
Timescales of population rarity and commonness

in random environments

REGIS FERRIERE

�

; ALICE GUIONNET

y

, IRINA KURKOVA

z

22/09/2004

Abstract: This paper investigates the inuence of environmental noise on the

characteristic timescale of the dynamics of density-dependent populations. Gen-

eral results are obtained on the statistics of time spent in rarity (i.e. below

a small threshold on population density) and time spent in commonness (i.e.

above a large threshold). The nonlinear stochastic models under consideration

form a class of Markov chains on the state space ]0;1[ which are transient if

the intrinsic growth rate is negative and recurrent if it is positive or null. In

the recurrent case, we obtain a necessary and su�cient condition for positive

recurrence and precise estimates for the distribution of times of rarity and com-

monness. In the null recurrent, critical case that applies to ecologically neutral

species, the distribution of rarity time is a universal power law with exponent

�3=2. This has implications for our understanding of the long-term dynamics

of some natural populations, and provides a rigorous basis for the statistical

description of on-o� intermittency known in physical sciences.

Key words or phrases: Population dynamics - Stochastic non-linear di�er-

ence equations - Environmental stochasticity - Rarity - Ecological timescales -

Power law - On-o� intermittency - Markov chains - Martingales.

1 Introduction

Many of the traditional approaches in ecological theory are based on a paradigm

that the ecological systems that we observe in nature correspond in some way

to stable states of relatively simple ecological models. This is a view embodied

in many classic approaches to ecological problems, ranging from the use of

models to look at the coexistence of species to the interpretation of short-term
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experiments [May [25] ]. This approach, however, has been questioned. As

ecologists emphasize that long-term experiments yield di�erent results compared

with short-term experiments [Brown et al. [3]], theory must take the role of

timescales into account and look beyond an emphasis on determining asymptotic

stable states [Hastings [12]].

Of particular applied interest is the issue of identifying timescales that are

relevant for population management. Study of pests or disease outbreaks often

have the time spent by the system in quiescence as one of their focus. The con-

servation of threatened species requires an understanding of how individual and

environmental parameters a�ect the time spent by a population above some pre-

de�ned critical threshold of abundance. Planning the exploitation of renewable

resources in an uncertain world may also bene�t from probabilistic estimates of

time spent below and above prede�ned thresholds of ecological and economic

interest. This points to a common mathematical problem: given information

about the current population state, how can one characterize the distribution

of time spent (or needed) by a population trajectory within (or to reach) a par-

ticular domain of the population state space? Here we address this problem for

a class of unstructured, density-dependent stochastic population models which

includes the well-known Ricker model.

Theoretical ecologists have long used simple, unstructured models to inves-

tigate general properties of population dynamics. These models, however, often

miss essential features of natural populations, yielding predictions that turn out

to be wrong even qualitatively [Durrett and Levin 1994 [4]]. The di�erence

equation introduced by Ricker [3] makes a remarkable exception. Although it

was originally introduced in the tradition of phenomenological modelling, the

Ricker model has recently been re-derived from �rst principles accounting for the

discreteness of individuals, the stochastic nature of birth and death events, and

the spatial localization of interactions between individuals [Royama [34] , Ripa

and Lundberg [33], Sumpter and Broomhead [36]]. In a constant environment,

the model reads

X

n+1

= X

n

f(X

n

) (1)

where

f(X

n

) = exp[r � aX

n

]; (2)

and X

0

> 0. X

n

measures the population size (or density at time n). The

number r measures the per capita growth rate at low population density when

density-dependent e�ects are negligible; thus, � = exp(r) is the population's

geometric rate of increase from rarity. Unlimited growth is prevented by the

term exp(�aX

n

), where a > 0 measures the intensity of negative interactions

between individuals. This non-linear term typi�es the mode of density de-

pendence called overcompensatory, whereby xf (x ) decreases toward zero as x

becomes larger than some threshold (with undercompensatory density depen-

dence, xf(x) would be monotonically increasing).
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Notation. Hereafter we set � = f(0) for the model (1) with general fucntion

f(x) > 0; � is called the intrinsic growth rate.

The Ricker model shows a somewhat intricate transition from equilibrium

and cycles to chaos as r increases [May [26]]. The natural timescale of the

Ricker model in a constant environment is essentially determined by the intrinsic

growth rate. When � < 1, the origin is the only stable equilibrium state of the

system (hence lnX

n

goes to �1 and is thus transient), whereas when � > 1,

there are two equilibria : the origin, always unstable; and a positive equilibrium

which can be stable or not depending on the speci�c value of � (hence lnX

n

is recurrent). Multi-dimensional Ricker models are also of interest to describe

interacting populations of di�erent species [16].

Randomness, however, is inherent to the real world. Perhaps the simplest

way of incorporating stochasticity into (1) (cf. [29]) is to set

X

n+1

= X

n

f(X

n

) exp(Y

n

) (3)

where Y

n

; n = 0; 1; 2; � � � are i.i.d random variables with zero expectation; (X

n

)

is then a Markov chain (MC) on the state space ]0;1[. This noisy Ricker model

was �rst introduced in [Kornadt et al. 1991] and considered in the context of

MC theory by [Gyllenberg and all [10, 9]]. The random variable Y

n

can be

seen as an additive perturbation of the intrinsic growth rate, thus providing a

model of environmental stochasticity [9]; or as a perturbation of the population

density which is `felt' e�ectively by each individual in the population{a form of

stochasticity that we call random heterogeneity. Random heterogeneity arises

from di�erences in competitive abilities among individuals which may be rooted

in intrinsic individual di�erences or in spatial variation in habitat quality [15].

In the �rst case a simple choice is to assume the Y

n

to be Gaussian whereas in the

latter case, a typical choice for the law of Y

n

is the log-normal distribution [29].

This model generalizes straightforwardly to the case of N species in interaction.

Our goal in this paper is to study the time spent by the population within

given ranges of density. Of particular interest are the time T

�

spent in a state

of rarity de�ned by a small density threshold � > 0,

T

�

:= inffn � 1 : X

n

� �g (4)

when the current density X

0

is smaller than �, and the time T

M

spent in a state

of commonness de�ned by a large density threshold M > 0,

T

M

:= inffn � 1 : X

n

� Mg (5)

when the current density X

0

is larger than M . More generally, we de�ne the

exit time of the Markov chain (X

n

) starting at some X

0

> 0 from a domain A

of population densities (in R

+

) as

T

A

= inffn � 1;X

n

2 A

c

g (6)

so that T

�

= T

]0;�[

and T

M

= T

]M;1[

. We further de�ne the time of medium

abundance as T

[�;M ]

, and the time of escape from extremes as T

[�;M ]

c
. We then

ask the following questions.
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� What is the qualitative long-term pattern of population dynamics ? In

mathematical terms, we ask whether the MC is recurrent, null recurrent or

transient. This question was already adressed in [6] under the assumptions

that the law of the random noise has exponential moments. Here we relax

this assumption to consider moments of order strictly greater than one,

thereby extending the scope of the model to random heterogeneity.

� Then, we seek general results on the tail of the distribution of times of

rarity or commonness which are independent of the current population

density X

0

. This means asking how the probabilities P (T

�

> n) (if X

0

<

�), P (T

M

> n) (if X

0

> M ) and P (T

[�;M ]

c
> n) (if X

0

62 [�;M ]) behave

when n goes to in�nity. Almost equivalent is to ask for which p > 0

is E[(T

A

)

p

] �nite, given A =]0; �[, A =]M;1[ or A =]0; �[[]M;1[ with

X

0

62 A.

� Another interesting feature of the distribution of the times of rarity or

commonness concerns the dependence of their moments on the current

density X

0

. Therefore, we shall study the behavior of the pth moment of

T

A

, i.e. E

X

0

(T

A

)

p

for given A and p, as a function of the initial state X

0

;

namely, for given A =]0; �[ when X

0

! 0, or for given A =]M;1[ when

X

0

!1.

� How much do the preceeding results depend on the choice of the function f

and the distribution of the noise ?

� How do the results extend to multispecies interactions ?

We shall consider the noisy dynamical system (3) with a general continuous

function f : R

+

!R

+

and independent copies (Y

i

; i � 0) of a variable Y such

that E[Y ] = 0. Throughout this article we shall assume the following :

1. E[jY j

1+�

] <1 for some � > 0.

2. The function f(x) > 0 is continuous on [0;1[ and there exist a > 0, r 2 R

such that

lim

x!1

f(x)e

ax�r

= 1: (7)

The latter assumption says that at large density population growth is well

approximated by the Ricker model. A crucial consequence is that the results

will then only depend on whether the parameter � is strictly greater, smaller

or equal to one, that is, whether the population is intrinsically growing, or

declining, or neutral. For the Ricker model speci�ed by (2), these conditions

translate into r < 0, r > 0 and r = 0.

We recall the meaning of basic terminology used for the classi�cation MC

processes. We say that the MC is transient if there is a positive probability

that the time taken by the process, when initiated in any bounded segment

A = [a; b] �]0;1[ (with 0 < a < b < 1), to return to A, is in�nite; in other
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words, the probability that the MC never returns to A is positive. The MC

is recurrent if the return time to A is �nite almost surely. The MC is positive

recurrent if, in addition, the expectation of the return time to A is �nite too

and null recurrent if the expectation of this time is in�nite.

To help developing biological intuition for our analysis, it may be worth

emphasizing that, heuristically, a (single) population's transience will indicate

either extinction or escape toward in�nite density. Finding that the distribution

of time spent in a certain state has an exponential tail indicates that the popu-

lation typically visits that states for short time only; in contrast, a `polynomial'

or `heavy' tail tells that the population resides very long in that state.

Recurrent notations in this paper will be P

x

for the law of (X

n

; n � 0)

starting from X

0

= x, and E

x

for the expectation under P

x

.

2 Time of commonness and time of medium abun-

dance

The distribution of the random time T

M

of commonness (if M is �xed large

enough and X

0

> M ) is described by the following Theorem 2.1.

Theorem 2.1 (a) Asymptotics when X

0

! 1. For any X

0

> M > 0 we

have: E

X

0

T

M

<1. Furthermore

E

X

0

T

M

! 1; as X

0

!1; (8)

and T

M

! 1 a.s. as X

0

!1.

(b) Asymptotics of P

X

0

(T

M

> n) as n!1, when X

0

is �xed.

From the fact that E

X

0

T

M

< 1, we have P

X

0

(T

M

> n) = o(n

�1

ln

�1

n) as

n!1.

Assume that in addition for some �

0

> 0 E[e

�

0

Y

] < 1. Then there exists

� < 1 such that for any X

0

> M and any n � 1

P

X

0

(T

M

� n) � C(X

0

)�

n

(9)

with some constant C(X

0

). Moreover for all M large enough

� � inf

�>0

sup

x�M

f(x)

�

E[e

�Y

] < 1:

If this in�mum is reached for � = �

0

, then C(X

0

) � (X

0

=M )

�

0

.

Part (a) of the theorem says that the negative density-dependence can pull the

population out of extreme commonness in no longer than one step. Moreover,

the distribution of the time of commonness is qualitatively little sensitive to the

intrinsic growth �: its expectation E

X

0

T

M

is always �nite. Consequently, the

tail of the distribution of T

M

, P

X

0

(T

M

> n) decreases faster than (n lnn)

�1

as

n!1 for any current density X

0

larger thanM . In the case where the random
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noise has exponential moments (E[e

�Y

] <1), this tail even decreases exponen-

tially, as shown by equation (9)) where the constant 0 < � < 1 is independent

from the current density X

0

, and the function C(X

0

) can be computed from the

law of the environmental noise Y . Such estimate comes from the fact that the

event of a large time of commonness commonness occurs only when an event of

probability strictly less than one is repeated a number of times proportional to

n (which is a standard large deviation estimate).

The distribution of the random time of medium abundance T

[�;M ]

has also

an exponential tail.

Theorem 2.2 Assume that Y is not uniformly bounded almost surely, i.e for

all �1 < �M

0

< 0 < M < 1, P (�M

0

� Y � M ) < 1. Then, for all

M � � > 0, there exists �(�;M ) < 1 such that for all X

0

2 [�;M ],

P

X

0

(T

[�;M ]

� n) � �(�;M )

n

:

The hypothesis that the environmental noise Y is not uniformly bounded is

satis�ed by common choices of laws such as the normal or the log-normal laws,

so that we did not try to weaken it.

Let us now consider the two other random times T

�

and T

[�;M ]

c
, the behavior

of which depends on whether � < 1; � > 1; and � = 1.

3 Intrinsically declining populations

When � < 1, the MC is transient with escape to 0. Thus, for any rarity threshold

� > 0 and any current density smaller than �, there is a positive probability that

the time T

�

needed to cross the rarity threshold � is in�nite (10). The behavior

of the process is then trivial, as it follows from the law of large numbers [6].

The following formal statement is given only for the sake of completness.

Theorem 3.1 Assume � < 1 and E[jY j] <1.

Then the MC is transient. This means that for any compact subset A =

[a; b] �]0;1[ and any X

0

62 A P

X

0

(T

A

c

=1) > 0.

Furthermore for any � > 0 and any X

0

< �,

P

X

0

(T

�

=1) > 0: (10)

4 Intrinsically growing populations

When � > 1, the population MC is recurrent. Consider �rst the timescale of rar-

ity: a small rarity threshold � > 0 is �xed and the current density X

0

is smaller

than �. The expected time of rarity, E

X

0

(T

�

), is always �nite. Furthermore, we

show that for any X

0

small enough, the expected time of rarity remains of the

order of minus the logarithm of initial density, i.e. there are two positive con-

stants c

1

= c

1

(�) > 0 and c

2

= c

2

(�) > 0 such that c

1

< E

X

0

(T

�

)=j lnX

0

j < c

2

for any initial current density X

0

smaller than �. Similar to the case of the
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time of commonness (c.f Theorem 2.1), the statistics of rarity time are given by

P

X

0

(T

�

> n) going to zero faster than (n(lnn))

�1

when considering very long

time n, and this result holds irrespective of the current density X

0

. Under some

additional conditions on the environmental noise, namely E[e

(��Y )

] < 1 for

some � > 0, the distribution of time spent in rarity has an exponentially decay-

ing tail. In other words it is controlled according to P

X

0

(T

�

> n) < C(X

0

)�

n

for any time n � 1; here � < 1 is a constant independent of the current density

X

0

, whereas C(X

0

) depends upon X

0

.

Theorem 4.1 Assume � > 1. Then, the MC is recurrent, i.e for any bounded

segment A = [a; b] �]0;1[, T

A

c

is almost surely �nite: P

X

0

(T

A

c

< 1) = 1

for any X

0

> 0. It is positive recurrent, i.e. E

X

0

T

A

c

< 1 for any X

0

> 0,

i� E[e

Y

] < 1. For any X

0

< � we have E

X

0

T

�

< 1, so P

X

0

(T

�

> n) =

o((n lnn)

�1

) as n!1. We also have

E

X

0

T

�

= O(j lnX

0

j); X

0

! 0: (11)

Moreover this order is precise in the sense that :

lim inf

X

0

!0

E

X

0

T

�

j lnX

0

j

> 0: (12)

Assume that for some � > 0 Ee

��Y

< 1. Then there exists � < 1 such that

for any 0 < X

0

< � and any n � 1

P

X

0

(T

�

� n) � C(X

0

)�

n

(13)

with some constant C(X

0

). Moreover, � � inf

�>0

e

�� inf

[0;�]

ln f(x)

Ee

��Y

< 1.

If this in�mum is reached for � = �

0

, then C(X

0

) � (�=X

0

)

�

0

.

Finally, we obtain information about the time T

[�;M ]

c
of escape from ex-

tremes, that is the time needed for the population to reach a range of density

[�;M ] when initiated either below the rarity threshold �, or above the common-

ness threshold M . In particular, we compute precise estimates for the latter's

law, from which we derive the asymptotics of P

X

0

(T

[�;M ]

c > n) for long times

n. We show that this tail is of polynomial order � n

��

with degree given by

the largest number � > 0 such that E[e

�Y

] is �nite; thus, the tail depends on

the law of Y via the value of �. This heavy tail arises from the very long time

spent by the population regrowing from low density every time it falls short of

passing below the rarity threshold �.

Theorem 4.2 Assume � > 1. For any aM > r > � > 0, any X

0

62 [�;M ] and

any � 2 R

+

;

E[e

�Y

] <1 ) E

X

0

[T

�

[�;M ]

c

(lnT

[�;M ]

c
)

(��1��)^0

] <1 8� > 0 (14)

and conversely

E[e

�Y

] = +1 ) E

X

0

[T

�

[�;M ]

c

] = +1: (15)
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In particular, if we let �

0

= supf� 2 R

+

: E[e

�Y

] <1g, then for any � > 0

lim inf

n!1

n

�

0

��+1

P

X

0

(T

[�;M ]

c
= n) = 0

but

lim sup

n!1

n

�

0

+�+1

P

X

0

(T

[�;M ]

c
= n) = +1:

This result calls for two further comments. First, compared to [6], we show

that the chain is positive recurrent if � > 1 under the sole condition that

E[jY j

1+�

] < 1 (whereas [6] assumed that E[e

�Y

] < 1 for some � > 0) and

also specify the tail of T

[�;M ]

c
. Second, in (12), we in fact show (see (37) and

(40)) that there exists c; c

0

> 0 such that for su�ciently small X

0

c

0

(sup

x��

lnf(x))

�1

�

E

X

0

[T

�

]

ln � � lnX

0

� c(ln f(0))

�1

= c(ln�)

�1

: (16)

This already indicates that the expectation of T

�

is a function of � and � which

goes to in�nity when � goes to one and � goes to zero, as stated in Theorem 5.1.

5 Intrinsically neutral populations

When � = 1, we assume that E[jY j

2+�

1

] < 1 for some �

1

> 0. We also need

to assume that f(x) ! 1 as x ! 0 not too slowly: more precisely f(x) =

1 + o(j lnxj

�1��

2

) as x ! 0 with some small �

2

> 0. This means that the

population is neutral or almost neutral over a `fair' range of small densities.

If f were to go to one extremely slowly, one can intuitively guess that the

e�ect of neutrality would be o�set by the tendency of the population to grow

or decline at very low density. Under these assumptions, the population MC

is null recurrent. Thus, the expected time of rarity E

X

0

T

�

is in�nite, yet any

initially rare population will escape from rarity in �nite time with probability

one: P

X

0

(T

�

<1) = 1. We give a rigorous proof that the law of the time spent

in rarity, i.e. P

X

0

(T

�

= n), is approximated by a power law with exponent �3=2

as n ! 1. In contrast to the case � > 1, this law is universal, in the sense

that it does not depend upon the distribution of the environmental noise. This

behavior is the same as in the absence of population regulation (i.e. a = 0),

when the population growth is driven by environmental noise only.

Theorem 5.1 Let f(x) = 1+o(j lnxj

�1��

2

) as x! 0 and assume E[jY j

2+�

1

] <

1 for some �

1

; �

2

> 0.

Then the MC is null recurrent. This means that for any compact subset

A = [a; b] �]0;1[ and any X

0

62 A, P

X

0

(T

A

c

<1) = 1 but E

X

0

T

A

c

=1.

For any p < 1=2 and for any � > 0 there exists �(�) > 0 such that for all

X

0

< �

E

X

0

T

p

�

= O(j lnX

0

j

2p+�

); X

0

! 0: (17)
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For any p > 1=2, any � > 0 and any X

0

< �

E

X

0

T

p

�

=1: (18)

In particular for any � > 0 small enough, any X

0

< � and any � > 0 there exists

a constant C(X

0

; �; �) > 0 such that for all n � 1

C(X

0

; �; �)n

�3=2��

� P

X

0

(T

�

= n) � C(X

0

; �; �)n

�3=2+�

: (19)

Compared to [6] we show that null recurrence holds also under assumption

Ee

�Y

= 1 for all � > 0. All estimates given by the theorem are new. In

particular we recover the predicted exponent �3=2 for P

X

0

(T

�

= n), or equiv-

alently 1=2 for P

X

0

(T

�

> n) (cf. [7]). Thus, in such `neutral' populations, the

time spent in rarity is much longer than in commonness. The tail of this time

is universal, i.e. it does not depend on the tail of the environmental noise Y as

soon as Y has more than a second moment, and it is the same as for f(x) � 1

provided the growth rate f(x) departs from one su�ciently slowly as density

increases from zero.

Ferriere and Cazelles [7] observed in their simulations that the exponent

�3=2 arises for a suitable limit where � goes to one and � approaches zero.

We here recover this result in the particular case where � is exactly one. The

inequality (16) also shows that if sup

x��

lnf(x) goes to zero with �, the exponent

has to be greater than 1. It is not yet clear how the �3=2 exponent could be

recovered by taking such a limit.

6 Two-species interaction

The question of how these results extend to communities of interacting species

opens a promising avenue for future research. As a �rst step in this direction, we

report that the stochastic dynamics of two competing species with positive in-

trinsic growth can be transient { a result contrasting with the monospeci�c case

in which recurrence is guaranteed. Here, transience is understood in the sense

that the two-species community will not visit all possible ranges of densities

with positive probability. In fact, for some choices of the parameters, we show

that there exists a parameter � > 0 such that X

1

n

(X

2

n

)

��

is bounded below for

all times with positive probability provided this inequality holds at time n = 0.

However, the population X

1

n

will undergo phases of commonness and rarity in

�nite time. Although the population density X

2

is somehow `dominated' by

X

1

, we could not resolve whether the population density X

2

was limited by

some upper-boundary at all times with positive probability or not.

A formal result can be stated by considering the two-dimensional Ricker

model with parameters a

11

; a

12

; a

21

; a

22

> 0

X

1

n+1

= X

1

n

e

�a

11

X

1

n

�a

12

X

2

n

+r

1

+Y

1

n

(20)

X

2

n+1

= X

2

n

e

�a

21

X

1

n

�a

22

X

2

n

+r

2

+Y

2

n

(21)

9



on ]0;1[

2

where (Y

1

n

)

n2N

; (Y

2

n

)

n2N

are two independent sequences of i.i.d. ran-

dom variables.

Theorem 6.1 Assume that E[(Y

1

)

2

+(Y

2

)

2

] <1, r

1

; r

2

> 0, r

1

6= r

2

and one

of the following conditions is full�led:

1. r

1

a

21

� r

2

a

11

> 0, r

1

a

22

� r

2

a

12

> 0

2. r

1

a

21

� r

2

a

11

> 0, r

1

a

22

� r

2

a

12

< 0

3. r

1

a

21

� r

2

a

11

< 0, r

1

a

22

� r

2

a

12

< 0

Then the MC is transient.

Furthermore, we can describe the following ways of escape to in�nity.

1. Assume that either condition (1) holds or r

1

a

21

� r

2

a

11

> 0 together with

the assumption r

2

< r

1

. Let us �x � > 0 such that (r

1

� �)a

21

� r

2

a

11

> 0. Let

M > 0. Let

�

M

= inffn : r

2

lnX

1

n

� (r

1

� �) lnX

2

n

< Mg (22)

if r

2

lnX

1

0

� (r

1

� �) lnX

2

0

> M . Then

P (�

M

=1) > 0: (23)

Let T

A

(X

1

) = inffn � 0;X

1

n

2 A

c

g, i = 1; 2. Then, for any L; � > 0,

E

X

0

[T

L

(X

1

)] <1; E

X

0

[T

�

(X

1

) j �

M

=1] <1;

P

X

0

(T

[�;L]

c
(X

1

) ^ �

M

<1) = 1: (24)

2. Assume that either condition (3) holds or r

1

a

22

� r

2

a

12

< 0 together with

the assumption r

2

� r

1

. Let us �x � > 0 such that (r

1

+ �)a

22

� r

2

a

12

< 0. Let

M > 0. Let

�

M

= inffn : r

2

lnX

1

n

� (r

1

+ �) lnX

2

n

> Mg (25)

if r

2

lnX

1

0

� (r

1

+ �) lnX

2

0

< M . Then

P (�

M

=1) > 0: (26)

Let T

A

(X

2

) = inffn � 0;X

2

n

2 A

c

g. Then, for any L; � � 0,

E

X

0

[T

L

(X

2

)] <1; E

X

0

[T

�

(X

2

) j �

M

=1] <1;

P

X

0

(T

[�;L]

c
(X

2

) ^ �

M

<1) = 1: (27)

We see that the two-populationMC can be transient even for some r

1

> 0; r

2

> 0

while in the one-dimensional case it is always recurrent for r > 0. We conjecture

that in the remaining case r

1

a

21

� r

2

a

11

< 0 and r

1

a

22

� r

2

a

12

> 0 the chain is

recurrent, as it can be suspected from the vector �eld of mean drifts, or from

the isocline structure of the associated deterministic dynamical system.
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7 Discussion

The importance of identifying the biologically relevant timescales of ecological

models, rather than focusing on their asymptotics, albeit emphasized only re-

cently [Hastings [12]], has long been recognized in some areas of population

biology. In the study of epidemic dynamics, for example, the relevant timescale

can be the scale of a single outbreak, or longer if the question of interest is

the timing between epidemics [Finkenstadt and Grenfell [8]]. Another example

arises in the study of plankton community dynamics in temperate regions, where

seasonality can reduce the relevant timescale to less than one year, making the

asymptotic behavior of models meaningless [Huisman and Weissing, [18], [19]].

Environmental stochasticity can play a crucial role in determining the rele-

vant timescales of a population's dynamics. For example, adding stochasticity

to a metapopulation models could turn convergence to a stable focus equilib-

rium into a kind of dynamics that would likely be identi�ed as a noisy cycle

by empiricists [Gurney et al. [28]], implying that the deterministic equilibrium

provides limited biological insight; instead, the period of the apparent cycle

unravels a relevant timescale to interpret uctuations in such a system. Even

small noise can induce rapid uctuations of large amplitude in population mod-

els that would otherwise converge to stable equilibria [Higgins et al. [14]], e.g.

by stabilizing population trajectories around chaotic repellors [Rand and Wilson

[31]].

Gyllenberg et al. [11] were the �rst to establish conditions under which

recurrence and null recurrence occur in the Ricker model studied in this pa-

per; they also addressed the case where the noise a�ects our parameter a, which

represents a random perturbation of the carrying capacity of the habitat. Fager-

holm and Hognas [6] extended their results by considering the case where our

parameter a is also a�ected by i.i.d. random perturbations. Our analysis o�ers

a natural continuation of these previous studies that (i) assumes less stringent

conditions on the moments of the random variables, (ii) provides precise and

rigorous estimates of the laws of several characteristic times, (iii) paves the way

for tackling similar issues in multispeci�c communities.

Extension (i) is interesting as it broadens the scope of the model to the case

where noise reects random heterogeneity. Extension (ii) has several important

implications. Building on previous heuristics and numerical studies, it yields a

rigorous basis for the phenomenon of on-o� intermittency. The notion of on-

o� intermittency refers to a certain class of burst-and-crash dynamics; it was

�rst described in physical systems (Heagy et al. [13]) and later found to be

relevant in the ecological context (Ferriere and Cazelles [7]). We have shown

(cf. Theorem 2.2) that for unbounded noise the distribution of time spent in a

medium abundance has exponentially decaying tail. Therefore, the population

spends most of the time uctuating in states of commonness or rarity. The

time spent in these states can be inuenced by the tail of the environmental

noise when � � 1. If � > 1, the distribution of the exit time of these extreme

states can have heavy tail (c.f Theorem 4.2) even though the distributions of the

time spent in either commonness or rarity have exponential time. If � = 1, the

11



population spends most of the time in rarity with occasional short outbursts

(cf. Theorem 5.1). For such neutral species, the distribution of rarity times

can be approximated by a power law with exponent �3=2; this approximation

is universal in the sense that it does not depend upon the law of the noise,

provided the latter has �nite second moment. Ferriere and Cazelles [7] found a

good �t of this approximation to real data on �sh population dynamics.

Many previous mathematical studies of population models based on stochas-

tic di�erence equations trace back to the seminal work of Ellner [5]. The �rst

detailed study of a noisy version of the Ricker model similar to ours was carried

out by Scha�er et al. [35]. Kornadt et al. [23] have considered a di�erent model

of environmental stochasticity and investigated how stability of the non-trivial

equilibrium and period-two cycles of the deterministic Ricker map was a�ected.

Similar questions were raised by Sun and Yang [37] for a model of noise reecting

random immigration. Hognas [17] studied the quasi-stationary distribution of

the MC on a countable state space (branching process) that describes a popula-

tion regulated by the Ricker mechanism with � > 1. In Athreya and Dai [2], the

state space is continuous but the regulatory mechanism is given by the simple

logistic map; they study convergence and the existence of a stationary measure.

Ramanan and Zeitouni [30] considered small noise operating additively on an

iterative map of a compact interval, like the logistic map. In their case, extinc-

tion (i.e. transience in this study) was possible even with � > 1, and a tension

arose between this e�ect of stochasticity and the deterministic dynamics; for

small noise, this tension resulted into large extinction times. There have been a

number of large deviation analysis conducted on discrete-time models relevant

for ecological applications. Morrow and Sawyer [27] studied the large deviation

tail of the exit time from a neighborhood of a stable �xed point of a MC in the

limit where the noise vanishes as time goes to in�nity; Kifer [21, 22] studied

in a broad generality the large deviation estimates for small perturbations of

dynamical systems.

Whether the universal power law found for a single neutral population exists

for multi-speci�c communities warrants further investigation. From an ecolog-

ical viewpoint, it would be interesting to elucidate the potential relationship

between the exponent of such putative laws, and the structure of the network

of interactions|how many species involved, who interact with whom, and how?

The goal then might be to �nd some signature of a community's structure in

the time series of those neutral or quasi neutral species (i.e. having a � close

to one) exhibiting on-o� dynamics. Another desirable extension should aim at

incorporating temporal autocorrelation in the noise. Temporal autocorrelation

in random environments can have dramatic consequences on the dynamics of

density-dependent populations (Kaitala et al. [20], Ripa and Lundberg [33]).

Yet, the e�ect of autocorrelation at the characteristic timescales of rarity and

commonness remains completely unknown.
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8 Appendix : proofs of the theorems

The proofs of all our statements rely on martingale techniques.

Notation. Everywhere below we denote by E

X

0

;::: ;X

i

the conditional expectation

over the sigma-�eld F

i

= F(X

0

; : : : ; X

i

).

8.1 Proof of Theorem 2.1.

First, we need to get an a priori estimate for E

X

0

T

M

(28). For any X

0

large

enough, de�ne

ln

�

X

n

= lnX

0

+

n

X

i=1

�

(lnX

i

� lnX

i�1

) _ (�1)

�

:

Due to the assumption (7) on the function f(x), we may assume below that

f(x) � e

�ax+r+�

for all x � M and some � > 0. Then

E[ln

�

X

n

� ln

�

X

n�1

j X

n�1

> x]

� E[(�aX

n�1

+ r + Y

n

+ �) _ (�1) j X

n�1

> x]

� (�ax + r + �+ 1)P (Y > �1 + aX

n�1

� r j X

n�1

> x)� 1

+ E[Y 1

fY>�1+aX

n�1

�r��g

j X

n�1

> x]

� �1 + E[Y 1

fY>�1+ax�r��g

] = �1 + o(1); x!1

where we used the factE[Y 1

Y >�1+ax�r��

]! 0 as x!1 due to the assumption

EjY j <1. Thus for all x large enough

E[ln

�

X

n

� ln

�

X

n�1

j X

n�1

> x] � �1=2

for all n � 1. It follows that

E[ln

�

X

n^T

M

j F

n�1

] � ln

�

X

n�1^T

M

�

1

2

1

fT

M

>n�1g

;

hence

E

X

0

[ln

�

X

n^T

M

] � E

X

0

[ln

�

X

n�1^T

M

]�

1

2

P

X

0

(T

M

> n� 1);

and therefore

E

X

0

[ln

�

X

n^T

M

] � �

1

2

n

X

i=1

P

X

0

(T

M

> i� 1) + lnX

0

:

But ln

�

X

n

� lnX

n

and ln

�

X

n

� ln

�

X

n�1

� 1 � lnX

n�1

� 1 so that ln

�

X

n^T

M

�

lnM � 1 by the de�nition of T

M

and ln

�

X

n

. Then

lnM � 1 � �

1

2

n

X

i=1

P

X

0

(T

M

> i � 1) + lnX

0

13



for all n � 1, whence

E

X

0

T

M

=

1

X

i=1

P

X

0

(T

M

> i � 1) � 2(lnX

0

� lnM + 1): (28)

Note that this inequality was obtained under the mere assumption that f(x) �

e

�ax+r+�

for all x � M and some � > 0. The next result requires the more

precise estimate that for x � M with M �xed large enough

e

�ax+r��

� f(x) � e

�ax+r+�

for some � 2 (0;

1

2

r). We have the following renewal equation:

E

X

0

T

M

= P

X

0

(T

M

= 1) +E

X

0

[1

X

1

>M

E

X

1

[T

M

+ 1]]: (29)

The �rst term in this sum is the probability that the set ]0;M ] is reached in one

step. Since f(x) � e

�ax+r+�

for x � M , we �nd that

P

X

0

(T

M

= 1) = P

X

0

(X

1

� M ) � P

X

0

(X

0

e

�aX

0

+r+�+Y

� M )

= P (Y < lnM � lnX

0

+ aX

0

� r � �): (30)

By the assumption EjY j

1+�

<1 we have P (Y > t) � Ct

�1��

with some C > 0

and all t > 0, which yields when lnM � lnX

0

+ aX

0

� r � � � 0

P

X

0

(T

M

= 1) � 1�C(lnM � lnX

0

+ aX

0

� r � �)

�1��

: (31)

Thus

P

X

0

(T

M

= 1)! 1; X

0

!1: (32)

The remaining term is bounded according to (28) by

E

X

0

[1

X

1

>M

E

X

1

[T

M

+ 1]] � E

X

0

[1

X

1

>M

(1 + 2(lnX

1

� lnM + 1))]

� E

Y

(1

Y>lnM�lnX

0

+aX

0

�r��

(1+2(Y+lnX

0

�aX

0

+r+�)�2 lnM+2)):

Again the assumption EjY j

1+�

< 1 and Chebychev's inequality imply, with

A = lnM � lnX

0

+ aX

0

� r � �, that

E[1

Y>lnM�lnX

0

+aX

0

�r��

(1 + 2(Y + lnX

0

� aX

0

+ r + �) � 2 lnM + 2)]

= E[1

Y�A

(3 + 2(Y �A))] � A

��

E[jY j

�

(3 + 2jY j)]

� C

0

(lnM � lnX

0

+ aX

0

� r � �)

��

with some constant C

0

> 0 for all X

0

large enough. Hence

E

X

0

[1

X

1

>M

E

X

1

[T

M

+ 1]]! 0; X

0

!1: (33)

Combining (29), (32) and (33) we deduce that E

X

0

T

M

! 1 as X

0

! 1. Fur-

thermore by (31)

P

X

0

(T

M

> 1) � C

1

X

�1��

0
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with some constant C

1

> 0. Then T

M

! 1 a.s. as X

0

! 1 by Borel-Cantelli

lemma.

Let us now prove the estimate (9). By Chebyshev's inequality for all � > 0

P

X

0

(T

M

> n) = P

X

0

(lnX

i

> lnM 8i = 1; : : : ; n)

= P

X

0

(e

�(lnX

n

�lnX

0

)

� e

�(lnM�lnX

0

)

; X

i

> M 8i = 1; : : : ; n� 1)

� e

��(lnM�lnX

0

)

E[e

�(lnX

n

�lnX

0

)

1

fX

i

>M8i=1;::: ;n�1g

]

= (X

0

=M )

�

E

X

0

h

e

�(lnX

1

�lnX

0

)

1

fX

1

>Mg

E

X

0

;X

1

h

e

�(lnX

2

�lnX

1

)

1

fX

2

>Mg

� � �1

fX

n�2

>Mg

E

X

0

;::: ;X

n�2

h

e

�(lnX

n�1

�lnX

n�2

)

1

fX

n�1

>Mg

E

X

0

;::: ;X

n�1

h

e

�(lnX

n

�lnX

n�1

)

ii

� � �

ii

: (34)

Note that for any i = 0; 1; : : : ; n� 1

1

fX

i

>Mg

E

X

0

;::: ;X

i

e

�(lnX

i+1

�lnX

i

)

� sup

x�M

f(x)

�

Ee

�Y

:

Applying this inequality subsequently for i = n � 1; n� 2; : : : ; 0 to the right-

hand side of (9) we bound its left-hand side by (X

0

=M )

�

�(�)

n

where �(�) =

sup

x�M

f(x)

�

Ee

�Y

.

Our �nal task is to optimize this bound over � > 0. The function �(�)

exists at least for � 2 [0; �

0

] as Ee

�

0

Y

< 1. Furthermore �(0) = 1 and

�

0

(0) = sup

x�M

ln f(x) < 0, from where �(�) < 1 for � > 0 small enough.

Thus � = inf

�>0

�(�) < 1 and (9) follows.

8.2 Proof of Theorem 2.2

The proof of this theorem is straightforward since

P

X

0

(T

[�;M ]

� n) = P

X

0

�

\

1�k�n�2

fX

k

f(X

k

)e

Y

k

2 [�;M ]; X

k

2 [�;M ]g

�

� P

X

0

(\

1�k�n�2

fK

min

(�;M ) + � � Y

k

� K

max

(�;M ) +Mg)

= �(�;M )

n�2

withK

min

(�;M ) = � logmax

x2[�;M ]

(xf(x)),K

max

(�;M ) = � logmin

x2[�;M ]

(xf(x)),

and

�(�;M ) = P

X

0

(K

min

(�;M ) + � � Y � K

max

(�;M ) +M ) < 1

since we assumed that Y is not compactly supported and 0 < min

x2[�;M ]

(xf(x)) �

max

x2[�;M ]

(xf(x)) <1.
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8.3 Proof of Theorems 4.1 and 4.2.

Let us start by the proofs of (11) and (12). Assume that � is �xed small enough.

We �x �

0

> � and introduce

~

X

n

= X

n

^ �

0

. Then

E(ln

~

X

n

� ln

~

X

n�1

j X

n�1

= x)

= E[(� lnf(x) + Y )1

fY <� ln(xf(x))+ln �

0

g

] (35)

+E[(ln �

0

� lnx)1

fY >� ln(xf(x))+ln �

0

g

] = lnf(0) + o(1) � ln f(0)=2; x! 0:

Here we used the facts that ln f(0) > 0 and, due to EY = 0 and EjY j

1+�

<1,

E[Y 1

fY<� ln(xf(x))+ln �

0

g

] = E[Y 1

fY�� ln(xf(x))+ln �

0

g

]! 0; x! 0;

and by Chebyshev's inequality

P (Y � � ln(xf(x)) + ln �

0

) �

EjY j

1+�

(� ln(xf(x)) + ln �

0

)

1+�

= o((� ln x)

�1

);

as x! 0: Thus ln

~

X

n^T

�

is a negative submartingale and for � su�ciently small

E

X

0

[ln

~

X

n^T

�

] � E

X

0

[ln

~

X

n�1^T

�

] +

ln f(0)

2

P

X

0

(T

�

� n � 1)

resulting, for all n � 0, with

ln �

0

� E

X

0

[ln

~

X

n^T

�

] � lnX

0

+

lnf(0)

2

n�1

X

p=0

P

X

0

(T

�

� p): (36)

Hence, T

�

<1 almost surely as a consequence of Borel Cantelli's lemma. More-

over

ln f(0)

2

E

X

0

[T

�

] � ln �

0

� lnX

0

(37)

which proves (11).

To get the lower bound on E

X

0

[T

�

] claimed in (12), �rst of all, starting from

the rough estimate

E[lnX

n

� lnX

n�1

j X

n�1

< �] � E

Y

[(d+ Y )] = d (38)

with d = sup

x2[0;�]

lnf(x) > 0 and proceeding in the same way as for (36) we

obtain the upper bound

E

X

0

lnX

n^T

�

� d

n

X

i=1

P

X

0

(T

�

> i� 1) + lnX

0

: (39)

Since T

�

<1 a.s. by (11), then lnX

n^T

�

! lnX

T

�

a.s. Note also that

j lnX

n^T

�

j � Z =

1

X

k=1

j lnX

k^T

�

� lnX

k�1^T

�

j+ lnX

0

:
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We have

E(j lnX

k^T

�

� lnX

k�1^T

�

j j F

k�1

)

= E(j lnX

k^T

�

� lnX

k�1^T

�

j1

T

�

>k�1

j F

k�1

) � (d+ EjY j)1

T

�

>k�1

:

Then Ej lnX

k^T

�

� lnX

k�1^T

�

j < CP (T

�

> k � 1) with some constant C > 0.

We have already shown that E

X

0

T

�

=

P

1

i=0

P

X

0

(T

�

> i) <1, then EZ is �nite.

Hence, the dominated convergence theorem applies to the sequence lnX

n^T

�

:

E

X

0

lnX

n^T

�

! E

X

0

lnX

T

�

:

But from the de�nition of T

�

we have E

X

0

lnX

T

�

� ln �. Thus taking the limit

as n ! 1 in (39) we get the lower bound for E

X

0

T

�

valid for all X

0

small

enough:

(ln �� lnX

0

)=d � E

X

0

T

�

(40)

showing (12).

The proof of (13) is analogous to that of (9). Namely,

P

X

0

(T

�

> n) = P

X

0

(� lnX

i

> � ln � 8i = 1; : : : ; n)

= P

X

0

(e

�(� lnX

n

+lnX

0

)

� e

�(� ln �+lnX

0

)

; X

i

< �; 8i = 1; : : : ; n� 1)

� (�=X

0

)

�

E[e

�(� lnX

n

+lnX

0

)

1

fX

i

<� 8i=1;::: ;n�1g

] (41)

for all � > 0. We rewrite the right-hand side of (41) as a sequence of conditional

expectations like in (34). Each of them is bounded from above by:

1

fX

i

<�g

E

X

0

;::: ;X

i

e

�(� lnX

i+1

+lnX

i

)

� 1

fX

i

<�g

f(X

i

)

��

Ee

�hY

� e

�� inf

[0;�]

ln f

E[e

��Y

] = �(�):

Then the right-hand side of (41) obeys the upper bound (�=X

0

)

�

�(�)

n

with

�(�) �nite for all � � 0 small enough, �(0) = 1 and �

0

(0) = � inf

[0;�]

lnf < 0

for � small enough. Hence inf

�>0

�(�) < 1 and (13) is proved.

We are now ready to prove the recurrence of the MC. We denote by A the

compact A = [�;M ], then T

[�;M ]

c
= inffn � 1 : X

n

2 Ag. We �x � > 0 small

enough and M large enough such that

P (Y > lnM � sup

x2[0;�]

lnf(x) � ln �) =  < 1:

We prove that for any current density X

0

2 A

c

the time to reach [�;M ] satis�es

T

[�;M ]

c
<1 a.s. (42)

Let T

1;M

= inffn � 0 : X

n

< Mg, T

1;�

= inffn > T

1;M

: X

n

> �g; : : : ;

T

k;M

= inffn > T

k�1;�

: X

n

< Mg, T

k;�

= inffn > T

k;M

: X

n

> �g. Then by

(8) and (11)

P

X

0

(\

1

k=1

fT

k;M

<1; T

k;�

<1g) = 1: (43)
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But

P

X

0

(T

[�;M ]

c
> T

k;�

) � P

X

0

(X

T

1;�

> M;X

T

2;�

> M; : : : ;X

T

k;�

> M )

= E

X

0

[1

fX

T

1;�

>M;X

T

2;�

>M;::: ;X

T

k�1;�

>Mg

P

X

T

k�1;�

(X

T

k;�

> M )]

� E

X

0

(1

fX

T

1;�

>M;X

T

2;�

>M;::: ;X

T

k�1;�

>Mg

)P (Y > lnM � sup

x2[0;�]

ln f(x) � ln �)

� � � � � [P (Y > lnM � sup

x2[0;�]

lnf(x) � ln �)]

k

= 

k

! 0; k !1;

where 0 �  < 1. It follows that

P

X

0

�

[

1

k=1

(T

[�;M ]

c < T

k;�

)

�

= lim

k!1

P

X

0

(T

[�;M ]

c < T

k;�

) = lim

k!1

1� 

k

= 1;

implying together with (43) that T

[�;M ]

c <1 a.s.

Let us show that E[e

Y

] = 1 implies E

X

0

[T

[�;M ]

c
] = 1 which proves that

the recurrence of the MC is null. First of all, we remark that E

X

0

lnX

T

M

=

E

X

0

(lnX

1

1

fT

M

=1g

)+E

X

0

(lnX

T

M

1

fT

M

�2g

):Here, due to the inequality e

�ax+r��

�

f(x) � e

�ax+r+�

for x � M and some � > 0, we have:

E

X

0

[lnX

1

1

fT

M

=1g

] � E

X

0

[(lnX

0

� aX

0

+ r + Y

1

� �)1

fY

1

<lnM�r+aX

0

�lnX

0

��g

]

> �1 (44)

but

E

X

0

(lnX

T

M

1

fT

M

�2g

) � E

X

0

(lnX

2

1

T

M

�2

)

= E

X

0

[(lnX

0

� aX

0

+ 2r + 2� + Y

1

�aX

0

e

�aX

0

+r��+Y

1

+ Y

2

)1

fY

1

>lnM�r+aX

0

�lnX

0

��g

]

= �1; (45)

whence E

X

0

[lnX

T

M

] = �1. As we have E

X

0

[lnX

T

M

1

fX

T

M

��g

] > �1, then

E

X

0

[lnX

T

M

1

fX

T

M

<�g

] = �1, that is

E

X

0

[j lnX

T

M

j1

fX

T

M

<�g

] = +1: (46)

Let us also observe that by (12) there exists a constant C > 0 such that for all

X

0

< �

E

X

0

T

�

� Cj lnX

0

j: (47)

We may now conclude from (46) and (47) that

E

X

0

[T

[�;M ]

c
] � E

X

0

E

X

T

M

[T

�

1

fX

T

M

<�g

] � E

X

0

[Cj lnX

T

M j1

fX

T

M

<�g

] = +1:

(48)
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The positive recurrence of the MC under the assumption Ee

Y

< 1 has been

proved in [6]. The proof in the genereal case of f(x) with lnf(0) > 0 is com-

pletely analogous: it uses the same test function g(x) = x1

fx�x

0

g

+a

�1

j lnxj1

fx<x

0

g

(where x

0

is such that ax

0

= j lnx

0

j) for which the expansions (50), (51) with

� = 1 are valid. Therefore we do not repeat it.

Finally we turn to the re�nements claimed in (14) and (15). Let us �rst

prove (15). Observe that for any �nite X

0

6= 0, E[e

�Y

] = +1 implies that

E[1

fX

2

�1g

(ln

1

X

2

)

�

] = +1: (49)

Indeed,

lnX

2

� (lnX

0

� (aX

0

�r)+2�+Y

0

+r+Y

1

)� (aX

0

e

�(aX

0

�r)��

)e

Y

0

:= Z

1

�Z

2

with E[jZ

1

j

�

] < 1 since Y

1

; Y

0

have �nite �rst moment, but E[(Z

2

)

�

] = +1

by our assumption. (49) follows readily. We now prove that there exists a

�

> 0

and b

�

�nite such that for any X

0

< �

E

X

0

[T

�

�

] � a

�

1

fX

0

��g

(ln

�

X

0

)

�

+ b

�

This is enough to get the desired estimate by starting at time n = 2 and trans-

lating T

�

by 2 as in the proof of the null recurrence. Set S

n

= lnX

n

so that

S

n^T

�

= S

0

+

n^T

�

X

k=0

lnf(X

k

) +

n^T

�

X

k=0

Y

k

:

We de�ne M

n

=

P

n

k=0

Y

k

. Since d = sup

x2[0;�]

lnf(x) > 0, then ln f(X

k

)'s

are non-negative in this sum and bounded from above by d. Then for any time

n � 0

S

n^T

�

� S

0

+ d(n ^ T

�

) +M

n^T

�

:

In particular, since on T

�

� n, S

n^T

�

� ln � we get

ln � � (S

0

+ d(T

�

^ n) +M

T

�

^n

)

so that for all n 2 N

1

fT

�

�ng

� [(ln �� S

0

) _ 0] � 1

fT

�

�ng

� [(d(T

�

^ n) +M

T

�

^n

) _ 0]:

Integrating the power � > 0 of this inequality and using that for any a; b 2 R,

any � � 0, ja+ bj

�

� 2

�

(jaj

�

+ jbj

�

), we obtain

E[[(ln

�

X

0

) _ 0]

�

1

fT

�

�ng

] � E[jd(T

�

^ n) +M

T

�

^n

)j

�

1

fT

�

�ng

]

� 2

�

d

�

E[(T

�

^ n)

�

] + 2

�

E[jM

T

�

^n

j

�

]:
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By Burkholder-Davis-Gundy inequality (see e.g [32], Theorem 4.1 p. 160), since

(M

n

)

n�0

is a martingale with < M >

n

= E[Y

2

]n, we know that for any � > 0,

there exists a �nite constant C

�

such that

E[jM

T

�

^n

j

�

] � C

�

E[(T

�

^ n)

�

2

] � C

�

(1 + E[(T

�

^ n)

�

])

so that we get

[(ln

�

X

0

) _ 0]

�

P (T

�

� n)� 2

�

C

�

� 2

�

(d

�

+C

�

)E[(T

�

^ n)

�

]:

We can now let n going to in�nity and use monotone convergence theorem with

the fact that T

�

is almost surely �nite to conclude

[(ln

�

X

0

) _ 0]

�

� 2

�

C

�

� 2

�

(d

�

+C

�

)E[T

�

�

]

which �nishes the proof of (15) with (49).

Finally it remains to prove (14). Let us introduce a positive function g(x) =

ja

�1

lnxj

�

for x < x

0

and g(x) = x

�

for x � x

0

with x

0

chosen so that g is

continuous. Here, a is such that lim

x!1

e

ax�r

f(x) = 1; hence a

�1

x

�1

ln f(x) =

�1 + O(x

�1

) as x ! 1. Then by the assumptions EY = 0, EjY j < 1 and

Ee

�Y

<1 we have the following asymptotic expansions

E[g(X

n+1

)� g(X

n

)jX

n

= x]

= E[(ja

�1

ln(xf(x)) + a

�1

Y j

�

� x

�

)1

fY<� ln f(x)�ln(x=x

0

)g

]

+ E[(x

�

f(x)

�

e

�Y

� x

�

)1

fY�� ln f(x)�ln(x=x

0

)g

]

= x

�

(��)

lnx

ax

(1 + o(1)) = ��a

�1

x

��1

lnx(1 + o(1)); x!1 (50)

and

E[g(X

n+1

)� g(X

n

)jX

n

= x]

= E[(ja

�1

ln(xf(x)) + a

�1

Y j

�

� ja

�1

lnxj

�

)1

fY <� ln f(x)�ln(x=x

0

)g

]

+E[(x

�

f(x)

�

e

�Y

� ja

�1

lnxj

�

)1

fY�� ln f(x)�ln(x=x

0

)g

]

= ja

�1

lnxj

�

E[(j1 + (ln f(x) + Y )(lnx)

�1

j

�

� 1)1

fY <� ln f(x)�ln(x=x

0

)g

]

+ o(j lnxj

��1

)

= ja

�1

lnxj

�

�(ln f(x))(ln x)

�1

(1 + o(1))

= ��a

��

(ln f(0))j lnxj

��1

(1 + o(1)); x! 0: (51)

Let us now start from some X

0

=2 [�;M ] with � chosen small enough and M

large enough. Then g(X

n^T

[�;M]

c

) is a positive supermartingale. Note that

ja

�1

lnxj

��1

= g(x)

1�

1

�

for x < x

0

and x

��1

= g(x)

1�

1

�

for x > x

0

. Thus with

some constant � > 0

E[g(X

n+1

)� g(X

n

) j X

n

= x] � ��(g(x))

1�

1

�

8x 62 [�;M ]; (52)
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whence

E

X

0

[g(X

(n+1)^T

[�;M]

c

)� g(X

n^T

[�;M]

c

)] � ��E

X

0

[g(X

n

)

1�

1

�

1

fT

[�;M]

c�ng

]: (53)

Assume � < 1 so that x!x

1��

�1

is decreasing. Then for any sequence p

n

> 0,

E

X

0

[g(X

n

)

1�

1

�

1

fT

[�;M]

c�ng

] � p

1�

1

�

n

E

X

0

[1

fg(X

n

)�p

n

g

1

fT

[�;M]

c�ng

]

� p

1�

1

�

n

�

P

X

0

(T

[�;M ]

c
� n) �

E

X

0

(g(X

n

)1

fT

[�;M]

c�ng

)

p

n

�

so that �nally we deduce

�p

1�

1

�

n

P

X

0

(T

[�;M ]

c
� n) (54)

� E

X

0

[g(X

n^T

[�;M]

c

)� g(X

(n+1)^T

[�;M]

c

)] + �p

�

1

�

n

E

X

0

(g(X

n

)1

fT

[�;M]

c�ng

):

Observe that by (52) E

X

0

(g(X

n

)1

fT

[�;M]

c�ng

) � g(X

0

). Then summing the

inequalities (54) over n = 0; 1; : : : ;m yields

�

m

X

n=0

p

1�

1

�

n

P

X

0

(T

[�;M ]

c � n) � g(X

0

)� E

X

0

g(X

m+1^T

[�;M]

c

) + �g(X

0

)

m

X

n=0

p

�

1

�

n

� g(X

0

) + �g(X

0

)

m

X

n=0

p

�

1

�

n

8m = 1; 2; : : : :

Letting m!1 we conclude that

X

n�0

p

�

1

�

n

<1)

X

n�0

p

1�

1

�

n

P

X

0

(T

[�;M ]

c
� n) <1:

Now it remains to take p

1

�

n

= n(lnn)

1+�

with � > 0 small enough to get the right

asymptotics of the tail of T

[�;M ]

c since for any non negative random variable T

and any a > 0

E[T

a

] <1 ,

X

n�0

n

a�1

P (T � n) <1:

If � � 1, we set Y

n

= g(X

n

)

1

2�

so that (52) becomes

E[Y

2�

n+1

� Y

2�

n

j Y

n

= y] � ��Y

2��2

n

y � L; (55)

with the special choice of �;M such that L = g(�)

1

2�

= g(M )

1

2�

(which we can

always do up to take � smaller or M larger). Hence, by Theorem 1 of [1], we

deduce, since fY

n

� Lg � fT

[�;M ]

c
> ng, that for � � 1, there exists c < 1

such that

E[T

�

[�;M ]

c

] � cg(X

0

):
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8.4 Proof of Theorem 5.1

The results (17) and (18) follow from the estimates on passage-time moments for

nonnegative stochastic processes of [1]. These are generalizations of Lamperti's

results for countable Markov chains [24].

Consider the Markov chain on [0;1[

Z

n+1

= (Z

n

� lnf(e

�Z

n

)� Y

n

)1

fZ

n

�ln f(e

�Z

)�Y

n

>0; Z

n

>0g

that starts at Z

0

> 0 and has 0 as an absorption state. Let S

A

= inffn � 0 :

Z

n

2 A

c

g the time to escape from the subset A 2 [0;1). We will show that for

any p < 1=2 and any �

0

> 0, there exists �(�) > 0 such that for any 0 < � � �(�)

E

Z

0

S

p

]�ln �;1[

= O(Z

2p+�

0

); Z

0

!1 (56)

and also that for any p > 1=2 and any � > 0

E

Z

0

S

p

]�ln �;1[

=1: (57)

Then the change of variables Z

n

= � lnX

n

implies immediately the statements

(17), (18) of the theorem as we have T

�

= S

]�ln �;1[

through this change. It

follows from (17) that T

�

< 1 a.s. for any X

0

< �. This fact entails the

recurrence of the MC proceeding exactly by the same arguments as in the case

f(0) > 1. The recurrence is null by (18). The statement (19) is a direct

consequence of (17) and (18).

To see (56) and (57), we denote by

�

r

(z) =

�

E(Z

n+1

� Z

n

jZ

n

= z) if r = 1;

E(jZ

n+1

� Z

n

j

r

jZ

n

= z) if r 6= 1:

By the assumptions EY = 0, EjY j

2+�

1

< 1 we have P (Y > z) = O(z

�2��

1

)

EY 1

Y<z

= O(z

�1��

1

), EY

2

1

Y<z

= O(z

��

1

) as z ! 1. By the asumtpion

f(x) = 1 + o(j lnxj

�1��

2

) as x ! 0 with some �

2

> 0, we have f(e

�z

) =

1 + o(z

�1��

2

) as z !1. Then

�

1

(z) = E((� ln f(e

�z

)� Y )1

fY<z�ln f(e

�z

)g

� z1

fY >z�ln f(e

�z

)g

)

= O(z

�1��

2

) +O(z

�1��

1

); z !1

�

2

(z) = E((� ln f(e

�z

)� Y )

2

1

fY<z�ln f(e

�z

)g

+ z

2

1

fY>z�ln f(e

�z

)g

)

= O(z

�2�2�

2

) +O(z

�2��

1

��

2

) +EY

2

+ O(z

��

1

); z !1;

and for any 2 < r < 2 + �

2

�

r

(z) � 2

r

(o(1) + jY j

r

) + z

r

O(z

�2��

1

) = o(z

r�2

); z !1:

Then for any p 2 R

2z�

1

(z) + (2p� 1)�

2

(z) = (2p� 1)E(Y

2

) + O(z

��

)

with some � > 0. Consequently, Propositions 1 and 2 p.957 in [1] apply to the

MC Z

n

and prove (56) and (57) concluding the proof of the theorem.
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8.5 Proof of Theorem 6.1.

Clearly, the transience in cases (1), (2) and (3) follows from (23) and (26). We

restrict ourselves to (23), the second case being symmetrical.

Let us construct the function

g(X

1

; X

2

) = (r

2

lnX

1

n

� (r

1

� �) lnX

2

n

)

�1

_ d

�1

(58)

with some �xed d < M . We use the notation

~

X = (X

1

; X

2

) for shortness. We

shall prove that there exists �

0

> 0 such that for all � � �

0

E(g(

~

X

n+1

) � g(

~

X

n

) j g(

~

X

n

) = �

�1

) � 0: (59)

Then for all n � 1

Eg(

~

X

n^�

M ) � Eg(

~

X

0

) = (r

2

lnX

1

0

� (r

1

� �) lnX

2

0

)

�1

:

Assume now the contrary of (23); P (�

M

< 1) = 1. Then

~

X

n^�

M
! X

�

M
a.s.

as n!1. Then by Fatou's lemma

Eg(

~

X

�

M ) � lim

n!1

Eg(

~

X

n^�

M ) � Eg(

~

X

0

) = (r

2

lnX

1

0

� (r

1

� �) lnX

2

0

)

�1

:

This contradicts the de�nition of �

M

as g(

~

X

n^�

M ) > M

�1

.

The proof of (23) is reduced now to (59). Let us note that under condition

r

2

lnX

1

n

� (r

1

� �) lnX

2

n

= � we have:

r

2

lnX

1

n+1

� (r

1

� �) lnX

2

n+1

= � + h

1

X

1

n

+ h

2

X

2

n

+ h+ Y

n

(60)

where

h

1

= �r

2

a

11

+ (r

1

� �)a

12

> 0; h

2

= �r

2

a

12

+ (r

1

� �)a
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; h = �r

2

> 0;

Y

n

= r

2

Y

1

n

� (r

1

� �)Y

2

n

:

Our assumptions on r

i

and a

i;j

for i; j = 1; 2 in this case ensure the following

property: for any � > 0 there exists �

0

> 0 such that for all X

1

; X

2

> 0 with

r

2

lnX

1

� (r

1

� �) lnX

2

= � � �

0

h

1

X

1

+ h

2

X

2

> ��: (61)

In fact, if condition (1) holds, then also h

2

> 0. Then trivially this quantity is

non-negative. Otherwise, if h

1

> 0 but h

2

< 0 and r

2

< r

1

, we can rewrite

h

1

X

1

+ h

2

X

2

= h

1

e

lnX

1

+ h

2

e

��=r

2

+[r

2

=(r

1

��)�1] lnX

1

+lnX

1

If X

1

n

! 1, the �rst term with positive coe�cient h

1

> 0 dominates this sum

due to the fact that r

2

=(r

1

� �) � 1 < 0. Hence, we have the desired estimate

for all X

1

> C and all � > 0. It remains to chose �

0

(�) > 0 large enough to

ensure (61) for 0 < X

1

< C. For the rest of the proof we �x � = h=2. Thus

h

1

X

1

n

+ h

2

X

2

n

+ h � h=2 > 0 8� � �

0

: (62)
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The left-hand side of (59) equals I

1

�

+ I

2

�

where

I

1

�

= E[(d

�1

� �

�1

)1

fY

n

<d���h

1

X

1

n

�h

2

X

2

n

�hg

]

� d

�1

P (Y

n

< d� � � h

1

X

1

n

� h

2

X

2

n

� h)

�

�

(� + h

1

X

1

n

+ h

2

X

2

n

+ h� d)

2

ln(� + h

1

X

1

n

+ h

2

X

2

n

+ h� d)

(63)

for some � > 0 as EjY j

2

< 1. Here we used the fact that � is big enough so

that � � d+ (h=2) � 0. We have

I

2

�

= E[((� � h

1

X

1

n

� h

2

X

2

n

� h� Y

n

)

�1

� �

�1

)1

fY

n

>d���h

1

X

1

n

�h

2

X

2

n

�hg

]

= E

h

�h� Y

n

(h

1

X

1

n

+ h

2

X

2

n

+ h+ �)(h

1

X

1

n

+ h

2

X

2

n

+ �)

1

fY

n

>d���h

1

X

1

n

�h

2

X

2

n

�hg

i

�

1

(� + h

1

X

1

n

+ h

2

X

2

n

)

2

�

�

E[

(� + h

1

X

1

n

+ h

2

X

2

n

)(h

1

X

1

n

+ h

2

X

2

n

)

�

1

fY

n

>d���h

1

X

1

n

�h

2

X

2

n

�hg

]

�

� + h

1

X

1

n

+ h

2

X

2

n

� + h

1

X

1

n

+ h

2

X

2

n

+ h

� E

h

Y

n

(c+ Y

n

)

� + h

1

X

1

n

+ h

2

X

2

n

+ h+ Y

n

1

fY

n

>d���h

1

X

1

n

�h

2

X

2

n

�hg

i�

:

One can bound it from above by

I

2

�

�

1

(h

1

X

1

n

+ h

2

X

2

n

+ h+ �)(h

1

X

1

n

+ h

2

X

2

n

+ �)

(64)

�

�

� h+ hP (Y

n

< d� � � h=2) + +E[Y

n

1

fY

n

<d���h=2g

]

�

+

�1

(� + h

1

X

1

n

+ h

2

X

2

n

)

2

(65)

�

�

� h=2�

� + h

1

X

1

n

+ h

2

X

2

n

� + h

1

X

1

n

+ h

2

X

2

n

+ h

�E

h

Y

n

(c + Y

n

)

� + h

1

X

1

n

+ h

2

X

2

n

+ h+ Y

n

1

fY

n

>d���h

1

X

1

n

�h

2

X

2

n

�hg

i�

where in the �rst estimate we used the fact that EY

n

= 0. Here P (Y

n

<

d� � � h=2)! 0 and EY

n

1

fY

n

<d���h=2g

! 0 as � !1 since EjY j

2

<1.

Finally the sequence of the r.v. Z

m

=

Y

n

(c+Y

n

)

m+Y

n

1

fY

n

>d�mg

converges to

zero a.s. as m ! 1 and jZ

m

j � d

�1

jY

n

(c + Y

n

)j where EjY

n

(c + Y

n

)j < 1.

Then by dominated convergence theorem EZ

m

! 0 as m !1. Since by (61)

� + h

1

X

1

n

+ h

2

X

2

n

+ h � � + h=2

E

h

Y

n

(c + Y
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)

� + h

1
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1

n
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2

X

2

n
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n

1

fY

n
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1
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1

n

�h

2

X

2

n

�hg
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uniformly for all X

1

n

; X

2

n

> 0 with r

2

X

1

n

� (r

1

� �)X

2

n

= �. Combining these

facts, we see that the sum of the estimates of (65) and (63) equals (� +h

1

X

1

n

+

h

2

X

2

n

+ h)

�2

(o(1) � h+ o(1) + h=2 + o(1)) as � !1 uniformly for all X

1

n

; X

2

n

with r

2

X

1

n

� (r

1

� �)X

2

n

= �. Then (59) is satis�ed and the �rst part of the

theorem is proved. To prove (24), we notice that

X

1

n+1

� X

1

n

e

�a

11

X

1

n

+r

1

+Y

1

n

(66)
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1
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� X

1

n

e

�a

11

X

1

n

�d(M)(X

1
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)

�
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1
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1

n
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� n (67)

with d(M ) = a

12

e

�

r

2

r

1

��

M

and � =

r

2

r

1

��

. We therefore can prove that T

L

(X

1

)

satis�es the analogue of the bound (28) of Theorem 2.1 by (66) (note that we

only used in the proof of (28) the upper bound), whereas we can use (67) to

get bounds (11) and (12) on T

�

(X

1

) under condition �

M

= 1. In fact, we can

apply the same arguments than in the proofs of Theorems 2.1, 4.1 and 4.2 by

considering the (

�

X

n

;

~

X

n^�

M

)

n�0

instead of (

�

X

n

;

~

X

n

)

n�0

yielding E

X

0

[T

�

(X

1

)^

�

M

] < 1 and E

X

0

[T

L

(X

1

)] < 1 (note here that in the neighborhood of the

origin, the correction d(M )(X

1

n

)

�

is small). Then as in one-dimensional case,

we can derive that P

X

0

(T

[�;L]

c
(X

1

) ^ �

M

<1) = 1.
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