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The Potts model
The partition function of the Potts model on a graph G = (V ,E )
is given by

ZG =
∑

σ:V→{1,...,Q}

exp(K
∑
{i ,j}∈E

δσi ,σj )

=
∑

σ:V→{1,...,Q}

∏
{i ,j}∈E

(1 + vδσi ,σj )

=
∑
E ′⊂E

v ] bonds Q] clusters

v = eK − 1, bonds=edges in E ′, clusters=connected components
of the subgraph (V ,E ′)

−→ v4 Q3
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Definition of maps

We shall consider the Potts model on (random planar maps).
A map is a connected graph which is embedded into a surface in
such a way that edges do not cross and faces (obtained by cutting
the surface along the edges) are homeomorphic to a disk.
The genus of the map is the minimal genus of a surface in which
it can be properly embedded.

By Euler formula :
2− 2g= ] vertices

+ ] faces
- ] edges.
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Potts model on planar maps

We shall consider the Potts model on random planar maps. We
assume these graphs are rooted, that is are given a distinguished
oriented edge. It is given by the partition function

Z =
∑

G=(V ,E)

x#Ey#VZG

=
∑

G=(V ,E)

x#Ey#V
∑

σ:V→{1,...,Q}

exp(K
∑
{i ,j}∈E

δσi ,σj )

=
∑

G=(V ,E)

x#Ey#V
∑
E ′⊂E

v ] bonds Q] clusters

v = eK − 1, bonds=edges in E ′, clusters=connected components
of the subgraph (V ,E ′)
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The Potts model on random planar maps as a loop model
If G is a planar map, there is dual (green) and a medial (blue)
planar graph Gm

Splitting a vertex
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The Potts model on random planar maps as a loop model

If G is a planar map, there is a bijection

(G ,E ′)⇔ (loops, shaded vertices)

Moreover, writing Euler formula in each cluster gives the relation

]loops = 2]clusters + ]bonds− ]V
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The Potts model on random graphs as a loop model

The equivalence to the loop model allows to state that

Z =
∑

G=(V ,E)

x#EQ−
1
2

#V
∑
E ′⊂E

v ] bonds Q] clusters

=
∑

Γ

δ# loopsα
#

β
#

where the summation is restricted to 4-valent rooted planar maps,
and

δ =
√

Q
α

β
=

v√
Q

β = x

δ is called the fugacity.
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The Potts model on planar maps and loop models
Hence, the partition function Z of the Potts model on planar maps
is a generating function for the number of possible matchings of
the end points of n copies of the vertex

and m copies of the vertex

so that the resulting graph

• is planar, connected,

• has p loops,

• is checkerboard shaded.
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Definition of maps

A map is a connected graph which is embedded into a surface in
such a way that edges do not cross and faces (obtained by cutting
the surface along the edges) are homeomorphic to a disk.
The genus of the map is the minimal genus of a surface in which
it can be properly embedded.

2− 2g= ] vertices
+ ] faces
- ] edges.
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“Baby combinatorial problem”

Be given p vertices of valence d drawn on a surface (that is
given an orientation).
Problem : Count the number of maps with genus g that can
be obtained by matching the end points of the half-edges of
the vertices.

Example :
g = 0,
p = 4,
d = 3.

The counting is done up to homeomorphisms. How do you count
symmetries ? (between vertices, edges of the vertices etc)
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Combinatorial approach

Tutte (60’s) : count rooted planar maps.
A root= A distinguished oriented edge.
Prescribing a root reduces the number of symmetries ;

Rooted mapUnrooted map

A map M with n edges has 2n/]Automorphism(M) possible roots.
Later we shall count maps with labelled rooted vertices ; a rooted
map with n + 1 vertices has n!3n possible labellings and rooting of
its vertices.
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Tutte’s Theorem

The number A((p, 3)) of rooted planar maps with

p vertices of valence 3 is equal to 2p+1 (3p)!
p!(2p+2)!

Proof : Surgery on maps =Induction relations
on number of maps. Let A((p, 3), (1, n)) be the
number of planar maps with p vertices of degree
3 and one of degree n.

A((p, 3), (1, n))

= A((p−1, 3), (1, n+1))+
n−2∑
k=0

p∑
`=0

A((`, 3), (1, k))A((p−`, 3), (1, n−k−2))
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More general map enumeration

More general maps could be enumerated by using combinatorial
techniques, including surgery but also bijections etc
For instance

• The Ising model on random planar maps [Bousquet-Mélou,
Schaeffer](2002)

• The Potts model on random planar maps [Bernardi,
Bousquet-Mélou](2009)

However each case is treated separately and is not easy. The
physicists have used since the seventies a rather indirect but
somehow systematic approach : the matrix integrals.



The Potts model on random maps Enumerating planar maps Random matrices Solving the matrix model

Outline

The Potts model on random maps

Enumerating planar maps

Random matrices

Solving the matrix model



The Potts model on random maps Enumerating planar maps Random matrices Solving the matrix model

Combinatorics and Gaussian variables

Wick formula : If (G1, · · · ,G2p) is a centered Gaussian vector,

E[G1G2 · · ·G2p] =
∑

1≤s1<s2..<sp≤2p
ri>si

p∏
j=1

E[GsjGrj ].

Example : If for all i , Gi = G follow the standard Gaussian
distribution,

E [G 2p] = ]

{ number of roo-
ted graphs with
one vertex with va-
lence 2p }

= ]
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The Gaussian Unitary Ensemble (GUE)

Let HN = {A ∈MN×N(C);A = A∗}. The law µN of the GUE is
the probability measure on HN

dµN(A) =
1

ZN
e−

N
2
Tr (A2)dA .

In other words, Alk = Ākl for 1 ≤ k < l ≤ N and

Akl = (2N)−
1
2 (gkl + i g̃kl) for k < l , Akk = N−

1
2 gkk

where the (gkl , g̃kl , k ≤ l) are i.i.d standard Gaussian variables ;

P(dg̃kl , dgkl , k ≤ l) =
∏

1≤k≤l≤N
e−

1
2

(gkl )
2 dgkl√

2π

∏
1≤k<l≤N

e−
1
2

(g̃kl )
2 dg̃kl√

2π
.
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The enumeration of maps and one matrix-integrals

For all d ∈ N∗, all p ∈ N,∫ (
NTr (Ad)

)p
dµN(A) =

∑
F≥0

1

N
dp
2
−p−F

G (d , p,F )

G (d , p,F ) = ]{Union of maps withF faces and

p vertices of valence d }.

Recall that a connected graph can be embedded into a surface
with Euler characteristic

χ = 2− 2g = ]vertices + ]faces− ]edges = p + F − pd

2
.

Counting is done with labeled vertices and half-edges.
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Application

Wigner (1958) already noticed that,

lim
N→∞

∫
1

N
Tr(Ad)dµN(A) = G (d , 1,

d

2
+1) =

{
0 if d is odd,
C d

2
otherwise,

where C d
2

is the Catalan

number, i.e. the number
of rooted planar (g = 0)
maps with one vertex of
valence d .
(Here, p = 8,F = 5)

= ]

G (d , 1, d2 + 1) =
∫
xddσ(x), where σ is the semi-circular law
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The enumeration of colored maps and several matrices
integrals

Let m ∈ N. To any monomial q(X1, · · · ,Xm) = Xi1 · · ·Xid , we
associate (bijectively) a star of type q =

oriented vertex with half-edges of
color i1, i2, ...id , ordered clockwise,
the first half-edge being marked.
Here q(X ) = X1

2X2
2X1

4X2
2.

For any monomial q, all p ∈ N,∫
NTr (q(A1, · · · ,Am))dµN(A1) · · · dµN(Am) =

∑
g≥0

M(q, g)

N2g−2
,

M(q, g) = ]{ rooted maps with genus g build on one star of type q }.

The matching is only allowed between half-edges of the same color.
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Application

Voiculescu (1984) Let m ∈ N and q(X1, · · · ,Xm) = Xi1 · · ·Xid for
i1, · · · , id ∈ {1, · · · ,m}

lim
N→∞

∫
1

N
Tr (q(A1, · · · ,Am)) dµN(A1) · · · dµN(Am) = Gc(q, 1, 0)

:= σm(q)

where σm(q) is the num-
ber of planar maps drawn
with a star of type q
by gluing half-edges of
the same color (Here,
q(X) = X1

2X2
2X1

4X2
2 )

= ]

σm = law of m free semi-circular variables.
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Application to loop models

The Temperley-Lieb elements are boxes
with boundary points connected by non-
intersecting strings, equipped with a sha-
ding and a marked boundary point.

*

Problem : Take your favorite Temperley-
Lieb element. Count the number of pla-
nar matching of the end points of the
Temperley-Lieb elements so that there
are exactly n loops.

*
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Random matrices and loop enumeration
For a Temperley-Lieb element B, we denote p

B∼ ` if a string joins
the pth boundary point with the `th boundary point in B, then we
associate to B with k strings the polynomial

qB(X ) =
∑

ij=ip if j
B∼p

1≤ij≤n

Xi1 · · ·Xi2k .

qB(X ) =
n∑

i ,j ,k=1

XiXjXjXiXkXk ⇔

Theorem
If νM denotes the law of n independent GUE matrices,

lim
M→∞

∫
1

M
Tr (qB(X )) νM(dX ) =

∑
n]loops

where we sum over all planar maps that can be built on B.
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Proof
By Voiculescu’s theorem, if B = ,

lim
M→∞

∫
1

M
Tr (qB(X )) νM(dX )

=
n∑

i ,j ,k=1

lim
M→∞

∫
1

M
Tr (XiXjXjXiXkXk) νM(dX )

=
∑ n∑

i ,j ,k=1

ki j j k

=
∑

n]loops

because the indices have to be constant along loops.

Problem ; this only gives the generating function at integer values
of the fugacity and therefore does not permit to identify it.
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Non integer fugacities, β = 0 [cf Jones 99’]
Recall p

B∼ j if a string joins the pth boundary point with the jth

boundary point in the TL element B

j

*

p

.

qB(X ) =
∑

ij=ip if j
B∼p

Xi1 · · ·Xi2k ⇒ qvB(X ) =
∑

ej=eop if j
B∼p

σB(w)Xe1 · · ·Xe2k

• ei edges of a bipartite graph Γ = (V = V+ ∪ V−,E ) so that the
adjacency matrix of Γ has eigenvalue δ with eigenvector (µv )v∈V
with µv ≥ 0 (∃ for any δ ∈ {2 cos(πn )}n≥3 ∪ [2,∞[)
• The sum runs over loops w = e1 · · · e2k in Γ which starts at v .
v ∈ V+ iff ∗ is in a white region.

•If σ(e) :=
√

µt(e)

µs(e)
, e = (s(e), t(e)), we set σB(e1 · · · e2p) to be

the product
∏

i
B∼j
i<j

σ(ei ) of the σ(e) so that each string of B brings

σ(e) with e the edge which labels the start of the string.
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Non integer fugacities
For e ∈ E , e = (s(e), t(e)), XM

e are independent (except
Xeo = X ∗e ) [Mµs(e)]× [Mµt(e)] matrices with i.i.d centered
Gaussian entries with variance 1/(M

√
µs(e)µt(e)).

Recall qvB(XM) =
∑

w=e1···e2k∈LB
s(e1)=v

σB(w)XM
e1
· · ·XM

e2k

Theorem (G-Jones-Shlyakhtenko 07’)

Let Γ be a bipartite graph whose adjacency matrix has δ as
Perron-Frobenius eigenvalue. Let B be Temperley-Lieb element so
that ∗ is in an unshaded region. Then, for all v ∈ V+

lim
M→∞

E [
1

Mµv
Tr(qvB(XM))] =

∑
δ]loops

where the sum runs above all planar maps built on B.

Based on
∑

e∈E :s(e)=v µt(e) = δµv .
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Proof by examples

If B =

*

, for all v ∈ V+

E[
1

Mµv
Tr(

∑
e:s(e)=v

σ(e)XeXe0))] =
1

Mµv

∑
e:s(e)=v

√
µt(e)

µv

MµvMµt(e)

M
√
µt(e)µs(e)

=
1

µv

∑
e:s(e)=v

µt(e) = δ

If B =

*

, for all v ∈ V+

lim
M→∞

E[
1

Mµv
Tr(

∑
e:s(e)=v
s(f )=v

σ(e)σ(f )XeXe0Xf Xf 0)]

= δ2 +
1

µv

∑
e=f

µt(e)

µv

µ2
vµt(e)

µt(e)µv
= δ2 + δ

More generally, the edge is constant along the loop and brings the
contribution µt(e)/µv hence leading after summation to δ.
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Random matrices and the enumeration of maps with
several vertices

’t Hooft noticed in 1974 that matrix integrals are generating
functions for the enumeration of maps. If µN is the Gaussian law
on N × N Hermitian matrices, we have at list formally

log

∫
e−NTr(

∑p
i=1 tiqi (A1,··· ,Am))dµ⊗mN (A1, · · · ,Am)

=
∑

k1,..,kp∈N

∑
g≥0

1

N2g−2

p∏
j=1

(−tj)kj
kj !

M ((ki , qi )1≤i≤p; g)

where M ((ki , qi )1≤i≤p; g) counts maps with genus g build on ki
stars of type qi so that only half-edges of the same color are
matched.
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The formal derivation

To prove that formally

log
∫
e−NTr(

∑p
i=1 tiqi (A1,··· ,Am))dµ⊗mN (A1, · · · ,Am) is a generating

function for maps : Expand the exponential together with the
remarks
• For all monomials q1, . . . , qp we have∫ p∏

i=1

(NTr(qi (A1, · · · ,Am)))dµ⊗mN (A1, · · · ,Am) =
∑
g≥0

M(q1, . . . , qp; g)

N2−2g

where M(q1, . . . , qp; g) is the number of union of maps with genus
g which can be build upon one star of type q1, ..., one star of type
qp.
• Taking the logarithm reduces the sum to connected graphs.
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First order asymptotics

FN(t) =
1

N2
log

∫
e−NTr(Vt(A1,··· ,Am))dµN(A1)..dµN(Am), Vt =

p∑
i=1

tiqi .

Theorem Hypothesis : φVt : (A1(ij), · · · ,Am(ij))i≤j → Tr (Vt(A))
is real-valued. φVt is convex (or we add a cutoff).
For all ` ≥ 0, ∃ ε` > 0 so that if |t| =

∑p
i=1 |ti | ≤ ε`,

FN(t) =
∑̀
g=0

1

N2g

∑
k1,··· ,kp

∏ (−ti )ki
ki !

M ((qi , ki )1≤i≤p; g) + o

(
1

N2`

)

M ((qi , ki )1≤i≤p; g) = ]{maps with genus g with ki stars of type qi}

-m = 1 : Ambjórn et al. (95), Albeverio-Pastur-Scherbina (01),
Ercolani-McLaughlin (03)

-m ≥ 2 : G.-Maurel-Segala (` ≤ 1 (05)(06)),Maurel-Segala (for all ` (06))
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Small ti ’s expansion, more results

Take Vt =
∑p

i=1 tiqi . Let µ̂NA be the (mean) empirical distribution

µ̂NA (P) :=

∫
1

N
Tr (P(A1, · · · ,Am)) dµNVt

(A1, · · · ,Am)

dµNVt
(A1, · · · ,Am) = e−N

2FN(t)−Ntr(Vt(A1,··· ,Am))dµN(A1)..dµN(Am)

Then (same hypothesis as before)

µ̂NA (P) =
∑̀
g=0

1

N2g
τ

(ti )1≤i≤p
g (P) + o(

1

N2`
)

with

τ
(ti )1≤i≤p
g (P) =

∑∏ (−ti )ki
ki !

M((qi , ki )1≤i≤p, (P, 1); g).
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Proof. g = 0, Vt =
∑n

i=1 tiqi

All the limit points τt of

µ̂NA (P) :=

∫
1

N
tr (P(A1, · · · ,Am)) dµNVt

(A1, · · · ,Am)

satisfy Schwinger-Dyson’s (or loop) equation

τt(XiQ) = τt ⊗ τt (∂iQ)− τt(DiVQ) ∀Q ∈ C〈X1, · · · ,Xm〉 ∀i ∈ [1,m].

with ∂iP =
∑

P=P1XiP2
P1 ⊗ P2,DiP =

∑
P=P1XiP2

P2P1.

By convexity (or cutoff), ∃R <∞ so that |τt(q)| ≤ Rdeg q.
If |t| ≤ ε0, there is a unique solution

τt(q) =
∑

k1,··· ,kp∈N

p∏
i=1

(−ti )ki
ki !

M ((q, 1), (qi , ki )1≤i≤p; 0)
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How to get Schwinger-Dyson’s equation
By integration by parts, if q = q(A1, · · · ,Am)

∫
Tr(Aiq)dµNVt

=
∑
k,`

∫
[

1

N
∂Ai (`k)q`k − q`k∂Ai (`k)tr(V )]dµNVt

=

∫
[

1

N
Tr⊗ Tr](∂iq)− Tr(qDiV )]dµNVt

By concentration of measure for all monomial P

µNVt

(
| 1
N
TrP − µNVt

(
1

N
TrP)| ≥ δ

)
≤ Ce−cNδ

and therefore as N goes to infinity any limit point τ(P) of
µNVt
| 1
NTrP,P ∈ C〈X1, . . . ,Xn〉 satisfies the Schwinger equation

τt(Xiq) = τt ⊗ τt (∂iq)− τt(DiVq)
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Schwinger-Dyson are equivalent to Tutte equation
M((q1, k1) · · · (qp, kp), q) denotes the number of planar maps build
on ki stars of type qi and 1 of type q = Xi1 · · ·Xin . Tutte surgery
shows that M((q1, k1) · · · (qp, kp), q) equals

∑
q=Xi1

p1Xi1
p2

ki∑
`i=0

ki !

`i !(ki − `i )!
M((qi , `i )1≤i≤p, p1)M((qi , ki−`i )1≤i≤p, p2)

+

p∑
i=1

ki
∑

qi=q1
i Xi1

q2
i

M((q1, k1) · · · (qi , ki − 1) · · · (qp, kp), (qq2
i q

1
i , 1))

Put τt(q) =
∑∏ (−ti )ki

ki !
M((q1, k1) · · · (qp, kp), (q, 1)). Then,

summation shows that τt satisfies the Schwinger-Dyson equation

τt(XiQ) = τt ⊗ τt (∂iQ)− τt(DiVQ)

Advantage : we know that τt is a tracial state !
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Matrix models for loop models
Let Bi be Temperley Lieb elements with ∗ with color σi ∈ {+,−},
1 ≤ i ≤ p. Let Γ be a bipartite graph whose adjacency matrix has
eigenvalue δ as before. Let νM be the law of the previous
independent rectangular Gaussian matrices and set

dνM(Bi )i
(Xe) =

1‖Xe‖∞≤L

ZM
B

e
Mtr(

∑p
i=1 βi

∑
v∈Vσi

µvqvBi
(X ))

dνM(Xe).

Theorem (G-Jones-Shlyakhtenko-Zinn Justin 10’)

For any L > 2, for βi small enough real numbers, for any
Temperley-Lieb element B with color σ, any v ∈ Vσ,

lim
M→∞

∫
1

Mµv
tr(qvB(X ))dνM(Bi )i

(X ) =
∑
ni≥0

∑
δ]loops

p∏
i=1

βnii
ni !

where we sum over the planar maps build on ni TL elements Bi

and one B.
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Matrix model for the Potts model
Let δ ∈ {2 cos(πn )}n≥3∪ [2,∞[ and Γ = (V+∪V−,E ) be a bipartite
graph with eigenvalue δ and Perron-Frobenius eigenvector µ.

νMβ±(dXe) =
1‖Xe‖∞≤L

ZM
β±

e
Mtr

(∑
v∈V µv

∑
σ=± βσ1v∈Vσ(

∑
e:s(e)=v σ(e)XeX∗e )

2
)

∏
e

e−
M
2

(µs(e)µt(e))
1
2 tr(XeX∗e )dXedX

∗
e

Theorem (G-Jones-Shlyakhtenko-Zinn Justin 10’ )

Then, for L large enough, β± small enough, for all TL B, v ∈ VσB ,

lim
M→∞

1

Mµv

∫
tr(qvB(X ))νMβ±(dX )

=
∑

n+,n−≥0

∑∏
i=±

βnii
ni !

δ]loops =: Trβ±,δ(B)
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Recap about the Potts model
Assume for simplicity Γ finite hereafter (which includes
δ = 2 cos(π/n), n ≥ 3). By construction

∑
Γ

δ# loopsβ
#

− β
#

+

equals

lim
M→∞

1

M2
∑
µ(v)2

logZM
β±

with for L large enough ZM
β±

equals to∫
‖Xe‖≤L

e
MTr

(∑
v∈V µv (β+1v∈V+ +β−1v∈V− )(

∑
e:s(e)=v

√
µvµt(e)XeX∗e )

2
)
νM(dX )

if νM is the law of Xe , [Mµs(e)]× [Mµt(e)] matrices with iid

centered Gaussian entries with covariance (M2µs(e)µt(e))−
1
2
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Solving the matrix model :HS transformation
With Gv [Mµv ]× [Mµv ] independent matrices from the GUE and

Xe [Mµs(e)]× [Mµt(e)] matrices with covariance (M2µs(e)µt(e))−
1
2

under νM , with α± =
√

2β±, ∆(λ) =
∏

i 6=j(λi − λj), ZM
β±

=

=

∫
‖Xe‖≤L

e
MTr

(∑
v∈V µv (β+1v∈V+ +β−1v∈V− )(

∑
e:s(e)=v σ(e)XeX∗e )

2
)
νM(dX )

=

∫
‖Xe‖≤L

eMTr(
∑
σ=±

∑
v∈Vσ ασGv(

∑
e:s(e)=v

√
µvµt(e)XeX∗e ))νM(dX , dG )

≈
∫
‖Gv‖≤L′

∏
e∈E+

e−Tr⊗Tr(log(I+α+I⊗Gs(e)+α−Gt(e)⊗I ))νM(dG )

=

∫
|λei |≤L′

∏
e∈E+

e−
∑[Mµs(e)]

i=1

∑[Mµt(e)]

j=1 log(1+α+λei +α−ηej )

∆(ηe)∆(λe)e−
[Mµs(e)]

2

∑[Mµs(e)]

i=1 (λei )2−
[Mµt(e)]

2

∑[Mµt(e)]

j=1 (ηej )2

dλedηe .
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The auxiliary matrix model :large deviations
Let PM,L

α be absolutely cont. wrt Lebesgue with density

1|λv |≤L

ZM,L
α

∏
e∈E+

∏
1≤i≤[Mµs(e)]

1≤j≤[Mµt(e)]

1

1 + α+λ
s(e)
i + α−λ

t(e)
j

∏
v∈V

∆(λv )e−
Mµv

2

∑
(λvi )2

.

By large deviation analysis,

PM,L
α

(
d(

1

Mµv

∑
δλvi , νv ) < ε∀ v

)
≈ e−M

2[I (νv ,v∈V )−inf I ]

with if Σ(ν) =
∫

log |x − y |dν(x)dν(y)

I (νv , v ∈ V ) =
∑
v

µ2
v

2
(

∫
x2dνv (x)− 2Σ(νv ))

−
∑
e∈E+

µvµt(e)

∫
log |1 + α+x + α−y |dνv (x)dνt(e)(y) .

Moreover limM→∞M−2 logZM,L
α = − inf I
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The auxiliary matrix model (Kostov, 95’)

Let Γ be as before and consider the Gibbs measure PM,L
α absolutely

cont. wrt Lebesgue with density

1|λv |≤L

ZM,L
α

∏
e∈E+

∏
1≤i≤[Mµs(e)]

1≤j≤[Mµt(e)]

1

1 + α+λ
s(e)
i + α−λ

t(e)
j

∏
v∈V

∆(λv )e−
Mµv

2

∑
(λvi )2

.

Theorem [G-J-S-ZJ 10’]• I achieves its minimal value at a unique
set of probability measures νv , v ∈ V .
• ∃ ν+, ν− ∈ P(R), so that νv = ν± if v ∈ V±.
• For all L > 2 not too large,

lim
M→∞

E [
1

Mµv

[Mµv ]∑
i=1

(λvi )p] =

∫
xpdνv (x) ∀ p ∈ N, v ∈ V .
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More about the relation between Potts model and its
auxiliary model

Let M(z) =
∫ ∑

n≥0 z
nxndν+(x) and put

γ(z) = α+z/(1− z2M(z))

and

C (z ,A,B) =
∑
n≥0

zn
∑

δ`
βn+

+

n+!

β
n−
−
n−!

where we sum over the planar maps build over n+ (resp. n−)
vertices with two strings and two black (resp. white) regions and

one vertex of type Bn =
Then, for small z ,

C (z ,A,B) =
α+

z
[1− α+γ

−1(z)

z
].
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Study of ν−, ν+

(ν−, ν+) are the unique minimizers of,∑
ε=±

(
1

2

∫
x2dνε(x)−

∫
log |x − y |dνε(x)dνε(y)

)

+δ

∫
log |1 + α+x + α−y |dν+(x)dν−(y).

Let p+ (resp. p−) be the law of 1 + α+x and −α−y under ν+

(resp. ν−).
•For α± small enough, p± has a connected support [a±, b±]
around 1 (resp. 0) and a− < b− < a+ < b+.
• Set G±(z) =

∫
(z − x)−1dp±(x). Then

G±(z + i0) + G±(z − i0) = P±(z) + δG∓(z) z ∈ [a±, b±]

with P−(z) = z/α−, P+(z) = (1− z)/α+.
• If q = 2 cosπ/n, n ≥ 3, G± satisfy an algebraic equation.
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Exact solution for G±(z) =
∫

(z − x)−1dν±(z)
Introduce

u(z) =

∫ z

b−

1√
(v − a+)(v − a−)(v − b+)(v − b−)

dv ,

with inverse z(u). With δ = q + q−1 set

ω±(u) = q±1G+(z(u))− G−(z(u))± 1

q − q−1
(P+ + q±1P−)z(u).

Then ω±(u + 2K ) = ω±(u) ω±(u + 2iK ′) = q±2ω±(u)

Theorem
ω± are meromorphic with only poles at ±u∞.Set

Θ(u) = 2
∞∑
k=0

e
iπ
ω2
ω1

(k+1/2)2

sin(2k + 1)
πu

ω1

ω+(u) = c+
Θ(u − u∞ − νω1)

Θ(u − u∞)
+ c−

Θ(u + u∞ − νω1)

Θ(u + u∞)
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Conclusion

• Loop models can be represented by matrix models for a
continuum of fugacities δ.

• Therefore the computation of the matrix model allows to
identify the generating function for all δ by analyticity.

• The matrix model for the shaded O(n) model (or the Potts
model on random graphs) can be computed.
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