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1 Definitions

1.1 Universal Circuits

Just like there exists a universal Turing machine that can emulate any other machine, Valiant proved in 1976 that
there exist universal circuits. The universal Turing machine U is defined so that VM Turing machine and Vz input
for M, there is a binary description d(M) such that U(d(M),z) = M(z). Now we want to similarly define a
universal circuit.

Definition 1. Let C(s,n) be the class of Boolean circuits with binary description of size s and input of size n. We
note cy : {0,1}™ — {0, 1} the circuit described by the bit-string f1 ... fs € {0,1}".

Definition 2. A Universal Circuit is an infinite family u = (Usn)sef0,1}*nefo,1}= Of circuits such that Vs €
N,Vn € N,Vf € {0,1}*,Va € {0,1}", we have us n(f1,..., fs,1,...,2s) = cp(x).

Remark: Valiant provided an algorithm to generate us ,, efficiently for any given s and n.

1.2 Public key functional encryption

Definition 3. A Public-key functional encryption scheme for a class of functions F consists in 4 PPT
algorithms (Setup, Keygen, Enc, Dec) such that:

o Setup(1*) = msk, mpk

o Keygen(msk, f € F) = sky
o Enc(mpk,m) = ct

o Dec(sky,ct) =m/

Its correctness is given by V(msk, mpk) = Setup(1*),Vf € F,Ym, Dec(Keygen(msk, f), Enc(mpk,m)) = f(m).
All the topics we have studied so far are instances of functional encryption: symmetric encryption, public key
encryption, identity or attribute-based encryption...

e Symmetric and public-key encryption: f = Identity.

"oifid = id’
o IBE: m = (id,m') and fig(id',m/) =4~ 7"
L otherwise.

m'if P(A) =1

e ABE: m = (A,m’) and fp(A,m') = {J_ otherwise

There are many definitions for security:

e adversary sends messages mg, m1 to challenger.



e challenger sends mpk and Enc(mpk, m;) after choosing b € {0, 1}.
e adversary sends f € F such that f(mg) = f(mq).

e challenger sends sky.

e adversary outputs b’ and wins if b’ = b.

This is selective 1-key security, but the adversary could ask for several secret keys for different functions fi,..., fq
with f;(mo) = fi(mq): this is multiple-keys security.

2 Garbled circuits

2.1 Definition
Definition 4. A Garbling scheme is a pair of PPT algorithms:

. Garble(l)‘,c :{0,1}™ + {0,1} circuit) =¢, {Ei,b} labels.
i€[l,n],be{0,1}

o Fwval(¢,{l;+,}) =be{0,1},z € {0,1}".

The scheme is correct when Ve, V, Eval(¢, {4 5, }) = c(x).

Security is obtained when minimum information is given about ¢ and z while outputting c¢(z). For a pair
(é,{t; =, }) given by Garble, we want a PPT simulator Sim(1*,¢,c(z)) =~ (¢,{¥i ., }). For simplicity, we usually
assume that ¢ is public so Sim has it as an input. If this simulation is possible, it means that (¢, £) does not give
more information.

2.2 Construction

Without loss of generality, we assume that circuits are made of gates with two inputs and one output (fanin2 —
fanoutl).

Definition 5. A circuit is a set of wires W = {w;} and gates G = {g;} positioned on a graph defined by tuples
(w;, wj,gk,wg) when gate gi has inputs w;, w; and output wy.

Let (Gen, Enc, Dec) denote a secret-key encryption scheme. For every wire w; € W, we generate two secret
keys k¥, k} with Gen(1*). Then for a gate (w;, wj, gi, we) we compute and shuffle four encryptions:
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{f]k = Enc(/ﬂ?, ETLC(k?, 0)\ ’ k}?k(a’b)) }a bE{O 1}

The output is ¢ = ({gk}, KO — 0.kL,, — 1), labels {k;fn} Out of four outputs, only one can be deciphered

given the two input labels.

Proof. A formal security proof would require a hybrid proof with one step for each gate and each ciphertext. We
want Sim(1*, ¢, c(z)) ~ (¢, {lix, }. Define Sim as follows:
e compute a garbling of ¢ with minor tweak: Vw; € W, mick k? = Gen(1* and V(w;, wj, gk, we), output arbitrary
Jr = Enc(kf,Enc(k?,O)‘ k), kO, = c(x), kb =1 —c().

» You »ou

e for % of ciphertexts, there is at least one missing key in each gate to decrypt, so the SE security guarantees
that Enck, o Enck,(0* - m) ~ Ency, o Ency,(0* - 0*) as long as k; or kg is unknown.

O



3 Functional Encryption

With universal and garbled circuits, we construct functional encryption for the class of circuits C(s,n). Let PKE* =
(Gen*, Enc*, Dec*) a PKE-scheme. FE is defined by:

e Setup(1*) generates (pk?, sk?) with Gen* for all i € [1,s],b € {0,1} and outputs mpk = {pk?}, msk = {sk’}.
o Keygen(msk,cy) = {skf} = sky.

e Enc(mpk, m) takes a universal circuit ¢/ : {0,1}* x {0,1}™ — {0,1} and computes (Z;I7 {:p} = Garble(1,U)
as well as ct? = Enc(pk?,l; ). It outputs the set (U, {ct®}, {livs.m, })-

e Dec(sky,ct) recovers {; 1.} and Eval(U,{€; 1}, {livsm,; })-
Proof. Correctness follows from the correctness of PKE and garbling. O

Proof. 1-key security requires Enc(mpk, mg) ~. Enc(mpk,m1) if f(mg) = f(mq) given sk. The only difference
between the two encryptions is in the set {£; s m, }. Security of garbling proves that (¢, {¢; +,}) ~. Sim(1*, ¢, c(z)).
O



