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Abstract

We define a new diffusive matrix model converging towards the β-Dyson Brownian
motion for all β ∈ [0, 2] that provides an explicit construction of β-ensembles of random
matrices that is invariant under the orthogonal/unitary group. We also describe the
eigenvector dynamics of the limiting matrix process; we show that when β < 1 and that
two eigenvalues collide, the eigenvectors of these two colliding eigenvalues fluctuate
very fast and take the uniform measure on the orthocomplement of the eigenvectors
of the remaining eigenvalues.
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1 Introduction

It is well known that the law of the eigenvalues of the classical Gaussian matrix ensembles
are given by a Gibbs measure of a Coulomb gas interaction with inverse temperature β = 1
(resp. 2, resp. 4) in the symmetric (resp. Hermitian, resp. symplectic) cases;

dPβ(λ) =
1

Zβ

∏

i<j

|λi − λj |βe−
1
2

∑
λ2
i

∏
dλi .

Such measures are associated with symmetric Langevin dynamics, the so-called Dyson
Brownian motion, which describe the random motion of the eigenvalues of a symmetric
(resp. Hermitian, resp. symplectic) Brownian motion. They are given by the stochastic
differential system

dλi(t) = dbi(t)− λi(t)dt+ β
∑

j 6=i

1

λi(t)− λj(t)
dt (1.1)

with iid Brownian motions (bi). These laws and dynamics have been intensively studied,
and both local and global behaviours of these eigenvalues have been analyzed precisely,
starting from the reference book of Mehta [9].

More recently, the generalization of these distributions and dynamics to all β ≥ 0, the
so-called β-ensembles, was considered. As for β = 1, 2, 4, the Langevin dynamics converge
to their unique invariant Gibbs measure Pβ as times goes to infinity. Indeed, the stochastic
differential system under study is a set of Brownian motions in interaction according to a
strictly convex potential. Thus, one can then show by a standard coupling argument that
two solutions driven by the same Brownian motion but with different initial data will soon
be very close to each others. This entails the uniqueness of the invariant measure as well
as the convergence to this Gibbs measure. It turns out that the case β ∈ [0, 1) and the
case β ∈ [1,∞) are quite different, as in the first case the eigenvalues process can cross
whereas in the second the repulsion is strong enough so that the eigenvalues do not collide
with probability one in finite time. However, the diffusion was shown to be well defined,
even for β < 1, by Cépa and Lépingle [4], at list once reordered.

The goal of this article is to provide a natural interpretation of β-ensembles in terms of
random matrices for β ∈ [0, 2]. Dumitriu and Edelman [6] already proposed a tridiagonal
matrix with eigenvalues distributed according to the β-ensembles. However, this tridiag-
onal matrix lacks the invariant property of the classical ensembles. Our construction has
this property and moreover is constructive as it is based on a dynamical scheme. It was
proposed by JP Bouchaud, and this article provides rigorous proofs of the results stated
in [1]. The idea is to interpolate between the Dyson Brownian motion and the standard
Brownian motion by throwing a coin at every infinitesimal time step to decide whether
our matrix will evolve according to a Hermitian Brownian motion (with probability p)
or will keep the same eigenvectors but has eigenvalues diffusing according to a Brownian
motion. When the size of the infinitesimal time steps goes to zero, we will prove that the
dynamics of the eigenvalues of this matrix valued process converges towards the β-Dyson
Brownian motion with β = 2p. The same construction with a symmetric Brownian motion
leads to the same limit with β = p. This result is more precisely stated in Theorem 2.2.
We shall not consider the extension to the symplectic Brownian motion in this paper, but
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it is clear that the same result holds with β = 4p. Our construction can be extended to
other matrix models such as Wishart matrices, Circular and Ginibre Gaussian Ensembles
and will lead to similar results.

We thus deduce from our construction that β-ensembles can be interpreted as an in-
terpolation between free convolution (obtained by adding a Hermitian Brownian motion)
and standard convolution (arising when the eigenvalues evolve following standard Brow-
nian motions). It is natural to wonder whether a notion of β-convolution could be more
generally defined.

Moreover we shall study the eigenvectors of our matrix-valued process. In the case
where β ≥ 1, their dynamics is well known and is similar to the dynamics of the eigen-
vectors of the Hermitian or Symplectic Brownian motions, see e.g. [2]. When β < 1 the
question is to determine what happens at a collision. It turns out that when we approach
a collision, the eigenvectors of the non-colliding eigenvalues converge to some orthogonal
family B of d − 2 vectors whereas the eigenvectors of the colliding eigenvalues oscillate
very fast and take the uniform distribution on the ortho-complement of B, see Proposition
2.6.

2 Statement of the results

Let Hβ
d be the space of d× d symmetric (respectively Hermitian) matrices if β = 1 (resp.

β = 2) and Oβ
d be the space of d × d orthogonal (respectively unitary) matrices if β = 1

(resp. β = 2).
We consider the matrix-valued process defined as follows. Let γ be a positive real

number and Mβ
0 ∈ Hβ

d with distinct eigenvalues λ1 < λ2 < · · · < λd. For each n ∈ N, we
let (ǫnk)k∈N be a sequence of i.i.d {0, 1}-valued Bernoulli variables with mean p in the sense
that

P[ǫnk = 1] = p = 1− P[ǫnk = 0] .

Furthermore, for t > 0, we set ǫnt := ǫn[nt].

In the following, the process (Hβ(t))t > 0 will denote a symmetric Brownian motion,
i.e. a process with values in the set of d× d symmetric matrices (respectively Hermitian if

β = 2) with entries Hβ
ij(t), t > 0, i 6 j constructed via independent real valued Brownian

motions (Bij , B̃ij , 1 6 i 6 j 6 d) by

Hβ
ij(t) =

{
Bij(t) + i(β − 1)B̃ij(t) if i < j√
2Bii(t) otherwise

(2.1)

Definition 2.1. For each n ∈ N, we define a diffusive matrix process (Mβ
n (t))t > 0 such

that Mβ
n (0) :=Mβ

0 and for t > 0

dMβ
n (t) = −γMβ

n (t)dt+ ǫnt dH
β
t + (1− ǫnt )dYt (2.2)

where (Hβ
t )t > 0 is a d× d symmetric (resp. Hermitian) as defined in (2.1) whereas

dYt =
√
2

d∑

i=1

χn
i

(
[nt]

n

)
dBi

t
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with i.i.d Brownian motions (Bi
t)t > 0 and where χn

i ([nt]/n) is the spectral projector as-

sociated to the i-th eigenvalue λi([nt]/n) of the matrix Mβ
n ([nt]/n) if the eigenvalues are

numbered as λ1([nt]/n) < λ2([nt]/n) < · · · < λd([nt]/n) (we shall see that the above is
possible as the eigenvalues are almost surely distinct at the given times {k/n, k ∈ N}).

As for all t, the matrix Mβ
n (t) is in the space Hβ

d , we know that it can be decomposed
as

Mβ
n (t) = Oβ

n(t)∆
β
n(t)O

β
n(t)

∗

where ∆β
n(t) is the diagonal matrix whose diagonal is the vector of the ordered eigenvalues

of Mβ
n (t) and where Oβ

n(t) is in the space Oβ
d for all t ∈ R+. We also introduce a matrix

Oβ(0) to be the initial orthogonal matrix (resp. unitary if β = 2) such that Mβ
0 (t) =

Oβ(0)∆0O
β(0)

∗
where ∆0 := diag(λ1, . . . , λd).

The evolution of the eigenvalues of Mβ
n (t) during the time interval [k/n; (k + 1)/n]

is given by independent Brownian motions if ǫnk = 0 and by Dyson Brownian motions if
ǫnk = 1.

The eigenvectors of Mβ
n (t) do not evolve on intervals [k/n; (k+1)/n] such that ǫnk = 0

and evolve with the classical diffusion of the eigenvectors of Dyson Brownian motions if
ǫnk = 1 (see [2] for a review on Dyson Brownian motion).

Our main theorems describe the asymptotic properties of the ordered eigenvalues of
the matrix Mβ

n (t) denoted in the following as

(λn1 (t) 6 λn2 (t) 6 · · · 6 λnd (t)) (2.3)

and also those of the matrix Oβ
n(t) defined above, as n goes to infinity.

Let (bit)t > 0, i ∈ {1, . . . , d} be a family of independent Brownian motions on R. Recall
that Cépa and Lépingle showed in [4] the uniqueness and existence of the strong solution
to the stochastic differential system

dλi(t) = −γλi(t)dt+
√
2dbit + βp

∑

j 6=i

1

λi(t)− λj(t)
dt (2.4)

starting from λ(0) = (λ1 6 λ2 6 · · · 6 λd) and such that for all t > 0

λ1(t) ≤ λ2(t) ≤ · · · ≤ λd(t) a.s. (2.5)

For the scaling limit of the ordered eigenvalues, we shall prove that

Theorem 2.2. Let Mβ
0 be a symmetric (resp. Hermitian) matrix if β = 1 (resp. β = 2)

with distinct eigenvalues λ1 < λ2 < · · · < λd and (Mβ
n (t))t≥0 be the matrix process defined

in Definition 2.1. Let λn1 (t) 6 . . . 6 λnd (t) be the ordered eigenvalues of the matrix Mβ
n (t).

Let also (λ1(t), . . . , λd(t))t > 0 be the unique strong solution of (2.4) with initial conditions
in t = 0 given by (λ1, λ2, . . . , λd).

Then, for any T < ∞, the process (λn1 (t), . . . , λ
n
d (t))t∈[0,T ] converges in law as n goes

to infinity towards the process (λ1(t), . . . , λd(t))t∈[0,T ] in the space of continuous functions

C([0, T ],Rd) embedded with the uniform topology.
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In the case where βp > 1, the eigenvalues almost never collide and we will see (see
section 6.1) in this case that it is easy to construct a coupling of λ and λn so that λn

almost surely converges towards λ.
We shall also describe the scaling limit of the matrix Oβ

n(t) (the columns of Oβ
n(t) are

the eigenvectors ofMβ
n (t)) when n tends to infinity, at least until the first collision time for

the eigenvalues, i.e. until the time T1 defined as T1 := inf{t > 0 : ∃i ∈ {2, . . . , d}, λi(t) =
λi−1(t)}.

Let wβ
ij(t), 1 6 i < j 6 d be a family of real or complex (whether β = 1 or 2)

standard Brownian motions (i.e. wβ
ij(t) = B1

ij(t) +
√
−1 (β − 1)B2

ij(t) where the B1
ij , B

2
ij

are standard Brownian motions on R), independent of the family of Brownian motions

(bit)t > 0, i ∈ {1, . . . , d}. For i < j, set in addition wβ
ji(t) := w̄β

ij(t) and define the skew

Hermitian matrix (i.e. such that Rβ = −(Rβ)∗) by setting for i 6= j,

dRβ
ij(t) =

dwβ
ij(t)

λi(t)− λj(t)
, Rβ

ij(0) = 0 .

Then, with λi(t), 0 6 t 6 T1, i ∈ {1, . . . , d} being the solution of (2.4) until its first
collision time, there exists a unique strong solution (Oβ(t))0 6 t 6 T1 to the stochastic dif-
ferential equation

dOβ(t) =
√
pOβ(t)dRβ(t)− p

2
Oβ(t)d〈(Rβ)∗, Rβ〉t (2.6)

This solution exists and is unique since it is a linear equation in Oβ and Rβ is a well
defined martingale at least until time T1. It can be shown as in [2, Lemma 4.3.4] that
Oβ(t) is indeed an orthogonal (resp. unitary if β = 2) matrix for all t ∈ [0;T1].

We mention at this point that the matrix Oβ
n(t) is not uniquely defined, even when

we impose the diagonal matrix to have a non-decreasing diagonal λn1 (t) 6 . . . 6 λn(t).

Indeed, the matrix Oβ
n(t) can be replaced, for example, by −Oβ

n(t) (other possible matrices
exist). The following proposition overcomes this difficulty.

Define Tn(1) to be the first collision time of the process (λn1 (t), . . . , λ
n
d (t)).

Proposition 2.3. There exists a continuous process (Oβ
n(t))0 6 t 6 T1 in Oβ

d with a uniquely
defined law and such that for each t ∈ [0;Tn(1)], we have

Oβ
n(t)∆

β
n(t)O

β
n(t)

∗ law
= Mβ

n (t) ,

where ∆β
n(t) is the diagonal matrix of the ordered (as in (2.3)) eigenvalues of Mβ

n (t).

Proposition 2.3 is proved in Section 7. We are now ready to state our main result for
the convergence in law of the matrix Oβ

n(t).

Theorem 2.4. Let η and T be positive real numbers. Then, conditionally on the sigma-
algebra generated by (λn1 (s), . . . , λ

n
d (s)),

0 6 s 6 T1 ∧ T , the matrix process (Oβ
n(t))0 6 t 6 (T1−η)∧T introduced in Proposition 2.3

converges in law in the space of continuous functions C([0;T ],Oβ
d ) towards the unique

solution of the stochastic differential equation (2.6).
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Theorem 2.4 gives a convergence result as n goes to infinity for the eigenvectors of
the matrix process (Mβ

n (t)) but only until the first collision time T1. If pβ > 1, the result
is complete as one can show (see [2] and section 6.1) that the process (λ1(t), . . . , λd(t))
is a non colliding process (i.e. almost surely T1 = ∞). However, if pβ < 1, it would be
interesting to have a convergence on all compact sets [0;T ] even after collisions occurred.
Our next results describe the behavior of the columns of the matrix Oβ(t) denoted as
(φ1(t), . . . , φd(t)) when t→ T1 with t < T1.

We first need to describe the behavior of the eigenvalues (λ1(t), . . . , λd(t)) in the left
vicinity of T1.

Proposition 2.5. If pβ < 1 then almost surely T1 < ∞ and there exists a unique index
i∗ ∈ {2, . . . , d} such that λi∗(T1) = λi∗−1(T1). While we have, for all t > 0 and almost
surely, ∫ t

0

ds

(λi∗ − λi∗−1)(s)
< +∞ ,

the following divergence occurs almost surely

∫ T1

0

ds

(λi∗ − λi∗−1)2(s)
= +∞ . (2.7)

The first part of Proposition 2.5 is proved in subsections 3.1 and 3.2, the last statement
is proved in 7. Hence equality (2.7) implies the existence of diverging integrals in the SDE
(2.6). Because of this singularity, we will show

Proposition 2.6. Conditionally on (λ1(t), . . . , λd(t)), 0 6 t 6 T1, we have:

1. For all j 6= i∗, i∗ − 1, the eigenvector φj(t) for the eigenvalue λj(t) converges almost

surely to a vector denoted φ̃j as t grows to T1. The family {φ̃j , j 6= i∗, i∗ − 1} is an
orthonormal family of Rd (respectively C

d) if β = 1 (resp. β = 2). We denote by
V the corresponding generated subspace and by W its two dimensional orthogonal
complementary in R

d (resp. Cd).

2. The family {φi∗(t), φi∗−1(t)} converges weakly to the uniform law on the orthonormal
basis of W as t grows to T1.

The paper is organized as follows. In Section 3, we review and establish some new
properties for the limiting eigenvalues process (λ1(t), . . . , λd(t)) defined in 2.4 that will be
useful later in our proof of Theorems 2.2 and 2.4. We also introduce, in subsection 3.4,
a process with fewer collisions that approximates the limiting eigenvalue process. In fact
this gives a new construction of the limiting eigenvalues process already constructed in
[4], perhaps simpler and more intuitive using only standard Itô’s calculus. We give some

useful estimates on the processes of eigenvalues and matrix entries of Mβ
n in Section 4. In

Section 5, we prove the almost sure convergence of the process (λn1 , . . . , λ
n
d ) to the limiting

eigenvalues process (λ1, . . . , λd) until the first hitting time of two particles with a coupling
argument. In Section 6, we finish the proof of Theorem 2.2 by approximating in the same
way the process (λn1 , . . . , λ

n
d ) with the same idea of separating the particles which collide

by a distance δ > 0. At this point, it suffices to apply that the result of Section 5 to show
that the two approximating processes are close in the large n limit. In Section 7, we prove
Theorem 2.4, the last statement of Proposition 2.5 and Propositions 2.3 and 2.6.
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3 Properties of the limiting eigenvalues process

In this section we shall study the unique strong solution of (2.4) introduced by Cépa and
Lépingle in [4]. We first derive some boundedness and smoothness properties. In view of
proving the convergence of λn towards this process, and in particular to deal with possible
collisions, we construct it for pβ < 1 as the limit of a process which is defined similarly
except when two particles hit, when we separate them by a (small) positive distance, see
Definition 3.6.

3.1 Regularity properties of the limiting process

Lemma 3.1. Let λ = (λ1 6 λ2 6 · · · 6 λd). Then there exists a unique strong solution
of (2.4). Moreover, it satisfies

• For all T <∞, there exists α,M0 > 0 finite so that for M >M0

P

[
max
1≤i≤d

sup
0 6 t 6 T

|λi(t)| >M

]
6 e−α(M−M0)2 . (3.1)

• For all T <∞, all i, j ∈ {1, . . . , d}, i 6= j,

E

[∫ T

0

ds

|λi(s)− λj(s)|

]
<∞ .

Furthermore, there exists α,M0 > 0 finite so that for M >M0 and i 6= j, we have

P

[∫ T

0

ds

|λi(s)− λj(s)|
>M

]
6 e−α(M−M0)2 .

Proof. The existence and unicity of the strong solution is [4, Proposition 3.2].
For the first point, we choose a twice continuously differentiable symmetric function

φ, increasing on R
+, which approximates smoothly |x| in the neighborhood of the origin

so that φ(0) = 0, xφ′(x) ≥ 0, |φ′(x)| ≤ c and |φ′′(x)| ≤ c, whereas |φ(x)| ≥ |x| × |x| ∧ 1
(take e.g φ(x) = x2(1 + x2)−1/2) to obtain by Itô’s Lemma

d(φ(λi(t))) = −γλi(t)φ′(λi(t))dt+
√
2φ′(λi(t))db

i
t

+ pβ
∑

j 6=i

φ′(λi(t))
dt

λi(t)− λj(t)
+ φ′′(λi(t))dt.

For all t, we have λi(t)φ
′(λi(t)) > 0, and also

d∑

i=1

∑

j 6=i

φ′(λi(t))
λi(t)− λj(t)

=
1

2

d∑

i=1

∑

j 6=i

φ′(λi(t))− φ′(λj(t))
λi(t)− λj(t)

6
d(d − 1)

2
|| φ′′ ||∞ .

We deduce from the above arguments that there exists C > 0 such that

d∑

i=1

φ(λi(t)) 6
√
2

d∑

i=1

∫ t

0
φ′(λi(s))db

i
s + Ct+

d∑

i=1

φ(λi) .
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By usual martingales inequality, as φ′ is uniformly bounded we know that, see e.g. [2,
Corollary H.13],

P

[
sup

0≤t≤T
|

d∑

i=1

∫ t

0
φ′(λi(t))dbi(t) |≥M

]
6 exp(−M2

2cT
)

and therefore using the fact that |φ(x)| ≥ |x| × |x| ∧ 1, we deduce the first point with
M0 = |∑d

i=1 φ(λi)|+ CT and α = 1/2CT .
For the second point, we first remark as in the proof of [4, Lemma 3.5] that for all

i < d

pβ

∫ T

0

dt

| λd(t)− λi(t) |
6 pβ

∑

j<d

∫ T

0

dt

| λd(t)− λj(t) |

= pβ
∑

j<d

∫ T

0

dt

λd(t)− λj(t)

= λd(T )− λd(0)−
√
2bdT + γ

∫ T

0
λd(t)dt .

so that the first point gives the claim fo j = d. We then continue recursively.

3.2 Estimates on collisions

To obtain regularity estimates on the process λ, we need to control the probability that
more than two particles are close together. We shall prove, building on an idea from Cépa
and Lépingle [5], that

Lemma 3.2. For r ≥ 3 and I ⊂ {1, . . . , d} with |I| = r, set

SI
t =

∑

i,j∈I
(λi(t)− λj(t))

2 .

We let, for ε > 0,
τ rε := inf{t ≥ 0 : min

|I|=r
SI
t ≤ ε}

Then, for any T > 0 and η > 0, for any r ≥ 3 there exists εr > 0 which only depends
on {SI

0 , |I| ≥ 3} so that
P
(
τ rεr ≤ T

)
≤ η .

Proof. The proof is done by induction over r and we start with the case r = d,
I = {1, . . . , d}. Then, S verifies the following SDE (see e.g. [5, Theorem 1]):

dSt = −2γStdt+ 4
√
d
√
Stdβt + adt

where βt is a a standard brownian motion and a = 2d(d− 1)(2+ pβd). The square root of
ρt :=

√
St verifies the SDE

dρt = −γρtdt+ 2
√
d dβt + (

a

2
− 2d)

dt

ρt
.

8



In particular, one can check that, if α = 2− a
4d = 2− (d− 1)(1 + pβd/2)

dραt = −αγραt dt+ 2
√
dαρα−1

t dβt.

Thus, as α < 0 for d ≥ 3, for any ε > 0, ρα−1
t∧τdε

is bounded so that
∫ .
0 ρ

α−1
s∧τdε

dβs is a martingale

and therefore

E[ραT∧τdε ] ≤ ρα0 − αγ

∫ T

0
E[ραt∧τdε ]dt

By Gronwall’s lemma, since supt E[ρ
α
t∧τdε

] is finite, we deduce that

E[ραT∧τdε ] ≤ ρα0 (1−
1

αγ
)e−αγT +

ρα0
αγ

.

As a consequence, since α < 0, we have

εα/2P(τdε ≤ T ) 6 E[S
α/2

T∧τdε
] = E[ραT∧τdε ] 6 ρα0 (1−

1

αγ
)e−αγT +

ρα0
αγ

.

We can take ε small enough to obtain the claim for r = d.
We next assume that we have proved the claim for u > r + 1 and choose εr+1 so that

the probability that the hitting time is smaller than T is smaller than η/2. We can choose I
to be connected without loss of generality as the λi are ordered. We let R = min{τ Iε , τ r+1

εr+1
}

when τ Iε is the first time where SI reaches ε. Again following [5], we have

logSI
T∧R = log SI

0 − 2γT + 4
√
2
∑

k,j∈I

∫ T∧R

0

λj(t)− λk(t)

SI
t

dbjt

+2βp
∑

j,k∈I

∑

l /∈I

∫ T∧R

0

λj(t)− λk(t)

SI
t

[
1

λj(t)− λl(t)
− 1

λk(t)− λl(t)
]dt

+4r[(r − 1)(
pβ

2
r + 1)− 2]

∫ T∧R

0

dt

SI
t

(3.2)

Note thatMt = 4
√
2
∑

k,j∈I
∫ t∧R
0

λj(s)−λk(s)

SI
s

dbjs is a martingale with bracket At = 16r
∫ t∧R
0

ds
SI
s
.

For r ≥ 3, 4r[(r − 1)(rpβ/2 + 1)− 2] ≥ 2pβ > 0 and therefore we deduce

E[logSI
T∧R] > logSI

0 − 2γT + 2βpE

[∫ T∧R

0

dt

SI
t

]

+ E


2βp

∑

j,k∈I

∑

l /∈I

∫ T∧R

0

λj(t)− λk(t)

SI
t

[
1

λj(t)− λl(t)
− 1

λk(t)− λl(t)
]dt




For j, k ∈ I, we cut the last integral over times

Ωj,k = {t ≤ T ∧R :
∑

l /∈I

1

λj(t)− λl(t)

1

λk(t)− λl(t)
≤ 1

SI
t

}

9



so that

−
∑

j,k∈I

∫

Ωj,k

(λj(t)− λk(t))
2

SI
t

∑

l /∈I
[

1

(λj(t)− λl(t))(λk(t)− λl(t))
]dt ≥ −

∫ T∧R

0

dt

SI
t

This term will therefore be compensated by the third term in (3.2). For the remaining
term, if l /∈ I is such that mini∈I |λl − λi| ≤ mini∈I |λk − λi| for all k /∈ I then if t ∈ Ωc

j,k

and i∗ ∈ I is so that mini∈I |λl − λi| = |λl − λi∗ |, we get

d− r

(λl(t)− λi∗(t))2
≥ 1

SI
t

and therefore on τ r+1
εr+1

≥ t,

εr+1 ≤ SI
t +

∑

j∈I
(λj(t)− λl(t))

2 ≤ SI
t + 2r(λi∗(t)− λl(t))

2 + 2SI
t ≤ (3 + 2r(d− r))SI

t .

As a consequence, we have the bound for all j, k ∈ I, all t ∈ Ωc
j,k, t ≤ R,

λj(t)− λk(t)

SI
t

> − 1/
√
SI
t > −

√
3 + 2r(d− r)/

√
εr+1

which entails the existence of a finite constant c so that

∑

j,k∈I

∑

l /∈I

∫

Ωc
j,k

λj(t)− λk(t)

SI
t

[
1

λj(t)− λl(t)
− 1

λk(t)− λl(t)
]dt

> − c
√
εr+1

∑

i∈I

∑

l /∈I

∫ T

0

dt

| λi(t)− λl(t) |
.

Using Lemma 3.1 we hence conclude that there exists a universal finite constant c′ de-
pending only on T so that

E[log SI
T∧R] > logSI

0 − 2γT − c′√
εr+1

.

On the other hand, we have

E[logSI
T∧R] 6 P(τ Iε ≤ T ) log(ε) + E[ sup

0≤t≤T
logSI

t ]

where the last term is bounded above by (3.1). We deduce that

P(τ Iε ≤ T ) ≤ | log SI
0 |

| log(ε)| +
c′′√

εr+1| log(ε)|
+

c

| log(ε) | +
2γT

| log(ε) | .

We finally choose ε small enough so that the right hand side is smaller than η/2 to
conclude.

We next show that not only collisions of three particles are rare but also two collisions
of different particles rarely happen around the same time.
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Lemma 3.3. For all i, j such that i+ 1 < j, set

τ ijε′ = inf{t > 0 : (λi(t)− λi−1(t))
2 + (λj(t)− λj−1(t))

2
6 ε′}.

Then, for any T > 0 and η > 0, there exists ε′ such that

P

[
τ ijε′ 6 T

]
6 η.

Proof. Using Itô’s formula, it is easy to see that

d
(
(λi − λi−1)

2 + (λj − λj−1)
2
)
= 8(1 + pβ)dt

− 2γ
[
(λi − λi−1)

2 + (λj − λj−1)
2
]
dt

+ 2
√
2
[
(λi − λi−1)(db

i
t − dbi−1

t ) + (λj − λj−1)(db
j
t − dbj−1

t )
]

− 2pβ



∑

k 6=i−1,i

(λi − λi−1)
2

(λi − λk)(λi−1 − λk)
+

∑

k 6=j−1,j

(λj − λj−1)
2

(λj − λk)(λj−1 − λk)


 dt .

Set Xt := (λi(t)− λi−1(t))
2 + (λj(t)− λj−1(t))

2 and note that the quadratic variation of

∫ t

0

(λi − λi−1)(db
i
s − dbi−1

s ) + (λj − λj−1)(db
j
s − dbj−1

s )√
Xs

is 2t. Thus there exists a standard Brownian motion B so that

dXt = 8(1 + pβ)dt− 2γXtdt+ 4
√
XtdBt

− 2pβ



∑

k 6=i−1,i

(λi − λi−1)
2

(λi − λk)(λi−1 − λk)
+

∑

k 6=j−1,j

(λj − λj−1)
2

(λj − λk)(λj−1 − λk)


 dt .

Note that, by the previous Lemma 3.2, we can choose ε such that

P[τ3ε < T ] 6
η

2
. (3.3)

Moreover, for all t 6 τ3ε such that Xt 6 ε/4, we have for all k 6= i− 1, i,

(λi − λk)(λi−1 − λk)(t) >
ε

8
.

The same property holds for j. To finish the proof, we will use the fact that the sum in
the last term is bounded for all t 6 τ3ε such that Xt 6 ε/4. We thus need to introduce the
process Yt defined by Yt = min(Xt,

ε
4). Let us set f(x) := min(x, ε/4)−pβ . Note that f is

a convex function R+ → R+ and that the left-hand derivative of f is given by

f ′−(x) = −pβx−pβ−11{x 6
ε
4
}.

Its second derivative in the sense of distributions is the positive measure

f ′′(dx) = pβ
(ε
4

)−pβ−1
δ ε

4
+
pβ(pβ + 1)

xpβ+2
1{x 6

ε
4
} dx .

11



Thus, by Itô-Tanaka formula, see e.g. [8, Theorem 6.22], we have

Y −pβ
t = Y −pβ

0 − pβ

∫ t

0
X−pβ−1

s 1{Xs 6
ε
4
}dXs

+
1

2

(
pβ
(ε
4

)−pβ−1
L

ε
4
t (X) +

∫ ε
4

0

pβ(pβ + 1)

xpβ+2
Lx
t (X)dx

)
,

where Lx
t (X) is the local time of X in x. By definition we have

∫ ε
4

0

pβ(pβ + 1)

xpβ+2
Lx
t (X)dx =

∫ t

0

pβ(pβ + 1)

Xpβ+2
s

1{Xs 6
ε
4
}d〈X,X〉s,

and thus, we obtain

Y −pβ
t = Y −pβ

0 +

∫ t

0
1{Xs 6

ε
4
}

(
pβγY −pβ

s dt+ 4Y
−pβ− 1

2
s dBs

)
(3.4)

+ 2p2β2
∫ t

0
Y −pβ−1
s

[
∑

k 6=i−1,i

((λi − λi−1)(s))
2

((λi − λk)(s))((λi−1 − λk)(s))

+
∑

k 6=j−1,j

((λj − λj−1)(s))
2

((λj − λk)(s))((λj−1 − λk)(s))

]
1Xs≤ε/4ds+

1

2
pβ
(ε
4

)−pβ−1
L

ε
4
t (X) .

The definition of local time implies that, almost surely, Lx
t (X) 6 t. We thus deduce from

(3.4) that

E

[
Y −pβ

T∧τ ij
ε′
∧τ3ε

]
6 Y −pβ

0 +
1

2
pβ
(ε
4

)−pβ−1
T + C

∫ T

0
E

[
Y −pβ

t∧τ ij
ε′

]
dt .

with C = (pβγ + 4p2β2(d− 1)8ε ). Gronwall’s Lemma implies that

E

[
Y −pβ

T∧τ ij
ε′
∧τ3ε

]
6

(
Y −pβ
0 +

1

2
pβ
(ε
4

)−pβ−1
T

)
exp(CT ). (3.5)

If ε′ < ε/4, equation (3.5) implies that

(ε′)−pβ
P

[
τ ijε′ 6 T ∧ τ3ε

]
6 Y −pβ

0 exp(CT ), (3.6)

Taking ε′ small enough gives the result with (3.3).
As a direct consequence, we deduce the uniqueness of the i∗ of Proposition 2.5.

Lemma 3.4. With the same notations as in the previous Lemma 3.3, we have almost
surely

inf
(k,ℓ):k+1<ℓ

τkℓ0 = +∞.

In particular, this gives the unicity of the i∗ in Proposition 2.5.

Proof. It is enough to write that for all ε > 0

P

(
inf

k+1<ℓ
τkℓ0 ≤ T

)
≤ d2{max

k+1<ℓ
P

(
τkℓ0 ≤ T ∧ τ3ε

)
+ P

(
τ3ε ≤ T

)
}

and deduce from Lemmas 3.3 and 3.2 that the right hand side is as small as wished when
ε goes to zero.
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3.3 Smoothness properties of the limiting process

Lemma 3.5. We have the following smoothness properties:

• For all T <∞ and ε > 0, there exists C, c′, c finite positive constants so that for all
δ, η positive real numbers so that η ≤ c′(ε2 ∧ δε) we have

P


max
1≤i≤d

sup
s≤t≤(s+η)∧τ3ε

0 6 t 6 T

|λi(s)− λi(t)| ≥ δ


 ≤ C

η

(
e−cδ4/2η + e−cε4/η

)
.

• For all T <∞ and ε > 0, there exists C, c′, c finite positive constants so that for all
δ, η positive real numbers so that η ≤ c′(ε2 ∧ δε) we have

P


max

i 6=j
sup

s≤t≤(s+η)∧τ3ε
0 6 t 6 T

∫ t

s

du

|λi(u)− λj(u)|
≥ δ


 ≤ C

η

(
e−cδ4/2η + e−cε4/η

)
.

Proof. Let us first fix s ∈ [0, T ] and set I = {i ∈ {2, . . . , d} : |λi(s)− λi−1(s)| 6 ε/3}
and note that on the event {s 6 τ3ε }, the connected subsets of I contain at most one
element. Let Tε = inf{t ≥ s : inf i/∈I |λi(t) − λi−1(t)| 6 ε/4}. The continuity of the λi
implies that Tε is almost surely strictly positive.

If i 6∈ I ∪ {I − 1}, then we have, for t ∈ [s; (s+ η) ∧ τ3ε ∧ Tε]

|λi(t)− λi(s)| 6 γ

∫ t

s
|λi(u)|du+

√
2|bit − bis|+ pβ

∫ t

s

∑

j 6=i

du

|λi(u)− λj(u)|

6 γ

∫ t

s
|λi(u)|du+

√
2|bit − bis|+ 4pβ(d − 1)

t− s

ε
.

Using (3.1) and [2, Corollary H.13], it is easy to deduce that there exists a constant c > 0
such that for η < εδ/(8pβ(d − 1))

P

[
max

i 6∈I∪{I−1}
sup

t∈[s;(s+η)∧τ3ε∧Tε]

|λi(t)− λi(s)| > δ

]
6 cde

− δ2

2η . (3.7)

Now, if i ∈ I, with the same argument as for (3.7) (the drift term in the SDE satisfied by
λi + λi−1 is also bounded), we can show that there exists a constant c > 0 such that

P

[
sup

t∈[s;(s+η)∧τ3ε∧Tε]

|(λi + λi−1)(t)− (λi + λi−1)(s)| > δ

]
6 ce−c δ2

2η . (3.8)

On the other hand, the process xi(t) := (λi − λi−1)(t) verifies

dx2i (t) = 4(1 + pβ)dt− γx2i (t)dt+ 2xi(t)(db
i
t − dbi−1

t )

− 2pβ
∑

k 6=j−1,j

(λi(t)− λi−1(t))
2

(λi(t)− λk(t))(λi−1(t)− λk(t))
dt .
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The denominator in the last term of the above r.h.s is bounded below on the interval
t ∈ [s; (s + η) ∧ τ3ε ∧ Tε] by 2pβ(d − 2)1ε . Thus, using again (3.1) and [2, Corollary H.13],
we can show that for δ > cη/ε,

P

[
sup

t∈[s;(s+η)∧τ3ε∧Tε]

|xi(t)− xi(s)| >
√
δ

]
≤ P

[
sup

t∈[s;(s+η)∧τ3ε∧Tε]

|x2i (t)− x2i (s)| > δ

]
6 ce−c δ2

2η

(3.9)
where the first inequality is due to the fact that xi is non-negative. Using (3.8) and (3.9)
gives for η < δε/c

P

[
max

i∈I∪{I−1}
sup

t∈[s;(s+η)∧τ3ε∧Tε]

|λi(t)− λi(s)| > δ

]
6 2cde−c δ4

2η .

Thus, with (3.7), we deduce that for η < δε/c

P

[
max

i
sup

t∈[s;(s+η)∧τ3ε∧Tε]

|λi(t)− λi(s)| > δ

]
6 2cde−c δ4

2η .

In particular, there exists c′ > 0 so that if ε2 > cη,

P
[
Tε < (s + η) ∧ τ3ε

]
≤ P

[
max

i
sup

s≤t≤(s+η)∧Tε∧τ3ε
|λi(t)− λi(s)| > 5ε/12

]
≤ 4cdT

η
e−c′ε4/2η ,

which is as small as wished provided η is chosen small enough. This allows to remove the
stopping time and get for any fixed s < T , and δ > cη/ε

P

[
max

i
sup

s≤t≤(s+η)∧τ3ε
|λi(t)− λi(s)| > δ

]
≤ 2cde−cδ4/2η + 2dce−c′ε4/2η .

The uniform estimate on s is obtained as usual by taking s in a grid with mesh η/2 up to
divise δ by two and to multiply the probability by 2T/η. Thus we find constant c, c′, and
C so that if η ≤ c(ε2 ∧ δε) we have

P


max

i
sup

s≤t≤(s+η)∧τ3ε
0≤s,t≤T

|λi(t)− λi(s)| > δ


 ≤ CT

η

(
e−cδ4/2η + e−c′ε4/η

)
.

The second control is a direct consequence of the first as we can first consider the cas
j = d to deduce that for i < d

|
∫ t

s

du

λd(u)− λi(u)
| ≤ |λd(t)− λd(s)|+

√
2|bd(t)− bd(s)|

where the right hand side is continuous. We then consider recursively the other indices.
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3.4 Approximation by less colliding processes

When pβ > 1, it is well known [2, Lemma 4.3.3] that the process λ has almost surely
no collision. In this case, the singularity of the drift which defines the SDE is not really
important as it is almost always avoided. In the case pβ < 1, we know that collisions
occur and in fact can occur as much as for a Bessel process with small parameter. The
singularity of the drift becomes important, in particular when we will show the convergence
in law of the process of the eigenvalues λn towards λ. To this end, we show that λ can be
approximated by a process which does not spend too much time in collisions.

For δ > 0, we define a new process (λδi (t))t > 0 as follows.

Definition 3.6. Let T1 := inf{t > 0 : ∃i 6= j, λi(t) = λj(t)} and for all t < T1, set λ
δ
i (t) :=

λi(t). For t > T1, we define the process recursively by setting for all ℓ > 2, λδi (T
δ
ℓ ) :=

λδi (T
δ
ℓ −) + iδ and for t > T δ

ℓ , the process λδi (t) is defined up to time T δ
ℓ+1 := inf{t > T δ

ℓ :

∃i 6= j, λδi (t) = λδj(t)} as the unique strong solution of the system

dλδi (t) = −γλδi (t)dt+
√
2dbit + pβ

∑

j 6=i

dt

λδi (t)− λδj(t)
. (3.10)

The main result of this section is that

Theorem 3.7. Construct the process λ with the same Brownian motion b. Then, for any
time T > 0, any ξ ∈ (0, pβ/4)

lim
δ↓0

P

(
sup

0≤t≤T
max
1≤i≤d

|λi(t)− λδi (t)| ≤ δξ

)
= 1 .

The theorem is a direct consequence of the following lemma and proposition.

Lemma 3.8. Let δ > 0. Construct the process λ with the same Brownian motion b than
λδ. There exists a constant c > 0 such that, almost surely, for all ℓ ∈ N

max
1 6 i 6 d

sup
0 6 t 6 T δ

ℓ

|λδi (t)− λi(t)| 6 cδℓ .

To finish the proof it is enough to show that T δ
ℓ goes to infinity for ℓ ≪ 1/δ. This is

the content of the next proposition.

Proposition 3.9. Let T < ∞, 0 < ξ < pβ/4 and L = [1/δ1−ξ ]. Then the probability
P
[
T δ
L 6 T

]
vanishes when δ goes to zero.

Proof of Lemma 3.8. We proceed by induction over ℓ to show that, for each ℓ,

sup
0 6 t 6 T δ

ℓ

(
d∑

i=1

(λδi − λi)
2(t)

)1/2

6 cδℓ

with c = (
∑d

i=1 i
2 = d(d+ 1)(2d + 1)/6)

1
2 .
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• We treat the case ℓ = 1. By definition of the processes, λδ = λ on [0, T δ
1 ). At time

t = T δ
1 , the separation procedure implies that

d∑

i=1

(λδi − λi)
2(T δ

1 ) =

d∑

i=1

((λδi − λi)(T
δ
1−) + iδ)2 = c2δ2 .

The property is true for ℓ = 1.
• Suppose it is true for ℓ. For t ∈ [T δ

ℓ , T
δ
ℓ+1), since λ

δ and λ are driven by the same
Brownian motion, we get

d
d∑

i=1

(λδi (t)− λi(t))
2 = −2γ

d∑

i=1

(λδi (t)− λi(t))
2dt

+ 2pβ

d∑

i=1

∑

j 6=i

(λδi (t)− λi(t))

(
1

λδi (t)− λδj(t)
− 1

λi(t)− λj(t)

)
dt .

Observe that

d∑

i=1

∑

j 6=i

(λδi (t)− λi(t))

(
1

λδi (t)− λδj(t)
− 1

λi(t)− λj(t)

)
(3.11)

=
1

2

d∑

i=1

∑

j 6=i

(λδi (t)− λδj(t)− (λi(t)− λj(t)))

(
1

λδi (t)− λδj(t)
− 1

λi(t)− λj(t)

)

=
1

2

d∑

i=1

∑

j 6=i

(
λδi (t)− λδj(t)− (λi(t)− λj(t))

)2 1

(λδi (t)− λδj(t))(λi(t)− λj(t))

6 0

as the (λi)1≤i≤d and the (λδi )1≤i≤d are ordered. Thus,

sup
t∈[T δ

ℓ ,T
δ
ℓ+1)

d∑

i=1

(λδi (t)− λi(t))
2
6

d∑

i=1

(λδi (T
δ
ℓ )− λi(T

δ
ℓ ))

2. (3.12)

In addition, because of the separation procedure at time T δ
ℓ+1, we have

(
d∑

i=1

(λδi − λi)
2(T δ

ℓ+1)

)1/2

=

(
d∑

i=1

(
(λδi − λi)(T

δ
ℓ+1−) + iδ

)2
)1/2

6

(
d∑

i=1

(λδi − λi)
2(T δ

ℓ+1−)

)1/2

+ δc 6 δ(ℓ+ 1)c ,

where we used the induction hypothesis in the last line. The proof is thus complete.

Proof of Proposition 3.9. In the case pβ ≥ 1, it is well known [2, p. 252] that T1 is
almost surely infinite and therefore the proposition is trivial. We hence restrict ourselves
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to pβ ≤ 1. Let η > 0. Let us define the stopping times

τ3,δε := inf{t > 0 : min
|I|=3

SI,δ
t 6 ε} ,

τ2,δε := inf{t > 0 : min
1 6 i,j 6 d

((λδi − λδi−1)
2 + (λδj − λδj−1)

2)(t) 6 ε},

where SI,δ
t :=

∑
i,j∈I(λ

δ
i − λδj)

2(t). Set also τ δε := τ2,δε ∧ τ3,δε . We know from Lemmas 3.2
and 3.3 that we can choose ε small enough so that

P
[
τ32ε ∧ τ22ε 6 T

]
6 η.

The number ε being fixed, it is then straightforward to see from Lemma 3.8 that there
exists δ0 small enough so that for all δ 6 δ0, we have

P

[
τ δε 6 T

]
6 η.

Now, we have

P

[
T δ
L 6 T

]
6 η + P

[
δξ

L∑

ℓ=1

1{T δ
ℓ+1−T δ

ℓ > δξ} 6 T ; τ δε > T δ
L

]
.

We need to show that the second term goes to 0 when δ → 0. Let {Ft}t≥0 be the filtration
of the driving Brownian motion. We will prove in Lemma 3.12, there exists a constant
c > 0 such that, on the event {τ δε > T δ

L}, almost surely

L∑

ℓ=1

P

[
T δ
ℓ+1 − T δ

ℓ > δξ | FT δ
ℓ

]
> c δ−pβ+ξ .

In the following, we suppose that δ is small enough so that c δ−pβ+ξ > δ−pβ+2ξ and
δ−ξ T − δ−pβ+ξ 6 − δ−pβ+2ξ. For such δ, we have

P

[
L∑

ℓ=1

1{T δ
ℓ+1−T δ

ℓ > δξ} 6 δ−ξ T ; τ δε > T δ
L

]

6 P

[
L∑

ℓ=1

1{T δ
ℓ+1−T δ

ℓ > δξ} − P

[
T δ
ℓ+1 − T δ

ℓ > δξ | FT δ
ℓ

]
6 − δ−pβ+2ξ; τ δε > T δ

L

]

6 P

[∣∣∣∣∣

L∑

ℓ=1

1{T δ
ℓ+1−T δ

ℓ > δξ} − P

[
T δ
ℓ+1 − T δ

ℓ > δξ | FT δ
ℓ

]∣∣∣∣∣ > δ−pβ+2ξ; τ δε > T δ
L

]

6 δ2pβ−4ξ
L∑

ℓ=1

P

[
T δ
ℓ+1 − T δ

ℓ > δξ ; τ δε > T δ
L

]

where we used the Tchebychev inequality in the last line. Using Lemma 3.10, we get that
there exists a constant C > 0 such that

P

[
L∑

ℓ=1

1{T δ
ℓ+1−T δ

ℓ > δξ} 6 δ−ξ T ; τ δε > T δ
L

]
6 C δ2pβ−4ξ Lδ(1−pβ)(1−2−1ξ)

6 C δpβ−4ξ

which goes to 0 when δ goes to 0. The proposition is proved.
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Lemma 3.10. Let ξ ∈ (0; 2). Then there exists a constant C > 0 such that, almost surely,
on ; τ δε > T δ

L

P

[
δξ 6 T δ

ℓ+1 − T δ
ℓ | FT δ

ℓ

]
6 Cδ(1−pβ)(1−2−1ξ) . (3.13)

Proof. We know that there are no multiple collisions nor simultaneous collisions (be-
cause of Lemmas 3.2 and 3.3) and therefore we can denote by i the unique element such
that λδi (T

δ
ℓ −) = λδi−1(T

δ
ℓ −) and (λδi − λδi−1)(T

δ
ℓ ) = δ. We have by Itô’s formula

d(λδi − λδi−1)(t) = −γ(λδi − λδi−1)(t)dt+
√
2(dbit − dbi−1

t ) (3.14)

+ 2pβ
dt

(λδi − λδi−1)(t)
− βp

∑

k 6=i,i−1

(λδi − λδi−1)(t)

(λδi − λδk)(t)(λ
δ
i−1 − λδk)(t)

dt .

Let us define the Bessel like process (Xt)t > 0 by X0 = δ and for t > 0,

dXt =
√
2(dbi

T δ
ℓ +t

− dbi−1
T δ
ℓ +t

) + 2pβ
dt

Xt
. (3.15)

Using the comparison theorem for SDE [8, Proposition 2.18] (note that the drifts are
smooth before T δ

ℓ+1 − T δ
ℓ ), we know that for all t ∈ [0, T δ

ℓ+1 − T δ
ℓ ), we have almost surely

(λδi − λδi−1)(T
δ
ℓ + t) 6 Xt. (3.16)

Let us define T δ
X := inf{t > 0 : Xt = 0}. It is clear that almost surely T δ

ℓ+1 − T δ
ℓ 6 T δ

X .

We thus have on τ δε > T δ
L

P

[
δξ 6 T δ

ℓ+1 − T δ
ℓ | FT δ

ℓ

]
6 P

[
T δ
X > δξ

]
.

We finally conclude using a classical result for Bessel process, see e.g. [?, (13)]; the density
with respect to the Lebesgue measure on R+ of the law of the random variable T δ

X is

pδ(t) =
1

Γ(1−pβ
2 )

1

t

(
δ2

2t

) 1−pβ
2

e−
δ2

2t .

Hence we deduce that for ξ ≤ 2 there exists a constant c > 0 such that

P

[
T δ
X > δξ

]
6 c δ(1−pβ)(1−2−1ξ).

For time t ∈ [0;T ], we define the random set

It := {i ∈ {2, . . . , d} : |λδi − λδi−1|(t) 6
√
ε/3}. (3.17)

Note that, on the event Ω := {τ δε > T}, for each t 6 T , the set It contains at most one
element. For each ℓ ∈ {1, . . . , L}, and i ∈ {1, . . . , d}, we define the stopping times

tδℓ(
√
ε/3) := inf{t > T δ

ℓ : min
j

|λδj − λδj−1|(t) >
√
ε/3} ,

t̄δℓ(i,
√
ε/6) := inf{t > T δ

ℓ : min
j 6=i

|λδj − λδj−1|(t) 6
√
ε/6} .

If i denotes the unique index such that λδi (T
δ
ℓ −) = λi−1(T

δ
ℓ −), note that if T δ

ℓ 6 τ δε then
minj 6=i |λδj − λδj−1|(T δ

ℓ ) >
√
ε/3.
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Lemma 3.11. If T δ
ℓ 6 τ δε and if i denotes the (unique) index such that λδi (T

δ
ℓ −) =

λδi−1(T
δ
ℓ −) , then there exists a constant c > 0 and δ0 > 0 such that for all δ 6 δ0, we have

cδ1−pβ
6 P

[
tδℓ(

√
ε/3) ∧ t̄δℓ(i,

√
ε/6) 6 T δ

ℓ+1|FT δ
ℓ

]
. (3.18)

Proof. Note that i is the unique element of the set IT δ
ℓ
defined by (3.17) for which

|λδi − λδi−1|(T δ
ℓ ) = δ. For α = 1− pβ and t ∈ [T δ

ℓ ;T
δ
ℓ+1), we have by Itô’s formula

d(λδi − λδi−1)
α(t) = −γα(λδi − λδi−1)

α(t)dt (3.19)

+ α(λδi − λδi−1)
α−1(t)

√
2(dbit − dbi−1

t )− βp
∑

k 6=i,i−1

(λδi − λδi−1)
α(t)

(λδi − λδk)(t)(λ
δ
i−1 − λδk)(t)

dt .

For t ∈ [T δ
ℓ , τ

δ
ε ], we deduce that

d(λδi − λδi−1)
α(t) ≥ α(λδi − λδi−1)

α−1(t)
√
2(dbit − dbi−1

t )− c′(λδi − λδi−1)
α(t)dt

where c′ = αγ+βp(d−2)36/ε. Let T δ,κ
ℓ+1 be the first time after T δ

ℓ so that λδi −λδ−1
i reaches

κ < δ. Then, as
∫ .∧T δ,κ

ℓ+1

0 (λδi − λδi−1)
α−1(t)

√
2(dbit − dbi−1

t ) is a martingale, we find that

E

[
(λδi − λδi−1)

α(tδℓ(
√
ε/3) ∧ t̄δℓ(i,

√
ε/6) ∧ T δ,κ

ℓ+1) | F
T δ,κ
ℓ

]
> δα exp

(
−c′ T

)
. (3.20)

Before time t̄δℓ(i,
√
ε/6), (λδj − λδj−1)(t) can not cancel if j 6= i. Therefore we can choose κ

small enough so that the last inequality implies

E

[
(λδi − λδi−1)

α(tδℓ(
√
ε/3) ∧ t̄δℓ(i,

√
ε/6)) 1{tδℓ (

√
ε/3)∧t̄δℓ (i,

√
ε/6) 6 T δ

ℓ+1}
| FT δ

ℓ

]
>

1

2
δα exp

(
−c′ T

)
.

which can be rewriten using the fact that |λδi − λδi−1|(tδℓ(
√
ε/3) ∧ t̄δℓ(i,

√
ε/6)) 6

√
ε/3, as

follows

P

[
tδℓ(

√
ε/3) ∧ t̄δℓ(i,

√
ε/6) 6 T δ

ℓ+1 | FT δ
ℓ

]
> δα

(
3√
ε

)α

exp(−c′ T ) .

The lemma follows with c = ( 3√
ε
)α exp(−c′ T ).

Lemma 3.12. Let ξ, T > 0. There exists a constant c > 0 and δ0 > 0 so that if δ ≤ δ0,
on T δ

ℓ 6 τ δε ∧ T ,
P

[
δξ 6 T δ

ℓ+1 − T δ
ℓ | FT δ

ℓ

]
> cδ1−pβ . (3.21)

Proof.We assume in the sequel that δ ≤ 1. The proof is based on Lemma 3.11. It
implies

P

[
δξ 6 T δ

ℓ+1 − T δ
ℓ | FT δ

ℓ

]

> P

[
tδℓ(

√
ε/3) ∧ t̄δℓ(i,

√
ε/6) 6 T δ

ℓ+1; δ
ξ
6 T δ

ℓ+1 − T δ
ℓ ≤ 1 | FT δ

ℓ

]
.
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By Lemma 3.11, we deduce that

P

[
δξ 6 T δ

ℓ+1 − T δ
ℓ ≤ 1 | FT δ

ℓ

]

> cδ1−pβ − P

[
tδℓ(

√
ε/3) ∧ t̄δℓ(i,

√
ε/6) 6 T δ

ℓ+1 6 T + 1; δξ > T δ
ℓ+1 − T δ

ℓ | FT δ
ℓ

]
.

But

P

[
tδℓ(

√
ε/3) ∧ t̄δℓ(i,

√
ε/6) 6 T δ

ℓ+1 ≤ T + 1;T δ
ℓ+1 − T δ

ℓ 6 δξ | FT δ
ℓ

]

6 P

[
tδℓ(

√
ε/3) 6 ∧ T + 1;T δ

ℓ+1 − tδℓ(
√
ε/3) 6 δξ | FT δ

ℓ

]

+ P

[
t̄δℓ(i,

√
ε/6) 6 tδℓ(

√
ε/3); t̄δℓ(i,

√
ε/6) − T δ

ℓ 6 δξ | FT δ
ℓ

]
.

Let us handle the first term of the previous right hand side

P

[
tδℓ(

√
ε/3) 6 T δ

ℓ+1 ∧ (T + 1);T δ
ℓ+1 − tδℓ(

√
ε/3) 6 δξ | Ftδℓ(

√
ε/3)

]

6 P

[
max

j
sup

tδℓ (
√
ε/3) 6 s 6 (tδℓ (

√
ε/3)+δξ)∧tδℓ (

√
ε/12)∧(T+1)

|λδj(s)− λδj(t
δ
ℓ(
√
ε/3))| >

√
ε

24
| Ftδℓ (

√
ε/3)

]

6 C exp(−cε
2

δξ
)

where we used Lemma 3.5 for the last line (actually the proof since we used the estimate
for a fixed s). For the second term, the idea is similar

P

[
t̄δℓ(i,

√
ε/6) 6 tδℓ(

√
ε/3); t̄δℓ (i,

√
ε/6)− T δ

ℓ 6 δξ | FT δ
ℓ

]

6 P

[
max
j 6=i

sup
T δ
ℓ 6 s 6 (T δ

ℓ +δξ)∧t̄δℓ (i,
√
ε/6)∧(T+1)

|λδj(s)− λδj(T
δ
ℓ )| >

√
ε

12
| FT δ

ℓ

]

6 C exp(−cε
2

δξ
) ,

by Lemma 3.5. As for all ξ > 0, exp(− c
δξ/4

) ≪ δ1−pβ for small enough δ, the proof is
complete.

4 Properties of the eigenvalues of Mβ
n

In this section, we will study the regularity and boudedness properties of the eigenvalues
of Mβ

n .

Definition 4.1. Let Mβ
0 be a symmetric (resp. Hermitian) matrix if β = 1 (resp. β = 2)

with distinct eigenvalues λ1 < λ2 < · · · < λd and (Mβ
n (t))t > 0 be the matrix process defined

in Definition 2.1. For all t > 0, the ordered eigenvalues of the matrix Mβ
n (t) will be denoted

by λn1 (t) 6 λn2 (t) 6 . . . 6 λnd (t).

The following proposition characterizes the evolution of the process λn(t) until its first
collision time.
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Proposition 4.2. Let (λn1 (t), . . . , λ
n
d (t)) be the process defined in Definition 4.1 and

set Tn(1) := inf{t > 0 : ∃i 6= j, λni (t) = λnj (t)}. Then, almost surely, the process
(λn1 (t), . . . , λ

n
d (t)) verifies for every k ∈ N, the following strict inequality

λn1 (k/n) < λn2 (k/n) < · · · < λnd (k/n) . (4.1)

In addition, there exist a sequence of Bernoulli random variables (ǫnk)k∈N with mean p and a
sequence of independent (standard) Brownian motions (bit)t > 0, i ∈ {1, . . . , d} also indepen-
dent of the Bernoulli random variables (ǫnk)k∈N such that, the process (λn1 (t), . . . , λ

n
d (t))t > 0

is the re-ordering of the process (µn1 (t), . . . , µ
n
d (t))t > 0 defined for t > 0 by

dµni (t) = −γµni (t) dt+
√
2dbit + β

∑

j 6=i

ǫnt
µni (t)− µnj (t)

dt . (4.2)

with initial conditions in t = 0 given by (µn1 (0), . . . , µ
n
d (0)) = (λ1, . . . , λd). In particular,

up to time Tn(1), the process λn verifies

dλni (t) = −γλni (t) dt+
√
2dbit + β

∑

j 6=i

ǫnt
λni (t)− λnj (t)

dt .

Remark here that we use the property that ǫnt = (ǫnt )
2.

Proof. Let us show first that for each k ∈ N such that k/n < Tn(1), we have almost
surely the strict inequality (4.1). We will proceed by induction over k. Note that under
our assumptions, it is true for k = 0. Suppose it is true at rank k and let us show it is
then true at rank k+1. From Definition 2.1, if the eigenvalues of Mβ

n (k/n) are denoted as
λn1 (k/n) < · · · < λnd (k/n), then, depending on the value of the Bernoulli random variable
ǫnk , the dynamic for t ∈ [k/n; (k + 1)/n] is

• if ǫnk = 1, the process (λn1 (t), . . . , λ
n
d (t)) follows the Dyson Brownian motion with

initial conditions (λn1 (k/n), . . . , λ
n
d (k/n)) (see [2, Theorem 4.3.2]); More precisely,

we have for t ∈ [k/n; (k + 1)/n)

dλni (t) = −γλni (t) dt+
√
2dW i

t + β
∑

j 6=i

dt

λni (t)− λnj (t)
.

where the (W i
t )t > 0, i ∈ {1, . . . , d} are independent Brownian motions. In particular,

this process is non-colliding in the sense that the λni (t) will almost surely remain
strictly ordered for all t ∈ [k/n; (k + 1)/n) (see [2, Theorem 4.3.2]). Thus, we will
almost surely have λn1 ((k + 1)/n) < · · · < λnd ((k + 1)/n).

• on the other hand, if ǫnk = 0, we need to define a new process (µn1 (t), . . . , µ
n
d (t)) of in-

dependent Ornstein-Uhlenbeck processes with initial conditions (λn1 (k/n), . . . , λ
n
d (k/n));

More precisely, the evolution for t ∈ [k/n; (k + 1)/n] is given by

dµni (t) = −γµni (t)dt+
√
2dBi

t (4.3)

where the Brownian motions Bi are the ones of Definition 2.1. Note that, before time
Tn(1), the two processes λn and µn coincide. In this case, the µni (t) can cross and the
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ordering can be broken in the interval [k/n; (k + 1)/n]. However, if crossing for the
process µn happen before time t = (k+1)/n still we know that eγ(k+1)/nµni ((k+1)/n)
are almost surely distinct. The re-ordering of the µni thus always gives λn1 ((k+1)/n) <
· · · < λnd ((k + 1)/n) a.s.

The induction is complete and proves equality (4.1) for all k ∈ N. We deduce from the
above arguments that for k such that k/n < Tn(1), the evolution of λn(t) for t ∈ [k/n; (k+
1)/n ∧ Tn(1)) is

dλni (t) = −γλni (t) dt+
√
2(ǫnt dW

i
t + (1− ǫnt )dB

i
t) + β

∑

j 6=i

ǫnt
λni (t)− λnj (t)

dt .

with initial conditions in t = k/n given by (λn1 (k/n), . . . , λ
n
d (k/n)). Let us define the pro-

cess bi for t > 0 by bit :=
∫ t
0 (ǫ

n
s dW

i
s + (1 − ǫns )dB

i
s). Using the fact that the Brownian

motions (W i
t )t > 0, i ∈ {1, . . . , d} are mutually independent and independent of the Brow-

nian motions (Bi
t)t > 0, i ∈ {1, . . . , d} (also mutually independent), it is straightforward

to check that the processes (bit)t > 0, i ∈ {1, . . . , d} are mutually independent Brownian
motions. It is also easy to see that, for all s, t ∈ [k/n; (k + 1)/n], the random variables
ǫnk(W

i
t −W i

s) + (1− ǫnk)(B
i
t −Bi

s) and ǫ
n
k are independent. Therefore, we deduce that the

brownian motions (bit)t > 0, i ∈ {1, . . . , d} are independent of the sequence (ǫnk)k∈N.
The following regularity properties will be useful later on.

Lemma 4.3. Let T <∞. Then there exist constants C,A0, c, c
′, α > 0 which depend only

on T, d such that for all n ∈ N, all A > A0 and all ε > 0

P

[
max

1 6 i,j 6 d
sup

0 6 t 6 T
|Mβ

n (t)ij | > A

]
6 C exp(−αA2) , (4.4)

P


 max
1 6 i,j 6 d

sup
0 6 s,t 6 T,
|t−s| 6 δ

|Mβ
n (t)ij −Mβ

n (s)ij | > ε


 6

c

δ
exp(− ε2

c′δ
) . (4.5)

Proof. Using Itô’s formula, we can check that

eγtMβ
n (t)− eγsMβ

n (s) =

∫ t

s
eγs

(
ǫns dH

β
s + (1− ǫns )

√
2

d∑

i=1

χn
i (

[ns]

n
)dBi

s

)
.

Let us set ∆n(s, t) := eγtMβ
n (t) − eγsMβ

n (s). The entries of ∆n(s, .) are martingales
with respect to the filtration of the Brownian motions conditionally to the Bernoulli
random variables (ǫnk)k∈N (this is due to the independence between the Brownian mo-

tions (Bi
t)t > 0, (H

β
t (ij))t > 0, 1 6 i, j 6 d and the sequence of Bernoulli random variables

(ǫnk)k∈N. Using the fact that |χn
i ([ns]/n)ij | 6 1 for all i, j, we can check that there exists a

constant C(d, T ) which does not depend on n such that for all n ∈ N

|〈∆n(s, ·)ij ,∆n(s, ·)kl〉t| 6 C(T, d)|t− s| .
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Let A > 0, using [2, corollary H.13], we have

P

[
max

1 6 i,j 6 d
sup

0 6 t 6 T
|(eγtMβ

n (t))ij | > A

]

6 d2 max
1≤i,j≤d

P

[
sup

0 6 t 6 T
|(eγtMβ

n (t)−Mβ
0 )ij | > A−max

i,j
|Mβ

0 (i, j)|
]

= d2 max
1 6 i,j 6 d

P

[
sup

0 6 t 6 T
|∆n(0, t)ij | > A−max

i,j
|Mβ

0 (i, j)|
]

6 d2 exp

(
−(A−maxi,j |Mβ

0 (i, j)|)2
C(d, T )T

)
. (4.6)

Similarly, for any given s ∈ [0, T ], for ε > 0, using [2, Corollary H.13], we have, for each
entry ij and for every δ > 0:

P

[
max

1 6 i,j 6 d
sup

t∈[s−δ,s+δ]
|(eγtMβ

n (t)− eγsMβ
n (s))ij | > ε

]
6 d2 exp

(
− ε2

2Cδ

)
.

and therefore there exists a positive constant c′ so that

P


 max
1 6 i,j 6 d

sup
0 6 s,t 6 T,
|t−s| 6 δ

|(eγtMβ
n (t)− eγsMβ

n (s))ij | > ε




6

[2T/δ]+1∑

i=1

P


 max
1≤i,j≤d

sup
|t− iδ

2
| 6 δ/2

|(eγtMβ
n (t)− eγiδ/2Mβ

n (iδ/2))ij | > ε/2




6 d2
2T

δ
exp

(
− ε2

c′δ

)
.

Lemma 4.4. Let T <∞. Then there exist constants C ′, A0, c
′, c′′, α, ǫ0 > 0 which depend

only on T, d such that for all n ∈ N, all A > A0 and all ε > 0

P

[
max

1 6 i 6 d
sup

0 6 t 6 T
|λni (t)| > A

]
6 C ′ exp(−αA2) , (4.7)

P


 max
1 6 i 6 d

sup
0 6 s,t 6 T,
|t−s| 6 δ

|λni (t)− λni (s)| > ε


 6

c′′

δ
exp(− ε2

c′δ
) . (4.8)
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Proof. This lemma is a consequence of Lemma 4.3 and the inequalities

max
1≤k≤d

|λnk (t)− λnk(s)| 6
(

d∑

i=1

|λni (t)− λni (s)|2
) 1

2

=




d∑

i,j=1

|Mβ
n (t)ij −Mβ

n (s)ij |2



1/2

(4.9)

6 d max
1≤i,j≤d

|Mβ
n (t)ij −Mβ

n (s)ij |

where, for the second inequality, we used [2, lemma 2.1.19] and the fact that the λni are
ordered.

5 Convergence of the law of the eigenvalues till the first

hitting time

Proposition 5.1. Take λ(0) = (λ1 < λ2 < · · · < λd). Construct µ
n, strong solution of

(4.2), with the same Brownian motion than λ, strong solution of (2.4), both starting from
λ(0). λn equals µn till Tn(1). For all T > 0, we have the following almost sure convergence

lim
n→∞

max
1 6 i 6 d

sup
t 6 T∧Tn(1)∧τ3ε

|λni (t)− λi(t)| = 0 .

As a consequence, if we let T1 = inf{t > 0,∃i 6= j, λi(t) = λj(t)}, we have almost surely

T1 6 lim inf Tn(1) .

We point out that this convergence does not happen on a trivial interval since we have

Remark 5.2. For any η > 0, there exists τ(η) > 0 so that

lim
n→∞

P [Tn(1) > τ(η)] > 1− η .

Proof of Remark 5.2. By the same arguments developed in (4.9), we find that

P

[
sup
t 6 T

max
1 6 i 6 d

|λni (t)eγt − λi(0)| > ǫ

]
6 P

[
sup
t 6 T

|tr((Mn(t)eγt −M0)
2)| > ǫ2

]

6 d2 exp(− ǫ2

2C(d, T )T
) .

But since also the λni are uniformly bounded with high probability, we can choose for any
η > 0 the parameter T small enough so that

P

[
max

1 6 i 6 d
sup
t 6 T

|λni (t)− λi(0)| ≥ min
1 6 i 6 d

|λi − λi+1|/3
]
6 η

This implies that P (Tn(1) ≤ T ) ≤ η.
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Proof of Proposition 5.1 Using Itô’s formula, we can compute

d∑

i=1

(λni (t)− λi(t))
2 = −2γ

∫ t

0

d∑

i=1

(λni (s)− λi(s))
2 ds (5.1)

+ 2β

∫ t

0
ǫns

d∑

i=1

∑

j 6=i

(λni (s)− λi(s))

(
1

λni (s)− λnj (s)
− 1

λi(s)− λj(s)

)
ds

+ 2β

∫ t

0
(ǫns − p)

d∑

i=1

∑

j 6=i

λni (s)− λi(s)

λi(s)− λj(s)
ds .

By the same argument as in (3.11) the second term in the right hand side is non positive.
Thus using equations 5.1, we find for t 6 Tn(1)

d∑

i=1

(λni (t)− λi(t))
2
6 2β

∫ t

0
(ǫns − p)

d∑

i=1

∑

j 6=i

λni (s)− λi(s)

λi(s)− λj(s)
ds := Rn(t) .

We next prove that
lim
n→∞

sup
0 6 t 6 T∧τ3ε

Rn(t) = 0 a.s. (5.2)

Write Rn(t) as Rn(t) = Pn(t) +Qn(t) where

Pn(t) :=

∫ t

0
(ǫns − p)

d∑

i=1

∑

j 6=i

λni ([ns]/n)− λi(s)

λi(s)− λj(s)
ds ,

Qn(t) :=

∫ t

0
(ǫns − p)

d∑

i=1

∑

j 6=i

λni (s)− λni ([ns]/n)

λi(s)− λj(s)
ds .

We first handle the convergence ofQn(t). Set Ω1 = {sup |s−t|≤1/n
t≤T

max1≤i≤d |λni (t)−λni (s)| 6 n−1/2+ǫ}.
On the event Ω1, we have

|Qn(t)| ≤ n−1/2+ǫ
d∑

i=1

∑

j 6=i

∫ t

0

ds

| λi(s)− λj(s) |
.

Following (4.9), we know that

P (Ωc
1) ≤ ce−cn2ǫ

.

We thus deduce from Lemma 3.1 that

P

[
sup
t 6 T

|Qn(t)| > δ

]
6 P




d∑

i=1

∑

j 6=i

∫ T

0

ds

| λi(s)− λj(s) |
> δn1/2−ǫ


+ P [Ωc

1]

6 c e−c δ2 n1−2ǫ
+ c e−c n2ǫ

.

Hence, Borel Cantelli’s Lemma insures the almost sure convergence of Qn to zero. We now
turn to the convergence of Pn(t). Let η > 0 small and write

Pn(t) = −d(d− 1)

2

∫ t

0
(ǫns − p)ds+ P̃n(t)
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with

P̃n(t) =

∫ t

0
(ǫns − p)

d∑

i=1

∑

j<i

λni ([ns]/n)− λnj ([ns]/n)

λi(s)− λj(s)
ds .

The process
∫ t
0 (ǫ

n
s −p)ds is a martingale and by Azuma-Hoeffding inequality, for any δ > 0

P

(
max
t≤T

|
∫ t

0
(ǫns − p)ds| ≥ δ

)
≤ 2 exp(−δ

2n

2
) .

We now use the independence between the brownian motions (bit)0 6 t 6 T , i = 1, . . . , d and
the Bernoulli random variables ǫnk , k = 1, . . . , [nT ]. Conditionally on the (bit)0 6 t 6 T , i =

1, . . . , d, the processes λi(t), i = 1, . . . , d are deterministic and the process P̃n is a martin-
gale with respect to the filtration of the ǫnk . We let

An
k =

d∑

i=1

∑

j<i

∫ k+1/n

k/n

λni ([ns]/n)− λnj ([ns]/n)

λi(s)− λj(s)
ds.

By Lemma 3.5 and Lemma 4.4, the set

Ω = { sup
k≤nT∧τ3ǫ

|An
k | ≤ n−1/8}

has probability larger than 1− e−cn1/16
. Moreover, by martingale property it is easy to see

that for all λ ≥ 0,

E[1Ωe
λP̃n(k/n)− 1

2
λ2

∑k−1
ℓ=0 (A

n
k/n

)2
] ≤ 1 .

Taking λ = n1/16, since on Ω, −n1/16|An
k | + n1/8|An

k |2/2 ≤ 0, Tchebychev’s inequality
yields

P


{|P̃n(k/n ∧ τ3ε )| ≥ n−1/16(

[Tn]∑

ℓ=0

|An
k |+ t)} ∩ Ω


 ≤ e−t

As by Lemma 3.1,
∑[Tn]

ℓ=0 |An
k | is bounded by n1/32 with probability greater than 1−e−n1/16

we conclude that
P

(
|P̃n(k/n ∧ τ3ε )| ≥ n−1/32

)
≤ Ce−n1/32

.

The uniform estimate is obtained easily by controlling the increments of P̃n in between
the times k/n, k ≤ [nT ] by supk≤[nT ] |An

k | which we have already bounded.

6 Proof of Theorem 2.2.

6.1 Non colliding case pβ > 1

It is straightforward to deduce Theorem 2.2 when pβ > 1. Indeed if βp > 1 we know that
there are no collisions for the limiting process and more precisely, see e.g [2, p. 252],

P(τ2ε 6 T ) 6 c(λ0)T/| log ε|
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with some finite constant c(λ0) which only depends on the spacings of the eigenvalues at
the initial time. This implies in particular that

lim
ε→0

lim
n→∞

P(T n
ε 6 T ) = 0

from which we easily deduce Theorem 2.2 from Proposition 5.1.

6.2 Colliding case pβ < 1

We now define the process (λn,δi (t))t > 0 which will depend on the sequence (T δ
ℓ )ℓ∈N defined

in Definition 3.6. To unify notations, set T δ
1 := T1 and T δ

n(1) := Tn(1).

Definition 6.1. For t < T δ
1 , set λ

n,δ
i (t) := λni (t). For time t > T δ

1 , we define the process

recursively by setting for each ℓ > 1, λn,δi (T δ
ℓ ) = λn,δi (T δ

ℓ −) + iδ for all i ∈ {1, . . . , d}
and for t > T δ

ℓ , the process λn,δi is defined up to time T δ
ℓ+1 by ordering the process

(µn,δ1 (t), . . . , µn,δd (t))T δ
ℓ 6 t 6 T δ

ℓ+1
which is defined for t > T δ

ℓ as

dµn,δi (t) = −γµn,δi (t) dt+
√
2dbit + β

∑

j 6=i

ǫnt

µn,δi (t)− µn,δj (t)
dt . (6.1)

with initial conditions in t = T δ
ℓ given by (λn,δ1 (T δ

ℓ ), . . . , λ
n,δ
d (T δ

ℓ )).

Lemma 6.2. Let T <∞ and δ > 0. We have the following convergence in probability, for
all ℓ ∈ N,

lim
n→∞

max
1 6 i 6 d

sup
0 6 t 6 T δ

ℓ ∧T
|λδi (t)− λn,δi (t)| = 0 .

In particular, for every ℓ, if T δ
n is the first collision time for λn,δ after T δ

ℓ−1,

T δ
ℓ ∧ T 6 lim inf T δ

n(ℓ) ∧ T a.s.

Proof Again, we prove this Lemma by induction over ℓ.
• We begin with the case ℓ = 1. Proposition 5.1 yields that the random variable

max1 6 i 6 d sup0 6 t 6 Tn(1)∧T |λi(t)−λni (t)| = 0 converges to 0 in probability as by Lemma

3.2, P (τ3ε ≥ T ) goes to one as ε vanishes. Since we have the almost sure inequality
T δ
1 6 lim inf T δ

n(1), the continuity of the λi, 1 6 i 6 d, the regularity property of the
λni given by Lemma 4.4, Lemma 3.5 and Proposition 5.1, we can check that since before

T δ
1 λ

δ
i = λi and λ

n,δ
i = λni , if T

δ
n(1) < T δ

1 ∧ T ,

max
1 6 i 6 d

sup
T δ
n(1) 6 t<T δ

1 ∧T
|λδi (t)− λn,δi (t)| (6.2)

6 max
1 6 i 6 d

sup
T δ
n(1) 6 t<T δ

1∧T
{|λni (t)− λni (T

δ
n(1))| + |λi(t)− λi(T

δ
n(1))|} (6.3)

+ |λni (T δ
n(1)) − λi(T

δ
n(1))|

goes to zero in probability, when n goes to infinity.
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• Suppose the property is true for ℓ and let us show that it is then true for ℓ + 1.
By the same argument as in the proof of Proposition 5.1, we can show that, for all t ∈
[T δ

ℓ ;T
δ
n(ℓ+ 1) ∧ T δ

ℓ+1], we have

d∑

i=1

(
λn,δi − λδi

)2
(t) 6

d∑

i=1

(
λn,δi − λδi

)2
(T δ

ℓ ) (6.4)

+ 2β

∫ t

T δ
ℓ

(ǫns − p)

d∑

i=1

∑

j 6=i

λn,δi (s)− λδi (s)

λδi (s)− λδj(s)
ds.

The same proof as in Proposition 5.1 shows that, if τ3,ℓǫ is the stopping time τ3ℓ for the
process λδ(t), t ≥ T δ

ℓ ,

lim
n→∞

sup
t∈[T δ

ℓ ;T
δ
n(ℓ+1)∧T δ

ℓ+1∧τ
3,ℓ
ǫ ]

∫ t

T δ
ℓ

(ǫns − p)

d∑

i=1

∑

j 6=i

λn,δi (s)− λδi (s)

λδi (s)− λδj(s)
ds = 0 a.s. (6.5)

Thus, because of (6.4), the following convergence in holds

lim
n→∞

max
i

sup
t∈[T δ

ℓ ;T
δ
n(ℓ+1)∧T δ

ℓ+1∧τ3ǫ ]
|λn,δi (t)− λδi (t)| = 0 a.s . (6.6)

Because of (6.6), we have T δ
ℓ+1∧τ3ǫ 6 lim infn→∞ T δ

n(ℓ+1)∧τ3ǫ . Since the probability that
τ3ǫ is larger than T goes to one as ǫ vanishes, we can show as in (6.2) (note that Lemma

4.4, Lemma 3.5 and Proposition 5.1 extend to {λn,δt , λδt , t ≥ T δ
ℓ }) that in probability,

lim
n→∞

max
1 6 i 6 d

sup
T δ
n(ℓ+1) 6 t 6 T δ

ℓ+1

|λδi (t)− λn,δi (t)| = 0.

The property at rank ℓ+ 1 is established. The Lemma is proved.

Lemma 6.3. There exists a constant c > 0 such that for all L ∈ N, we have the following
almost sure estimate

max
1 6 j 6 d

sup
0 6 t 6 T δ

L

|λn,δj (t)− λnj (t)| 6 δ L
√
c .

Proof. Note that the estimate is striaghtforward on [0, T δ
1 ]. We then proceed by induc-

tion on the time intervals [T δ
ℓ , T

δ
ℓ+1] as in the proof of Lemma 3.8 until the first collision

time
t1 := inf{t > T δ

ℓ : ∃i, λni (t) = λni−1(t) or λ
n,δ
i (t) = λn,δi−1(t)} .

We next claim that, at a given time, almost surely the eigenvalues λn are different.
Indeed, this is clear if the eigenvalues follows Brownian motion and even more when they
follow Dyson Brownian motion. Moreover the probability that more than two eigenvalues
collide at some time vanishes. Indeed, this can only happen if the eigenvalues follow the
Brownian motion. But the probability that 3 Brownian motions collide vanishes and hence
the result.
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Hence, there are almost surely at most two eigenvalues which can collide. Hence,
let i(t1) be the unique integer in {1, . . . , d} such that λni (t1) = λni−1(t1) (respectively

λn,δi (t1) = λn,δj (t1)) and let τ1 = ([nt1] + 1)/n. Notice that, for t ∈ [[nt1]/n; ([nt1] + 1)/n),

we necessarily have ǫnt = 0. Let µn,δi and µni for i ∈ {1, . . . , d} be the processes such that
for t ∈ [t1; τ1]

dµn,δi (t) = −γµn,δi (t)dt+
√
2dbit

dµni (t) = −γµni (t)dt+
√
2dbit

with initial conditions at t = t1 respectively given by µn,δ(t1) = λn,δ(t1) and µn(t1) =

λn(t1). We know that the λn,δi , respectively the λni , are just a re-ordering of the processes

µn,δi and µni
By definition, for t ∈ [t1; τ1], we find that :

(µn,δj − µnj )(t) = e−γ(t−t1)(µn,δj − µnj )(t1) .

As a consequence, we deduce that

d∑

j=1

(µn,δj − µnj )
2(t) 6

d∑

j=1

(λn,δj − λnj )
2(t1) .

Moreover, as the λ’s are ordered but the set of the values of the λ’s and the µ’s are the
same, using for instance [2, lemma 2.1.19], we have that

d∑

j=1

(λn,δj − λnj )
2(t) 6

d∑

j=1

(µn,δj − µnj )
2(t) .

Gathering the above inequalities, we have shown that

sup
t∈[0,τ1]

d∑

j=1

(λn,δj − λnj )
2(t) 6

d∑

j=1

(λn,δj − λnj )
2(T δ

ℓ ) .

We can continue inductively until we reach the time T δ
ℓ+1 to finish the proof.

7 Asymptotic properties of the eigenvectors

Recall that wβ
ij , i < j are real (respectively complex) standard Brownian motions if β = 1

(resp. β = 2) with quadratic variation βt and that we also set for i < j, wβ
ji := w̄β

ij. In

addition we also defined the skew Hermitian matrix Rβ = −(Rβ)∗ by setting for i < j,

dRβ
ij(t) =

dwβ
ij(t)

λni (t)− λnj (t)
, Rβ

ij(0) = 0 .

Proof of Proposition 2.3
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It is classical to check that the unique strong solution of the stochastic differential
equation

dOβ
n(t) = ǫnt O

β
n(t)dR

β(t)− ǫnt
2
Oβ

n(t)d〈(Rβ)∗, Rβ〉t , (7.1)

with initial condition Oβ
n(0) := Oβ(0) (defined at the end of Section 1), is in the space Oβ

d

for all time t (see e.g. [2, Lemma 4.3.4]) and is such that, with ∆β
n(t) being the diagonal

matrix of the ordered (as in (2.3)) eigenvalues of Mβ
n (t), we have

Oβ
n(t)∆

β
n(t)O

β
n(t)

∗ law
= Mβ

n (t) .

The law of the continuous process Oβ
n is uniquely determined as the unique strong solution

of (7.1).

One can thus define the eigenvectors of Mβ
n (t), denoted as φni (t), so that they satisfy

the stochastic differential system

dφni (t) = ǫnt
∑

j 6=i

dwβ
ij(t)

λni (t)− λnj (t)
φnj (t)−

ǫnt
2

∑

j 6=i

β

(λni (t)− λnj (t))
2
dtφni (t) (7.2)

where wβ
ij, i < j is a family of i.i.d. Brownian motions (on R if β = 1, C if β = 2),

independent of the eigenvalues λni , 1 6 i 6 d.
Proof of Theorem 2.4
This proof is classical and uses the theory of stability for stochastic differential equa-

tions.
For η > 0 fixed, we deduce from Proposition 5.1 and Lemma 3.2 that the process

(λn1 (t), . . . , λ
n
d (t)) converges almost surely in the space of continuous functions C([0; (T1 −

η) ∧ T ],Rd) (respectively C
d) if β = 1 (resp. β = 2) endowed with the uniform norm

towards (λ1(t), . . . , λd(t))0 6 t 6 (T1−η)∧T where the λi’s are the unique strong solutions of
(2.4) (with the same Brownian motions bi) and where T1 is the first collision time of the
λi, 1 6 i 6 d. In the sequel we will work conditionally to the (λni , λi)’s satisfying the above
convergence.

Define for i 6= j the processes wβ,n
ij by setting

wβ,n
ij (t) =

∫ t

0
ǫns dw

β
ij(s) . (7.3)

Note that the quadratic variation of this continuous martingale converges almost surely
towards βpt so that by Rebolledo’s theorem (wβ,n

ij , i < j) converges towards (
√
pwβ

ij, i < j).
Moreover, if T ǫ

1 is the first time at which two eigenvalues are at distance less than ǫ, the
drift coefficients being bounded, we see, with a proof similar to the proof of Proposition
5.1, that for i 6= j ∫ t∧T ǫ

1

0

ǫns
(λni − λnj )

2(s)
ds

converges towards p
∫ t∧T ǫ

1
0 (λi(s)− λj(s))

−2ds uniformly almost surely. Since T ǫ
1 converges

towards T1 as ǫ goes to zero, the convergence holds till (T1 − η) ∧ T for any η > 0.
Gathering the above arguments, the result follows from [7, Theorem 6.9, p. 578].
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We now turn to the analysis of the behavior of the columns φi(t) of the matrix Oβ(t)
when t→T1 with t < T1. Those vectors φi(t) form an orthonormal basis of Rd (respectively
C
d) if β = 1 (resp. β = 2) and it is easy to check that they verify the following stochastic

differential system

dφi(t) =
∑

j 6=i

√
p

λi(t)− λj(t)
dwβ

ij(t)φj(t)−
pβ

2

∑

j 6=i

dt

(λi(t)− λj(t))2
φi(t) . (7.4)

In the following of this section, we will denote by i∗ the unique (because of Lemma
3.4) index such that λi∗(T1) = λi∗−1(T1).

The main issue we meet at this point in the presence of collisions (that will occur if
pβ < 1; see [4]) lies in the divergence of the integral 2.7 that we now prove.

We now describe the behavior of the d− 2 vectors φj(t), j 6= i∗, i∗ − 1 just before the
first collision time T1.

Proof of the first statement of Proposition 2.6
We will denote by φjℓ(t) the ℓ-th entry of the d-dimensional vector φj(t). For 0 6 t < T1,

we have

dφj(t) =
∑

k 6=j

√
p

λj(t)− λk(t)
dwβ

jk(t)φk(t)−
p

2

∑

k 6=j

β

(λj − λk)2
φj(t)dt . (7.5)

We recall from section 3.2 that there are no multiple collisions nor two collisions at the
same time for the system (λ1(t), λ2(t), . . . , λd(t))0 6 t 6 T1 verifying (2.4), and therefore we
may assume without loss of generality that for j 6= i∗, i∗ − 1, every diffusions and drift
terms of (7.5) remains almost surely bounded for t ∈ [0;T1]. To prove the lemma, we just
need to prove that almost surely

lim
s→T1;
s<T1

sup
s 6 t<T1

‖φj(t)− φj(s)‖2 = 0 .

The drift terms appearing in (7.5) are obvious to deal with since 1/(λj −λk)(t) is bounded
in the vicinity of T1 and that |φjℓ(t)| 6 1 for all t < T1. For the diffusion terms, we have
for every ℓ ∈ {1, . . . , d} and for every s ∈ [0;T1] the following estimate

P


 sup
s 6 t<T1

|
∫ t

s

∑

k 6=j

√
p

λj(u)− λk(u)
dwβ

jk(u)φkℓ(u)| > η


 6 exp(− η2

2βp(d− 1)M(T1 − s)
) ,

where M = supt∈[0;T1]maxk 6=j
1

(λj−λk)2(t)
. Using the Borel-Cantelli Lemma, we deduce the

result.
For δ > 0, we want to define a process (φ̃1(t), φ̃2(t), . . . , φ̃d(t))T1−δ 6 t<T1 that will be a

good approximation of the process (φ1(t), φ2(t), . . . , φd(t))T1−δ 6 t<T1 on the time interval

[T1− δ;T1]. Hence for j 6= i∗, i∗− 1, we set φ̃j(t) = φ̃j (the vectors do not depend of time).

It remains to define the evolution for (φ̃i∗−1(t), φ̃i∗(t)) that will depend of time t.
Let V be the (d−2)-dimensional subspace spanned by the orthonormal family {φ̃j ; j 6=

i∗, i∗−1} andW its orthogonal complement in R
d. Let us define the“diffusive orthonormal

basis” in the space W that will describe the evolution of the two vectors (φ̃i∗−1(t), φ̃i∗(t))
on the interval [T1 − δ;T1] (up to the initial conditions at time t = T1 − δ we will explicit
later).
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Lemma 7.1. Let δ > 0 and (u, v) an orthonormal basis of the two-dimensional subspace
W . We consider the following stochastic differential system

dφ̃i∗(t) =

√
p

(λi∗ − λi∗−1)(t)
dwβ

i∗−1,i∗(t) φ̃i∗−1(t)−
pβ

2

dt

(λi∗ − λi∗−1)2(t)
φ̃i∗(t) , (7.6)

dφ̃i∗−1(t) = −
√
p

(λi∗ − λi∗−1)(t)
dw̄β

i∗−1,i∗(t) φ̃i∗(t)−
pβ

2

dt

(λi∗ − λi∗−1)2(t)
φ̃i∗−1(t)

with initial conditions (φ̃i∗−1(T1 − δ), φ̃i∗(T1 − δ)) = (u, v).
This stochastic differential system has a unique strong solution defined on the interval

[T1 − δ;T1) such that for each t ∈ [T1 − δ;T1), {φ̃i∗−1(t), φ̃i∗(t)} is an orthonormal basis
of W .

Proof. For all ǫ > 0, the function t → 1/(λi∗ − λi∗−1)(t) is bounded on the interval
[T1 − δ;T ǫ

1 ] and therefore there is a unique strong solution to the stochastic differential
system (7.6) till the time T ǫ

1 where |λi∗ −λi∗−1| < ǫ as it is driven by bounded linear drifts.
As T ǫ

1 grows to T1 the proof is complete.

To show that for all t ∈ [T1 − δ;T1) the family {φ̃i∗−1(t), φ̃i∗(t)} is an orthonormal
basis of W , we proceed along the same line as in the proof of [2, Lemma 4.3.4].

In the following lemma, we show that we can choose a constant δ > 0 small enough and
an initial condition (u, v) ∈W such that the processes (φ̃1(t), . . . , φ̃1(t))t∈[T1−δ;T1) defined
by Lemma 7.1 is indeed a good approximation of the process (φ1(t), . . . , φd(t))t∈[T1−δ;T1).

The advantage of the process (φ̃1(t), . . . , φ̃1(t))t∈[T1−δ;T1) is that it is simpler to study in
the vicinity of T1 (see Lemma 7.3 below).

Lemma 7.2. Let η > 0 and κ > 0. Then there exists an orthonormal basis (u, v) of W
and δ > 0 small enough such that if we denote by (φ̃i∗−1(t), φ̃i∗(t))t∈[T1−δ;T1) the unique
strong solution of the stochastic differential system (7.6) with initial conditions given in
t0 = T1 − δ by (φ̃i∗−1(t0), φ̃i∗(t0)) = (u, v), we have

P

(
sup

t∈[t0;T1)
||φi∗(t)− φ̃i∗(t)||22 + ||φi∗−1(t)− φ̃i∗−1(t)||22 > η

)
≤ κ .

Proof. Using Itô’s formula, we find1 for all t ∈ [t0;T1),

||φi∗(t)− φ̃i∗(t)||22 + ||φi∗−1(t)− φ̃i∗−1(t)||22 = ||φi∗(t0)− u||22 + ||φi∗−1(t0)− v||22

− 2

∫ t

t0

∑

i∈{i∗,i∗−1}

∑

j 6=i∗,i∗−1

√
p

(λi − λj)(s)
dwβ

ij(s)〈φ̃i(s), φj(s)〉 . (7.7)

As for i ∈ {i∗, i∗ − 1} and j 6∈ {i∗, i∗ − 1} the terms 1/(λi − λj)
2(t) have almost surely

a finite integral with respect to Lebesgue measure on the interval [t0;T1) (in fact those
terms are almost surely bounded as the corresponding particles remain at finite distance),
the quadratic variation of the last term is of order δ and therefore is smaller than η/2 with
probability greater that 1− κ for δ small enough.

1Note that all the diverging terms in T1 cancel in this expression.
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It remains to check that we can choose (u, v) an orthonormal basis of W and δ > 0
such that

||φi∗(T1 − δ)− u||22 + ||φi∗−1(T1 − δ) − v||22 6 η/2 . (7.8)

This is a straightforward: Indeed we can approximate the φj(T1− δ) for j 6∈ {i∗, i∗− 1} by

the φ̃j because of the first point of Proposition 2.6, thus we can choose two vectors {u, v}
in the two dimensional space W so that (7.8) holds. This completes the proof.

We now turn to the study of the couple (φ̃i∗−1(t), φ̃i∗(t)) for t ∈ [T1 − δ;T1) and in
particular when t→ T1, t < T1. A crucial point is equation 2.7 which we now prove.

Itô’s Formula gives for t < T1

ln(λi − λi−1)(t) = (−γ + 2pβ)t+

∫ t

0

√
2
dbi

∗

s − dbi
∗−1
s

(λi∗ − λi∗−1)(s)

− pβ

∫ t

0

∑

j 6=i∗,i∗−1

ds

(λi∗ − λj)(λi∗−1 − λj)(s)
−
∫ t

0

2 ds

(λi∗ − λi∗−1)2(s)
.

If we suppose that
∫ T1

0 dt/(λi∗ − λi∗−1)
2(t) < +∞ and since T1 < τ3ǫ for some ǫ > 0 small

enough, we obtain a contradiction letting t → T1: under this assumption, the right hand
side tends to −∞ whereas the left hand side is almost surely bounded in this limit.

The next Lemma 7.3 shows that the orthonormal basis (φ̃i∗−1(t), φ̃i∗(t)) of the subspace
W is in fact uniformly distributed in the set of all orthonormal basis of W in the limit
t→ T1, t < T1.

As W is two dimensional, up to a change basis, we can suppose that the two vectors
φ̃i∗−1(t) and φ̃i∗(t) are two dimensional (we just study the evolution of their coordinates
in an orthonormal basis of W ). Let us define the two by two matrix φ̃(t) whose first line
is the vector φ̃i∗(t) and second line is the vector φ̃i∗−1(t):

φ̃(t) :=

(
φ̃i∗(t)

φ̃i∗−1(t)

)
.

Lemma 7.3. The matrix φ̃(t) converges in law when t→ T1, t < T1 to the Haar probability
measure on the orthogonal group (respectively unitary group if β = 2.)

Proof. To simplify notations, we do the proof in the case β = 1.
Set t0 := T1 − δ and define for t ∈ [0; δ) the function

ϕ(t) :=

∫ t0+t

t0

ds

(λi∗ − λi∗−1)2(s)

and denote by ϕ−1 its functional inverse. We now proceed to a change of time by setting
for t ∈ [0; δ)

ψ̃i∗(t) = φ̃i∗(ϕ
−1(t)), ψ̃i∗−1(t) = φ̃i∗−1(ϕ

−1(t)) .

As ϕ−1(t) → +∞ when t→ δ, t < δ (because of (2.7)), the two by two matrix ψ̃(t) whose
first line is ψ̃i∗(t) and second line is ψ̃i∗(t):

ψ̃(t) :=

(
ψ̃i∗(t)

ψ̃i∗−1(t)

)
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is now defined for all t ∈ R+ and verifies the following stochastic differential equation

dψ̃(t) =
√
pA ψ̃(t) dBt −

pβ

2
ψ̃(t) dt . (7.9)

where B is a standard Brownian motion on R and where A is the two by two matrix
defined by

A =

(
0 1
−1 0

)
.

Note in particular that A2 = −I.
It is clear that there is pathwise uniqueness in the stochastic differential equation (7.9)

(it is linear in ψ̃). Therefore to solve entirely this equation, we just need to exhibit one
solution. Using Itô’s Formula, one can check that the solution is

ψ̃(t) = exp (
√
pABt) ψ̃(0)

=

(
cos(

√
pBt) sin(

√
pBt)

− sin(
√
pBt) cos(

√
pBt)

)
ψ̃(0) .

Note that for all t ∈ R+, the matrix ψ̃(t) is indeed in the space of orthogonal matrices.
But (cos(

√
pBt), sin(

√
pBt)) converges in law as time goes to infinity towards the law

of (θ, ε
√
1− θ2) with θ uniformly distributed on [−1, 1] and ε = ±1 with probability 1/2,

from which the result follows.

Lemmas 7.2 and 7.3 give the second statement of Proposition 2.6.
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