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1 Introduction

The fluctuations for mean field interacting particles have been widely studied ( see [3],[5],[7],
[12],[13], [19],[20] ...). The problem can be summarized as follows. Let Σ be a Polish space
furnished with a sigma-algebra F , and P(Σ) be the set of probability measures on (Σ,F).
Let Γ be a function on P(Σ) and P be an element of P(Σ). We consider the Gibbs measure
PN
Γ defined by

PN
Γ (dX) :=

1

ZN
Γ

exp{NΓ(
1

N

N∑

i=1

δxi
)}dP⊗N(X)

where X = (x1, .., xN) ∈ (Σ)N and with

ZN
Γ =

∫
exp{NΓ(

1

N

N∑

i=1

δxi
)}dP⊗N(X).

One is interested in the asymptotic properties of PN
Γ when the number N of particles goes

to infinity. In particular, one would like to understand the asymptotic behaviour of the
empirical measure

µ̂N :=
1

N

N∑

i=1

δxi
,
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that is its convergence ( law of large numbers ) and its fluctuations ( central limit theorem ).
The convergence of the empirical measure is now well described. If Γ is for instance bounded
continuous as a function on P(Σ) furnished with the weak ( or the strong ) topology, it is
well known ( see [9], theorems 4.3.1 and 6.3.1 ) that the law of µ̂N under PN

Γ satisfies a large
deviation principle with good rate function

H(µ) := I(µ|P )− Γ(µ)− inf{I( |P )− Γ}

where I(µ|P ) is the relative entropy of µ with respect to P

I(µ|P ) =
{ ∫

log dµ
dP dµ if µ ≪ P

+∞ otherwise.

At least in non degenerate cases, the empirical measure converges to a convex combination
of the minimizers of H . Let us assume for simplification that H achieves its minimal value
at a unique probability measure µ∗ which is a non degenerate minimum ( that is, roughly
speaking, that H is strictly convex in a neighborhood of µ∗ ( see theorem 1.1 for a precise
statement ) ). Then, one expects the fluctuations around µ∗ to be Gaussian. This type
of result was indeed proven for various functions Γ in [3],[5], [7], [12],[13], [20],[19]. To
our knowledge, the most general assumptions on Γ can be found in [3] or [12] ( except for
dynamical densities where ZN

Γ ≡ 1 which is treated in [17]). In both articles, the authors
assume that Γ is of the form

Γ(µ) :=
r∑

k=2

∫
Vk(x1, .., xk)dµ

⊗k(x1, .., xk). (1)

for a finite integer number r and functions Vk on Σk so that there exists a compact measured
space (C, ν) and a bounded continuous function g : C×Σ → IR so that, for any k ∈ {1, .., r}
and any (x1, .., xk) ∈ Σk,

Vk(x1, .., xk) =
∫
g(τ, x1)g(τ, x2)..g(τ, xk)dν(τ). (2)

This assumption is crucial in [3] to map continuously P(Σ) furnished with the weak topology
into the Banach space B(Γ) = Lr(ν) by TV (µ)(τ) =

∫
g(τ, x)dµ(x) in order to use the work

of E. Bolthausen [5].
To state the result proved in [3] and [12], let us define the Hessian Ξ of Γ, that is the
symmetric operator in the subspace L2

0(µ
∗) = {φ ∈ L2(µ∗);

∫
φdµ∗ = 0} of L2(µ∗) so that,

for any φ ∈ L2
0(µ

∗) such that for ϵ ∈ IR small enough (1 + ϵφ).µ∗ ∈ P(Σ),

< φ,Ξφ >L2
µ∗
= lim

ϵ↓0

1

2ϵ2
{Γ ((1 + ϵφ).µ∗) + Γ ((1− ϵφ).µ∗)− 2Γ (µ∗)} .

The authors then proved in [3] and [12] that if Γ satifies (1),

Theorem 1.1 If µ∗ is not degenerate, that is if I − Ξ is positive definite, for any f ∈
L2
0(µ

∗), (1/
√
N)

∑N
i=1 f(xi) converges in law under PN

Γ to a centered Gaussian variable with
covariance

σ(f) =< f, (I − Ξ)−1f >L2(µ∗) .
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Our purpose here is to propose a method to relax the assumptions on the functions Γ
for non degenerate minimizer µ∗. To simplify, we will assume as well that µ∗ is the unique
minimizer of H . However, the reader can easily extend our results to the case where H has
several non degenerate minimizers but when he considers the probability PN

Γ conditioned by
the event that the empirical measure remains in a small neighborhood of one minimizer (
such local central limit theorems were studied in [3] and in [12] ( see lemma 3.2) ). Indeed,
all the proofs of this type of results use first a localization around the minimizer which boils
down to consider the probability PN

Γ conditioned by the event that the empirical measure
stays in a small neighborhood of µ∗. We will assume in the following
(H0)PN

Γ satisfies a large deviation principle with good rate function H for the strong topology.
H achieves its minimum value at a unique probability measure µ∗.µ∗ is a non degenerate
minimum of H.

We will extend the study of the fluctuations for functions Γ which are of the form (1) but
with more general functions Vk’s ( in particular, functions which do not satisfy (2)). Then,
we will tackle the case of ”analytic” functions Γ, that is of functions Γ of type (1) but with
r = ∞.

To be more precise, let us introduce a few extra definitions. Let k be an integer num-
ber. We will say in the sequel that a function F on Σk is bounded µ∗-canonical if it is a
bounded measurable function such that

∫
F (x1, .., xk)dµ∗(xi) = 0 for any i ∈ {1, .., k} and

any (xj)j≠i ∈ Σk−1. Moreover, we will say that a bounded function F on Σk is regular if F
is a bounded measurable function such that the maps ψ1

F and ψ2
F : P(Σ × {−1,+1}) → IR

defined by

ψ1
F (µ) =

∫
F (x1, .., xk)

k∏

i=1

ϵi
k∏

i=1

dµ(xi, ϵi)

and

ψ2
F (µ) =

∫
F (x1, .., xk)

2
k∏

i=1

dµ(xi, ϵi)

are bounded continuous for the strong topology. Note that if F is continuous, F is regular
according to Lemma 7.3.12 of [9]. However, F is also regular if it is the limit for the uniform
topology of functions of type

∑s
i=1 αi

∏k
l=1 φ

l
i(xl) for a finite integer number s and bounded

measurable functions φl
i’s. However, a bounded measurable function F can fell to be regular

( see exercise 7.3.18 in [9] ).

Let us state the main result of this paper

Theorem 1.2 Assume Γ of the form

Γ(µ) =
∞∑

k=0

1

k!

∫
Wk(x1, .., xk)d(µ)

⊗k(x1, .., xk)

with symmetric bounded µ∗-canonical functions Wk so that
1) The Wk’s satisfy, for some universal constant c > 0 small enough and any k ≥ 0,

||Wk||∞ ≤ const.k!ck,
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2) Wk is bounded regular for k ≥ 2,
then, if (H0) is fulfilled, the conclusions of Theorem 1.1 are valid .

As one can see, our generalization is based on some regularity properties of the function Γ
rather than on some structural hypothesis of type (2). In particular, Γ has to have all its
Frechet derivatives ( see section 2 for a definition ).

Remark 1.3: Note that under assumption 1) of Theorem 1.2, Γ is bounded. Hence, for
the large deviation principle to hold with good rate function H , it is enough to add the
hypothesis that Γ is continuous for the strong topology ( see [9], theorems 4.3.1 and 6.3.1 ),
which requires some additional regularity of the Wk’s, satisfied when they are for instance
continuous.

In any case, our approach is build upon the control of sufficiently good approximations
of the functions Γ. Namely, if (Γϵ)ϵ>0 is a sequence of functions on Σ converging to Γ
sufficiently well for which we know that Theorem 1.1 holds, we will prove that for any
bounded continuous functions F : IR → IR and any measurable function f : Σ → IR in
L2
0(µ

∗),

lim
N→∞

∫
F

(
1√
N

N∑

i=1

f(xi)

)

dPN
Γ = lim

ϵ↓0
lim

N→∞

∫
F

(
1√
N

N∑

i=1

f(xi)

)

dPN
Γϵ
. (3)

Again, if the (Γϵ)ϵ>0 satisfy (2) and approximate sufficiently well Γ as ϵ ↓ 0, one can compute
the r.h.s. of (3) and conclude. (3) is therefore the main point in this paper. It is not a priori
clear since the error one should make by a trivial bound should be of order eo(N). Its proof
is driven by the control on U -statistics developed by De La Peña [15] and Arcones-Gine [1].
The article is organized as follows.

In section 2, we develop the approximation scheme for polynomial functions Γ.
In section 3, we prove the crucial estimates to control our approximations.
In section 4, we apply this strategy to analytic functions Γ’s.

2 Polynomial interaction

Throughout this section, we will consider real valued functions Γ on P(Σ) so that there
exists bounded measurable functions (Vk)k≥0 so that

Γ(µ) =
r∑

k=0

1

k!

∫
Vkd(µ)

⊗k.

We shall often use the µ∗-canonical decomposition of Γ, that is write Γ in terms of
bounded µ∗-canonical symmetric functions (Wk)k≥0 as

Γ(µ) =
r∑

k=0

1

k!

∫
Wkd(µ)

⊗k.

The main result of this section then states as follows
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Theorem 2.1 Assume that Wk is bounded regular for k ≥ 2. Then, for any bounded con-
tinuous function f so that

∫
fdµ∗ = 0, (1/

√
N)

∑N
i=1 f(xi) converges under PN

Γ to a centered
Gaussian variable with covariance

σ(f) =< f, (I − Ξ)−1f >L2(µ∗) .

To prove Theorem 2.1, let us first state precisely our approximation result caricatured by
(3). To this end, let us introduce the following approximation property ; we shall prove in
the appendix that any bounded measurable µ∗-canonical function W on Σk satisfies

(H1) There exists a sequence Wϵ of continuous symmetric functions on Σk so that∫
Wϵ(x1, x2, .., xk)dµ∗(x1) ≡ 0 for any x2, .., xk ∈ Σk−1 and satisfying

lim
ϵ↓0

∫
(W −Wϵ)

2(x1, .., xk)
k∏

i=1

dµ∗(xl) = 0, (4)

lim
ϵ↓0

∫
(W −Wϵ)(x, x)dµ

∗(x) = 0, when k = 2 (5)

Moreover, Wϵ is uniformly bounded, that is, if || ||∞ denotes the uniform norm,

sup
ϵ

||Wϵ||∞ < ∞

and, for any ϵ > 0, Wϵ is of the form

Wϵ(x1, .., xk) =
rϵ∑

j=1

cϵj
k∏

i=1

gϵj(xi)

for a finite integer number rϵ, finite constants cϵj and bounded continuous functions gϵj, im-
plying that Wϵ satisfies the hypothesis of [3] or [12] ( see its statement at (2) ).

Hereafter, we shall fix, for k ≥ 2, a family of functions (W k
ϵ )ϵ>0 approximating Wk

according to (H1). (Wϵ)ϵ>0 will denote in short (W 2
ϵ )ϵ>0. We denote Γϵ : P(Σ) → IR the

map

Γϵ(µ) =
1

2

∫
Wϵ(x, y)dµ(x)dµ(y).

We shall see in this section that

Theorem 2.2 Under (H0) and (H1), if the Wk’s are bounded regular, for any bounded
continuous functions F and any f ∈ L2

0(µ
∗),

lim
N→∞

∫
F

(
1√
N

N∑

i=1

f(xi)

)

dPN
Γ = lim

ϵ↓0
lim
N↑∞

∫
F

(
1√
N

N∑

i=1

f(xi)

)

dPN
Γϵ
.
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Note

Γ̃(µ) := Γ(µ)− Γ(µ∗)−DΓ[µ∗](µ− µ∗)

=
r∑

k=2

1

k!

∫
Wkdµ

⊗k (6)

Since µ∗ minimizes I(.|P )− Γ, it is not hard to check ( see [3], for details ) that

log
dµ∗

dP
= DΓ[µ∗](δx) + const.,

where D is the Frechet derivative

DΓ[µ∗](ν − µ∗) := lim
δ→0

1

δ
(Γ((1− δ)µ∗ + δν)− Γ(µ∗)) .

Hence,

dPN
Γ (X) =

1

Z̃N

exp{N Γ̃(µ̂N)}d(µ∗)⊗N(X) (7)

with
Z̃N =

∫
exp{N Γ̃(µ̂N)}d(µ∗)⊗N(X).

To prove Theorem 2.2, we shall first consider the partition function Z̃N . When Γ satisfies
(1), it is well known ( see [12], Theorem 1, for instance ) that

lim
N→∞

Z̃N = (det(I − Ξ))−
1
2 . (8)

Because our assumption on W2 does not insure that Ξ is trace class, and therefore that the
above determinant is well defined, we are not going to prove such a result here. However,
if we assume also that Ξ is trace class, then, according to [4], tr(Ξ) =

∫
W (x, x)dµ(x) and

(H1) insures that limϵ↓0 tr(Ξϵ) = tr(Ξ). Thus, we could use the Lemmas below to show that
(8) holds. Instead, we are going to provide bounds on Z̃N in terms of determinants of the
operators Ξϵ in L2

0(µ
∗) with kernel Wϵ ;

< Ξϵφ,ψ >L2(µ∗)=
∫
Wϵ(x1, x2)φ(x1)ψ(x2)dµ

∗(x1)dµ
∗(x2)

for (φ,ψ) ∈ L2
0(µ

∗). Ξϵ is trace class according to the hypothesis on Wϵ ( see [3] ) for
every ϵ > 0. To obtain Theorems 2.1 and 2.2, we shall use some cancellation to get bounds
depending only on the regularized determinant det2 defined, for any operator A on L2(µ∗),
by

det2(I − A) = e−tr (A)det(I −A)

which is continuous for the Hilbert-Schmidt norm defined, for any operator A in L2(µ∗), by

||A||HS =
√
tr(A∗A).
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We will then pass to the limit thanks to (H1). In fact, note that Ξ is the operator in L2
0(µ

∗)
with kernel W2 so that (4) reads

lim
ϵ↓0

||Ξ− Ξϵ||2HS = lim
ϵ↓0

tr ((Ξ− Ξϵ)(Ξ− Ξϵ)
∗) = 0. (9)

Consequently, since I − Ξ is positive definite, I − Ξϵ is also positive definite for ϵ small
enough. Also, det2(I − Ξϵ) converges towards det2(I − Ξϵ) as ϵ goes to zero. For the same
reasons, there exists α0 > 1 so that for α < α0 and ϵ small enough, ϵ < ϵ(α), I − αΞϵ is
still positive definite. In particular, det2(I − αΞϵ) converges, as α ↓ 1 and ϵ ↓ 0 towards
det2(I − Ξ). In the following, we will fix α ∈ (1,α0) and assume ϵ < ϵ(α).

In view of the above considerations, the following bounds will be meaningful and useful

Lemma 2.3 a) If α > 1 is small enough, there exists ϵ(α) > 0 so that, for any ϵ < ϵ(α),

lim sup
N→∞

Z̃N ≤ (det(I − αΞϵ))
− 1

2α exp{1
2

∫
(W2 −Wϵ)(x, x)dµ

∗(x)} (10)

b) For any η > 0, any A > 0, and for α > 1 small enough, any ϵ > 0 small enough (
depending on A and α )

lim inf
N→∞

Z̃N ≥ e−ηdet(I − Ξϵ)
− 1

2 − e−ηAe(A/2)
∫
(W2−Wϵ)(x,x)dµ∗(x)det(I − αΞϵ)

− 1
2α . (11)

More generally, if F is a non negative continuous function and f ∈ L2
0(µ

∗), define

Z̃F,f
N =

∫ ∫
F (

1√
N

N∑

i=1

f(xi))e
N Γ̃(µ̂N )d(µ∗)⊗N(X),

we shall see that if
σϵ(f) :=< f, (I − Ξϵ)

−1f >L2(µ∗),

Lemma 2.4 Let F be a non negative continuous function and f ∈ L2
0(µ

∗),
a)If α > 1 is small enough, there exists ϵ(α) > 0 so that, for any ϵ < ϵ(α),

lim sup
N→∞

Z̃F,f
N ≤ e

1
2

∫
(W2−Wϵ)(x,x)dµ∗(x)

⎛

⎝ 1
√
2πdet(I − αΞϵ)σϵ(f)

∫
F α(x)e−

x2

2σϵ(f)dx

⎞

⎠

1
α

. (12)

b) For any η > 0, any A > 0, and for α > 1 small enough, any ϵ > 0 small enough (
depending on A and α )

lim inf
N→∞

Z̃F,f
N ≥ e−η 1

√
2πdet(I − Ξϵ)σϵ(f)

∫
F (x)e−

x2

2σϵ(f)dx (13)

−e−ηAe(A/2)
∫
(W2−Wϵ)(x,x)dµ∗(x)||F ||∞det(I − αΞϵ)

− 1
2α .
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Let us first derive Theorems 2.1 and 2.2 from Lemmas 2.3 and 2.4. In fact, we need to prove
that

ΛF,f
N := lim

N→∞

∫
F (

1√
N

N∑

i=1

f(xi))e
N Γ̃(µ̂N )d(µ∗)⊗N(X) (14)

= lim
N→∞

Z̃F,f
N

Z̃N

=
1

√
2πσ(f)

∫
F (x)e−

x2

2σ(f)dx (15)

for any bounded continuous function F . Without loss of generality, we can assume F non
negative.

By Lemma 2.3.b) and Lemma 2.4.a), we first get that for any η > 0, any A > 0 , and for
α > 1 small enough, any ϵ > 0 small enough ( so that the r.h.s. of Lemma 2.3.b) is positive
),

lim sup
N→∞

ΛF,f
N ≤

exp{1
2

∫
(W2 −Wϵ)(x, x)dµ∗(x)}

e−η

(
det(I−αΞϵ)

1
α

det(I−Ξϵ)

) 1
2

− e−ηA+0.5A
∫
(W2−Wϵ)(x,x)dµ∗(x)

(16)

×

⎛

⎝ 1
√
2πσϵ(f)

∫
F α(x)e−

x2

2σϵ(f)dx

⎞

⎠

1
α

.

(H1) results with

lim
ϵ↓0

∫
(W2 −Wϵ)(x, x)dµ

∗(x) = 0. (17)

Further,
det(I − αΞϵ)

1
α

det(I − Ξϵ)
=

det2(I − αΞϵ)
1
α

det2(I − Ξϵ)
.

It is well known ( see [18], Theorem 9.2.c)) that the regularized determinant det2 is continuous
for the Hilbert-Schmidt norm || ||HS. Therefore, since assumption (4) shows that Ξϵ converges
in the Hilbert-Schmidt topology to Ξ, we deduce that

lim
α↓1

lim
ϵ↓0

det2(I − αΞϵ)
1
α

det2(I − Ξϵ)
= lim

α↓1

det2(I − αΞ)
1
α

det2(I − Ξ)
= 1. (18)

Moreover, by construction, we can find a positive constant a so that (I − Ξϵ) ≥ aI for ϵ
small enough. Hence the convergence of Ξϵ towards Ξ for the HS-topology results with

lim
ϵ→0

σϵ(f) = σ(f). (19)
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(16), (17),(18) and (19) imply, once ϵ ↓ 0, that for any η > 0, any A > 0, and for α > 1
small enough,

lim sup
N→∞

ΛF,f
N ≤ 1

e−η

(
det(I−αΞ)

1
α

det(I−Ξ)

) 1
2

− e−ηA

⎛

⎝ 1
√
2πσ(f)

∫
F (x)e−

x2

2σ(f)dx

⎞

⎠

1
α

. (20)

Letting α ↓ 1, A ↑ ∞ and η ↓ 0 give

lim sup
N→∞

ΛF,f
N ≤ 1

√
2πσ(f)

∫
F (x)e−

x2

2σ(f)dx. (21)

We proceed similarly for the lower bound ; in view of Lemma 2.3.a) and 2.4.b), we find that
for any η > 0, any A > 0 , and for α > 1 small enough ( so that the r.h.s. of Lemma 2.4.b)
is positive ) , any ϵ > 0 small enough,

lim inf
N→∞

ΛF,f
N ≥ e−η− 1

2

∫
(W2−Wϵ)(x,x)dµ∗(x)

⎛

⎝ det(I − αΞϵ)
1
α

2πdet(I − Ξϵ)σϵ(f)

⎞

⎠

1
2 ∫

F (x)e−
x2

2σϵ(f)dx (22)

−e−ηA+A
2

∫
(W2−Wϵ)(x,x)dµ∗(x)||F ||∞.

Consequently, (17),(18) and (19) imply, once ϵ ↓ 0, α ↓ 1, A ↑ ∞ and η ↓ 0,

lim inf
N→∞

ΛF,f
N ≥ 1

√
2πσ(f)

∫
F (x)e−

x2

2σ(f)dx (23)

which completes the proof of Theorems 2.1 and 2.2.

Hence, we need to prove Lemma 2.4. An essential and basic consideration should be made
before beginning this proof. Under our large deviation hypothesis, the probability that the
empirical measure does not belong to an open set containing µ∗ is exponentially small.
Among the open neighborhood of µ∗, we shall be specially interested in those inherited from
the Banach space Bϵ attached to the functions W k

ϵ approximating Wk for k ∈ {1, .., r} ( see
assumption (2)). Namely, ifW k

ϵ (x1, .., xk) =
∫ ∏r

i=1 g
k
ϵ (xi, τ)dνkϵ (τ), with bounded continuous

functions gkϵ and a finite discrete measure νkϵ , setting Tϵ : P(Σ) → ∏
2≤k≤r L

∞(νkϵ ) to be the
map Tϵ(µ) = (

∫
g2ϵ (x, .)dµ(x), ..,

∫
gkϵ (x, .)dµ(x)) and Bϵ be the Banach space

∏
2≤k≤r L

∞(νkϵ )
endowed with the norm

||f ||ϵ =
r∑

k=2

||fk||L∞(νkϵ )
,

we set

Bϵ
δ(µ

∗) = {µ ∈ P(Σ) : ||Tϵµ||ϵ < δ}.

9



Since the gkϵ (., τ) are bounded continuous, Bϵ
δ(µ

∗) is an open neighborhood of µ∗ for the
strong topology. If IE denotes the expectation under (µ∗)⊗N , our large deviation hypothesis
implies, since Bϵ

δ(µ
∗)c is a closed subset of P(Σ), that for any δ > 0,

lim sup
N→∞

1

N
log IE

[
1IBϵ

δ
(µ∗)ce

N Γ̃(µ̂N )
]
≤ − inf

Bϵ
δ
(µ∗)c

H.

Since H is a good rate function, it achieves its minimum value on Bϵ
δ(µ

∗)c. Thus, infBϵ
δ
(µ∗)c H

is strictly positive since Bϵ
δ(µ

∗)c does not contain µ∗. Hence, for any δ > 0 and ϵ > 0, there
exists a positive constant C so that for N large enough, for any bounded measurable function
F ,

| IE[F exp{N Γ̃(µ̂N)}]− IE[1IBϵ
δ
(µ∗)F exp{N Γ̃(µ̂N)}]| ≤ e−CN ||F ||∞. (24)

In the following, we will therefore concentrate, for a fixed bounded continuous non negative
function F and a measurable f ∈ L2

0(µ
∗), on

Z̃δ,ϵ
N := IE[1IBϵ

δ
(µ∗)F (

1√
N

N∑

i=1

f(xi)) exp{N Γ̃(µ̂N)}].

Let us turn to the proof of the Lemma
Proof of Lemma 2.4.a): According to the previous considerations, it is enough to show that
if α > 1 is small enough, there exist ϵ(α) > 0 and δ(α) > 0 so that, for any ϵ < ϵ(α) and
δ < δ(α),

lim sup
N→∞

Z̃δ,ϵ
N ≤ exp{1

2

∫
(W2−Wϵ)(x, x)dµ

∗(x)}

⎛

⎝ 1
√
2πdet(I − αΞϵ)σϵ(f)

∫
F α(x)e−

x2

2σϵ(f)dx

⎞

⎠

1
α

.

(25)
To prove (25), note that if γ is the conjugate exponent of α, we have, by Hölder’s inequality,

Z̃δ,ϵ
N ≤ LN (δ,α, ϵ)

1
αR1

N(γ, ϵ)
1
2γR2

N(γ, ϵ)
1
2γ (26)

with

LN (δ,α, ϵ) := IE[1IBϵ
δ
(µ∗)F (

1√
N

N∑

i=1

f(xi))
α exp{N α

2

∫
Wϵd(µ̂

N − µ∗)⊗2}], (27)

R1
N (γ, ϵ) := IE[exp{Nγ

∫
(W2 −Wϵ)d(µ̂

N)⊗2 + 2Nγ
r∑

k=3

1

k!

∫
(Wk −W k

ϵ )d(µ̂
N)⊗k}],

R2
N (γ, ϵ) := IE[1IBϵ

δ
(µ∗) exp{2Nγ

r∑

k=3

1

k!

∫
W k

ϵ d(µ̂
N)⊗k}],

Let us first bound LN(δ,α, ϵ)

Lemma 2.5 For δ and ϵ < ϵ(α) small enough,

lim
N→∞

LN (δ,α, ϵ) =
1

√
2πdet(I − αΞϵ)σϵ(f)

∫
F α(x)e−

x2

2σϵ(f)dx.
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Proof.Following [12], Lemma 3.2, Lemma 2.5 is verified as soon as we can prove that

Hϵ(µ) := I(µ|µ∗)− α

2

∫
Wϵd(µ− µ∗)⊗2

achieves its minimum value at µ∗ in Bϵ
δ(µ

∗) ( so that its minimum value is in fact zero ), that
µ∗ is in fact its only minimizer in Bϵ

δ(µ
∗) and that it is non degenerate. This last point is

already insured by hypothesis (H1) as quoted before Lemma 2.4. For the first point, notice
that, following our hypotheses, Hϵ is a good rate function. It achieves its minimum value
and has null derivative at µ∗. Also, Hϵ is strictly convex in a neighborhood of µ∗ ( since
I − αΞϵ is positive definite ). Thus, if δ is small enough ( depending eventually on ϵ and
α > 1 ), Hϵ achieves its minimum value uniquely at µ∗.

Let us now consider R1
N (γ, ϵ) and prove

Lemma 2.6 For any real number γ, there exists a positive ϵ(γ) so that, for any ϵ < ϵ(γ),

lim sup
N→∞

R1
N (γ, ϵ) ≤ exp{γ

2

∫
(W2 −Wϵ)(x, x)dµ

∗(x)}.

Proof.
Denote V ϵ

k = Wk −W k
ϵ and set

Uk
N (X) =

1

Nk

∑

i1<i2...<ik

V ϵ
k (xi1 , .., xik) for k ≥ 2,

and

ZN(X) =
r∑

k=2

1

2(k − 2)!Nk

N∑

i1,..,ik−1=1

V ϵ
k (xi1 , xi1 , xi2 .., xik−1

).

Then,

r∑

k=2

1

k!

∫
V ϵ
k d(µ̂

N)⊗k =
r∑

k=2

Uk
N(X) + ZN(X).

Therefore, Cauchy-Schwartz inequality yields

R1
N (γ, ϵ) ≤ IE[exp{4Nγ

r∑

k=2

Uk
N (X)}]

1
2 IE[exp{4NγZN(X)}]

1
2 . (28)

Let us first focus on

R1,1
N (γ, ϵ) := IE[exp{4Nγ

r∑

k=2

Uk
N (X)}].

Applying Cauchy-Schwartz’s inequality r − 2 times, we get

R1,1
N (γ, ϵ) ≤

r∏

k=2

IE[exp{N2k+1γUk
N(X)}]

1
2k . (29)

11



According to Lemma 3.2, as soon as maxk
∫
(Wk −W k

ϵ )
2d(µ∗)⊗k is small enough ( depending

on γ ), there exists a finite constant c so that for any integer number N

IE[exp{2kNγUk
N (X)}] ≤ c (30)

resulting with, for ϵ small enough and N large enough,

R1,1
N (γ, ϵ) ≤ c. (31)

Let us now focus on
R1,2

N (γ, ϵ) := IE[exp{2NγZN(X)}].
This part is actually on the scale of the law of large numbers. In fact, if the (Wk)k≥2 were
continuous, NZN would be a bounded continuous function of the empirical measure. Hence,
the law of large numbers would imply that

lim
N→∞

NZN = lim
N→∞

N IE[ZN ] =
1

2

∫
(W2 −Wϵ)(x, x)dµ

∗(x) a.s.

Thus, dominated convergence theorem would end the proof of the lemma. To avoid the
previous assumption, we shall decompose ZN in terms of U -statistics and use again our
controls on U -statistics. Indeed, denoting Ṽ ϵ

k (xi1 .., xik−2
) ( resp. V̄ ϵ

k (xi1 .., xik−1
) ) for∫

V ϵ
k (x, x, xi1 .., xik−2

)dµ∗(x) ( resp. for the symmetric version of V ϵ
k (xi1 , xi1, xi2 .., xik−1

) −
W̃k(xi1 .., xik−2

)), one checks that

NZN(X) =
1

2

∫
(Wϵ −W2)(x, x)dµ

∗(x) +
1

2

∫
(V ϵ

2 (x, x) + Ṽ ϵ
3 (x))d(µ̂

N − µ∗)(x)

+
1

2

r∑

k=4

1

Nk−2

∑

i1<..<ik−2

Ṽ ϵ
k (xi1 , xi2 .., xik−2

)

+
1

2

r∑

k=3

k − 1

Nk−1

∑

i1<..<ik−1

V̄ ϵ
k (xi1 , xi2 .., xik−1

) + O(
1

N
) (32)

Therefore, applying Holder’s inequality with some constant a such that Na > 1, we find a
finite constant C so that

R1,2
N (γ, ϵ) ≤ exp{Cγ

N
+ γ

∫
(Wϵ −W2)(x, x)dµ

∗(x)}

× IE
[
exp{2γaN

∫
(V ϵ

2 + Ṽ ϵ
3 )(x, x)d(µ̂

N − µ∗)(x)}
] 1

2aN

(33)

× IE

⎡

⎣exp 2γa{
r∑

k=4

1

Nk−3

∑

i1<..<ik−2

Ṽ ϵ
k (xi1 , .., xik−2

) +
r∑

k=3

k − 1

Nk−2

∑

i1<..<ik−1

V̄ ϵ
k (xi1 , .., xik−1

)}

⎤

⎦

1
2

Since Ṽ ϵ
k and V̄ ϵ

k satisfy the hypotheses of Lemma 3.1, we see that there exists a finite
constant C = C(γ) so that the r.h.s. of (33) is bounded by e

C
N for N large enough. Thus,

for large enough N , we get an upper bound of the form

12



R1,2
N (γ, ϵ) ≤ eγ

∫
(Wϵ−W2)dµ∗

e
C
N (34)

This gives Lemma 2.6 with (28), (29), (30) and (31). Note that in fact, since NZN is
bounded, it was enough to control the convergence in probability of NZN to get our result,
and for instance its convergence in L2((µ∗)⊗∞). However, because we already have the above
controls on U -statistics, we chose to use them.

Finally, since the W k
ϵ ’s satisfies the hypotheses of [5], we can follow E. Bolthausen to

obtain

Lemma 2.7 For any real number γ, any ϵ > 0, for δ > 0 small enough,

lim
N→∞

R2
N (γ, ϵ) = 1.

Lemmas 2.5, 2.6 and 2.7 with inequality (26) give inequality (25), thus Lemma 2.4.a).
Let us now turn to the lower bound Lemma 2.4.b) and show that for any η > 0, any A > 0,
and for α > 1 small enough, any δ > 0 and ϵ > 0 small enough ( depending on A and α )

lim inf
N→∞

Z̃F,f
N ≥ e−η 1

√
2πdet(I − Ξϵ)σϵ(f)

∫
F (x)e−

x2

2σϵ(f)dx (35)

−e−ηAe(A/2)
∫
(W2−Wϵ)(x,x)dµ∗(x)||F ||∞det(I − αΞϵ)

− 1
2α .

To this end, let us write for any η > 0

Z̃δ,ϵ
N ≥ IE[1IBϵ

δ
(µ̂N )∩{N |Γ̃(µ̂N )−Γϵ(µ̂N )|≤η}FeN Γ̃(µ̂N )]

≥ e−η IE[1IBϵ
δ
(µ̂N )F exp{NΓϵ(µ̂

N)}]− e−η||F ||∞ IE[1IAN (δ,η) exp{NΓϵ(µ̂
N)}] (36)

with
AN(δ, η) = Bϵ

δ(µ̂
N) ∩ {N |Γ̃(µ̂N)− Γϵ(µ̂

N)| ≥ η}.

Set

I1N(η, ϵ, δ) = e−η IE[1IBϵ
δ
(µ̂N )F exp{NΓϵ(µ̂

N)}]
I2N(η, ϵ, δ) = e−η IE[1IAN (δ,η) exp{NΓϵ(µ̂

N)}].

Let us first notice that, for any positive δ small enough,

lim
N→∞

I1N(η, ϵ, δ) = e−η 1
√
2πdet(I − Ξϵ)σϵ(f)

∫
F (x)e−

x2

2σϵ(f)dx (37)

13



according to our hypotheses and the now standard results of [3] and [12]( see [12], Lemma
3.2 for instance ). Moreover, we also find that, if α > 1 is small enough as before and letting
γ be its conjugate exponent, Hölder and Chebyshev inequalities yield, for any real number
A> 0,

I2N(η, ϵ, δ) ≤ e−ηA IE[eNαΓϵ(µ̂N )]
1
α IE[eNγA(Γ̃−Γϵ)(µ̂N )]

1
γ . (38)

Lemma 2.5 shows that the first term in the above r.h.s is converging whereas Lemma 2.6
shows that the second term is bounded for any γA as soon as ϵ is small enough, depending
on γA. This shows that for any α > 1 small enough and any A > 0, there exists ϵ(α, A) > 0
so that for any ϵ ∈ (0, ϵ(α, A)),

lim sup
N→∞

I2N(η, ϵ, δ) ≤ e−ηAe(A/2)
∫
(W2−Wϵ)(x,x)dµ∗(x)det(I − αΞϵ)

−1
2α (39)

(36) and (39) give equation 35.

Remark 2.8: In fact, we proved that we can find a sequence of open neighborhood Bδ of µ∗

shrinking to µ∗ so that for any bounded continuous function F and any f ∈ L2
0(µ

∗),

lim
δ↓0

lim
p↓1

lim
N→∞

∫
Bδ

F ( 1√
N

∑
f(xi))eNpΓ̃(µ̂N )dP⊗N(X)

(
∫
Bδ

eN Γ̃(µ̂N )dP⊗N(X))p
=

1
√
2πσ(f)

∫
F (x)e−

x2

2σ(f)dx.

3 Estimates

In this section, we get crucial upper bounds on exponential moments of U -statistics. These
estimates are based on the works of De La Peña [15] and Arcones-Gine [1]. We shall control
the exponential moments of

Uk
N (X) :=

1

Nk

∑

1≤i1<..<ik≤N

W (xi1 , ..xik).

Without loss of generality, we will assume that W is symmetric and µ∗-canonical.
The next Lemma controls the exponential moments of Uk

N .

Lemma 3.1 Let m ≥ 2 and W be a bounded µ∗-canonical on Σm. There exists a universal
finite constant C so that, for any positive real number γ so that

γ ≤ 2
2−3m

2 ||W ||−1
∞

(
(log 2)m−2(m!)m−1

(2e)2

) 1
m

for any integer number N ,
∫

exp{γNUm
N (X)}d(µ∗)⊗N(X) ≤ (C)2

1−m

.

14



Proof.Note in short

RN (γ) := IE[exp{ γ

Nm−1

∑

i1<..<im

W (xi1 , .., xim)}]. (40)

We can use the decoupling and randomization techniques proposed by De la Peña [15] to
find that the first term in the r.h.s. of (40) is bounded by

VN(γ) := IE

⎡

⎣exp

⎛

⎝ C0γ

Nm−1

∑

i1<..<im

ϵ1i1 ..ϵ
m
imW (x1

i1 , .., x
m
im)

⎞

⎠

⎤

⎦
C′

0

for some universal constants C0 and C ′
0, independent Rademacher variables ϵji ’s, and inde-

pendent copies xj
i ’s of the xi’s independent of the Rademacher variables. C0 and C ′

0 depends
on m a priori ; it is proved in the appendix that one can take C0 = 2

3m−2
2 and C ′

0 = 21−m.
Recall the following result due to Borel [6] ( see also [1], Prop. 2.2 ) which yields, for any

integer number q ≥ 2 and for any sequence ai1,..,im of real numbers

IE[(
∑

i1<..<im

ϵ1i1 ..ϵ
m
imai1,..,im)

q]
1
q ≤ (q − 1)

m
2 (

∑

i1<..<im

a2i1,..,im)
1
2 (41)

where equality holds if q = 2. Thus, if we let

Ũm
N (X) :=

C0γ

Nm−1

∑

i1<..<im

ϵ1i1 ..ϵ
m
imW (x1

i1 , .., x
m
im)

we find, conditionning by X and using (41), that

IE[
(
Ũm
N (X)

)q
] ≤ (q − 1)q

(
C0γ||W ||∞(

√
m!)−1(

q − 1

N
)
m−2

2

)q

. (42)

Note here that the odd moments are null. Thanks to Stirling’s formula, we see that for any
q ∈ IN,

q! ≥
(
q

e

)q

so that (42) implies that for all q ∈ IN,

1

q!
IE[
(
Ũm
N (X)

)q
] ≤

(
eC0γ||W ||∞(

√
m!)−1(

q − 1

N
)
m−2

2

)q

. (43)

Moreover, Taylor expansion shows that for any ϵ > 0, there is a random variable θ(N, ϵ)
with values in [0, 1] so that

VN(γ) =
[ϵN ]−1∑

q=0

1

2q!
IE[
(
Ũm
N (X)

)2q
] +

1

2[ϵN ]!
IE[
(
Ũm
N (X)

)2[ϵN ]
exp{θ(N, ϵ)Ũm

N (X)}]

≤
[ϵN ]−1∑

q=0

1

2q!
IE[
(
Ũm
N (X)

)2q
] +

1

2[ϵN ]!
IE[
(
Ũm
N (X)

)2[ϵN ]
] exp{NC0γ||W ||∞(m!)−1}

≤
(
1− (eC0γ(

√
m!)−1||W ||∞(2ϵ)

m−2
2 )2

)−1

+(eC0γ(
√
m!)−1||W ||∞(2ϵ)

m−2
2 )2[ϵN ] exp{NC0γ||W ||∞(m!)−1} (44)

15



where we have chosen in the last line ϵ small enough so that

r(ϵ) := eC0γ(
√
m!)−1||W ||∞(2ϵ)

m−2
2 < 1.

(Note here that in the case m = 2, we have assumed r(ϵ) < 1 ) Now, to get rid of the last
term in the right hand side of (44), we need that

ρ := 2ϵ log(r(ϵ)) + C0γ||W ||∞(m!)−1 ≤ 0.

Taking, for m ≥ 3,

ϵ =
1

2

( √
m!

2eC0γ||W ||∞

) 2
m−2

,

we have that r(ϵ) = 2−1 and

ρ =

( √
m!

2eC0γ||W ||∞

) 2
m−2

⎛

⎝(2e)
2

m−2 (||W ||∞C0γ)
m

m−2

(m!)
m−1
m−2

− log 2

⎞

⎠ .

When ρ ≤ 0, we have obtained according to (44) that

VN(γ) ≤ (
4

3
+ exp{ρN}) ≤ 7

3
from which the statement of the lemma is easily clear.

We shall now control the exponential moments of U -statistics with small variance

σ2 :=
∫

W 2(xi1 , ..xik)
k∏

l=1

dµ∗(xil)

which is, in some sense, a refinment of the previous lemma for regular functions.
Our result states as follows

Lemma 3.2 For any integer number k ≥ 2, for any regular function W on Σk, for any real
number γ, there exists σ(γ) > 0 so that, if σ < σ(γ),

sup
N≥0

∫
exp{γNUk

N (X)}d(µ∗)⊗N(X)

is finite.

Proof.Note in short
RN(γ) := IE[exp{γNUk

N(X)}]. (45)

According to De La Peña [15]( see Theorem 1 and corollary 1 ) ( see also Arcones-Gine
[1], theorem 2.1, or the appendix ), there exists universal constants C1 and C ′

1 so that the
following randomization inequality holds
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RN (γ) ≤ IE[exp{ C1γ

Nk−1
|

∑

1≤i1<..<ik≤N

ϵi1 ..ϵikW (xi1, ..xik)|}]C
′
1 (46)

where the ϵi are Rademacher’s variables independent of the xi’s. Note

σ2
N (X) :=

k!

Nk

∑

1≤i1<..<ik≤N

W (xi1 , ..xik)
2.

σN converges (µ∗)⊗N almost surely to σ according to the law of large numbers. The following
decomposition holds

IE[exp{ C1γ

Nk−1
|

∑

1≤i1<..<ik≤N

ϵi1 ..ϵikW (xi1 , ..xik)|}]

≤ IE[1IσN (X)≥2σ exp{
C1γ

Nk−1
|

∑

1≤i1<..<ik≤N

ϵi1 ..ϵikW (xi1, ..xik)|}]

+ IE[exp{2 C1γ

Nk−1
|σ

∑

1≤i1<..<ik≤N

ϵi1 ..ϵik
W (xi1 , ..xik)

σN(X)
|}]. (47)

To bound the first term in the r.h.s. of (47), note that

IE[1IσN (X)≥2σ exp{
C1γ

Nk−1
|

∑

1≤i1<..<ik≤N

ϵi1 ..ϵikW (xi1, ..xik)|}]

≤ IE[1IσN (X)≥2σ exp{
C1γ

Nk−1

∑

1≤i1<..<ik≤N

ϵi1 ..ϵikW (xi1 , ..xik)}]

+ IE[1IσN (X)≥2σ exp{−
C1γ

Nk−1

∑

1≤i1<..<ik≤N

ϵi1 ..ϵikW (xi1 , ..xik)}]

so that we can neglect the absolute values in the following estimates to bound the r.h.s. of
(47) since they will not depend on the sign of W .

Moreover, if B denotes the Bernoulli law, B(ϵ) = (1/2)δϵ=+1 + (1/2)δϵ=−1, Sanov’s the-
orem ( see [9], theorem 6.2.10 ) shows that the empirical measure (1/N)

∑
δxi,ϵi satisfies a

large deviation principle for the strong topology under (µ∗ ⊗B)⊗N with good rate function
the relative entropy I( |µ∗ ⊗ B). Since we assumed W regular, ψ2

W is continuous for the
strong topology, so that {σN (X) ≥ 2σ} is a closed subset of P(Σ×{−1,+1}) furnished with
the strong topology. Also, if ψ1

W is continuous, Laplace’s method ( see [9], theorem 4.3.1 )
implies

lim sup
N→∞

1

N
log IE[1IσN (X)≥2σ exp{

C1γ

Nk−1

∑

1≤i1<..<ik≤N

ϵi1 ..ϵikW (xi1 , ..xik)}]
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≤ − inf
{
I(µ|µ∗ ⊗ B)− C1γ

k!

∫
W (x1, .., xk)

k∏

i=1

ϵi
k∏

i=1

dµ(xi, ϵi)

;
∫
W 2(x1, .., xk)

k∏

i=1

dµ(xi, ϵi) ≥ 4
∫
W 2(x1, .., xk)d(µ

∗)⊗k(x1, .., xk)
}
. (48)

To see that the infimum in the r.h.s. of (48) is negative, let us consider the function on
P(Σ× {−1,+1})

H̃(µ) = I(µ|µ∗ ⊗ B)− C1γ

k!

∫
W (x1, .., xk)

k∏

i=1

ϵi
k∏

i=1

dµ(xi, ϵi).

H̃ can easily be seen to have compact level sets and to be bounded from below. Thus, it
achieves its minimum value and the minimizers verify

log
dµ

dµ∗ ⊗ B
(ϵ, x) =

C1γ

(k − 1)!
ϵ
∫

W (x, x1, .., xk−1)
k−1∏

i=1

ϵi
k−1∏

i=1

dµ(xi, ϵi) + const.

In particular, there exists a finite constant M(γ) so that, for any minimizer µ,

|| log dµ

dµ∗ ⊗B
||∞ ≤ M(γ).

Together with the inequality

x log x ≥ 3

4 + 2x
(x− 1)2 + x− 1,

we see that there exists a positive constant c(γ) so that, for any minimizing measure µ with
density f with respect to µ∗ ⊗ B,

I(µ|µ∗ ⊗ B) ≥ c(γ)
∫
(f − 1)2dµ∗ ⊗ B.

On the other hand, since W is centered, Cauchy-Schwartz inequality yields

∣∣∣∣∣

∫
W (x1, .., xk)

k∏

i=1

ϵi
k∏

i=1

dµ(xi, ϵi)

∣∣∣∣∣ =

∣∣∣∣∣

∫
W (x1, .., xk)

k∏

i=1

ϵi
k∏

i=1

(f(xi, ϵi)− 1)
k∏

i=1

dµ∗(xi)dB(ϵi)

∣∣∣∣∣

≤ σ
(∫

(f − 1)2dµ∗ ⊗ B
)m

2

so that

H̃(µ) ≥
(
c(γ)− C1γM(γ)

m−2
2 σ

) ∫
(f − 1)2dµ∗ ⊗B.
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Hence, for σ small enough, H̃ achieves its minimal value at µ∗ ⊗ B. Its minimum value is
thus zero and we deduce that the infimum in (48) is strictly positive for small positive σ (
but decreasing to zero with σ). As a consequence,

lim sup
N→∞

1

N
log IE[1IσN (X)≥2σ exp{

C1γ

Nk−1

∑

1≤i1<..<ik≤N

ϵi1 ..ϵikW (xi1 , ..xik)}] < 0 (49)

Finally, to bound the second term in the r.h.s. of (47), we follow Arcones-Gine to see
that

sup
N

IE[exp{C1γσ

Nk−1

∑

1≤i1<..<ik≤N

ϵi1 ..ϵik
W (xi1 , ..xik)

σN (X)
}]] < ∞ (50)

as soon as
√
k!

−1
C1γσ is small enough. In fact, this result in given when m = 2 in the proof

of Prop. 2.3 (c) of [1] and can be generalize to the case of general integer number m by using
the result from Borel [6] ( see (41)) which implies that for any q ∈ IN,

1

q!
IE

⎡

⎣

⎛

⎝C1γσ

Nk−1

∑

1≤i1<..<ik≤N

ϵi1 ..ϵik
W (xi1 , ..xik)

σN (X)

⎞

⎠
q⎤

⎦ ≤
(
e
√
k!

−1
C1γσ

)q (q − 1

N

) k
2−1

.

Thus, since by Cauchy-Schwartz inequality
∣∣∣∣∣∣

∑

1≤i1<..<ik≤N

ϵi1 ..ϵik
W (xi1 , ..xik)

σN (X)

∣∣∣∣∣∣
≤ Nk

k!

everywhere, we deduce, when e
√
k!

−1
C1γσ < 1,

IE[exp{C1γσ

Nk−1

∑

1≤i1<..<ik≤N

ϵi1 ..ϵik
W (xi1, ..xik)

σN(X)
}]] ≤ (1−e

√
k!

−1
C1γσ)

−1+(e
√
k!

−1
C1γσ)

NeC1γσ(k!)−1N

resulting with a uniform bound when

eC1γσ(k!)−1+1
√
k!

−1
C1γσ ≤ 1

which is certainly fulfilled when
√
k!

−1
C1γσ is small enough.

(46), (49) and (50) give Lemma 2.5.

4 Generalization : The infinitely many body setting

In this section, we wish to consider the case where Γ(µ) is not a polynomial function of µ
but can be written

Γ(µ) =
∞∑

k=0

1

k!

∫
Wk(x1, .., xk)d(µ)

⊗k(x1, .., xk)
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with µ∗-canonical bounded functions (Wk)k≥0. Γ is somehow analytic for the Frechet deriva-
tion D. Furthermore, we will assume that

(H2) There exists a finite constant C such that for any k ∈ IN,

||Wk||∞ ≤ Cckk!

where c is a universal constant.

Proposition 4.1 Assume that (H0), (H1) and (H2) hold, and the Wk’s bounded regular.
Then, for any bounded continuous function F and any f ∈ L2

0(µ
∗),

lim
N→∞

∫
F (

1√
N

N∑

i=1

f(xi))dP
N
Γ = lim

ϵ↓0
lim

N→∞

∫
F (

1√
N

N∑

i=1

f(xi))dP
N
Γϵ
.

As a consequence, 1√
N

∑N
i=1 f(xi) converges under PN

Γ towards a centered Gaussian variable

with covariance σ(f).

Proof.First, let us notice that, as before, for any bounded measurable function F , the par-

tition function
∫
F exp{N Γ̃(µ̂N)}d(µ∗)⊗N is equivalent, up to an exponentially small term,

for any open neighborhood B(µ∗) of µ∗ for the strong topology, to

Z̃N(F ) :=
∫
1IB(µ∗)F exp{N Γ̃(µ̂N)}d(µ∗)⊗N .

In the following, we shall be given a bounded non negative continuous function F on IR and
f ∈ L2

0(µ
∗). Moreover, denote for a fixed m

Γm(µ) =
m∑

k=2

1

k!

∫
Wkdµ

⊗k

and write

Γ̃(µ̂N) = Γ(µ̂N)− Γ(µ∗)−DΓ[µ∗](µ̂N − µ∗) = Γm(µ̂
N) +Rm(µ̂

N).

By Hölder’s inequality, for any p > 1 with conjugate exponent q

Z̃N(F ) ≤
(∫

1IB(µ∗)F
p exp{NpΓm(µ̂

N)}d(µ∗)⊗N
) 1

p
(∫

exp{NqRm(µ̂
N)}d(µ∗)⊗N

) 1
q

(51)

Moreover, for any η > 0,

Z̃N(1I) ≥ e−η
∫

eNΓm(µ̂N )1IB(µ∗)∩{|NRm(µ̂N )|≤η}d(µ
∗)⊗N

≥ e−η
∫

1IB(µ∗)e
NΓm(µ̂N )d(µ∗)⊗N − e−η

∫
eNΓm(µ̂N )1IB(µ∗)∩{|NRm(µ̂N )|≥η}d(µ

∗)⊗N .(52)
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Hence,

∫
FdPN

Γ =
Z̃N(F )

Z̃N(1I)
≤ IpN(F )JNK

p
N (53)

with

IpN (F ) :=

⎛

⎝
∫
1IB(µ∗)F p exp{NpΓm(µ̂N)}d(µ∗)⊗N

(∫
1IB(µ∗) exp{NΓm(µ̂N)}d(µ∗)⊗N

)p

⎞

⎠

1
p

JN :=

(

e−η − e−η

∫
1IB(µ∗)∩{|NRm(µ̂N )|≥η}d(µ

∗)⊗N

∫
1IB(µ∗)eNΓm(µ̂N )d(µ∗)⊗N

)−1

Kp
N :=

(∫
exp{NqRm(µ̂

N)}d(µ∗)⊗N
) 1

q

In view of Remark 2.8, for any m ≥ 2, we can choose a sequence of open neighborhoods B
of {µ∗} so that

lim
B↓{µ∗}

lim
p↓1

lim
N→∞

IpN =
1

√
2πσ(f)

∫
F (x)e−

x2

2σ(f)dx. (54)

Let us now consider the last term in the r.h.s. of (53). We have, according to our assumption
(H2) on the derivatives of Γ, for any integer number M ≥ m,

Rm(µ̂
N) =

M∑

k=m+1

1

k!

∫
Wkd(µ)

⊗k + 0(
cM√
M !

).

In the following, we will choose M = M(N) so that :

lim
N→∞

N
cM√
M !

= 0.

Thus, applying Hölder’s inequality inductively, we find :
∫
exp{NqRm(µ̂

N)}d(µ∗)⊗N

≤ exp{qN0(
cM√
M !

)}
M∏

k=m+1

(∫
exp{Nq2k−m

k!

∫
Wkd(µ̂

N)⊗k}d(µ∗)⊗N

) 1
2k−m

(55)

But
∫

exp{Nq2k−m

k!

∫
Wkd(µ̂

N)⊗k}d(µ∗)⊗N

=
∫

exp{N
1−kq2k−m

k!

∑

p1,..,pk

Wk(xp1, .., xpk)}d(µ∗)⊗N
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≤

⎛

⎝
∫
exp{N1−kq2k−m+1

∑

p1<..<pk

Wk(xp1 , .., xpk)}d(µ∗)⊗N

⎞

⎠

1
2

×

⎛

⎝
∫

exp{N
1−kq2k−m

(k − 2)!

∑

p1,..,pk−1

Wk(xp1, xp1 , .., xpk)}d(µ∗)⊗N

⎞

⎠

1
2

(56)

According to Lemma 3.1, we know that, as long as

η(k) := q2k−m+1

⎛

⎝2
2−3k

2

(
(log 2)k−2(k!)k−1

(2e)2

) 1
k

⎞

⎠
−1

||Wk||∞

stays uniformly bounded by one,
∫

exp{N1−kq2k−m+1
∑

p1<..<pk

Wk(xp1, .., xpk)}d(µ∗)⊗N ≤ C

for any integer number N . But, we find universal constants A and B such that, when (H2)
is verified,

η(k) ≤ CB(cA)k

implying that if c < A−1, η(k) goes to zero when k goes to infinity insuring that for sufficientl
large k’s, this bound always holds. The exponent in the second term in the r.h.s. of (56) is
uniformly bounded by

q2k−m

(k − 2)!
||Wk||∞ ≤ q2k−mckk(k − 1)

and therefore goes uniformly to zero as k goes to infinity when 2c < 1.
Plugging these results into (55) shows that, for any q, for m and N large enough,

lim sup
N→∞

∫
exp{NqRm(µ̂

N)}d(µ∗)⊗N ≤ 2 exp{qϵ(m)} (57)

where ϵ(m) goes to zero when m goes to infinity. Note that the same bound holds if one
replaces Rm by −Rm, and therefore Rm by |Rm| if the above constant 2 is replaced by 4.
Hence, for any q, for m and N large enough,

Kp
N ≤ 2

1
q exp{ϵ(m)}. (58)

Further, for any a > 0, Chebyshev inequality implies that

∫
1IB(µ∗)∩{|NRm(µ̂N )|≥η}e

NΓm(µ̂N )d(µ∗)⊗N

∫
1IB(µ∗)eNΓm(µ̂N )d(µ∗)⊗N

≤ e−aη

∫
1IB(µ∗)eNΓm(µ̂N )+aN |Rm|(µ̂N )d(µ∗)⊗N

∫
1IB(µ∗)eNΓm(µ̂N )d(µ∗)⊗N

≤ e−aη

( ∫
1IB(µ∗)epNΓm(µ̂N )d(µ∗)⊗N

(
∫
1IB(µ∗)eNΓm(µ̂N )d(µ∗)⊗N)p

) 1
p (∫

1IB(µ∗)e
aqN |Rm|(µ̂N )d(µ∗)⊗N

) 1
q

22



where (p, q) are conjugate exponents as above. Hence, (57) and (54) shows that for p > 1
small enough and N large enough,

∫
1IB(µ∗)∩{|NRm(µ̂N )|≥η}e

NΓm(µ̂N )d(µ∗)⊗N

∫
1IB(µ∗)eNΓm(µ̂N )d(µ∗)⊗N

≤ 8e−aη+aϵ(m) (59)

Consequently, for m, q and N large enough

Jδ,ϵ
N ≤

(
e−η − 2e−ηe−aη+aϵ(m)

)−1
(60)

(51), ( 53), (54), (58), ( 59) and ( 60) show that, letting first N going, then p towards one,
m to infinity, η towards zero and B shrinking to {µ∗},

lim sup
N→∞

∫
F (

1√
N

N∑

i=1

f(xi))dP
N
Γ ≤ 1

√
2πσ(f)

∫
F (x)e−

x2

2σ(f)dx.

The lower bound is obtained similarly. We leave the details to the reader.

5 Appendix

In the first part of this appendix, we sketch a few of the proofs of the results borrowed
from [15] and [1]. Indeed, they are very simple and give explicit bounds on the constants
encountered in this article. The main idea introduced by De la Peña is contained, as far as
we are concerned, in the following Lemma

Lemma 5.1 For any integer number m ≥ 1, for any probability measure µ on Σ, for any
bounded µ-canonical function W on Σm,

∫
e
∑

1≤i1<..<im≤N
W (xi1 ,..,xim)

N∏

i=1

dµ(xi)

≤

⎛

⎝
∫

e
2m−1

∑
i1<..<im

W (x1
i1
,..,xm

im
)

m∏

j=1

N∏

i=1

dµ(xj
i )

⎞

⎠
21−m

.

Proof.
The idea of the proof is based on the observation that

MN (W ) :=
exp{∑1≤i1<..<im≤N W (xi1, .., xim)}∏N

k=1

∫
exp{∑1≤i1<..<im≤k−1W (xi1, .., xim−1 , y)}dµ(y)

is a µ⊗N -martingale for the filtration {σ(xj, j ≤ n), 1 ≤ n ≤ N} with mean 1. Moreover,
Cauchy-Schwartz inequality yields
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∫
e
∑

1≤i1<..<im≤N
W (xi1 ,..,xim)

N∏

i=1

dµ(xi) ≤
(∫

MN (2W )dµ⊗N
) 1

2

×

⎛

⎝
∫ N∏

k=1

∫
exp{2

∑

1≤i1<..<im≤k−1

W (xi1 , .., xim−1 , y)}dµ(y)dµ⊗N

⎞

⎠

1
2

(61)

The first term in the r.h.s. of (61) is equal to one. For the second term, we can proceed by
induction with given y’s. We then find Lemma 5.1.

The introduction of Rademacher’s variables is then classical since we have

Lemma 5.2 For any probability measure µ, any measurable function W such that
∫
Wdµ =

0, if B = (1/2)(δ−1 + δ+1),
∫

eW (x)dµ(x) ≤
∫
e
√
2ϵW (x)dµ(x)dB(ϵ).

Proof.Again the proof is straightforward since the statement is equivalent, via Taylor expan-
sion and for centered functions W , to

∫
W 2(x)

∫ 1

0
(1− t)etW (x)dtdµ(x) ≤

∫
W 2(x)

∫ 1

0
(1− t)(e

√
2tW (x) + e−

√
2tW (x))dtdµ(x)

which is clear.

Therefore, applying this result to U -statistics yields

Lemma 5.3 For any integer number m ≥ 1, for any bounded measurable function W on
§m, for any probability measure µ on Σ, if

∫
W (x)dµ(xi) = 0 for i ∈ [1, m],

∫
e
∑

1≤i1<..<im≤N
W (xi1 ,..,xim)

N∏

i=1

dµ(xi) ≤

⎛

⎝
∫
e
2
3m−2

2
∑

i1<..<im
ϵ1i1

..ϵmimW (x1
i1
,..,xm

im
)

m∏

j=1

N∏

i=1

dµ(xj
i )

⎞

⎠
21−m

.

The proof is again straightforward since it boils down to apply Lemma 5.3 to the m × N
independent variables contained in the r.h.s. of Lemma 5.1.

Let us notice that the proof of the reverse inequality (46) is more involved and given in
[15] for general U statistics. It relies on the symmetry of the underlying functions.
Finally, let us show that

Lemma 5.4 Any bounded measurable function W satisfies (H1).
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Proof.We give the proof in the case k = 2 to simplify the notations. The proof follows Arcones
and Gine [2] p. 660 where it is proven that any measurable function W2 ∈ L2(µ∗ ⊗ µ∗) can
be approximated in L2(µ∗ ⊗ µ∗) by functions Wϵ of type (2) but with bounded measurable
functions gϵ. To verify that this result can be strengthened into (H1), let us adapt its proof.
Without loss of generality, we can assume W2 non negative, the general case follows by
considering separately the positive and the negative part of W2. Further, by tightness of µ∗,
we can assume without loss of generality that Σ is compact. Finally, we take ||W2||∞ = 1 to
simplify the notations.

We shall prove that for any ϵ > 0, we can find a continuous function W ϵ
2 bounded by one

of the form
∑sϵ

i=1 c
ϵ
iψ

ϵ
i (x)ψ

ϵ
i (y) with continuous functions (ψϵ

i )1≤i≤sϵ bounded by one, a finite
integer number sϵ and with constants (ci)1≤i≤sϵ bounded by one satisfying

µ∗ ⊗ µ∗({(x, y) : |W2 −W ϵ
2 |(x, y) > (ϵ/2)}) < (ϵ/2)

and µ∗({x : |W2 −W ϵ
2 |(x, x) > (ϵ/2)}) < (ϵ/2). (62)

Clearly, (62) and the boundedness of W2 and W ϵ
2 implies (4) and (5). Moreover, if we

consider the compact space C = {1, .., sϵ} and the measure νϵ{i} = cϵi ,then

W ϵ
2(x1, x2) =

∫
ψϵ
τ (x1)ψ

ϵ
τ (x2)dν(τ)

where ψτ (.) is bounded continuous for every τ . Hence, W ϵ
2 satisfies the hypotheses of [3] and

[12].
To prove (62), we shall first adapt Lusin’s Theorem ( see Theorem 2.24 of [16] ) to show

that there exists, for any ϵ > 0, a continuous function W ϵ
0 bounded by one so that

µ∗ ⊗ µ∗({(x, y) : W2(x, y) ≠ W ϵ
0 (x, y)}) < (ϵ/2)

and µ∗({x : W2(x, x) ≠ W ϵ
0(x, x)}) < (ϵ/2). (63)

Thanks to Lusin’s Theorem we can construct two continuous functions hϵ on Σ2 and kϵ on
Σ so that

µ∗ ⊗ µ∗({(x, y) : W2(x, y) ≠ hϵ(x, y)}) < (ϵ/6) and µ∗({x : W2(x, x) ≠ kϵ(x)}) < (ϵ/6).

Let ∆ = {(x, x); x ∈ Σ} ⊂ Σ2. Since ∆ is a compact subset of Σ2, Urysohn’s Lemma ( see
Lemma 2.12 in [16] ) implies that we can find a continuous function uϵ bounded by one, so
that uϵ|∆ = 1 and

µ∗ ⊗ µ∗({(x, y) : uϵ(x, y) ≠ 1I∆(x, y)}) < (ϵ/6).

Set
W ϵ

0 (x, y) = uϵ(x, y)kϵ(x) + (1− uϵ(x, y))hϵ(x, y).

Then, W ϵ
0 is continuous, bounded by one and

µ∗ ⊗ µ∗({(x, y) : W2(x, y) ≠ W ϵ
0 (x, y)}) ≤ µ∗ ⊗ µ∗({(x, y) : W2(x, y) ≠ hϵ(x, y)})

+µ∗ ⊗ µ∗({(x, y) : x = y,W2(x, x) ≠ kϵ(x)})
+µ∗ ⊗ µ∗({(x, y) : x ≠ y, uϵ(x, y) ≠ 0})

≤ (ϵ/2) (64)
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Also,
µ∗({(x) : W2(x, x) ≠ W ϵ

0(x, x)}) = µ∗({(x) : W2(x, x) ≠ kϵ(x)}) < (ϵ/6)

which achieves the proof of (63).
Now, since we assumed Σ compact, W ϵ

0 is uniformly continuous. Also, for any δ > 0,
if (Aδ

i )1≤i≤nδ is a partition of Σ of open sets of diameter less than δ ( for a metric on the

Polish space Σ ) such that Aδ
i ∩Aδ

j = ∅ if i ≠ j, W δ
1 (x, y) =

∑nδ

i,j=1 infAδ
i×Aδ

j
W ϵ

01IAδ
i
(x)1IAδ

j
(y)

converges point-wise towards W ϵ
0 as δ ↓ 0. Choose δ = δϵ so that ||W δϵ

1 −W ϵ
0 ||∞ < (ϵ/2). W ϵ

1

is bounded by one since Aδ
i ∩Aδ

j = ∅ if i ≠ j. Finally, by Urysohn’s Lemma, we approximate

1IAδϵ
i
by continuous functions φϵ

i bounded by one, null outside of Aδϵ
i and so that

µ∗({x : φϵ
i(x) ≠ 1IAδϵ

i
(x)}) ≤ (ϵ/2i+1).

In this way, we have constructed a continuous functionW ϵ
2 bounded by one so thatW ϵ

2(x, y) =∑nδϵ

i,j=1(infAδϵ
i ×Aδϵ

j
W ϵ

0 )φ
ϵ
i(x)φ

ϵ
j(y) and satisfying

µ∗ ⊗ µ∗({(x, y) : |W ϵ
2(x, y) − W2(x, y)| > (ϵ/2)}) ≤ µ∗ ⊗ µ∗({(x, y) : W ϵ

0 (x, y) ≠ W2(x, y)})
+µ∗ ⊗ µ∗({(x, y) : |W ϵ

1(x, y)−W ϵ
0(x, y)| > (ϵ/2)})

+µ∗ ⊗ µ∗({(x, y) : W ϵ
1 (x, y) ≠ W ϵ

0(x, y)})

≤ ϵ

2
+

nδϵ∑

i=1

µ∗({x : φϵ
i(x) ≠ 1IAδϵ

i
(x)})

≤ ϵ (65)

Similarly,
µ∗ ⊗ µ∗({(x) : |W ϵ

2(x, x)−W2(x, x)| > (ϵ/2)}) ≤ ϵ.

Finally, if W2 is symmetric, clearly W ϵ
0 can be chosen symmetric and therefore W ϵ

2 . By
polarisation, one then obtain, if (ε1, ε2) are independent Bernoulli variables P (ε1 = 1) =
P (ε2 = 1) = P (ε1 = −1) = P (ε2 = −1) = 1/2,

W ϵ
2(x1, x2) =

1

2

nδϵ∑

(i,j)=1

inf
Aδ

i×Aδ
j

W ϵ
0Eε

[
ε1ε2

(
ε1φ

ϵ
i(x1) + ε2φ

ϵ
j(x1)

) (
ε1φ

ϵ
i(x2) + ε2φ

ϵ
j(x2)

)]
.

This is of the form announced at the beginning of the proof.
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