
Hybrid Proofs in Cryptography

2019-2020

Contents

1 Proof of El-Gamal 1
1.1 El-Gamal scheme . 1
1.2 2-IND-CPA Games . 2
1.3 Proof of El-Gamal . 2

2 Proof of Boneh-Franklin IBE 3
2.1 Scheme . 3
2.2 Construction of the proof . 4
2.3 Proof of security . 4
2.4 Exercise . 6

1 Proof of El-Gamal

1.1 El-Gamal scheme

• Gen(1λ) : s
$← Zp, pk = gs, sk = s

• Enc(pk,m) : r
$← Zp, ct = (ct1, ct2) = (gr, gsr.m)

• Dec(sk, (ct1, ct2)) = ct2
ctsk1

We want to quantify A IND-CPA(A) = |2P(A (pk,Enc(pk,mb)) = b)− 1|

Lemma 1. |2P(A (pk,mb) = b)−1| = |P(A (pk, ct0)) = 0)−|P(A (pk, ct1) = 0)| = |P(A (pk, ct0)) =
1)− |P(A (pk, ct1) = 1)|

Proof.
|2P(A (pk, ctb) = b)− 1|

= |2(P(A (pk, ct0)) = 0)P(b = 0) + P(A (pk, ct1)) = 1)P(b = 1))− 1|
= |P(A (pk, ct0) = 0) + P(A (pk, ct1) = 1)− 1|

The claim now follows from the fact that

1 = P(A (pk, ct1) = 1) + P(A (pk, ct1) = 0)

.

1

1.2 2-IND-CPA Games

The game b is defined by :

• Init()
(pk, sk)

$← Gen(1λ)
Return pk

• Challenge(m0,m1)
Return Enc(pk,mb)

• Finalize(b′)
Return b′

1.3 Proof of El-Gamal

For all games :
Init()

(pk, sk)
$← Gen(1λ)

Return pk = gs

Finalize(b′)
Return b′

Game 0
Challenge(m0,m1) :

r
$← Zp

Return ct = (gr, gsr.m0)

Hyb 1
Challenge(m0,m1) :

r
$← Zp, c

$← Zp
Return ct = (gr, gc.m0)

Hyb 2
Challenge(m0,m1) :

r
$← Zp, c

$← Zp
Return ct = (gr, gc)

Hyb 3
Challenge(m0,m1) :

r
$← Zp, c

$← Zp
Return ct = (gr, gc.m1)

Game 1
Challenge(m0,m1) :

r
$← Zp

Return ct = (gr, grs.m1)

Lemma 2. Assuming DDH Game 0 and Hyb 1 are computationnaly indistinguishable.

2

Proof. Let A be a distinguisher between Game 0 and Hyb 1, we built a distinguisher B for DDH.

B gets a DDH tuple : (g, ga, gb, z) where z = gab or z = c, c
$← Zp. B sets pk = ga and sends pk to

A as Init. On query (m0,m1) for Challenge, B sets implicitly r as b and outputs ct = (gb, z.m0).
If z = gab we have ct = (gb, gab.m0) which correspond to challenge in Game 0, otherwise ct =
(gb, gc.m0) which correspond to challenge in Hyb 1. When A halts with output b′, so does B.
P[B(g, ga, gb, gab) = 1] = P[A(pk, ct, gr, gst.m0) = 1] and
P[B(g, ga, gb, gc) = 1] = P[A(pk, ct, gr, gc.m0) = 1].
So AdvDDH(B) ≥ AdvGame 0-Hyb 1(A).

⇒ |P[AGame 0 = 1]− P[AHyb 1 = 1]| ≤ AdvDDH(B) with B turns in same time as A.

Lemma 3. Hyb 1 ≡ Hyb 2.

Proof. The two distributons are the same.

⇒ |P[AHyb 1 = 1]− P[AHyb 2 = 1]| = 0

Lemma 4. Hyb 2 ≡ Hyb 3.

Proof. Same reason.

⇒ |P[AHyb 2 = 1]− P[AHyb 3 = 1]| = 0

Lemma 5. Assuming DDH Game 1 and Hyb 3 are computationnaly indistinguishable.

Proof. Same as the proof for Game 0 and Hyb 1.

⇒ |P[AHyb 3 = 1]− P[AGame 1 = 1]| ≤ AdvDDH(B)
Let A be an adversary against IND-CPA security of El-Gamal scheme :

AdvIND-CPA(A) = |P[AGame0 = 1]− P[AGame1 = 1]|

= P[AGame0 = 1]− P[AHyb1 = 1] + P[AHyb1 = 1]− P[AHyb2 = 1]

+P[AHyb2 = 1]− P[AHyb3 = 1] + P[AHyb3 = 1]− P[AGame1 = 1]|
≤ 2 AdvDDH(B)

where B’s running time is the same as A’s.

2 Proof of Boneh-Franklin IBE

2.1 Scheme

• Setup(1λ) : s
$← Zp, mpk = gs, msk = s

Return (msk,mpk)

• KeyGen(msk, ID) : h = H(ID) with H : {0, 1}∗ → G a random oracle.
Return (sID = hs)

• Enc(mpk, ID,m) : h = H(ID), r
$← Zp

Return (ct = (f r, e(h,mpk)r.m)

• Dec(sID, (ct1, ct2)) : Return ct2
e(sID,ct1)

3

2.2 Construction of the proof

The two following functions are accessible in all games for adversary :

• KeyGenOracle(ID) :
h = H(ID)
Return sID = hs

• RandomOracle(x ∈ {0, 1}∗)
If x ∈ T : Return T [x]

Else : h
$← G, T [x]← h

Return T [x]

Definition 1. The decisionnal bilinear Diffie-Helman assumption (DBDH) is for d
$← Zp

(e, g, ga, gb, gc, e(g, g)abc) 'c (e, g, ga, gb, gc, e(g, g)d)

For all games : Init(mpk,msk)← Setup(1λ) ,Return mpk = gs

Game 0
Challenge(ID,m0,m1) :
Return ct = (gr, e(H(ID), gs)r.m0)

Hyb 1
Challenge(ID,m0,m1) :

d
$← Zp

Return ct = (gr, e(g, g)d.m0)

Hyb 2
Challenge(ID,m0,m1) :

d
$← Zp

Return ct = (gr, e(g, g)d)

Hyb 3
Challenge(ID,m0,m1) :

d
$← Zp

Return ct = (gr, e(g, g)d.m1)

Game 1
Challenge(ID,m0,m1) :
Return ct = (gr, e(H(ID), gs)r.m1)

2.3 Proof of security

Theorem 1. Assuming DBDH, Game 0 'c Hyb 1.

Proof. Let A denote a distinguisher for Game 0 - Hyb 1 that makes q random oracle queries. We
build B a distinguisher for DBDH as follows :

4

The key idea here is that we want the challenge ciphertext to depend on a, b, c, so we use a as
the secret key by using ga as mpk, we keep b as randomness for the challenge ciphertext, and then
we want to use gc as the hash value for the challenge idendity. Since we do not know in advance
which idendity is going to be the challenge identity, we guess it. Another idea to avoid guessing
the challenge idendity would be to use (gc)t to define the outputs of H so that we are certain that
the hash value of the target identity depends on c. The issue doing so is that one cannot generate
secret keys if H(ID) = (gc)t since we would need to compute gcta and we only know ga, gc and t
but not a nor c. This is not possible unless CDH is easy (in which case so is DBDH).

B gets a DBDH tuple (ga, gb, gc, z) where z = e(g, g)abc or z
$← G.

For Init, B implicitly sets s = a by letting mpk = ga and sends it to A. In addition B picks

j
$← [1, q] as a guess of ID∗ being the j-th query to the random oracle H.

Initiate T of hash values and ctr = 0. When A asks for a hash query ID, B does the following :

Algorithm 1 Hash query

if T [ID] 6=⊥ then
return T [ID]

else
ctr ← ctr + 1
if ctr = j then
T [ID] = (⊥, gc)

else
t

$← Zp
T [ID] = (t, gt)

end if
return T [ID]

end if

When A makes a KeyGen query ID, B does the following:

Algorithm 2 KeyGen query

if T [ID] =⊥ then
define it (add it as a hash query)

end if
if T [ID] = (⊥, gc) then

Guess was incorrect :B halts and outputs b′
$← {0, 1}

else
T [ID] = (t, gt)
return sID = mpkt = (gs)t = H(ID)s

end if

When A challenges (ID,m0,m1) :

If T [ID] 6= (⊥, gc) : B halts and outputs b′
$← {0, 1}

Else : return ct = (gb, z.m0).
If z = e(g, g)abc, B simulate Game 0, otherwise Hyb 1. When A halts with output b so does B.

Conclusion :

|P[BA(ga, gb, gc, e(g, g)abc = 1]− P[BA(ga, gb, gc, e(g, g)d = 1]|

5

= |P[BA(ga, gb, gc, e(g, g)abc = 1|guess correct]P[guess correct]

+P[BA(ga, gb, gc, e(g, g)abc = 1|guess wrong]P[guess wrong]

−P[BA(ga, gb, gc, e(g, g)d = 1|guess correct]P[guess correct]

−P[BA(ga, gb, gc, e(g, g)d = 1|guess wrong]P[guess wrong]

= |P[BA(ga, gb, gc, e(g, g)abc = 1|guess correct]− P[BA(ga, gb, gc, e(g, g)d = 1|guess correct]

=
1

q
(P[AGame 0 = 1]− P[AHyb 1 = 1]

Fianlly
1

q
AdvGame 0 - Hyb 1(A) ≤ AdvDBDH(B)

Lemma 6. Hyb 1 ≡ Hyb 2 ≡ Hyb 3.

Proof. It’s the same distribution

Lemma 7. Assuming DBDH, Hyb 3 'c Game 1.

Proof. Same as the proof for Game 0 and Hyb 1.

Putting everything together give AdvIND-ID-CPA(A) ≤ 2qAdvDBDH(B) where B’s running time is
roughly the same as A and q is the number of random oracle query. We would prefer on dependance
of qKeyGen, the number of corruped identities.

2.4 Exercise

Inprove the bound with AdvIND-ID-CPA(A) ≤ 2eqKeyGen AdvDBDH(B).
Hint : Generate H(ID) as a random group element obtained from gc, i.e. gcα with known α with
proba 1

qKeyGen
. With a certain probability (to compute), c is embedded in the challenge but is not

in every KeyGen queries.

6

