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1 Security Proof of ABB

Lemma 1 (generalized leftlover hash lemma). Let H : {h : X — Y}pen a universal hash family and let a function
f: X — Z. For finite sets X,Y,Z. For a random variable T over X, if v(T) := mzaXPr[T =t] =27 H=(T),

We have A((h, h(T), £(T)), (h, U(Y), f(T))) < 1v/5VTZ

If T, ..., Ty are independent random variables over X letting v = maxy(T}),

we have A((h, h(T3), f(T1), .., h(Ti), f(T})), (h, USY, F(T), ... ,USP, F(T) < 2\ /A(DYTZ
Corollary 1. Let m > 2nlogq and q > 3 prime. Let R « U({—1,1}"*F) with k € poly(n). Let A ~ uzy=m),
B~ U(Zmk).

For any w € Z', (A, AR, RTw) 2 (A, B, RTw)

Proof. View ha : {=1,1}"" = Z§}.  — Az mod ¢ as a universal hash function consider f(R) = RTw as leaked
informations on R and apply the generalized LHL to each column of R. O
Al Y
3 . — T — 0 m+nk
Reminder 1. ABBIBE : co =u's+x +plq/2] € Z, 1 = AT 4 GT - H(ID)T} s+ [RT} € Zy
with
w~U(Zg)

Ag ~ U(Z;’XW)
Al ~ U(ngnk)
T~ X
y~x"
R~ U({=1,13"")
Secret key : SK;q = erp € Z™™ small such that [Ag|A; + H(ID)-G]-erp =u mod ¢
Theorem 1. The ABB IBE provides set-IND-ID-CPA security under the LWE assumption.

Proof. Let A an adversary with advantage e. We build an LWE distinguisher B with advantage ¢ — 2~«(")
We first consider intermediate experiments Game 0,1,2,3

e Game 0: real SET-IND-ID-CPA experiment

e Game 1: We change the generation of A; € ZZX”’“ in MPK. Initially A chooses ID* the challenge identity.
Then, B sets A; : AgR* — H(ID*)G € fox“’k where R* ~ U({—1,1}"*"* is the random matrix used to
compute C* = (C§,CY)

By Corollary 1, (Ao, AgR*, R*Ty) ~ (Ao, A1, R*Ty) since Ag ~ U(Zp*™)



e Game 2: We change Keygen(MSK,-). For each query Keyen(MSK,ID) with ID # ID* we have
Aia = [Ao|A1 + H(ID)G] = [Ao|AgR" + (H(ID) — H(ID) - G)

. Here, (H(ID) — H(ID*)) has full rank over Z,
So Ay ((H(ID) — H(ID*))G) = A (G)
So we can use Tg € Z™*"F and R* € {—1,1}*"* to sample e;p € Z™*" from DAZL(AM),U

The obtained e;p has the distribution statistically close to that of Game 1 = T}, is no longer used.

e Game 3: Same as ame 2 but we replace (C,CT) by a random pair in Z, x Zg'”'"k. Then, A has advantage 0,
since Pr(p/ = p) = 3

Lemma 2. Game 2 is indistinguishable from Game3 under LWE assumption

Let A%273 a distinguisher with advantage ¢ betweend Game 2 and Game 3. We build a LWE dinstiguisher with
advantage ¢

Let an LWE instance (A, V = ATs +¢) € Z* (™) A
AT o [ATs +
: T _ |40 (m+1)xn —_ |V 2 |“0sTY
with A* = |:UT:| €eZ,; and V = L’O] = [uTs—Fx
Reduction B chooses R* < U({—1,1}"*"*) and MPK = (Ao, Ay = AgR* — H(ID*G,u)
B handles all keygen(MSK,-) queries using T and R* (T4, is not available)
B constructs C* = (C§, CY) as CF = Vo + p|q/2] with p + U({0,1}), Cf = [R:)TIV
1
A outputs g/ € {0,1}, If i/ = p, B returns 1 (meaning V = ATs +e). If i/ # p, B returns 0 (meaning
V ~ U(z;n—i—l)

+nk
| zpeo

{ vo=pls+a Co=u's +A/stq/2J T Al
If _Ur then . oS +y _ 08 Y
and v =A5s+y and Cf = |:R*TA(7;S +RTy| T | A+ G H(IDH)T s+ RTy

Which is a real encryption of pu as in Game 2.
*

If (51) ~ U(Z+1), then (Cj, CF) is statistically uniform, since ([‘//1%} , [éﬂ} R) is statistically unifomr by the
0 1 1
LHL.
* U1 S m4+nk . *
acy = [R*Tvl ~ U(Zy+™*) even given AgR
— A’s view is statistically identical to Game 3 O

1.1 Adaptively secure IBE from LWE

View each identity ID as an [-bit string ID(ids, ..., id,) € {—1,1}!
Encode each 1D € {—1,1}! using O(l) matrices (Ao, {A;}!_;) so that A;q = [Ao|G + élidi -A) € ng(m+nk)
with Ag ~ U(Z2%™), Ay,..., Ay ~ U(Z05mE),
In the proof, set A; = Ag - R; + h; - G where R; ~ U({—1,1}™*"*) h; ~ U(Z,)

l l

1
Define H(ID) =1+ _g}lidi -h; mod ¢
= Weneed H(ID*) =0, H(ID1),...,H(ID,) # 0 for all Keygen(MSK,ID;) queries.
Lemma 3. Let ¢ a prime such that 0 < Q < q. For any tuple (o, 21,...,7q) in ({—1,1})9+L of distinct inputs,

we have H(xo) =0, H(x1) #0,...,H(zg) #0
with probability at least %(1 - %) and at most %



Proof. Let (xo,...,x,) be pairwise distinct over {—1, 1}!. For eachi € {0,1,...,Q}, let S; be the set of (h1,...,h) €
!
Zfl such that H(z;) = 1+ 'glhi -x;; = 0 we have |S;| = ¢/~ Also [So N S;| < ¢!~2 for each i # 0 then |S| =

Q Q
|So| Y Si| > 1S0] — E1|SO NS;| > ¢! — Qg2

Probability is ‘qil‘ > %(1 - %) (and smaller than 1/q) O

Remark 1. Proof uses the encoding of ID € {—1,1}\. The reduction can answer all queries for I D, ..., 1Dg such
that H(ID;) # 0 since A;q = [Ao|Ao - Rig + H(ID;) - G] where R;q is small and H(ID;) #0

2 Attribute-Based Encryption for circuits

Until 2012, all ABE were limited to Boolean formulas (equivalently to log-dpeths circuits) using bilinear maps.
In 2013, Gorbmov-Vaihuntanathan-wee gave an ABE for circuits from LWE
In 2014, Boneh et al gave a circuit ABE with short keys (size only depends on circuit depth)

2.1 Idea

Use a connection between ABB and the Gentry-Sahar-Waters FHE

GSW : Let A € Z;*™ such that secret key is k € Z' st tTA mod ¢ small

Ci,=AR, + g - Ge ngnk

Cy = ARy + usg - Ge ngnk

with Ry, Ry € {—1,1}™** and puy, us € {0,1}

Let G™1:Zn*™ — [0, 1}"F*™ with k = [log ¢q] a deterministic function such that G- G~*(M) = M mod g for
any M € Z;*™

Recall : G =1, ®][1,2,...,2F 1]

Then Cf - G_l(CQ) = A(Rl . G_l(CQ)) + 1 - G- G_l(Cg) = A(Rl : G_l(OQ) + RQ) + pipg - G

Decrypts to uipuz using secret key t € Zy

2.2 Fully homomorphic encodings

Let m = O(nlogg) with ¢ prime. Let G = [I, ® [1,2,...,2F"1]|0m "] € Z"*™ with k = [logq].
Definition 1. For any A ~ U(Z3*™), an LWE encoding of a € {0,1} with refer to a public A € Zy*™ and secret
randomness s ~ U(Z}) is a vector W4 4(a) = (A+aG)Ts +e € Z" with e ~ x™.

Let N use |U4 s(a)| = ||¥45(a) — (A +aG)T||

Theorem 2. Let Matrices A, Ay,..., Aj ~ U(Z5™*") Let a = ay,...,a; € {0,1} and LWE encodings U 4, s(a;) =
(Ai+a:G)'s +e; € Z).

With e; ~ x™ where A; = AR;—a;-G for somme R; € Z™*™ with ||R;||c < 1. There exist efficient deterministic
algorithms (Eval PK, Eval CT, Eval Priv) which, for any Boolean circuit C' : {0,1}' — {0,1} of depth d do the
following

e EvalPK(C,{A;}._,) outupts Ac € Z*™ which encodes C
o EvalCT(C,{® 4, s(as)}y,a=a1...a; € {0,1}!) outputs Va,. , € Z0"

e EvalPriv(C,{A; = A-R; —a; - G} _ |, {R:}._1, {a;}} ) outputs Rc € Z™*™ of norm ||R¢||ee < O(r?) such
that Ac = ARc — C(a) - G



