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Abstract. We study the Langevin dynamics for the family of spherical p-spin disordered mean-�eld models

of statistical physics. We prove that in the limit of system size N approaching in�nity, the empirical state

correlation and integrated response functions for these N -dimensional coupled di�usions converge almost

surely and uniformly in time, to the non-random unique strong solution of a pair of explicit non-linear integro-

di�erential equations, �rst introduced by Cugliandolo and Kurchan.

1. Introduction and main results

Markovian dynamics with random interactions can produce very complex phase transitions, and fascinating

long time behaviors, for strong disorder (or low temperature). The physics literature has shown that dynamics

of mean-�eld spin glasses is a very good �eld to get an accurate sample of possible and generic long time

phenomena (as aging, memory, rejuvenation, failure of the Fluctuation-Dissipation theorem, see [8] for a good

survey).

This class of problems can be roughly described as follows. Let � (a compact metric space) be the state space

for spins and � be a probability measure on �. Typically, in the discrete or Ising spins context � = f�1; 1g

and � = 1=2(�

1

+ �

�1

). In the continuous or soft spin context, � = I a compact interval of the real line and

�(dx) = Z

�1

e

�U(x)

dx , where U (x) is the "one-body potential". For each con�guration of the spin system, i.e.

for each x = (x

1

; :::; x

N

) 2 �

N

one de�nes a random Hamiltonian,H

N

J

(x), as a function of the con�guration x

and of an exterior source of randomness J, i.e. a random variable de�ned on another probability space. The

Gibbs measure at inverse temperature � is then de�ned on the con�guration space �

N

by

�

N

�;J

(dx) = exp(��H

N

J

(x))�(dx)=Z

N

J

The statics problem amounts to understanding the large N behavior of these measures for various classes of

random Hamiltonians ([21] is a recent and beautiful book on the mathematical results pertaining to these

equilibrium problems). The dynamics question consists of understanding the behavior of Markovian processes

on the con�guration space �

N

, for which the Gibbs measure is invariant and even reversible, in the limit of

large systems (large N ) and long times, either when the randomness J is �xed (the quenched case) or when it

is averaged (often called the annealed case, in the mathematics literature, but not in the physics papers).

These dynamics are typically Glauber dynamics for the discrete spin setting, or Langevin dynamics for

continuous spins. De�ning precisely what we mean here by large system size and long time is a very important

question, and very di�erent results can be expected (and sometimes proved, see [3] and references therein),

for various time-scales as functions of the size of the system. We will restrict ourselves to the case where the

system size is �rst taken to in�nity, i.e for the shortest possible long time scales, much too short typically to

allow any escape from meta-stable states (as opposed to the situation in [4] for instance). The �rst step is

then to derive limiting equations for various quantities, when N tends to1. The second step is to understand

the large time behavior of these limiting macroscopic equations. Let us be more speci�c by describing one

of the main initial objectives of the theory, which is the long time behavior of the Langevin dynamics of the
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Sherrington-Kirkpatrick model and its generalization, the p-spin model. In the SK model, either for discrete

or for continuous spins, the Hamiltonian is given by:

H

N

J

(x) =

X

1�i;j�N

J

fijg

x

i

x

j

;

where the randomness is due to the couplings J

fijg

which are assumed to be i.i.d Gaussian centered, of variance

N

�1

in case i 6= j and 2N

�1

in case i = j. In the p-spins model the Hamiltonian contains interaction between

subsets of spins of size p, that is,

H

N

J

(x) =

X

1�i

1

<:::<i

p

�N

J

i

1

:::i

p

x

i

1

: : : x

i

p

;(1.1)

where the couplings J

i

1

:::i

p

are assumed to be i.i.d. Gaussian centered and of variance of O(N

�(p�1)

). The

initial SK model corresponds of course to the case p = 2.

Propagation of chaos for dynamics of the SK model, or equivalently the large N limit for the behavior of

the empirical measure

1

N

P

N

i=1

�

x

i

(t)

has been obtained some time ago both for continuous spins (see [19, 20],

in the physics literature and [6, 7, 15] for a mathematical treatment) or discrete ones (see [14]). The limiting

equations (the so called self-consistent single-spin dynamics) are very complex and have resisted so far all

attempts to understand their long time behavior. This is due in part to the fact that the empirical measure is

a much too rich object. Finding an autonomous system of tractable equations for a proper well chosen set of

lower dimensional quantities is still a very open question, even in the physics literature.

But a large range of interesting and related models have been recently analyzed more successfully in the

physics literature, i.e the spherical p-spin models (see [8, 10]). The spherical version of the spin glass models

consists of a classical simpli�cation, that is, replacing the product structure of the con�guration space �

N

by the sphere S

N�1

(

p

N ) of radius

p

N in R

N

, in e�ect, imposing on the con�guration x a hard constraint

1

N

P

N

i=1

x

2

i

= 1. The spherical p-spin Gibbs measure is thus the probability measure on the sphere S

N�1

(

p

N )

given by

�

N

�;J

(dx) = exp(��H

N

J

(x))�

N

(dx)=Z

N

J

;

where the Hamiltonian is given by (1.1) and the measure �

N

is the uniform measure on the sphere S

N�1

(

p

N ).

One can also study a very similar problem by replacing the hard spherical constraint by a soft one, i.e by

replacing the uniform measure �

N

on the sphere S

N�1

(

p

N ) by a measure on R

N

�

N

(dx) = exp

�

�Nf(

1

N

N

X

i=1

x

2

i

)

�

dx=Z

N

;

where f is a smooth function growing fast enough at in�nity. This study has been done successfully (see [5],

and [11]) in the case where p = 2, the spherical SK model. There one could obtain a very complete description

of the limiting dynamics using only one quantity, the empirical state correlation function

C

N

(s; t) =

1

N

N

X

i=1

x

i

(s)x

i

(t) :

Indeed, this quantity was shown to have a non-random limit C(s; t), when N tends to 1, which satis�es an

autonomous integro-di�erential equation. This is a rather simple setting, when p = 2, since this quadratic case

can use the well know tools pertaining to the study of spectra of GOE random matrices, after diagonalization

of the random matrix (J

ij

). The results, though showing an aging phenomenon, are very far from what is

expected for the true (i.e non spherical) SK model. The case of p > 2 is a completely di�erent story. The

physics literature, mainly Cugliandolo and Kurchan (see [8, 10, 12]), has given a very rich picture of the

behavior of the Langevin dynamics for these spherical p-spin models, which are believed to mimic in certain

cases the behavior of the dynamics of the true SK model. The main innovation is the fact that the description

of the limiting dynamics relies now on two objects, the empirical correlation function and the response function
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(and not only one as in the spherical p = 2 case or the whole in�nite dimensional object of the true, non-

spherical, SK model). These two functions are believed to satisfy a set of coupled non-linear integro-di�erential

equations (which of course decouple in the p = 2 case). Our work establishes rigorously the asymptotic validity

of these Cugliandolo-Kurchan equations (see [12] for the physical derivation of these). We shall devote a future

work to the fascinating question of understanding the large time behavior of the solution to these equations

(see [8] or [10] to see what is expected). Some of the needed mathematical tools for attacking this problem can

be found in [16], as well as an intriguing link with equations arising naturally in non-commutative probability.

We now describe more precisely our result and then the structure of this paper.

Fixing a positive integer N (denoting the system size), we consider the mean �eld random Hamiltonian

H

N

J

(x) = �2

m

X

p=1

a

p

p!

X

1�i

1

;::: ;i

p

�N

J

i

1

:::i

p

x

i

1

: : : x

i

p

;(1.2)

where m � 2, the state variable is x = (x

1

; : : : ; x

N

) 2 R

N

, and the disorder parameters J

i

1

:::i

p

= J

fi

1

;::: ;i

p

g

are independent (modulo the permutation of the indices) centered Gaussian variables. The variance of J

i

1

:::i

p

is c(fi

1

; : : : ; i

p

g)N

�p+1

, where

c(fi

1

; : : : ; i

p

g) =

Y

k

l

k

! ;(1.3)

and (l

1

; l

2

; : : : ) are the multiplicities of the di�erent elements of the set fi

1

; : : : ; i

p

g (for example, c = 1 when

i

j

6= i

j

0

for any j 6= j

0

, while c = p! when all i

j

values are the same).

Let f be a di�erentiable function on R

+

with f

0

locally Lipschitz, such that

sup

��0

jf

0

(�)j(1 + �)

�r

<1(1.4)

for some r <1, and for some A; � > 0,

inf

��0

ff

0

(�) � A�

m=2+��1

g > �1(1.5)

(typically, f(�) = �(�� 1)

r

for some r > m=2 and �� 1). At temperature �

�1

> 0, the soft spherical version

of the system corresponds to the equilibrium probability measure �

N

�;J

on R

N

whose density (with respect to

Lebesgue measure) is

d�

N

�;J

dx

= Z

�1

�;J

e

��H

N

J

(x)�Nf(N

�1

kxk

2

)

;

where k�k denotes the Euclidean norm on R

N

and the normalization factor Z

�;J

=

R

e

��(H

N

J

(x)�Nf(N

�1

kxk

2

)

dx

is a.s. �nite (by (1.5)). Recall that �

N

�;J

is the invariant measure of the randomly interacting particles described

by the (Langevin) stochastic di�erential system:

dx

j

t

= dB

j

t

� f

0

(N

�1

kx

t

k

2

)x

j

t

dt+ �G

j

(x

t

)dt ;(1.6)

where B = (B

1

; : : : ; B

N

) is an N-dimensional standard Brownian motion, independent of both the initial

condition x

0

and the disorder J, while

G

i

(x) := �

1

2

@

x

i

�

H

N

J

(x)

�

=

m

X

p=1

a

p

(p� 1)!

X

1�i

1

;::: ;i

p�1

�N

J

ii

1

:::i

p�1

x

i

1

: : :x

i

p�1

;(1.7)

for i = 1; : : : ; N .

In Proposition 2.1 we prove that for a.e. disorder J, initial condition x

0

and Brownian path B, there exists

a unique strong solution of (1.6) for all t � 0, whose law we denote by P

N

�;x

0

;J

.
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We are interested in the time evolution of the empirical state correlation function

C

N

(s; t) :=

1

N

N

X

i=1

x

i

s

x

i

t

;(1.8)

and that of the empirical integrated response function

�

N

(s; t) :=

1

N

N

X

i=1

x

i

s

B

i

t

;(1.9)

under the quenched law P

N

�;x

0

;J

, as the system size N !1. Note that since f�

N

(s; t); 0 � t � s � Tg is not

determined by N

�1

P

�

x

i

[0;T ]

, the strategy by which the limiting equations in [6, 7] are derived, does not apply

directly in our case.

We assume hereafter that the initial condition x

0

is independent of the disorder J, and the limit

lim

N!1

EC

N

(0; 0) = C(0; 0) ;(1.10)

exists, and is a �nite. Further, we assume that the tail probabilities P(jC

N

(0; 0) � C(0; 0)j > x) decay

exponentially fast in N (so the convergence C

N

(0; 0)! C(0; 0) holds almost surely), and that for each k <1,

the sequence N 7! E[C

N

(0; 0)

k

] is uniformly bounded.

To be more speci�c, we consider hereafter the product probability space E

N

= R

N

�R

d(N;m)

�C ([0; T ];R

N

)

(here T is a �xed time and d(N;m) is the dimension of the space of the interactions J), equipped with the

natural Euclidean norms for the �nite dimensional parts, i.e (x

0

;J), and the sup-norm for the Brownian motion

B. The space E

N

is endowed with the product probability measure P= �

N


 


N


P

N

, where �

N

denotes the

distribution of x

0

, 


N

is the (Gaussian) distribution of the coupling constants J, and P

N

is the distribution of

the N -dimensional Brownian motion.

Hypothesis 1.1. For (x

0

;J;B) 2 E

N

we introduce the norms

k(x

0

;J;B)k

2

=

N

X

i=1

(x

i

0

)

2

+

m

X

p=1

X

1�i

1

:::i

p

�N

(N

p�1

2

J

i

1

���i

p

)

2

+ sup

0�t�T

N

X

i=1

(B

i

t

)

2

:

We shall assume that �

N

is such that the following concentration of measure property holds on E

N

; there exists

two �nite positive constants C and �, independent on N , such that, if V is a Lipschitz function on E

N

, with

Lipschitz constant K, then for all � > 0,

�

N


 


N


 P

N

[jV � E[V ]j � �] � C

�1

exp (�C(

�

K

)

�

) :

The above concentration inequality holds for any Lipschitz function V that does not depend on x

0

, since

the concentration of measure property holds for the Gaussian measures 


N


 P

N

, with � = 2 (c.f. [2]).

Unfortunately, assuming that the concentration of measure property holds for the measures �

N

on R

N

does

not assure the concentration of measure for the product measure �

N


 


N


 P

N

. Hence, we shall have to

assume a property which implies the concentration inequality of Hypothesis 1.1 and further tensorizes (see

[2] for a more thorough discussion). For example, if �

N

satisfy the Poincar�e inequality uniformly in N , then

the product measures �

N


 


N


 P

N

also satisfy the Poincar�e inequality uniformly in N , since the Gaussian

measure 


N


 P

N

does. The required uniform in N concentration property is then satis�ed, with � = 1 (c.f.

[1, 2]).

Our main result is the proof that as N ! 1 the functions C

N

(s; t) and �

N

(s; t) converge to non-random

functions C(s; t) and �(s; t), that are characterized by the following theorem.
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Theorem 1.2. Let  (r) = �

0

(r) + r�

00

(r) and

�(r) :=

m

X

p=1

a

2

p

p!

r

p

:(1.11)

Suppose �

N

satis�es hypothesis 1.1. Fixing any T < 1, as N ! 1 the random functions C

N

and �

N

converge uniformly on [0; T ]

2

, almost surely and in L

p

with respect to x

0

, J and B to non-random functions

�(s; t) =

R

t

0

R(s; u)du and C(s; t) = C(t; s). Further, R(s; t) = 0 for t > s, R(s; s) = 1, and for s > t the

absolutely continuous functions C, R and K(s) = C(s; s) are the unique solution in the space of bounded,

continuous functions, of the integro-di�erential equations

@

s

R(s; t) = �f

0

(K(s))R(s; t) + �

2

Z

s

t

R(u; t)R(s; u)�

00

(C(s; u))du;(1.12)

@

s

C(s; t) = �f

0

(K(s))C(s; t) + �

2

Z

s

0

C(u; t)R(s; u)�

00

(C(s; u))du+ �

2

Z

t

0

�

0

(C(s; u))R(t; u)du;(1.13)

@

s

K(s) = �2f

0

(K(s))K(s) + 1 + 2�

2

Z

s

0

 (C(s; u))R(s; u)du;(1.14)

where the initial condition K(0) = C(0; 0) is determined by (1.10).

We note in passing that for p = 2, i.e. �(r) = r

2

=2, we get from (1.12) the autonomous equation

@

s

H(s; t) = �

2

Z

s

t

H(u; t)H(s; u)du ; H(t; t) = 1 ;

for H(s; t) = R(s; t) exp(

R

s

t

f

0

(K(u))du), whose unique solution is the Laplace transform of the semi-circle

probability measure, evaluated at �(s � t). Plugging this expression in (1.13) and (1.14), upon scaling both

the function f and time by a factor �, we recover the limiting equation of [5, (2.16)] after some integrations

by parts. Further, setting K(s) = 1 and @

s

K(s) = 0 in (1.14), while replacing f

0

(K(s)) in (1.12){(1.14) by a

time varying constant z(s), corresponds to the hard spherical constraint of [12]. Indeed, the limiting equations

of [12] are thus recovered.

Note that the constant � can be embedded into fa

p

g resulting with �G

j

(�) 7! G

j

(�) and then having � = 1

in the stochastic di�erential system (1.6). Adopting this convention, we thus take hereafter � = 1. It is trivial

to check that the explicit dependence of (1.12){(1.14) on � is indeed as stated, i.e., with each appearance of

�

0

(�), �

00

(�) (and  (�)) multiplied by �

2

.

The empirical quantities K

N

(s) := C

N

(s; s) and

A

N

(s; t) :=

1

N

N

X

i=1

G

i

(x

s

)x

i

t

; F

N

(s; t) :=

1

N

N

X

i=1

G

i

(x

s

)B

i

t

;(1.15)

play a key role in the derivation of Theorem 1.2. Indeed, with

D

N

(s; t) := �f

0

(E(K

N

(t)))C

N

(s; t) +A

N

(t; s) ; E

N

(s; t) := �f

0

(E(K

N

(s)))�

N

(s; t) + F

N

(s; t) ;(1.16)

the key step of the proof of Theorem 1.2 is summarized by
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Proposition 1.3. Fixing any T <1, in case � = 1, any limit point of the sequence (EC

N

; E�

N

; ED

N

; EE

N

)

with respect to uniform convergence on [0; T ]

2

, satis�es the integral equations

C(s; t) = C(s; 0) + �(s; t) +

Z

t

0

D(s; u)du;(1.17)

�(s; t) = s ^ t+

Z

s

0

E(u; t)du;(1.18)

D(s; t) = �f

0

(C(t; t))C(t; s)�

Z

t_s

0

�

0

(C(t; u))D(s; u)du�

Z

t_s

0

C(s; u)�

00

(C(t; u))D(t; u)du

+C(s; t _ s)�

0

(C(t _ s; t))� C(s; 0)�

0

(C(0; t));(1.19)

E(s; t) = �f

0

(C(s; s))�(s; t) �

Z

s

0

�

0

(C(s; u))E(u; t)du�

Z

s

0

�(u; t)�

00

(C(s; u))D(s; u)du

+�(s; t)�

0

(C(s; s))�

Z

t^s

0

�

0

(C(s; u))du;(1.20)

in the space of bounded continuous functions on [0; T ]

2

subject to the symmetry condition C(s; t) = C(t; s) and

the boundary conditions E(s; 0) = 0 for all s, and E(s; t) = E(s; s) for all t � s.

We next detail the organization of the paper, and hence, that of the proof of Theorem 1.2.

In Section 2 we prove the existence of strong solutions x

t

for the Stochastic Di�erential System (in short

SDS) given in (1.6), for any N < 1 (see Proposition 2.1). We then prove that the functions A

N

, F

N

, �

N

and C

N

associated with these solutions have uniformly bounded (in N ) �nite moments of all order, and form

pre-compact sequences with respect to uniform convergence on compacts both almost surely and in the mean

(see Proposition 2.3). Applying the \localized concentration of measure" of Lemma 2.5, we complete the

preliminary analysis of the �nite size SDS by proving in Proposition 2.4 that as N ! 1 each of the four

functions A

N

, F

N

, �

N

and C

N

\self-averages", namely, concentrates around its mean. These results rely on

the bounding in Appendix B norms of the disorder J that are expressed as the supremum of certain Gaussian

�elds.

The proof of Proposition 1.3, namely, that each limit point of (EC

N

; E�

N

; ED

N

; EE

N

) must satisfy (1.17){

(1.20), is the subject of Section 3. Of these equations, upon multiplying the integrated form (3.1) of our

SDS by x

i

t

or by B

i

t

, then averaging over i and the probability space, both (1.17) and (1.18) are immediate

consequences of self-averaging. The crux of the proof is thus Proposition 3.1, where we show that as N !1,

both EA

N

and EF

N

are well approximated by certain combination of our four functions, thereby leading to

(1.19) and (1.20). The emergence of �

0

(C(s; u)) and �

00

(C(s; u)) in the latter pair of equations, and hence in

Theorem 1.2, is a consequence of the structure of the covariance kernel k

ts

(x) = E

J

[G

i

(x

t

)G

j

(x

s

)], obtained by

integrating over the disorder parameters J assuming their independence of the frozen path x

t

(see Lemma 3.2).

However, the main di�culty of the proof is the intricate dependence between J and fx

t

; 0 � t � Tg. Taking

full advantage of the Gaussian law of J and the Brownian law of B, this di�culty is dealt with by combining

the Itô's calculus identities of Appendix A with Girsanov's theorem and the resulting Gaussian change of

measure identities that are derived in Appendix C. This approach succeeds in deriving a \closed" system of

�nitely many limiting equations thanks to the fact that apart from our self-averaging global quantities, the

kernel k

ts

is a quadratic form of x. Note that certain Hamiltonians other than (1.2) also have such a property,

hence are amenable to a similar treatment (one such example is H

N

J

(x=kxk) for H

N

J

(�) of (1.2)).

Section 4 mostly deals with analytic considerations. Its starting point is Lemma 4.1, showing that any

solution of (1.17){(1.20) is su�ciently di�erentiable to give rise to a solution of (1.12){(1.14). This is followed

by Proposition 4.2, establishing the uniqueness of the latter system of equations by a Gronwall type argument.

Using these two ingredients, as well as the pre-compactness and self-averaging of our four functions, we conclude

by deducing Theorem 1.2 out of Proposition 1.3.
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2. Strong solutions, self-averaging and compactness

We start with the almost sure existence of the strong solution x

t

of (1.6).

Proposition 2.1. Assume that f

0

is locally Lipschitz, satisfying (1.5). Then, for any N 2 N, almost any

J, initial condition x

0

and Brownian path B, there exists a unique strong solution to (1.6). This solution is

also unique in law for almost any J, and x

0

, it is a probability measure on C(R

+

;R

N

) which we denote P

N

x

0

;J

.

Further, with

jjJjj

N

1

= max

1�p�m

sup

jju

i

jj�1;1�i�p

�

�

�

p

N

�1

X

1�i

k

�N;1�k�p

N

p�1

2

J

i

1

���i

p

u

1

i

1

� � �u

p

i

p

�

�

�

(2.1)

we have for � > 0 of (1.5), q := m=(2�) + 1, some � <1, all N , z > 0, J, and x

0

, that

P

N

x

0

;J

�

sup

t2R

+

K

N

(t) � K

N

(0) + �(1 + kJk

N

1

)

q

+ z

�

� e

�zN

:(2.2)

Consequently, for any L > 0, there exists z = z(L) <1 such that

P

�

sup

t2R

+

K

N

(t) � z

�

� e

�LN

:(2.3)

Proof: For every M > 0 we introduce a bounded globally Lipschitz function �

M

on R

N

which we choose such

that �

M

(x) = x when jjxjj �

p

NM , and then consider the truncated drift b

M

(u) = (b

M

1

(u); : : : ; b

M

N

(u)) given

by b

M

i

(u) = G

i

(�

M

(u))� f

0

(N

�1

juj

2

^M )u

i

.

Since f

0

is locally Lipschitz, and since jjJjj

N

1

is �nite almost surely for all p and N , it is thus clear that the

drift b

M

(u) is globally Lipschitz. The existence and uniqueness of a square-integrable strong solution u

(M)

for

the SDS

du

i

t

= b

M

i

(u

t

)dt+ dB

i

t

is thus standard (for example, see [17, Theorems 5.2.5, 5.2.9]). With u

(M)

de�ned for all M on the same

probability space and �ltration, consider the stopping times �

M

= infft : jju

(M)

t

jj �

p

NMg. Note that u

(M)

is the unique strong solution of (1.6) for t 2 [0; �

M

], with �

M

a non-decreasing sequence. By the Borel-Cantelli

lemma, it su�ces for the existence of a unique strong solution u = lim

M!1

u

(M)

of the SDS (1.6) in [0; T ],

to show that

1

X

M=1

P(�

M

� T ) <1:(2.4)

To this end, �x M and let x

t

= u

(M)

t^�

M

and Z

s

= 2N

�1

P

N

i=1

R

s^�

M

0

x

i

t

dB

i

t

. Applying Ito's formula for

C

N

(t) = N

�1

jjx

t

jj

2

we see that

C

N

(s) � C

N

(0) + 2

m

X

p=1

a

p

jjJjj

N

1

(p � 1)!

Z

s^�

M

0

C

N

(t)

p

2

dt� 2

Z

s^�

M

0

f

0

(C

N

(t))C

N

(t)dt+ Z

s

+ s ^ �

M

:(2.5)

Since x

1�

m

2

f

0

(x)!1, it follows from (2.5) that there is an almost surely �nite constant c(jjJjj

N

1

), independent

of M , such that

C

N

(s) � C

N

(0) + c(jjJjj

N

1

)s+ Z

s

(2.6)

As the quadratic variation of the martingale Z

s

is (4=N )

R

s^�

M

0

C

N

(t)dt � 4sN

�1

M , applying Doob's inequal-

ity (c.f. [17, Theorem 3.8, p. 13]) for the exponential martingale L

�

s

= exp(�Z

s

� 2(�

2

=N )

R

s^�

M

0

C

N

(t)dt)

(with respect to the �ltration fH

t

g of B

t

), yields that

P

�

sup

s�T

fZ

s

� 2

Z

s

0

C

N

(t)dtg � z

�

� P

�

sup

s�T

L

N

s

� e

zN

�

� e

�zN

;(2.7)
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for any z > 0. Therefore, (2.6) shows that with probability greater than 1� e

�zN

,

C

N

(s ^ �

M

) � C

N

(0) + c(jjJjj

N

1

)T + z + 2

Z

s^�

M

0

C

N

(t)dt ;

for all s � T , and by Gronwall's lemma then also

sup

t�T

N

�1

ju

(M)

t^�

M

j

2

� [C

N

(0) + c(jjJjj

N

1

)T + z]e

2T

:(2.8)

Setting z = M=3, for large enough M (depending of N , J, x

0

and T which are �xed here), the right-side of

(2.8) is at mostM=2, resulting with

P(�

M

� T ) � e

�MN=3

;

and hence with (2.4). We also have weak uniqueness of our solutions for almost all J since the restriction of

any weak solution to the stopped �-�eld H

�

M

for the �ltration H

t

of B

t

is unique. We denote this unique

weak solution of (1.6) by P

N

x

0

;J

.

Turning to the proof of (2.2), by (1.5), for any c > 0 there exists � <1 such that for all r; x � 0,

2[f

0

(x)x� r

m

X

p=1

a

p

x

p

2

(p � 1)!

]� 1 � cx� �(1 + r)

q

:

Taking r = kJk

N

1

, we see that by (2.5), for all N and s � 0,

C

N

(s ^ �

M

) � C

N

(0)�

Z

s^�

M

0

[cC

N

(t) � �(1 + kJk

N

1

)

q

]dt+ Z

s

;

where (Z

s

)

s�0

is a martingale with bracket (4N

�1

R

s^�

M

0

C

N

(t)dt; s � 0).

By Doob's inequality (2.7), with probability at least 1� e

�zN

,

sup

u�s^�

M

Z

u

� 2

Z

s^�

M

0

C

N

(t)dt + z;

for all s � 0. Setting c = 3 we then have that

C

N

(s ^ �

M

) � C

N

(0) + z �

Z

s^�

M

0

C

N

(t)dt+ �(1 + kJk

N

1

)

q

(s ^ �

M

) ;(2.9)

so that by Gronwall's lemma,

C

N

(s ^ �

M

) � e

�s^�

M

(C

N

(0) + z) + �(1 + kJk

N

1

)

q

Z

s^�

M

0

e

�t

dt

from which the conclusion (2.2) is obtained by considering M !1.

In view of the assumed exponential in N decay of the tail probabilities for K

N

(0) and the bound (B.7) on

the corresponding probabilities for kJk

N

1

we thus get also the bounds of (2.3).

Our next lemma provides bounds on G

i

(x) of (1.7) which we often use en-route to the uniform boundedness

of moments, pre-compactness, and concentration around the mean of the functions A

N

, F

N

, �

N

, and C

N

.

Lemma 2.2. There exists a constant c <1 such that, for all N <1 and every x,
e
x 2 R

N

,

h

N

X

i=1

(G

i

(x)� G

i

(
e
x))

2

i

1

2

� cjjJjj

N

1

[1 + (

1

N

jjxjj

2

)

m�2

2

][1 + (

1

N

jj
e
xjj

2

)

m�2

2

]jjx�
e
xjj ;(2.10)

and in particular,

h

1

N

N

X

i=1

G

i

(x)

2

i

1

2

� cjjJjj

N

1

[1 + (

1

N

jjxjj

2

)

m�1

2

] :(2.11)
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Proof: Fixing N , x,
e
x and y 2 R

N

, note the telescoping sum

N

X

i=1

(G

i

(x) �G

i

(
e
x))y

i

=

m

X

p=1

a

p

(p� 1)!

p�1

X

l=1

X

i

k

J

i

1

���i

p

(

l�1

Y

h=1

x

i

h

)(x

i

l

� ex

i

l

)(

p�1

Y

h=l+1

ex

i

h

)y

i

p

Recall the de�nition (2.1) leading to the bounds,

j

X

i

k

J

i

1

���i

p

(

l�1

Y

h=1

x

i

h

)(x

i

l

� ex

i

l

)(

p�1

Y

h=l+1

ex

i

h

)y

i

p

j � jjJjj

N

1

(

1

N

jjxjj

2

)

l�1

2

(

1

N

jj
e
xjj

2

)

p�l�1

2

jjx�
e
xjjjjyjj ;

for 1 � l � p� 1 � m� 1. Consequently, we get for some c = c(a

1

; : : : ; a

m

) <1 which is independent of N ,

that

N

X

i=1

(G

i

(x) �G

i

(
e
x))y

i

� cjjJjj

N

1

[1 + (

1

N

jjxjj

2

)

m�2

2

][1 + (

1

N

jj
e
xjj

2

)

m�2

2

]jjx�
e
xjjjjyjj ;

for all x,
e
x and y. Taking y

i

= G

i

(x)�G

i

(
e
x) results with the bound of (2.10), out of which we get the bound

(2.11) by considering
e
x = 0.

By the estimate (B.6) of Appendix B, we know that for any k <1,

sup

N

E[(jjJjj

N

1

)

k

] <1 ;(2.12)

for the norm jjJjj

N

1

of (2.1). By the boundedness of N 7! E[K

N

(0)

k

] and (2.2) the bound (2.12) immediately

implies that for each k <1, also

sup

N

E

h

sup

t2R

+

K

N

(t)

k

i

<1 :(2.13)

Building upon (2.12) and (2.13) we next prove uniformmoment bounds and pre-compactness of the functions

of interest to us.

Proposition 2.3. Let U

N

denote any one of the functions A

N

, F

N

, �

N

and C

N

. Then, E

�

sup

s;t�T

jU

N

(s; t)j

k

�

is uniformly bounded in N , for any �xed T < 1 and k < 1. Further, for any �xed T < 1, the sequence

of continuous functions U

N

(s; t) is pre-compact almost surely and in expectation with respect to the uniform

topology on [0; T ]

2

.

Proof: We start with the uniform bound on the moments of A

N

, F

N

, �

N

and C

N

. To this end, let B

N

(t) :=

1

N

P

N

i=1

jB

i

t

j

2

and G

N

(t) :=

1

N

P

N

i=1

jG

i

(x

t

)j

2

. Fixing T; k < 1 let kK

N

k

1

:= supfK

N

(t) : 0 � t � Tg, and

similarly de�ne kB

N

k

1

, kG

N

k

1

and kU

N

k

1

:= supfU

N

(s; t) : 0 � s; t � Tg.

A key estimate is then the following,

sup

N

E[(jjJjj

N

1

)

k

] + sup

N

E[kK

N

k

k

1

] + sup

N

E[kB

N

k

k

1

] + sup

N

E[kG

N

k

k

1

] <1 ;(2.14)

holding for each �xed k. Indeed, the bounds on kJk

N

1

and kK

N

k

1

are already obtained in (2.12) and (2.13),

whereas by (2.11) we have that

(G

N

(t))

1

2

� cjjJjj

N

1

[1 +K

N

(t)

m�1

2

] ;(2.15)

yielding by (2.12) and (2.13) the uniform moment bound on kG

N

k

1

. Finally, it is easy to show that

P(kB

N

k

1

� 4T (3 + x)) � e

�Nx

;(2.16)

for all T;N < 1 and x > 0 (c.f. [5, (3.44)]), thereby providing a uniform bound for each moment of kB

N

k

1

and concluding the derivation of (2.14).

Similarly, by (2.3), (2.15), (2.16) and the exponential in N bound of (B.7) on the tail of kJk

N

1

, we have for

each L > 0, that there exists M = M (L) <1 such that for all N ,

P(kJk

N

1

+ kK

N

k

1

+ kB

N

k

1

+ kG

N

k

1

� M ) � e

�LN

:(2.17)
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In view of (2.14) and (2.17), we get the uniform in N bounds on moments of kU

N

k

1

and the exponential

in N bounds on the tail probabilities for kU

N

k

1

upon observing that

jC

N

(s; t)j � K

N

(s) +K

N

(t); j�

N

(s; t)j � K

N

(s) + B

N

(t);

jA

N

(s; t)j � G

N

(s) +K

N

(t); jF

N

(s; t)j � G

N

(s) +B

N

(t):

With the previous controls on kU

N

k

1

already established, by the Arzela-Ascoli theorem, the pre-compactness

of U

N

follows by showing that it is an equi-continuous sequence. To this end, observe that such U

N

(s; t) are

all of the form

1

N

P

N

i=1

a

i

s

b

i

t

hence,

jU

N

(s; t)� U

N

(s

0

; t

0

)j �

1

N

N

X

i=1

ja

i

s

� a

i

s

0

jjb

i

t

j+

1

N

N

X

i=1

ja

i

s

0

jjb

i

t

� b

i

t

0

j

�

�

1

N

N

X

i=1

ja

i

s

� a

i

s

0

j

2

�

1=2

�

1

N

N

X

i=1

jb

i

t

j

2

�

1=2

+

�

1

N

N

X

i=1

jb

i

t

� b

i

t

0

j

2

�

1=2

�

1

N

N

X

i=1

ja

i

s

0

j

2

�

1=2

:

Here the functions a

t

and b

t

are either x

t

, B

t

or G(x

t

). So, in view of (2.14) and (2.17), it su�ces to show

that for any � > 0, some function L(�; �) going to in�nity as � goes to zero and all N ,

P( sup

jt�t

0

j<�

h

1

N

N

X

i=1

jb

i

t

� b

i

t

0

j

2

i

> �) � e

�L(�;�)N

; sup

jt�t

0

j<�

E

h

1

N

N

X

i=1

jb

i

t

� b

i

t

0

j

2

i

� L(�; �)

�1

;

where b = x, B or G(x). Obviously, this holds for b = B, in which case the expectation equals � regardless of

N and the tail probability bound follows upon considering the union of such probabilities for t; t

0

2 [i�; (i+2)�],

i = 0; 1; : : : ; T=� and applying (2.16) with T = 2�. In case b = G(x), note that by (2.10) we have that

1

N

N

X

i=1

(G

i

(x

t

)� G

i

(x

t

0

))

2

� 4c

2

(kJk

N

1

)

2

(

1

N

kx

t

� x

t

0

k

2

)(1 +K

N

(t)

(m�2)

)(1 +K

N

(t

0

)

(m�2)

)

for all t; t

0

. Thus, in view of the bounds (2.14) and (2.17), everything reduces to showing that

P( sup

jt�t

0

j<�

1

N

N

X

i=1

jx

i

t

� x

i

t

0

j

2

> �) � e

�L

0

(�;�)N

; sup

jt�t

0

j<�

E

h

�

1

N

N

X

i=1

jx

i

t

� x

i

t

0

j

2

�

2

i

� L

0

(�; �)

�1

(2.18)

for some L

0

with the same properties as L. To this end, note that by (1.6)

jx

i

t

� x

i

t

0

j � jB

i

t

�B

i

t

0

j+ kf

0

(K

N

)k

1

Z

t

0

t

jx

i

u

jdu+

Z

t

0

t

jG

i

(x

u

)jdu :

So by (1.4), for some universal constant �

1

<1, all t; t

0

and N ,

1

N

N

X

i=1

jx

i

t

� x

i

t

0

j

2

�

3

N

N

X

i=1

jB

i

t

� B

i

t

0

j

2

+ 3jt� t

0

j

2

h

�

1

(1 + kK

N

k

1

)

2r

kK

N

k

1

+ kG

N

k

1

i

Thus, by (2.14), (2.16) and (2.17), we readily obtain (2.18).

A key ingredient in the derivation of the limiting dynamics is the \self-averaging" of the functions A

N

, F

N

,

C

N

, �

N

(and hence of D

N

and E

N

), as we next state and prove.

Proposition 2.4. Assume that the concentration of measure of Hypothesis 1.1 holds, and as before let U

N

denote any one of the functions A

N

, F

N

, �

N

and C

N

. Then, for any T <1 and � > 0,

X

N

P[ sup

s;t�T

jU

N

(s; t)� E(U

N

(s; t))j � �] <1 ;(2.19)
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implying by the uniform moment bounds on kU

N

k

1

that

lim

N!1

sup

s;t�T

E

h

jU

N

(s; t)� EU

N

(s; t)j

2

i

= 0 :(2.20)

Our strategy relies on the following general "localized" version of the concentration of measure property,

which might be of some independent interest.

Lemma 2.5. Suppose V

N

are functions on normed spaces E

N

in which the concentration of measure of Hy-

pothesis 1.1 holds. Assume that K = sup

N

E[V

2

N

]

1=2

< 1 and that for every M < 1 there exists a subset

L

N;M

of E

N

on which jV

N

j � 2M and V

N

is Lipschitz with Lipschitz constant A

N;M

�

D(M)

p

N

. Further assume

that, for every L > 0 there exists an M = M (L) such that P[L

c

N;M

] � exp(�LN ) for all N . Then,

P[jV

N

� E[V

N

]j � �] � C

�1

exp (�C(

�

2D(M (L))

)

�

)N

�

2

) + 4(K +M (L))�

�1

e

�LN=2

+ e

�NL

:(2.21)

Proof: Recall that for every M <1 there exists a globally Lipschitz function

U

M

N

(z) = sup

y2L

N;M

fV

N

(y) � A

N;M

kz � ykg

on E

N

, of Lipschitz constant A

N;M

, which coincides with V

N

on the set L

N;M

. These properties are inherited

by V

M

N

= max(U

M

N

;�2M ) for which also jV

M

N

j � 2M . We thus get (2.21) by combining the triangle inequality

jV

N

� E[V

N

]j � jV

N

� V

M

N

j+ jV

M

N

� E[V

M

N

]j+ jE[V

M

N

]� E[V

N

]j ;

with the Cauchy-Schwartz inequality

jE[V

N

� V

M

N

]j � EjV

N

� V

M

N

j � 2MP(L

c

N;M

) + E[jV

N

j1

L

c

N;M

] � (K + 2M )P[L

c

N;M

]

1=2

;

and applying the concentration of measure inequality of Hypothesis 1.1 for V

M

N

.

Proof of Proposition 2.4: We wish to apply the estimate (2.21) to V

N

= U

N

(s; t) for any of our four

functions, and any �xed pair of times s; t. To this end, for each M <1 and any N de�ne the subset

L

N;M

= f(x

0

;J;B) 2 E

N

: jjJjj

N

1

+ kB

N

k

1

+ kK

N

k

1

+ kG

N

k

1

� M g

of E

N

. For M su�ciently large, the probability of the complement set L

c

N;M

decays exponentially in N by

(2.17), whereas by Proposition 2.3 we have the uniform moment bounds for the functions U

N

(s; t), as well as

the stated pointwise bound in L

N;M

. It thus su�ces to prove the stated Lipschitz constant of V

N

on L

N;M

.

We start by showing next that restricted to the set L

N;M

, the solution x of (1.6) is a Lipschitz function of the

triple (x

0

;J;B).

Lemma 2.6. Let x;
e
x be the two strong solutions of (1.6) constructed from (x

0

;J;B) and (
e
x

0

;

e

J;

e

B), respec-

tively. If (x

0

;J;B) and (
e
x

0

;

e

J;

e

B) are both in L

N;M

, then we have the Lipschitz estimate:

sup

t�T

1

N

X

1�i�N

jx

i

t

� ex

i

t

j

2

�

D

o

(M;T )

N

k(x

0

;J;B)� (
e
x

0

;

e

J;

e

B)k

2

;(2.22)

where the �nite constant D

o

(M;T ) is independent of N .
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Proof: We denote by G

i

(�) (resp.

e

G

i

(�)) the Gaussian �elds constructed from the J (resp.

e

J). We write the

following natural decomposition:

e

N

(t) :=

1

N

N

X

i=1

jx

i

t

� ex

i

t

j

2

=

1

N

N

X

i=1

(x

i

t

� ex

i

t

)

�

(x

i

0

� ex

i

0

) + (B

i

t

�

e

B

i

t

)

�

Z

t

0

(f

0

(K

N

(u))� f

0

(

e

K

N

(u)))x

i

u

du�

Z

t

0

f

0

(

e

K

N

(u))(x

i

u

� ex

i

u

)du(2.23)

+

Z

t

0

(G

i

(x

u

) �G

i

(
e
x

u

))du+

Z

t

0

(G

i

(
e
x

u

)�

e

G

i

(
e
x

u

))du

�

= I

1

+ I

2

+ � � �+ I

6

Then, since kK

N

k

1

� M and k

e

K

N

k

1

� M , we have that for some �nite C(M;T ) that is independent of N

and for all c > 0,

I

1

�

c

2N

N

X

i=1

(x

i

t

� ex

i

t

)

2

+

1

2cN

N

X

i=1

(x

i

0

� ex

i

0

)

2

I

2

�

c

2N

N

X

i=1

(x

i

t

� ex

i

t

)

2

+

1

2cN

N

X

i=1

(B

i

t

�

e

B

i

t

)

2

I

3

+ I

4

� C(M;T )

�

c

2N

N

X

i=1

(x

i

t

� ex

i

t

)

2

+

Z

t

0

1

2cN

N

X

i=1

(x

i

u

� ex

i

u

)

2

du

�

I

6

� C(M;T )

�

c

2N

N

X

i=1

(x

i

t

� ex

i

t

)

2

+

1

2cN

m

X

p=1

X

1�i

1

:::i

p

�N

(N

p�1

2

(J

i

1

���i

p

�

e

J

i

1

���i

p

))

2

�

We can bound the term I

5

on L

N;M

, using (2.10) of Lemma 2.2 by

I

5

� C(M )jjJjj

N

1

Z

t

0

 

1

N

N

X

i=1

(x

i

t

� ex

i

t

)

2

!

1

2

 

1

N

N

X

i=1

(x

i

u

� ex

i

u

)

2

!

1

2

du

� C(M;T )

�

c

2N

N

X

i=1

(x

i

t

� ex

i

t

)

2

+

Z

t

0

1

2cN

N

X

i=1

(x

i

u

� ex

i

u

)

2

du

�

;

for some C(M;T ) independent of N and all c > 0. Adding these estimates we get the bound

e

N

(t) �

e

C(M;T )

h

ce

N

(t) +

1

cN

k(x

0

;J;B)� (
e
x

0

;

e

J;

e

B)k

2

+

1

c

Z

t

0

e

N

(u)du

i

;

on e

N

(t) of (2.23), so for c = c(M;T ) > 0 small enough, Gronwall's lemma yields the stated bound (2.22).

Equipped with Lemma 2.6 it is now easy to prove that

Lemma 2.7. Let x;
e
x be the two strong solutions of (1.6) constructed from (x

0

;J;B) and (
e
x

0

;

e

J;

e

B), respec-

tively. If (x

0

;J;B) and (
e
x

0

;

e

J;

e

B) are both in L

N;M

, then we have the Lipschitz estimate for each of the four

functions U

N

(s; t) of interest,

sup

s;t�T

jU

N

(s; t)�

f

U

N

(s; t)j �

D(M;T )

p

N

k(x

0

;J;B)� (
e
x

0

;

e

J;

e

B)k ;(2.24)

where the constant D(M;T ) depends only on M and T and not on N .
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Proof: Since each of the four functions U

N

(s; t) is of the form

1

N

P

N

i=1

a

i

s

b

i

t

, we have that

jU

N

(s; t) �

f

U

N

(s; t)j �

1

N

N

X

i=1

ja

i

s

� ea

i

s

jjb

i

t

j+

1

N

N

X

i=1

jea

i

s

jjb

i

t

�

e

b

i

t

j

�

�

1

N

N

X

i=1

ja

i

s

� ea

i

s

j

2

�

1=2

�

1

N

N

X

i=1

jb

i

t

j

2

�

1=2

+

�

1

N

N

X

i=1

jb

i

t

�

e

b

i

t

j

2

�

1=2

�

1

N

N

X

i=1

ja

i

s

j

2

�

1=2

:

Here the functions a

t

and b

t

are either x

t

, B

t

or G(x

t

). This bound and Lemma 2.6 are su�cient to prove the

conclusion of the lemma for the two functions C

N

(s; t) and �

N

(s; t). To prove it for the other two functions

A

N

(s; t) and F

N

(s; t), note that by (2.10) we have the bound

�

1

N

N

X

i=1

jG

i

(x

s

)� G

i

(
e
x

s

)j

2

�

1=2

� C(M )jjJjj

N

1

(1 +M

p�1

2

)

�

1

N

X

1�i�N

jx

i

s

� ex

i

s

j

2

�

1=2

;

holding on L

N;M

, so combining the obvious consequence of Cauchy-Schwartz

�

1

N

N

X

i=1

jG

i

(
e
x

s

)�

e

G

i

(
e
x

s

)j

2

�

1=2

� C(M )

�

1

N

m

X

p=1

X

1�i

1

:::i

p

�N

(N

p�1

2

(J

i

1

���i

p

�

e

J

i

1

���i

p

))

2

�

1=2

;

on L

N;M

, with Lemma 2.6, one gets

�

1

N

N

X

i=1

jG

i

(x

s

) �

e

G

i

(
e
x

s

)j

2

�

1=2

�

C(M;T )

p

N

k(x

0

;J;B)� (
e
x

0

;

e

J;

e

B)k :

Moreover, the estimate (2.11) gives the bound

�

1

N

N

X

i=1

jG

i

(x

t

)j

2

�

1=2

� cjjJjj

N

1

(1 +M

m�1

) � C(M ) :

The last two estimates and Lemma 2.6 thus yield the conclusion (2.24) for both A

N

(s; t) and F

N

(s; t).

In view of Lemma 2.7, the inequality (2.21) applies for V

N

= U

N

(s; t), for any �xed s; t � T with constants

K and D = D(M (L); T ) that are independent of s; t, � and N . Consequently, by the union bound, for any

�nite subset A of [0; T ]

2

, and any � > 0, the sequence N 7! P[sup

(s;t)2A

jU

N

(s; t) � EU

N

(s; t)j � �=3] is

summable.

Recall that in the course of proving Proposition 2.3 we showed that for any � > 0 there exists

e

L(�; �)!1

for � ! 0, such that for all N ,

P( sup

js�s

0

j+jt�t

0

j<�

jU

N

(s; t) � U

N

(s

0

; t

0

)j > �) � e

�

e

L(�;�)N

; sup

js�s

0

j+jt�t

0

j<�

jEU

N

(s; t)� EU

N

(s

0

; t

0

)j �

e

L(�; �)

�1

:

Choosing � > 0 small enough so that

e

L(2�; �=3) > 3=� > 0, we thus get (2.19) by considering the �nite subset

A = f(i�; j�) : i; j = 0; 1; : : : ; T=�g of all points of [0; T ]

2

on a �-mesh.

We shall often apply the following direct consequence of Propositions 2.3 and 2.4.

Corollary 2.8. Suppose that 	 : R

`

! R is locally Lipschitz with j	(z)j �Mkzk

k

k

for some M; `; k <1, and

Z

N

2 R

`

is a random vector, where for j = 1; : : : ; `, the j-th coordinate of Z

N

is one of the functions A

N

,

F

N

, �

N

or C

N

evaluated at some (s

j

; t

j

) 2 [0; T ]

2

. Then,

lim

N!1

sup

s

j

;t

j

jE	(Z

N

) �	(EZ

N

)j = 0 :
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Proof: It follows from Proposition 2.3 that R = sup

s

j

;t

j

;N

kE(Z

N

)k

k

< 1. For each r � R let c

r

denote the

�nite Lipschitz constant of 	(�) (with respect to k � k

2

), on the compact set �

r

:= fz : kzk

k

� rg. Then,

jE	(Z

N

)� 	(EZ

N

)j � Ej	(Z

N

) �	(EZ

N

)j1

Z

N

2�

r

+ Ej	(Z

N

)j1

Z

N

=2�

r

+ j	(EZ

N

)jP(Z

N

=2 �

r

)

� c

r

E[kZ

N

� EZ

N

k

2

] + 2`Mr

�k

EkZ

N

k

2k

k

:

We have by (2.20) and the uniform moment bounds of Proposition 2.3 that sup

s

j

;t

j

E[kZ

N

� EZ

N

k

2

] ! 0 as

N !1, while c

0

= sup

s

j

;t

j

;N

EkZ

N

k

2k

k

<1, implying that

lim

N!1

sup

s

j

;t

j

jE	(Z

N

)�	(EZ

N

)j � 2c

0

`Mr

�k

;

which we make arbitrarily small by taking r !1.

3. Limiting equations: proof of Proposition 1.3

We shall denote in short

C

a

N

(s; t) = E[C

N

(s; t)]; �

a

N

(s; t) = E[�

N

(s; t)]

where expectation is over the Brownian path B, the disorder J and the initial condition x

0

, and adopt a similar

notation for other functions of interest.

Integrating the SDS (1.6) we have that

x

i

s

= x

i

0

+ B

i

s

�

Z

s

0

f

0

(K

N

(u))x

i

u

du+

Z

s

0

G

i

(x

u

)du :(3.1)

Hence, upon multiplying by x

i

t

and B

i

t

followed by averaging over i and taking the expected value, we get that

for any s; t 2 R

+

,

C

a

N

(s; t) = C

a

N

(0; t) + �

a

N

(t; s) �

Z

s

0

E[f

0

(K

N

(u))C

N

(u; t)]du+

Z

s

0

A

a

N

(u; t)du(3.2)

�

a

N

(s; t) = �

a

N

(0; t) + t ^ s �

Z

s

0

E[f

0

(K

N

(u))�

N

(u; t)]du+

Z

s

0

F

a

N

(u; t)du :(3.3)

In the following, we use a

N

' b

N

when a

N

(�; �) � b

N

(�; �) ! 0 as N ! 1, uniformly on [0; T ]

2

. Applying

Corollary 2.8 (for 	(z) = z

1

f

0

(z

2

) whose polynomial growth is guaranteed by our assumption (1.4)), we deduce

that

E[f

0

(K

N

(u))C

N

(u; t)] ' f

0

(K

a

N

(u))C

a

N

(u; t); E[f

0

(K

N

(u))�

N

(u; t)] ' f

0

(K

a

N

(u))�

a

N

(u; t):

Our next proposition, approximates the terms A

a

N

and F

a

N

which we need in order to compute the limits of

(3.2) and (3.3) as N !1.

Proposition 3.1. We have that

A

a

N

(t; s) ' �

0

(C

a

N

(t; t _ s))C

a

N

(s; t _ s) � �

0

(C

a

N

(t; 0))C

a

N

(s; 0) �

Z

s_t

0

�

0

(C

a

N

(t; u))D

a

N

(s; u)du

�

Z

s_t

0

�

00

(C

a

N

(t; u))C

a

N

(s; u)D

a

N

(t; u)du :(3.4)

Further,

F

a

N

(s; t) ' �

a

N

(s; t ^ s)�

0

(C

a

N

(s; s)) �

Z

t^s

0

�

0

(C

a

N

(s; u))du�

Z

s

0

�

0

(C

a

N

(s; u))E

a

N

(u; t ^ u)du

�

Z

s

0

�

a

N

(u; t ^ u)�

00

(C

a

N

(s; u))D

a

N

(s; u)du :(3.5)
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Deferring the proof of Proposition 3.1, we �rst use its conclusion to complete the proof of Proposition 1.3.

To this end, note that B

0

= 0 so F

a

N

(s; 0) = 0, for all N and s. Further, with G

s

= �(J;x

0

;B

u

; u � s), we

have by (1.15) that for all N and t > s,

F

a

N

(s; t) = F

a

N

(s; s) +

1

N

N

X

i=1

E[G

i

(x

s

)E(B

i

t

� B

i

s

jG

s

)] = F

a

N

(s; s)

(recall the independence of B

t

� B

s

and G

s

). By the same reasoning also �

a

N

(s; 0) = 0, E

a

N

(s; 0) = 0,

E

a

N

(s; t) = E

a

N

(s; s) and �

a

N

(s; t) = �

a

N

(s; s) for all N and any t � s � 0 (cf. (1.9) and (1.16)). Likewise, by

de�nition C

a

N

(t; s) = C

a

N

(s; t).

Let �(C;�;D;E) : C([0; T ]

2

)

4

! C([0; T ]

2

)

4

denote the di�erence between the two sides of equations

(1.17){(1.20). In view of the above boundary and symmetry conditions, comparing (3.2){(3.5) with (1.17){

(1.20) we see that �(C

a

N

; �

a

N

; D

a

N

; E

a

N

) ! 0 as N ! 1, uniformly on [0; T ]

2

. It is not hard to check that

�(�) is continuous with respect to the topology of uniform convergence, hence �(�) = 0 at any limit point of

(C

a

N

; �

a

N

; D

a

N

; E

a

N

), which also necessarily satis�es the same boundary and symmetry conditions, thus com-

pleting the proof of Proposition 1.3.

As already noted, the �rst step in proving Proposition 3.1 is,

Lemma 3.2. Let E

J

denotes the expectation with respect to the Gaussian law P

J

of the disorder J. Then, for

each continuous path x 2 C(R

+

;R

N

) and all s; t 2 [0; T ] and i; j 2 f1; : : : ; Ng,

k

ij

ts

(x) := E

J

[G

i

(x

t

)G

j

(x

s

)] =

x

j

t

x

i

s

N

�

00

(C

N

(s; t)) + 1

i=j

�

0

(C

N

(s; t)) :(3.6)

Proof: Observe that G

i

(x) of (1.7) are, for any given x, centered, jointly Gaussian random variables. Further,

by our choice of c(fi

1

; : : : ; i

p

g) it is not hard to verify that for any i; i

1

; : : : ; i

p�1

= 1; : : : ; N

c(fi; i

1

; : : : ; i

p�1

g)

X

1�j

1

;::: ;j

p�1

�N

1

fi;i

1

;::: ;i

p�1

g=fj;j

1

;::: ;j

p�1

g

= (p� 1)!(1

j=i

+

p�1

X

r=1

1

j=i

r

) :(3.7)

Hence, by (1.7) and (3.7), we have that for any given vectors x and y,

E[G

i

(x)G

i

(y)] =

m

X

p=1

�

a

p

(p� 1)!

�

2

X

i

1

;��� ;i

p�1

;j

1

;��� ;j

p�1

E(J

ii

1

���i

p�1

J

ij

1

���j

p�1

)x

i

1

: : : x

i

p�1

y

j

1

: : : y

j

p�1

=

m

X

p=1

a

2

p

(p� 1)!

N

�(p�1)

X

i

1

;��� ;i

p�1

(1 +

p�1

X

r=1

1

i=i

r

)x

i

1

: : :x

i

p�1

y

i

1

: : : y

i

p�1

=

m

X

p=1

a

2

p

(p� 1)!

�

1

N

N

X

`=1

x

`

y

`

�

p�1

+

x

i

y

i

N

m

X

p=2

a

2

p

(p� 2)!

�

1

N

N

X

`=1

x

`

y

`

�

p�2

;

so that with �(�) =

P

m

p=1

a

2

p

p!

�

p

we have,

E[G

i

(x)G

i

(y)] = �

0

�

1

N

N

X

`=1

x

`

y

`

�

+

x

i

y

i

N

�

00

�

1

N

N

X

`=1

x

`

y

`

�

:(3.8)
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Further, if i 6= j, then by (3.7) we also have that

x

i

y

j

E[G

i

(x)G

j

(y)] =

m

X

p=2

�

a

p

(p� 1)!

�

2

X

i

1

;��� ;i

p�1

;j

1

;��� ;j

p�1

E(J

ii

1

���i

p�1

J

jj

1

���j

p�1

)x

i

x

i

1

: : :x

i

p�1

y

j

y

j

1

: : : y

j

p�1

=

m

X

p=2

a

2

p

(p� 1)!

N

�(p�1)

X

i

1

;��� ;i

p�1

p�1

X

r=1

1

j=i

r

x

i

x

i

1

: : :x

i

p�1

y

i

y

i

1

: : : y

i

p�1

=

x

i

y

i

x

j

y

j

N

m

X

p=2

a

2

p

(p� 2)!

�

1

N

N

X

`=1

x

`

y

`

�

p�2

;

implying that when i 6= j,

E[G

i

(x)G

j

(y)] =

x

j

y

i

N

�

00

�

1

N

N

X

`=1

x

`

y

`

�

;(3.9)

so replacing x and y by x

t

and x

s

respectively, we immediately get (3.6) out of (3.8), (3.9) and the de�nition

of C

N

(�; �).

Proof of Proposition 3.1: Fixing a continuous path x, let k

t

denote the operator on L

2

(f1; � � �Ng � [0; t])

with the kernel k = k(x) of (3.6). That is, for f 2 L

2

(f1; � � �Ng � [0; t]), u � t, i 2 f1; � � � ; Ng

[k

t

f ]

i

u

=

N

X

j=1

Z

t

0

k

ij

uv

f

j

v

dv;(3.10)

which is clearly also in L

2

(f1; � � �Ng � [0; t]). We next extend the de�nition (3.10) to the stochastic integrals

of the form

[k

t

� dZ]

i

u

=

N

X

j=1

Z

t

0

k

ij

uv

dZ

j

v

;

where Z

j

v

is a continuous semi-martingale with respect to the �ltration F

t

= �(x

u

: 0 � u � t) and is composed

for each j, of a squared-integrable continuous martingale and a continuous, adapted, squared-integrable �nite

variation part. In doing so, recall that by (3.6) each k

ij

uv

(x) is the �nite sum of terms such as x

i

1

u

� � �x

i

a

u

x

j

1

v

� � �x

j

b

v

,

where in each term a, b and i

1

; : : : ; i

a

; j

1

; : : : ; j

b

are some non-random integers. Keeping for simplicity the

implicit notation

R

t

0

k

ij

uv

dZ

j

v

we thus adopt hereafter the convention of accordingly decomposing such integral

to a �nite sum, taking for each of its terms the variable x

i

1

u

� � �x

i

a

u

outside the integral, resulting with the usual

Itô adapted stochastic integrals. The latter are well de�ned, with [k

t

�dZ]

i

u

being in L

2

(f1; � � �Ng�[0; t]) (recall

Proposition 2.1 that x

t

has uniformly bounded �nite moments of all orders under the joint law P

J


 P

N

x

0

;J

,

hence so does the kernel k

ij

ts

(x)).

Equipped with these de�nitions, we next claim that

Lemma 3.3. Fixing � 2 R

+

, let V

i

s

(x) = E[G

i

(x

s

)jF

�

] and Z

i

s

(x) = E[B

i

s

jF

�

] for s 2 [0; � ]. Then, under

P

J


P

N

x

0

;J

we can choose a version of these conditional expectations such that the stochastic processes

U

i

s

(x) = x

i

s

� x

i

0

+

Z

s

0

f

0

(K

N

(u))x

i

u

du(3.11)

Z

i

s

(x) = U

i

s

(x)�

Z

s

0

V

i

u

(x)du ;(3.12)

are both continuous semi-martingales with respect to the �ltration F

s

, composed of squared-integrable continu-

ous martingales and �nite variation parts. Moreover, such choice satis�es for any i and s 2 [0; � ],

V

i

s

+ [k

�

V ]

i

s

= [k

�

� dU ]

i

s

;(3.13)
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and V

i

s

= [k

�

� dZ]

i

s

for any i and all s � � . Further, for any u; v 2 [0; � ] and i; j � N , let

�

ij

uv

(x) := E

h

(G

i

(x

u

) � V

i

u

(x))(G

j

(x

v

) � V

j

v

(x))jF

�

i

(3.14)

Then, we can choose a version of �

il

uv

such that for any s; v � � and all i; l � N ,

N

X

j=1

Z

�

0

k

ij

su

�

jl

uv

du+ �

il

sv

= k

il

sv

:(3.15)

Proof: Since U

i

s

(x) =

R

s

0

G

i

(x

u

)du+B

i

s

(see (3.1)), the relation (3.12) between E[B

i

s

jF

�

], U

i

s

(x) and E[G

i

(x

u

)jF

�

]

follows, as well as the continuity and integrability properties of the semi-martingalesU

s

and Z

s

. Using hereafter

G

i

s

to denote G

i

(x

s

), let

�

N

�

= exp

n

N

X

i=1

Z

�

0

G

i

s

dU

i

s

(x) �

1

2

N

X

i=1

Z

�

0

(G

i

s

)

2

ds

o

:(3.16)

By Girsanov formula we have that the restriction to F

�

satis�es,

P

N

x

0

;J

j

F

�

= �

N

�

P

N

x

0

;0

j

F

�

Hence, with � � s, for any bounded F

�

-measurable random variable �,

E[G

i

s

�] = E

J

E

P

N

x

0

;J

[G

i

s

�] = E

P

N

x

0

;0

[E

J

[G

i

s

�

N

�

]�] = E

h

E

J

[G

i

s

�

N

�

]

E

J

[�

N

�

]

�

i

;(3.17)

where the right-most identity is due to the change of measure formula Q

N

x

0

= E

J

(�

N

�

)P

N

x

0

;0

for the annealed

law Q

N

x

0

= E

J

P

N

x

0

;J

, restricted to F

�

. With (3.17) holding for all bounded F

�

-measurable �, it follows that,

V

i

s

= E[G

i

s

jF

�

] =

E

J

[G

i

s

�

N

�

]

E

J

[�

N

�

]

;

and the identity (3.13) follows by the Gaussian change of measure identity (C.2) of Proposition C.1. Exactly

the same line of reasoning shows that,

�

ij

uv

=

E

J

[(G

i

u

� V

i

u

)(G

j

v

� V

j

v

)�

N

�

]

E

J

[�

N

�

]

;

and the identity (3.15) follows by the identity (C.3) of Proposition C.1. Noting that dZ = dU �V (see (3.12)),

we have by (3.13) that for all i and s 2 [0; � ],

[k

�

� dZ]

i

s

= [k

�

� dU ]

i

s

� [k

�

V ]

i

s

= V

i

s

as claimed.

We now apply (3.13) to derive (3.4), the easy part of Proposition 3.1. To this end, �xing s; t 2 [0; T ]

2

let

b

A

N

(t; s) =

1

N

N

X

i=1

V

i

t

(x)x

i

s

;

for � = t _ s, noting that since x

i

s

is measurable on F

�

, by (1.15),

A

a

N

(t; s) = E

h

1

N

N

X

i=1

E[G

i

t

x

i

s

jF

�

]

i

= E[

b

A

N

(t; s)] =

b

A

a

N

(t; s) :

With t � � , combining (3.13) and (3.11) we get that

b

A

N

(t; s) +

1

N

N

X

i;j=1

Z

�

0

x

i

s

k

ij

tu

V

j

u

du =

1

N

N

X

i;j=1

Z

�

0

f

0

(K

N

(u))x

i

s

k

ij

tu

x

j

u

du+

1

N

N

X

i;j=1

Z

�

0

x

i

s

k

ij

tu

dx

j

u
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(suppressing the dependence of k

ij

tu

and V

j

u

on x, and following our convention regarding stochastic integrals

such as

R

�

0

x

i

s

k

ij

tu

dx

j

u

). Using the explicit expression of k

ij

tu

(x), and collecting terms while changing the order

of summation and integration, we arrive at the identity,

b

A

N

(t; s) +

Z

�

0

C

N

(s; u)�

00

(C

N

(t; u))

b

A

N

(u; t)du+

Z

�

0

�

0

(C

N

(t; u))

b

A

N

(u; s)du

=

Z

�

0

f

0

(K

N

(u))C

N

(s; u)�

00

(C

N

(t; u))C

N

(u; t)du+

Z

�

0

f

0

(K

N

(u))�

0

(C

N

(t; u))C

N

(u; s)du

+

Z

�

0

C

N

(s; u)�

00

(C

N

(t; u))d

u

C

N

(u; t) +

Z

�

0

�

0

(C

N

(t; u))d

u

C

N

(u; s) :(3.18)

Applying Lemma A.1 for the semi-martingales x = y = z = w = x, and the polynomials Q(�) = �

0

(�) and

P (�) = � evaluated at � = � , � = s and v = t, we replace the stochastic integrals of (3.18) by

�

0

(C

N

(�; t))C

N

(�; s) � �

0

(C

N

(0; t))C

N

(0; s)

�

1

2N

C

N

(t; t)

Z

�

0

C

N

(u; s)�

00

(C

N

(u; t))du�

1

N

C

N

(s; t)

Z

�

0

�

0

(C

N

(u; t))du :(3.19)

Clearly,

b

A

N

(t; s) = E[A

N

(t; s)jF

�

] has the same uniform moment bounds of Proposition 2.3 as A

N

and further

inherits the self-averaging property (2.20) fromA

N

. Hence, we may and shall apply Corollary 2.8 with possibly

b

A

N

as one of the arguments of the locally Lipschitz function 	(z) of at most polynomial growth at in�nity.

Doing so for the functions z

1

z

2

�

00

(z

3

), and z

1

�

0

(z

2

) and applying Corollary 2.8 also for f

0

(z

1

)z

2

�

00

(z

3

)z

3

and

f

0

(z

1

)�

0

(z

2

)z

3

, upon utilizing the uniform convergence with respect to the points (s

j

; t

j

) 2 [0; T ]

2

, we deduce

from (3.18) and (3.19) that

b

A

a

N

(t; s) +

Z

�

0

C

a

N

(s; u)�

00

(C

a

N

(t; u))

b

A

a

N

(u; t)du+

Z

�

0

�

0

(C

a

N

(t; u))

b

A

a

N

(u; s)du

'

Z

�

0

f

0

(K

a

N

(u))C

a

N

(s; u)�

00

(C

a

N

(t; u))C

a

N

(u; t)du

+

Z

�

0

f

0

(K

a

N

(u))�

0

(C

a

N

(t; u))C

a

N

(u; s)du+ �

0

(C

a

N

(�; t))C

a

N

(�; s) � �

0

(C

a

N

(0; t))C

a

N

(0; s) :

Finally, recall that

b

A

a

N

(t; s) = A

a

N

(t; s) = D

a

N

(s; t) + f

0

(K

a

N

(t))C

a

N

(s; t) ;(3.20)

with the corresponding replacement for

b

A

a

N

(u; t) and

b

A

a

N

(u; s). With � = t _ s, we indeed arrive at (3.4).

We now turn to the more involved part of Proposition 3.1, namely, the derivation of (3.5). To this end, as

we have seen already, it su�ces to consider s � t, as we do hereafter. To this end, taking � = s we use the

notation V

u

= E[G

u

jF

s

] of Lemma 3.3 while suppressing the dependence on x. Since B

t

= U

t

�

R

t

0

G

v

dv with

U

t

being F

s

-measurable, we deduce that

E[G

i

s

B

i

t

] = E[G

i

s

U

i

t

]�

Z

t

0

E[G

i

v

G

i

s

]dv = E

h

E[G

i

s

jF

s

](U

i

t

�

Z

t

0

V

i

v

dv)�

Z

t

0

�

ii

sv

dv

i

;

(recall that E(G

v

� V

v

jF

s

) = 0 for all v � s and �

ij

uv

:= E[(G

i

u

� V

i

u

)(G

j

v

� V

j

v

)jF

s

] is per (3.14)). Further, by

(3.12) and the identity E[G

i

s

jF

s

] = [k

s

� dZ]

i

s

of Lemma 3.3, we get

E[G

i

s

B

i

t

] + E[

Z

t

0

�

ii

sv

dv] = E([k

s

� dZ]

i

s

Z

i

t

) :(3.21)

Since Z

i

t

= E[B

i

t

jF

s

] and [k

s

� dZ]

i

s

is F

s

-measurable, we have that

E([k

s

� dZ]

i

s

Z

i

t

) = E([k

s

� dZ]

i

s

B

i

t

) = E(E([k

s

� dB]

i

s

jF

s

)B

i

t

) ;
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where the right-most identity holds since the kernel of the linear operator k

s

is F

s

-measurable and E[B

u

jF

s

] =

Z

u

for all u � s (recall that [k

s

� dZ]

i

s

is the L

2

-limit of discrete sums with mash size going to zero). In view

of (3.1) and (3.6) we have that

[k

s

� dB]

i

s

= [k

s

� dx]

i

s

+ [k

s

f

0

(K

N

)x]

i

s

� [k

s

G]

i

s

=

Z

s

0

�

0

(C

N

(s; u))dx

i

u

+

Z

s

0

�

00

(C

N

(s; u))x

i

u

d

u

C

N

(s; u)(3.22)

+

Z

s

0

�

0

(C

N

(s; u))f

0

(K

N

(u))x

i

u

du+

Z

s

0

�

00

(C

N

(s; u))f

0

(K

N

(u))C

N

(s; u)x

i

u

du

�

Z

s

0

�

00

(C

N

(s; u))x

i

u

A

N

(u; s)du�

Z

s

0

�

0

(C

N

(s; u))G

i

u

du

Using Itô's formula for x

i

u

�

0

(C

N

(s; u)) we replace the two stochastic integrals in (3.22) by

x

i

s

�

0

(C

N

(s; s)) � x

i

0

�

0

(C

N

(s; u))�

1

2N

C

N

(s; s)

Z

s

0

�

000

(C

N

(s; u))x

i

u

du�

1

N

x

i

s

Z

s

0

�

00

(C

N

(s; u))du :(3.23)

Recall that by (1.15) and (3.21)

F

a

N

(s; t) + E[

1

N

N

X

i=1

Z

t

0

�

ii

sv

dv] = E(

1

N

N

X

i=1

E([k

s

� dB]

i

s

jF

s

)B

i

t

) ;

which by the preceding is the expectation of

�

N

(s; t)�

0

(C

N

(s; s)) � �

N

(0; t)�

0

(C

N

(s; 0))

�

1

2N

C

N

(s; s)

Z

s

0

�

000

(C

N

(s; u))�

N

(u; t)du�

1

N

Z

s

0

�

00

(C

N

(s; u))�

N

(s; t)du

+

Z

s

0

f

0

(K

N

(u))�

0

(C

N

(s; u))�

N

(u; t)du+

Z

s

0

f

0

(K

N

(u))�

00

(C

N

(s; u))C

N

(s; u)�

N

(u; t)du

�

Z

s

0

�

00

(C

N

(s; u))�

N

(u; t)

b

A

N

(u; s)du�

Z

s

0

�

0

(C

N

(s; u))F

N

(u; t)du+ �

N

(s; t) ;(3.24)

where in view of (1.15)

�

N

(s; t) :=

1

N

N

X

i=1

Z

s

0

�

0

(C

N

(s; u))(G

i

u

� V

i

u

)B

i

t

du :

Recall (3.12) that B

i

t

= Z

i

t

�

R

t

0

(G

i

v

� V

i

v

)dv, hence

�

N

(s; t) =

1

N

N

X

i=1

Z

s

0

�

0

(C

N

(s; u))(G

i

u

� V

i

u

)Z

i

t

du�

1

N

N

X

i=1

Z

s

0

�

0

(C

N

(s; u))

Z

t

0

(G

i

u

� V

i

u

)(G

i

v

� V

i

v

)dvdu :

As both �

0

(C

N

(u; s)) and Z

t

i

are F

s

-measurable while E(G

u

� V

u

jF

s

) = 0 for all u � s, the expectation of the

�rst term on the right-side vanishes. Further, conditioning on F

s

, we have in view of (3.14) that

E[�

N

(s; t)] = �E

h

1

N

N

X

i=1

Z

s

0

�

0

(C

N

(s; u))

Z

t

0

�

ii

uv

dvdu

i

:(3.25)

All terms of (3.24) apart from �

N

are of the form covered by Corollary 2.8 for functions 	(z) similar to those

encountered in the derivation of (3.4), (namely, z

1

�

0

(z

2

), z

1

�

000

(z

2

)z

3

, z

1

�

00

(z

2

), f

0

(z

1

)�

0

(z

2

)z

3

, f

0

(z

1

)z

2

�

00

(z

3

)z

3

and z

1

z

2

�

00

(z

3

)). Utilizing their uniform convergence and (3.25), while recalling that �

a

N

(0; t) = 0, (3.20) and

the analogous

F

a

N

(u; t) = E

a

N

(u; t) + f

0

(K

a

N

(u))C

a

N

(s; u) ;

is not hard to check that we get (3.5), once we prove the following lemma.
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Lemma 3.4. For v 2 [0; s], let

�

N

(s; v) := �

0

(C

N

(s; v)) �

1

N

N

X

i=1

�

ii

sv

�

1

N

N

X

i=1

Z

s

0

�

0

(C

N

(s; u))�

ii

uv

du

(where � is de�ned with � = s). Then, for any t � s,

Z

t

0

E[�

N

(s; v)]dv ' 0

Proof: Fixing v � s, recall that by (3.6) we have that

�

N

(s; v)+

1

N

�

00

(C

N

(s; v))C

N

(s; v)�

1

N

2

N

X

i;j=1

Z

s

0

�

00

(C

N

(s; u))x

j

s

x

i

u

�

ji

uv

du =

1

N

N

X

i=1

h

k

ii

sv

��

ii

sv

�

N

X

j=1

Z

s

0

k

ij

su

�

ji

uv

du

i

Further, since we had � = s, the right-side is identically zero by (3.15), implying by the F

s

-measurability of

x

s

, x

u

and some algebraic manipulations that

�

N

(s; v) +

1

N

�

00

(C

N

(s; v))C

N

(s; v) =

Z

s

0

�

00

(C

N

(s; u))

1

N

2

N

X

i;j=1

x

j

s

x

i

u

E[(G

j

u

� V

j

u

)(G

i

v

� V

i

v

)jF

s

]du

=

Z

s

0

�

00

(C

N

(s; u))E

h

(A

N

(u; s) �

b

A

N

(u; s))(A

N

(v; u)�

b

A

N

(v; u))jF

s

i

du :

Consequently, with C

N

(s; u) measurable on F

s

we have that

E[�

N

(s; v)] =

Z

s

0

E

�

�

00

(C

N

(s; u))(A

N

(u; s)�

b

A

N

(u; s))(A

N

(v; u)�

b

A

N

(v; u))

�

du�

1

N

E[�

00

(C

N

(s; v))C

N

(s; v)] :

In view of Proposition 2.3 and (2.20), the �rst term converges to zero uniformly in s; v by the uniform L

2

convergence of A

N

�A

a

N

(hence also of A

N

�

b

A

N

), and the uniform (in [0; T ]

2

and N ) bound on each moment

of C

N

and A

N

(hence on those of

b

A

N

as well). By same reasoning, the second term converges to zero at

rate 1=N , uniformly in s; v. Utilizing the uniformity of the convergence, we see that

R

t

0

E[�

N

(s; v)]dv ' 0 as

claimed.

4. Differentiability and uniqueness for the limiting dynamics

We start the proof of Theorem 1.2 by the next lemma relating the solutions of (1.17){(1.20) with those of

(1.12){(1.14).

Lemma 4.1. Fixing T <1, suppose (C;�;D;E) is a solution of the integral equations (1.17){(1.20) in the

space of bounded continuous functions on [0; T ]

2

subject to the symmetry condition C(s; t) = C(t; s) and the

boundary conditions E(s; 0) = 0 for all s, and E(s; t) = E(s; s) for all t � s. Then, �(s; t) =

R

t

0

R(s; u)du

where R(s; t) = 0 for t > s, R(s; s) = 1 and for T � s > t, the bounded and absolutely continuous functions

C, R and K(s) = C(s; s) necessarily satisfy the integro-di�erential equations (1.12){(1.14).

Proof: Consider the integral operator k

C

on C([0; T ]) given by,

[k

C

h](s) := �

Z

s

0

�

0

(C(s; u))h(u)du ;

and let

h(s; t) := �f

0

(C(s; s))�(s; t) �

Z

s

0

�(u; t)�

00

(C(s; u))D(s; u)du+ �(s; t)�

0

(C(s; s)) �

Z

t^s

0

�

0

(C(s; u))du
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Then, per �xed t, the equation (1.20) states that E(s; t) = [k

C

E(�; t)](s)+h(s; t). Since the (continuous) kernel

�

0

(C(s; u)) of k

C

is uniformly bounded on [0; T ]

2

, it follows by Picard iterations (splitting [0; T ] to su�ciently

small time intervals to guarantee convergence of the series

P

n

k

n

C

), that

E(s; t) =

X

n�0

[k

n

C

h(:; t)](s) = h(s; t) +

Z

s

0

�

C

(s; v)h(v; t)dv ;(4.1)

with a uniformly bounded kernel �

C

. Plugging (4.1) into (1.18), we �nd by Fubini's theorem that

�(s; t) = s ^ t+

Z

s

0

[

Z

t^v

0

�

0

(C(v; u))du]�

1

(s; v)dv +

Z

s

0

�(v; t)�

2

(s; v)dv ;

for some uniformly bounded functions �

1

and �

2

which depend only on C and D. Applying Picard's iterations

once more, now with respect to the integral operator [�

2

g](s) =

R

s

0

�

2

(s; v)g(v)dv, we deduce that for some

uniformly bounded �

3

and �

4

,

�(s; t) = s ^ t+

Z

s

0

h

(u ^ t)�

3

(s; u) +

�

Z

t^u

0

�

0

(C(u; v))dv

�

�

4

(s; u)

i

du :

On s � t; the function s ^ t = t is continuously di�erentiable, hence we easily conclude by Fubini's theorem

that t! �(s; t) is continuously di�erentiable on s � t, with �(s; t) =

R

t

0

R(s; u)du for the bounded continuous

function

R(s; t) = 1 +

Z

s

t

[�

3

(s; u) + �

0

(C(u; t))�

4

(s; u)]du :

In particular, R(s; s) = 1 for all s. The condition E(s; t) = E(s; s) for s � t implies by (1.18) that �(s; t) =

�(s; s) for s � t. Similarly, with E(s; 0) = 0, it follows that �(s; 0) = 0 for all s. From (1.17) we have that

C(s; t)� �(s; t) is di�erentiable with respect to its second argument t, with a bounded, continuous derivative

D = @

2

(C � �). Consequently, @

2

C = D +R where R(s; t) = (@

2

�)(s; t) = 0 for all t > s due to the boundary

condition �(s; t) = �(s; s). Further, C(s; t) = C(t; s) implying that @

1

C(s; t) = @

2

C(t; s) = D(t; s)+R(t; s) on

[0; T ]

2

. Thus, combining the identity

C(s; t _ s)�

0

(C(t _ s; t))� C(s; 0)�

0

(C(0; t)) =

Z

t_s

0

�

0

(C(t; u))(@

2

C)(s; u)du

+

Z

t_s

0

C(s; u)�

00

(C(t; u))(@

2

C)(t; u)du ;

with (1.19) we have that for all t; s 2 [0; T ]

2

,

D(s; t) = �f

0

(K(t))C(t; s) +

Z

t_s

0

�

0

(C(t; u))R(s; u)du+

Z

t_s

0

C(s; u)�

00

(C(t; u))R(t; u)du :(4.2)

Interchanging t and s in (4.2) and adding R(t; s) = 0 when s > t, results for s > t with

(@

1

C)(s; t) = �f

0

(K(s))C(s; t) +

Z

s

0

�

0

(C(s; u))R(t; u)du+

Z

s

0

C(t; u)�

00

(C(s; u))R(s; u)du ;

which is (1.13) for � = 1.

Since K(s) = C(s; s), with C(s; t) = C(t; s) and @

2

C = D +R, it follows that for all h > 0,

K(s) �K(s � h) =

Z

s

s�h

(D(s; u) + R(s; u))du+

Z

s

s�h

(D(s � h; u) +R(s � h; u))du :

Recall that R(s; u) = 0 for u > s, hence, dividing by h and taking h # 0, we thus get by the continuity of D

and that of R for s � t that K(�) is di�erentiable, with @

s

K(s) = 2D(s; s) + R(s; s) = 2D(s; s) + 1, resulting

by (4.2) with (1.14) for � = 1.
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Further, it follows from (1.18) that (@

1

�)(u; t) = E(u; t) + 1

u<t

. Hence, combining the identity

�(s; t)�

0

(C(s; s)) � �(0; t)�

0

(C(s; 0)) =

Z

s

0

�

0

(C(s; u))(@

1

�)(u; t)du+

Z

s

0

�(u; t)�

00

(C(s; u))(@

2

C)(s; u)du ;

with (1.20) we have that for all T � s � t,

E(s; t) = �f

0

(K(s))�(s; t) +

Z

s

0

�(u; t)�

00

(C(s; u))R(s; u)du(4.3)

(recall that �(0; t) = �(0; 0) = 0). Let

g(s; t) := �f

0

(K(s))R(s; t) +

Z

s

0

R(u; t)�

00

(C(s; u))R(s; u)du ;(4.4)

for s; t 2 [0; T ]

2

. Recall that �(s; t) =

R

t

0

R(s; v)dv, so by Fubini's theorem, (4.3) amounts to E(s; t) =

R

t

0

g(s; v)dv for all s � t. Further, with E(s; t) = E(s; s) when t > s, it follows that

E(s; t) =

Z

t^s

0

g(s; v)dv

for all s; t � T . Putting this into (1.18) we have by yet another application of Fubini's theorem that

Z

t

0

R(s; u)du = �(s; t) = t +

Z

s

0

Z

t^u

0

g(u; v)dvdu = t+

Z

t

0

Z

s

v

g(u; v)dudv ;

for any s � t. Consequently, for every t � s,

R(s; t) = 1 +

Z

s

t

g(u; t)du ;

implying that @

1

R = g for a.e. s > t, which in view of (4.4) gives (1.12) for � = 1, thus completing the proof

of the lemma.

We proceed by showing that the system of equations of interest to us admits at most one solution.

Proposition 4.2. Let T � 0 and �

T

= fs; t 2 (R

+

)

2

: 0 � t � s � Tg. There exists at most one

solution (R;C;K) 2 C

1

b

(�

T

)�C

1

b

(�

T

)�C

1

b

([0; T ]) to (S):=(1.12,1.13,1.14) with C(s; t) = C(t; s) and boundary

conditions

R(s; s) � 1 8s � 0(4.5)

C(s; s) = K(s) 8s � 0(4.6)

C(0; 0) = K(0) known.

Proof: As mentioned already, we may and shall take � = 1 (by scaling �

2

� 7! �, with �

2

 7!  accordingly),

just as we have done throughout this paper.

Assume that there are two solutions (R;C;K) and (

e

R;

e

C;

e

K) of (S) with boundary condition (BC):=(4.5,4.6).

We shall prove by Gronwall's type argument that these two solutions have to coincide. To do so we �rst show

that the response function R is a Lipschitz function of the covariance functions (C;K) and then that the

covariances obey integro-di�erential Gronwall type inequalities. We then use Gronwall arguments repeatedly

to conclude. In what follows, T is �xed and all the constants (which eventually depend on T ) will be denoted

by M , even though they may change from line to line.

� R is a Lipschitz function of the covariance

Let (R;C;K) be a solution to (S) and denote

H

C

(s; t) := e

R

s

t

f

0

(K(u))du

R(s; t):
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Then, from (1.12) and (4.5), we deduce that H satis�es

@

s

H

C

(s; t) =

Z

s

t

H

C

(u; t)H

C

(s; u)�

00

(C(s; u))du; for s � t; H(t; t) = 1:

Note that H only depends on C. This equation was studied in [16] where it was shown that if NC

n

denotes the set of involutions of f1; � � � ; 2ng without �xed points and without crossings and if cr(�) is

de�ned to be the set of indices 1 � i � 2n such that i < �(i), H is given by

H

C

(s; t) = 1 +

X

n�1

Z

t�t

1

����t

2n

�s

X

�2NC

n

Y

i2cr(�)

�

00

(C(t

�(i)

; t

i

))dt

1

� � �dt

2n

(4.7)

The number of non-crossing partitions jNC

n

j of 2n elements is given by the Catalan number C

n

which

is at most 2

n

. As

R

t�t

1

����t

2n

�s

dt

1

� � �dt

2n

� M=(2n)! and sup

(t;s)2�

T

�

00

(C(s; t)) is uniformly bounded

by hypothesis, the above sum converges absolutely. Further, telescoping each

Q

i2cr(�)

�

00

(C(t

�(i)

; t

i

))�

Q

i2cr(�)

�

00

(

e

C(t

�(i)

; t

i

)), by the uniform Lipschitz continuity of �

00

(�) on compacts, we thus �nd a �nite

constant M such that for any pair C;

e

C 2 C

b

(�

T

) and any t; s 2 �

T

,

jH

C

(s; t)�H

e

C

(s; t)j � M

Z

t�t

2

�t

1

�s

jC(t

1

; t

2

) �

e

C(t

1

; t

2

)jdt

1

dt

2

:(4.8)

Thus, if (R;C;K) and (

e

R;

e

C;

e

K) are two solutions of (S) in C

1

b

(�

T

) � C

1

b

(�

T

) � C

1

b

([0; T ]), since K is

uniformly bounded and f

0

(�) is locally Lipschitz, we obtain

jR(s; t)�

e

R(s; t)j �M

Z

t�t

2

�t

1

�s

jC(t

1

; t

2

)�

e

C(t

1

; t

2

)jdt

1

dt

2

+M

Z

s

t

jK(u)�

e

K(u)jdu:(4.9)

� Bounds on the di�erence of the covariances on s � t

Integrating (1.13) yields for s � t

C(s; t) = K(t) �

Z

s

t

f

0

(K(u))C(u; t)du+

Z

s

t

du

Z

t

0

dv�

0

(C(u; v))R(t; v)

+

Z

s

t

du

Z

t

0

dv�

00

(C(u; v))C(t; v)R(u; v) +

Z

s

t

du

Z

u

t

dv�

00

(C(u; v))C(v; t)R(u; v):

Hence, if (R;C;K) and (

e

R;

e

C;

e

K) are two solutions of (S),

jC �

e

Cj(s; t) � M

h

jK �

e

Kj(t) +

Z

s

t

jK �

e

Kj(u)du+

Z

s

t

jC �

e

Cj(u; t)du+

Z

s

t

du

Z

t

0

dvjC �

e

Cj(u; v)

+

Z

s

t

du

Z

t

0

dvjC �

e

Cj(t; v) +

Z

s

t

du

Z

t

0

dvjR�

e

Rj(t; v) +

Z

s

t

du

Z

t

0

dvjR�

e

Rj(u; v)

+

Z

s

t

du

Z

u

t

dvjC �

e

Cj(u; v) +

Z

s

t

du

Z

u

t

dvjC �

e

Cj(v; t) +

Z

s

t

du

Z

u

t

dvjR�

e

Rj(u; v)

i

:= I

1

(s; t) + I

2

(s; t) + � � �+ I

10

(s; t)(4.10)

� Bounds on the di�erences of the covariances on the diagonal

Similarly, integrating (1.14) gives

K(t) = K(0) � 2

Z

t

0

f

0

(K(u))K(u)du+ t+ 2

Z

t

0

du

Z

u

0

dv (C(u; v))R(u; v) ;

yielding in case K(0) =

e

K(0) that

jK �

e

Kj(t) � M

h

Z

t

0

jK �

e

Kj(u)du+

Z

t

0

du

Z

u

0

jC �

e

Cj(u; v)dv +

Z

t

0

du

Z

u

0

jR�

e

Rj(u; v)dv

i

(4.11)
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Plugging (4.9) into (4.11) yields

jK �

e

Kj(t) � M [

Z

0�t

1

�t

2

�t

jC �

e

Cj(t

2

; t

1

)dt

1

dt

2

+

Z

t

0

jK �

e

K j(u)du](4.12)

Recall that by Gronwall's lemma, if h; g are two non-negative functions such that

h(t) � g(t) +A

Z

t

0

h(s)ds

for some A � 0, then

h(t) � g(t) + A

Z

t

0

g(v)e

A(t�v)

dv � e

At

g(t)

where the last inequality holds when g is non-decreasing. Applying this inequality with

g(t) =

Z

0�t

1

�t

2

�t

jC �

e

Cj(t

2

; t

1

)dt

1

dt

2

which is non-negative and non-decreasing yields

jK �

e

K j(t) � M [

Z

0�t

1

�t

2

�t

jC �

e

Cj(t

2

; t

1

)dt

1

dt

2

](4.13)

� The �nal �xed point argument

We now consider

D(s) :=

Z

s

0

jC �

e

Cj(s; t)dt;

noting that (4.9) and (4.13) imply that

jR(s; t)�

e

R(s; t)j � M

Z

0�t

2

�t

1

�s

jC(t

1

; t

2

)�

e

C(t

1

; t

2

)jdt

1

dt

2

= M

Z

0�t

1

�s

D(t

1

)dt

1

;(4.14)

and

jK �

e

K j(t) � M [

Z

0�t

2

�t

D(t

2

)dt

2

]:(4.15)

Thus, integrating (4.10) with respect to t and observing that

Z

s

0

(I

1

(s; t) + I

2

(s; t))dt � M

Z

s

0

D(u)du by (4.15),

Z

s

0

(I

4

(s; t) + I

8

(s; t))dt � M

Z

s

0

dt

Z

s

t

du

Z

u

0

dvjC �

e

Cj(u; v) � M

Z

s

0

D(u)du and

Z

s

0

(I

9

(s; t) + I

5

(s; t) + I

3

(s; t))dt � M

Z

s

0

D(u)du by de�nition of D and Fubini,

Z

s

0

(I

6

(s; t) + I

7

(s; t) + I

10

(s; t))dt � M

Z

s

0

dt

Z

s

t

du

Z

u

0

dvjR�

e

Rj(u; v) � M

Z

s

0

D(u)du by (4.14),

we obtain from (4.10) that

D(s) � M

Z

s

0

D(u)du :

Recall that D is non-negative and non-decreasing, so by the preceding Gronwall argument, now with

g = 0 we conclude that D(s) = 0 for all s 2 [0; T ]. This in turn implies by (4.14) and (4.15) that

K(t) =

e

K(t); R(s; t) =

e

R(s; t) for all (t; s) 2 �

T
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and C(s; t) =

e

C(s; t) for almost all t � s and all s � T . Either by (4.10) or directly by the continuity of

the covariances we conclude that

C(s; t) =

e

C(s; t) for all (t; s) 2 �

T

which �nishes the proof.

We conclude this section with the,

Proof of Theorem 1.2: Recall Proposition 2.3 that we have pre-compactness of (A

a

N

; F

a

N

; �

a

N

; C

a

N

) : [0; T ]

2

!

R

4

, in the topology of uniform convergence on [0; T ]

2

. This implies the existence of limit points for this

sequence. By Proposition 1.3 every such limit point is a solution of the integral equations (1.17){(1.20) with

the stated symmetry and boundary conditions. By Lemma 4.1 each such solution results with C and � (i.e. R)

that satisfy the integro-di�erential equations (1.12){(1.14). In view of Proposition 4.2 the latter system admits

at most one solution per given boundary conditions. Hence, we conclude that the sequence (�

a

N

; C

a

N

) converges

uniformly in [0; T ]

2

to the unique solution of (1.12){(1.14) subject to the appropriate boundary conditions.

Further, by (2.19) of Proposition 2.4 both C

N

� C

a

N

and �

N

� �

a

N

converge uniformly to zero, almost surely.

Thus, the solution of (1.12){(1.14) is also the unique almost sure uniform (in s; t) limit of (�

N

; C

N

), as stated

in Theorem 1.2. The L

p

convergence then follows by the uniform bounds on moments of C

N

and �

N

(see

Proposition 2.3), thus completing the proof of the theorem.

Appendix A. It

^

o's calculus

Let

�

fx

i

t

; y

i

t

; z

i

t

; w

i

t

g

t�0

; i 2 N

	

be semi-martingales such that,

dhr

i

; p

j

i

t

= �

i=j

dt

for any p; r 2 fx; y; z; wg. Denoting, for p; r 2 fx; y; z; wg, s; t � 0, N 2 N,

K

N

p;r

(s; t) :=

1

N

N

X

i=1

p

i

s

r

i

t

;

we already made use of the following simple stochastic calculus lemma.

Lemma A.1. For any polynomials P;Q, and any �; �; v � 0,

P (K

N

x;y

(�; �))Q(K

N

z;w

(�; v)) = P (K

N

x;y

(0; �))Q(K

N

z;w

(0; v))

+

Z

�

0

P

0

(K

N

x;y

(u; �))Q(K

N

z;w

(u; v))d

u

K

N

x;y

(u; �)

+

Z

�

0

P (K

N

x;y

(u; �))Q

0

(K

N

z;w

(u; v))d

u

K

N

z;w

(u; v)

+

1

2N

K

N

y;y

(�; �)

Z

�

0

P

00

(K

N

x;y

(u; �))Q(K

N

z;w

(u; v))du

+

1

2N

K

N

w;w

(v; v)

Z

�

0

P (K

N

x;y

(u; �))Q

00

(K

N

z;w

(u; v))du

+

1

N

K

N

y;w

(�; v)

Z

�

0

P

0

(K

N

x;y

(u; �))Q

0

(K

N

z;w

(u; v))du

where

d

u

K

N

z;w

(u; v) :=

1

N

N

X

i=1

w

i

v

dz

i

u

;

and all the stochastic integrals are de�ned via our convention (of putting terms such as y

i

1

�

� � �y

i

a

�

w

j

1

v

� � �w

j

b

v

outside the integral).
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Proof: By the bi-linearity of the formula given, it is enough to prove the lemma for P (x) = x

a

and Q(x) = x

b

.

In this case, writing

(K

N

x;y

(�; �))

a

(K

N

z;w

(�; v))

b

= N

�(a+b)

X

i

1

;���i

a

X

j

1

;���j

b

y

i

1

�

� � �y

i

a

�

w

j

1

v

� � �w

j

b

v

�

x

i

1

�

� � �x

i

a

�

z

j

1

�

� � � z

j

b

�

�

;

and using Itô's formula for x

i

1

�

� � �x

i

a

�

z

j

1

�

� � �z

j

b

�

gives the stated result.

Appendix B. Supremum of Gaussian processes indexed on large dimensional spheres.

In this section we prove the bound (2.12) which is a direct consequence of the following general lemma

about supremum of Gaussian processes indexed on large dimensional balls. The outline for a direct proof of

such a result by a chaining argument was kindly communicated to us by A. Bovier, whom we thank gratefully.

This chaining argument can be adapted rather straightforwardly from [9]. Anton Bovier also mentioned that

this result should be the consequence of a more general one. We have indeed found the proper way to see it

as a consequence of classical and well known facts on Gaussian processes, and to give simple references.

Let (X

N

(x)) be a sequence of real valued, centered Gaussian processes indexed by x 2 R

N

. Consider, for

every � > 0, the closed Euclidean ball B

N

(0; �) in R

N

, and de�ne

X

�

N

(�) = sup

x2B

N

(0;�)

jX

N

(x)j

p

N

We will also introduce the usual metric on R

N

associated to the process X

N

,

d

X

(x;y) = E[jX

N

(x)�X

N

(y)j

2

]

1=2

We denote by k � k the Euclidean norm and by (x;y)

N

the corresponding inner product on R

N

.

Lemma B.1. Suppose that

sup

N

E[X

N

(0)

2

] <1(B.1)

and that

sup

N

sup

x;y2B

N

(0;�)

d

X

(x;y)

kx� yk

<1 :(B.2)

Then, for every k 2 N

sup

N

E[X

�

N

(�)

k

] <1 :(B.3)

Moreover, there exists a constant � <1 such that for all N and every t > 0,

P[X

�

N

(�) � � + t] � exp(�Nt

2

=�) :(B.4)

Proof: This result is a direct consequence of Dudley's theorem ([13]). Indeed, the assumption (B.2) implies

that for any N and � > 0 one can cover B

N

(0; �) by the union of certain C(�)�

�N

balls of radius �, in the

metric d

X

, where the constant C(�) depends on � but not on the dimension N . Thus, Dudley's theorem (see

also [18, Theorem 11.17]) shows that

E[ sup

x2B

N

(0;�)

X

N

(x)] � C

0

(�)

p

N ;

where the constant C

0

(�) again depends only on � and not on N . Using the obvious fact that

E[ sup

x2B

N

(0;�)

jX

N

(x)j]� E[jX

N

(0)j] � E[ sup

x;y2B

N

(0;�)

jX

N

(x) �X

N

(y)j]

= E[ sup

x;y2B

N

(0;�)

fX

N

(x) �X

N

(y)g] = 2E[ sup

x2B

N

(0;�)

X

N

(x)] ;
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and the assumption (B.1), we see that the conclusion (B.3) holds for k = 1. Thus, X

N

admits a version with

almost all sample paths bounded and uniformly continuous on B

N

(0; �). One can then consider X

N

as an

(in�nite dimensional) Gaussian vector in the space of continuous functions on the ball B

N

(0; �), equipped with

the supremum norm. It is also a well known fact that, for such a Gaussian vector, all moments of the norm

are controlled by the �rst (e.g. see the last statement of [18, Corollary 3.2]). This is thus enough to ensure

that (B.3) holds for every k 2 N.

The tail estimate (B.4) is also classical in the Gaussian context. For instance, the assumptions (B.1) and

(B.2) immediately imply that the weak variance

�(X

N

) = sup

x2B

N

(0;�)

n

E[X

N

(x)

2

]

1=2

o

of [18, page 56] is bounded in N . Hence, by [18, estimate (3.2), page 57] it is easy to see that there exists a

�nite constant � > sup

N

E[X

�

N

(�)] for which (B.4) applies.

We proceed to apply Lemma B.1 to the situation of interest here. To this end, �xing p 2 N consider the

Gaussian process de�ned on (R

N

)

p

by

X

N;p

(x) =

X

1�i

j

�N;1�j�p

G

fi

1

;��� ;i

p

g

x

1

i

1

x

2

i

2

x

3

i

3

� � �x

p

i

p

with independent, centered Gaussian variables G

fi

1

;��� ;i

p

g

of variances c(fi

1

; : : : ; i

p

g) of (1.3). Considering in

(R

N

)

p

the Cartesian product

B(�) =

p

Y

i=1

fx

i

2 R

N

; kx

i

k � �g

of p Euclidean balls, we wish to estimate the moments and tail of sup

x2B(�)

jX

N;p

(x)j. To this end, note

that since X

N;p

is a symmetric p-linear form on R

N

(i.e., X

N;p

(x) is invariant to permutations of the vectors

x

1

; : : : ;x

p

), we have by polarization that

sup

x2B(�)

jX

N;p

(x)j � C(p) sup

kuk�p�

jX

N

(u)j ;(B.5)

where one de�nes X

N

(u) for u 2 R

N

by

X

N

(u) = X

N;p

(u; : : : ;u) =

X

1�i

j

�N

G

fi

1

;��� ;i

p

g

u

i

1

u

i

2

u

i

3

� � �u

i

p

:

The Gaussian process X

N

(u) obviously satis�es (B.1) since X

N

(0) = 0 for all N . Turning to check that

(B.2) is satis�ed as well, note that

X

N

(u) = N

(p�1)=2

N

X

i=1

G

i

(u)u

i

;

for the case where �

0

(r) = (p� 1)!r

p�1

. Thus, by (3.8) and (3.9), the covariance of the process X

N

is

E[X

N

(u)X

N

(v)] = p!(u;v)

p

N

;

so that

d

X

(u;v)

2

= p!

h

(u;u)

p

N

+ (v;v)

p

N

� 2(u;v)

p

N

i

:

It is then easy to check that for all u and v,

d

X

(u;v) � C(p)ku� vk ;

yielding that (B.2) holds. Hence, by Lemma B.1, for every positive integers p and k,

sup

N

E[ sup

x2B(�)

(

jX

N;p

(x)j

p

N

)

k

] � sup

N

E[X

�

N

(�)

k

] <1 :(B.6)
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In view of (2.1), combining (B.6) for p = 1; : : : ;m then proves the bound (2.12). We further have by (B.4)

and (B.5) that for some e� <1, any p � m, all N and every t > 0,

P[ sup

x2B(�)

(

jX

N;p

(x)j

p

N

) � e�+ t] � exp(�Nt

2

=e�) ;

from which it follows that,

P[kJk

N

1

� e�+ t] � m exp(�Nt

2

=e�) :(B.7)

Appendix C. Gaussian change of measure identities

The change of measure that is key to the proof of Lemma 3.3 is a special case of the following \standard"

Gaussian computation (compare (3.16) and (C.1)).

Proposition C.1. Suppose under the law Pwe have a �nite collection J = fJ

�

g

�

of non-degenerate, inde-

pendent, centered Gaussian random variables, and G

i

s

=

P

�

J

�

L

i

s

(�) for all s 2 [0; � ] and i � N , where for

each � the coe�cients L

i

s

which are independent of J are in L

2

(f1; : : : ; Ng � [0; � ]). Suppose further that U

i

s

is a continuous semi-martingale, independent of J and such that for each � the stochastic integral

�

�

:=

N

X

i=1

Z

�

0

L

i

u

(�)dU

i

u

;

is well de�ned and almost surely �nite. Let P

�

denote the law of J such that P

�

= �

�

=E(�

�

)P, where

�

�

= exp

n

N

X

i=1

Z

�

0

G

i

s

dU

i

s

�

1

2

N

X

i=1

Z

�

0

(G

i

s

)

2

ds

o

:(C.1)

Let k

ij

ts

= E(G

i

t

G

j

s

), V

i

s

= E

�

(G

i

s

) and �

ij

ts

= E

�

[(G

i

t

� V

i

t

)(G

j

s

� V

j

s

)]. Then, for any s � � and i � N ,

V

i

s

+ [k

�

V ]

i

s

= [k

�

� dU ]

i

s

;(C.2)

and for any s; t � � and i; l � N ,

N

X

j=1

Z

�

0

k

ij

su

�

jl

ut

du+ �

il

st

= k

il

st

:(C.3)

Proof: Let v

�

= E(J

2

�

) > 0 denote the variance of J

�

and

R

�


:=

N

X

i=1

Z

�

0

L

i

u

(�)L

i

u

(
)du ;(C.4)

observing that

�

�

= exp

n

X

�

J

�

�

�

�

1

2

X

�;


J

�

J




R

�


o

:

With D = diag(v

�

) a positive de�nite matrix and R = fR

�


g positive semi-de�nite, it follows from this

representation of �

�

that under P

�

the random vector J has a Gaussian law with covariance matrix (D

�1

+R)

�1

and mean vector q = fq

�

g = (D

�1

+R)

�1

�. Hence, for any �,

q

�

+ v

�

X




R

�


q




= v

�

�

�

:(C.5)

As k

ij

su

=

P

�

L

i

s

(�)v

�

L

j

u

(�), it is not hard to check that

[k

�

� dU ]

i

s

:=

N

X

j=1

Z

�

0

k

ij

su

dU

j

u

=

X

�

L

i

s

(�)v

�

�

�

:
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Obviously, V

i

s

=

P

�

L

i

s

(�)q

�

so we get (C.2) out of (C.5) upon verifying that

[k

�

V ]

i

s

:=

N

X

j=1

Z

�

0

k

ij

su

V

j

u

du =

X

�;


L

i

s

(�)v

�

q




N

X

j=1

Z

�

0

L

j

u

(�)L

j

u

(
)du =

X

�;


L

i

s

(�)v

�

R

�


q




;

with the last identity due to (C.4).

Turning to prove (C.3), since �

jl

ut

is the covariance of G

j

u

and G

l

t

under the tilted law P

�

, we have that

�

jl

ut

=

X

�;


L

j

u

(�)[(D

�1

+R)

�1

]

�


L

l

t

(
) ;

and hence by (C.4) we see that

N

X

j=1

Z

�

0

k

ij

su

�

jl

ut

du =

X

�;


L

i

s

(�)v

�

[R(D

�1

+R)

�1

]

�


L

l

t

(
) :

With D = diag(v

�

) we easily get (C.3) out of the matrix identity (I+DR)(D

�1

+R)

�1

= D.
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