
Cours Crypto (11)

Florent Guépin

December 2019

1 Public-key encryption with keyword search (PEKS)

First introduced by Boneh-DiCrescenso-Ostrovsky-Persiazo (2004).
Given a keypair (pk,sk), sk allows deriving Tw for a specific keyword w (eg. ”urgent”). Given Tw, gateway can test
if a ciphetext c encrypts w while learning nothing else. Given(

Enc(pk,M),PEKS(pk, w1), . . . ,PEKS(pk,wl)
)
,

Tw can test if w ∈ {w1, · · · , wl} while learning nothing else (no interaction with the holder of sk is required).

Definition: A PEKS scheme is a tuple (Keygen, Enc, Trapdoor,Test) of efficient algorithms such that:

• Keygen(1λ) : given security parameter λ, outputs a key pair (pk,sk)

• Enc(pk,w) : Given pk and a keyword w ∈ {0, 1}∗, outputs a cyphetext c.

• Trapdoor(sk,w) : Given secret key sk and keyword, outputs a trapdoor Tw.

• Test(pk,Tw,c) : Given pk, a ciphertext c and a trapdoor Tw, outputs 0 or 1.

Notion of Correctness: If (pk,sk) ←− Keygen(1λ), for any w, c ←− Enc (pk,w) and Tw ←− Trapdoor(sk,w), we
have Test(pk,Tw,c) = 1.

Definition: A PEKS scheme provides semantic security if no PPT adversary has noticeable advantage in this
game.

1. Challenger generates (pk,sk) ←− Keygen(1λ) and gives pk to adversary A.

2. A can adaptively choose keywords w and obtain Tw ←− Trapdoor(sk,w) from Challenger.

3. A chooses w0, w1 such that it did not obtain Tw0
, Tw1

so far. Challenger flips a coin d←− U({0, 1}) and gives
c←− Enc(pk,wd) to A.

4. A can made more queries for keywords w /∈ {w0, w1}.

5. A outputs d′ ∈ {0, 1} and wins if d′ = d. Adv(A) = |P[d′ = d]− 1
2 |

1

1.1 PEKS implies IBE

Let a PEKS scheme (Keygen, Enc, Trapdoor, Test) we build an IBE out of it.

• Setup(1λ): Run (pk,sk) ←− PEKS.Keygen(1λ). Outputs mpk = pk and msk = sk.

• Keygen(msk,ID): Given an identity ID, compute TID||0 ← PEKS.Trapdoor(sk, ID||0) and TID||1 ←
PEKS.Trapdoor(sk, ID||1) output skID = (TID||0, TID||1)

• Encrypt(mpk,ID,µ): To encrypt µ ∈ {0, 1} under ID, compute c← PEKS.Enc(pk, ID||µ)

• Decrypt(mpk,SKID,c): Parse SKID as (TID||0, TID||1). It Test(pk, TID||0, c)=1 output µ = 0. If Test(pk,
TID||1, c)=1 output µ = 1. In any other case, output ⊥.

Lemma: The IBE scheme provides IND-ID-CPA security if the PEKS scheme is semantically secure.

1.2 PEKS from bilinear maps (BDOP, 2004)

Construction based on the Boneh-Francklin IBE.

• Keygen(1λ) :

1. Choose groups (G,GT) of prime order p > 2λ with a bilinear map e : G × G −→ GT , and a generator
g ←− U(G).

2. Choose α ←− U(Z∗p) and compute g1 = gα and choose a hash function H : {0, 1}∗ −→ G. Output
pk=((G,GT),g,g1,H) and sk = α.

• Trapdoor(sk,w) : Given sk = α ∈ Zp and w ∈ {0, 1}∗, compute Tw = H(w)α.

• Enc(pk,w) : To encrypt w ∈ {0, 1}∗, choose r ←− U(Zp) and compute c = (c1, c2) = (gr, e(g1, H(w))r).

• Test(pk,Tw,c) : Given c = (c1, c2) ∈ G×GT , return 1 if c2 = e(c1, Tw) and 0 otherwise.

Correctness : e(g1, H(w))r = e(gα, H(w))r = e(gr, H(w)α)

Théorème 1. The scheme provides semantic security in the ROM under the Decision Bilinear Diffie-Hellman
assuption.

Proof. Let A a PEKS adversary with advantage ε we build a DBDA distinguisher with Ω(ε
QT

, where QT is the

number of trapdoor queries. Algorithm B inputs (g,ga,gb,gc,T) and uses A to decide if T = e(g, g)abc or T ∼ U(GT).
B defines g1 = ga and runs A on input of pk = (g, g1 = ga, H) and simulates A’s view.

• H-queries : on a query H(wr), B returns the previously deifned value if it exists. Otherwise, B flips a based
coin δwr ∈ {0, 1} such that P[δwi = 0] = 1

QT+1 , where QT is the number of trapdoor queries.

1. If δwi = 0, B returns H(wr) = (gb)·gγi for a random γi ←− U(Zp) and keeps γi for later use.

2. If δwi = 1, B returns H(wi) = gγi for a random γi ←− U(Zp) kept for later use.

• Trapdoor queries: When A queries Twi , we assume w.l.o.g. that H(wi) was asked before.

2

1. If H(wi) = (gb)·gγi (ie. δwi = 0), B fails and outputs random bit.

2. If H(wi) = gγi (ie. δwi = 1), B returns Twi = H(wi)
a = (ga)γi .

• Challenge: A chooses w0, w1 ∈ {0, 1}∗ such that Tw0
, Tw1

were not revealed. We assume that H(w0),H(w1)
were asked.

1. If B replied to H(w0),H(w1) by setting δw0 = δw1 = 1, B fails and outputs a random bit.

2. Let a random d ∈ {0, 1} such that δwd = 0. We have H(wd) = (gb)·gγ∗ for some γ∗ ∈ Zp known to B.
Then, B computes and returns c = (gc, T · e(gc, ga)γ

∗
).

• Output: A outputs d′ ∈ {0, 1}. If d′ = d, B returns 1 (meaning T = e(g, g)abc) else : B returns 0 (meaning
T ∼ U(GT)).

Let events E1: B does not abort on Trapdoor queries and E2 : B does not abort in Challenge phase.

Claim 1 : P[E1]≥ 1
exp (1)

Proof. (claim 1) δwi are independent and identically distributed variables with binomial distribution −→ P[E1]≥
(1− 1

QT+1)QT ≥ 1
exp (1)

Claim 2 : P[E2]≥ 1
QT

.

If B does not abort and T = e(g, g)abc, then c = (gc, e(g1, H(wd))
c) is a valid encryption of wd. If B does not

abord and T ∼ U(GT), then c ∼ U(G×GT) is independent of d ∈ {0, 1}.

Rermak : The scheme uses and anonymity property in the Boneh-Franklin IBE.

1.3 Consistency notions

Right keyword consistency: For all λ ∈ N, w ∈ {0, 1}∗, P[Test(pk,Trapdoor(sk,w), Enc(pk,w))=1] =1, where
proba is taken over the randomness of Keygen, Trapdoor, Enc and Test.

Perfect Consistency: For all λ ∈ N and distinct w,w′ ∈ {0, 1}r, P[Test(pk,Trapdoor(sk,w′), Enc(pk,w))=1]=0
where the probability is taken over the randomness of Keygen, Trapdoor, Enc and Test.

Lemma 1. The BDOP PEKS is not perfectly consistent.

Proof. There exist w,w′ ∈ {0, 1}∗ such that w 6= w′ and H(w) = H(w′) and thus H(w)α = H(w′)α.

Computational consistency: A PEKS is computationally consistent if no PPT adversary has noticeable advan-
tage in this game:

1. Challenger generates(pk,sk)←− Keygen(1λ), gives pk to A.

3

2. A chooses w,w′ ∈ {0, 1}∗, Challenger computes c ←− Enc(pk,w) and Tw′ ←− Trapdoor(sk,w′). If w 6= w′ and
Test(pk,Tw′ ,c)=1, A wins. Advconsist(A) = P[A wins].

Remark :

• Perfect consistency : Adv(A) = 0 for any unbounded A.

• Statistical consistency : Adv(A) ≤ negl(λ), for any unbounded A.

Théorème 2. The BDOP PEKS is computationally consistent.

Proof. Let w1, · · · , wQH the keywords queried to H(·). Let WSET = {w1, · · · , wQH} ∪ {w,w′}. Let E the event
that there exist w,w′ ∈ WSET such that H(w)=H(w′).

Advconsist(A) = P[A wins ∧ E] + P[A wins ∧ E] ≤ P[E]≤ (QH+2)2

|G| < (QH+2)2

2λ
=⇒ H(w) 6= H(w′) so H(w)α 6=

H(w′)α and so e(gr, H(w)α) 6= e(gr, H(w′)α).

1.4 PEKS and anonymous IBE

Definition: An IBE provides anonymity (ANON-ID-CPA) if no PPT adversary has noticeable advantage of this
game:

1. Challenger generates (mpk, msk) ←− Setup(1λ and gives mpk to A.

2. A makes key queries: it chooses ID and obtains SKID ←− Keygen(msk,ID).

3. A chooses M and ID0, ID1 that were not submitted to Keygen(msk,·). Challenger flips a coin d
U({0,1})←−−−−− and

returns c←− IBE(mpk,IDd,M).

4. A makes more queries for identites ID /∈ {ID0, ID1}.

5. A outputs d′ ∈ {0, 1} and wins if d′ = d.

Anonymous IBE implies PEKS:

Failed attempt :

• Keygen(1λ) : Run (mpk,msk) ←− IBE.Setup(1λ). Output (pk,sk) = (mpk,msk).

• Trapdoor(sk,w) : Output Tw ←− IBE.Keygen(msk,w).

• Enc(pk,w) : Compute c←− IBE.Encrypt(mpk,w,0λ).

• Test(pk,Tw,c) : Return 1 if IBE.Decrypt(mpk,Tw,c) = 0

Problem: Does not ensure computational consistency in general.

Solution: Encrypt a random string instead of 0λ.

• Keygen(1λ) : Run (mpk,msk) ←− IBE.Setup(1λ). Output (pk,sk) = (mpk,msk).

4

• Trapdoor(sk,w): Output Tw ←− IBE.Keygen(msk,w).

• Enc(pk,w): To encrypt w ∈ {0, 1}∗,

1. Compute R ←− U({0, 1}λ).

2. Compute cIBE ←− IBE.Encrypt(mpk,w,R).

output c =(R,cIBE)

• Test(pk,Tw,c): Given c =(R,cIBE) and Tw, return 1 if R =IBE.Decrypt(mpk,Tw,c). Otherwise, return 0.

Théorème 3. If the IBE scheme is IND-ID-CPA, the PEKS is computationally consistent.
If the IBE scheme is ANON-ID-CPA, hte PEKS is semantically secure.

Proof. Let a consistency adversary A. We build an IND-ID-CPA adversary B against the IBE. B receives mpk
from its IBE challenges and gives pk = mpk to A. A outputs w,w′. B chooses R0, R1 ←− U({0, 1}λ) and sends
(w,R0,R1) to its challenger who replies c∗ ←− IBE.Encrypt(mpk,w,Rd) for a random bit d ∈ {0, 1}. B obtains Tw′ ←−
IBE.Keygen(msk,w′) from its challenger.
If R1 = IBE.Decrypt(mpk,T ′w,c∗), then B returns 1 (guess for d ∈ {0, 1}), else B returns 0. So, Adv(B) =
ε− 2−λ.

5

