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1 Security Proof of ABB

Lemma 1 (generalized leftlover hash lemma). Let H : {h : X → Y }h∈H a universal hash family and let a function
f : X → Z. For finite sets X,Y, Z. For a random variable T over X, if γ(T ) := max

t
Pr[T = t] = 2−H∞(T ).

We have ∆((h, h(T ), f(T )), (h, U(Y ), f(T ))) ≤ 1
2

√
γ(T )|Y ||Z|

If T1, . . . , Tk are independent random variables over X letting γ = max
r
γ(Tr),

we have ∆((h, h(T1), f(T1), . . . , h(Tk), f(Tk)), (h, U
(1)
γ , f(T1), . . . , U

(k)
γ , f(Tk))) ≤ h

2

√
γ(T )|Y ||Z|

Corollary 1. Let m ≥ 2n log q and q ≥ 3 prime. Let R ← U({−1, 1}m×k) with k ∈ poly(n). Let A ∼ U(Zn×mq ),

B ∼ U(Zn×kq ).

For any w ∈ Zmq , (A,AR,RTw)
s
≈ (A,B,RTw)

Proof. View hA : {−1, 1}m → Znq . x → Ax mod q as a universal hash function consider f(R) = RTw as leaked
informations on R and apply the generalized LHL to each column of R.

Reminder 1. ABB IBE : c0 = uT s+ x+ µbq/2c ∈ Zq c1 =

[
AT0

AT1 +GT ·H(ID)T

]
s+

[
y
RT

]
∈ Zm+nk

q

with

µ ∼ U(Znq )

A0 ∼ U(Zn×mq )

A1 ∼ U(Zn×nkq )

x ∼ χ
y ∼ χm

R ∼ U({−1, 1}n×nk)

Secret key : SKid = eID ∈ Zm+nk small such that [A0|A1 +H(ID) ·G] · eID = u mod q

Theorem 1. The ABB IBE provides set-IND-ID-CPA security under the LWE assumption.

Proof. Let A an adversary with advantage ε. We build an LWE distinguisher B with advantage ε− 2−ω(n)

We first consider intermediate experiments Game 0,1,2,3

• Game 0: real SET-IND-ID-CPA experiment

• Game 1: We change the generation of A1 ∈ Zn×nkq in MPK. Initially A chooses ID∗ the challenge identity.

Then, B sets A1 : A0R
∗ − H(ID∗)G ∈ Zn×nkq where R∗ ∼ U({−1, 1}n×nk is the random matrix used to

compute C∗ = (C∗0 , C
∗
1 )

By Corollary 1, (A0, A0R
∗, R∗T y) ≈s (A0, A1, R

∗T y) since A0 ∼ U(Zn×mq )
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• Game 2: We change Keygen(MSK, ·). For each query Keyen(MSK, ID) with ID 6= ID∗ we have

Aid = [A0|A1 +H(ID)G] = [A0|A0R
∗ + (H(ID)−H(ID) ·G)

. Here, (H(ID)−H(ID∗)) has full rank over Zq

So Λ⊥q ((H(ID)−H(ID∗))G) = Λ⊥q (G)

So we can use TG ∈ Znk×nk and R∗ ∈ {−1, 1}m×nk to sample eID ∈ Zm×nk from DΛn
q (Aid),σ

The obtained eID has the distribution statistically close to that of Game 1 =⇒ TA0
is no longer used.

• Game 3: Same as ame 2 but we replace (C∗0 , C
∗
1 ) by a random pair in Zq ×Zm+nk

q . Then, A has advantage 0,

since Pr(µ′ = µ) = 1
2

Lemma 2. Game 2 is indistinguishable from Game3 under LWE assumption

Let A2−3 a distinguisher with advantage ε betweend Game 2 and Game 3. We build a LWE dinstiguisher with
advantage ε

Let an LWE instance (A, V
?
= AT s+ e) ∈ Zn×(m+1)

q × Zm+1
q

with AT =

[
AT0
uT

]
∈ Z(m+1)×n

q and V =

[
v1

v0

]
?
=

[
AT0 s+ y
uT s+ x

]
Reduction B chooses R∗ ← U({−1, 1}m×nk) and MPK = (A0, A1 = A0R

∗ −H(ID∗G, u)
B handles all keygen(MSK, ·) queries using TG and R∗ (TA0

is not available)

B constructs C∗ = (C∗0 , C
∗
1 ) as C∗0 = V0 + µbq/2c with µ← U({0, 1}), C∗1 =

[
v1

R∗TV1

]
∈ Zm+nk

q .

A outputs µ′ ∈ {0, 1}, If µ′ = µ, B returns 1 (meaning V = AT s + e). If µ′ 6= µ, B returns 0 (meaning
V ∼ U(Zm+1

q )

If

{
v0 = µT s+ x

and v1 = AT0 s+ y
then

 C∗0 = uT s+ µbq/2c+ x

and C∗1 =

[
At0s+ y

R∗TAT0 s+R∗T y

]
=

[
At0s

A1 +GT ·H(ID∗)T

]
s+

[
y

R∗T y

]
Which is a real encryption of µ as in Game 2.

If

(
v1

v0

)
∼ U(Zm+1

q ), then (C∗0 , C
∗
1 ) is statistically uniform, since (

[
A0

V T1

]
,

[
A∗0
V ∗1

]
R) is statistically unifomr by the

LHL.

∃C∗1 =

[
v1

R∗T v1

]
s∼ U(Zm+nk

q ) even given A0R
∗

=⇒ A’s view is statistically identical to Game 3

1.1 Adaptively secure IBE from LWE

View each identity ID as an l-bit string ID(id1, . . . , idm) ∈ {−1, 1}l

Encode each ID ∈ {−1, 1}l using O(l) matrices (A0, {Ai}li=1) so that Aid = [A0|G+
l

Σ
i=1
idi ·Ai] ∈ Zn×(m+nk)

q

with A0 ∼ U(Zn×mq ), A1, . . . , Al ∼ U(Zn×mkq ).

In the proof, set Ai = A0 ·Ri + hi ·G where Ri ∼ U({−1, 1}m×nk), hi ∼ U(Zq)

=⇒ Aid = [A0|A′0(
l

Σ
i=1
idihi) + (1 +

l

Σ
i=1
idihi) ·G]

Define H(ID) = 1 +
l

Σ
i=1
idi · hi mod q

=⇒ We need H(ID∗) = 0, H(ID1), . . . ,H(IDq) 6= 0 for all Keygen(MSK, IDi) queries.

Lemma 3. Let q a prime such that 0 < Q < q. For any tuple (x0, x1, ..., xQ) in ({−1, 1}l)Q+1 of distinct inputs,
we have H(x0) = 0, H(x1) 6= 0, . . . ,H(xQ) 6= 0

with probability at least 1
q (1− Q

q ) and at most 1
q
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Proof. Let (x0, . . . , xq) be pairwise distinct over {−1, 1}l. For each i ∈ {0, 1, . . . , Q}, let Si be the set of (h1, . . . , hl) ∈

Zlq such that H(xi) = 1 +
l

Σ
i=1
hi · xi,j = 0 we have |Si| = ql−1 Also |S0 ∩ Si| ≤ ql−2 for each i 6= 0 then |S| =

|S0|
Q
∪
i=1

Si| ≥ |S0| −
Q

Σ
i=1
|S0 ∩ Si| ≥ ql−1 −Qql−2

Probability is |S|
ql
≥ 1

q (1− Q
q ) (and smaller than 1/q)

Remark 1. Proof uses the encoding of ID ∈ {−1, 1}l. The reduction can answer all queries for ID1, ..., IDQ such
that H(IDi) 6= 0 since Aid = [A0|A0 ·Rid +H(IDi) ·G] where Rid is small and H(IDi) 6= 0

2 Attribute-Based Encryption for circuits

Until 2012, all ABE were limited to Boolean formulas (equivalently to log-dpeths circuits) using bilinear maps.
In 2013, Gorbmov-Vaihuntanathan-wee gave an ABE for circuits from LWE
In 2014, Boneh et al gave a circuit ABE with short keys (size only depends on circuit depth)

2.1 Idea

Use a connection between ABB and the Gentry-Sahar-Waters FHE
GSW : Let A ∈ Zn×mq such that secret key is k ∈ Znq st tTA mod q small

C1 = AR1 + µ2 ·G ∈ Zn×nkq

C2 = AR2 + µ2 ·G ∈ Zn×nkq

with R1, R2 ∈ {−1, 1}m×k and µ1, µ2 ∈ {0, 1}
Let G−1 : Zn×m̄ → {0, 1}nk×m̄ with k = dlog qe a deterministic function such that G ·G−1(M) = M mod q for

any M ∈ Zn×m̄q

Recall : G = In ⊗ [1, 2, . . . , 2k−1]
Then C1 ·G−1(C2) = A

(
R1 ·G−1(C2)

)
+ µ1 ·G ·G−1(C2) = A

(
R1 ·G−1(C2) +R2

)
+ µ1µ2 ·G

Decrypts to µ1µ2 using secret key t ∈ Znq

2.2 Fully homomorphic encodings

Let m = O(n log q) with q prime. Let G = [In ⊗ [1, 2, . . . , 2k−1]|0m−nk] ∈ Zn×m with k = dlog qe.

Definition 1. For any A ∼ U(Zn×mq ), an LWE encoding of a ∈ {0, 1} with refer to a public A ∈ Zn×mq and secret

randomness s ∼ U(Znq ) is a vector ΨA,s(a) = (A+ aG)T s+ e ∈ Zmq with e ∼ χm.

Let N use |ΨA,s(a)| = ||ΨA,s(a)− (A+ aG)T ||∞

Theorem 2. Let Matrices A,A1, . . . , Al ∼ U(Zm×nq ) Let a = a1, . . . , al ∈ {0, 1}l and LWE encodings ΨAi,s(ai) =

(Ai + aiG)T s+ ei ∈ Zmq .
With ei ∼ χm where Ai = ARi−ai·G for somme Ri ∈ Zm×m with ||Ri||∞ ≤ r. There exist efficient deterministic

algorithms (Eval PK, Eval CT, Eval Priv) which, for any Boolean circuit C : {0, 1}l → {0, 1} of depth d do the
following

• EvalPK(C, {Ai}li=1) outupts AC ∈ Zn×mq which encodes C

• EvalCT (C, {ΨAi,s(ai)}li=1, a = a1 . . . al ∈ {0, 1}l) outputs ΨAC ,s ∈ Zmq

• EvalPriv(C, {Ai = A ·Ri − ai ·G}li=1, {Ri}li=1, {ai}li=1) outputs RC ∈ Zm×m of norm ||RC ||∞ < O(rd) such
that AC = ARC − C(a) ·G
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