BLS Signature and GPSW Attribute-Based Encryption

2019-2020

Contents

Boneh-Lynn-Schucham signature 1.1 Constrution of BLS signature 1.2 Unforgeability	
GPSW ABE Scheme 2.1 Attribute-based encryption	

1 Boneh-Lynn-Schucham signature

Definition 1. A signature scheme is a tuple of 3 PPT algorithms (Setup, Sign, Verif) such that

- Setup (1^{λ}) : outputs a pair of public/secret key (pk, sk)
- Sign(sk, m): outputs a signature σ of message m.
- Verif (pk, m, σ) : ouptputs 0 or 1.

and with the following properties:

- Correctness: $\forall m, \mathbb{P}_{pk,sk \leftarrow \text{Setup}(1^{\lambda})}[\text{Verif}(pk, m, \text{Sign}(sk, m)) = 1] \ge 1 \text{negl}(\lambda)$
- Unforgeability: Adversary \mathscr{A} gets pk from Challenger. Adversary \mathscr{A} can adaptively query a Sign oracle with messages m_1, \ldots, m_q of its choice to get $\sigma_i = \text{Sign}(sk, m_i)$. For all PPT adversary \mathscr{A} , we want

$$\mathbb{P}[A^{Sign(sk,.)}(pk) = (m^*, \sigma^*) | Verif(pk, m^*, \sigma^*) = 1] = \operatorname{negl}(\lambda)$$

such that $\forall i = 1, \ldots, q, m^* \neq m_i$.

Remark. If Sign is randomized we talk about strong unforgeability if it is hard to produce a new σ even for one of the querried messages m_i 's.

But BLS is deterministic, so Unforgeability = Strong unforgeability.

1.1 Constrution of BLS signature

- Setup: $pk = g^s$, sk = s, $H : \{0, 1\}^* \to G$.
- Sign(sk, m): Compute h = H(m) and return $\sigma = h^s = H(m)^s$.
- Verif (pk, m, σ) : Compute h = H(m) and output $e(g, \sigma) == e(h, pk)$.

1.2 Unforgeability

Theorem 1. BLS satisfies unforgeability under the CDH assumption in G.

Reminder. DBDH assumption implies CDH in G.

Proof. Let \mathscr{A} be an adversary against unforgeability, \mathscr{B} against CDH in G. \mathscr{B} gets (g, g^a, g^b) and wants to compute g^{ab} .

 \mathscr{B} sets $pk = g^a$ (so s = a implicitly).

If $H(m^*) = g^b$ then success, since a valid signature for m^* is $H(m^*)^s = (g^b)^a = g^{ab}$. The only thing that remains to be done is to make sure that $H(m^*) = g^b$.

Let Q_H denote the number of oracle access to H made by \mathscr{A} . Just embed g^b as the ouptut of the *i*-th query for $i \stackrel{\$}{\leftarrow} \{1, ..., Q_H\}$. For other random oracle querries, output g^t for $t \stackrel{\$}{\leftarrow} \mathbb{Z}_p$. \Rightarrow Given t, one can compute $\sigma = H(m)^s = (g^s)^t$.

BLS has several nice features: for s_1, s_2 and $\sigma_1 = H(m)^{s_1}, \sigma_2 = H(m)^{s_2}$, one can check $e(g, \sigma_1, \sigma_2) = e(H(m), g^{s_1}.g^{s_2})$. \Rightarrow Verify poly-many signatures at once: "Agregate signatures". $|\sigma| = |\text{group element in } G| \rightarrow \text{very small.}$

2 GPSW ABE Scheme

2.1 Attribute-based encryption

Definition 2. An attribute-based encryption scheme is a tuple of 4 PPT algoritms (Setup, KeyGen, Enc, Dec) such that:

- Setup (1^{λ}) : outputs a pair of master public/secret key (mpk, msk).
- KeyGen(msk, P): on input msk and a predicate P, outputs sk_P .
- Enc(mpk, γ, m): on input mpk, a set of attributes γ and message m, outputs a ciphertext ct.
- $Dec(sk_P, ct)$: outputs a message or \perp .

 γ is a subset of \mathscr{U} , the set of attributes. $\mathscr{U} = \{A_1, ..., A_n\}$ P is a predicate over \mathscr{U} , i.e: $P(\gamma) = 1 \Leftrightarrow \gamma \in S_P \subseteq 2^{\mathscr{U}}$. Equivalently: $P : \{0, 1\}^n \to \{0, 1\}$.

And such that the following properties hold:

- Correctness: $\mathbb{P}[\operatorname{Dec}(sk_P, (\operatorname{Enc}(mpk, \gamma, m))) = m] \ge 1 \operatorname{negl}(\lambda) \text{ if } P(\gamma) = 1.$
- IND-CPA security:

$$\begin{array}{cccc} & \mathscr{A} & & C \\ Init & & (mpk, msk) \stackrel{\$}{\leftarrow} \operatorname{Setup}(1^{\lambda}) \\ & & & \underset{\underset{k \leftarrow i}{\overset{mpk}{\leftarrow}}}{\overset{mpk}{\leftarrow}} & & & \\ Phase 1 & & \stackrel{P_i}{\underset{k \leftarrow i}{\overset{k \leftarrow i}{\leftarrow}}} & & & \\ Challenge & \forall i, P_i(\gamma) \neq 1 & \stackrel{\gamma, m_0, m_1}{\underset{k \leftarrow i}{\overset{ct_b}{\leftarrow}}} & & & b \stackrel{\$}{\leftarrow} \{0, 1\} \\ & & & & & ct_b = \operatorname{Enc}(mpk, \gamma, m_b) \\ Phase 2 & \forall i, P_i'(\gamma) \neq 1 & \stackrel{P_i'}{\underset{k \leftarrow i}{\overset{sk_{P_i'}}{\leftarrow}}} & & & & \\ Finalize & \downarrow b' & & & \\ \end{array}$$

- Init: Challenger picks $(mpk, msk) \stackrel{\$}{\leftarrow} \text{Setup}(1^{\lambda})$ and sends mpk to \mathscr{A} .
- Phase 1: The adversary ask for keys for predicates $P_1, ..., P_q$ of its choice and gets $sk_{P_1}, ..., sk_{P_q}$.
- Challenge: \mathscr{A} sends a set of target attributes $\gamma^* \subseteq \mathscr{U}$ and m_0, m_1 to C and gets Enc(mpk, γ^*, m_b) for $b \stackrel{\$}{\leftarrow} \{0, 1\}$. C rejects if for some $i \in \{1, ..., q\}, P_i(\gamma^*) = 1$.
- Phase 2: Same as Phase 1, with $P_i(\gamma^*) \neq 1$ for each new query.
- Finalize: \mathscr{A} outputs a guess b' and wins if b' = b.

Remark. We define selective security (sel-IND-CPA) in a analogous way than standard IND-CPA security except that in the selective setting, the adversary picks the target attribute set γ^* BEFORE seeing the public key.

Exemple 1. $\mathscr{U} = \{ENS, M2, Crypto, Lyon, Student\}.$ $P = (ENS \land Lyon) \lor (M2 \land Student \land Crypto).$ Here, given sk_P , we can decrypt a message for $\gamma_1 = (ENS, Lyon)$ but not for $\gamma_2 = (Lyon, M2).$

Remark. IBE = ABE for $\mathscr{U} = set$ of ID's and $P = \{P_{ID}(ID') = (ID = = ID') | ID \in \mathscr{U} \}.$

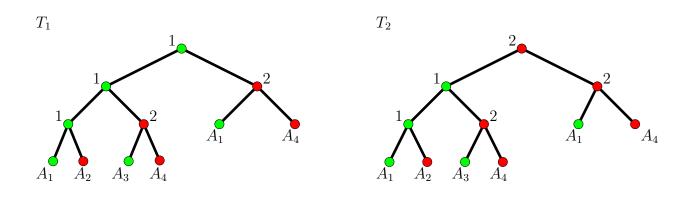
2.2 The GPSW'06 construction

 $\mathscr{U} = \{A_1, ..., A_n\}$ and P is an access tree.

Definition 3. An access tree τ with variables $\{A_1, ..., A_n\}$ is a tree with every internal node x being labeled by some threshold $0 \leq k_x \leq d_x$ (d_x : degree of the node x) and leaves are labeled by a variable A_i .

A leaf with label A_i evaluates to 1 on a set of attributes $\gamma \subseteq \{A_1, \ldots, A_n\}$ if $A_i \in \gamma$. Now denote T_x the subtree with root x, then T with root r evaluates to 1 on a set of attributes $\gamma \subseteq \{A_1, \ldots, A_n\}$ if there exists (at least) k_r children of r such that the subtree rooted in each of these children evaluate to 1.

Exemple 2. Let $\gamma = \{A_1, A_3\}$. Then $T_1(\gamma) = 1$, but $T_2(\gamma) = 0$.



Remark. If $k_x = d_x$ then x compute an AND, if $k_x = 1$ then x compute an OR.

The GPSW Contruction for access trees:

- Setup (1^{λ}) : $s \stackrel{\$}{\leftarrow} \mathbb{Z}_p, t_1, ..., t_n \stackrel{\$}{\leftarrow} \mathbb{Z}_p.$ Outputs $mpk = \{e(g, g)^s, g^{t_1}, ..., g^{t_n}\}$ and $msk = \{s, t_1, ..., t_n\}.$
- Enc(mpk, γ, m): $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$. Outputs $ct = (m.e(g, g)^{sr}, \{g^{t_ir}\}_{A_i \in \gamma})$.
- KeyGen(msk, T): Recursively define polynomials of every node of T from the root r to the leaves as follows:
 - $-q_r$ is a random polynomial of degree $k_r 1$ such that $q_r(0) = s$.
 - For every node x, define q_x as a degree $(k_x 1)$ random polynomial such that $q_x(0) = q_{\text{parent}(x)}(\text{index}(x))$ where index(x) is the index of x as a children of parent(x) (i.e., index(x) is a unique number between 1 and $d_{\text{parent}(x)}$ associated to x.

 sk_P is defined by: $\{g^{\frac{q_x(0)}{t_i}}|x \text{ is a leaf with attribute } A_i\}.$

• Dec (sk_T, ct) : Lagrange interpolation from leaves to root starting with $e(g^{\frac{qx(0)}{t_i}}, g^{t_i \cdot r})$. Thanks to the linearity of Lagrange interpolation, given d + 1 group elements of the form $g^{p(i_1)}, \ldots, g^{p(i_{d+1})}$ with p a degree-d polynomials and $i_1 \neq \cdots \neq i_{d+1}$, one can recover $g^{p(0)}$. If $T(\gamma) = 1$, one can then recover $e(g, g)^{sr}$ by interpolating from leaves to root starting with $e(g, g)^{q_x(0)r}$ for every leaf $x \in T$ and going from leaves to the root of T.

Theorem 2. The GPSW'06 is sel-IND-CPA secure under DBDH assumption.

Proof. Similar to BF'01:

- Game 0: $ct = \operatorname{Enc}(mpk, \gamma, m_0) = (m_0.e(g, g)^{sr}, \{g^{t_i.r}\}_i)$
- Hyb 1: $ct = (z, \{g^{t_i,r}\}_i)$ with $z \stackrel{\$}{\leftarrow} G_T$
- Game 1: $ct = \operatorname{Enc}(mpk, \gamma, m_1) = (m_1 \cdot e(g, g)^{sr}, \{g^{t_i \cdot r}\}_i)$

 \mathscr{A} declares the target set of attributes γ^* . \mathscr{B} gets (g^a, g^b, g^c, z) with $z = e(g, g)^{abc}$ or $z \leftarrow G_t$. The idea is to set sr = abc, so set ab = s and r = c, where s is the master secret key and r denote the randomness used for the challenge ciphertext. Doing so, \mathscr{B} sets $mpk = \{e(g, g)^{ab}, g^{t_i}\}$ for some $t_i \in \mathbb{Z}_p$. We detail later how the t_i 's are picked (this part will depend on γ^* , which is why this proof only gives sel-IND-CPA security).

The main technicality in the proof is to provide \mathscr{B} with a way to generate keys for \mathscr{A} since \mathscr{B} does not know ab nor g^{ab} but only g^a and g^b .

Consider a query T made to KeyGen by \mathscr{A} , so that $T(\gamma^*) = 0$. Then \mathscr{B} generates a key for T as follows. B runs a similar process than the one used in the KeyGen algorithm. Starting at the root r associated with degree k_r of T, it implicitly defines degree $k_r - 1$ polynomial q_r such that $g^{q_r(0)} = g^a$. Since $T(\gamma^*) = 0$, there are at most $k_r - 1$ children of $r x_1, \ldots, x_{k_r-1}$ such that subtrees they are the roots of evaluate to 1 in γ^* . Then, \mathscr{B} picks up to $k_r - 1$ random points y_1, \ldots, y_{k_r-1} in \mathbb{Z}_p and sets $q_r(\operatorname{index}(x_i)) = y_i$. It then defines recursively polynomials q_x for every internal node x of T such that $g^{q_x(0)} = g^{q_{\operatorname{parent}(x)}(\operatorname{index}(x))}$. If the subtree rooted in x is not satisfied γ^* , then one might know only $g^{q_{\operatorname{parent}(x)}(\operatorname{index}(x))}$ but not $q_{\operatorname{parent}(x)}(\operatorname{index}(x))$, while if it is satisfied by γ^* , we are guaranteed to know it.

As we started with $q_r(0) = a$, this gives a key for msk = a but not for msk = ab as we wish. Yet, a valid key for msk = ab is then the set of all $((g^{q_x(0)/t_i})^b)_i$ such that x is a leaf (associated with A_i).

There is one issue: if the leaf is not satisfied, it is possible that we only know $g^{q_x(0)}$ and not $q_x(0)$ in clear. This is an issue as we also do not know b but only g^b . The trick is then to have defined t_i as $t_i = bt'_i$, with $t'_i \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ if $A_i \notin \gamma^*$ such that $(g^{q_x(0)/t_i})^b = g^{q_x(0)/t'_i}$ and then one can still compute the key without knowing b nor $q_x(0)$. If $A_i \in \gamma^*$, this is not an issue as we know $q_x(0)$ and can compute the corresponding key component from g^b . Yet, there is another issue if we let $t_i = bt'_i$ as well for $A_i \in \gamma^*$.

Indeed, to generate the challenge ciphertext, we need to output the $g^{t_i c}$ for all t_i 's such that $A_i \in \gamma^*$. As we do not know g^{bc} but only g^b, g^c , we cannot generate these if t_i is also defined as $t_i = bt'_i$ for $A_i \in \gamma^*$, but we can if we choose $t_i \stackrel{\$}{\leftarrow} \mathbb{Z}_p$.

Therefore, \mathscr{B} needs to know γ^* before generating the public key in order to correctly generate the g^{t_i} 's as either $(g^b)^{t'_i}$ if $A_i \notin \gamma^*$ or simply as g^{t_i} with chosen $t_i, t'_i \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ otherwise.

It is now easy to conclude the proof.

Remark. While the above proof only achieves sel-IND-CPA security, note that the challenger can guess the target set of attributes γ^* with probability $1/2^n$. This artificial trick allows to go from selective to adaptive security by guessing the target challenge. It is often referred to as complexity leveraging. This does not give a stronger statement as there is a exponential loss in the reduction due to this guess, but the take-away is that proving selective security still provides reasonable security guarantees against adaptive adversaries if we increase sufficiently the parameters. Specifically, since n is independent of the security parameter, one can pick the groups such that DBDH is hard even for adversaries that run in time $2^n \cdot poly$.