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1 Definitions

1.1 Universal Circuits

Just like there exists a universal Turing machine that can emulate any other machine, Valiant proved in 1976 that
there exist universal circuits. The universal Turing machine U is defined so that ∀M Turing machine and ∀x input
for M, there is a binary description d(M) such that U(d(M), x) = M(x). Now we want to similarly define a
universal circuit.

Definition 1. Let C(s, n) be the class of Boolean circuits with binary description of size s and input of size n. We
note cf : {0, 1}n → {0, 1} the circuit described by the bit-string f1 . . . fs ∈ {0, 1}s.

Definition 2. A Universal Circuit is an infinite family u = (us,n)s∈{0,1}∗,n∈{0,1}∗ of circuits such that ∀s ∈
N,∀n ∈ N,∀f ∈ {0, 1}s,∀x ∈ {0, 1}n, we have us,n(f1, . . . , fs, x1, . . . , xn) = cf (x).

Remark: Valiant provided an algorithm to generate us,n efficiently for any given s and n.

1.2 Public key functional encryption

Definition 3. A Public-key functional encryption scheme for a class of functions F consists in 4 PPT
algorithms (Setup, Keygen, Enc, Dec) such that:

• Setup(1λ) = msk,mpk

• Keygen(msk, f ∈ F) = skf

• Enc(mpk,m) = ct

• Dec(skf , ct) = m′

Its correctness is given by ∀(msk,mpk) = Setup(1λ),∀f ∈ F ,∀m,Dec(Keygen(msk, f), Enc(mpk,m)) = f(m).
All the topics we have studied so far are instances of functional encryption: symmetric encryption, public key

encryption, identity or attribute-based encryption...

• Symmetric and public-key encryption: f = Identity.

• IBE: m = (id,m′) and fid(id
′,m′) =

{
m′ if id = id′

⊥ otherwise.

• ABE: m = (A,m′) and fP (A,m′) =

{
m′ if P (A) = 1

⊥ otherwise.

There are many definitions for security:

• adversary sends messages m0,m1 to challenger.
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• challenger sends mpk and Enc(mpk,mb) after choosing b ∈ {0, 1}.

• adversary sends f ∈ F such that f(m0) = f(m1).

• challenger sends skf .

• adversary outputs b′ and wins if b′ = b.

This is selective 1-key security, but the adversary could ask for several secret keys for different functions f1, . . . , fq
with fi(m0) = fi(m1): this is multiple-keys security.

2 Garbled circuits

2.1 Definition

Definition 4. A Garbling scheme is a pair of PPT algorithms:

• Garble
(

1λ, c : {0, 1}n ← {0, 1} circuit
)

= c̃,
{
`i,b

}
i∈[1,n],b∈{0,1}

labels.

• Eval(c̃, {`i,xi
}) = b ∈ {0, 1}, x ∈ {0, 1}n.

The scheme is correct when ∀c,∀x,Eval(c̃, {`i,xi
}) = c(x).

Security is obtained when minimum information is given about c and x while outputting c(x). For a pair
(c̃, {`i,xi}) given by Garble, we want a PPT simulator Sim(1λ, c, c(x)) 'c (c̃, {`i,xi}). For simplicity, we usually
assume that c is public so Sim has it as an input. If this simulation is possible, it means that (c̃, `) does not give
more information.

2.2 Construction

Without loss of generality, we assume that circuits are made of gates with two inputs and one output (fanin2 −
fanout1).

Definition 5. A circuit is a set of wires W = {wi} and gates G = {gi} positioned on a graph defined by tuples
(wi, wj , gk, w`) when gate gk has inputs wi, wj and output w`.

Let (Gen,Enc,Dec) denote a secret-key encryption scheme. For every wire wi ∈ W , we generate two secret
keys k0i , k

1
i with Gen(1λ). Then for a gate (wi, wj , gk, w`) we compute and shuffle four encryptions:{

g̃k = Enc
(
kai , Enc(kbj , 0

λ · kgk(a,b)`

)}
a,b∈{0,1}

The output is c̃ =
(
{g̃k}, k0out → 0, k1out → 1

)
, labels

{
kbin

}
. Out of four outputs, only one can be deciphered

given the two input labels.

Proof. A formal security proof would require a hybrid proof with one step for each gate and each ciphertext. We
want Sim(1λ, c, c(x)) 'c (c̃, {`i,xi}. Define Sim as follows:

• compute a garbling of c with minor tweak: ∀wi ∈W , mick kbi = Gen(1λ and ∀(wi, wj , gk, w`), output arbitrary
g̃k = Enc

(
kai , Enc(kbj , 0

λ · k0i )
)
, k0out = c(x), k1out = 1− c(x).

• for 3
4 of ciphertexts, there is at least one missing key in each gate to decrypt, so the SE security guarantees

that Enck1 ◦ Enck2(0λ ·m) ' Enck1 ◦ Enck2(0λ · 0λ) as long as k1 or k2 is unknown.
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3 Functional Encryption

With universal and garbled circuits, we construct functional encryption for the class of circuits C(s, n). Let PKE∗ =
(Gen∗, Enc∗, Dec∗) a PKE-scheme. FE is defined by:

• Setup(1λ) generates (pkbi , sk
b
i ) with Gen∗ for all i ∈ [1, s], b ∈ {0, 1} and outputs mpk = {pkbi },msk = {skbi }.

• Keygen(msk, cf ) = {skfii } = skf .

• Enc(mpk,m) takes a universal circuit U : {0, 1}s × {0, 1}n → {0, 1} and computes (Ũ , {`i,b} = Garble(1λ,U)

as well as ctbi = Enc(pkbi , li,b). It outputs the set (Ũ , {ctbi}, {`i+s,mi
}).

• Dec(skf , ct) recovers {`i,fi} and Eval(Ũ , {`i,fi}, {`i+s,mi
}).

Proof. Correctness follows from the correctness of PKE and garbling.

Proof. 1-key security requires Enc(mpk,m0) 'c Enc(mpk,m1) if f(m0) = f(m1) given sk. The only difference
between the two encryptions is in the set {`i+s,mi

}. Security of garbling proves that (c̃, {`i,xi
}) 'c Sim(1λ, c, c(x)).
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