Cours Crypto (11)

Florent Guépin

December 2019

1 Public-key encryption with keyword search (PEKS)

First introduced by Boneh-DiCrescenso-Ostrovsky-Persiazo (2004).
Given a keypair ($p k, s k$), sk allows deriving T_{w} for a specific keyword w (eg. "urgent"). Given T_{w}, gateway can test if a ciphetext c encrypts w while learning nothing else. Given

$$
\left(\operatorname{Enc}(p k, M), \operatorname{PEKS}\left(p k, w_{1}\right), \ldots, \operatorname{PEKS}\left(p k, w_{l}\right)\right)
$$

T_{w} can test if $w \in\left\{w_{1}, \cdots, w_{l}\right\}$ while learning nothing else (no interaction with the holder of $s k$ is required).

Definition: A PEKS scheme is a tuple (Keygen, Enc, Trapdoor,Test) of efficient algorithms such that:

- Keygen $\left(1^{\lambda}\right)$: given security parameter λ, outputs a key pair $(p k, s k)$
- $\operatorname{Enc}(p k, w):$ Given $p k$ and a keyword $w \in\{0,1\}^{*}$, outputs a cyphetext c.
- Trapdoor $(s k, w)$: Given secret key $s k$ and keyword, outputs a trapdoor T_{w}.
- Test $\left(p k, T_{w}, c\right)$: Given $p k$, a ciphertext c and a trapdoor T_{w}, outputs 0 or 1 .

Notion of Correctness: If $(p k, s k) \leftarrow \operatorname{Keygen}\left(1^{\lambda}\right)$, for any $w, c \leftarrow \operatorname{Enc}(p k, w)$ and $T_{w} \leftarrow \operatorname{Trapdoor}(s k, w)$, we have $\operatorname{Test}\left(p k, T_{w}, c\right)=1$.

Definition: A PEKS scheme provides semantic security if no PPT adversary has noticeable advantage in this game.

1. Challenger generates $(p k, s k) \leftarrow \operatorname{Keygen}\left(1^{\lambda}\right)$ and gives $p k$ to adversary A .
2. A can adaptively choose keywords w and obtain $T_{w} \leftarrow \operatorname{Trapdoor}(s k, w)$ from Challenger.
3. A chooses w_{0}, w_{1} such that it did not obtain $T_{w_{0}}, T_{w_{1}}$ so far. Challenger flips a coin $d \leftarrow U(\{0,1\})$ and gives $c \leftarrow \operatorname{Enc}\left(p k, w_{d}\right)$ to A.
4. A can made more queries for keywords $w \notin\left\{w_{0}, w_{1}\right\}$.
5. A outputs $d^{\prime} \in\{0,1\}$ and wins if $d^{\prime}=d . \operatorname{Adv}(\mathrm{A})=\left|\mathbb{P}\left[d^{\prime}=d\right]-\frac{1}{2}\right|$

1.1 PEKS implies IBE

Let a PEKS scheme (Keygen, Enc, Trapdoor, Test) we build an IBE out of it.

- $\operatorname{Setup}\left(1^{\lambda}\right): \operatorname{Run}(p k, s k) \leftarrow$ PEKS.Keygen $\left(1^{\lambda}\right)$. Outputs $m p k=p k$ and $m s k=s k$.
- Keygen $(m s k, I D)$: Given an identity ID, compute $T_{I D \| 0} \leftarrow \operatorname{PEKS}$.Trapdoor $(s k, I D \| 0)$ and $T_{I D \| 1} \leftarrow$ PEKS.Trapdoor $(s k, I D \| 1)$ output $s k_{I D}=\left(T_{I D \| 0}, T_{I D \| 1}\right)$
- Encrypt $(m p k, I D, \mu)$: To encrypt $\mu \in\{0,1\}$ under ID, compute $c \leftarrow \operatorname{PEKS} . \operatorname{Enc}(p k, I D \| \mu)$
- Decrypt $\left(m p k, S K_{I D}, c\right)$: Parse $S K_{I D}$ as $\left(T_{I D \| 0}, T_{I D \| 1}\right)$. It $\operatorname{Test}\left(p k, T_{I D \| 0}, c\right)=1$ output $\mu=0$. If $\operatorname{Test}(p k$, $\left.T_{I D \| 1}, c\right)=1$ output $\mu=1$. In any other case, output \perp.

Lemma: The IBE scheme provides IND-ID-CPA security if the PEKS scheme is semantically secure.

1.2 PEKS from bilinear maps (BDOP, 2004)

Construction based on the Boneh-Francklin IBE.

- Keygen(1^{λ}) :

1. Choose groups ($\mathrm{G}, \mathrm{G}_{T}$) of prime order $p>2^{\lambda}$ with a bilinear map $e: G \times G \rightarrow G_{T}$, and a generator $g \leftarrow U(G)$.
2. Choose $\alpha \leftarrow U\left(\mathbb{Z}_{p}^{*}\right)$ and compute $g_{1}=g^{\alpha}$ and choose a hash function $H:\{0,1\}^{*} \rightarrow G$. Output $p k=\left(\left(\mathrm{G}, \mathrm{G}_{T}\right), \mathrm{g}, g_{1}, \mathrm{H}\right)$ and $s k=\alpha$.

- Trapdoor $(s k, w)$: Given $s k=\alpha \in \mathbb{Z}_{p}$ and $w \in\{0,1\}^{*}$, compute $T_{w}=H(w)^{\alpha}$.
- $\operatorname{Enc}(p k, w):$ To encrypt $w \in\{0,1\}^{*}$, choose $r \leftarrow U\left(\mathbb{Z}_{p}\right)$ and compute $c=\left(c_{1}, c_{2}\right)=\left(g^{r}, e\left(g_{1}, H(w)\right)^{r}\right)$.
- $\operatorname{Test}\left(p k, T_{w}, c\right)$: Given $c=\left(c_{1}, c_{2}\right) \in G \times G_{T}$, return 1 if $c_{2}=e\left(c_{1}, T_{w}\right)$ and 0 otherwise.

Correctness : $e\left(g_{1}, H(w)\right)^{r}=e\left(g^{\alpha}, H(w)\right)^{r}=e\left(g^{r}, H(w)^{\alpha}\right)$
Théorème 1. The scheme provides semantic security in the ROM under the Decision Bilinear Diffie-Hellman assuption.

Proof. Let A a PEKS adversary with advantage ε we build a DBDA distinguisher with $\Omega\left(\frac{\varepsilon}{Q_{T}}\right.$, where Q_{T} is the number of trapdoor queries. Algorithm B inputs $\left(g, g^{a}, g^{b}, g^{c}, T\right)$ and uses A to decide if $T=e(g, g)^{a b c}$ or $T \sim U\left(G_{T}\right)$. B defines $g_{1}=g^{a}$ and runs A on input of $p_{k}=\left(g, g_{1}=g^{a}, H\right)$ and simulates A's view.

- H-queries : on a query $\mathrm{H}\left(w_{r}\right)$, B returns the previously deifned value if it exists. Otherwise, B flips a based $\operatorname{coin} \delta_{w_{r}} \in\{0,1\}$ such that $\mathbb{P}\left[\delta_{w_{i}}=0\right]=\frac{1}{Q_{T}+1}$, where Q_{T} is the number of trapdoor queries.

1. If $\delta_{w_{i}}=0$, B returns $\mathrm{H}\left(w_{r}\right)=\left(g^{b}\right) \cdot g^{\gamma_{i}}$ for a random $\gamma_{i} \leftarrow U\left(\mathbb{Z}_{p}\right)$ and keeps γ_{i} for later use.
2. If $\delta_{w_{i}}=1$, B returns $\mathrm{H}\left(w_{i}\right)=g^{\gamma_{i}}$ for a random $\gamma_{i} \leftarrow U\left(\mathbb{Z}_{p}\right)$ kept for later use.

- Trapdoor queries: When A queries $T_{w_{i}}$, we assume w.l.o.g. that $\mathrm{H}\left(w_{i}\right)$ was asked before.

1. If $\mathrm{H}\left(w_{i}\right)=\left(g^{b}\right) \cdot g^{\gamma_{i}}\left(\right.$ ie. $\left.\delta_{w_{i}}=0\right)$, B fails and outputs random bit.
2. If $\mathrm{H}\left(w_{i}\right)=g^{\gamma_{i}}$ (ie. $\delta_{w_{i}}=1$), B returns $T_{w_{i}}=H\left(w_{i}\right)^{a}=\left(g^{a}\right)^{\gamma_{i}}$.

- Challenge: A chooses $w_{0}, w_{1} \in\{0,1\}^{*}$ such that $T_{w_{0}}, T_{w_{1}}$ were not revealed. We assume that $\mathrm{H}\left(w_{0}\right), \mathrm{H}\left(w_{1}\right)$ were asked.

1. If B replied to $\mathrm{H}\left(w_{0}\right), \mathrm{H}\left(w_{1}\right)$ by setting $\delta_{w_{0}}=\delta_{w_{1}}=1$, B fails and outputs a random bit.
2. Let a random $d \in\{0,1\}$ such that $\delta_{w_{d}}=0$. We have $\mathrm{H}\left(w_{d}\right)=\left(g^{b}\right) \cdot g^{\gamma^{*}}$ for some $\gamma^{*} \in \mathbb{Z}_{p}$ known to B. Then, B computes and returns $c=\left(g^{c}, T \cdot e\left(g^{c}, g^{a}\right) \gamma^{*}\right)$.

- Output: A outputs $d^{\prime} \in\{0,1\}$. If $d^{\prime}=d$, B returns 1 (meaning $T=e(g, g)^{a b c}$) else : B returns 0 (meaning $\left.T \sim U\left(G_{T}\right)\right)$.

Let events E_{1} : B does not abort on Trapdoor queries and $\mathrm{E}_{2}: \mathrm{B}$ does not abort in Challenge phase.

Claim $1: \mathbb{P}\left[\mathrm{E}_{1}\right] \geq \frac{1}{\exp (1)}$

Proof. (claim 1) $\delta_{w_{i}}$ are independent and identically distributed variables with binomial distribution $\rightarrow \mathbb{P}\left[\mathrm{E}_{1}\right] \geq$ $\left(1-\frac{1}{Q_{T}+1}\right)^{Q_{T}} \geq \frac{1}{\exp (1)}$

Claim 2: $\mathbb{P}\left[\mathrm{E}_{2}\right] \geq \frac{1}{Q_{T}}$.

If B does not abort and $T=e(g, g)^{a b c}$, then $c=\left(g^{c}, e\left(g_{1}, H\left(w_{d}\right)\right)^{c}\right)$ is a valid encryption of w_{d}. If B does not abord and $T \sim U\left(G_{T}\right)$, then $c \sim U\left(G \times G_{T}\right)$ is independent of $d \in\{0,1\}$.

Rermak : The scheme uses and anonymity property in the Boneh-Franklin IBE.

1.3 Consistency notions

Right keyword consistency: For all $\lambda \in \mathbb{N}, w \in\{0,1\}^{*}, \mathbb{P}\left[\operatorname{Test}\left(p_{k}, \operatorname{Trapdoor}\left(s_{k}, w\right), \operatorname{Enc}\left(p_{k}, w\right)\right)=1\right]=1$, where proba is taken over the randomness of Keygen, Trapdoor, Enc and Test.

Perfect Consistency: For all $\lambda \in \mathbb{N}$ and distinct $w, w^{\prime} \in\{0,1\}^{r}, \mathbb{P}\left[\operatorname{Test}\left(p_{k}, \operatorname{Trapdoor}\left(s_{k}, w^{\prime}\right), \operatorname{Enc}\left(p_{k}, w\right)\right)=1\right]=0$ where the probability is taken over the randomness of Keygen, Trapdoor, Enc and Test.

Lemma 1. The BDOP PEKS is not perfectly consistent.
Proof. There exist $w, w^{\prime} \in\{0,1\}^{*}$ such that $w \neq w^{\prime}$ and $\mathrm{H}(w)=\mathrm{H}\left(w^{\prime}\right)$ and thus $\mathrm{H}(w)^{\alpha}=\mathrm{H}\left(w^{\prime}\right)^{\alpha}$.
Computational consistency: A PEKS is computationally consistent if no PPT adversary has noticeable advantage in this game:

1. Challenger generates $(p k, s k) \leftarrow \operatorname{Keygen}\left(1^{\lambda}\right)$, gives $p k$ to A .
2. A chooses $w, w^{\prime} \in\{0,1\}^{*}$, Challenger computes $c \leftarrow \operatorname{Enc}(p k, w)$ and $T_{w^{\prime}} \leftarrow \operatorname{Trapdoor}\left(s k, w^{\prime}\right)$. If $w \neq w^{\prime}$ and $\operatorname{Test}\left(p k, T_{w^{\prime}}, c\right)=1$, A wins. $\mathrm{Adv}^{\text {consist }}(\mathrm{A})=\mathbb{P}[\mathrm{A}$ wins $]$.

Remark:

- Perfect consistency : $\operatorname{Adv}(\mathrm{A})=0$ for any unbounded A .
- Statistical consistency : $\operatorname{Adv}(\mathrm{A}) \leq \operatorname{negl}(\lambda)$, for any unbounded A .

Théorème 2. The BDOP PEKS is computationally consistent.
Proof. Let $w_{1}, \cdots, w_{Q_{H}}$ the keywords queried to $\mathrm{H}(\cdot)$. Let WSET $=\left\{w_{1}, \cdots, w_{Q_{H}}\right\} \cup\left\{w, w^{\prime}\right\}$. Let E the event that there exist $\bar{w}, \overline{w^{\prime}} \in$ WSET such that $\mathrm{H}(\bar{w})=\mathrm{H}\left(\overline{w^{\prime}}\right)$.
$\operatorname{Adv}^{\text {consist }}(\mathrm{A})=\mathbb{P}[\mathrm{A}$ wins $\wedge \mathrm{E}]+\mathbb{P}[\mathrm{A}$ wins $\wedge \bar{E}] \leq \mathbb{P}[\mathrm{E}] \leq \frac{\left(Q_{H}+2\right)^{2}}{|G|}<\frac{\left(Q_{H}+2\right)^{2}}{2^{\lambda}} \Longrightarrow \mathrm{H}(\bar{w}) \neq \mathrm{H}\left(\overline{w^{\prime}}\right)$ so $\mathrm{H}(\bar{w})^{\alpha} \neq$ $\mathrm{H}\left(\overline{w^{\prime}}\right)^{\alpha}$ and so $e\left(g^{r}, H(\bar{w})^{\alpha}\right) \neq e\left(g^{r}, H\left(\overline{w^{\prime}}\right)^{\alpha}\right)$.

1.4 PEKS and anonymous IBE

Definition: An IBE provides anonymity (ANON-ID-CPA) if no PPT adversary has noticeable advantage of this game:

1. Challenger generates $(m p k, m s k) \leftarrow \operatorname{Setup}\left(1^{\lambda}\right.$ and gives $m p k$ to A .
2. A makes key queries: it chooses ID and obtains $S K_{I D} \leftarrow \operatorname{Keygen}(m s k$,ID $)$.
3. A chooses M and $I D_{0}, I D_{1}$ that were not submitted to $\operatorname{Keygen}(m s k, \cdot)$. Challenger flips a coin $d \stackrel{U(\{0,1\})}{\longleftrightarrow}$ and returns $c \leftarrow \operatorname{IBE}\left(m p k, I D_{d}, \mathrm{M}\right)$.
4. A makes more queries for identites $I D \notin\left\{I D_{0}, I D_{1}\right\}$.
5. A outputs $d^{\prime} \in\{0,1\}$ and wins if $d^{\prime}=d$.

Anonymous IBE implies PEKS:

Failed attempt :

- $\operatorname{Keygen}\left(1^{\lambda}\right): \operatorname{Run}(m p k, m s k) \leftarrow \operatorname{IBE} \cdot \operatorname{Setup}\left(1^{\lambda}\right)$. Output $(p k, s k)=(m p k, m s k)$.
- Trapdoor $(s k, w)$: Output $T_{w} \leftarrow \operatorname{IBE} . \operatorname{Keygen}(m s k, w)$.
- $\operatorname{Enc}(p k, w):$ Compute $c \leftarrow \operatorname{IBE} . \operatorname{Encrypt}\left(m p k, w, 0^{\lambda}\right)$.
- $\operatorname{Test}\left(p k, T_{w}, c\right): \operatorname{Return} 1$ if IBE.Decrypt $\left(m p k, T_{w}, c\right)=0$

Problem: Does not ensure computational consistency in general.

Solution: Encrypt a random string instead of 0^{λ}.

- Keygen $\left(1^{\lambda}\right): \operatorname{Run}(m p k, m s k) \leftarrow \operatorname{IBE} \cdot \operatorname{Setup}\left(1^{\lambda}\right)$. Output $(p k, s k)=(m p k, m s k)$.
- Trapdoor $(s k, w)$: Output $T_{w} \leftarrow \operatorname{IBE} . \operatorname{Keygen}(m s k, w)$.
- $\operatorname{Enc}(p k, w):$ To encrypt $w \in\{0,1\}^{*}$,

1. Compute $\mathrm{R} \leftarrow U\left(\{0,1\}^{\lambda}\right)$.
2. Compute $c^{I B E} \leftarrow \operatorname{IBE}$.Encrypt $(m p k, w, \mathrm{R})$.
output $c=\left(\mathrm{R}, c^{I B E}\right)$

- $\operatorname{Test}\left(p k, T_{w}, c\right)$: Given $c=\left(\mathrm{R}, c^{I B E}\right)$ and T_{w}, return 1 if $R=\operatorname{IBE} . \operatorname{Decrypt}\left(m p k, T_{w}, c\right)$. Otherwise, return 0 .

Théorème 3. If the IBE scheme is IND-ID-CPA, the PEKS is computationally consistent. If the IBE scheme is ANON-ID-CPA, hte PEKS is semantically secure.

Proof. Let a consistency adversary A. We build an IND-ID-CPA adversary B against the IBE. B receives mpk from its IBE challenges and gives $p k=m p k$ to A. A outputs w, w^{\prime}. B chooses $R_{0}, R_{1} \leftarrow U\left(\{0,1\}^{\lambda}\right)$ and sends $\left(w, R_{0}, R_{1}\right)$ to its challenger who replies $c^{*} \leftarrow \operatorname{IBE} . \operatorname{Encrypt}\left(m p k, w, R_{d}\right)$ for a random bit $d \in\{0,1\}$. B obtains $T_{w^{\prime}} \leftarrow$ IBE.Keygen $\left(m s k, w^{\prime}\right)$ from its challenger.
If $R_{1}=\operatorname{IBE} . \operatorname{Decrypt}\left(m p k, T_{w}^{\prime}, c^{*}\right)$, then B returns 1 (guess for $d \in\{0,1\}$), else B returns 0 . So, $\operatorname{Adv}(\mathrm{B})=$ $\varepsilon-2^{-\lambda}$.

