Security proof for the ABB IBE and ABE for circuits

Nacim Oijid

September - December 2019

1 Security Proof of ABB

Lemma 1 (generalized leftlover hash lemma). Let $H : \{h : X \to Y\}_{h \in H}$ a universal hash family and let a function $f : X \to Z$. For finite sets X, Y, Z. For a random variable T over X, if $\gamma(T) := \max_{t} Pr[T = t] = 2^{-H_{\infty}(T)}$.

We have $\Delta((h, h(T), f(T)), (h, U(Y), f(T))) \leq \frac{1}{2}\sqrt{\gamma(T)|Y||Z|}$ If T_1, \ldots, T_k are independent random variables over X letting $\gamma = \max_r \gamma(T_r)$,

we have $\Delta((h, h(T_1), f(T_1), \dots, h(T_k), f(T_k)), (h, U_{\gamma}^{(1)}, f(T_1), \dots, U_{\gamma}^{(k)}, f(T_k))) \leq \frac{h}{2}\sqrt{\gamma(T)|Y||Z|}$

Corollary 1. Let $m \ge 2n \log q$ and $q \ge 3$ prime. Let $R \leftarrow U(\{-1,1\}^{m \times k})$ with $k \in poly(n)$. Let $A \sim U(\mathbb{Z}_q^{n \times m})$, $B \sim U(\mathbb{Z}_q^{n \times k})$.

For any $w \in \mathbb{Z}_q^m$, $(A, AR, R^T w) \stackrel{s}{\approx} (A, B, R^T w)$

Proof. View $h_A : \{-1,1\}^m \to \mathbb{Z}_q^n$. $x \to Ax \mod q$ as a universal hash function consider $f(R) = R^T w$ as leaked informations on R and apply the generalized LHL to each column of R.

Reminder 1. ABB IBE : $c_0 = u^T s + x + \mu \lfloor q/2 \rfloor \in \mathbb{Z}_q$ $c_1 = \begin{bmatrix} A_0^T \\ A_1^T + G^T \cdot H(ID)^T \end{bmatrix} s + \begin{bmatrix} y \\ R^T \end{bmatrix} \in \mathbb{Z}_q^{m+nk}$ with

$$\mu \sim U(\mathbb{Z}_q^n)$$

$$A_0 \sim U(\mathbb{Z}_q^{n \times m})$$

$$A_1 \sim U(\mathbb{Z}_q^{n \times nk})$$

$$x \sim \chi$$

$$y \sim \chi^m$$

$$R \sim U(\{-1,1\}^{n \times nk})$$

Secret key : $SK_{id} = e_{ID} \in \mathbb{Z}^{m+nk}$ small such that $[A_0|A_1 + H(ID) \cdot G] \cdot e_{ID} = u \mod q$

Theorem 1. The ABB IBE provides set-IND-ID-CPA security under the LWE assumption.

Proof. Let A an adversary with advantage ε . We build an LWE distinguisher B with advantage $\varepsilon - 2^{-\omega(n)}$ We first consider intermediate experiments Game 0,1,2,3

- <u>Game 0:</u> real SET-IND-ID-CPA experiment
- <u>Game 1:</u> We change the generation of $A_1 \in \mathbb{Z}_q^{n \times nk}$ in MPK. Initially A chooses ID^* the challenge identity. Then, B sets $A_1 : A_0R^* - H(ID^*)G \in \mathbb{Z}_q^{n \times nk}$ where $R^* \sim U(\{-1,1\}^{n \times nk}$ is the random matrix used to compute $C^* = (C_0^*, C_1^*)$

By Corollary 1, $(A_0, A_0 R^*, R^{*T}y) \approx_s (A_0, A_1, R^{*T}y)$ since $A_0 \sim U(\mathbb{Z}_q^{n \times m})$

• Game 2: We change $Keygen(MSK, \cdot)$. For each query Keyen(MSK, ID) with $ID \neq ID^*$ we have

$$A_{id} = [A_0|A_1 + H(ID)G] = [A_0|A_0R^* + (H(ID) - H(ID) \cdot G)$$

. Here, $(H(ID) - H(ID^*))$ has full rank over \mathbb{Z}_q

So $\Lambda_a^{\perp}((H(ID) - H(ID^*))G) = \Lambda_a^{\perp}(G)$

So we can use $T_G \in \mathbb{Z}^{nk \times nk}$ and $R^* \in \{-1, 1\}^{m \times nk}$ to sample $e_{ID} \in \mathbb{Z}^{m \times nk}$ from $D_{\Lambda^n_a(A_{id}),\sigma}$

The obtained e_{ID} has the distribution statistically close to that of Game 1 \implies T_{A_0} is no longer used.

• <u>Game 3:</u> Same as ame 2 but we replace (C_0^*, C_1^*) by a random pair in $\mathbb{Z}_q \times \mathbb{Z}_q^{m+nk}$. Then, A has advantage 0, since $Pr(\mu' = \mu) = \frac{1}{2}$

Lemma 2. Game 2 is indistinguishable from Game3 under LWE assumption

Let A^{2-3} a distinguisher with advantage ε between Game 2 and Game 3. We build a LWE distiguisher with advantage ε

Let an LWE instance $(A, V \stackrel{?}{=} A^T s + e) \in \mathbb{Z}_q^{n \times (m+1)} \times \mathbb{Z}_q^{m+1}$ with $A^T = \begin{bmatrix} A_0^T \\ u^T \end{bmatrix} \in \mathbb{Z}_q^{(m+1) \times n}$ and $V = \begin{bmatrix} v_1 \\ v_0 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} A_0^T s + y \\ u^T s + x \end{bmatrix}$ Reduction B chooses $R^* \leftarrow U(\{-1, 1\}^{m \times nk})$ and $MPK = (A_0, A_1 = A_0R^* - H(ID^*G, u)$ B handles all $keygen(MSK, \cdot)$ queries using T_G and R^* (T_{A_0} is not available) B constructs $C^* = (C_0^*, C_1^*)$ as $C_0^* = V_0 + \mu \lfloor q/2 \rfloor$ with $\mu \leftarrow U(\{0, 1\}), C_1^* = \begin{vmatrix} v_1 \\ R^{*T}V_1 \end{vmatrix} \in \mathbb{Z}_q^{m+nk}$. A outputs $\mu' \in \{0,1\}$, If $\mu' = \mu$, B returns 1 (meaning $V = A^T s + e$). If $\mu' \neq \mu$, B returns 0 (meaning $V \sim U(\mathbb{Z}_q^{m+1})$ $\text{If} \begin{cases} v_0 = \mu^T s + x \\ \text{and} \quad v_1 = A_0^T s + y \end{cases} \text{ then} \begin{cases} C_0^* = u^T s + \mu \lfloor q/2 \rfloor + x \\ \text{and} \quad C_1^* = \begin{bmatrix} A_0^t s + y \\ R^{*T} A_0^T s + R^{*T} y \end{bmatrix} = \begin{bmatrix} A_0^t s \\ A_1 + G^T \cdot H(ID^*)^T \end{bmatrix} s + \begin{bmatrix} y \\ R^{*T} y \end{bmatrix}$ $\text{Which is a real encryption of } \mu \text{ as in Game 2.}$

If $\binom{v_1}{v_0} \sim U(\mathbb{Z}_q^{m+1})$, then (C_0^*, C_1^*) is statistically uniform, since $\binom{A_0}{V_1^T}$, $\binom{A_0}{V_1^*}R$ is statistically uniform by the LHL.

 $\exists C_1^* = \begin{bmatrix} v_1 \\ R^{*T} v_1 \end{bmatrix} \stackrel{s}{\sim} U(\mathbb{Z}_q^{m+nk}) \text{ even given } A_0 R^*$ \implies A's view is statistically identical to Game 3

1.1 Adaptively secure IBE from LWE

View each identity ID as an *l*-bit string $ID(id_1, \ldots, id_m) \in \{-1, 1\}^l$

Encode each
$$ID \in \{-1,1\}^l$$
 using $O(l)$ matrices $(A_0, \{A_i\}_{i=1}^l)$ so that $A_{id} = [A_0|G + \sum_{i=1}^l id_i \cdot A_i] \in \mathbb{Z}_q^{n \times (m+nk)}$
with $A_0 \sim U(\mathbb{Z}_q^{n \times m}), A_1, \dots, A_l \sim U(\mathbb{Z}_q^{n \times mk})$.
In the proof, set $A_i = A_0 \cdot R_i + h_i \cdot G$ where $R_i \sim U(\{-1,1\}^{m \times nk}), h_i \sim U(\mathbb{Z}_q)$
 $\implies A_{id} = [A_0|A_0'(\sum_{i=1}^l id_ih_i) + (1 + \sum_{i=1}^l id_ih_i) \cdot G]$
Define $H(ID) = 1 + \sum_{i=1}^l id_i \cdot h_i \mod q$
 \implies We need $H(ID^*) = 0, H(ID_1), \dots, H(ID_q) \neq 0$ for all $Keygen(MSK, ID_i)$ queries.

Lemma 3. Let q a prime such that 0 < Q < q. For any tuple $(x_0, x_1, ..., x_Q)$ in $(\{-1, 1\}^l)^{Q+1}$ of distinct inputs, we have $H(x_0) = 0$, $H(x_1) \neq 0, \dots, H(x_Q) \neq 0$

with probability at least $\frac{1}{q}(1-\frac{Q}{q})$ and at most $\frac{1}{q}$

Proof. Let (x_0, \ldots, x_q) be pairwise distinct over $\{-1, 1\}^l$. For each $i \in \{0, 1, \ldots, Q\}$, let S_i be the set of $(h_1, \ldots, h_l) \in \mathbb{C}$ \mathbb{Z}_q^l such that $H(x_i) = 1 + \sum_{i=1}^l h_i \cdot x_{i,j} = 0$ we have $|S_i| = q^{l-1}$ Also $|S_0 \cap S_i| \le q^{l-2}$ for each $i \ne 0$ then $|S| = q^{l-1}$ $|S_0| \bigcup_{i=1}^{Q} S_i| \ge |S_0| - \sum_{i=1}^{Q} |S_0 \cap S_i| \ge q^{l-1} - Qq^{l-2}$ Probability is $\frac{|S|}{a^l} \ge \frac{1}{a}(1-\frac{Q}{a})$ (and smaller than 1/q)

Remark 1. Proof uses the encoding of $ID \in \{-1,1\}^l$. The reduction can answer all queries for $ID_1, ..., ID_O$ such that $H(ID_i) \neq 0$ since $A_{id} = [A_0|A_0 \cdot R_{id} + H(ID_i) \cdot G]$ where R_{id} is small and $H(ID_i) \neq 0$

2 Attribute-Based Encryption for circuits

Until 2012, all ABE were limited to Boolean formulas (equivalently to log-dpeths circuits) using bilinear maps. In 2013, Gorbmov-Vaihuntanathan-wee gave an ABE for circuits from LWE

In 2014, Boneh et al gave a circuit ABE with short keys (size only depends on circuit depth)

2.1Idea

Use a connection between ABB and the Gentry-Sahar-Waters FHE

GSW : Let $A \in \mathbb{Z}_q^{n \times m}$ such that secret key is $k \in \mathbb{Z}_q^n$ st $t^T A \mod q$ small

 $C_1 = AR_1 + \mu_2 \cdot \hat{G} \in \mathbb{Z}_q^{n \times nk}$

 $C_2 = AR_2 + \mu_2 \cdot G \in \mathbb{Z}_q^{\stackrel{\circ}{n} \times nk}$

with $R_1, R_2 \in \{-1, 1\}^{\tilde{m} \times k}$ and $\mu_1, \mu_2 \in \{0, 1\}$ Let $G^{-1} : \mathbb{Z}^{n \times \tilde{m}} \to \{0, 1\}^{nk \times \tilde{m}}$ with $k = \lceil \log q \rceil$ a deterministic function such that $G \cdot G^{-1}(M) = M \mod q$ for any $M \in \mathbb{Z}_q^{n \times \bar{m}}$

Recall : $G = I_n \otimes [1, 2, \dots, 2^{k-1}]$ Then $C_1 \cdot G^{-1}(C_2) = A(R_1 \cdot G^{-1}(C_2)) + \mu_1 \cdot G \cdot G^{-1}(C_2) = A(R_1 \cdot G^{-1}(C_2) + R_2) + \mu_1 \mu_2 \cdot G$ Decrypts to $\mu_1\mu_2$ using secret key $t \in \mathbb{Z}_q^n$

Fully homomorphic encodings $\mathbf{2.2}$

Let $m = O(n \log q)$ with q prime. Let $G = [I_n \otimes [1, 2, \dots, 2^{k-1}] | 0^{m-nk}] \in \mathbb{Z}^{n \times m}$ with $k = \lceil \log q \rceil$.

Definition 1. For any $A \sim U(\mathbb{Z}_q^{n \times m})$, an LWE encoding of $a \in \{0,1\}$ with refer to a public $A \in \mathbb{Z}_q^{n \times m}$ and secret randomness $s \sim U(\mathbb{Z}_q^n)$ is a vector $\Psi_{A,s}(a) = (A + aG)^T s + e \in \mathbb{Z}_q^m$ with $e \sim \chi^m$.

Let N use $|\Psi_{A,s}(a)| = ||\Psi_{A,s}(a) - (A + aG)^T||_{\infty}$

Theorem 2. Let Matrices $A, A_1, \ldots, A_l \sim U(\mathbb{Z}_a^{m \times n})$ Let $a = a_1, \ldots, a_l \in \{0, 1\}^l$ and LWE encodings $\Psi_{A_i, s}(a_i) =$ $(A_i + a_i G)^T s + e_i \in \mathbb{Z}_q^m.$

With $e_i \sim \chi^m$ where $A_i = AR_i - a_i \cdot G$ for somme $R_i \in \mathbb{Z}^{m \times m}$ with $||R_i||_{\infty} \leq r$. There exist efficient deterministic algorithms (Eval PK, Eval CT, Eval Priv) which, for any Boolean circuit $C: \{0,1\}^l \to \{0,1\}$ of depth d do the following

- $EvalPK(C, \{A_i\}_{i=1}^l)$ outupts $A_C \in \mathbb{Z}_q^{n \times m}$ which encodes C
- $EvalCT(C, \{\Psi_{A_i,s}(a_i)\}_{i=1}^l, a = a_1 \dots a_l \in \{0,1\}^l)$ outputs $\Psi_{A_C,s} \in \mathbb{Z}_q^m$
- $EvalPriv(C, \{A_i = A \cdot R_i a_i \cdot G\}_{i=1}^l, \{R_i\}_{i=1}^l, \{a_i\}_{i=1}^l)$ outputs $R_C \in \mathbb{Z}^{m \times m}$ of norm $||R_C||_{\infty} < O(r^d)$ such that $A_C = AR_C - C(a) \cdot G$