1 Pairings / Bilinear maps

Let \mathbb{G}_1 , \mathbb{G}_2 and \mathbb{G}_T be cyclic groups of order p prime, generated respectively by g_1 , g_2 and g_T .

A pairing (or bilinear map) is a function $\mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_T$ such that:

- (Bilinearity) $\forall a, b \in \mathbb{Z}_p, \ e(g_1^a, g_2^b) = e(g_1, g_2)^{ab}$
- (Non degeneracy) $\forall (x, y) \in \mathbb{G}_1 \times \mathbb{G}_2, \ e(x, y) = 1_{\mathbb{G}_T} \implies x = 1_{\mathbb{G}_1} \text{ or } y = 1_{\mathbb{G}_2}.$

1.1 Three types of pairings

There is three types of pairings:

- Type 1: $\mathbb{G}_1 = \mathbb{G}_2$
- Type 2: $\mathbb{G}_1 \neq \mathbb{G}_2$ but there exists an computationally efficient group morphism ϕ : $\mathbb{G}_1 \longrightarrow \mathbb{G}_2$
- Type 3: $\mathbb{G}_1 \neq \mathbb{G}_2$ and there is no computationally efficient group morphism $\phi : \mathbb{G}_1 \longrightarrow \mathbb{G}_2$

In this class we will consider only type 1 pairings, hence $\mathbb{G}_1 = \mathbb{G}_2$ denoted \mathbb{G} . In practice, $\mathbb{G}_1, \mathbb{G}_2$ are elliptic curves and \mathbb{G}_T is a finite field.

What we know about pairings:

- We know groups without pairings, DDH can hold for these groups. (For instance, groups that are the codomain of a pairing typically do not have pairings.)
- We know some groups with pairings. eg: Weil pairings, Tate pairings.

1.2 Application of pairings: the 1-round 3-party key exchange

Figure 1: A 1-round 3-party key exchange based on pairings, the shared secret is $e(g, g)^{abc}$.

 P_1 , P_2 and P_3 want to compute a shared secret by communicating over an insecure channel.

In [1], Joux showed that pairings give you a 1-round 3-party key exchange (KE), given in Figure 1.

As with the 2-party KE, 3-party KE's security also relies on a hardness assumption. Instead of the DDH assumption, we'll have to introduce the DBDH assumption.

Decisional Bilinear Diffie Hellman assumption (DBDH) for a group \mathbb{G} Given a pairing e and $g \in \mathbb{G}$:

$$(e, g, g^a, g^b, g^c, e(g, g)^{abc}) =_c (e, g, g^a, g^b, g^c, e(g, g)^d)$$

for $d \leftarrow ^{\$} \mathbb{Z}_p$.

Given this definition of DBDH, it is easy to show that if CDH is easy then so is DBDH. Indeed if one can compute g^{ab} from g^a and g^b , then one can simply evaluate the pairing e at (g^{ab}, g^c) to see wether the last element of the tuple is indeed $e(g, g)^{abc}$.

2 Identity-based encryption

2.1 IBE scheme

Communicating with someone using a public-key encryption system requires a previous knowledge of his/her public key. We would like to be able to do so but only knowing one's identity, which can be handy in practical situations. This is why introduce Identity-based encryption.

Identity-based encryption (or IBE)

An identity-based encryption scheme is a tuple of four PPT algorithms (Setup, KeyGen, Enc, Dec) such that:

- Setup (1^{λ}) outputs a pair (m_{pk}, m_{sk}) of master public key and master secret key,
- KeyGen (m_{sk}, ID) , for $ID \in \{0, 1\}^*$ outputs a security key s_{ID} for identity ID,
- $Enc(m_{pk}, ID, m)$ outputs a ciphertext ct,
- $Dec(s_{ID}, ct)$ outputs a plaintext message m'

and such that the following holds:

• (correctness) $\mathbb{P}[\mathsf{Dec}(s_{ID}, \mathsf{Enc}(m_{pk}, ID, m)) = m | S] = 1 - negl(\lambda)$ where $S = \{(m_{pk}, m_{sk}) \leftarrow \mathsf{Setup}(1^{\lambda}) \& s_{ID} \leftarrow \mathsf{KeyGen}(m_{sk}, ID)\}$

Here we consider that a trusted party is present. It will generate the master public key and the master secret key in order to produce security keys for every ID. Each ID will receive its sk_{ID} and use it to decrypt messages addressed to it.

2.2 Security notion

We want to adapt the notion of **IND-CPA** security to IBE schemes.

IND-ID-CPA Game:

- Setup: Challenger runs $(m_{pk}, m_{sk}) \leftarrow^{\$} \mathsf{Setup}(1^{\lambda}).$
- Query phase 1: Adversary \mathcal{A} can adaptively ask secret keys for different IDs, ID_1, \ldots, ID_g and receives $sk_{ID_1}, \ldots, sk_{ID_g}$ from challenger.
- Challenge phase:

Adversary \mathcal{A} picks (ID^*, m_0, m_1) and sends them to the challenger. If $ID^* \neq ID_1, \ldots, ID_g$ challenger replies with $\mathsf{Enc}(m_{pk}, ID^*, m_b)$ for b taken uniformly at random in $\{0, 1\}$, else challenger returns \perp .

- Query phase 2: Same as phase 1 but *ID*^{*} cannot be queried.
- Output: Adversary \mathcal{A} outputs b' and wins if b = b'.

We say that an IBE scheme is **IND-ID-CPA secure** if

$$\mathbb{P}[\mathcal{A} \text{ wins }] - \frac{1}{2} = negl(\lambda)$$

3 Boneh-Franklin IBE scheme

Let \mathbb{G} , \mathbb{G}_T be groups and $e : \mathbb{G} \times \mathbb{G} \longrightarrow \mathbb{G}_T$ a pairing. Let $H : \{0, 1\}^* \longrightarrow \mathbb{G}$ denote a random oracle.

The Boneh-Franklin IBE scheme:

- Setup(1^λ): Generate (G, G_T, e, g) and sample s ←^{\$} Z_p. Output (m_{pk} = g^s, m_{sk} = s).
- KeyGen (m_{sk}, ID) : Compute h = H(ID)Output $(s_{ID} = h^s)$
- Enc (m_{pk}, ID, m) : Compute $h_{ID} = H(ID)$ Pick $r \leftarrow \mathbb{Z}_p$ Output $ct = (ct_1, ct_2) = (q^r, e(q^s, h_{ID}^r)m)$
- Dec (s_{ID}, ct) : Compute $m = \frac{ct_2}{e(ct_1, s_{ID})}$

References

 Joux A. (2000) A One Round Protocol for Tripartite DiffieHellman. In: Bosma W. (eds) Algorithmic Number Theory. ANTS 2000. Lecture Notes in Computer Science, vol 1838. Springer, Berlin, Heidelberg