Cours Crypto (11)

Florent Guépin

December 2019

1 Public-key encryption with keyword search (PEKS)

First introduced by Boneh-DiCrescenso-Ostrovsky-Persiazo (2004).

Given a keypair (pk,sk), sk allows deriving T_w for a specific keyword w (eg. "urgent"). Given T_w , gateway can test if a ciphetext c encrypts w while learning nothing else. Given

 $(\operatorname{Enc}(pk, M), \operatorname{PEKS}(pk, w_1), \dots, \operatorname{PEKS}(pk, w_l)),$

 T_w can test if $w \in \{w_1, \dots, w_l\}$ while learning nothing else (no interaction with the holder of sk is required).

Definition: A PEKS scheme is a tuple (Keygen, Enc, Trapdoor, Test) of efficient algorithms such that:

- **Keygen** (1^{λ}) : given security parameter λ , outputs a key pair (pk, sk)
- Enc(pk,w) : Given pk and a keyword $w \in \{0,1\}^*$, outputs a cyphetext c.
- **Trapdoor**(sk,w): Given secret key sk and keyword, outputs a trapdoor T_w .
- **Test** (pk,T_w,c) : Given pk, a ciphertext c and a trapdoor T_w , outputs 0 or 1.

Notion of Correctness: If $(pk,sk) \leftarrow \text{Keygen}(1^{\lambda})$, for any $w, c \leftarrow \text{Enc}(pk,w)$ and $T_w \leftarrow \text{Trapdoor}(sk,w)$, we have $\text{Test}(pk,T_w,c) = 1$.

Definition: A PEKS scheme provides semantic security if no PPT adversary has noticeable advantage in this game.

- 1. Challenger generates $(pk, sk) \leftarrow \text{Keygen}(1^{\lambda})$ and gives pk to adversary A.
- 2. A can adaptively choose keywords w and obtain $T_w \leftarrow \text{Trapdoor}(sk,w)$ from Challenger.
- 3. A chooses w_0, w_1 such that it did not obtain T_{w_0}, T_{w_1} so far. Challenger flips a coin $d \leftarrow U(\{0, 1\})$ and gives $c \leftarrow \operatorname{Enc}(pk, w_d)$ to A.
- 4. A can made more queries for keywords $w \notin \{w_0, w_1\}$.
- 5. A outputs $d' \in \{0, 1\}$ and wins if d' = d. Adv $(A) = |\mathbb{P}[d' = d] \frac{1}{2}|$

1.1 PEKS implies IBE

Let a PEKS scheme (Keygen, Enc, Trapdoor, Test) we build an IBE out of it.

- Setup (1^{λ}) : Run $(pk,sk) \leftarrow$ PEKS.Keygen (1^{λ}) . Outputs mpk = pk and msk = sk.
- Keygen(msk,ID): Given an identity ID, compute $T_{ID||0} \leftarrow \text{PEKS.Trapdoor}(sk,ID||0)$ and $T_{ID||1} \leftarrow \text{PEKS.Trapdoor}(sk,ID||1)$ output $sk_{ID} = (T_{ID||0},T_{ID||1})$
- Encrypt(mpk,ID,μ): To encrypt $\mu \in \{0,1\}$ under ID, compute $c \leftarrow \text{PEKS.Enc}(pk,ID||\mu)$
- Decrypt(mpk, SK_{ID}, c): Parse SK_{ID} as $(T_{ID||0}, T_{ID||1})$. It Test($pk, T_{ID||0}, c$)=1 output $\mu = 0$. If Test($pk, T_{ID||1}, c$)=1 output $\mu = 1$. In any other case, output \perp .

Lemma: The IBE scheme provides IND-ID-CPA security if the PEKS scheme is semantically secure.

1.2 PEKS from bilinear maps (BDOP, 2004)

Construction based on the Boneh-Francklin IBE.

- Keygen (1^{λ}) :
 - 1. Choose groups (G,G_T) of prime order $p > 2^{\lambda}$ with a bilinear map $e : G \times G \to G_T$, and a generator $g \leftarrow U(G)$.
 - 2. Choose $\alpha \leftarrow U(\mathbb{Z}_p^*)$ and compute $g_1 = g^{\alpha}$ and choose a hash function $H : \{0,1\}^* \to G$. Output $pk = ((G,G_T),g,g_1,H)$ and $sk = \alpha$.
- Trapdoor(sk, w) : Given $sk = \alpha \in \mathbb{Z}_p$ and $w \in \{0, 1\}^*$, compute $T_w = H(w)^{\alpha}$.
- Enc(pk,w): To encrypt $w \in \{0,1\}^*$, choose $r \leftarrow U(\mathbb{Z}_p)$ and compute $c = (c_1, c_2) = (g^r, e(g_1, H(w))^r)$.
- Test (pk,T_w,c) : Given $c = (c_1, c_2) \in G \times G_T$, return 1 if $c_2 = e(c_1,T_w)$ and 0 otherwise.

Correctness : $e(g_1, H(w))^r = e(g^{\alpha}, H(w))^r = e(g^r, H(w)^{\alpha})$

Théorème 1. The scheme provides semantic security in the ROM under the Decision Bilinear Diffie-Hellman assuption.

Proof. Let A a PEKS adversary with advantage ε we build a DBDA distinguisher with $\Omega(\frac{\varepsilon}{Q_T})$, where Q_T is the number of trapdoor queries. Algorithm B inputs (g,g^a,g^b,g^c,T) and uses A to decide if $T = e(g,g)^{abc}$ or $T \sim U(G_T)$. B defines $g_1 = g^a$ and runs A on input of $p_k = (g,g_1 = g^a, H)$ and simulates A's view.

- **H-queries** : on a query $H(w_r)$, B returns the previously defined value if it exists. Otherwise, B flips a based coin $\delta_{w_r} \in \{0, 1\}$ such that $\mathbb{P}[\delta_{w_i} = 0] = \frac{1}{Q_T + 1}$, where Q_T is the number of trapdoor queries.
 - 1. If $\delta_{w_i} = 0$, B returns $H(w_r) = (g^b) \cdot g^{\gamma_i}$ for a random $\gamma_i \leftarrow U(\mathbb{Z}_p)$ and keeps γ_i for later use.

2. If $\delta_{w_i} = 1$, B returns $H(w_i) = g^{\gamma_i}$ for a random $\gamma_i \leftarrow U(\mathbb{Z}_p)$ kept for later use.

• Trapdoor queries: When A queries T_{w_i} , we assume w.l.o.g. that $H(w_i)$ was asked before.

- 1. If $H(w_i) = (g^b) \cdot g^{\gamma_i}$ (ie. $\delta_{w_i} = 0$), B fails and outputs random bit.
- 2. If $H(w_i) = g^{\gamma_i}$ (ie. $\delta_{w_i} = 1$), B returns $T_{w_i} = H(w_i)^a = (g^a)^{\gamma_i}$.
- Challenge: A chooses $w_0, w_1 \in \{0, 1\}^*$ such that T_{w_0}, T_{w_1} were not revealed. We assume that $H(w_0), H(w_1)$ were asked.
 - 1. If B replied to $H(w_0)$, $H(w_1)$ by setting $\delta_{w_0} = \delta_{w_1} = 1$, B fails and outputs a random bit.
 - 2. Let a random $d \in \{0, 1\}$ such that $\delta_{w_d} = 0$. We have $H(w_d) = (g^b) \cdot g^{\gamma^*}$ for some $\gamma^* \in \mathbb{Z}_p$ known to B. Then, B computes and returns $c = (g^c, T \cdot e(g^c, g^a)^{\gamma^*})$.
- Output: A outputs $d' \in \{0,1\}$. If d' = d, B returns 1 (meaning $T = e(g,g)^{abc}$) else : B returns 0 (meaning $T \sim U(G_T)$).

Let events E_1 : B does not abort on Trapdoor queries and E_2 : B does not abort in Challenge phase.

Claim 1 : $\mathbb{P}[E_1] \ge \frac{1}{\exp(1)}$

Proof. (claim 1) δ_{w_i} are independent and identically distributed variables with binomial distribution $\rightarrow \mathbb{P}[\mathbf{E}_1] \geq (1 - \frac{1}{Q_T + 1})^{Q_T} \geq \frac{1}{\exp(1)}$

Claim 2 : $\mathbb{P}[\mathbf{E}_2] \ge \frac{1}{Q_T}$.

If B does not abort and $T = e(g,g)^{abc}$, then $c = (g^c, e(g_1, H(w_d))^c)$ is a valid encryption of w_d . If B does not abord and $T \sim U(G_T)$, then $c \sim U(G \times G_T)$ is independent of $d \in \{0, 1\}$.

Rermak : The scheme uses and anonymity property in the Boneh-Franklin IBE.

1.3 Consistency notions

Right keyword consistency: For all $\lambda \in \mathbb{N}$, $w \in \{0,1\}^*$, $\mathbb{P}[\text{Test}(p_k, \text{Trapdoor}(s_k, w), \text{Enc}(p_k, w))=1]=1$, where proba is taken over the randomness of Keygen, Trapdoor, Enc and Test.

Perfect Consistency: For all $\lambda \in \mathbb{N}$ and distinct $w, w' \in \{0, 1\}^r$, $\mathbb{P}[\text{Test}(p_k, \text{Trapdoor}(s_k, w'), \text{Enc}(p_k, w))=1]=0$ where the probability is taken over the randomness of Keygen, Trapdoor, Enc and Test.

Lemma 1. The BDOP PEKS is not perfectly consistent.

Proof. There exist $w, w' \in \{0, 1\}^*$ such that $w \neq w'$ and H(w) = H(w') and thus $H(w)^{\alpha} = H(w')^{\alpha}$.

Computational consistency: A PEKS is computationally consistent if no PPT adversary has noticeable advantage in this game:

1. Challenger generates $(pk,sk) \leftarrow \text{Keygen}(1^{\lambda})$, gives pk to A.

2. A chooses $w, w' \in \{0, 1\}^*$, Challenger computes $c \leftarrow \operatorname{Enc}(pk, w)$ and $T_{w'} \leftarrow \operatorname{Trapdoor}(sk, w')$. If $w \neq w'$ and $\operatorname{Test}(pk, T_{w'}, c) = 1$, A wins. $\operatorname{Adv}^{consist}(A) = \mathbb{P}[A \text{ wins}]$.

Remark :

- Perfect consistency : Adv(A) = 0 for any unbounded A.
- Statistical consistency : $Adv(A) \leq negl(\lambda)$, for any unbounded A.

Théorème 2. The BDOP PEKS is computationally consistent.

Proof. Let w_1, \dots, w_{Q_H} the keywords queried to $\mathrm{H}(\cdot)$. Let $\mathrm{WSET} = \{w_1, \dots, w_{Q_H}\} \cup \{w, w'\}$. Let E the event that there exist $\overline{w}, \overline{w'} \in \mathrm{WSET}$ such that $\mathrm{H}(\overline{w}) = \mathrm{H}(\overline{w'})$. Adv^{consist}(A) = $\mathbb{P}[\mathrm{A} \text{ wins } \wedge \mathrm{E}] + \mathbb{P}[\mathrm{A} \text{ wins } \wedge \overline{\mathrm{E}}] \leq \mathbb{P}[\mathrm{E}] \leq \frac{(Q_H + 2)^2}{|G|} < \frac{(Q_H + 2)^2}{2^{\lambda}} \Longrightarrow \mathrm{H}(\overline{w}) \neq \mathrm{H}(\overline{w'})$ so $\mathrm{H}(\overline{w})^{\alpha} \neq \mathrm{H}(\overline{w'})^{\alpha}$ and so $e(g^r, H(\overline{w})^{\alpha}) \neq e(g^r, H(\overline{w'})^{\alpha})$.

1.4 PEKS and anonymous IBE

Definition: An IBE provides anonymity (ANON-ID-CPA) if no PPT adversary has noticeable advantage of this game:

- 1. Challenger generates $(mpk, msk) \leftarrow \text{Setup}(1^{\lambda} \text{ and gives } mpk \text{ to } A.$
- 2. A makes key queries: it chooses ID and obtains $SK_{ID} \leftarrow \text{Keygen}(msk,\text{ID})$.
- 3. A chooses M and ID_0, ID_1 that were not submitted to Keygen (msk, \cdot) . Challenger flips a coin $d \leftarrow U(\{0,1\})$ and returns $c \leftarrow IBE(mpk, ID_d, M)$.
- 4. A makes more queries for identities $ID \notin \{ID_0, ID_1\}$.
- 5. A outputs $d' \in \{0, 1\}$ and wins if d' = d.

Anonymous IBE implies PEKS:

Failed attempt :

- Keygen (1^{λ}) : Run $(mpk, msk) \leftarrow$ IBE.Setup (1^{λ}) . Output (pk, sk) = (mpk, msk).
- **Trapdoor**(sk,w) : Output $T_w \leftarrow \text{IBE.Keygen}(msk,w)$.
- **Enc**(pk,w) : Compute $c \leftarrow$ IBE.Encrypt $(mpk,w,0^{\lambda})$.
- **Test** (pk,T_w,c) : Return 1 if IBE.Decrypt $(mpk,T_w,c) = 0$

Problem: Does not ensure computational consistency in general.

Solution: Encrypt a random string instead of 0^{λ} .

• Keygen (1^{λ}) : Run $(mpk, msk) \leftarrow$ IBE.Setup (1^{λ}) . Output (pk, sk) = (mpk, msk).

- **Trapdoor**(sk,w): Output $T_w \leftarrow \text{IBE.Keygen}(msk,w)$.
- Enc(pk,w): To encrypt $w \in \{0, 1\}^*$,
 - 1. Compute $\mathbf{R} \leftarrow U(\{0,1\}^{\lambda})$.
 - 2. Compute $c^{IBE} \leftarrow \text{IBE.Encrypt}(mpk, w, \mathbf{R})$.

output $c = (\mathbf{R}, c^{IBE})$

• **Test** (pk,T_w,c) : Given $c = (\mathbf{R},c^{IBE})$ and T_w , return 1 if $R = IBE.Decrypt(mpk,T_w,c)$. Otherwise, return 0.

Théorème 3. If the IBE scheme is IND-ID-CPA, the PEKS is computationally consistent. If the IBE scheme is ANON-ID-CPA, hte PEKS is semantically secure.

Proof. Let a consistency adversary A. We build an IND-ID-CPA adversary B against the IBE. B receives mpk from its IBE challenges and gives pk = mpk to A. A outputs w, w'. B chooses $R_0, R_1 \leftarrow U(\{0, 1\}^{\lambda})$ and sends (w, R_0, R_1) to its challenger who replies $c^* \leftarrow \text{IBE.Encrypt}(mpk, w, R_d)$ for a random bit $d \in \{0, 1\}$. B obtains $T_{w'} \leftarrow \text{IBE.Keygen}(msk, w')$ from its challenger.

If $R_1 = \text{IBE.Decrypt}(mpk, T'_w, c^*)$, then B returns 1 (guess for $d \in \{0, 1\}$), else B returns 0. So, $\text{Adv}(B) = \varepsilon - 2^{-\lambda}$.