
BLS Signature and GPSW Attribute-Based Encryption

2019-2020

Contents

1 Boneh-Lynn-Schucham signature 1
1.1 Constrution of BLS signature . 2
1.2 Unforgeability . 2

2 GPSW ABE Scheme 2
2.1 Attribute-based encryption . 2
2.2 The GPSW’06 construction . 3

1 Boneh-Lynn-Schucham signature

Definition 1. A signature scheme is a tuple of 3 PPT algorithms (Setup,Sign,Verif) such that

• Setupp1λq: outputs a pair of public/secret key ppk, skq

• Signpsk,mq: outputs a signature σ of message m.

• Verifppk,m, σq: ouptputs 0 or 1.

and with the following properties:

• Correctness: @m,P
pk,sk

$
ÐSetupp1λq

rVerifppk,m, Signpsk,mqq “ 1s ě 1´ neglpλq

• Unforgeability: Adversary A gets pk from Challenger. Adversary A can adaptively query a
Sign oracle with messages m1, . . . ,mq of its choice to get σi “ Signpsk,miq.
For all PPT adversary A , we want

PrASignpsk,.qppkq “ pm˚, σ˚q|V erifppk,m˚, σ˚q “ 1s “ neglpλq

such that @i “ 1, . . . , q, m˚ ‰ mi.

Remark. If Sign is randomized we talk about strong unforgeability if it is hard to produce a new σ
even for one of the querried messages mi’s.
But BLS is deterministic, so Unforgeability = Strong unforgeability.

1

1.1 Constrution of BLS signature

• Setup : pk “ gs, sk “ s, H : t0, 1u˚ Ñ G.

• Signpsk,mq: Compute h “ Hpmq and return σ “ hs “ Hpmqs.

• Verifppk,m, σq: Compute h “ Hpmq and output epg, σq ““ eph, pkq.

1.2 Unforgeability

Theorem 1. BLS satisfies unforgeability under the CDH assumption in G.

Reminder. DBDH assumption implies CDH in G.

Proof. Let A be an adversary against unforgeability, B against CDH in G. B gets pg, ga, gbq and
wants to compute gab.
B sets pk “ ga (so s “ a implicitly).
If Hpm˚q “ gb then success, since a valid signature for m˚ is Hpm˚qs “ pgbqa “ gab.
The only thing that remains to be done is to make sure that Hpm˚q “ gb.
Let QH denote the number of oracle access to H made by A . Just embed gb as the ouptut of the

i-th query for i
$
Ð t1, ..., QHu. For other random oracle querries, output gt for t

$
Ð Zp.

ñ Given t, one can compute σ “ Hpmqs “ pgsqt.

BLS has several nice features: for s1, s2 and σ1 “ Hpmqs1 , σ2 “ Hpmqs2 , one can check
epg, σ1, σ2q “ epHpmq, gs1 .gs2q. ñ Verify poly-many signatures at once: ”Agregate signatures”.
|σ| “ |group element in G| Ñ very small.

2 GPSW ABE Scheme

2.1 Attribute-based encryption

Definition 2. An attribute-based encryption scheme is a tuple of 4 PPT algoritms
pSetup,KeyGen,Enc,Decq such that:

• Setupp1λq: outputs a pair of master public/secret key pmpk,mskq.

• KeyGenpmsk, P q: on input msk and a predicate P , outputs skP .

• Encpmpk, γ,mq: on input mpk, a set of attributes γ and message m, outputs a ciphertext ct.

• DecpskP , ctq: outputs a message or K.

γ is a subset of U , the set of attributes. U “ tA1, ..., Anu
P is a predicate over U , i.e:P pγq “ 1 ô γ P SP Ď 2U . Equivalently: P : t0, 1un Ñ t0, 1u.

And such that the following properties hold:

• Correctness: PrDecpskP , pEncpmpk, γ,mqqq “ ms ě 1´ neglpλq if P pγq “ 1.

• IND-CPA security:

2

A C

Init pmpk,mskq
$
Ð Setupp1λq

mpk
ÐÝ

Phase 1
Pi
ÝÑ ý repeat q times
skPi
ÐÝ

Challenge @i, Pipγq ‰ 1
γ,m0,m1
ÝÑ b

$
Ð t0, 1u

ctb
ÐÝ ctb “ Encpmpk, γ,mbq

Phase 2 @i, P 1i pγq ‰ 1
P 1i
ÝÑ ý repeat q1 times
skP 1

i
ÐÝ

Finalize Ó b1

– Init: Challenger picks pmpk,mskq
$
Ð Setupp1λq and sends mpk to A .

– Phase 1: The adversary ask for keys for predicates P1, ..., Pq of its choice and gets
skP1 , ..., skPq .

– Challenge: A sends a set of target attributes γ˚ Ď U and m0,m1 to C and gets

Encpmpk, γ˚,mbq for b
$
Ð t0, 1u. C rejects if for some i P t1, ..., qu, Pipγ

˚q “ 1.

– Phase 2: Same as Phase 1, with Pipγ
˚q ‰ 1 for each new query.

– Finalize: A outputs a guess b1 and wins if b1 “ b.

Remark. We define selective security (sel-IND-CPA) in a analogous way than standard IND-CPA

security except that in the selective setting, the adversary picks the target attribute set γ˚ BEFORE
seeing the public key.

Exemple 1. U “ tENS, M2, Crypto, Lyon, Student}.
P “ pENS^ Lyonq _ pM2^ Student^ Cryptoq.
Here, given skP , we can decrypt a message for γ1 “ (ENS, Lyon) but not for γ2 “ (Lyon, M2).

Remark. IBE = ABE for U “ set of ID’s and P “ tPIDpID
1q “ pID ““ ID1q|ID P U u.

2.2 The GPSW’06 construction

U “ tA1, ..., Anu and P is an access tree.

Definition 3. An access tree τ with variables tA1, ..., Anu is a tree with every internal node x being
labeled by some threshold 0 ď kx ď dx (dx: degree of the node x) and leaves are labeled by a variable
Ai.
A leaf with label Ai evaluates to 1 on a set of attributes γ Ď tA1, . . . , Anu if Ai P γ. Now denote Tx
the subtree with root x, then T with root r evaluates to 1 on a set of attributes γ Ď tA1, . . . , Anu if
there exists (at least) kr children of r such that the subtree rooted in each of these children evaluate
to 1.

Exemple 2. Let γ “ tA1, A3u. Then T1pγq “ 1, but T2pγq “ 0.

3

A1 A2 A3 A4

A1 A4

1

1

1

2

2

T1

A1 A2 A3 A4

A1 A4

1

1

2

2

2

T2

Remark. If kx “ dx then x compute an AND, if kx “ 1 then x compute an OR.

The GPSW Contruction for access trees:

• Setupp1λq: s
$
Ð Zp, t1, ..., tn

$
Ð Zp.

Outputs mpk “ tepg, gqs, gt1 , ..., gtnu and msk “ ts, t1, ..., tnu.

• Encpmpk, γ,mq: r
$
Ð Zp.

Outputs ct “ pm.epg, gqsr, tgtiruAiPγq.

• KeyGenpmsk, T q: Recursively define polynomials of every node of T from the root r to the
leaves as follows:

– qr is a random polynomial of degree kr ´ 1 such that qrp0q “ s.

– For every node x, define qx as a degree pkx ´ 1q random polynomial such that
qxp0q “ qparentpxqpindexpxqq where indexpxq is the index of x as a children of parentpxq
(i.e., indexpxq is a unique number between 1 and dparentpxq associated to x.

skP is defined by: tg
qxp0q
ti |x is a leaf with attribute Aiu.

• DecpskT , ctq: Lagrange interpolation from leaves to root starting with epg
qxp0q
ti , gti.rq.

Thanks to the linearity of Lagrange interpolation, given d ` 1 group elements of the form
gppi1q, . . . , gppid`1q with p a degree-d polynomials and i1 ‰ ¨ ¨ ¨ ‰ id`1, one can recover gpp0q.

If T pγq “ 1, one can then recover epg, gqsr by interpolating from leaves to root starting with
epg, gqqxp0qr for every leaf x P T and going from leaves to the root of T .

Theorem 2. The GPSW’06 is sel-IND-CPA secure under DBDH assumption.

Proof. Similar to BF’01:

• Game 0: ct “ Encpmpk, γ,m0q “ pm0.epg, gq
sr, tgti.ruiq

• Hyb 1: ct “ pz, tgti.ruiq with z
$
Ð GT

• Game 1: ct “ Encpmpk, γ,m1q “ pm1.epg, gq
sr, tgti.ruiq

4

A declares the target set of attributes γ˚. B gets pga, gb, gc, zq with z “ epg, gqabc or z
$
Ð Gt.

The idea is to set sr “ abc, so set ab “ s and r “ c, where s is the master secret key and r denote
the randomness used for the challenge ciphertext. Doing so, B sets mpk “ tepg, gqab, gtiu for some
ti P Zp. We detail later how the ti’s are picked (this part will depend on γ˚, which is why this proof
only gives sel-IND-CPA security).

The main technicality in the proof is to provide B with a way to generate keys for A since B
does not know ab nor gab but only ga and gb.

Consider a query T made to KeyGen by A , so that T pγ˚q “ 0. Then B generates a key for T
as follows. B runs a similar process than the one used in the KeyGen algorithm. Starting at the
root r associated with degree kr of T , it implicitly defines degree kr ´ 1 polynomial qr such that
gqrp0q “ ga. Since T pγ˚q “ 0, there are at most kr ´ 1 children of r x1, . . . , xkr´1 such that subtrees
they are the roots of evaluate to 1 in γ˚. Then, B picks up to kr ´ 1 random points y1, . . . , ykr´1
in Zp and sets qrpindexpxiqq “ yi. It then defines recursively polynomials qx for every internal node
x of T such that gqxp0q “ gqparentpxqpindexpxqq. If the subtree rooted in x is not satisfied γ˚, then one
might know only gqparentpxqpindexpxqq but not qparentpxqpindexpxqq, while if it is satisfied by γ˚, we are
guaranteed to know it.

As we started with qrp0q “ a, this gives a key for msk “ a but not for msk “ ab as we wish.

Yet, a valid key for msk “ ab is then the set of all ppgqxp0q{tiq
b
qi such that x is a leaf (associated

with Ai).
There is one issue: if the leaf is not satisfied, it is possible that we only know gqxp0q and not

qxp0q in clear. This is an issue as we also do not know b but only gb. The trick is then to have

defined ti as ti “ bt1i, with t1i
$
Ð Zp if Ai R γ

˚ such that pgqxp0q{tiq
b
“ gqxp0q{t

1
i and then one can still

compute the key without knowing b nor qxp0q. If Ai P γ
˚, this is not an issue as we know qxp0q and

can compute the corresponding key component from gb. Yet, there is another issue if we let ti “ bt1i
as well for Ai P γ

˚.
Indeed, to generate the challenge ciphertext, we need to output the gtic for all ti’s such that

Ai P γ
˚. As we do not know gbc but only gb, gc, we cannot generate these if ti is also defined as

ti “ bt1i for Ai P γ
˚, but we can if we choose ti

$
Ð Zp.

Therefore, B needs to know γ˚ before generating the public key in order to correctly generate

the gti ’s as either pgbq
t1i if Ai R γ

˚ or simply as gti with chosen ti, t
1
i

$
Ð Zp otherwise.

It is now easy to conclude the proof.

Remark. While the above proof only achieves sel-IND-CPA security, note that the challenger can
guess the target set of attributes γ˚ with probability 1{2n. This artificial trick allows to go from
selective to adaptive security by guessing the target challenge. It is often referred to as complexity
leveraging. This does not give a stronger statement as there is a exponential loss in the reduction
due to this guess, but the take-away is that proving selective security still provides reasonable security
guarantees against adaptive adversaries if we increase sufficiently the parameters. Specifically, since
n is independent of the security parameter, one can pick the groups such that DBDH is hard even
for adversaries that run in time 2n ¨ poly.

5

