion
of C∗-algebras and representations of the laws as moments of non-commutative operators on a
C∗-algebras. We however do not want to detail this point in these notes.

1.19. Maps and polynomials

In this section, we complete section 2.6 to describe the graphs that shall be enumerated by matrix
models. Let q(X1, · · · , Xm) = X`1X`2 · · ·X`k

be a monomial in m non-commutative indetermi-
nates.

A star of type q is a vertex equipped with k colored half-edges, one marked half-edge and an
orientation such that the marked half-edge is of color `1, the second (following the orientation) of
color `2 etc until the last half-edge of color `k. Maps are obtained by gluing half-edges pairwise.
This graph can be embedded into a surface in a unique way (up to homeomorphisms of the graphs)
so that the orientation of the stars agree with the orientation of the surface and the faces are
homeomorphICC to discs. The genus of a map is the genus of the surface in which it is embedded.

Hereafter monomials (qi)1≤i≤n will be fixed and we will denote in short, for k = (k1, · · · , kn),

Mg
k = card{ maps with genus g

and ki stars of type qi, 1 ≤ i ≤ n}
and for a monomial P

Mg
k(P ) = card{ maps with genus g

ki stars of type qi, 1 ≤ i ≤ n and one of type P}
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2. Formal expansion of matrix integrals

The expansion obtained by Brezin, Itzykson, Parisi and Zuber [26] is based on Feynmann diagrams,
or equivalently on Wick Formula that states as follows.

Lemma 4.8. Let (G1, · · · , G2n) be a Gaussian vector such that E[Gi] = 0 for i ∈ {1, · · · , 2n}.Then,

E[G1 · · ·G2n] =
∑

π∈PP (2n)

∏

(b,b′) block of π,

b<b′

E[GbGb′ ]

where the sum runs over all pair-partitions of the ordered set {1, · · · , 2n}.
We leave the proof of this formula as an exercise; a proof is based on the fact that E[G2n] = 2n!!

for any standard Gaussian G and that linear combinations of Gaussian variables is Gaussian.
We now consider moments of traces of Gaussian Wigner’s matrices. Since we shall consider

the moments of products of several traces, we shall now use the language of stars. Let us recall
that a star of type q(X) = X`1 · · ·X`2 is a vertex equipped with k colored half-edges, one marked
half-edge and an orientation such that the marked half-edge is of color `1, the second (following
the orientation) of color `2 etc till the last half-edge of color `k. The graphs we shall enumerate
will be obtained by gluing pairwise the half-edges.

Definition 4.9. Let r,m ∈ N. Let q1, · · · , qr be r monomials in m non-commutative indetermi-
nates. A map with a star of type qi for i ∈ {1, · · · , r} is a connected oriented graph with r vertices
so that

(1) for 1 ≤ i ≤ r, one of the vertices has degree deg(qi), and this vertex is equipped with
the structure of a star of type qi (i.e. with the corresponding colored half-edges and
orientation).

(2) The half-edges of the stars are glued pair-wise and two half-edges can be glued iff they
have the same color and the same orientation; thus edges have only one color and only
one orientation.

Because of the imposed agreement in the orientation of the stars, each edge is oriented in
agreement with the orientation at the vertex; if we follow the orientation from one edge, we end up
making a cycle. The surface inside this cyclic curve is homeomorphic to a disk and called a face.
The genus g of a map is such that 2−2g is the number of vertices, plus the number of edges minus
the number of faces. Equivalently, we can draw the map on a surface of genus g in such a way that
edges do not cross, faces are homeomorphic to a disk and the orientation of the stars agrees with
the orientation of the surface.

We shall soon encounter the question of counting the number of maps with given numbers
of stars of a given type and a given genus. In this counting, stars will be labeled and therefore,
since stars are oriented and rooted, all half-edges of the stars are labeled. Thus, two maps will be
considered to be the same only if they were constructed by matching (or gluing) half-edges with
the same labels.

There is a dual way to consider maps; we can replace a star of type q(X) = Xi1 · · ·Xip
by a

polygon (of type q) with p faces, a boundary edge of the polygon replacing an edge of the star and
taking the same color as the edge, and a marked boundary edge and an orientation. A map is then
a tiling of a surface (with the same genus as the map) by polygons of type q1, · · · , qr with colored
sides, only sides of the same color being matched together.

Example 4.10. A triangulation (resp. a quadrangulation) of a surface of genus g by F faces
(the number of triangles, resp. squares) is equivalent to a map of genus g with F stars of type
q(X) = X3 (resp. q(X) = X4) .

We will denote for k = (k1, · · · , kn),

Mg((qi, ki), 1 ≤ i ≤ n) = card{ maps with genus g

and ki stars of type qi, 1 ≤ i ≤ n}.
In this section we shall first encounter possibly non-connected graphs; these graphs will then

be (finite) union of maps. We denote by Gg,c((qi, ki), 1 ≤ i ≤ n) the set of graphs that can be
described as a union of c maps, the total set of stars to construct these maps being ki stars of type
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qi, 1 ≤ i ≤ n and the genus of each connected components summing up to g. When counting these
graphs we will also assume that all half-edges are labeled.

We now argue that

Lemma 4.11. Let q1, · · · , qn be monomials. Then,
∫ n
∏

i=1

(NTr(qi(X1, · · · , Xm)))dµN (X1) · · · dµN (Xm) =
∑

g∈N

∑

c≥1

1

N2g−2c
]{Gg,c((qi, 1), 1 ≤ i ≤ n)}

Here ]{Gg,c((qi, 1), 1 ≤ i ≤ n} is the number of different graphs (up to homeomorphism) of the set
Gg,c((qi, 1), 1 ≤ i ≤ n). In particular, ]{G0((q, 1))} equals σm(q) as found by Voiculescu, Theorem
1.17.

As a warm up, let us show that

Lemma 4.12. Let q be a monomial. Then,
∫

N−1Tr(q(X1, · · · , Xm))dµN (X1) · · · dµN (Xm)

=
∑

g∈N

1

N2g
]{Gg((q, 1))}

Proof. As usual we expend the trace and write, if q(X1, · · · , Xm) = Xj1 · · ·Xjk
,

∫

Tr(q(X1, · · · , Xm))dµN (X1) · · · dµN (Xm)(47)

=
∑

r1···rk

∫

Xj1(r1r2) · · ·Xjk
(rkr1)dµN (X1) · · · dµN (Xm)

=
∑

r1,··· ,rk

∑

π∈PP (k)

∏

(wv) block of π

w<v

E[Xjw
(rwrw+1)Xjv

(rvrv+1)].(48)

Note that
∏

(wv) block of π
w<v

E[Xjw
(rwrw+1)Xjv

(rvrv+1)] is either zero or N−k/2. It is not zero only

when jw = jv and rwrw+1 = rv+1rv for all the blocks (v, w) of π. Hence, if we represent q by the
star of type q, we see that all the graph where the half-edges of the star are glued pairwise and
colorwise will give a contribution. But how many indices will give the same graph ? To represent
the indices on the star, we fatten the half-edges as double half-edges. Thinking that each random
variable sits at the end of the half-edges, we can associate to each side of the fat half-edge one of
the indices of the entry (see Figure 1). When the fattened half-edges meet at the vertex, observe
that each side of the fattened half-edges meets one side of an adjacent half-edge on which sits the
same index. Hence, we can say that the index stays constant over the broken line made of the
union of the two sides of the fattened half-edges.

$r_1$ $r_2$

$r_2$$r_1$

$r_3$

$r_3$

$r_4$

$r_4$

Figure 1. Star of type X4 with prescribed indices

When gluing pairwise the fattened half-edges we see that the condition rwrw+1 = rv+1rv
means that the indices are the same in each side of the half-edge and hence stay constant on the
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resulting edge. The connected lines made with the sides of the fattened edges can be seen to be
the boundaries of the faces of the corresponding graphs. Therefore we have exactly NF possible
choices of indices for a graph with F faces. These graphs are otherwise connected, with one star
of type q. (48) thus shows that

∫

Tr(q(X1, · · · , Xm))dµN (X1) · · · dµN (Xm)

=
∑

g≥0

NF

N
k
2

]{connected graphs with one star of type q and F faces}

Recalling that 2 − 2g = F + ] vertices − ] edges = F + 1 − k/2 completes the proof. �

Remark 4.13. Above it is important to take µN to be the law of the GUE (and not GOE for in-
stance) to insure that E[X(ij)X(ji)] = 1/N but E[X(ij)2] = 0. The GOE leads to the enumeration
of other combinatorial objects (and in particular an expansion in N−1 rather than N−2).

Proof of Lemma 4.11. We let qi(X1, · · · , Xm) = X`i
1
· · ·X`i

di

. As usual, we expand the

traces;
∫ n
∏

i=1

(NTr(qi(X1, · · · , Xm)))dµN (X1) · · · dµN (Xm)

= Nn
∑

ik
1

,··· ,ik
dk

1≤k≤n

E[
∏

1≤k≤n

X`k
1
(ik1i

k
2) · · ·X`k

dk

(ikdk
ik1)]

= Nn
∑

ik
1

,··· ,ik
dk

1≤k≤n

∑

π∈PP (
P

di)

Z(π, i)

where in the last line we used Wick formula, π is a pair partition of the edges
{(ikj , ikj+1)1≤j≤dk−1, (i

k
dk
, ik1), 1 ≤ k ≤ n} and Z(π, i) is the product of the covariances over the

corresponding blocks of the partition. A pictorial way to represent this sum over PP (
∑

di) is to
represent X`k

1
(ik1i

k
2) · · ·X`k

dk

(ikdk
ik1) by its associated star of type qk, for 1 ≤ k ≤ n. Note that in the

counting this star will be labeled (here by the number k). A partition π is represented by a pairwise
gluing of the half-edges of the stars. Z(π), as the product of the covariance, is null unless each
pairwise gluing is done in such a way that the indices written at the end of the glued half-edges
coincides and the number of the variable (or color of the half-edges) coincide. Otherwise, each
covariance being equal to N−1, Z(π, i) = N−

Pn
i=1 ki/2. Note also that once the gluing is done, by

construction the indices are fixed on the boundary of each face of the graph (this is due to the fact
that E[XijXkl] is null unless kl = ji). Hence, there are exactly NF possible choices of indices for a
given graph, if F is the number of faces of this graph (note here that if the graph is disconnected,
we count the number of faces of each connected parts, including their external faces and sum the
resulting numbers over all connected components). Thus,

∑

ik
1 ,··· ,ik

dk
1≤k≤n

∑

π∈PP (
P

di)

Z(π, i) =
∑

F≥0

∑

G∈GF ((qi,1),1≤i≤n)

N−
Pn

i=1 di/2NF

where GF denotes the union of connected maps with a total number of faces equal to F . Note
that for a connected graph, 2− 2g = F − ]edges− ]vertices. Because the total number of edges of
the graphs is ]edges =

∑n
i=1 di/2 and the total number of vertices is ]vertices = n. We see that if

gi, 1 ≤ i ≤ c are the genus of each connected component of our graph, we must have

2c− 2

c
∑

i=1

gi = F −
n
∑

i=1

di/2 − n.

This completes the proof. �

We then claim that we find (42), namely
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Lemma 4.14. Let q1, · · · , qn be monomials. Then,

log

(∫

e
Pn

i=1 tiNTr(qi(X1,··· ,Xm))dµN (X1) · · · dµN (Xm)

)

(49) =
∑

g≥0

1

N2g−2

∑

k1,··· ,kn∈N

n
∏

i=1

(ti)
ki

ki!
Mg((qi, ki), 1 ≤ i ≤ n)

where the equality means that derivatives of all orders at ti = 0, 1 ≤ i ≤ n, match.

Note here that the sum in the right hand side is not absolutely converging (in fact the left
hand side is in general infinite if the ti’s do not have the appropriate signs). However, we shall see
in the next sections that if we stop the expansion at g ≤ G <∞ (but keep the summation over all
ki’s) the expansion is absolutely converging for sufficiently small ti’s.

Note as well that the right hand side of (49) is a generating function of numbers of connected
objects; this is a rather well known trick in combinatorics that the logarithm of generating function
of disconnected labeled objects gives rise to generating function of connected labeled objects. We
do not wish to precise this statement here but the reader will check that the proof below is robust
and only based on the relation (51) giving the number of disconnected graphs in terms of their
connected subsets.
Proof of Lemma 4.14. The idea is to develop the exponential. Again, this has no meaning in
terms of convergent series (and so we do not try to justify uses of Fubini’s theorem etc) but can be
made rigorous by the fact that we only wish to identify the derivatives at t = 0 (and so the formal
expansion is only a way to compute these derivatives). So, we find that

L :=

∫

e
Pn

i=1 tiNTr(qi(X1,··· ,Xm))dµN (X1) · · ·dµN (Xm)

=
∑

k1,··· ,kn∈N

(t1)
k1 · · · (tn)kn

k1! · · ·kn!

∫ n
∏

i=1

(NTr(qi(X1, · · · , Xm)))kidµN (X1) · · · dµN (Xm)

=
∑

k1,··· ,kn∈N

(t1)
k1 · · · (tn)kn

k1! · · ·kn!

∑

g≥0

∑

c≥0

1

N2g−2c
]{Gg,c((qi, ki), 1 ≤ i ≤ n)}(50)

where we finally used Lemma 4.11. Note that the case c = 0 is non empty only when all the ki’s
are null, and the resulting contribution is one. Now, we relate ]{Gg,c((qi, ki), 1 ≤ i ≤ n)} with
the number of maps. Since graphs in Gg,c((qi, ki), 1 ≤ i ≤ n) can be decomposed into a union of
disconnected maps, ]{Gg,c((qi, ki), 1 ≤ i ≤ n)} is related with the ways to distribute the stars and
the genus among the c maps, and the number of each of these maps. More precisely, we have (since
all stars are labeled)

]{Gg,c((qi, ki), 1 ≤ i ≤ n)}(51)

=
∑

Pc
i=1

gi=g

gi≥0

g!

g1! · · · gc!

∑

Pc
j=1

l
j
i
=ki

1≤j≤n

n
∏

i=1

ki!

l1i ! · · · lci !

c
∏

j=1

Mg((qi, l
j
i ), 1 ≤ i ≤ n).

Plugging this expression into (50) we get

L =
∑

c≥0

1

c!





∑

g≥0

1

N2g−2

∑

l1,···ln≥0

n
∏

i=1

(ti)
li

li!
Mg((qi, li), 1 ≤ i ≤ n)





c

= exp





∑

g≥0

1

N2g−2

∑

l1,···ln≥0

n
∏

i=1

(ti)
li

li!
Mg((qi, li), 1 ≤ i ≤ n)





which completes the proof. �

The goal of the next sections is to justify that this equality does not only hold formally but
as a large N expansion. Instead of using Wick formula, we shall base our analysis on differential
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calculus and its relations with Gaussian calculus (note here that Wick formula might also have
been proved by use of differential calculus). The point here will be that we can design a natural
asymptotic framework for differential calculus, that will then encode the combinatorics of the first
order term term in ’t Hooft expansion, that is planar maps. To make this statement clear, we shall
see that a nice set up is when the potential V =

∑

tiqi possesses some convexity property.

Exercise 4.15.

(1) We let GN be a N ×N matrix with independent centered complex Gaussian entries with
covariance N−1. We denote G∗

N its adjoint; G∗
N (ij) = ḠN (ji). So E[GN (ij)GN (kl)] =

1ij=lk/N . Show that for any m, p ∈ N,

E[
1

N
Tr (((Gm(Gm)∗)p)] =

∑

g≥0

1

N2g
C(m, p, g)

with C(m, p, g) the number of connected graphs that can be embedded into a surface of
genus g (or higher) with

• one vertex with 2mp half-edges with two colors (later referred as blue and red) , one
distinguished half-edge and one orientation. We label the half-edges by one for the
marked edge and proceed following the orientation by labeling by 2 the second half-
edge etc The half-edges corresponding to the labels {k+2ml, 1 ≤ k ≤ m, 0 ≤ l ≤ p−1}
will be blue, the other half-edges red.

• The half-edges can be glued (or matched) two by two iff they have different colors.
{C(m, p, 0),m ≥ 0, p ≥ 0} are called the Fuss Catalan numbers.

(2) Take GM,N to be an N ×M matrix with independent equidistributed centered complex
Gaussian entries with variance 1/N . Show that for all integer number p,

E[
1

N
Tr((GM,NG

∗
M,N )p)] =

∑

g≥0

1

N2g

∑

0≤F1≤p+3−2g

(
M

N
)F1W (F1, p, g)

with W (f, p, g) the number of connected graphs that can be embedded into a surface of
genus g (or higher) with

• one vertex with 2p half-edges with two colors (later blue and red) , one distinguished
half-edge and one orientation. We label the half edges by one for the marked edge
and proceed following the orientation by labeling by 2 the second half-edge etc The
odd half-edges will be blue, the other half-edges red.

• The half-edges can be glued (or matched) two by two iff they have different colors.
• If we draw the half-edge number k as a segment at position πk/p, we say that a face

is gray if it contains the interior of the angle 2π(1 + 2k)/2p, 2π(2 + 2k)/2p in the
vicinity of the origin, for some k ≤ p− 1. The number of Gray faces of the graph is
f .

Conclude that if M/N converges to some α ∈ [0, 1], the spectral measure of GNG
∗
N

converges in moments; i.e

mp(α) = lim
N→∞

E[
1

N
Tr((GNG

∗
N )p)]

and give a formula for mp(α)
GNG

∗
N is called a Wishart matrix and the limit law with moments mp(α) is known

as the Pastur-Marchenko law.
Show that when α = 1, it corresponds to the law of x2 under σ the semi-circular

law,i.e

mp(1) =

∫

x2pdσ(x)

3. First order expansion for the free energy

At the end of this lecture (see Theorem 4.24) we will have proved that Lemma 4.14 holds as a first
order limit, i.e.

lim
N→∞

1

N2
log

∫

e
Pn

i=1 tiNTr(qi(X1,··· ,Xm))dµN (X1) · · ·dµN (Xm)
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=
∑

k1,··· ,kn∈Nn\{0,··· ,0}

n
∏

i=1

(ti)
ki

ki!
M0((qi, ki), 1 ≤ i ≤ n)

provided the parameters ti’s are such that the polynomial V =
∑

tiqi is ‘strictly convex’ and
‘sufficiently small’. To prove this result we first show that, under the same assumptions, L̄N

t (q) =
µN

P

tiqi
(N−1Tr(q)) converges as N goes to infinity towards a limit that is as well related with map

enumeration (see Theorem 4.19).
The central tool in our asymptotic analysis will be the so-called Schwinger-Dyson’s (or Master

loops) equations. They are simple emanation of the integration by parts formula (or, somewhat
equivalently, of the symmetry of the Laplacian in L2(dx)). These equations will be shown to pass
to the large N limit and be then given as some asymptotic differential equation for the limit points
of L̄N

t . These equations will in turn uniquely determine these limit points in some small range of
the parameters and show that the limit points have to be given as some generating function of
maps.

3.20. Finite dimensional Schwinger-Dyson’s equations

Property 4.16. For all P ∈ C〈X1, · · · , Xm〉, all i ∈ {1, · · · ,m},

µN
Vt

(

L̂N ⊗ L̂N (∂iP )
)

= µN
Vt

(

L̂N ((Xi +DiVt)P )
)

FSD[Vt]

Proof. A simple integration by part shows that for any differentiable function f on R such

that fe−N x2

2 goes to zero at infinity,

N

∫

f(x)xe−N x2

2 dx =

∫

f ′(x)e−N x2

2 dx.

Such a result generalizes to complex Gaussian by the remark that

N(x+ iy)e−N |x|2
2 −N |y|2

2 = −(∂x + i∂y)e
−N |x|2

2 −N |y|2
2

= −∂x−iye
−N |x|2

2 −N |y|2
2 .

As a consequence, applying such a remark to the entries of a Gaussian random matrix, we obtain
for any differentiable function f of the entries, all r, s ∈ {1, · · · , N}2, all r ∈ {1, · · · ,m},

N

∫

Al(rs)f(Ak(ij), 1 ≤ i, j ≤ N, 1 ≤ k ≤ m)dµN (A1) · · · dµN (Am) =

∫

∂Al(sr)f(Ak(ij), 1 ≤ i, j ≤ N, 1 ≤ k ≤ m)dµN (A1) · · · dµN (Am).

Using repeatedly this equality and section 1.18.2, we arrive at at

∫

1

N
Tr(AkP )dµN

V (A) =
1

2N2

N
∑

i,j=1

∫

∂Ak(ji)(Pe
−NTr(V ))ji

∏

dµN (Ai)

=

∫ (

1

N2
(Tr ⊗ Tr)(∂kP ) − 1

N
Tr(DkV P )

)

dµN
V (A)

which yields

(52)

∫

(

L̂N ((Xk +DkV )P ) − L̂N ⊗ L̂N (∂kP )
)

dµN
V (A) = 0.

�
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3.21. Tightness and limiting Schwinger-Dyson’s equations

We say that τ ∈ C〈X1, · · · , Xm〉∗ satisfies the Schwinger-Dyson equation with potential V , denoted
in short SD[V], if and only if for all i ∈ {1, · · · ,m} and P ∈ C〈X1, · · · , Xm〉,

τ(I) = 1, τ ⊗ τ(∂iP ) = τ((DiV +Xi)P ) SD[V].

We shall now prove that SD[V] describes the asymptotic FSD[V] equations.

Property 4.17. Assume that Vt is c-convex. Then, (L̄N
t , N ∈ N) is tight. Its limit points satisfy

SD[Vt] and

(53) |τ(X`1 · · ·X`r
)| ≤M r

0

for all `1, · · · , `r ∈ N, all r ∈ N, with an M0 that only depends on c.

Proof. By Lemma 3.21, we find that for all `1, · · · , `r,

|L̄N
t (X`1 · · ·X`r

)| ≤ µN
Vt

(|λmax(A)|r)

=

∫ ∞

0

rxr−1µN
Vt

(|λmax(A)| ≥ x)dx

≤ M r
0 +

∫ ∞

M0

rxr−1e−αNxdx

= M r
0 + (αN)−r

∫ ∞

0

rxr−1e−xdx(54)

Hence, with the notations of Lemma 4.6, L̄N
t ∈ K(C) with C(`1, · · · , `r) =

M r
0 + rα−r

∫∞
0 xr−1e−xdx. (L̄N

t , N ∈ N) is therefore tight. Let us consider now its limit points;
let τ be such a limit point. By (54),

(55) |τ(X`1 · · ·X`r
)| ≤M r

0 .

Moreover, by concentration inequalities (see Lemma 3.24), we find that

lim
N→∞

∣

∣

∣

∣

∫

L̂N
A ⊗ L̂N

A(∂kP )dµN
V (A) −

∫

L̂N
Adµ

N
V (A) ⊗

∫

L̂N
Adµ

N
V (A)(∂kP )

∣

∣

∣

∣

= 0

so that Property 4.16 results with

(56) lim sup
N→∞

∣

∣L̄N
t ((Xi +DiVt)P )) − L̄N

t ⊗ L̄N
t (∂kP )

∣

∣ = 0.

Hence, (52) shows that

(57) τ((Xk +DkV )P ) = τ ⊗ τ(∂kP ).

�

3.21.1. Uniqueness of the solutions to Schwinger-Dyson’s equations for small parameters. Let R ∈
R+ (we will always assume R ≥ 1 in the sequel). We set

(CS(R))An element τ ∈ C〈X1, · · · , Xm〉∗ satisfies (CS(R)) if and only if for all k ∈ N,

max1≤i1,··· ,ik≤m|τ(Xi1 · · ·Xik
)| ≤ Rk.

As we have seen in Property 4.17, the limit points of L̄N
t satisfy (CS(M0)). In the sequel, we

denote D the degree of V , that is the maximal degree of the q′is; qi(X) = Xji
1
· · ·Xji

di

with, for

1 ≤ i ≤ n, deg(qi) =: di ≤ D and equality holds for some i.
The main result of this paragraph is

Theorem 4.18. For all R ≥ 1, there exists ε > 0 so that for |t| = max1≤i≤n|ti| < ε, there exists
at most one solution τt to SD[Vt] that satisfies (CS(R)).
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Proof. Let us assume we have two solutions τ and τ ′. Then, by the equation SD[V], for any
monomial function P of degree l − 1, for i ∈ {1, · · · ,m},

(τ − τ ′)(XiP ) = ((τ − τ ′) ⊗ τ)(∂iP ) + (τ ′ ⊗ (τ − τ ′))(∂iP ) − (τ − τ ′)(DiV P )

Hence, if we let for l ∈ N

∆l(τ, τ
′) := sup

monomial P of degree l
|τ(P ) − τ ′(P )|

we get, since if P is of degree l − 1, ∂iP =
∑l−2

k=0 p
1
k ⊗ p2

l−2−k where pi
k, i = 1, 2 are monomial of

degree k or the null monomial, and DiV is a finite sum of monomials of degree smaller than D−1,

∆l(τ, τ
′) = maxP of degree l−1max1≤i≤m{|τ(XiP ) − τ ′(XiP )|}

≤ 2

l−2
∑

k=0

∆k(τ, τ ′)Rl−2−k + C|t|
D−1
∑

p=0

∆l+p−1(τ, τ
′)

with a finite constant C (that depends on n only). For γ > 0, we set dγ(τ, τ ′) =
∑

l≥0 γ
l∆l(τ, τ

′).

Note that under (CS(R)), this sum is finite for γ < (R)−1. Summing the two sides of the above
inequality times γl we arrive at

dγ(τ, τ ′) ≤ 2γ2(1 − γR)−1dγ(τ, τ ′) + C|t|
D−1
∑

p=0

γ−p+1dγ(τ, τ ′).

We finally conclude that if (R, |t|) are small enough so that we can choose γ ∈ (0, R−1) so that

2γ2(1 − γR)−1 + C|t|∑D−1
p=0 γ−p+1 < 1 then dγ(τ, τ ′) = 0 and so τ = τ ′ and we have at most one

solution. Taking γ = (2R)−1 shows that this is possible provided 1
R2 + C|t|∑D−1

p=0 (2R)p−1 < 1 so

that when |t| goes to zero, we see that we need R to be at most of order |t|− 1
D−2 . �

3.22. Convergence of the empirical distribution

We are now in position to state the main result of this part;

Theorem 4.19. For all c > 0, there exists η > 0 and M0 ∈ R+ (given in Lemma 3.21) so that

for all t ∈ Uc ∩Bη, L̂N (resp. L̄N
t ) converges almost surely (resp. everywhere) towards the unique

solution of SD[Vt] such that

|τ(X`1 · · ·X`r
)| ≤M r

0

for all choices of `1, · · · , `r.
Proof. By Property 4.17, the limit points of L̄N

t satisfy CS(M0) and SD[Vt]. Since M0 does
not depend on t, we can apply Theorem 4.18 to see that if t is small enough, there is only one
such limit point. Thus, by Corollary 4.6 we can conclude that (L̄N

t , N ∈ N) converges towards this
limit point. From Lemma 3.24, we have that

µN
V (|(L̂N − L̄N

t )(P )|2) ≤ BC(P,M)N−2 + C2dN2e−αMN/2

insuring by Borel-Cantelli’s lemma that L̂N also converges almost surely to τ . �

Exercise 4.20. The exercise generalizes the previous approach to unitary matrices following the
Haar measure on the unitary group (without interaction to simplify) to recover asymptotic freeness (
proved first in [101] by moments techniques). Let (AN

1 , · · ·AN
m)N≥0 be a family of N×N (eventually

random) matrices. Assume that the algebra generated by (AN
1 , · · ·AN

m)N≥0 is closed under the
involution ∗ and that the operator norm of the Ai

N is bounded independently of N . Finally, suppose
that

lim
N→∞

L̂N
AN

1 ,··· ,AN
m

= µ.

Let UN
1 , · · · , UN

m be m independent unitary matrices, independent of the Ai
N ’s, following the Haar

measure on U(N). Then L̂N
AN

i ,Ui
N

,(Ui
N

)−1 given by

L̂N
AN

i ,Ui
N

,(Ui
N

)−1(P ) =
1

N
Tr(P (AN

i , U
i
N , (U

i
N )−1))

converges as N goes towards infinity. Moreover the limit τ is described uniquely as
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• τ restricted to polynomials in the Ai’s equal µ. For all polynomials and all i

τ ⊗ τ(∂iP ) = 0

with ∂i the derivative that obeys the Leibniz rule

∂i(PQ) = ∂iP × 1 ⊗Q+ P ⊗ 1 × ∂iQ

and so that

∂iAk = 0 ⊗ 0 ∂iUj = 1i=jUj ⊗ 1, ∂iU
∗
j = −1j=i1 ⊗ U∗

j .

Hint : Use the invariance of the Haar measure by multiplication by unitaries (in particular
by etBi with Bi a matrix with null entries everywhere except at some kl and lk where it is
equal to +1 and −1 respectively) to prove that ETr⊗Tr[(∂iP )] = 0. Then use concentration
under the Haar measure to find that the limit points satisfy the above equations. Finally,
prove the uniqueness of the solutions to such equations.

• The law τ is as well described as the law which, once restricted to polynomials in the Ai’s,
is equal to µ, and once restricted to monomials in the U ’s, vanishes unless the monomial
is a constant, and such that

τ(P1(A)Q1(U)P2(A) · · ·Qk(U)) = 0

for all polynomials P1, · · · , Pk in the Ai’s such that µ(Pi) = 0 and all polynomials
Q1, · · · , Qk in the U ′s such that τ(Qi(P )) = 0.

One says that the U ’s and the A’s are free under τ when they satisfy the above equality.
Hint: Show that such a law satisfy the previous equations.

3.23. Combinatorial interpretation of the limit

In this part, we are going to identify the unique solution τt of Theorem 4.18 as a generating function
for planar maps. Namely, we let for k = (k1, · · · , kn) ∈ N

n and P a monomial in C〈X1, · · · , Xm〉,
Mk(P ) = card{ planar maps with ki labeled stars of type qi for 1 ≤ i ≤ n

and one of type P}.
This definition extends to P ∈ C〈X1, · · · , Xm〉 by linearity. Then, we shall prove that

Theorem 4.21.

(1) The family {Mk(P ),k ∈ C〈X1, · · · , Xm〉, P ∈ C〈X1, · · · , Xm〉} satisfies the induction
relation: for all i ∈ {1, · · · ,m}, all P ∈ C〈X1, · · · , Xm〉, all k ∈ Nn,

(58) Mk(XiP ) =
∑

0≤pj≤kj
1≤j≤n

n
∏

j=1

C
pj

kj
Mp ⊗Mk−p(∂iP ) +

∑

1≤j≤n

kjMk−1j
([Diqj ]P )

where 1j(i) = 1i=j and Mk(1) = 1k=0. (58) defines uniquely the family {Mk(P ),k ∈
C〈X1, · · · , Xm〉, P ∈ C〈X1, · · · , Xm〉}.

(2) There exists A,B finite constants so that for all k ∈ Nn, all monomial P ∈
C〈X1, · · · , Xm〉,

(59) |Mk(P )| ≤ k!A
Pn

i=1 kiBdeg(P )

with k! :=
∏n

i=1 ki!.
(3) For t in B(A)−1 ,

Mt(P ) =
∑

k∈Nn

n
∏

i=1

(−ti)ki

ki!
Mk(P )

is absolutely convergent. For t small enough, Mt is the unique solution of SD[Vt] that
satisfies CS(B).

By Theorem 4.18 and Theorem 4.19, we therefore readily obtain that
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Corollary 4.22. For all c > 0, there exists η > 0 so that for t ∈ Uc ∩ Bη, L̂N converges almost
surely and in expectation towards

τt(P ) = Mt(P ) =
∑

k∈Nn

n
∏

i=1

(−ti)ki

ki!
Mk(P )

Let us remark that by definition of L̂N , for all P,Q in C〈X1, · · · , Xm〉,

L̂N (PP ∗) ≥ 0 L̂N (PQ) = L̂N (QP ).

These conditions are closed for the weak topology and hence we find that

Corollary 4.23. There exists η > 0 (η ≥ (4A)−1) so that for t ∈ Bη, Mt is a linear form on
C〈X1, · · · , Xm〉 such that for all P,Q

Mt(PP
∗) ≥ 0 Mt(PQ) = Mt(QP ) Mt(1) = 1.

Remark. This means that Mt is a tracial state. The traciality property can easily be derived
by symmetry properties of the maps. However, I do not know any other way (and in particular
any combinatorial way) to prove the positivity property Mt(PP

∗) ≥ 0, except by using matrix
models. This property will be seen to be useful to actually solve the combinatorial problem (i.e.
find an explicit formula for Mt).
Proof of Theorem 4.21.

(1) Proof of the induction relation (58).
• We first check them for k = 0 = (0, · · · , 0). By convention, there is one planar map

with a single vertex, so M0(1) = 1. We now check that

M0(XiP ) = M0 ⊗M0(∂iP ) =
∑

P=p1Xip2

M0(p1)M0(p2)

But in any planar map with only one star of type XiP , the half-edge corresponding
to Xi has to be glued with another half-edge of P . If Xi is glued with the half-
edge Xi coming from the decomposition P = p1Xip2, the map is then split into two
(independent) planar maps with stars p1 and p2 respectively (note here that p1 and
p2 inherits the structure of stars since they inherit the orientation from P as well as
a marked half-edge corresponding to the first neighbour of the glued Xi.)

• We now proceed by induction over k and the degree of P ; we assume that (58) is true
for
∑

ki ≤ M and all monomials, and for
∑

ki = M + 1 when deg(P ) ≤ L. Note
that Mk(1) = 0 for |k| ≥ 1 since we can not glue a vertex with no half-edges with
any star. Hence, this induction can be started with L = 0. Now, consider R = XiP
with P of degree less than L and the set of planar maps with a star of type XiP and
kj stars of type qj , 1 ≤ j ≤ n, with |k| =

∑

ki = M + 1. Then,
� either the half-edge corresponding to Xi is glued with an half-edge of P , say to
the half-edge corresponding to the decomposition P = p1Xip2; we then can use the
argument as above ; the map M is cut into two disjoint planar maps M1 (containing
the star p1) and M2 (resp. p2), the stars of type qi being distributed either in one
or the other of these two planar maps; there will be ri ≤ ki stars of type qi in M1,
the rest in M2. Since all stars all labeled, there will be

∏

Cri

ki
ways to assign these

stars in M1 and M2.
Hence, the total number of planar maps with a star of type XiP and ki stars of type
qi, such that the marked half-edge of XiP is glued with an half-edge of P is

(60)
∑

P=p1Xip2

∑

0≤ri≤ki
1≤i≤n

n
∏

i=1

Cri

ki
Mr(p1)Mk−r(p2)

� Or the half-edge corresponding to Xi is glued with an half-edge of another star,
say qj ; let’s say with the edge coming from the decomposition of qj into qj = q1jXiq

2
j .

Then, once we are giving this gluing of the two edges, we can replace the two stars
XiP and q1jXiq

2
j glued by their Xi by the star q2j q

1
jP .
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We have kj ways to choose the star of type qj and the total number of such maps is

∑

qj=q1
j Xiq2

j

kjMk−1j
(q2j q

1
jP )

Summing over j, we obtain by linearity of Mk

(61)

n
∑

j=1

kjMk−1j
([Diqj ]P )

(60) and (61) give (58). Moreover, it is clear that (58) defines uniquely Mk(P ) by
induction.

(2) The proof of (59) now follows by induction from the previous induction relations, see e.g.
[51, 49]. �

3.24. Convergence of the free energy

Theorem 4.24. Let c > 0. Then, for η small enough, for all t ∈ Bη ∩ Uc,

lim
N→∞

1

N2
log

ZVt

N

Z0
N

=
∑

k∈Nn\(0,..,0)

∏

1≤i≤n

(−ti)ki

ki!
Mk.

Moreover, the limit depends analytically on t in a neighborhood of the origin.

Proof. We may assume without loss of generality that c ∈ (0, 1]. We then let, for α ∈ [0, 1],
Vαt = αVt. Vαt is c-convex. Set

FN (α) =
1

N2
logZVαt

N .

Then,

1

N2
log

ZVt

N

Z0
N

= FN (1) − FN (0) =

∫ 1

0

∂αFN (α)dα = −
∫ 1

0

µN
Vαt

(

L̂N (Vt

)

dα.

By Theorem 4.19, we know that for all α (since Vαt is c-convex for all α ∈ [0, 1]),

lim
N→∞

µN
V α
t

(Vt) = ταt(Vt)

whereas by (54), we know that µN
Vαt

(

L̂N (Vt

)

stays uniformly bounded. Therefore, a simple use of

dominated convergence theorem shows that

(62) lim
N→∞

1

N2
log

ZVt

N

Z0
N

= −
∫ 1

0

ταt(Vt)dα = −
n
∑

i=1

ti

∫ 1

0

ταt(qi)dα.

Now, observe that by Corollary 4.22,

τt(qi) =
∑

k∈Nn

∏

1≤j≤n

(−tj)kj

kj !
Mk+1i

= −∂ti

∑

k∈Nn\{0,··· ,0}

∏

1≤j≤n

(−tj)kj

kj !
Mk

so that (62) results with

lim
N→∞

1

N2
log

ZVt

N

Z0
N

= −
∫ 1

0

∂α[
∑

k∈Nn\{0,··· ,0}

∏

1≤j≤n

(−αtj)kj

kj !
Mk]dα

= −
∑

k∈Nn\{0,··· ,0}

∏

1≤j≤n

(−tj)kj

kj !
Mk.

�
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4. Discussion

In the first part, we discuss, following [26], how to compute exactly the generating function of
quadrangulation from the matrix models approach. In the second part, we underline some open
problems.

4.25. Exact computation of the generating function of planar maps

Let us consider the case where m = 1 and

dµN
t (X) = (ZN

t )−1e−NTr(Vt(X))dµN (X)

Assume now that there exists c > 0 such that Vt is c-convex. Then, Theorem 4.19 and Corollary
4.22 assert that the limit µt is also a generating function for planar maps;

µt(x
p) =

∑

k∈Nn

n
∏

i=1

(−ti)ki

ki!
Mk(xp)

with Mk(xp) the number of planar maps with ki stars of type xi and one star of type xp.
Let us show how to deduce formulae for Mk(xp) when Vt(x) = tx4 from the above large

deviation result, i.e count quadrangulations and recover the result of Tutte [100] from matrix
models approach. The analysis below is inspired from [12]. As can be guessed, formulae become
more complicated as Vt becomes more complex (see [34] for a more general treatment)

To find an explicit formula for µt from the Schwinger-Dyson’s equation SD[Vt], take P (x) =
(z − x)−1 to obtain

Gµt(z)
2 = −4t(αt + z2) − 1 + 4tz3Gµt(z) + zGµt(z)

with Gµt(z) =
∫

(z − x)−1dµt(x), z ∈ C\R and αt =
∫

x2dµt(x). Solving this equation yields

Gµt(z) =
1

2

(

4tz3 + z −
√

(4tz3 + z)2 − 4(4t(αt + z2) + 1)
)

where we have chosen the solution so that Gµt(z) ≈ z−1 as |z| → ∞. The square root is chosen as
the analytic continuation in C\R− of the square root on R+. Recall that if pε is the Cauchy law
with parameter ε > 0, for x ∈ R,

=(Gµt(x+ iε)) =

∫

ε

(x − y)2 + ε2
dµt(y) = πpε ∗ µt(x).

Hence, if =(Gµt(x+ iε)) converges as ε decreases towards zero, its limit is the density of µt. Thus,
we in fact have

dµt

dx
= − 1

π
lim
ε↓0

=
(

√

(4t(x+ iε)3 + (x+ iε))2 − 4(4t(αt + (x + iε)2) + 1)
)

.

To analyse this limit, we write,

(4tz3 + z)2 − 4(4t(αt + z2) + 1) = (4t)2(z2 − a1)(z
2 − a2)(z

2 − a3).

for some a1, a2, a3 ∈ C. Note that since Gµt is analytic on C\R, either we have a double root and
a real non negative root, or three real non negative roots. We now argue that when Vt is convex,
a1 = a2 and a3 ∈ R

+. In fact, the function

f(x) := −2

∫

log |x− y|dµt(y) + Vt(x) +
1

2
x2

is strictly convex on R\support(µt) and it is continuous at the boundaries of the support of µt as
a bounded density. By large deviation analysis and the study of the critical points of the resulting
rate function(see e.g. [10]), it is well known that µt is such that

f(x) = ` on the support of µt, f(x) ≥ ` outside.

Thus, we deduce that if there is a hole in the support of µt, f must also be constant equal to `
on this hole. This contradicts the strict convexity of f outside the support. Hence, we must have
b = a1 = a2 ∈ R and a = a3 ∈ R+. Plugging back this equality give a and b.
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Remark Note that the connectivity argument for the support of the optimizing measure is
valid for any c-convex potential, c > 0. It was shown in [34] that the optimal measure has always
the form, in the small parameters region,

dµt(x) = ch(x)
√

(x− a1)(a2 − x)dx

with h a polynomial. However, as the degree of Vt grows, the equations for the parameters of h
become more and more complex.

4.26. Discussion and open problems

• In this lecture we have shown that

lim
N→∞

µN
V [L̂N (P )] = σV

0 (P )

Lemma 5.7 when V is a sufficiently small convex potential. This in particular entails that

FV = lim
N→∞

1

N2
log

∫

e−NTr(V (X1,··· ,Xm))dµN (X1) · · · dµN (Xm)

exists.
It is a natural question to wonder how much this type of results generalize to non-perturbative

situations (that is general potential V ).
In the next lecture, we shall rapidly describe the dynamical approach that allows to generalize

the convergence and many results such as the analyticity of the limit FV as a function of the
parameters of the potential to the setting of a convex potential V .

In the case of one matrix m = 1, the knowledge of the joint law of the eigenvalues given by
Theorem 2.1 allows to prove by large deviation techniques (see [10]) that FV exists and is given
by

FV = − inf{
∫

V (x)dµ(x) −
∫ ∫

log |x− y|dµ(x)dµ(y)} + c

where the infimum is taken over all probability measure µ on R and c is some universal constant.
However, it is not known in a more general context whether FV exists. In [15], a related result

concerning Voiculescu’s free entropy allows only to give lower and upper bounds on the number
FV .

• In a similar spirit, it is not known whether any non-commutative law can be approximated
with laws of the form LA1,··· ,Am

. Namely, being given τ ∈ C〈X1, · · · , Xm〉∗, can we find a sequence
AN

1 , · · · , AN
m of (possibly random) matrices such that for any polynomial P ,

lim
N→∞

LAN
1 ,··· ,AN

m
(P ) = τ(P ).

In the casem = 1, this is the famous Birkhoff theorem that asserts that for any probability measure
µ on R, there exists a sequence of real numbers (λN

1 , · · · , λN
N ) such that

lim
N→∞

1

N

N
∑

i=1

δλN
i

= µ.

The question is still open when m ≥ 2 and was posed in his PhD thesis by A. Connes.
• There is no large deviation results for the spectral measure of a Wigner matrix with entries

that are not Gaussian.
• In [56], large deviations techniques where used to obtain the asymptotics of

lim
N→∞

1

N2
log

∫

eNTr(AUBU∗)dU

when U denotes the Haar measure and A,B two diagonal matrices with converging spectral distri-
bution. Such an asymptotic allows to show that FV exists for potentials V of two indeterminates
when there is at most one term that depends on both indeterminates and it is quadratic (or of the
form Xp

1X
q
2 for some p, q ∈ N).

The central tool was to use the Hermitian Brownian motion (see next part) (A +HN (t), t ∈
[0, 1]) and study the process of its spectral distribution. Because the eigenvalues of this process are
solution to (67), they can be viewed as a N dimensional Brownian motion with trajectories that
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are conditioned not to collide. This makes a connection with the results of [72] since tilling with
rhombi can be seen to be in bijection with random walks that do not intersect.

One can wonder if there would be a general approach to large deviations for the empirical
measures of particles under such a conditioning.

• Among the matrix models with several matrices, only very few could be solved even on a
physical basis.

Among the models that could be solved, let us cite the Ising model that corresponds to

V (X1, X2) = βX1X2 + gX4
1 + gX4

2 .

We refer here to the work of Mehta [78], as well as Boulatov and Kazakov [22] and more recently
Eynard [41, 42](see as well a mathematical review of these results in [50] and the large deviation
approach in [48]). Similar results were found by Bousquet-Mélou and Scheaffer [23] by a combina-
torial approach. This approach is completely different and based on bijections with trees; it allows
to get more precise geometrical information such as the typical diameter of the maps.

However, matrix models approach allowed to study more diverse models so far (such as the
q-Potts model for instance). The advantage of this approach is that it allows the use of matrix
tricks that may have no counterpart in combinatorics. In particular, it gives the interpretation of
the generating function for amps in terms of moments of a probability measure (or a tracial state
in the colored setting). The limit so far is that only models where the Cauchy-Stieljes transform
of some limiting spectral distribution satisfies some algebraic equation could be solved explicitly.

The next lecture takes a completely different route by trying to get less exact and more quali-
tative results by constructing the limiting objects by dynamics.



5

Random matrices and dynamics
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Processes can be used to obtain non-perturbative results. In [27, 28, 15, 56], processes were
the key to obtain large deviation estimates for Gaussian matrices. In this lecture, we want to show
how they can help to extend the results of the previous lecture, and in particular to weaken the
hypothesis on the potential V . This lecture summarizes a recent article with D. Shlyakhtenko [53].

In the previous lecture, we have seen that as N goes to infinity, if V = Vt is ‘convex and small’.

(63) lim
N→∞

µN
V [L̂N (P )] = τV (P )

where τV (:= τt) is a non commutative law, that is a linear functional on the space of polynomials
in m-non commutative variables (see section 1.18.3). τV was as well characterized (see section
3.22) as the unique solution to the so-called Schwinger-Dyson equation

(64) τV ⊗ τV (∂iP ) = τV ((Xi +DiV )P )

satisfying a bound such as |τV (Xi1 · · ·Xip
)| ≤ Rp for all ij ∈ {1, · · · ,m}. Then, in section 3.23,

τV (P ) was identified with the generating function MV (:= Mt) for the enumeration of the associ-
ated maps because it satisfies the same equation under the same type of constraints.

We provide yet here another type of characterization of the law τV as the invariant measure
of a stochastic process (and then as a long time limit of this process). This idea is quite reminis-
cent to Monte Carlo approximation; we shall see in the second part of this lecture that such an
approximation has a few nice consequences.

The idea is that for fixed N , µN
V is a Gibbs measure that is the invariant measure of dy-

namics such as Langevin dynamics. It turns out that the process, say (XN (t), t ≥ 0), given by
Langevin dynamics converges (in the sense of moments of time marginals) towards a limiting pro-
cess (X(t), t ≥ 0) as N goes to infinity. Note here that (XN (t), t ≥ 0) was denoting a matrix-valued
process (in fact each time marginal is a m tuple of N × N Hermitian matrices) and so the limit
(X(t), t ≥ 0) is some operator-valued process. Such a process is naturally defined in the free
probability setting. In these lecture notes, I will not try to introduce precisely the setting of free
probability (the definition of non-commutative laws given in section 1.18.3 being sufficient to our
purpose) nor to give detailed proofs but rather invoke the analogy with the classical probability set-
ting. Indeed, arguments are similar, even though the objects are now non-commutative. We hope
however this will motivate the reader to learn more about free probability, see [103, 14, 16, 3, 49].

Roughly speaking one can hope that, at least for good potentials V , the process X(t) will
converge in law as t goes to infinity towards τV , so that the following diagram is commutative;

L(XN (t)) → t→ ∞ → µN
V

↓ ↓
N → ∞ N → ∞

↓ ↓
L(X(t)) → t→ ∞ → τV

We shall show that this diagram holds true when V + 1
2

∑

X2
i satisfies some convexity property

(in fact local convexity is enough, but we shall restrict ourselves to strict convexity in these notes),
and then deduce some properties of τV from this construction (in particular the fact that any
polynomial in (X1, · · · , Xm) will have a connected support, a result that generalizes the one di-
mensional situation that we examined in section 4.25). Thus, processes allow to obtain (63) without
the assumption that the potentials are small perturbation of quadratic potentials, provided they
stay strictly convex (and even to locally convex potential up to add an appropriate cutoff to µN

V ).
We shall see that they can be used to generalize other results, such as the convergence in oper-
ator norms. However, the techniques used here are heavily dependent upon the convexity of the
interaction.

1. Free Brownian motions and related stochastic differential calculus

We introduce the free Brownian motion and related stochastic differential calculus as a limit of the
Hermitian Brownian motion that is simply a Hermitian matrix with Brownian motions entries.
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1.27. Hermitian Brownian motion

We let {(Bij(t))t≥0, (B̃ij(t))t≥0, i ≤ j} be independent Brownian motions, and setHN : R
+ → H(2)

N

to be the Hermitian-matrix valued process given by

HN
k`(t) =

1√
2N

(

Bk`(t) + iB̃k`(t)
)

for k < `, HN
k`(t) = H̄N

`k(t) when ` < k and HN
kk(t) = 1√

N
Bkk(t) when k = `.

1.28. Classical Itô’s calculus

In this section, we recall the basic results on classical Itô’s calculus that we shall need.

Theorem 5.1 (Itô, Kunita-Watanabe). [68, pg. 149] Let B = {Bt,Ft; 0 ≤ t < ∞} be a n-
dimensional Brownian motion. Let k : Rn → Rn be a bounded Lipschitz function. Then,

(1) There exists a unique strong solution Xt to

Xt = X0 +Bt −
∫ t

0

k(Xs)ds

starting from a given initial condition X0 = Z.
(2) For any function f : Rn → R of class C2, almost-surely,

f(Xt) = f(X0) +

∫ t

0

∇f ′(Xs).(dBs − k(Xs)ds)

+
1

2

∫ t

0

∆f(Xs)ds, 0 ≤ t <∞

with u.v =
∑n

i=1 uivi and ∆f =
∑n

i=1 ∂
2
i f .

Remark 5.2. Note that one way to prove the first point is to see Xt, t ∈ [0, T ], as the unique fixed
point of Φ : C([0, T ],Rn) → C([0, T ],Rn) given by

ΦB,X0(X)(t) = X0 +Bt −
∫ t

0

k(Xt)dt.

This shows in particular that Xt is a continuous function of {X0 +Bs, s ≤ t} for any t ≥ 0.

In relation with the second point we find that

Theorem 5.3. Let W : Rn → R be a bounded twice continuously differentiable function and
consider the unique strong solution to

Xt = X0 +Bt −
∫ t

0

1

2
∇W (Xs)ds.

Then, the law

dµn(x1, · · · , xn) =
1

Zn
e−W (x1,··· ,xn)dx1 · · · dxn

is an invariant measure of the process Xt (i.e the law of Xt is µn for all t > 0 if the law of X0 is
µn).

Note that Theorem 5.1 easily shows that ∂tE(f(Xt)) = 0 at t = 0 when X0 has law µn, but
showing that in fact µn(f(Xt)) = µn(f(X0)) for all t ≥ 0 requires more thoughts around the
domain of the generator (see the Hille-Yoshida Theorem).

1.29. Itô’s calculus and Random matrices

As we said earlier, we would like to construct dynamics whose invariant measure is given by the
matrix model of the previous part;

dµN
V (X1, · · · , Xm) =

1

ZN
V

e−NTr(V (X1,··· ,Xm))dµN (X1) · · · dµN (Xm)

for a self-adjoint potential V . Recall that dµN (Xm) is just the Gaussian law on the entries and
so is absolutely continuous with respect to Lebesgue measure and so we can construct, if V is
sufficiently smooth, invariant dynamics as in Theorem 5.3, i.e dynamics on each entries of the
random matrices X1, · · · , Xm ∈ H(N) with invariant measure µN

V .
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Recall (see paragraph 1.18.2) that for each i ∈ {1, · · · ,m} and each k, ` ∈ {1, · · · , N},
∂Xi

k`
Tr(P (X1, · · · , Xm)) = (DiP )k`.

Hence, we can write the dynamics of Theorem 5.3 in a matricial way as

(65) dXN,i
t = dHN,i

t − 1

2
(DiV (XN,1

t , · · · , XN,m
t ) +XN,i

t )dt

with HN,i
t , 1 ≤ i ≤ m m independent Hermitian Brownian motions. We denote in short W =

V + 1
2

∑m
i=1X

2
i .

Lemma 5.4. Take V to be a polynomial, denote W = V + 1
2

∑

X2
i and assume that

φ : X1, · · · , Xm ∈ (H(2)
N )m → Tr(W )

is strictly convex (i.e the Hessian of φ is bounded below by cI for some c > 0). Then, for any
integer number N ,

(1) There exists a unique strong solution XN
. to (65) for all times. Moreover, XN,i

t is Her-
mitian for all i ∈ {1, · · · ,m} and t ≥ 0.

(2) µN
V is an invariant measure for this process.

(3) The law of XN
t = (XN,i

t , 1 ≤ i ≤ m) converges towards µN
W as t goes to infinity, indepen-

dently of the initial data.

Proof. The first part of the lemma is a direct consequence of the previous section except for
the fact that V , as a polynomial, is a priori unbounded (as well as its derivatives). Convexity
however insures the existence and uniqueness of a solution, together with the fact that the solution
will remain finite almost surely. Moreover, since we assume TrV convex, it is in particular real
valued and therefore TrV = TrV ∗. Differentiating both sides of this equality shows that (see (46))
(DiV )∗ = DiV

∗ = DiV for all i ∈ {1, · · · ,m}. Therefore, taking the adjoint of both sides of (65)
we find that (XN

. )∗ is as well solution of (46) and thus XN = (XN
. )∗ by uniqueness.

Moreover, µN
V is an invariant measure by Theorem 5.3. To prove the convergence in law of

XN
t we simply take two solutions XN

t and X̃N
t starting from two initial data XN

0 and X̃N
0 and

constructed with the same Hermitian Brownian motion. Then, we get that

d(XN,i
t − X̃N,i

t ) =
1

2

(

DiW (XN
t ) −DiW (X̃N

t )
)

dt.

Therefore, because by convexity

m
∑

i=1

(XN,i
t − X̃N,i

t ).
(

DiW (XN
t ) −DiW (X̃N

t )
)

≥ c

m
∑

i=1

(XN,i
t − X̃N,i

t )2

in the sense of self-adjoint operators (here X.Y = XY ∗ + Y X∗), we find that

d

m
∑

i=1

(XN,i
t − X̃N,i

t )2 ≤ −c
m
∑

i=1

(XN,i
t − X̃N,i

t )2dt

and therefore
m
∑

i=1

(XN,i
t − X̃N,i

t )2 ≤ e−ct
m
∑

i=1

(XN,i
0 − X̃N,i

0 )2.

Thus, XN
t will not depend much of its initial law provided it has a finite operator norm, that

is finite entries. We can now take X̃N
0 with law µN

V (recall that by Brascamp Lieb inequalities

Lemma 3.20 the operator norm of X̃N
0 is then well controlled) to deduce that the law of the entries

of (XN,i
t , 1 ≤ i ≤ m) will converge to µN

V , whatever is the initial condition with finite operator
norm. �

We have as well the following application of Itô’s calculus.

Lemma 5.5. Let P be a polynomial in m non-commutative variables. Let XN be the process
considered in Lemma 5.4 and denote W = V + 1

2

∑m
i=1X

2
i . Then,
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P (XN
t ) = P (XN

0 ) +

∫ t

0

m
∑

i=1

∂iP (XN
t )](dHN,i

t − 1

2
DiW (XN

t )dt) +
1

2

∫ t

0

L
NP (XN

t )dt

with LN =
∑m

i=1 I ⊗ ( 1
N Tr)∆N,i if

∆N,i = M ◦ ∂i ◦ ∂i

where M(A⊗B ⊗ C) = AC ⊗B. As a consequence,

1

N
Tr
(

P (XN
t )
)

=
1

N
Tr
(

P (XN
0 )
)

+

∫ t

0

m
∑

i=1

1

N
Tr(DiP (XN

t )(dHN,i
t − 1

2
DiW (XN

t )dt)

(66) +
1

2

∫ t

0

LNP (XN
t )dt

with LN =
∑m

i=1(
1
N Tr) ⊗ ( 1

N Tr)∂i ◦Di.

The proof of the first point is a direct consequence of Theorem 5.1 with f(XN
t ) = P (XN

t )k`

for all k, ` ∈ {1, · · · , N} and is left to the reader. The second equality is obtained by taking the
trace of the first.

Note that when m = 1, the previous Lemma can be simplified by diagonalizing the matrices

XN
t , t ≥ 0. In that case, if we put LN

t := 1
N

∑N
i=1 δλN

i (t) to be the spectral measure of XN
t ,

we have 1
N Tr

(

P (XN
t )
)

=
∫

P (x)dLN
t (x). Another way to derive Lemma 5.5 is then to use the

representation of the dynamics of the eigenvalues (λN
i (t), 1 ≤ i ≤ N) as solution of a stochastic

differential system. In fact, Dyson [38] showed that

(67) dλi
N (t) =

1√
2N

dW i
t +

1

N

∑

j 6=i

1

λi
N (t) − λj

N (t)
− 1

2
W ′(λi

N (t))dt

with initial condition λN (0), the eigenvalues of Z and (W 1, · · · ,WN) a N -dimensional Brownian
motion.

Exercise 5.6. We leave the reader to check that Itô’s calculus implies that MP
t :=

∫

P (x)dLN
t −

∫

P (x)dLN
0 −

∫ t

0

∫

x 6=y(
P ′(x)−P ′(y)

2(x−y) )dLN
s (x)dLN

s (y)ds is a local martingale (as in (66)).

1.30. The free Brownian motion

1.30.1. Law of the free Brownian motion. The free Brownian motion can be thought as the large
N limit of the Hermitian Brownian motion, in the sense of weak convergence. In fact, by Theorem
1.17, any moment of the increments of an Hermitian Brownian motion converges when N goes to
infinity; for any t1 < · · · < tm, any polynomial function P of m non-commutative variables,

lim
N→∞

E[
1

N
Tr(P (HN

t1 , H
N
t2 −HN

t1 , · · · , HN
tm

−HN
tm−1

))]

= σm[P (
√
t1X1,

√
t2 − t1X2, · · · ,

√

tm − tm−1Xm))].

As in the classical setting, we can also gives sense of σm with m = ∞ (i.e construct the joint law
of an infinite number of free semi-circular) and then construct the law φ of a continuous process
(St, t ≥ 0), such that for all m ∈ N, all polynomials P , all times t1 < t2 < · · · < tm,

φ(P (St1 , St2 − St1 , · · · , Stm
− Stm−1)) = σm[P (

√
t1X1,

√
t2 − t1X2, · · · ,

√

tm − tm−1Xm)].

φ is here seen as a linear form on the set C of cylinder functions of the form

F (S) = P (St1 , St2 , · · · , Stm
)

for some choice of t1 < · · · < tm, m ∈ N and polynomials P .
To give a sense to the continuity of the process, we need to have some notion of positivity and

norms. To this end, note that as the σm’s, φ is a tracial state in the sense that

φ(FF ∗) ≥ 0, φ(FG) = φ(GF ) and φ(1) = 1

for any F,G ∈ C. Here ∗ is the involution as defined in (45) ((zSt1 · · ·Stm
)∗ = z̄Stm

· · ·St1 for all
choices of (t1, · · · , tm) and all m ∈ N).
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The positivity property φ(FF ∗) ≥ 0 allows to think of φ as an expectation, and to endow C
with useful notions such as a semi-norm or a partial order. Indeed,

‖F‖∞ := sup
n≥0

φ((FF ∗)n)
1
2n

defines a semi-norm on the vector space C and φ is continuous with respect to this semi-norm
(|φ(P )| ≤ ‖P‖∞ for all P ∈ C) Moreover, we can define an order on C by P ≥ 0 iff P is self-adjoint,
P = P ∗, and φ(QPQ∗) ≥ 0 for any Q ∈ C.

The continuity of (St, t ≥ 0) is insured by the fact (deduced from the definition of σm) that
for all s < t, all m ∈ N,

φ[(St − Ss)
2m] ≤ (4(t− s))m

which insures that ‖St − Ss‖∞ ≤ 2
√

|t− s|.
1.30.2. Realization of the free Brownian motion. In the previous subsection, we described the law
of the free Brownian motion. However, as probabilists, we like to think about random variables.
Usually, random variables are thought as measurable functions X from a probability space (Ω, P )
into the space of values of X , say R. If X is bounded, X is just some element of L∞(Ω, P ).

A similar concern exists in free probability and the generalization goes as follows. The idea is
to think of L∞(Ω, P ) as a space of functions that acts by left multiplication on L2(Ω, P ); i.e we
identify the function f ∈ L∞(Ω, P ) with the operator πf : L2(Ω, P ) → L2(Ω, P ) that associates
to g ∈ L2(Ω, P ), πf (g) = fg. The interests in L2(Ω, P ) is that it can be equipped with a scalar
product 〈g, h〉 :=

∫

ghdP and we can construct a Hilbert space H by separating L2(Ω, P ) (i.e. by

taking the quotient of L2(Ω, P ) by the ideal {g :< g, g >= 0}) so that ‖g‖2 := 〈g, g〉 1
2 is a norm

on H . Then, πf can be seen as an element of the space B(H) of bounded operators on H for the
norm

‖πf (g)‖∞ = sup
g∈H

‖πf (g)‖2

‖g‖2
.

The same construction can be generalized to the non-commutative setting; P is then replaced by
the tracial state φ, and the scalar product by 〈P,Q〉 := φ(PQ∗) (note here that the positivity of
φ is crucial). A Hilbert space H is obtained by completing and separating L2(φ) (the closure of
polynomials by the norm induced by 〈∗, ∗〉) and random variables are interpreted as elements of
the space B(H) of bounded operators on H (in fact as left multiplication operators as above). φ
is then a linear form on B(H) and the operator norm on B(H) is nothing but

‖P‖∞ := sup
n≥0

φ((PP ∗)n)
1
2n .

This is the so-called Gelfand-Neimark-Segal construction (see [83] for details)
Thus, (St, t ≥ 0) can be thought as a continuous (for ‖ · ‖∞) process with values in B(H), the

space of bounded operators on a Hilbert space H .
1.30.3. Free Brownian motion and freeness. (St, t ≥ 0) is called the free Brownian motion. The
word freeness is used to say that increments are not independent as for the classical Brownian
motion but free in the following sense. Freeness means (see also exercise 4.20) that if X = St −Ss,
for any polynomials P1, · · · , Pk and any elements A1, · · · , Ak in the algebra generated by (Su, u < s)
(or equivalently the cylinder functions that only depends on (Su, u < s)),

φ((P1(X) − φ(P1(X)))(A1 − φ(A1))(P2(X) − φ(P2(X))) · · · (Ak − φ(Ak))) = 0.

Note here that this relation determines uniquely the joint law of (X, (Su, u < s)) from the moments
of X and (Su, u < s) respectively; in other words, as in the classical case, the law of free (resp.
independent) variables is uniquely determined by its marginals.

Therefore, we shall thereafter consider φ as a linear form on some bigger space than C. In tune
with the previous section, we shall denote this space B(H).

As a remark, note that the word ‘freeness’ emphasizes the relation with the usual notion of
freeness in groups; indeed, if φ, evaluated at a monomial, is one if the monomial is the neutral
element and zero otherwise, we see that the above relation exactly means that non trivial words
in X and the Ai’s can not be the neutral element; i.e they are free in the usual sense.
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1.31. Free stochastic calculus

Free stochastic integrals with respect to the Free Brownian motion can be build exactly as in the
classical case; we consider for a continuous adapted (i.e Yt depends only on Ss, s < t for all t)
process Y : R+ → B(H) the sums I(t) =

∑n
i=1 Yti−1(Sti

− Sti−1) and prove that they converge in
L2(φ), when the sequence t = (0 = t0 < · · · < tn = t)’s is such that sup |ti − ti−1| goes to zero.

Moreover, the limit does not depend on the choice of the ti’s. The limit is then denoted
∫ t

0
YsdSs.

It shares many properties with its classical analogues. In particular it is a martingale with respect
to the filtration of the free Brownian motion.

A property, that is in fact specific to the non-commutative setting, is that a Burkhölder-Davis
inequality for integrals with respect to free Brownian motion holds for the Lp norm even with
p = ∞(see Theorem 3.2.1 of [89]). More precisely, the following estimate holds for any adapted
process Yt

(68)

∥

∥

∥

∥

∥

m
∑

i=1

∫ s

0

Y i
t dS

i
t

∥

∥

∥

∥

∥

∞

≤ 2
√

2

(

∫ s

0

‖
m
∑

i=1

(Y i
t )2‖∞dt

)
1
2

.

This result is related with the fact that St is uniformly bounded (on the contrary to the standard
Brownian motion).

1.32. Stochastic differential calculus

The same construction holds to construct m free Brownian motions Si
t , t ≥ 0, 1 ≤ i ≤ m as the

weak limit of HN,i
t , t ≥ 0, 1 ≤ i ≤ m, where HN,i, 1 ≤ i ≤ m are m independent Hermitian

Brownian motions.
Since (St, t ≥ 0) can be thought as the limit of the Hermitian Brownian motion and, by

construction, solutions to stochastic differential equations are continuous functions of the Hermitian
Brownian motion, it is no surprise that the theory of stochastic differential equations passes to the
large N limit. Let us state the results;

Lemma 5.7. Let W = V + 1
2

∑

X2
i be a strictly convex self-adjoint polynomial, i.e there exists

c > 0 such that for any m-tuples X = (X1, · · · , Xm) and Y = (Y1, · · · , Ym) of self-adjoint operators
in C

m
∑

i=1

(DiW (X) −DiW (Y )).(Xi − Yi) ≥ c

m
∑

i=1

(Xi − Yi)
2.

Then,

(1) Let X0 be a m-tuple of self-adjoint variables in B(H). There exists a unique solution to

X i
t = X i

0 + Si
t −

1

2

∫ t

0

DiW (Xs)ds, 1 ≤ i ≤ m

Moreover for each t ≥ 0, Xt is a m-tuple of self-adjoint operators.
(2) There exists B(c) ≤M(c) <∞ such that, for any X0,

lim sup
t→∞

‖X i
t‖∞ ≤ B(c), sup

t≥0
‖Xt‖∞ ≤ max{M(c), ‖X0‖∞}

where ‖ · ‖∞ is the operator norm given by

‖X‖∞ = sup
n≥0

φ((X)2n)
1
2n .

(3) The following analogue of Itô’s calculus holds for any polynomial of m non-commutative
variables

φ(P (Xt)) = φ(P (X0)) +
1

2

∫ t

0

m
∑

i=1

(φ⊗ φ(∂i ◦DiP (Xs)) − φ(DiP (Xs)DiW (Xs))) ds.

(4) The distribution of Xt converges weakly as t ≥ 0, independently of X0 ∈ B(H). The limit
τ is invariant and satisfies for any polynomial P

(69) τ ⊗ τ(

m
∑

i=1

∂i ◦DiP ) = τ(
∑

i

DiP.DiW ).
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Reciprocally, any non-commutative measure (i.e. linear form on C〈X1, · · · , Xm〉 such
that |τ(Xi1 · · ·Xi`

)| ≤ R` for some R and all `) satisfying this equation for all polynomial
P is invariant. Hence, there exists a unique such measure. There exists a unique solution
τV to the Schwinger-Dyson equation (64); τV = τ .

The proof of the first point copies the classical proof; during a short time before the Xs

eventually explode, DiW is uniformly Lipschitz (for the operator norm) and so the usual Picard

type argument applies to construct the solution (i.e we let φ(S,X)t = X0 + St − 1
2

∫ t

0 DiW (Xs)ds
and show that this application is a contraction (at least on processes bounded by some threshold)).
We then show that its unique fixed point is bounded uniformly because of (68) in the following
lines; we let Y.X =

∑

(X iY i +X iY i) and find

dXt.Xt = −1

2
(DW (Xt) −DW (0)).(Xt)dt−

1

2
DW (0).Xtdt+Xt.dSt

≤ − c

4
Xt.Xtdt+

1

2c
DW (0).DW (0)dt+Xt.dSt

Thus, we find that At = ‖Xt.Xt‖∞ is bounded by

At ≤ e−
t
2cA0 +

1

2c
DW (0).DW (0) + e−

t
2c ‖
∫ t

0

e
u
2cXu.dSu‖∞

≤ e−
t
2cA0 +

1

2c
DW (0).DW (0) + e−

t
2c 2

√
2

(∫ t

0

e
u
c Audu

)

1
2

from which it is easy to deduce that At stays uniformly bounded by some constant that only
depends on c and DW (0).DW (0). This allows to show the second point of the theorem and thus
complete the proof of the first. Itô’s calculus formula can be derived as in the classical case or, at
least intuitively, as a large N limit of (66). By the condition that a stationary distribution satisfies
∂tφ(P (Xt))|t=0 = 0 we deduce the fourth point. We can finally copy the proof of Lemma 5.4 to
obtain the uniform-time convergence of the process, and obtain

(70) ‖XZ
t −XZ′

t ‖∞ ≤ e−ct‖Z − Z ′‖∞
when XZ

t starts from the initial condition Z. This entails the uniqueness of the laws satisfying
(69) and therefore uniqueness of the solution to Schwinger-Dyson equation with potential W (that
imposes stronger conditions).

Remark 5.8. Observe that because of the Burkholder Davis Gundy inequality in L∞, the process
stays uniformly bounded by M(c); hence, as long as we do not start our process with initial data’s
says larger than 2B0(c), we need only to assume that V is strictly convex when applied to operators
bounded by M(c). This allows to weaken our hypothesis to a ’locally convex hypothesis’ and thus
include any small perturbation of a quadratic potential.

2. Consequences

In this section we summarize a few applications of Lemma 5.7 valid in the case of a convex potential;
first we study the resulting properties of the invariant measure τ = τV of Lemma 5.7, then the large
N limit of µN

V (L̂N ) and finally the analyticity of τV as a function of the parameters of the potential
V , i.e we discuss the absence of phase transition in the domain of convexity of the potential.

2.33. Approximation by a continuous function of the free Brownian motion

Taking Z with law τ the invariant measure and Z ′ = 0, we deduce from (70) that since XZ
t has

law τ as well, we can approximate the law τ by X0
t , with t large. We now claim that

Lemma 5.9. For any t > 0, there exists a sequence ψn,t of continuous functions (for the uniform
operator norm ‖Y.‖t

∞ = sups≤t ‖Ys‖∞) such that

‖ψn,t(S) −X0
t ‖∞ ≤ 1

n
.

Therefore, for any ε > 0, there exists a continuous (for ‖ · ‖∞∞) function ψε of the free Brownian
motion, there exists Z with law τ , such that
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‖Z − ψε(S)‖ ≤ ε

Proof. Indeed, as in Remark 5.2, we can see (Xs, s ≤ T ), the solution of the free SDE as in
Lemma 5.7, as the unique fixed point of

ΦS(X)(t) = St −
∫ t

0

1

2
DW (Xt)dt

with k = 1
2DW on variables bounded by some M larger than the uniform bound M(c) on X ,

but extended outside of this set so that k is uniformly Lipschitz. Therefore, we can approximate
X(t) by Φn

S(0)(t) uniformly on t ≤ T . Φn
S(0)(t), as integrals of polynomials in S, is a continuous

function of Ss, s ≤ T (because the later are uniformly bounded; ‖S.‖u
∞ ≤ 2

√
u). �

This result has at least two nice consequences. The first is really due to a non-commutative
phenomenon; there is no operator that is a continuous function of the free Brownian motion that
can have a disconnected spectrum. Thus we have

Lemma 5.10. Assume that W = V + 1
2

∑

X2
i is strictly convex and let (X1, · · · , Xm) be non-

commutative variables with law τV . Then, for any polynomial function P , the operator
P (X1, · · · , Xm) in B(H) has a connected spectrum.

Proof.Let us summarize the arguments for the motivated reader, even though they are less
classical in probability. In fact, the algebra of operators constructed as polynomials of the free
Brownian motion, or as approximations of such operators for the operator norm, is projectionless,
i.e we cannot build a non trivial projection with such elements (that is P such that P 2 = P and
φ(P ) ∈ (0, 1)) (see [85] (see also [58] for a random matrix proof)). This implies in particular that
the spectrum of any self-adjoint element A of this family (defined as the support of the probability
measure given by µA(P ) = φ(P (A)) for any polynomial P ) has to be connected since otherwise
we can build a non trivial projection (basically the projection on the eigenspace of one connected
component). Thus, for any ε > 0, ψε of Lemma 5.9 must have a continuous spectrum. This makes
impossible that Z has a disconnected support since if its spectrum had a hole of width δ, ψε should
also have a hole in its spectrum for ε < 1/4δ. �

Remark 5.11. Note that the proof above is very different from that given in section 4.25 that was
based on the statement of a large deviation principle and the analysis of the resulting rate function.
Such an approach is not yet available in the multi-matrix case, as stressed in section 4.26.

The second application concerns the extension of a result of Haagerup and Thorbjornsen [59]
where it was proved that if XN

1 , · · · , XN
m are m independent matrices following the GUE,

lim
N→∞

‖P (XN
1 , . . . , X

N
m )‖∞ = ‖P (X1, . . . , Xm)‖∞ a.s.

with (X1, · · · , Xm) m free semi-circular variables. We can extend this result to the case where the
m-tuple (XN

1 , · · · , XN
m ) has law µN

V (and (X1, · · · , Xm) has law τ) by writing that (XN
1 , · · · , XN

m )
and (X1, · · · , Xm) are approximately some nice polynomials in the increments of the Hermitian
Brownian motions (respectively the free Brownian motion) and use at this level Haagerup and
Thorbjornsen result [59]. We thus prove that

Lemma 5.12 ([53], Lemma 6.1). Let (XN
1 , . . . , X

N
m ) be a m-tuple of matrices with law µN

V and
assume that V + 1

2

∑

X2
i is strictly convex. Let τV be the unique invariant measure τV of Lemma

5.7 and (X1, . . . , Xm) with law τV . Then, for any polynomial function P ,

lim
N→∞

‖P (XN
1 , . . . , X

N
m )‖∞ = ‖P (X1, . . . , Xm)‖∞ a.s.

2.34. Convergence of the matrix model

We can generalize Theorem 4.19 concerning the convergence of the empirical distribution of matri-
ces following µN

V as well as Theorem 4.24 to any convex potential V . Indeed, by Lemma 4.17, all

limit points of µN
V (L̂N ) satisfy the Schwinger-Dyson equation and are bounded laws. Therefore,

Lemma 5.7 insuring the uniqueness of such solutions, shows that µN
V (L̂N ) has a unique limit point
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and thus converges toward τ . The result for the free energy is then a trivial consequence. Thus,
we have for any convex potential V

lim
N→∞

1

N2
log

ZV
N

Z0
N

= F0(V ).

2.35. Analyticity of the limit as a function of the parameters of the potential

A last consequence of Lemma 5.7 is to see that, for any polynomial P , τV (P ) depends analytically
upon the parameters of V within the set where V stays convex. More precisely

Lemma 5.13. Let V = Vβ =
∑n

i=1 βiqi be a polynomial, where β = (βi)1≤i≤n are (complex)
parameters and (qi)1≤i≤n are monomials. For c > 0 let T (c) ⊂ C

n be the interior of the subset of
parameters β = (βi)1≤i≤n for which V is c-convex. Let τβ = τVβ

be the unique stationary measure
of Lemma 5.7. Then for any polynomial P ∈ C〈X1, · · · , Xm〉, the map β ∈ T (c) → τβ(P ) is
analytic. As a consequence, β ∈ T (c) → F0(Vβ) is analytic.

By Lemma 4.24, for sufficiently small β’s,

F0(Vβ) =
∑

k∈Nn\(0,..,0)

∏

1≤i≤n

(−βi)
ki

ki!
Mk.

Hence, the above Lemma shows that this generating function extends analytically on T (c). The

proof of the Lemma goes as follows. We denote Xβ
t the process of Lemma 5.7 build with the

potential Vβ . We then prove that there exists a family X
(k1,...,kn)
t , ki ∈ N, 1 ≤ i ≤ n of operator-

valued processes such that for η ∈ C
n, |β − η| := max1≤i≤n|βi − ηi| small enough,

(71) Xη
t = Xβ

t +
∑

k1,...,kn∈Nn
P

ki≥1

n
∏

i=1

(ηi − βi)
kiX

(k1,...,kn)
t

The variables X
(k1,...,kn)
t , ki ∈ N, 1 ≤ i ≤ n are just obtained as solution of some stochastic

differential system obtained by differentiating (5.7) with respect to the βi’s. Moreover, X
(k1,...,kn)
t

are processes such that there exists a constant C that only depends on c and the degree of V so
that

(72) sup
t∈R+

‖X(k1,...,kn)
t ‖∞ ≤ C

P

ki

and hence the right hand side of (71) converges in norm for any η so that |η − β| < 1/C. Fi-

nally the distribution of
(

X
(k1,...,kn)
t

)

k1,...,kn∈Nn
converges (in the sense of finite marginals, i.e.,

on polynomials involving only a finite number of the
(

X
(k1,...,kn)
t

)

k1,...,kn∈Nn
) towards the law of

(

X
(k1,...,kn)
∞

)

k1,...,kn∈Nn
as t goes to infinity. We do not detail the proof of the facts above but just

underline that it is based on the uniform boundedness of Xβ
t . They allow us, by letting t going to

infinity, to prove that for η ⊂ B(β, 1
C ) ∩ T (c),

Xη = Xβ +
∑

k1,...,kn∈Nn
P

ki≥1

n
∏

i=1

(ηi − βi)
kiX(k1,...,kn)

with Xβ with law τVβ
and operators (X(k1,...,kn), k1, · · · , kn ∈ Nn) uniformly bounded by C. We

thus get the analyticity. Moreover, when β = 0, the X(k1,...,kn) can be explicitly constructed via
the free Brownian motion, thus giving a ’free probabilist’ representation of the laws τVβ

= Mβ.

3. Discussion

• Uniqueness of the solution to the Schwinger-Dyson equation is not true in general as
well as convergence of the dynamics to a solution is not true in general (see [17], section
7.1). The situation is even more dramatic than in the classical case since, because of the
boundedness of S, the process may not be able to quit a well of the potential W inside
which it started (with probability one).
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• The study of a low temperature phase should be doable. Dembo, Maurel Segala and
myself started the analysis of the static case but not of the associated dynamics.

• In this paragraph, we have constructed via a free Brownian motion the solution τV , that,
as we have seen, is related with the enumeration of maps. Can this be useful to understand
better the enumeration question? Note (see section 4.25) that in the case m = 1, the
fact that τV was a probability measure with connected support allowed to get a priori an
explicit formula for MV .

In the same vain, one can wonder how critical exponents (that govern the polynomial
decay of the numbers M0((ki, qi), 1 ≤ i ≤ n)) could be detected by our dynamics. Note
here that they are related with the analyticity (or absence of analyticity) of τV (P ).

• The fact that τV is a state (i.e that τV (PP ∗) ≥ 0 for all polynomials) is a triviality from
the random matrices points of view. However, when thought as the same property for
the associated enumeration of graphs, it becomes much less transparent. Could there be
a combinatorial explanation why τV is a state? This question also applies for one matrix
when we wonder why τV is a probability measure.

• In classical statistical mechanics, it is known, for instance in spin glasses, that the dy-
namics may have a phase transition before the statics do. Could this happen here?
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