Security proof for the ABB IBE and ABE for circuits

Nacim Oijid

September - December 2019

1 Security Proof of ABB

Lemma 1 (generalized leftlover hash lemma). Let $H:\{h: X \rightarrow Y\}_{h \in H}$ a universal hash family and let a function $f: X \rightarrow Z$. For finite sets X, Y, Z. For a random variable T over X, if $\gamma(T):=\max _{t} \operatorname{Pr}[T=t]=2^{-H_{\infty}(T)}$.

We have $\Delta((h, h(T), f(T)),(h, U(Y), f(T))) \leq \frac{1}{2} \sqrt{\gamma(T)|Y||Z|}$
If T_{1}, \ldots, T_{k} are independent random variables over X letting $\gamma=\max _{r} \gamma\left(T_{r}\right)$,
we have $\Delta\left(\left(h, h\left(T_{1}\right), f\left(T_{1}\right), \ldots, h\left(T_{k}\right), f\left(T_{k}\right)\right),\left(h, U_{\gamma}^{(1)}, f\left(T_{1}\right), \ldots, U_{\gamma}^{(k)}, f\left(T_{k}\right)\right)\right) \leq \frac{h}{2} \sqrt{\gamma(T)|Y||Z|}$
Corollary 1. Let $m \geq 2 n \log q$ and $q \geq 3$ prime. Let $R \leftarrow U\left(\{-1,1\}^{m \times k}\right)$ with $k \in \operatorname{poly}(n)$. Let $A \sim U\left(\mathbb{Z}_{q}^{n \times m}\right)$, $B \sim U\left(\mathbb{Z}_{q}^{n \times k}\right)$.

For any $w \in \mathbb{Z}_{q}^{m},\left(A, A R, R^{T} w\right) \stackrel{s}{\approx}\left(A, B, R^{T} w\right)$
Proof. View $h_{A}:\{-1,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n} . x \rightarrow A x \bmod q$ as a universal hash function consider $f(R)=R^{T} w$ as leaked informations on R and apply the generalized LHL to each column of R.

Reminder 1. $A B B I B E: c_{0}=u^{T} s+x+\mu\lfloor q / 2\rfloor \in \mathbb{Z}_{q} c_{1}=\left[\begin{array}{c}A_{0}^{T} \\ A_{1}^{T}+G^{T} \cdot H(I D)^{T}\end{array}\right] s+\left[\begin{array}{c}y \\ R^{T}\end{array}\right] \in \mathbb{Z}_{q}^{m+n k}$
with

$$
\begin{aligned}
\mu & \sim U\left(\mathbb{Z}_{q}^{n}\right) \\
A_{0} & \sim U\left(\mathbb{Z}_{q}^{n \times m}\right) \\
A_{1} & \sim U\left(\mathbb{Z}_{q}^{n \times n k}\right) \\
x & \sim \chi \\
y & \sim \chi^{m} \\
R & \sim U\left(\{-1,1\}^{n \times n k}\right)
\end{aligned}
$$

Secret key : $S K_{i d}=e_{I D} \in \mathbb{Z}^{m+n k}$ small such that $\left[A_{0} \mid A_{1}+H(I D) \cdot G\right] \cdot e_{I D}=u \bmod q$
Theorem 1. The $A B B I B E$ provides set-IND-ID-CPA security under the LWE assumption.
Proof. Let A an adversary with advantage ε. We build an LWE distinguisher B with advantage $\varepsilon-2^{-\omega(n)}$
We first consider intermediate experiments Game $0,1,2,3$

- Game 0: real SET-IND-ID-CPA experiment
- Game 1: We change the generation of $A_{1} \in \mathbb{Z}_{q}^{n \times n k}$ in MPK. Initially A chooses $I D^{*}$ the challenge identity. Then, B sets $A_{1}: A_{0} R^{*}-H\left(I D^{*}\right) G \in \mathbb{Z}_{q}^{n \times n k}$ where $R^{*} \sim U\left(\{-1,1\}^{n \times n k}\right.$ is the random matrix used to compute $C^{*}=\left(C_{0}^{*}, C_{1}^{*}\right)$
By Corollary $1,\left(A_{0}, A_{0} R^{*}, R^{* T} y\right) \approx_{s}\left(A_{0}, A_{1}, R^{* T} y\right)$ since $A_{0} \sim U\left(\mathbb{Z}_{q}^{n \times m}\right)$
- Game 2: We change $\operatorname{Keygen}(M S K, \cdot)$. For each query $\operatorname{Keyen}(M S K, I D)$ with $I D \neq I D^{*}$ we have

$$
A_{i d}=\left[A_{0} \mid A_{1}+H(I D) G\right]=\left[A_{0} \mid A_{0} R^{*}+(H(I D)-H(I D) \cdot G)\right.
$$

. Here, $\left(H(I D)-H\left(I D^{*}\right)\right)$ has full rank over \mathbb{Z}_{q}
So $\Lambda_{q}^{\perp}\left(\left(H(I D)-H\left(I D^{*}\right)\right) G\right)=\Lambda_{q}^{\perp}(G)$
So we can use $T_{G} \in \mathbb{Z}^{n k \times n k}$ and $R^{*} \in\{-1,1\}^{m \times n k}$ to sample $e_{I D} \in \mathbb{Z}^{m \times n k}$ from $D_{\Lambda_{q}^{n}\left(A_{i d}\right), \sigma}$
The obtained $e_{I D}$ has the distribution statistically close to that of Game $1 \Longrightarrow T_{A_{0}}$ is no longer used.

- Game 3: Same as ame 2 but we replace $\left(C_{0}^{*}, C_{1}^{*}\right)$ by a random pair in $\mathbb{Z}_{q} \times \mathbb{Z}_{q}^{m+n k}$. Then, A has advantage 0 , since $\operatorname{Pr}\left(\mu^{\prime}=\mu\right)=\frac{1}{2}$

Lemma 2. Game 2 is indistinguishable from Game3 under LWE assumption
Let A^{2-3} a distinguisher with advantage ε betweend Game 2 and Game 3. We build a LWE dinstiguisher with advantage ε

Let an LWE instance $\left(A, V \stackrel{?}{=} A^{T} s+e\right) \in \mathbb{Z}_{q}^{n \times(m+1)} \times \mathbb{Z}_{q}^{m+1}$
with $A^{T}=\left[\begin{array}{l}A_{0}^{T} \\ u^{T}\end{array}\right] \in \mathbb{Z}_{q}^{(m+1) \times n}$ and $V=\left[\begin{array}{l}v_{1} \\ v_{0}\end{array}\right] \stackrel{?}{=}\left[\begin{array}{l}A_{0}^{T} s+y \\ u^{T} s+x\end{array}\right]$
Reduction B chooses $R^{*} \leftarrow U\left(\{-1,1\}^{m \times n k}\right)$ and $M P K=\left(A_{0}, A_{1}=A_{0} R^{*}-H\left(I D^{*} G, u\right)\right.$
B handles all keygen $(M S K, \cdot)$ queries using T_{G} and $R^{*}\left(T_{A_{0}}\right.$ is not available)
B constructs $C^{*}=\left(C_{0}^{*}, C_{1}^{*}\right)$ as $C_{0}^{*}=V_{0}+\mu\lfloor q / 2\rfloor$ with $\mu \leftarrow U(\{0,1\}), C_{1}^{*}=\left[\begin{array}{c}v_{1} \\ R^{* T} V_{1}\end{array}\right] \in \mathbb{Z}_{q}^{m+n k}$.
A outputs $\mu^{\prime} \in\{0,1\}$, If $\mu^{\prime}=\mu$, B returns 1 (meaning $V=A^{T} s+e$). If $\mu^{\prime} \neq \mu$, B returns 0 (meaning $V \sim U\left(\mathbb{Z}_{q}^{m+1}\right)$

If $\left\{\begin{array}{cl} & v_{0}=\mu^{T} s+x \\ v_{1}=A_{0}^{T} s+y\end{array}\right.$ and \quad then $\left\{\begin{array}{cl} & C_{0}^{*}=u^{T} s+\mu\lfloor q / 2\rfloor+x \\ \text { and } & C_{1}^{*}=\left[\begin{array}{c}A_{0}^{t} s+y \\ R^{* T} A_{0}^{T} s+R^{* T} y\end{array}\right]=\left[\begin{array}{c}A_{0}^{t} s \\ A_{1}+G^{T} \cdot H\left(I D^{*}\right)^{T}\end{array}\right] s+\left[\begin{array}{c}y \\ R^{* T} y\end{array}\right]\end{array}\right.$
Which is a real encryption of μ as in Game 2.
If $\binom{v_{1}}{v_{0}} \sim U\left(\mathbb{Z}_{q}^{m+1}\right)$, then $\left(C_{0}^{*}, C_{1}^{*}\right)$ is statistically uniform, since $\left(\left[\begin{array}{c}A_{0} \\ V_{1}^{T}\end{array}\right],\left[\begin{array}{c}A_{0}^{*} \\ V_{1}^{*}\end{array}\right] R\right)$ is statistically unifomr by the LHL.
$\exists C_{1}^{*}=\left[\begin{array}{c}v_{1} \\ R^{* T} v_{1}\end{array}\right] \stackrel{s}{\sim} U\left(\mathbb{Z}_{q}^{m+n k}\right)$ even given $A_{0} R^{*}$
\Longrightarrow A's view is statistically identical to Game 3

1.1 Adaptively secure IBE from LWE

View each identity ID as an l-bit string $I D\left(i d_{1}, \ldots, i d_{m}\right) \in\{-1,1\}^{l}$
Encode each $I D \in\{-1,1\}^{l}$ using $O(l)$ matrices $\left(A_{0},\left\{A_{i}\right\}_{i=1}^{l}\right)$ so that $A_{i d}=\left[A_{0} \mid G+\sum_{i=1}^{l} i d_{i} \cdot A_{i}\right] \in \mathbb{Z}_{q}^{n \times(m+n k)}$
with $A_{0} \sim U\left(\mathbb{Z}_{q}^{n \times m}\right), A_{1}, \ldots, A_{l} \sim U\left(\mathbb{Z}_{q}^{n \times m k}\right)$.
In the proof, set $A_{i}=A_{0} \cdot R_{i}+h_{i} \cdot G$ where $R_{i} \sim U\left(\{-1,1\}^{m \times n k}\right), h_{i} \sim U\left(\mathbb{Z}_{q}\right)$
$\Longrightarrow A_{i d}=\left[A_{0} \mid A_{0}^{\prime}\left(\sum_{i=1}^{l} i d_{i} h_{i}\right)+\left(1+\sum_{i=1}^{l} i d_{i} h_{i}\right) \cdot G\right]$
Define $H(I D)=1+\sum_{i=1}^{l} i d_{i} \cdot h_{i} \bmod q$
\Longrightarrow We need $H\left(I D^{*}\right)=0, H\left(I D_{1}\right), \ldots, H\left(I D_{q}\right) \neq 0$ for all $\operatorname{Keygen}\left(M S K, I D_{i}\right)$ queries.
Lemma 3. Let q a prime such that $0<Q<q$. For any tuple $\left(x_{0}, x_{1}, \ldots, x_{Q}\right)$ in $\left(\{-1,1\}^{l}\right)^{Q+1}$ of distinct inputs, we have $H\left(x_{0}\right)=0, H\left(x_{1}\right) \neq 0, \ldots, H\left(x_{Q}\right) \neq 0$
with probability at least $\frac{1}{q}\left(1-\frac{Q}{q}\right)$ and at most $\frac{1}{q}$

Proof. Let $\left(x_{0}, \ldots, x_{q}\right)$ be pairwise distinct over $\{-1,1\}^{l}$. For each $i \in\{0,1, \ldots, Q\}$, let S_{i} be the set of $\left(h_{1}, \ldots, h_{l}\right) \in$ \mathbb{Z}_{q}^{l} such that $H\left(x_{i}\right)=1+\sum_{i=1}^{l} h_{i} \cdot x_{i, j}=0$ we have $\left|S_{i}\right|=q^{l-1}$ Also $\left|S_{0} \cap S_{i}\right| \leq q^{l-2}$ for each $i \neq 0$ then $|S|=$

Probability is $\frac{|S|}{q^{l}} \geq \frac{1}{q}\left(1-\frac{Q}{q}\right)$ (and smaller than $1 / \mathrm{q}$)
Remark 1. Proof uses the encoding of $I D \in\{-1,1\}^{l}$. The reduction can answer all queries for $I D_{1}, \ldots, I D_{Q}$ such that $H\left(I D_{i}\right) \neq 0$ since $A_{i d}=\left[A_{0} \mid A_{0} \cdot R_{i d}+H\left(I D_{i}\right) \cdot G\right]$ where $R_{i d}$ is small and $H\left(I D_{i}\right) \neq 0$

2 Attribute-Based Encryption for circuits

Until 2012, all ABE were limited to Boolean formulas (equivalently to log-dpeths circuits) using bilinear maps.
In 2013, Gorbmov-Vaihuntanathan-wee gave an ABE for circuits from LWE
In 2014, Boneh et al gave a circuit ABE with short keys (size only depends on circuit depth)

2.1 Idea

Use a connection between ABB and the Gentry-Sahar-Waters FHE
GSW : Let $A \in \mathbb{Z}_{q}^{n \times m}$ such that secret key is $k \in \mathbb{Z}_{q}^{n}$ st $t^{T} A \bmod q$ small
$C_{1}=A R_{1}+\mu_{2} \cdot G \in \mathbb{Z}_{q}^{n \times n k}$
$C_{2}=A R_{2}+\mu_{2} \cdot G \in \mathbb{Z}_{q}^{n \times n k}$
with $R_{1}, R_{2} \in\{-1,1\}^{m \times k}$ and $\mu_{1}, \mu_{2} \in\{0,1\}$
Let $G^{-1}: \mathbb{Z}^{n \times \bar{m}} \rightarrow\{0,1\}^{n k \times \bar{m}}$ with $k=\lceil\log q\rceil$ a deterministic function such that $G \cdot G^{-1}(M)=M \bmod q$ for any $M \in \mathbb{Z}_{q}^{n \times \bar{m}}$

Recall : $G=I_{n} \otimes\left[1,2, \ldots, 2^{k-1}\right]$
Then $C_{1} \cdot G^{-1}\left(C_{2}\right)=A\left(R_{1} \cdot G^{-1}(C 2)\right)+\mu_{1} \cdot G \cdot G^{-1}\left(C_{2}\right)=A\left(R_{1} \cdot G^{-1}\left(C_{2}\right)+R_{2}\right)+\mu_{1} \mu_{2} \cdot G$
Decrypts to $\mu_{1} \mu_{2}$ using secret key $t \in \mathbb{Z}_{q}^{n}$

2.2 Fully homomorphic encodings

Let $m=O(n \log q)$ with q prime. Let $G=\left[I_{n} \otimes\left[1,2, \ldots, 2^{k-1}\right] \mid 0^{m-n k}\right] \in \mathbb{Z}^{n \times m}$ with $k=\lceil\log q\rceil$.
Definition 1. For any $A \sim U\left(\mathbb{Z}_{q}^{n \times m}\right)$, an LWE encoding of $a \in\{0,1\}$ with refer to a public $A \in \mathbb{Z}_{q}^{n \times m}$ and secret randomness $s \sim U\left(\mathbb{Z}_{q}^{n}\right)$ is a vector $\Psi_{A, s}(a)=(A+a G)^{T} s+e \in \mathbb{Z}_{q}^{m}$ with $e \sim \chi^{m}$.

Let N use $\left|\Psi_{A, s}(a)\right|=\left\|\Psi_{A, s}(a)-(A+a G)^{T}\right\|_{\infty}$
Theorem 2. Let Matrices $A, A_{1}, \ldots, A_{l} \sim U\left(\mathbb{Z}_{q}^{m \times n}\right)$ Let $a=a_{1}, \ldots, a_{l} \in\{0,1\}^{l}$ and LWE encodings $\Psi_{A_{i}, s}\left(a_{i}\right)=$ $\left(A_{i}+a_{i} G\right)^{T} s+e_{i} \in \mathbb{Z}_{q}^{m}$.

With $e_{i} \sim \chi^{m}$ where $A_{i}=A R_{i}-a_{i} \cdot G$ for somme $R_{i} \in \mathbb{Z}^{m \times m}$ with $\left\|R_{i}\right\|_{\infty} \leq r$. There exist efficient deterministic algorithms (Eval PK, Eval CT, Eval Priv) which, for any Boolean circuit $C:\{0,1\}^{l} \rightarrow\{0,1\}$ of depth d do the following

- EvalPK $\left(C,\left\{A_{i}\right\}_{i=1}^{l}\right)$ outupts $A_{C} \in \mathbb{Z}_{q}^{n \times m}$ which encodes C
- $\operatorname{EvalCT}\left(C,\left\{\Psi_{A_{i}, s}\left(a_{i}\right)\right\}_{i=1}^{l}, a=a_{1} \ldots a_{l} \in\{0,1\}^{l}\right)$ outputs $\Psi_{A_{C}, s} \in \mathbb{Z}_{q}^{m}$
- EvalPriv $\left(C,\left\{A_{i}=A \cdot R_{i}-a_{i} \cdot G\right\}_{i=1}^{l},\left\{R_{i}\right\}_{i=1}^{l},\left\{a_{i}\right\}_{i=1}^{l}\right)$ outputs $R_{C} \in \mathbb{Z}^{m \times m}$ of norm $\left\|R_{C}\right\|_{\infty}<O\left(r^{d}\right)$ such that $A_{C}=A R_{C}-C(a) \cdot G$

