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1 Pairings / Bilinear maps

Let G1, G2 and GT be cyclic groups of order p prime, generated respectively by g1, g2 and
gT .

A pairing (or bilinear map) is a function G1 ×G2 −→ GT such that:

• (Bilinearity) ∀a, b ∈ Zp, e(ga1 , gb2) = e(g1, g2)
ab

• (Non degeneracy) ∀(x, y) ∈ G1 ×G2, e(x, y) = 1GT
=⇒ x = 1G1or y = 1G2 .

1.1 Three types of pairings

There is three types of pairings:

• Type 1: G1 = G2

• Type 2: G1 6= G2 but there exists an computationally efficient group morphism φ :
G1 −→ G2

• Type 3: G1 6= G2 and there is no computationally efficient group morphism φ : G1 −→
G2

In this class we will consider only type 1 pairings, hence G1 = G2 denoted G.
In practice, G1,G2 are elliptic curves and GT is a finite field.

What we know about pairings:

• We know groups without pairings, DDH can hold for these groups. (For instance,
groups that are the codomain of a pairing typically do not have pairings.)

• We know some groups with pairings. eg: Weil pairings, Tate pairings.
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1.2 Application of pairings: the 1-round 3-party key exchange

Figure 1: A 1-round 3-party key exchange based on pairings, the shared secret is e(g, g)abc.

P1, P2 and P3 want to compute a shared secret by communicating over an insecure
channel.

In [1], Joux showed that pairings give you a 1-round 3-party key exchange (KE), given
in Figure 1.

As with the 2-party KE, 3-party KE’s security also relies on a hardness assumption.
Instead of the DDH assumption, we’ll have to introduce the DBDH assumption.

Decisional Bilinear Diffie Hellman assumption (DBDH) for a group G
Given a pairing e and g ∈ G:

(e, g, ga, gb, gc, e(g, g)abc) =c (e, g, ga, gb, gc, e(g, g)d)

for d←$ Zp.

Given this definition of DBDH, it is easy to show that if CDH is easy then so is DBDH.
Indeed if one can compute gab from ga and gb, then one can simply evaluate the pairing e at
(gab, gc) to see wether the last element of the tuple is indeed e(g, g)abc.
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2 Identity-based encryption

2.1 IBE scheme

Communicating with someone using a public-key encryption system requires a previous
knowledge of his/her public key. We would like to be able to do so but only knowing one’s
identity, which can be handy in practical situations. This is why introduce Identity-based
encryption.

Identity-based encryption (or IBE)
An identity-based encryption scheme is a tuple of four PPT algorithms (Setup,
KeyGen, Enc, Dec) such that:

• Setup(1λ) outputs a pair (mpk,msk) of master public key and master secret key,

• KeyGen(msk, ID), for ID ∈ {0, 1}∗ outputs a security key sID for identity ID,

• Enc(mpk, ID,m) outputs a ciphertext ct,

• Dec(sID, ct) outputs a plaintext message m′

and such that the following holds:

• (correctness) P[Dec(sID,Enc(mpk, ID,m)) = m |S] = 1− negl(λ)
where S =

{
(mpk,msk)← Setup(1λ) & sID ← KeyGen(msk, ID)

}
Here we consider that a trusted party is present. It will generate the master public key

and the master secret key in order to produce security keys for every ID. Each ID will receive
its skID and use it to decrypt messages adressed to it.

2.2 Security notion

We want to adapt the notion of IND-CPA security to IBE schemes.
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IND-ID-CPA Game:

• Setup:
Challenger runs (mpk,msk)←$ Setup(1λ).

• Query phase 1:
Adversary A can adaptively ask secret keys for different IDs, ID1, . . . , IDg and
receives skID1 , . . . , skIDg from challenger.

• Challenge phase:
Adversary A picks (ID∗, m0, m1) and sends them to the challenger. If ID∗ 6=
ID1, . . . , IDg challenger replies with Enc(mpk, ID

∗, mb) for b taken uniformly
at random in {0, 1}, else challenger returns ⊥.

• Query phase 2:
Same as phase 1 but ID∗ cannot be queried.

• Output:
Adversary A outputs b′ and wins if b = b′.

We say that an IBE scheme is IND-ID-CPA secure if∣∣∣∣P[A wins ]− 1

2

∣∣∣∣ = negl(λ)

3 Boneh-Franklin IBE scheme

Let G, GT be groups and e : G × G −→ GT a pairing. Let H : {0, 1}∗ −→ G denote a
random oracle.

The Boneh-Franklin IBE scheme:

• Setup(1λ):
Generate (G, GT , e, g) and sample s←$ Zp.
Output (mpk = gs, msk = s).

• KeyGen(msk, ID):
Compute h = H(ID)
Output (sID = hs)

• Enc(mpk, ID, m):
Compute hID = H(ID)
Pick r ←$ Zp
Output ct = (ct1, ct2) = (gr, e(gs, hrID)m

• Dec(sID, ct):
Compute m = ct2

e(ct1, sID
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